1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #include <linux/capability.h> 93 #include <linux/errno.h> 94 #include <linux/types.h> 95 #include <linux/socket.h> 96 #include <linux/in.h> 97 #include <linux/kernel.h> 98 #include <linux/module.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/sched.h> 102 #include <linux/timer.h> 103 #include <linux/string.h> 104 #include <linux/sockios.h> 105 #include <linux/net.h> 106 #include <linux/mm.h> 107 #include <linux/slab.h> 108 #include <linux/interrupt.h> 109 #include <linux/poll.h> 110 #include <linux/tcp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 114 #include <asm/uaccess.h> 115 #include <asm/system.h> 116 117 #include <linux/netdevice.h> 118 #include <net/protocol.h> 119 #include <linux/skbuff.h> 120 #include <net/net_namespace.h> 121 #include <net/request_sock.h> 122 #include <net/sock.h> 123 #include <linux/net_tstamp.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 #include <net/cls_cgroup.h> 127 128 #include <linux/filter.h> 129 130 #ifdef CONFIG_INET 131 #include <net/tcp.h> 132 #endif 133 134 /* 135 * Each address family might have different locking rules, so we have 136 * one slock key per address family: 137 */ 138 static struct lock_class_key af_family_keys[AF_MAX]; 139 static struct lock_class_key af_family_slock_keys[AF_MAX]; 140 141 /* 142 * Make lock validator output more readable. (we pre-construct these 143 * strings build-time, so that runtime initialization of socket 144 * locks is fast): 145 */ 146 static const char *const af_family_key_strings[AF_MAX+1] = { 147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 154 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 156 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 158 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 159 "sk_lock-AF_IEEE802154", 160 "sk_lock-AF_MAX" 161 }; 162 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 163 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 164 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 165 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 166 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 167 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 168 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 169 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 170 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 171 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 172 "slock-27" , "slock-28" , "slock-AF_CAN" , 173 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 174 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 175 "slock-AF_IEEE802154", 176 "slock-AF_MAX" 177 }; 178 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 179 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 180 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 181 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 182 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 183 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 184 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 185 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 186 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 187 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 188 "clock-27" , "clock-28" , "clock-AF_CAN" , 189 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 190 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 191 "clock-AF_IEEE802154", 192 "clock-AF_MAX" 193 }; 194 195 /* 196 * sk_callback_lock locking rules are per-address-family, 197 * so split the lock classes by using a per-AF key: 198 */ 199 static struct lock_class_key af_callback_keys[AF_MAX]; 200 201 /* Take into consideration the size of the struct sk_buff overhead in the 202 * determination of these values, since that is non-constant across 203 * platforms. This makes socket queueing behavior and performance 204 * not depend upon such differences. 205 */ 206 #define _SK_MEM_PACKETS 256 207 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 208 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 209 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 210 211 /* Run time adjustable parameters. */ 212 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 213 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 214 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 215 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 216 217 /* Maximal space eaten by iovec or ancilliary data plus some space */ 218 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 219 EXPORT_SYMBOL(sysctl_optmem_max); 220 221 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP) 222 int net_cls_subsys_id = -1; 223 EXPORT_SYMBOL_GPL(net_cls_subsys_id); 224 #endif 225 226 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 227 { 228 struct timeval tv; 229 230 if (optlen < sizeof(tv)) 231 return -EINVAL; 232 if (copy_from_user(&tv, optval, sizeof(tv))) 233 return -EFAULT; 234 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 235 return -EDOM; 236 237 if (tv.tv_sec < 0) { 238 static int warned __read_mostly; 239 240 *timeo_p = 0; 241 if (warned < 10 && net_ratelimit()) { 242 warned++; 243 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " 244 "tries to set negative timeout\n", 245 current->comm, task_pid_nr(current)); 246 } 247 return 0; 248 } 249 *timeo_p = MAX_SCHEDULE_TIMEOUT; 250 if (tv.tv_sec == 0 && tv.tv_usec == 0) 251 return 0; 252 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 253 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 254 return 0; 255 } 256 257 static void sock_warn_obsolete_bsdism(const char *name) 258 { 259 static int warned; 260 static char warncomm[TASK_COMM_LEN]; 261 if (strcmp(warncomm, current->comm) && warned < 5) { 262 strcpy(warncomm, current->comm); 263 printk(KERN_WARNING "process `%s' is using obsolete " 264 "%s SO_BSDCOMPAT\n", warncomm, name); 265 warned++; 266 } 267 } 268 269 static void sock_disable_timestamp(struct sock *sk, int flag) 270 { 271 if (sock_flag(sk, flag)) { 272 sock_reset_flag(sk, flag); 273 if (!sock_flag(sk, SOCK_TIMESTAMP) && 274 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) { 275 net_disable_timestamp(); 276 } 277 } 278 } 279 280 281 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 282 { 283 int err; 284 int skb_len; 285 unsigned long flags; 286 struct sk_buff_head *list = &sk->sk_receive_queue; 287 288 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces 289 number of warnings when compiling with -W --ANK 290 */ 291 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 292 (unsigned)sk->sk_rcvbuf) { 293 atomic_inc(&sk->sk_drops); 294 return -ENOMEM; 295 } 296 297 err = sk_filter(sk, skb); 298 if (err) 299 return err; 300 301 if (!sk_rmem_schedule(sk, skb->truesize)) { 302 atomic_inc(&sk->sk_drops); 303 return -ENOBUFS; 304 } 305 306 skb->dev = NULL; 307 skb_set_owner_r(skb, sk); 308 309 /* Cache the SKB length before we tack it onto the receive 310 * queue. Once it is added it no longer belongs to us and 311 * may be freed by other threads of control pulling packets 312 * from the queue. 313 */ 314 skb_len = skb->len; 315 316 /* we escape from rcu protected region, make sure we dont leak 317 * a norefcounted dst 318 */ 319 skb_dst_force(skb); 320 321 spin_lock_irqsave(&list->lock, flags); 322 skb->dropcount = atomic_read(&sk->sk_drops); 323 __skb_queue_tail(list, skb); 324 spin_unlock_irqrestore(&list->lock, flags); 325 326 if (!sock_flag(sk, SOCK_DEAD)) 327 sk->sk_data_ready(sk, skb_len); 328 return 0; 329 } 330 EXPORT_SYMBOL(sock_queue_rcv_skb); 331 332 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 333 { 334 int rc = NET_RX_SUCCESS; 335 336 if (sk_filter(sk, skb)) 337 goto discard_and_relse; 338 339 skb->dev = NULL; 340 341 if (sk_rcvqueues_full(sk, skb)) { 342 atomic_inc(&sk->sk_drops); 343 goto discard_and_relse; 344 } 345 if (nested) 346 bh_lock_sock_nested(sk); 347 else 348 bh_lock_sock(sk); 349 if (!sock_owned_by_user(sk)) { 350 /* 351 * trylock + unlock semantics: 352 */ 353 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 354 355 rc = sk_backlog_rcv(sk, skb); 356 357 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 358 } else if (sk_add_backlog(sk, skb)) { 359 bh_unlock_sock(sk); 360 atomic_inc(&sk->sk_drops); 361 goto discard_and_relse; 362 } 363 364 bh_unlock_sock(sk); 365 out: 366 sock_put(sk); 367 return rc; 368 discard_and_relse: 369 kfree_skb(skb); 370 goto out; 371 } 372 EXPORT_SYMBOL(sk_receive_skb); 373 374 void sk_reset_txq(struct sock *sk) 375 { 376 sk_tx_queue_clear(sk); 377 } 378 EXPORT_SYMBOL(sk_reset_txq); 379 380 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 381 { 382 struct dst_entry *dst = __sk_dst_get(sk); 383 384 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 385 sk_tx_queue_clear(sk); 386 rcu_assign_pointer(sk->sk_dst_cache, NULL); 387 dst_release(dst); 388 return NULL; 389 } 390 391 return dst; 392 } 393 EXPORT_SYMBOL(__sk_dst_check); 394 395 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 396 { 397 struct dst_entry *dst = sk_dst_get(sk); 398 399 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 400 sk_dst_reset(sk); 401 dst_release(dst); 402 return NULL; 403 } 404 405 return dst; 406 } 407 EXPORT_SYMBOL(sk_dst_check); 408 409 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) 410 { 411 int ret = -ENOPROTOOPT; 412 #ifdef CONFIG_NETDEVICES 413 struct net *net = sock_net(sk); 414 char devname[IFNAMSIZ]; 415 int index; 416 417 /* Sorry... */ 418 ret = -EPERM; 419 if (!capable(CAP_NET_RAW)) 420 goto out; 421 422 ret = -EINVAL; 423 if (optlen < 0) 424 goto out; 425 426 /* Bind this socket to a particular device like "eth0", 427 * as specified in the passed interface name. If the 428 * name is "" or the option length is zero the socket 429 * is not bound. 430 */ 431 if (optlen > IFNAMSIZ - 1) 432 optlen = IFNAMSIZ - 1; 433 memset(devname, 0, sizeof(devname)); 434 435 ret = -EFAULT; 436 if (copy_from_user(devname, optval, optlen)) 437 goto out; 438 439 index = 0; 440 if (devname[0] != '\0') { 441 struct net_device *dev; 442 443 rcu_read_lock(); 444 dev = dev_get_by_name_rcu(net, devname); 445 if (dev) 446 index = dev->ifindex; 447 rcu_read_unlock(); 448 ret = -ENODEV; 449 if (!dev) 450 goto out; 451 } 452 453 lock_sock(sk); 454 sk->sk_bound_dev_if = index; 455 sk_dst_reset(sk); 456 release_sock(sk); 457 458 ret = 0; 459 460 out: 461 #endif 462 463 return ret; 464 } 465 466 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 467 { 468 if (valbool) 469 sock_set_flag(sk, bit); 470 else 471 sock_reset_flag(sk, bit); 472 } 473 474 /* 475 * This is meant for all protocols to use and covers goings on 476 * at the socket level. Everything here is generic. 477 */ 478 479 int sock_setsockopt(struct socket *sock, int level, int optname, 480 char __user *optval, unsigned int optlen) 481 { 482 struct sock *sk = sock->sk; 483 int val; 484 int valbool; 485 struct linger ling; 486 int ret = 0; 487 488 /* 489 * Options without arguments 490 */ 491 492 if (optname == SO_BINDTODEVICE) 493 return sock_bindtodevice(sk, optval, optlen); 494 495 if (optlen < sizeof(int)) 496 return -EINVAL; 497 498 if (get_user(val, (int __user *)optval)) 499 return -EFAULT; 500 501 valbool = val ? 1 : 0; 502 503 lock_sock(sk); 504 505 switch (optname) { 506 case SO_DEBUG: 507 if (val && !capable(CAP_NET_ADMIN)) 508 ret = -EACCES; 509 else 510 sock_valbool_flag(sk, SOCK_DBG, valbool); 511 break; 512 case SO_REUSEADDR: 513 sk->sk_reuse = valbool; 514 break; 515 case SO_TYPE: 516 case SO_PROTOCOL: 517 case SO_DOMAIN: 518 case SO_ERROR: 519 ret = -ENOPROTOOPT; 520 break; 521 case SO_DONTROUTE: 522 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 523 break; 524 case SO_BROADCAST: 525 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 526 break; 527 case SO_SNDBUF: 528 /* Don't error on this BSD doesn't and if you think 529 about it this is right. Otherwise apps have to 530 play 'guess the biggest size' games. RCVBUF/SNDBUF 531 are treated in BSD as hints */ 532 533 if (val > sysctl_wmem_max) 534 val = sysctl_wmem_max; 535 set_sndbuf: 536 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 537 if ((val * 2) < SOCK_MIN_SNDBUF) 538 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 539 else 540 sk->sk_sndbuf = val * 2; 541 542 /* 543 * Wake up sending tasks if we 544 * upped the value. 545 */ 546 sk->sk_write_space(sk); 547 break; 548 549 case SO_SNDBUFFORCE: 550 if (!capable(CAP_NET_ADMIN)) { 551 ret = -EPERM; 552 break; 553 } 554 goto set_sndbuf; 555 556 case SO_RCVBUF: 557 /* Don't error on this BSD doesn't and if you think 558 about it this is right. Otherwise apps have to 559 play 'guess the biggest size' games. RCVBUF/SNDBUF 560 are treated in BSD as hints */ 561 562 if (val > sysctl_rmem_max) 563 val = sysctl_rmem_max; 564 set_rcvbuf: 565 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 566 /* 567 * We double it on the way in to account for 568 * "struct sk_buff" etc. overhead. Applications 569 * assume that the SO_RCVBUF setting they make will 570 * allow that much actual data to be received on that 571 * socket. 572 * 573 * Applications are unaware that "struct sk_buff" and 574 * other overheads allocate from the receive buffer 575 * during socket buffer allocation. 576 * 577 * And after considering the possible alternatives, 578 * returning the value we actually used in getsockopt 579 * is the most desirable behavior. 580 */ 581 if ((val * 2) < SOCK_MIN_RCVBUF) 582 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 583 else 584 sk->sk_rcvbuf = val * 2; 585 break; 586 587 case SO_RCVBUFFORCE: 588 if (!capable(CAP_NET_ADMIN)) { 589 ret = -EPERM; 590 break; 591 } 592 goto set_rcvbuf; 593 594 case SO_KEEPALIVE: 595 #ifdef CONFIG_INET 596 if (sk->sk_protocol == IPPROTO_TCP) 597 tcp_set_keepalive(sk, valbool); 598 #endif 599 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 600 break; 601 602 case SO_OOBINLINE: 603 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 604 break; 605 606 case SO_NO_CHECK: 607 sk->sk_no_check = valbool; 608 break; 609 610 case SO_PRIORITY: 611 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 612 sk->sk_priority = val; 613 else 614 ret = -EPERM; 615 break; 616 617 case SO_LINGER: 618 if (optlen < sizeof(ling)) { 619 ret = -EINVAL; /* 1003.1g */ 620 break; 621 } 622 if (copy_from_user(&ling, optval, sizeof(ling))) { 623 ret = -EFAULT; 624 break; 625 } 626 if (!ling.l_onoff) 627 sock_reset_flag(sk, SOCK_LINGER); 628 else { 629 #if (BITS_PER_LONG == 32) 630 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 631 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 632 else 633 #endif 634 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 635 sock_set_flag(sk, SOCK_LINGER); 636 } 637 break; 638 639 case SO_BSDCOMPAT: 640 sock_warn_obsolete_bsdism("setsockopt"); 641 break; 642 643 case SO_PASSCRED: 644 if (valbool) 645 set_bit(SOCK_PASSCRED, &sock->flags); 646 else 647 clear_bit(SOCK_PASSCRED, &sock->flags); 648 break; 649 650 case SO_TIMESTAMP: 651 case SO_TIMESTAMPNS: 652 if (valbool) { 653 if (optname == SO_TIMESTAMP) 654 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 655 else 656 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 657 sock_set_flag(sk, SOCK_RCVTSTAMP); 658 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 659 } else { 660 sock_reset_flag(sk, SOCK_RCVTSTAMP); 661 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 662 } 663 break; 664 665 case SO_TIMESTAMPING: 666 if (val & ~SOF_TIMESTAMPING_MASK) { 667 ret = -EINVAL; 668 break; 669 } 670 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, 671 val & SOF_TIMESTAMPING_TX_HARDWARE); 672 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, 673 val & SOF_TIMESTAMPING_TX_SOFTWARE); 674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, 675 val & SOF_TIMESTAMPING_RX_HARDWARE); 676 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 677 sock_enable_timestamp(sk, 678 SOCK_TIMESTAMPING_RX_SOFTWARE); 679 else 680 sock_disable_timestamp(sk, 681 SOCK_TIMESTAMPING_RX_SOFTWARE); 682 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, 683 val & SOF_TIMESTAMPING_SOFTWARE); 684 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, 685 val & SOF_TIMESTAMPING_SYS_HARDWARE); 686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, 687 val & SOF_TIMESTAMPING_RAW_HARDWARE); 688 break; 689 690 case SO_RCVLOWAT: 691 if (val < 0) 692 val = INT_MAX; 693 sk->sk_rcvlowat = val ? : 1; 694 break; 695 696 case SO_RCVTIMEO: 697 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 698 break; 699 700 case SO_SNDTIMEO: 701 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 702 break; 703 704 case SO_ATTACH_FILTER: 705 ret = -EINVAL; 706 if (optlen == sizeof(struct sock_fprog)) { 707 struct sock_fprog fprog; 708 709 ret = -EFAULT; 710 if (copy_from_user(&fprog, optval, sizeof(fprog))) 711 break; 712 713 ret = sk_attach_filter(&fprog, sk); 714 } 715 break; 716 717 case SO_DETACH_FILTER: 718 ret = sk_detach_filter(sk); 719 break; 720 721 case SO_PASSSEC: 722 if (valbool) 723 set_bit(SOCK_PASSSEC, &sock->flags); 724 else 725 clear_bit(SOCK_PASSSEC, &sock->flags); 726 break; 727 case SO_MARK: 728 if (!capable(CAP_NET_ADMIN)) 729 ret = -EPERM; 730 else 731 sk->sk_mark = val; 732 break; 733 734 /* We implement the SO_SNDLOWAT etc to 735 not be settable (1003.1g 5.3) */ 736 case SO_RXQ_OVFL: 737 if (valbool) 738 sock_set_flag(sk, SOCK_RXQ_OVFL); 739 else 740 sock_reset_flag(sk, SOCK_RXQ_OVFL); 741 break; 742 default: 743 ret = -ENOPROTOOPT; 744 break; 745 } 746 release_sock(sk); 747 return ret; 748 } 749 EXPORT_SYMBOL(sock_setsockopt); 750 751 752 int sock_getsockopt(struct socket *sock, int level, int optname, 753 char __user *optval, int __user *optlen) 754 { 755 struct sock *sk = sock->sk; 756 757 union { 758 int val; 759 struct linger ling; 760 struct timeval tm; 761 } v; 762 763 int lv = sizeof(int); 764 int len; 765 766 if (get_user(len, optlen)) 767 return -EFAULT; 768 if (len < 0) 769 return -EINVAL; 770 771 memset(&v, 0, sizeof(v)); 772 773 switch (optname) { 774 case SO_DEBUG: 775 v.val = sock_flag(sk, SOCK_DBG); 776 break; 777 778 case SO_DONTROUTE: 779 v.val = sock_flag(sk, SOCK_LOCALROUTE); 780 break; 781 782 case SO_BROADCAST: 783 v.val = !!sock_flag(sk, SOCK_BROADCAST); 784 break; 785 786 case SO_SNDBUF: 787 v.val = sk->sk_sndbuf; 788 break; 789 790 case SO_RCVBUF: 791 v.val = sk->sk_rcvbuf; 792 break; 793 794 case SO_REUSEADDR: 795 v.val = sk->sk_reuse; 796 break; 797 798 case SO_KEEPALIVE: 799 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 800 break; 801 802 case SO_TYPE: 803 v.val = sk->sk_type; 804 break; 805 806 case SO_PROTOCOL: 807 v.val = sk->sk_protocol; 808 break; 809 810 case SO_DOMAIN: 811 v.val = sk->sk_family; 812 break; 813 814 case SO_ERROR: 815 v.val = -sock_error(sk); 816 if (v.val == 0) 817 v.val = xchg(&sk->sk_err_soft, 0); 818 break; 819 820 case SO_OOBINLINE: 821 v.val = !!sock_flag(sk, SOCK_URGINLINE); 822 break; 823 824 case SO_NO_CHECK: 825 v.val = sk->sk_no_check; 826 break; 827 828 case SO_PRIORITY: 829 v.val = sk->sk_priority; 830 break; 831 832 case SO_LINGER: 833 lv = sizeof(v.ling); 834 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 835 v.ling.l_linger = sk->sk_lingertime / HZ; 836 break; 837 838 case SO_BSDCOMPAT: 839 sock_warn_obsolete_bsdism("getsockopt"); 840 break; 841 842 case SO_TIMESTAMP: 843 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 844 !sock_flag(sk, SOCK_RCVTSTAMPNS); 845 break; 846 847 case SO_TIMESTAMPNS: 848 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 849 break; 850 851 case SO_TIMESTAMPING: 852 v.val = 0; 853 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 854 v.val |= SOF_TIMESTAMPING_TX_HARDWARE; 855 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 856 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE; 857 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE)) 858 v.val |= SOF_TIMESTAMPING_RX_HARDWARE; 859 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 860 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE; 861 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) 862 v.val |= SOF_TIMESTAMPING_SOFTWARE; 863 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)) 864 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE; 865 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) 866 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE; 867 break; 868 869 case SO_RCVTIMEO: 870 lv = sizeof(struct timeval); 871 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 872 v.tm.tv_sec = 0; 873 v.tm.tv_usec = 0; 874 } else { 875 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 876 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 877 } 878 break; 879 880 case SO_SNDTIMEO: 881 lv = sizeof(struct timeval); 882 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 883 v.tm.tv_sec = 0; 884 v.tm.tv_usec = 0; 885 } else { 886 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 887 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 888 } 889 break; 890 891 case SO_RCVLOWAT: 892 v.val = sk->sk_rcvlowat; 893 break; 894 895 case SO_SNDLOWAT: 896 v.val = 1; 897 break; 898 899 case SO_PASSCRED: 900 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 901 break; 902 903 case SO_PEERCRED: 904 if (len > sizeof(sk->sk_peercred)) 905 len = sizeof(sk->sk_peercred); 906 if (copy_to_user(optval, &sk->sk_peercred, len)) 907 return -EFAULT; 908 goto lenout; 909 910 case SO_PEERNAME: 911 { 912 char address[128]; 913 914 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 915 return -ENOTCONN; 916 if (lv < len) 917 return -EINVAL; 918 if (copy_to_user(optval, address, len)) 919 return -EFAULT; 920 goto lenout; 921 } 922 923 /* Dubious BSD thing... Probably nobody even uses it, but 924 * the UNIX standard wants it for whatever reason... -DaveM 925 */ 926 case SO_ACCEPTCONN: 927 v.val = sk->sk_state == TCP_LISTEN; 928 break; 929 930 case SO_PASSSEC: 931 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; 932 break; 933 934 case SO_PEERSEC: 935 return security_socket_getpeersec_stream(sock, optval, optlen, len); 936 937 case SO_MARK: 938 v.val = sk->sk_mark; 939 break; 940 941 case SO_RXQ_OVFL: 942 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL); 943 break; 944 945 default: 946 return -ENOPROTOOPT; 947 } 948 949 if (len > lv) 950 len = lv; 951 if (copy_to_user(optval, &v, len)) 952 return -EFAULT; 953 lenout: 954 if (put_user(len, optlen)) 955 return -EFAULT; 956 return 0; 957 } 958 959 /* 960 * Initialize an sk_lock. 961 * 962 * (We also register the sk_lock with the lock validator.) 963 */ 964 static inline void sock_lock_init(struct sock *sk) 965 { 966 sock_lock_init_class_and_name(sk, 967 af_family_slock_key_strings[sk->sk_family], 968 af_family_slock_keys + sk->sk_family, 969 af_family_key_strings[sk->sk_family], 970 af_family_keys + sk->sk_family); 971 } 972 973 /* 974 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 975 * even temporarly, because of RCU lookups. sk_node should also be left as is. 976 */ 977 static void sock_copy(struct sock *nsk, const struct sock *osk) 978 { 979 #ifdef CONFIG_SECURITY_NETWORK 980 void *sptr = nsk->sk_security; 981 #endif 982 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) != 983 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) + 984 sizeof(osk->sk_tx_queue_mapping)); 985 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start, 986 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start)); 987 #ifdef CONFIG_SECURITY_NETWORK 988 nsk->sk_security = sptr; 989 security_sk_clone(osk, nsk); 990 #endif 991 } 992 993 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 994 int family) 995 { 996 struct sock *sk; 997 struct kmem_cache *slab; 998 999 slab = prot->slab; 1000 if (slab != NULL) { 1001 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1002 if (!sk) 1003 return sk; 1004 if (priority & __GFP_ZERO) { 1005 /* 1006 * caches using SLAB_DESTROY_BY_RCU should let 1007 * sk_node.next un-modified. Special care is taken 1008 * when initializing object to zero. 1009 */ 1010 if (offsetof(struct sock, sk_node.next) != 0) 1011 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1012 memset(&sk->sk_node.pprev, 0, 1013 prot->obj_size - offsetof(struct sock, 1014 sk_node.pprev)); 1015 } 1016 } 1017 else 1018 sk = kmalloc(prot->obj_size, priority); 1019 1020 if (sk != NULL) { 1021 kmemcheck_annotate_bitfield(sk, flags); 1022 1023 if (security_sk_alloc(sk, family, priority)) 1024 goto out_free; 1025 1026 if (!try_module_get(prot->owner)) 1027 goto out_free_sec; 1028 sk_tx_queue_clear(sk); 1029 } 1030 1031 return sk; 1032 1033 out_free_sec: 1034 security_sk_free(sk); 1035 out_free: 1036 if (slab != NULL) 1037 kmem_cache_free(slab, sk); 1038 else 1039 kfree(sk); 1040 return NULL; 1041 } 1042 1043 static void sk_prot_free(struct proto *prot, struct sock *sk) 1044 { 1045 struct kmem_cache *slab; 1046 struct module *owner; 1047 1048 owner = prot->owner; 1049 slab = prot->slab; 1050 1051 security_sk_free(sk); 1052 if (slab != NULL) 1053 kmem_cache_free(slab, sk); 1054 else 1055 kfree(sk); 1056 module_put(owner); 1057 } 1058 1059 #ifdef CONFIG_CGROUPS 1060 void sock_update_classid(struct sock *sk) 1061 { 1062 u32 classid = task_cls_classid(current); 1063 1064 if (classid && classid != sk->sk_classid) 1065 sk->sk_classid = classid; 1066 } 1067 EXPORT_SYMBOL(sock_update_classid); 1068 #endif 1069 1070 /** 1071 * sk_alloc - All socket objects are allocated here 1072 * @net: the applicable net namespace 1073 * @family: protocol family 1074 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1075 * @prot: struct proto associated with this new sock instance 1076 */ 1077 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1078 struct proto *prot) 1079 { 1080 struct sock *sk; 1081 1082 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1083 if (sk) { 1084 sk->sk_family = family; 1085 /* 1086 * See comment in struct sock definition to understand 1087 * why we need sk_prot_creator -acme 1088 */ 1089 sk->sk_prot = sk->sk_prot_creator = prot; 1090 sock_lock_init(sk); 1091 sock_net_set(sk, get_net(net)); 1092 atomic_set(&sk->sk_wmem_alloc, 1); 1093 1094 sock_update_classid(sk); 1095 } 1096 1097 return sk; 1098 } 1099 EXPORT_SYMBOL(sk_alloc); 1100 1101 static void __sk_free(struct sock *sk) 1102 { 1103 struct sk_filter *filter; 1104 1105 if (sk->sk_destruct) 1106 sk->sk_destruct(sk); 1107 1108 filter = rcu_dereference_check(sk->sk_filter, 1109 atomic_read(&sk->sk_wmem_alloc) == 0); 1110 if (filter) { 1111 sk_filter_uncharge(sk, filter); 1112 rcu_assign_pointer(sk->sk_filter, NULL); 1113 } 1114 1115 sock_disable_timestamp(sk, SOCK_TIMESTAMP); 1116 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); 1117 1118 if (atomic_read(&sk->sk_omem_alloc)) 1119 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 1120 __func__, atomic_read(&sk->sk_omem_alloc)); 1121 1122 put_net(sock_net(sk)); 1123 sk_prot_free(sk->sk_prot_creator, sk); 1124 } 1125 1126 void sk_free(struct sock *sk) 1127 { 1128 /* 1129 * We substract one from sk_wmem_alloc and can know if 1130 * some packets are still in some tx queue. 1131 * If not null, sock_wfree() will call __sk_free(sk) later 1132 */ 1133 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1134 __sk_free(sk); 1135 } 1136 EXPORT_SYMBOL(sk_free); 1137 1138 /* 1139 * Last sock_put should drop referrence to sk->sk_net. It has already 1140 * been dropped in sk_change_net. Taking referrence to stopping namespace 1141 * is not an option. 1142 * Take referrence to a socket to remove it from hash _alive_ and after that 1143 * destroy it in the context of init_net. 1144 */ 1145 void sk_release_kernel(struct sock *sk) 1146 { 1147 if (sk == NULL || sk->sk_socket == NULL) 1148 return; 1149 1150 sock_hold(sk); 1151 sock_release(sk->sk_socket); 1152 release_net(sock_net(sk)); 1153 sock_net_set(sk, get_net(&init_net)); 1154 sock_put(sk); 1155 } 1156 EXPORT_SYMBOL(sk_release_kernel); 1157 1158 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 1159 { 1160 struct sock *newsk; 1161 1162 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1163 if (newsk != NULL) { 1164 struct sk_filter *filter; 1165 1166 sock_copy(newsk, sk); 1167 1168 /* SANITY */ 1169 get_net(sock_net(newsk)); 1170 sk_node_init(&newsk->sk_node); 1171 sock_lock_init(newsk); 1172 bh_lock_sock(newsk); 1173 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1174 newsk->sk_backlog.len = 0; 1175 1176 atomic_set(&newsk->sk_rmem_alloc, 0); 1177 /* 1178 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1179 */ 1180 atomic_set(&newsk->sk_wmem_alloc, 1); 1181 atomic_set(&newsk->sk_omem_alloc, 0); 1182 skb_queue_head_init(&newsk->sk_receive_queue); 1183 skb_queue_head_init(&newsk->sk_write_queue); 1184 #ifdef CONFIG_NET_DMA 1185 skb_queue_head_init(&newsk->sk_async_wait_queue); 1186 #endif 1187 1188 spin_lock_init(&newsk->sk_dst_lock); 1189 rwlock_init(&newsk->sk_callback_lock); 1190 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1191 af_callback_keys + newsk->sk_family, 1192 af_family_clock_key_strings[newsk->sk_family]); 1193 1194 newsk->sk_dst_cache = NULL; 1195 newsk->sk_wmem_queued = 0; 1196 newsk->sk_forward_alloc = 0; 1197 newsk->sk_send_head = NULL; 1198 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1199 1200 sock_reset_flag(newsk, SOCK_DONE); 1201 skb_queue_head_init(&newsk->sk_error_queue); 1202 1203 filter = newsk->sk_filter; 1204 if (filter != NULL) 1205 sk_filter_charge(newsk, filter); 1206 1207 if (unlikely(xfrm_sk_clone_policy(newsk))) { 1208 /* It is still raw copy of parent, so invalidate 1209 * destructor and make plain sk_free() */ 1210 newsk->sk_destruct = NULL; 1211 sk_free(newsk); 1212 newsk = NULL; 1213 goto out; 1214 } 1215 1216 newsk->sk_err = 0; 1217 newsk->sk_priority = 0; 1218 /* 1219 * Before updating sk_refcnt, we must commit prior changes to memory 1220 * (Documentation/RCU/rculist_nulls.txt for details) 1221 */ 1222 smp_wmb(); 1223 atomic_set(&newsk->sk_refcnt, 2); 1224 1225 /* 1226 * Increment the counter in the same struct proto as the master 1227 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1228 * is the same as sk->sk_prot->socks, as this field was copied 1229 * with memcpy). 1230 * 1231 * This _changes_ the previous behaviour, where 1232 * tcp_create_openreq_child always was incrementing the 1233 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1234 * to be taken into account in all callers. -acme 1235 */ 1236 sk_refcnt_debug_inc(newsk); 1237 sk_set_socket(newsk, NULL); 1238 newsk->sk_wq = NULL; 1239 1240 if (newsk->sk_prot->sockets_allocated) 1241 percpu_counter_inc(newsk->sk_prot->sockets_allocated); 1242 1243 if (sock_flag(newsk, SOCK_TIMESTAMP) || 1244 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 1245 net_enable_timestamp(); 1246 } 1247 out: 1248 return newsk; 1249 } 1250 EXPORT_SYMBOL_GPL(sk_clone); 1251 1252 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1253 { 1254 __sk_dst_set(sk, dst); 1255 sk->sk_route_caps = dst->dev->features; 1256 if (sk->sk_route_caps & NETIF_F_GSO) 1257 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1258 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1259 if (sk_can_gso(sk)) { 1260 if (dst->header_len) { 1261 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1262 } else { 1263 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1264 sk->sk_gso_max_size = dst->dev->gso_max_size; 1265 } 1266 } 1267 } 1268 EXPORT_SYMBOL_GPL(sk_setup_caps); 1269 1270 void __init sk_init(void) 1271 { 1272 if (totalram_pages <= 4096) { 1273 sysctl_wmem_max = 32767; 1274 sysctl_rmem_max = 32767; 1275 sysctl_wmem_default = 32767; 1276 sysctl_rmem_default = 32767; 1277 } else if (totalram_pages >= 131072) { 1278 sysctl_wmem_max = 131071; 1279 sysctl_rmem_max = 131071; 1280 } 1281 } 1282 1283 /* 1284 * Simple resource managers for sockets. 1285 */ 1286 1287 1288 /* 1289 * Write buffer destructor automatically called from kfree_skb. 1290 */ 1291 void sock_wfree(struct sk_buff *skb) 1292 { 1293 struct sock *sk = skb->sk; 1294 unsigned int len = skb->truesize; 1295 1296 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1297 /* 1298 * Keep a reference on sk_wmem_alloc, this will be released 1299 * after sk_write_space() call 1300 */ 1301 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1302 sk->sk_write_space(sk); 1303 len = 1; 1304 } 1305 /* 1306 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1307 * could not do because of in-flight packets 1308 */ 1309 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1310 __sk_free(sk); 1311 } 1312 EXPORT_SYMBOL(sock_wfree); 1313 1314 /* 1315 * Read buffer destructor automatically called from kfree_skb. 1316 */ 1317 void sock_rfree(struct sk_buff *skb) 1318 { 1319 struct sock *sk = skb->sk; 1320 1321 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1322 sk_mem_uncharge(skb->sk, skb->truesize); 1323 } 1324 EXPORT_SYMBOL(sock_rfree); 1325 1326 1327 int sock_i_uid(struct sock *sk) 1328 { 1329 int uid; 1330 1331 read_lock(&sk->sk_callback_lock); 1332 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 1333 read_unlock(&sk->sk_callback_lock); 1334 return uid; 1335 } 1336 EXPORT_SYMBOL(sock_i_uid); 1337 1338 unsigned long sock_i_ino(struct sock *sk) 1339 { 1340 unsigned long ino; 1341 1342 read_lock(&sk->sk_callback_lock); 1343 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1344 read_unlock(&sk->sk_callback_lock); 1345 return ino; 1346 } 1347 EXPORT_SYMBOL(sock_i_ino); 1348 1349 /* 1350 * Allocate a skb from the socket's send buffer. 1351 */ 1352 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1353 gfp_t priority) 1354 { 1355 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1356 struct sk_buff *skb = alloc_skb(size, priority); 1357 if (skb) { 1358 skb_set_owner_w(skb, sk); 1359 return skb; 1360 } 1361 } 1362 return NULL; 1363 } 1364 EXPORT_SYMBOL(sock_wmalloc); 1365 1366 /* 1367 * Allocate a skb from the socket's receive buffer. 1368 */ 1369 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1370 gfp_t priority) 1371 { 1372 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1373 struct sk_buff *skb = alloc_skb(size, priority); 1374 if (skb) { 1375 skb_set_owner_r(skb, sk); 1376 return skb; 1377 } 1378 } 1379 return NULL; 1380 } 1381 1382 /* 1383 * Allocate a memory block from the socket's option memory buffer. 1384 */ 1385 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1386 { 1387 if ((unsigned)size <= sysctl_optmem_max && 1388 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1389 void *mem; 1390 /* First do the add, to avoid the race if kmalloc 1391 * might sleep. 1392 */ 1393 atomic_add(size, &sk->sk_omem_alloc); 1394 mem = kmalloc(size, priority); 1395 if (mem) 1396 return mem; 1397 atomic_sub(size, &sk->sk_omem_alloc); 1398 } 1399 return NULL; 1400 } 1401 EXPORT_SYMBOL(sock_kmalloc); 1402 1403 /* 1404 * Free an option memory block. 1405 */ 1406 void sock_kfree_s(struct sock *sk, void *mem, int size) 1407 { 1408 kfree(mem); 1409 atomic_sub(size, &sk->sk_omem_alloc); 1410 } 1411 EXPORT_SYMBOL(sock_kfree_s); 1412 1413 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1414 I think, these locks should be removed for datagram sockets. 1415 */ 1416 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1417 { 1418 DEFINE_WAIT(wait); 1419 1420 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1421 for (;;) { 1422 if (!timeo) 1423 break; 1424 if (signal_pending(current)) 1425 break; 1426 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1427 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1428 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1429 break; 1430 if (sk->sk_shutdown & SEND_SHUTDOWN) 1431 break; 1432 if (sk->sk_err) 1433 break; 1434 timeo = schedule_timeout(timeo); 1435 } 1436 finish_wait(sk_sleep(sk), &wait); 1437 return timeo; 1438 } 1439 1440 1441 /* 1442 * Generic send/receive buffer handlers 1443 */ 1444 1445 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1446 unsigned long data_len, int noblock, 1447 int *errcode) 1448 { 1449 struct sk_buff *skb; 1450 gfp_t gfp_mask; 1451 long timeo; 1452 int err; 1453 1454 gfp_mask = sk->sk_allocation; 1455 if (gfp_mask & __GFP_WAIT) 1456 gfp_mask |= __GFP_REPEAT; 1457 1458 timeo = sock_sndtimeo(sk, noblock); 1459 while (1) { 1460 err = sock_error(sk); 1461 if (err != 0) 1462 goto failure; 1463 1464 err = -EPIPE; 1465 if (sk->sk_shutdown & SEND_SHUTDOWN) 1466 goto failure; 1467 1468 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1469 skb = alloc_skb(header_len, gfp_mask); 1470 if (skb) { 1471 int npages; 1472 int i; 1473 1474 /* No pages, we're done... */ 1475 if (!data_len) 1476 break; 1477 1478 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1479 skb->truesize += data_len; 1480 skb_shinfo(skb)->nr_frags = npages; 1481 for (i = 0; i < npages; i++) { 1482 struct page *page; 1483 skb_frag_t *frag; 1484 1485 page = alloc_pages(sk->sk_allocation, 0); 1486 if (!page) { 1487 err = -ENOBUFS; 1488 skb_shinfo(skb)->nr_frags = i; 1489 kfree_skb(skb); 1490 goto failure; 1491 } 1492 1493 frag = &skb_shinfo(skb)->frags[i]; 1494 frag->page = page; 1495 frag->page_offset = 0; 1496 frag->size = (data_len >= PAGE_SIZE ? 1497 PAGE_SIZE : 1498 data_len); 1499 data_len -= PAGE_SIZE; 1500 } 1501 1502 /* Full success... */ 1503 break; 1504 } 1505 err = -ENOBUFS; 1506 goto failure; 1507 } 1508 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1509 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1510 err = -EAGAIN; 1511 if (!timeo) 1512 goto failure; 1513 if (signal_pending(current)) 1514 goto interrupted; 1515 timeo = sock_wait_for_wmem(sk, timeo); 1516 } 1517 1518 skb_set_owner_w(skb, sk); 1519 return skb; 1520 1521 interrupted: 1522 err = sock_intr_errno(timeo); 1523 failure: 1524 *errcode = err; 1525 return NULL; 1526 } 1527 EXPORT_SYMBOL(sock_alloc_send_pskb); 1528 1529 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1530 int noblock, int *errcode) 1531 { 1532 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1533 } 1534 EXPORT_SYMBOL(sock_alloc_send_skb); 1535 1536 static void __lock_sock(struct sock *sk) 1537 { 1538 DEFINE_WAIT(wait); 1539 1540 for (;;) { 1541 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1542 TASK_UNINTERRUPTIBLE); 1543 spin_unlock_bh(&sk->sk_lock.slock); 1544 schedule(); 1545 spin_lock_bh(&sk->sk_lock.slock); 1546 if (!sock_owned_by_user(sk)) 1547 break; 1548 } 1549 finish_wait(&sk->sk_lock.wq, &wait); 1550 } 1551 1552 static void __release_sock(struct sock *sk) 1553 { 1554 struct sk_buff *skb = sk->sk_backlog.head; 1555 1556 do { 1557 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1558 bh_unlock_sock(sk); 1559 1560 do { 1561 struct sk_buff *next = skb->next; 1562 1563 WARN_ON_ONCE(skb_dst_is_noref(skb)); 1564 skb->next = NULL; 1565 sk_backlog_rcv(sk, skb); 1566 1567 /* 1568 * We are in process context here with softirqs 1569 * disabled, use cond_resched_softirq() to preempt. 1570 * This is safe to do because we've taken the backlog 1571 * queue private: 1572 */ 1573 cond_resched_softirq(); 1574 1575 skb = next; 1576 } while (skb != NULL); 1577 1578 bh_lock_sock(sk); 1579 } while ((skb = sk->sk_backlog.head) != NULL); 1580 1581 /* 1582 * Doing the zeroing here guarantee we can not loop forever 1583 * while a wild producer attempts to flood us. 1584 */ 1585 sk->sk_backlog.len = 0; 1586 } 1587 1588 /** 1589 * sk_wait_data - wait for data to arrive at sk_receive_queue 1590 * @sk: sock to wait on 1591 * @timeo: for how long 1592 * 1593 * Now socket state including sk->sk_err is changed only under lock, 1594 * hence we may omit checks after joining wait queue. 1595 * We check receive queue before schedule() only as optimization; 1596 * it is very likely that release_sock() added new data. 1597 */ 1598 int sk_wait_data(struct sock *sk, long *timeo) 1599 { 1600 int rc; 1601 DEFINE_WAIT(wait); 1602 1603 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1604 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1605 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1606 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1607 finish_wait(sk_sleep(sk), &wait); 1608 return rc; 1609 } 1610 EXPORT_SYMBOL(sk_wait_data); 1611 1612 /** 1613 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1614 * @sk: socket 1615 * @size: memory size to allocate 1616 * @kind: allocation type 1617 * 1618 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1619 * rmem allocation. This function assumes that protocols which have 1620 * memory_pressure use sk_wmem_queued as write buffer accounting. 1621 */ 1622 int __sk_mem_schedule(struct sock *sk, int size, int kind) 1623 { 1624 struct proto *prot = sk->sk_prot; 1625 int amt = sk_mem_pages(size); 1626 int allocated; 1627 1628 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 1629 allocated = atomic_add_return(amt, prot->memory_allocated); 1630 1631 /* Under limit. */ 1632 if (allocated <= prot->sysctl_mem[0]) { 1633 if (prot->memory_pressure && *prot->memory_pressure) 1634 *prot->memory_pressure = 0; 1635 return 1; 1636 } 1637 1638 /* Under pressure. */ 1639 if (allocated > prot->sysctl_mem[1]) 1640 if (prot->enter_memory_pressure) 1641 prot->enter_memory_pressure(sk); 1642 1643 /* Over hard limit. */ 1644 if (allocated > prot->sysctl_mem[2]) 1645 goto suppress_allocation; 1646 1647 /* guarantee minimum buffer size under pressure */ 1648 if (kind == SK_MEM_RECV) { 1649 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 1650 return 1; 1651 } else { /* SK_MEM_SEND */ 1652 if (sk->sk_type == SOCK_STREAM) { 1653 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 1654 return 1; 1655 } else if (atomic_read(&sk->sk_wmem_alloc) < 1656 prot->sysctl_wmem[0]) 1657 return 1; 1658 } 1659 1660 if (prot->memory_pressure) { 1661 int alloc; 1662 1663 if (!*prot->memory_pressure) 1664 return 1; 1665 alloc = percpu_counter_read_positive(prot->sockets_allocated); 1666 if (prot->sysctl_mem[2] > alloc * 1667 sk_mem_pages(sk->sk_wmem_queued + 1668 atomic_read(&sk->sk_rmem_alloc) + 1669 sk->sk_forward_alloc)) 1670 return 1; 1671 } 1672 1673 suppress_allocation: 1674 1675 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 1676 sk_stream_moderate_sndbuf(sk); 1677 1678 /* Fail only if socket is _under_ its sndbuf. 1679 * In this case we cannot block, so that we have to fail. 1680 */ 1681 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 1682 return 1; 1683 } 1684 1685 /* Alas. Undo changes. */ 1686 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 1687 atomic_sub(amt, prot->memory_allocated); 1688 return 0; 1689 } 1690 EXPORT_SYMBOL(__sk_mem_schedule); 1691 1692 /** 1693 * __sk_reclaim - reclaim memory_allocated 1694 * @sk: socket 1695 */ 1696 void __sk_mem_reclaim(struct sock *sk) 1697 { 1698 struct proto *prot = sk->sk_prot; 1699 1700 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 1701 prot->memory_allocated); 1702 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 1703 1704 if (prot->memory_pressure && *prot->memory_pressure && 1705 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) 1706 *prot->memory_pressure = 0; 1707 } 1708 EXPORT_SYMBOL(__sk_mem_reclaim); 1709 1710 1711 /* 1712 * Set of default routines for initialising struct proto_ops when 1713 * the protocol does not support a particular function. In certain 1714 * cases where it makes no sense for a protocol to have a "do nothing" 1715 * function, some default processing is provided. 1716 */ 1717 1718 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1719 { 1720 return -EOPNOTSUPP; 1721 } 1722 EXPORT_SYMBOL(sock_no_bind); 1723 1724 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1725 int len, int flags) 1726 { 1727 return -EOPNOTSUPP; 1728 } 1729 EXPORT_SYMBOL(sock_no_connect); 1730 1731 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1732 { 1733 return -EOPNOTSUPP; 1734 } 1735 EXPORT_SYMBOL(sock_no_socketpair); 1736 1737 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1738 { 1739 return -EOPNOTSUPP; 1740 } 1741 EXPORT_SYMBOL(sock_no_accept); 1742 1743 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1744 int *len, int peer) 1745 { 1746 return -EOPNOTSUPP; 1747 } 1748 EXPORT_SYMBOL(sock_no_getname); 1749 1750 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 1751 { 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(sock_no_poll); 1755 1756 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1757 { 1758 return -EOPNOTSUPP; 1759 } 1760 EXPORT_SYMBOL(sock_no_ioctl); 1761 1762 int sock_no_listen(struct socket *sock, int backlog) 1763 { 1764 return -EOPNOTSUPP; 1765 } 1766 EXPORT_SYMBOL(sock_no_listen); 1767 1768 int sock_no_shutdown(struct socket *sock, int how) 1769 { 1770 return -EOPNOTSUPP; 1771 } 1772 EXPORT_SYMBOL(sock_no_shutdown); 1773 1774 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1775 char __user *optval, unsigned int optlen) 1776 { 1777 return -EOPNOTSUPP; 1778 } 1779 EXPORT_SYMBOL(sock_no_setsockopt); 1780 1781 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1782 char __user *optval, int __user *optlen) 1783 { 1784 return -EOPNOTSUPP; 1785 } 1786 EXPORT_SYMBOL(sock_no_getsockopt); 1787 1788 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1789 size_t len) 1790 { 1791 return -EOPNOTSUPP; 1792 } 1793 EXPORT_SYMBOL(sock_no_sendmsg); 1794 1795 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1796 size_t len, int flags) 1797 { 1798 return -EOPNOTSUPP; 1799 } 1800 EXPORT_SYMBOL(sock_no_recvmsg); 1801 1802 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1803 { 1804 /* Mirror missing mmap method error code */ 1805 return -ENODEV; 1806 } 1807 EXPORT_SYMBOL(sock_no_mmap); 1808 1809 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1810 { 1811 ssize_t res; 1812 struct msghdr msg = {.msg_flags = flags}; 1813 struct kvec iov; 1814 char *kaddr = kmap(page); 1815 iov.iov_base = kaddr + offset; 1816 iov.iov_len = size; 1817 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1818 kunmap(page); 1819 return res; 1820 } 1821 EXPORT_SYMBOL(sock_no_sendpage); 1822 1823 /* 1824 * Default Socket Callbacks 1825 */ 1826 1827 static void sock_def_wakeup(struct sock *sk) 1828 { 1829 struct socket_wq *wq; 1830 1831 rcu_read_lock(); 1832 wq = rcu_dereference(sk->sk_wq); 1833 if (wq_has_sleeper(wq)) 1834 wake_up_interruptible_all(&wq->wait); 1835 rcu_read_unlock(); 1836 } 1837 1838 static void sock_def_error_report(struct sock *sk) 1839 { 1840 struct socket_wq *wq; 1841 1842 rcu_read_lock(); 1843 wq = rcu_dereference(sk->sk_wq); 1844 if (wq_has_sleeper(wq)) 1845 wake_up_interruptible_poll(&wq->wait, POLLERR); 1846 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 1847 rcu_read_unlock(); 1848 } 1849 1850 static void sock_def_readable(struct sock *sk, int len) 1851 { 1852 struct socket_wq *wq; 1853 1854 rcu_read_lock(); 1855 wq = rcu_dereference(sk->sk_wq); 1856 if (wq_has_sleeper(wq)) 1857 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 1858 POLLRDNORM | POLLRDBAND); 1859 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 1860 rcu_read_unlock(); 1861 } 1862 1863 static void sock_def_write_space(struct sock *sk) 1864 { 1865 struct socket_wq *wq; 1866 1867 rcu_read_lock(); 1868 1869 /* Do not wake up a writer until he can make "significant" 1870 * progress. --DaveM 1871 */ 1872 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1873 wq = rcu_dereference(sk->sk_wq); 1874 if (wq_has_sleeper(wq)) 1875 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 1876 POLLWRNORM | POLLWRBAND); 1877 1878 /* Should agree with poll, otherwise some programs break */ 1879 if (sock_writeable(sk)) 1880 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 1881 } 1882 1883 rcu_read_unlock(); 1884 } 1885 1886 static void sock_def_destruct(struct sock *sk) 1887 { 1888 kfree(sk->sk_protinfo); 1889 } 1890 1891 void sk_send_sigurg(struct sock *sk) 1892 { 1893 if (sk->sk_socket && sk->sk_socket->file) 1894 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1895 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 1896 } 1897 EXPORT_SYMBOL(sk_send_sigurg); 1898 1899 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1900 unsigned long expires) 1901 { 1902 if (!mod_timer(timer, expires)) 1903 sock_hold(sk); 1904 } 1905 EXPORT_SYMBOL(sk_reset_timer); 1906 1907 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1908 { 1909 if (timer_pending(timer) && del_timer(timer)) 1910 __sock_put(sk); 1911 } 1912 EXPORT_SYMBOL(sk_stop_timer); 1913 1914 void sock_init_data(struct socket *sock, struct sock *sk) 1915 { 1916 skb_queue_head_init(&sk->sk_receive_queue); 1917 skb_queue_head_init(&sk->sk_write_queue); 1918 skb_queue_head_init(&sk->sk_error_queue); 1919 #ifdef CONFIG_NET_DMA 1920 skb_queue_head_init(&sk->sk_async_wait_queue); 1921 #endif 1922 1923 sk->sk_send_head = NULL; 1924 1925 init_timer(&sk->sk_timer); 1926 1927 sk->sk_allocation = GFP_KERNEL; 1928 sk->sk_rcvbuf = sysctl_rmem_default; 1929 sk->sk_sndbuf = sysctl_wmem_default; 1930 sk->sk_state = TCP_CLOSE; 1931 sk_set_socket(sk, sock); 1932 1933 sock_set_flag(sk, SOCK_ZAPPED); 1934 1935 if (sock) { 1936 sk->sk_type = sock->type; 1937 sk->sk_wq = sock->wq; 1938 sock->sk = sk; 1939 } else 1940 sk->sk_wq = NULL; 1941 1942 spin_lock_init(&sk->sk_dst_lock); 1943 rwlock_init(&sk->sk_callback_lock); 1944 lockdep_set_class_and_name(&sk->sk_callback_lock, 1945 af_callback_keys + sk->sk_family, 1946 af_family_clock_key_strings[sk->sk_family]); 1947 1948 sk->sk_state_change = sock_def_wakeup; 1949 sk->sk_data_ready = sock_def_readable; 1950 sk->sk_write_space = sock_def_write_space; 1951 sk->sk_error_report = sock_def_error_report; 1952 sk->sk_destruct = sock_def_destruct; 1953 1954 sk->sk_sndmsg_page = NULL; 1955 sk->sk_sndmsg_off = 0; 1956 1957 sk->sk_peercred.pid = 0; 1958 sk->sk_peercred.uid = -1; 1959 sk->sk_peercred.gid = -1; 1960 sk->sk_write_pending = 0; 1961 sk->sk_rcvlowat = 1; 1962 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1963 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1964 1965 sk->sk_stamp = ktime_set(-1L, 0); 1966 1967 /* 1968 * Before updating sk_refcnt, we must commit prior changes to memory 1969 * (Documentation/RCU/rculist_nulls.txt for details) 1970 */ 1971 smp_wmb(); 1972 atomic_set(&sk->sk_refcnt, 1); 1973 atomic_set(&sk->sk_drops, 0); 1974 } 1975 EXPORT_SYMBOL(sock_init_data); 1976 1977 void lock_sock_nested(struct sock *sk, int subclass) 1978 { 1979 might_sleep(); 1980 spin_lock_bh(&sk->sk_lock.slock); 1981 if (sk->sk_lock.owned) 1982 __lock_sock(sk); 1983 sk->sk_lock.owned = 1; 1984 spin_unlock(&sk->sk_lock.slock); 1985 /* 1986 * The sk_lock has mutex_lock() semantics here: 1987 */ 1988 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 1989 local_bh_enable(); 1990 } 1991 EXPORT_SYMBOL(lock_sock_nested); 1992 1993 void release_sock(struct sock *sk) 1994 { 1995 /* 1996 * The sk_lock has mutex_unlock() semantics: 1997 */ 1998 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1999 2000 spin_lock_bh(&sk->sk_lock.slock); 2001 if (sk->sk_backlog.tail) 2002 __release_sock(sk); 2003 sk->sk_lock.owned = 0; 2004 if (waitqueue_active(&sk->sk_lock.wq)) 2005 wake_up(&sk->sk_lock.wq); 2006 spin_unlock_bh(&sk->sk_lock.slock); 2007 } 2008 EXPORT_SYMBOL(release_sock); 2009 2010 /** 2011 * lock_sock_fast - fast version of lock_sock 2012 * @sk: socket 2013 * 2014 * This version should be used for very small section, where process wont block 2015 * return false if fast path is taken 2016 * sk_lock.slock locked, owned = 0, BH disabled 2017 * return true if slow path is taken 2018 * sk_lock.slock unlocked, owned = 1, BH enabled 2019 */ 2020 bool lock_sock_fast(struct sock *sk) 2021 { 2022 might_sleep(); 2023 spin_lock_bh(&sk->sk_lock.slock); 2024 2025 if (!sk->sk_lock.owned) 2026 /* 2027 * Note : We must disable BH 2028 */ 2029 return false; 2030 2031 __lock_sock(sk); 2032 sk->sk_lock.owned = 1; 2033 spin_unlock(&sk->sk_lock.slock); 2034 /* 2035 * The sk_lock has mutex_lock() semantics here: 2036 */ 2037 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2038 local_bh_enable(); 2039 return true; 2040 } 2041 EXPORT_SYMBOL(lock_sock_fast); 2042 2043 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2044 { 2045 struct timeval tv; 2046 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2047 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2048 tv = ktime_to_timeval(sk->sk_stamp); 2049 if (tv.tv_sec == -1) 2050 return -ENOENT; 2051 if (tv.tv_sec == 0) { 2052 sk->sk_stamp = ktime_get_real(); 2053 tv = ktime_to_timeval(sk->sk_stamp); 2054 } 2055 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2056 } 2057 EXPORT_SYMBOL(sock_get_timestamp); 2058 2059 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2060 { 2061 struct timespec ts; 2062 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2063 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2064 ts = ktime_to_timespec(sk->sk_stamp); 2065 if (ts.tv_sec == -1) 2066 return -ENOENT; 2067 if (ts.tv_sec == 0) { 2068 sk->sk_stamp = ktime_get_real(); 2069 ts = ktime_to_timespec(sk->sk_stamp); 2070 } 2071 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2072 } 2073 EXPORT_SYMBOL(sock_get_timestampns); 2074 2075 void sock_enable_timestamp(struct sock *sk, int flag) 2076 { 2077 if (!sock_flag(sk, flag)) { 2078 sock_set_flag(sk, flag); 2079 /* 2080 * we just set one of the two flags which require net 2081 * time stamping, but time stamping might have been on 2082 * already because of the other one 2083 */ 2084 if (!sock_flag(sk, 2085 flag == SOCK_TIMESTAMP ? 2086 SOCK_TIMESTAMPING_RX_SOFTWARE : 2087 SOCK_TIMESTAMP)) 2088 net_enable_timestamp(); 2089 } 2090 } 2091 2092 /* 2093 * Get a socket option on an socket. 2094 * 2095 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2096 * asynchronous errors should be reported by getsockopt. We assume 2097 * this means if you specify SO_ERROR (otherwise whats the point of it). 2098 */ 2099 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2100 char __user *optval, int __user *optlen) 2101 { 2102 struct sock *sk = sock->sk; 2103 2104 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2105 } 2106 EXPORT_SYMBOL(sock_common_getsockopt); 2107 2108 #ifdef CONFIG_COMPAT 2109 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2110 char __user *optval, int __user *optlen) 2111 { 2112 struct sock *sk = sock->sk; 2113 2114 if (sk->sk_prot->compat_getsockopt != NULL) 2115 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2116 optval, optlen); 2117 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2118 } 2119 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2120 #endif 2121 2122 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 2123 struct msghdr *msg, size_t size, int flags) 2124 { 2125 struct sock *sk = sock->sk; 2126 int addr_len = 0; 2127 int err; 2128 2129 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 2130 flags & ~MSG_DONTWAIT, &addr_len); 2131 if (err >= 0) 2132 msg->msg_namelen = addr_len; 2133 return err; 2134 } 2135 EXPORT_SYMBOL(sock_common_recvmsg); 2136 2137 /* 2138 * Set socket options on an inet socket. 2139 */ 2140 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2141 char __user *optval, unsigned int optlen) 2142 { 2143 struct sock *sk = sock->sk; 2144 2145 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2146 } 2147 EXPORT_SYMBOL(sock_common_setsockopt); 2148 2149 #ifdef CONFIG_COMPAT 2150 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2151 char __user *optval, unsigned int optlen) 2152 { 2153 struct sock *sk = sock->sk; 2154 2155 if (sk->sk_prot->compat_setsockopt != NULL) 2156 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2157 optval, optlen); 2158 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2159 } 2160 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2161 #endif 2162 2163 void sk_common_release(struct sock *sk) 2164 { 2165 if (sk->sk_prot->destroy) 2166 sk->sk_prot->destroy(sk); 2167 2168 /* 2169 * Observation: when sock_common_release is called, processes have 2170 * no access to socket. But net still has. 2171 * Step one, detach it from networking: 2172 * 2173 * A. Remove from hash tables. 2174 */ 2175 2176 sk->sk_prot->unhash(sk); 2177 2178 /* 2179 * In this point socket cannot receive new packets, but it is possible 2180 * that some packets are in flight because some CPU runs receiver and 2181 * did hash table lookup before we unhashed socket. They will achieve 2182 * receive queue and will be purged by socket destructor. 2183 * 2184 * Also we still have packets pending on receive queue and probably, 2185 * our own packets waiting in device queues. sock_destroy will drain 2186 * receive queue, but transmitted packets will delay socket destruction 2187 * until the last reference will be released. 2188 */ 2189 2190 sock_orphan(sk); 2191 2192 xfrm_sk_free_policy(sk); 2193 2194 sk_refcnt_debug_release(sk); 2195 sock_put(sk); 2196 } 2197 EXPORT_SYMBOL(sk_common_release); 2198 2199 static DEFINE_RWLOCK(proto_list_lock); 2200 static LIST_HEAD(proto_list); 2201 2202 #ifdef CONFIG_PROC_FS 2203 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2204 struct prot_inuse { 2205 int val[PROTO_INUSE_NR]; 2206 }; 2207 2208 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2209 2210 #ifdef CONFIG_NET_NS 2211 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2212 { 2213 int cpu = smp_processor_id(); 2214 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; 2215 } 2216 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2217 2218 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2219 { 2220 int cpu, idx = prot->inuse_idx; 2221 int res = 0; 2222 2223 for_each_possible_cpu(cpu) 2224 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2225 2226 return res >= 0 ? res : 0; 2227 } 2228 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2229 2230 static int __net_init sock_inuse_init_net(struct net *net) 2231 { 2232 net->core.inuse = alloc_percpu(struct prot_inuse); 2233 return net->core.inuse ? 0 : -ENOMEM; 2234 } 2235 2236 static void __net_exit sock_inuse_exit_net(struct net *net) 2237 { 2238 free_percpu(net->core.inuse); 2239 } 2240 2241 static struct pernet_operations net_inuse_ops = { 2242 .init = sock_inuse_init_net, 2243 .exit = sock_inuse_exit_net, 2244 }; 2245 2246 static __init int net_inuse_init(void) 2247 { 2248 if (register_pernet_subsys(&net_inuse_ops)) 2249 panic("Cannot initialize net inuse counters"); 2250 2251 return 0; 2252 } 2253 2254 core_initcall(net_inuse_init); 2255 #else 2256 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2257 2258 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2259 { 2260 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; 2261 } 2262 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2263 2264 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2265 { 2266 int cpu, idx = prot->inuse_idx; 2267 int res = 0; 2268 2269 for_each_possible_cpu(cpu) 2270 res += per_cpu(prot_inuse, cpu).val[idx]; 2271 2272 return res >= 0 ? res : 0; 2273 } 2274 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2275 #endif 2276 2277 static void assign_proto_idx(struct proto *prot) 2278 { 2279 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2280 2281 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2282 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); 2283 return; 2284 } 2285 2286 set_bit(prot->inuse_idx, proto_inuse_idx); 2287 } 2288 2289 static void release_proto_idx(struct proto *prot) 2290 { 2291 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2292 clear_bit(prot->inuse_idx, proto_inuse_idx); 2293 } 2294 #else 2295 static inline void assign_proto_idx(struct proto *prot) 2296 { 2297 } 2298 2299 static inline void release_proto_idx(struct proto *prot) 2300 { 2301 } 2302 #endif 2303 2304 int proto_register(struct proto *prot, int alloc_slab) 2305 { 2306 if (alloc_slab) { 2307 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2308 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2309 NULL); 2310 2311 if (prot->slab == NULL) { 2312 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 2313 prot->name); 2314 goto out; 2315 } 2316 2317 if (prot->rsk_prot != NULL) { 2318 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name); 2319 if (prot->rsk_prot->slab_name == NULL) 2320 goto out_free_sock_slab; 2321 2322 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name, 2323 prot->rsk_prot->obj_size, 0, 2324 SLAB_HWCACHE_ALIGN, NULL); 2325 2326 if (prot->rsk_prot->slab == NULL) { 2327 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 2328 prot->name); 2329 goto out_free_request_sock_slab_name; 2330 } 2331 } 2332 2333 if (prot->twsk_prot != NULL) { 2334 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2335 2336 if (prot->twsk_prot->twsk_slab_name == NULL) 2337 goto out_free_request_sock_slab; 2338 2339 prot->twsk_prot->twsk_slab = 2340 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2341 prot->twsk_prot->twsk_obj_size, 2342 0, 2343 SLAB_HWCACHE_ALIGN | 2344 prot->slab_flags, 2345 NULL); 2346 if (prot->twsk_prot->twsk_slab == NULL) 2347 goto out_free_timewait_sock_slab_name; 2348 } 2349 } 2350 2351 write_lock(&proto_list_lock); 2352 list_add(&prot->node, &proto_list); 2353 assign_proto_idx(prot); 2354 write_unlock(&proto_list_lock); 2355 return 0; 2356 2357 out_free_timewait_sock_slab_name: 2358 kfree(prot->twsk_prot->twsk_slab_name); 2359 out_free_request_sock_slab: 2360 if (prot->rsk_prot && prot->rsk_prot->slab) { 2361 kmem_cache_destroy(prot->rsk_prot->slab); 2362 prot->rsk_prot->slab = NULL; 2363 } 2364 out_free_request_sock_slab_name: 2365 if (prot->rsk_prot) 2366 kfree(prot->rsk_prot->slab_name); 2367 out_free_sock_slab: 2368 kmem_cache_destroy(prot->slab); 2369 prot->slab = NULL; 2370 out: 2371 return -ENOBUFS; 2372 } 2373 EXPORT_SYMBOL(proto_register); 2374 2375 void proto_unregister(struct proto *prot) 2376 { 2377 write_lock(&proto_list_lock); 2378 release_proto_idx(prot); 2379 list_del(&prot->node); 2380 write_unlock(&proto_list_lock); 2381 2382 if (prot->slab != NULL) { 2383 kmem_cache_destroy(prot->slab); 2384 prot->slab = NULL; 2385 } 2386 2387 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 2388 kmem_cache_destroy(prot->rsk_prot->slab); 2389 kfree(prot->rsk_prot->slab_name); 2390 prot->rsk_prot->slab = NULL; 2391 } 2392 2393 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2394 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2395 kfree(prot->twsk_prot->twsk_slab_name); 2396 prot->twsk_prot->twsk_slab = NULL; 2397 } 2398 } 2399 EXPORT_SYMBOL(proto_unregister); 2400 2401 #ifdef CONFIG_PROC_FS 2402 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2403 __acquires(proto_list_lock) 2404 { 2405 read_lock(&proto_list_lock); 2406 return seq_list_start_head(&proto_list, *pos); 2407 } 2408 2409 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2410 { 2411 return seq_list_next(v, &proto_list, pos); 2412 } 2413 2414 static void proto_seq_stop(struct seq_file *seq, void *v) 2415 __releases(proto_list_lock) 2416 { 2417 read_unlock(&proto_list_lock); 2418 } 2419 2420 static char proto_method_implemented(const void *method) 2421 { 2422 return method == NULL ? 'n' : 'y'; 2423 } 2424 2425 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2426 { 2427 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 2428 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2429 proto->name, 2430 proto->obj_size, 2431 sock_prot_inuse_get(seq_file_net(seq), proto), 2432 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 2433 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 2434 proto->max_header, 2435 proto->slab == NULL ? "no" : "yes", 2436 module_name(proto->owner), 2437 proto_method_implemented(proto->close), 2438 proto_method_implemented(proto->connect), 2439 proto_method_implemented(proto->disconnect), 2440 proto_method_implemented(proto->accept), 2441 proto_method_implemented(proto->ioctl), 2442 proto_method_implemented(proto->init), 2443 proto_method_implemented(proto->destroy), 2444 proto_method_implemented(proto->shutdown), 2445 proto_method_implemented(proto->setsockopt), 2446 proto_method_implemented(proto->getsockopt), 2447 proto_method_implemented(proto->sendmsg), 2448 proto_method_implemented(proto->recvmsg), 2449 proto_method_implemented(proto->sendpage), 2450 proto_method_implemented(proto->bind), 2451 proto_method_implemented(proto->backlog_rcv), 2452 proto_method_implemented(proto->hash), 2453 proto_method_implemented(proto->unhash), 2454 proto_method_implemented(proto->get_port), 2455 proto_method_implemented(proto->enter_memory_pressure)); 2456 } 2457 2458 static int proto_seq_show(struct seq_file *seq, void *v) 2459 { 2460 if (v == &proto_list) 2461 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2462 "protocol", 2463 "size", 2464 "sockets", 2465 "memory", 2466 "press", 2467 "maxhdr", 2468 "slab", 2469 "module", 2470 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2471 else 2472 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2473 return 0; 2474 } 2475 2476 static const struct seq_operations proto_seq_ops = { 2477 .start = proto_seq_start, 2478 .next = proto_seq_next, 2479 .stop = proto_seq_stop, 2480 .show = proto_seq_show, 2481 }; 2482 2483 static int proto_seq_open(struct inode *inode, struct file *file) 2484 { 2485 return seq_open_net(inode, file, &proto_seq_ops, 2486 sizeof(struct seq_net_private)); 2487 } 2488 2489 static const struct file_operations proto_seq_fops = { 2490 .owner = THIS_MODULE, 2491 .open = proto_seq_open, 2492 .read = seq_read, 2493 .llseek = seq_lseek, 2494 .release = seq_release_net, 2495 }; 2496 2497 static __net_init int proto_init_net(struct net *net) 2498 { 2499 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops)) 2500 return -ENOMEM; 2501 2502 return 0; 2503 } 2504 2505 static __net_exit void proto_exit_net(struct net *net) 2506 { 2507 proc_net_remove(net, "protocols"); 2508 } 2509 2510 2511 static __net_initdata struct pernet_operations proto_net_ops = { 2512 .init = proto_init_net, 2513 .exit = proto_exit_net, 2514 }; 2515 2516 static int __init proto_init(void) 2517 { 2518 return register_pernet_subsys(&proto_net_ops); 2519 } 2520 2521 subsys_initcall(proto_init); 2522 2523 #endif /* PROC_FS */ 2524