xref: /linux/net/core/sock.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_IEEE802154",
159   "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174   "slock-AF_IEEE802154",
175   "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190   "clock-AF_IEEE802154",
191   "clock-AF_MAX"
192 };
193 
194 /*
195  * sk_callback_lock locking rules are per-address-family,
196  * so split the lock classes by using a per-AF key:
197  */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199 
200 /* Take into consideration the size of the struct sk_buff overhead in the
201  * determination of these values, since that is non-constant across
202  * platforms.  This makes socket queueing behavior and performance
203  * not depend upon such differences.
204  */
205 #define _SK_MEM_PACKETS		256
206 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215 
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219 
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 	struct timeval tv;
223 
224 	if (optlen < sizeof(tv))
225 		return -EINVAL;
226 	if (copy_from_user(&tv, optval, sizeof(tv)))
227 		return -EFAULT;
228 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 		return -EDOM;
230 
231 	if (tv.tv_sec < 0) {
232 		static int warned __read_mostly;
233 
234 		*timeo_p = 0;
235 		if (warned < 10 && net_ratelimit()) {
236 			warned++;
237 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 			       "tries to set negative timeout\n",
239 				current->comm, task_pid_nr(current));
240 		}
241 		return 0;
242 	}
243 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 		return 0;
246 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 	return 0;
249 }
250 
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 	static int warned;
254 	static char warncomm[TASK_COMM_LEN];
255 	if (strcmp(warncomm, current->comm) && warned < 5) {
256 		strcpy(warncomm,  current->comm);
257 		printk(KERN_WARNING "process `%s' is using obsolete "
258 		       "%s SO_BSDCOMPAT\n", warncomm, name);
259 		warned++;
260 	}
261 }
262 
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 	if (sock_flag(sk, flag)) {
266 		sock_reset_flag(sk, flag);
267 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 			net_disable_timestamp();
270 		}
271 	}
272 }
273 
274 
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 	int err = 0;
278 	int skb_len;
279 
280 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 	   number of warnings when compiling with -W --ANK
282 	 */
283 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 	    (unsigned)sk->sk_rcvbuf) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	err = sk_filter(sk, skb);
290 	if (err)
291 		goto out;
292 
293 	if (!sk_rmem_schedule(sk, skb->truesize)) {
294 		err = -ENOBUFS;
295 		goto out;
296 	}
297 
298 	skb->dev = NULL;
299 	skb_set_owner_r(skb, sk);
300 
301 	/* Cache the SKB length before we tack it onto the receive
302 	 * queue.  Once it is added it no longer belongs to us and
303 	 * may be freed by other threads of control pulling packets
304 	 * from the queue.
305 	 */
306 	skb_len = skb->len;
307 
308 	skb_queue_tail(&sk->sk_receive_queue, skb);
309 
310 	if (!sock_flag(sk, SOCK_DEAD))
311 		sk->sk_data_ready(sk, skb_len);
312 out:
313 	return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316 
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 	int rc = NET_RX_SUCCESS;
320 
321 	if (sk_filter(sk, skb))
322 		goto discard_and_relse;
323 
324 	skb->dev = NULL;
325 
326 	if (nested)
327 		bh_lock_sock_nested(sk);
328 	else
329 		bh_lock_sock(sk);
330 	if (!sock_owned_by_user(sk)) {
331 		/*
332 		 * trylock + unlock semantics:
333 		 */
334 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335 
336 		rc = sk_backlog_rcv(sk, skb);
337 
338 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 	} else
340 		sk_add_backlog(sk, skb);
341 	bh_unlock_sock(sk);
342 out:
343 	sock_put(sk);
344 	return rc;
345 discard_and_relse:
346 	kfree_skb(skb);
347 	goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350 
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 	struct dst_entry *dst = sk->sk_dst_cache;
354 
355 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 		sk->sk_dst_cache = NULL;
357 		dst_release(dst);
358 		return NULL;
359 	}
360 
361 	return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364 
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 	struct dst_entry *dst = sk_dst_get(sk);
368 
369 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 		sk_dst_reset(sk);
371 		dst_release(dst);
372 		return NULL;
373 	}
374 
375 	return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378 
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 	int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 	struct net *net = sock_net(sk);
384 	char devname[IFNAMSIZ];
385 	int index;
386 
387 	/* Sorry... */
388 	ret = -EPERM;
389 	if (!capable(CAP_NET_RAW))
390 		goto out;
391 
392 	ret = -EINVAL;
393 	if (optlen < 0)
394 		goto out;
395 
396 	/* Bind this socket to a particular device like "eth0",
397 	 * as specified in the passed interface name. If the
398 	 * name is "" or the option length is zero the socket
399 	 * is not bound.
400 	 */
401 	if (optlen > IFNAMSIZ - 1)
402 		optlen = IFNAMSIZ - 1;
403 	memset(devname, 0, sizeof(devname));
404 
405 	ret = -EFAULT;
406 	if (copy_from_user(devname, optval, optlen))
407 		goto out;
408 
409 	if (devname[0] == '\0') {
410 		index = 0;
411 	} else {
412 		struct net_device *dev = dev_get_by_name(net, devname);
413 
414 		ret = -ENODEV;
415 		if (!dev)
416 			goto out;
417 
418 		index = dev->ifindex;
419 		dev_put(dev);
420 	}
421 
422 	lock_sock(sk);
423 	sk->sk_bound_dev_if = index;
424 	sk_dst_reset(sk);
425 	release_sock(sk);
426 
427 	ret = 0;
428 
429 out:
430 #endif
431 
432 	return ret;
433 }
434 
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 	if (valbool)
438 		sock_set_flag(sk, bit);
439 	else
440 		sock_reset_flag(sk, bit);
441 }
442 
443 /*
444  *	This is meant for all protocols to use and covers goings on
445  *	at the socket level. Everything here is generic.
446  */
447 
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 		    char __user *optval, int optlen)
450 {
451 	struct sock *sk = sock->sk;
452 	int val;
453 	int valbool;
454 	struct linger ling;
455 	int ret = 0;
456 
457 	/*
458 	 *	Options without arguments
459 	 */
460 
461 	if (optname == SO_BINDTODEVICE)
462 		return sock_bindtodevice(sk, optval, optlen);
463 
464 	if (optlen < sizeof(int))
465 		return -EINVAL;
466 
467 	if (get_user(val, (int __user *)optval))
468 		return -EFAULT;
469 
470 	valbool = val ? 1 : 0;
471 
472 	lock_sock(sk);
473 
474 	switch (optname) {
475 	case SO_DEBUG:
476 		if (val && !capable(CAP_NET_ADMIN))
477 			ret = -EACCES;
478 		else
479 			sock_valbool_flag(sk, SOCK_DBG, valbool);
480 		break;
481 	case SO_REUSEADDR:
482 		sk->sk_reuse = valbool;
483 		break;
484 	case SO_TYPE:
485 	case SO_ERROR:
486 		ret = -ENOPROTOOPT;
487 		break;
488 	case SO_DONTROUTE:
489 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 		break;
491 	case SO_BROADCAST:
492 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 		break;
494 	case SO_SNDBUF:
495 		/* Don't error on this BSD doesn't and if you think
496 		   about it this is right. Otherwise apps have to
497 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
498 		   are treated in BSD as hints */
499 
500 		if (val > sysctl_wmem_max)
501 			val = sysctl_wmem_max;
502 set_sndbuf:
503 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 		if ((val * 2) < SOCK_MIN_SNDBUF)
505 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 		else
507 			sk->sk_sndbuf = val * 2;
508 
509 		/*
510 		 *	Wake up sending tasks if we
511 		 *	upped the value.
512 		 */
513 		sk->sk_write_space(sk);
514 		break;
515 
516 	case SO_SNDBUFFORCE:
517 		if (!capable(CAP_NET_ADMIN)) {
518 			ret = -EPERM;
519 			break;
520 		}
521 		goto set_sndbuf;
522 
523 	case SO_RCVBUF:
524 		/* Don't error on this BSD doesn't and if you think
525 		   about it this is right. Otherwise apps have to
526 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
527 		   are treated in BSD as hints */
528 
529 		if (val > sysctl_rmem_max)
530 			val = sysctl_rmem_max;
531 set_rcvbuf:
532 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 		/*
534 		 * We double it on the way in to account for
535 		 * "struct sk_buff" etc. overhead.   Applications
536 		 * assume that the SO_RCVBUF setting they make will
537 		 * allow that much actual data to be received on that
538 		 * socket.
539 		 *
540 		 * Applications are unaware that "struct sk_buff" and
541 		 * other overheads allocate from the receive buffer
542 		 * during socket buffer allocation.
543 		 *
544 		 * And after considering the possible alternatives,
545 		 * returning the value we actually used in getsockopt
546 		 * is the most desirable behavior.
547 		 */
548 		if ((val * 2) < SOCK_MIN_RCVBUF)
549 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 		else
551 			sk->sk_rcvbuf = val * 2;
552 		break;
553 
554 	case SO_RCVBUFFORCE:
555 		if (!capable(CAP_NET_ADMIN)) {
556 			ret = -EPERM;
557 			break;
558 		}
559 		goto set_rcvbuf;
560 
561 	case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 		if (sk->sk_protocol == IPPROTO_TCP)
564 			tcp_set_keepalive(sk, valbool);
565 #endif
566 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 		break;
568 
569 	case SO_OOBINLINE:
570 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 		break;
572 
573 	case SO_NO_CHECK:
574 		sk->sk_no_check = valbool;
575 		break;
576 
577 	case SO_PRIORITY:
578 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 			sk->sk_priority = val;
580 		else
581 			ret = -EPERM;
582 		break;
583 
584 	case SO_LINGER:
585 		if (optlen < sizeof(ling)) {
586 			ret = -EINVAL;	/* 1003.1g */
587 			break;
588 		}
589 		if (copy_from_user(&ling, optval, sizeof(ling))) {
590 			ret = -EFAULT;
591 			break;
592 		}
593 		if (!ling.l_onoff)
594 			sock_reset_flag(sk, SOCK_LINGER);
595 		else {
596 #if (BITS_PER_LONG == 32)
597 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 			else
600 #endif
601 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 			sock_set_flag(sk, SOCK_LINGER);
603 		}
604 		break;
605 
606 	case SO_BSDCOMPAT:
607 		sock_warn_obsolete_bsdism("setsockopt");
608 		break;
609 
610 	case SO_PASSCRED:
611 		if (valbool)
612 			set_bit(SOCK_PASSCRED, &sock->flags);
613 		else
614 			clear_bit(SOCK_PASSCRED, &sock->flags);
615 		break;
616 
617 	case SO_TIMESTAMP:
618 	case SO_TIMESTAMPNS:
619 		if (valbool)  {
620 			if (optname == SO_TIMESTAMP)
621 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 			else
623 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 			sock_set_flag(sk, SOCK_RCVTSTAMP);
625 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 		} else {
627 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 		}
630 		break;
631 
632 	case SO_TIMESTAMPING:
633 		if (val & ~SOF_TIMESTAMPING_MASK) {
634 			ret = EINVAL;
635 			break;
636 		}
637 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
639 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
643 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 			sock_enable_timestamp(sk,
645 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
646 		else
647 			sock_disable_timestamp(sk,
648 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
649 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 				  val & SOF_TIMESTAMPING_SOFTWARE);
651 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 		break;
656 
657 	case SO_RCVLOWAT:
658 		if (val < 0)
659 			val = INT_MAX;
660 		sk->sk_rcvlowat = val ? : 1;
661 		break;
662 
663 	case SO_RCVTIMEO:
664 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 		break;
666 
667 	case SO_SNDTIMEO:
668 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 		break;
670 
671 	case SO_ATTACH_FILTER:
672 		ret = -EINVAL;
673 		if (optlen == sizeof(struct sock_fprog)) {
674 			struct sock_fprog fprog;
675 
676 			ret = -EFAULT;
677 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 				break;
679 
680 			ret = sk_attach_filter(&fprog, sk);
681 		}
682 		break;
683 
684 	case SO_DETACH_FILTER:
685 		ret = sk_detach_filter(sk);
686 		break;
687 
688 	case SO_PASSSEC:
689 		if (valbool)
690 			set_bit(SOCK_PASSSEC, &sock->flags);
691 		else
692 			clear_bit(SOCK_PASSSEC, &sock->flags);
693 		break;
694 	case SO_MARK:
695 		if (!capable(CAP_NET_ADMIN))
696 			ret = -EPERM;
697 		else
698 			sk->sk_mark = val;
699 		break;
700 
701 		/* We implement the SO_SNDLOWAT etc to
702 		   not be settable (1003.1g 5.3) */
703 	default:
704 		ret = -ENOPROTOOPT;
705 		break;
706 	}
707 	release_sock(sk);
708 	return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711 
712 
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 		    char __user *optval, int __user *optlen)
715 {
716 	struct sock *sk = sock->sk;
717 
718 	union {
719 		int val;
720 		struct linger ling;
721 		struct timeval tm;
722 	} v;
723 
724 	unsigned int lv = sizeof(int);
725 	int len;
726 
727 	if (get_user(len, optlen))
728 		return -EFAULT;
729 	if (len < 0)
730 		return -EINVAL;
731 
732 	memset(&v, 0, sizeof(v));
733 
734 	switch (optname) {
735 	case SO_DEBUG:
736 		v.val = sock_flag(sk, SOCK_DBG);
737 		break;
738 
739 	case SO_DONTROUTE:
740 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 		break;
742 
743 	case SO_BROADCAST:
744 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 		break;
746 
747 	case SO_SNDBUF:
748 		v.val = sk->sk_sndbuf;
749 		break;
750 
751 	case SO_RCVBUF:
752 		v.val = sk->sk_rcvbuf;
753 		break;
754 
755 	case SO_REUSEADDR:
756 		v.val = sk->sk_reuse;
757 		break;
758 
759 	case SO_KEEPALIVE:
760 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 		break;
762 
763 	case SO_TYPE:
764 		v.val = sk->sk_type;
765 		break;
766 
767 	case SO_ERROR:
768 		v.val = -sock_error(sk);
769 		if (v.val == 0)
770 			v.val = xchg(&sk->sk_err_soft, 0);
771 		break;
772 
773 	case SO_OOBINLINE:
774 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 		break;
776 
777 	case SO_NO_CHECK:
778 		v.val = sk->sk_no_check;
779 		break;
780 
781 	case SO_PRIORITY:
782 		v.val = sk->sk_priority;
783 		break;
784 
785 	case SO_LINGER:
786 		lv		= sizeof(v.ling);
787 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
788 		v.ling.l_linger	= sk->sk_lingertime / HZ;
789 		break;
790 
791 	case SO_BSDCOMPAT:
792 		sock_warn_obsolete_bsdism("getsockopt");
793 		break;
794 
795 	case SO_TIMESTAMP:
796 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
798 		break;
799 
800 	case SO_TIMESTAMPNS:
801 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 		break;
803 
804 	case SO_TIMESTAMPING:
805 		v.val = 0;
806 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 		break;
821 
822 	case SO_RCVTIMEO:
823 		lv = sizeof(struct timeval);
824 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 			v.tm.tv_sec = 0;
826 			v.tm.tv_usec = 0;
827 		} else {
828 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 		}
831 		break;
832 
833 	case SO_SNDTIMEO:
834 		lv = sizeof(struct timeval);
835 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 			v.tm.tv_sec = 0;
837 			v.tm.tv_usec = 0;
838 		} else {
839 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 		}
842 		break;
843 
844 	case SO_RCVLOWAT:
845 		v.val = sk->sk_rcvlowat;
846 		break;
847 
848 	case SO_SNDLOWAT:
849 		v.val = 1;
850 		break;
851 
852 	case SO_PASSCRED:
853 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 		break;
855 
856 	case SO_PEERCRED:
857 		if (len > sizeof(sk->sk_peercred))
858 			len = sizeof(sk->sk_peercred);
859 		if (copy_to_user(optval, &sk->sk_peercred, len))
860 			return -EFAULT;
861 		goto lenout;
862 
863 	case SO_PEERNAME:
864 	{
865 		char address[128];
866 
867 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 			return -ENOTCONN;
869 		if (lv < len)
870 			return -EINVAL;
871 		if (copy_to_user(optval, address, len))
872 			return -EFAULT;
873 		goto lenout;
874 	}
875 
876 	/* Dubious BSD thing... Probably nobody even uses it, but
877 	 * the UNIX standard wants it for whatever reason... -DaveM
878 	 */
879 	case SO_ACCEPTCONN:
880 		v.val = sk->sk_state == TCP_LISTEN;
881 		break;
882 
883 	case SO_PASSSEC:
884 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 		break;
886 
887 	case SO_PEERSEC:
888 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
889 
890 	case SO_MARK:
891 		v.val = sk->sk_mark;
892 		break;
893 
894 	default:
895 		return -ENOPROTOOPT;
896 	}
897 
898 	if (len > lv)
899 		len = lv;
900 	if (copy_to_user(optval, &v, len))
901 		return -EFAULT;
902 lenout:
903 	if (put_user(len, optlen))
904 		return -EFAULT;
905 	return 0;
906 }
907 
908 /*
909  * Initialize an sk_lock.
910  *
911  * (We also register the sk_lock with the lock validator.)
912  */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 	sock_lock_init_class_and_name(sk,
916 			af_family_slock_key_strings[sk->sk_family],
917 			af_family_slock_keys + sk->sk_family,
918 			af_family_key_strings[sk->sk_family],
919 			af_family_keys + sk->sk_family);
920 }
921 
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
923 {
924 #ifdef CONFIG_SECURITY_NETWORK
925 	void *sptr = nsk->sk_security;
926 #endif
927 
928 	memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 	nsk->sk_security = sptr;
931 	security_sk_clone(osk, nsk);
932 #endif
933 }
934 
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
936 		int family)
937 {
938 	struct sock *sk;
939 	struct kmem_cache *slab;
940 
941 	slab = prot->slab;
942 	if (slab != NULL) {
943 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
944 		if (!sk)
945 			return sk;
946 		if (priority & __GFP_ZERO) {
947 			/*
948 			 * caches using SLAB_DESTROY_BY_RCU should let
949 			 * sk_node.next un-modified. Special care is taken
950 			 * when initializing object to zero.
951 			 */
952 			if (offsetof(struct sock, sk_node.next) != 0)
953 				memset(sk, 0, offsetof(struct sock, sk_node.next));
954 			memset(&sk->sk_node.pprev, 0,
955 			       prot->obj_size - offsetof(struct sock,
956 							 sk_node.pprev));
957 		}
958 	}
959 	else
960 		sk = kmalloc(prot->obj_size, priority);
961 
962 	if (sk != NULL) {
963 		kmemcheck_annotate_bitfield(sk, flags);
964 
965 		if (security_sk_alloc(sk, family, priority))
966 			goto out_free;
967 
968 		if (!try_module_get(prot->owner))
969 			goto out_free_sec;
970 	}
971 
972 	return sk;
973 
974 out_free_sec:
975 	security_sk_free(sk);
976 out_free:
977 	if (slab != NULL)
978 		kmem_cache_free(slab, sk);
979 	else
980 		kfree(sk);
981 	return NULL;
982 }
983 
984 static void sk_prot_free(struct proto *prot, struct sock *sk)
985 {
986 	struct kmem_cache *slab;
987 	struct module *owner;
988 
989 	owner = prot->owner;
990 	slab = prot->slab;
991 
992 	security_sk_free(sk);
993 	if (slab != NULL)
994 		kmem_cache_free(slab, sk);
995 	else
996 		kfree(sk);
997 	module_put(owner);
998 }
999 
1000 /**
1001  *	sk_alloc - All socket objects are allocated here
1002  *	@net: the applicable net namespace
1003  *	@family: protocol family
1004  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1005  *	@prot: struct proto associated with this new sock instance
1006  */
1007 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1008 		      struct proto *prot)
1009 {
1010 	struct sock *sk;
1011 
1012 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1013 	if (sk) {
1014 		sk->sk_family = family;
1015 		/*
1016 		 * See comment in struct sock definition to understand
1017 		 * why we need sk_prot_creator -acme
1018 		 */
1019 		sk->sk_prot = sk->sk_prot_creator = prot;
1020 		sock_lock_init(sk);
1021 		sock_net_set(sk, get_net(net));
1022 	}
1023 
1024 	return sk;
1025 }
1026 EXPORT_SYMBOL(sk_alloc);
1027 
1028 static void __sk_free(struct sock *sk)
1029 {
1030 	struct sk_filter *filter;
1031 
1032 	if (sk->sk_destruct)
1033 		sk->sk_destruct(sk);
1034 
1035 	filter = rcu_dereference(sk->sk_filter);
1036 	if (filter) {
1037 		sk_filter_uncharge(sk, filter);
1038 		rcu_assign_pointer(sk->sk_filter, NULL);
1039 	}
1040 
1041 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1042 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1043 
1044 	if (atomic_read(&sk->sk_omem_alloc))
1045 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1046 		       __func__, atomic_read(&sk->sk_omem_alloc));
1047 
1048 	put_net(sock_net(sk));
1049 	sk_prot_free(sk->sk_prot_creator, sk);
1050 }
1051 
1052 void sk_free(struct sock *sk)
1053 {
1054 	/*
1055 	 * We substract one from sk_wmem_alloc and can know if
1056 	 * some packets are still in some tx queue.
1057 	 * If not null, sock_wfree() will call __sk_free(sk) later
1058 	 */
1059 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1060 		__sk_free(sk);
1061 }
1062 EXPORT_SYMBOL(sk_free);
1063 
1064 /*
1065  * Last sock_put should drop referrence to sk->sk_net. It has already
1066  * been dropped in sk_change_net. Taking referrence to stopping namespace
1067  * is not an option.
1068  * Take referrence to a socket to remove it from hash _alive_ and after that
1069  * destroy it in the context of init_net.
1070  */
1071 void sk_release_kernel(struct sock *sk)
1072 {
1073 	if (sk == NULL || sk->sk_socket == NULL)
1074 		return;
1075 
1076 	sock_hold(sk);
1077 	sock_release(sk->sk_socket);
1078 	release_net(sock_net(sk));
1079 	sock_net_set(sk, get_net(&init_net));
1080 	sock_put(sk);
1081 }
1082 EXPORT_SYMBOL(sk_release_kernel);
1083 
1084 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1085 {
1086 	struct sock *newsk;
1087 
1088 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1089 	if (newsk != NULL) {
1090 		struct sk_filter *filter;
1091 
1092 		sock_copy(newsk, sk);
1093 
1094 		/* SANITY */
1095 		get_net(sock_net(newsk));
1096 		sk_node_init(&newsk->sk_node);
1097 		sock_lock_init(newsk);
1098 		bh_lock_sock(newsk);
1099 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1100 
1101 		atomic_set(&newsk->sk_rmem_alloc, 0);
1102 		/*
1103 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1104 		 */
1105 		atomic_set(&newsk->sk_wmem_alloc, 1);
1106 		atomic_set(&newsk->sk_omem_alloc, 0);
1107 		skb_queue_head_init(&newsk->sk_receive_queue);
1108 		skb_queue_head_init(&newsk->sk_write_queue);
1109 #ifdef CONFIG_NET_DMA
1110 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1111 #endif
1112 
1113 		rwlock_init(&newsk->sk_dst_lock);
1114 		rwlock_init(&newsk->sk_callback_lock);
1115 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1116 				af_callback_keys + newsk->sk_family,
1117 				af_family_clock_key_strings[newsk->sk_family]);
1118 
1119 		newsk->sk_dst_cache	= NULL;
1120 		newsk->sk_wmem_queued	= 0;
1121 		newsk->sk_forward_alloc = 0;
1122 		newsk->sk_send_head	= NULL;
1123 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1124 
1125 		sock_reset_flag(newsk, SOCK_DONE);
1126 		skb_queue_head_init(&newsk->sk_error_queue);
1127 
1128 		filter = newsk->sk_filter;
1129 		if (filter != NULL)
1130 			sk_filter_charge(newsk, filter);
1131 
1132 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1133 			/* It is still raw copy of parent, so invalidate
1134 			 * destructor and make plain sk_free() */
1135 			newsk->sk_destruct = NULL;
1136 			sk_free(newsk);
1137 			newsk = NULL;
1138 			goto out;
1139 		}
1140 
1141 		newsk->sk_err	   = 0;
1142 		newsk->sk_priority = 0;
1143 		atomic_set(&newsk->sk_refcnt, 2);
1144 
1145 		/*
1146 		 * Increment the counter in the same struct proto as the master
1147 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1148 		 * is the same as sk->sk_prot->socks, as this field was copied
1149 		 * with memcpy).
1150 		 *
1151 		 * This _changes_ the previous behaviour, where
1152 		 * tcp_create_openreq_child always was incrementing the
1153 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1154 		 * to be taken into account in all callers. -acme
1155 		 */
1156 		sk_refcnt_debug_inc(newsk);
1157 		sk_set_socket(newsk, NULL);
1158 		newsk->sk_sleep	 = NULL;
1159 
1160 		if (newsk->sk_prot->sockets_allocated)
1161 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1162 	}
1163 out:
1164 	return newsk;
1165 }
1166 EXPORT_SYMBOL_GPL(sk_clone);
1167 
1168 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1169 {
1170 	__sk_dst_set(sk, dst);
1171 	sk->sk_route_caps = dst->dev->features;
1172 	if (sk->sk_route_caps & NETIF_F_GSO)
1173 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1174 	if (sk_can_gso(sk)) {
1175 		if (dst->header_len) {
1176 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1177 		} else {
1178 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1179 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1180 		}
1181 	}
1182 }
1183 EXPORT_SYMBOL_GPL(sk_setup_caps);
1184 
1185 void __init sk_init(void)
1186 {
1187 	if (num_physpages <= 4096) {
1188 		sysctl_wmem_max = 32767;
1189 		sysctl_rmem_max = 32767;
1190 		sysctl_wmem_default = 32767;
1191 		sysctl_rmem_default = 32767;
1192 	} else if (num_physpages >= 131072) {
1193 		sysctl_wmem_max = 131071;
1194 		sysctl_rmem_max = 131071;
1195 	}
1196 }
1197 
1198 /*
1199  *	Simple resource managers for sockets.
1200  */
1201 
1202 
1203 /*
1204  * Write buffer destructor automatically called from kfree_skb.
1205  */
1206 void sock_wfree(struct sk_buff *skb)
1207 {
1208 	struct sock *sk = skb->sk;
1209 	int res;
1210 
1211 	/* In case it might be waiting for more memory. */
1212 	res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1213 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1214 		sk->sk_write_space(sk);
1215 	/*
1216 	 * if sk_wmem_alloc reached 0, we are last user and should
1217 	 * free this sock, as sk_free() call could not do it.
1218 	 */
1219 	if (res == 0)
1220 		__sk_free(sk);
1221 }
1222 EXPORT_SYMBOL(sock_wfree);
1223 
1224 /*
1225  * Read buffer destructor automatically called from kfree_skb.
1226  */
1227 void sock_rfree(struct sk_buff *skb)
1228 {
1229 	struct sock *sk = skb->sk;
1230 
1231 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1232 	sk_mem_uncharge(skb->sk, skb->truesize);
1233 }
1234 EXPORT_SYMBOL(sock_rfree);
1235 
1236 
1237 int sock_i_uid(struct sock *sk)
1238 {
1239 	int uid;
1240 
1241 	read_lock(&sk->sk_callback_lock);
1242 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1243 	read_unlock(&sk->sk_callback_lock);
1244 	return uid;
1245 }
1246 EXPORT_SYMBOL(sock_i_uid);
1247 
1248 unsigned long sock_i_ino(struct sock *sk)
1249 {
1250 	unsigned long ino;
1251 
1252 	read_lock(&sk->sk_callback_lock);
1253 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1254 	read_unlock(&sk->sk_callback_lock);
1255 	return ino;
1256 }
1257 EXPORT_SYMBOL(sock_i_ino);
1258 
1259 /*
1260  * Allocate a skb from the socket's send buffer.
1261  */
1262 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1263 			     gfp_t priority)
1264 {
1265 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1266 		struct sk_buff *skb = alloc_skb(size, priority);
1267 		if (skb) {
1268 			skb_set_owner_w(skb, sk);
1269 			return skb;
1270 		}
1271 	}
1272 	return NULL;
1273 }
1274 EXPORT_SYMBOL(sock_wmalloc);
1275 
1276 /*
1277  * Allocate a skb from the socket's receive buffer.
1278  */
1279 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1280 			     gfp_t priority)
1281 {
1282 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1283 		struct sk_buff *skb = alloc_skb(size, priority);
1284 		if (skb) {
1285 			skb_set_owner_r(skb, sk);
1286 			return skb;
1287 		}
1288 	}
1289 	return NULL;
1290 }
1291 
1292 /*
1293  * Allocate a memory block from the socket's option memory buffer.
1294  */
1295 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1296 {
1297 	if ((unsigned)size <= sysctl_optmem_max &&
1298 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1299 		void *mem;
1300 		/* First do the add, to avoid the race if kmalloc
1301 		 * might sleep.
1302 		 */
1303 		atomic_add(size, &sk->sk_omem_alloc);
1304 		mem = kmalloc(size, priority);
1305 		if (mem)
1306 			return mem;
1307 		atomic_sub(size, &sk->sk_omem_alloc);
1308 	}
1309 	return NULL;
1310 }
1311 EXPORT_SYMBOL(sock_kmalloc);
1312 
1313 /*
1314  * Free an option memory block.
1315  */
1316 void sock_kfree_s(struct sock *sk, void *mem, int size)
1317 {
1318 	kfree(mem);
1319 	atomic_sub(size, &sk->sk_omem_alloc);
1320 }
1321 EXPORT_SYMBOL(sock_kfree_s);
1322 
1323 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1324    I think, these locks should be removed for datagram sockets.
1325  */
1326 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1327 {
1328 	DEFINE_WAIT(wait);
1329 
1330 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1331 	for (;;) {
1332 		if (!timeo)
1333 			break;
1334 		if (signal_pending(current))
1335 			break;
1336 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1337 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1338 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1339 			break;
1340 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1341 			break;
1342 		if (sk->sk_err)
1343 			break;
1344 		timeo = schedule_timeout(timeo);
1345 	}
1346 	finish_wait(sk->sk_sleep, &wait);
1347 	return timeo;
1348 }
1349 
1350 
1351 /*
1352  *	Generic send/receive buffer handlers
1353  */
1354 
1355 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1356 				     unsigned long data_len, int noblock,
1357 				     int *errcode)
1358 {
1359 	struct sk_buff *skb;
1360 	gfp_t gfp_mask;
1361 	long timeo;
1362 	int err;
1363 
1364 	gfp_mask = sk->sk_allocation;
1365 	if (gfp_mask & __GFP_WAIT)
1366 		gfp_mask |= __GFP_REPEAT;
1367 
1368 	timeo = sock_sndtimeo(sk, noblock);
1369 	while (1) {
1370 		err = sock_error(sk);
1371 		if (err != 0)
1372 			goto failure;
1373 
1374 		err = -EPIPE;
1375 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1376 			goto failure;
1377 
1378 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1379 			skb = alloc_skb(header_len, gfp_mask);
1380 			if (skb) {
1381 				int npages;
1382 				int i;
1383 
1384 				/* No pages, we're done... */
1385 				if (!data_len)
1386 					break;
1387 
1388 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1389 				skb->truesize += data_len;
1390 				skb_shinfo(skb)->nr_frags = npages;
1391 				for (i = 0; i < npages; i++) {
1392 					struct page *page;
1393 					skb_frag_t *frag;
1394 
1395 					page = alloc_pages(sk->sk_allocation, 0);
1396 					if (!page) {
1397 						err = -ENOBUFS;
1398 						skb_shinfo(skb)->nr_frags = i;
1399 						kfree_skb(skb);
1400 						goto failure;
1401 					}
1402 
1403 					frag = &skb_shinfo(skb)->frags[i];
1404 					frag->page = page;
1405 					frag->page_offset = 0;
1406 					frag->size = (data_len >= PAGE_SIZE ?
1407 						      PAGE_SIZE :
1408 						      data_len);
1409 					data_len -= PAGE_SIZE;
1410 				}
1411 
1412 				/* Full success... */
1413 				break;
1414 			}
1415 			err = -ENOBUFS;
1416 			goto failure;
1417 		}
1418 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1419 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1420 		err = -EAGAIN;
1421 		if (!timeo)
1422 			goto failure;
1423 		if (signal_pending(current))
1424 			goto interrupted;
1425 		timeo = sock_wait_for_wmem(sk, timeo);
1426 	}
1427 
1428 	skb_set_owner_w(skb, sk);
1429 	return skb;
1430 
1431 interrupted:
1432 	err = sock_intr_errno(timeo);
1433 failure:
1434 	*errcode = err;
1435 	return NULL;
1436 }
1437 EXPORT_SYMBOL(sock_alloc_send_pskb);
1438 
1439 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1440 				    int noblock, int *errcode)
1441 {
1442 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1443 }
1444 EXPORT_SYMBOL(sock_alloc_send_skb);
1445 
1446 static void __lock_sock(struct sock *sk)
1447 {
1448 	DEFINE_WAIT(wait);
1449 
1450 	for (;;) {
1451 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1452 					TASK_UNINTERRUPTIBLE);
1453 		spin_unlock_bh(&sk->sk_lock.slock);
1454 		schedule();
1455 		spin_lock_bh(&sk->sk_lock.slock);
1456 		if (!sock_owned_by_user(sk))
1457 			break;
1458 	}
1459 	finish_wait(&sk->sk_lock.wq, &wait);
1460 }
1461 
1462 static void __release_sock(struct sock *sk)
1463 {
1464 	struct sk_buff *skb = sk->sk_backlog.head;
1465 
1466 	do {
1467 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1468 		bh_unlock_sock(sk);
1469 
1470 		do {
1471 			struct sk_buff *next = skb->next;
1472 
1473 			skb->next = NULL;
1474 			sk_backlog_rcv(sk, skb);
1475 
1476 			/*
1477 			 * We are in process context here with softirqs
1478 			 * disabled, use cond_resched_softirq() to preempt.
1479 			 * This is safe to do because we've taken the backlog
1480 			 * queue private:
1481 			 */
1482 			cond_resched_softirq();
1483 
1484 			skb = next;
1485 		} while (skb != NULL);
1486 
1487 		bh_lock_sock(sk);
1488 	} while ((skb = sk->sk_backlog.head) != NULL);
1489 }
1490 
1491 /**
1492  * sk_wait_data - wait for data to arrive at sk_receive_queue
1493  * @sk:    sock to wait on
1494  * @timeo: for how long
1495  *
1496  * Now socket state including sk->sk_err is changed only under lock,
1497  * hence we may omit checks after joining wait queue.
1498  * We check receive queue before schedule() only as optimization;
1499  * it is very likely that release_sock() added new data.
1500  */
1501 int sk_wait_data(struct sock *sk, long *timeo)
1502 {
1503 	int rc;
1504 	DEFINE_WAIT(wait);
1505 
1506 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1507 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1508 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1509 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1510 	finish_wait(sk->sk_sleep, &wait);
1511 	return rc;
1512 }
1513 EXPORT_SYMBOL(sk_wait_data);
1514 
1515 /**
1516  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1517  *	@sk: socket
1518  *	@size: memory size to allocate
1519  *	@kind: allocation type
1520  *
1521  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1522  *	rmem allocation. This function assumes that protocols which have
1523  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1524  */
1525 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1526 {
1527 	struct proto *prot = sk->sk_prot;
1528 	int amt = sk_mem_pages(size);
1529 	int allocated;
1530 
1531 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1532 	allocated = atomic_add_return(amt, prot->memory_allocated);
1533 
1534 	/* Under limit. */
1535 	if (allocated <= prot->sysctl_mem[0]) {
1536 		if (prot->memory_pressure && *prot->memory_pressure)
1537 			*prot->memory_pressure = 0;
1538 		return 1;
1539 	}
1540 
1541 	/* Under pressure. */
1542 	if (allocated > prot->sysctl_mem[1])
1543 		if (prot->enter_memory_pressure)
1544 			prot->enter_memory_pressure(sk);
1545 
1546 	/* Over hard limit. */
1547 	if (allocated > prot->sysctl_mem[2])
1548 		goto suppress_allocation;
1549 
1550 	/* guarantee minimum buffer size under pressure */
1551 	if (kind == SK_MEM_RECV) {
1552 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1553 			return 1;
1554 	} else { /* SK_MEM_SEND */
1555 		if (sk->sk_type == SOCK_STREAM) {
1556 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1557 				return 1;
1558 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1559 			   prot->sysctl_wmem[0])
1560 				return 1;
1561 	}
1562 
1563 	if (prot->memory_pressure) {
1564 		int alloc;
1565 
1566 		if (!*prot->memory_pressure)
1567 			return 1;
1568 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1569 		if (prot->sysctl_mem[2] > alloc *
1570 		    sk_mem_pages(sk->sk_wmem_queued +
1571 				 atomic_read(&sk->sk_rmem_alloc) +
1572 				 sk->sk_forward_alloc))
1573 			return 1;
1574 	}
1575 
1576 suppress_allocation:
1577 
1578 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1579 		sk_stream_moderate_sndbuf(sk);
1580 
1581 		/* Fail only if socket is _under_ its sndbuf.
1582 		 * In this case we cannot block, so that we have to fail.
1583 		 */
1584 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1585 			return 1;
1586 	}
1587 
1588 	/* Alas. Undo changes. */
1589 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1590 	atomic_sub(amt, prot->memory_allocated);
1591 	return 0;
1592 }
1593 EXPORT_SYMBOL(__sk_mem_schedule);
1594 
1595 /**
1596  *	__sk_reclaim - reclaim memory_allocated
1597  *	@sk: socket
1598  */
1599 void __sk_mem_reclaim(struct sock *sk)
1600 {
1601 	struct proto *prot = sk->sk_prot;
1602 
1603 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1604 		   prot->memory_allocated);
1605 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1606 
1607 	if (prot->memory_pressure && *prot->memory_pressure &&
1608 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1609 		*prot->memory_pressure = 0;
1610 }
1611 EXPORT_SYMBOL(__sk_mem_reclaim);
1612 
1613 
1614 /*
1615  * Set of default routines for initialising struct proto_ops when
1616  * the protocol does not support a particular function. In certain
1617  * cases where it makes no sense for a protocol to have a "do nothing"
1618  * function, some default processing is provided.
1619  */
1620 
1621 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1622 {
1623 	return -EOPNOTSUPP;
1624 }
1625 EXPORT_SYMBOL(sock_no_bind);
1626 
1627 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1628 		    int len, int flags)
1629 {
1630 	return -EOPNOTSUPP;
1631 }
1632 EXPORT_SYMBOL(sock_no_connect);
1633 
1634 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1635 {
1636 	return -EOPNOTSUPP;
1637 }
1638 EXPORT_SYMBOL(sock_no_socketpair);
1639 
1640 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1641 {
1642 	return -EOPNOTSUPP;
1643 }
1644 EXPORT_SYMBOL(sock_no_accept);
1645 
1646 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1647 		    int *len, int peer)
1648 {
1649 	return -EOPNOTSUPP;
1650 }
1651 EXPORT_SYMBOL(sock_no_getname);
1652 
1653 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1654 {
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL(sock_no_poll);
1658 
1659 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1660 {
1661 	return -EOPNOTSUPP;
1662 }
1663 EXPORT_SYMBOL(sock_no_ioctl);
1664 
1665 int sock_no_listen(struct socket *sock, int backlog)
1666 {
1667 	return -EOPNOTSUPP;
1668 }
1669 EXPORT_SYMBOL(sock_no_listen);
1670 
1671 int sock_no_shutdown(struct socket *sock, int how)
1672 {
1673 	return -EOPNOTSUPP;
1674 }
1675 EXPORT_SYMBOL(sock_no_shutdown);
1676 
1677 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1678 		    char __user *optval, int optlen)
1679 {
1680 	return -EOPNOTSUPP;
1681 }
1682 EXPORT_SYMBOL(sock_no_setsockopt);
1683 
1684 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1685 		    char __user *optval, int __user *optlen)
1686 {
1687 	return -EOPNOTSUPP;
1688 }
1689 EXPORT_SYMBOL(sock_no_getsockopt);
1690 
1691 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1692 		    size_t len)
1693 {
1694 	return -EOPNOTSUPP;
1695 }
1696 EXPORT_SYMBOL(sock_no_sendmsg);
1697 
1698 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1699 		    size_t len, int flags)
1700 {
1701 	return -EOPNOTSUPP;
1702 }
1703 EXPORT_SYMBOL(sock_no_recvmsg);
1704 
1705 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1706 {
1707 	/* Mirror missing mmap method error code */
1708 	return -ENODEV;
1709 }
1710 EXPORT_SYMBOL(sock_no_mmap);
1711 
1712 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1713 {
1714 	ssize_t res;
1715 	struct msghdr msg = {.msg_flags = flags};
1716 	struct kvec iov;
1717 	char *kaddr = kmap(page);
1718 	iov.iov_base = kaddr + offset;
1719 	iov.iov_len = size;
1720 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1721 	kunmap(page);
1722 	return res;
1723 }
1724 EXPORT_SYMBOL(sock_no_sendpage);
1725 
1726 /*
1727  *	Default Socket Callbacks
1728  */
1729 
1730 static void sock_def_wakeup(struct sock *sk)
1731 {
1732 	read_lock(&sk->sk_callback_lock);
1733 	if (sk_has_sleeper(sk))
1734 		wake_up_interruptible_all(sk->sk_sleep);
1735 	read_unlock(&sk->sk_callback_lock);
1736 }
1737 
1738 static void sock_def_error_report(struct sock *sk)
1739 {
1740 	read_lock(&sk->sk_callback_lock);
1741 	if (sk_has_sleeper(sk))
1742 		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1743 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1744 	read_unlock(&sk->sk_callback_lock);
1745 }
1746 
1747 static void sock_def_readable(struct sock *sk, int len)
1748 {
1749 	read_lock(&sk->sk_callback_lock);
1750 	if (sk_has_sleeper(sk))
1751 		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1752 						POLLRDNORM | POLLRDBAND);
1753 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1754 	read_unlock(&sk->sk_callback_lock);
1755 }
1756 
1757 static void sock_def_write_space(struct sock *sk)
1758 {
1759 	read_lock(&sk->sk_callback_lock);
1760 
1761 	/* Do not wake up a writer until he can make "significant"
1762 	 * progress.  --DaveM
1763 	 */
1764 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1765 		if (sk_has_sleeper(sk))
1766 			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1767 						POLLWRNORM | POLLWRBAND);
1768 
1769 		/* Should agree with poll, otherwise some programs break */
1770 		if (sock_writeable(sk))
1771 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1772 	}
1773 
1774 	read_unlock(&sk->sk_callback_lock);
1775 }
1776 
1777 static void sock_def_destruct(struct sock *sk)
1778 {
1779 	kfree(sk->sk_protinfo);
1780 }
1781 
1782 void sk_send_sigurg(struct sock *sk)
1783 {
1784 	if (sk->sk_socket && sk->sk_socket->file)
1785 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1786 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1787 }
1788 EXPORT_SYMBOL(sk_send_sigurg);
1789 
1790 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1791 		    unsigned long expires)
1792 {
1793 	if (!mod_timer(timer, expires))
1794 		sock_hold(sk);
1795 }
1796 EXPORT_SYMBOL(sk_reset_timer);
1797 
1798 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1799 {
1800 	if (timer_pending(timer) && del_timer(timer))
1801 		__sock_put(sk);
1802 }
1803 EXPORT_SYMBOL(sk_stop_timer);
1804 
1805 void sock_init_data(struct socket *sock, struct sock *sk)
1806 {
1807 	skb_queue_head_init(&sk->sk_receive_queue);
1808 	skb_queue_head_init(&sk->sk_write_queue);
1809 	skb_queue_head_init(&sk->sk_error_queue);
1810 #ifdef CONFIG_NET_DMA
1811 	skb_queue_head_init(&sk->sk_async_wait_queue);
1812 #endif
1813 
1814 	sk->sk_send_head	=	NULL;
1815 
1816 	init_timer(&sk->sk_timer);
1817 
1818 	sk->sk_allocation	=	GFP_KERNEL;
1819 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1820 	sk->sk_sndbuf		=	sysctl_wmem_default;
1821 	sk->sk_state		=	TCP_CLOSE;
1822 	sk_set_socket(sk, sock);
1823 
1824 	sock_set_flag(sk, SOCK_ZAPPED);
1825 
1826 	if (sock) {
1827 		sk->sk_type	=	sock->type;
1828 		sk->sk_sleep	=	&sock->wait;
1829 		sock->sk	=	sk;
1830 	} else
1831 		sk->sk_sleep	=	NULL;
1832 
1833 	rwlock_init(&sk->sk_dst_lock);
1834 	rwlock_init(&sk->sk_callback_lock);
1835 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1836 			af_callback_keys + sk->sk_family,
1837 			af_family_clock_key_strings[sk->sk_family]);
1838 
1839 	sk->sk_state_change	=	sock_def_wakeup;
1840 	sk->sk_data_ready	=	sock_def_readable;
1841 	sk->sk_write_space	=	sock_def_write_space;
1842 	sk->sk_error_report	=	sock_def_error_report;
1843 	sk->sk_destruct		=	sock_def_destruct;
1844 
1845 	sk->sk_sndmsg_page	=	NULL;
1846 	sk->sk_sndmsg_off	=	0;
1847 
1848 	sk->sk_peercred.pid 	=	0;
1849 	sk->sk_peercred.uid	=	-1;
1850 	sk->sk_peercred.gid	=	-1;
1851 	sk->sk_write_pending	=	0;
1852 	sk->sk_rcvlowat		=	1;
1853 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1854 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1855 
1856 	sk->sk_stamp = ktime_set(-1L, 0);
1857 
1858 	atomic_set(&sk->sk_refcnt, 1);
1859 	atomic_set(&sk->sk_wmem_alloc, 1);
1860 	atomic_set(&sk->sk_drops, 0);
1861 }
1862 EXPORT_SYMBOL(sock_init_data);
1863 
1864 void lock_sock_nested(struct sock *sk, int subclass)
1865 {
1866 	might_sleep();
1867 	spin_lock_bh(&sk->sk_lock.slock);
1868 	if (sk->sk_lock.owned)
1869 		__lock_sock(sk);
1870 	sk->sk_lock.owned = 1;
1871 	spin_unlock(&sk->sk_lock.slock);
1872 	/*
1873 	 * The sk_lock has mutex_lock() semantics here:
1874 	 */
1875 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1876 	local_bh_enable();
1877 }
1878 EXPORT_SYMBOL(lock_sock_nested);
1879 
1880 void release_sock(struct sock *sk)
1881 {
1882 	/*
1883 	 * The sk_lock has mutex_unlock() semantics:
1884 	 */
1885 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1886 
1887 	spin_lock_bh(&sk->sk_lock.slock);
1888 	if (sk->sk_backlog.tail)
1889 		__release_sock(sk);
1890 	sk->sk_lock.owned = 0;
1891 	if (waitqueue_active(&sk->sk_lock.wq))
1892 		wake_up(&sk->sk_lock.wq);
1893 	spin_unlock_bh(&sk->sk_lock.slock);
1894 }
1895 EXPORT_SYMBOL(release_sock);
1896 
1897 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1898 {
1899 	struct timeval tv;
1900 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1901 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1902 	tv = ktime_to_timeval(sk->sk_stamp);
1903 	if (tv.tv_sec == -1)
1904 		return -ENOENT;
1905 	if (tv.tv_sec == 0) {
1906 		sk->sk_stamp = ktime_get_real();
1907 		tv = ktime_to_timeval(sk->sk_stamp);
1908 	}
1909 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1910 }
1911 EXPORT_SYMBOL(sock_get_timestamp);
1912 
1913 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1914 {
1915 	struct timespec ts;
1916 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1917 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1918 	ts = ktime_to_timespec(sk->sk_stamp);
1919 	if (ts.tv_sec == -1)
1920 		return -ENOENT;
1921 	if (ts.tv_sec == 0) {
1922 		sk->sk_stamp = ktime_get_real();
1923 		ts = ktime_to_timespec(sk->sk_stamp);
1924 	}
1925 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1926 }
1927 EXPORT_SYMBOL(sock_get_timestampns);
1928 
1929 void sock_enable_timestamp(struct sock *sk, int flag)
1930 {
1931 	if (!sock_flag(sk, flag)) {
1932 		sock_set_flag(sk, flag);
1933 		/*
1934 		 * we just set one of the two flags which require net
1935 		 * time stamping, but time stamping might have been on
1936 		 * already because of the other one
1937 		 */
1938 		if (!sock_flag(sk,
1939 				flag == SOCK_TIMESTAMP ?
1940 				SOCK_TIMESTAMPING_RX_SOFTWARE :
1941 				SOCK_TIMESTAMP))
1942 			net_enable_timestamp();
1943 	}
1944 }
1945 
1946 /*
1947  *	Get a socket option on an socket.
1948  *
1949  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1950  *	asynchronous errors should be reported by getsockopt. We assume
1951  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1952  */
1953 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1954 			   char __user *optval, int __user *optlen)
1955 {
1956 	struct sock *sk = sock->sk;
1957 
1958 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1959 }
1960 EXPORT_SYMBOL(sock_common_getsockopt);
1961 
1962 #ifdef CONFIG_COMPAT
1963 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1964 				  char __user *optval, int __user *optlen)
1965 {
1966 	struct sock *sk = sock->sk;
1967 
1968 	if (sk->sk_prot->compat_getsockopt != NULL)
1969 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1970 						      optval, optlen);
1971 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1972 }
1973 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1974 #endif
1975 
1976 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1977 			struct msghdr *msg, size_t size, int flags)
1978 {
1979 	struct sock *sk = sock->sk;
1980 	int addr_len = 0;
1981 	int err;
1982 
1983 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1984 				   flags & ~MSG_DONTWAIT, &addr_len);
1985 	if (err >= 0)
1986 		msg->msg_namelen = addr_len;
1987 	return err;
1988 }
1989 EXPORT_SYMBOL(sock_common_recvmsg);
1990 
1991 /*
1992  *	Set socket options on an inet socket.
1993  */
1994 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1995 			   char __user *optval, int optlen)
1996 {
1997 	struct sock *sk = sock->sk;
1998 
1999 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2000 }
2001 EXPORT_SYMBOL(sock_common_setsockopt);
2002 
2003 #ifdef CONFIG_COMPAT
2004 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2005 				  char __user *optval, int optlen)
2006 {
2007 	struct sock *sk = sock->sk;
2008 
2009 	if (sk->sk_prot->compat_setsockopt != NULL)
2010 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2011 						      optval, optlen);
2012 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2013 }
2014 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2015 #endif
2016 
2017 void sk_common_release(struct sock *sk)
2018 {
2019 	if (sk->sk_prot->destroy)
2020 		sk->sk_prot->destroy(sk);
2021 
2022 	/*
2023 	 * Observation: when sock_common_release is called, processes have
2024 	 * no access to socket. But net still has.
2025 	 * Step one, detach it from networking:
2026 	 *
2027 	 * A. Remove from hash tables.
2028 	 */
2029 
2030 	sk->sk_prot->unhash(sk);
2031 
2032 	/*
2033 	 * In this point socket cannot receive new packets, but it is possible
2034 	 * that some packets are in flight because some CPU runs receiver and
2035 	 * did hash table lookup before we unhashed socket. They will achieve
2036 	 * receive queue and will be purged by socket destructor.
2037 	 *
2038 	 * Also we still have packets pending on receive queue and probably,
2039 	 * our own packets waiting in device queues. sock_destroy will drain
2040 	 * receive queue, but transmitted packets will delay socket destruction
2041 	 * until the last reference will be released.
2042 	 */
2043 
2044 	sock_orphan(sk);
2045 
2046 	xfrm_sk_free_policy(sk);
2047 
2048 	sk_refcnt_debug_release(sk);
2049 	sock_put(sk);
2050 }
2051 EXPORT_SYMBOL(sk_common_release);
2052 
2053 static DEFINE_RWLOCK(proto_list_lock);
2054 static LIST_HEAD(proto_list);
2055 
2056 #ifdef CONFIG_PROC_FS
2057 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2058 struct prot_inuse {
2059 	int val[PROTO_INUSE_NR];
2060 };
2061 
2062 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2063 
2064 #ifdef CONFIG_NET_NS
2065 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2066 {
2067 	int cpu = smp_processor_id();
2068 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2069 }
2070 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2071 
2072 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2073 {
2074 	int cpu, idx = prot->inuse_idx;
2075 	int res = 0;
2076 
2077 	for_each_possible_cpu(cpu)
2078 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2079 
2080 	return res >= 0 ? res : 0;
2081 }
2082 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2083 
2084 static int sock_inuse_init_net(struct net *net)
2085 {
2086 	net->core.inuse = alloc_percpu(struct prot_inuse);
2087 	return net->core.inuse ? 0 : -ENOMEM;
2088 }
2089 
2090 static void sock_inuse_exit_net(struct net *net)
2091 {
2092 	free_percpu(net->core.inuse);
2093 }
2094 
2095 static struct pernet_operations net_inuse_ops = {
2096 	.init = sock_inuse_init_net,
2097 	.exit = sock_inuse_exit_net,
2098 };
2099 
2100 static __init int net_inuse_init(void)
2101 {
2102 	if (register_pernet_subsys(&net_inuse_ops))
2103 		panic("Cannot initialize net inuse counters");
2104 
2105 	return 0;
2106 }
2107 
2108 core_initcall(net_inuse_init);
2109 #else
2110 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2111 
2112 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2113 {
2114 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2115 }
2116 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2117 
2118 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2119 {
2120 	int cpu, idx = prot->inuse_idx;
2121 	int res = 0;
2122 
2123 	for_each_possible_cpu(cpu)
2124 		res += per_cpu(prot_inuse, cpu).val[idx];
2125 
2126 	return res >= 0 ? res : 0;
2127 }
2128 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2129 #endif
2130 
2131 static void assign_proto_idx(struct proto *prot)
2132 {
2133 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2134 
2135 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2136 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2137 		return;
2138 	}
2139 
2140 	set_bit(prot->inuse_idx, proto_inuse_idx);
2141 }
2142 
2143 static void release_proto_idx(struct proto *prot)
2144 {
2145 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2146 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2147 }
2148 #else
2149 static inline void assign_proto_idx(struct proto *prot)
2150 {
2151 }
2152 
2153 static inline void release_proto_idx(struct proto *prot)
2154 {
2155 }
2156 #endif
2157 
2158 int proto_register(struct proto *prot, int alloc_slab)
2159 {
2160 	if (alloc_slab) {
2161 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2162 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2163 					NULL);
2164 
2165 		if (prot->slab == NULL) {
2166 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2167 			       prot->name);
2168 			goto out;
2169 		}
2170 
2171 		if (prot->rsk_prot != NULL) {
2172 			static const char mask[] = "request_sock_%s";
2173 
2174 			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2175 			if (prot->rsk_prot->slab_name == NULL)
2176 				goto out_free_sock_slab;
2177 
2178 			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2179 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2180 								 prot->rsk_prot->obj_size, 0,
2181 								 SLAB_HWCACHE_ALIGN, NULL);
2182 
2183 			if (prot->rsk_prot->slab == NULL) {
2184 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2185 				       prot->name);
2186 				goto out_free_request_sock_slab_name;
2187 			}
2188 		}
2189 
2190 		if (prot->twsk_prot != NULL) {
2191 			static const char mask[] = "tw_sock_%s";
2192 
2193 			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2194 
2195 			if (prot->twsk_prot->twsk_slab_name == NULL)
2196 				goto out_free_request_sock_slab;
2197 
2198 			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2199 			prot->twsk_prot->twsk_slab =
2200 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2201 						  prot->twsk_prot->twsk_obj_size,
2202 						  0,
2203 						  SLAB_HWCACHE_ALIGN |
2204 							prot->slab_flags,
2205 						  NULL);
2206 			if (prot->twsk_prot->twsk_slab == NULL)
2207 				goto out_free_timewait_sock_slab_name;
2208 		}
2209 	}
2210 
2211 	write_lock(&proto_list_lock);
2212 	list_add(&prot->node, &proto_list);
2213 	assign_proto_idx(prot);
2214 	write_unlock(&proto_list_lock);
2215 	return 0;
2216 
2217 out_free_timewait_sock_slab_name:
2218 	kfree(prot->twsk_prot->twsk_slab_name);
2219 out_free_request_sock_slab:
2220 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2221 		kmem_cache_destroy(prot->rsk_prot->slab);
2222 		prot->rsk_prot->slab = NULL;
2223 	}
2224 out_free_request_sock_slab_name:
2225 	kfree(prot->rsk_prot->slab_name);
2226 out_free_sock_slab:
2227 	kmem_cache_destroy(prot->slab);
2228 	prot->slab = NULL;
2229 out:
2230 	return -ENOBUFS;
2231 }
2232 EXPORT_SYMBOL(proto_register);
2233 
2234 void proto_unregister(struct proto *prot)
2235 {
2236 	write_lock(&proto_list_lock);
2237 	release_proto_idx(prot);
2238 	list_del(&prot->node);
2239 	write_unlock(&proto_list_lock);
2240 
2241 	if (prot->slab != NULL) {
2242 		kmem_cache_destroy(prot->slab);
2243 		prot->slab = NULL;
2244 	}
2245 
2246 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2247 		kmem_cache_destroy(prot->rsk_prot->slab);
2248 		kfree(prot->rsk_prot->slab_name);
2249 		prot->rsk_prot->slab = NULL;
2250 	}
2251 
2252 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2253 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2254 		kfree(prot->twsk_prot->twsk_slab_name);
2255 		prot->twsk_prot->twsk_slab = NULL;
2256 	}
2257 }
2258 EXPORT_SYMBOL(proto_unregister);
2259 
2260 #ifdef CONFIG_PROC_FS
2261 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2262 	__acquires(proto_list_lock)
2263 {
2264 	read_lock(&proto_list_lock);
2265 	return seq_list_start_head(&proto_list, *pos);
2266 }
2267 
2268 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 	return seq_list_next(v, &proto_list, pos);
2271 }
2272 
2273 static void proto_seq_stop(struct seq_file *seq, void *v)
2274 	__releases(proto_list_lock)
2275 {
2276 	read_unlock(&proto_list_lock);
2277 }
2278 
2279 static char proto_method_implemented(const void *method)
2280 {
2281 	return method == NULL ? 'n' : 'y';
2282 }
2283 
2284 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2285 {
2286 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2287 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2288 		   proto->name,
2289 		   proto->obj_size,
2290 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2291 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2292 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2293 		   proto->max_header,
2294 		   proto->slab == NULL ? "no" : "yes",
2295 		   module_name(proto->owner),
2296 		   proto_method_implemented(proto->close),
2297 		   proto_method_implemented(proto->connect),
2298 		   proto_method_implemented(proto->disconnect),
2299 		   proto_method_implemented(proto->accept),
2300 		   proto_method_implemented(proto->ioctl),
2301 		   proto_method_implemented(proto->init),
2302 		   proto_method_implemented(proto->destroy),
2303 		   proto_method_implemented(proto->shutdown),
2304 		   proto_method_implemented(proto->setsockopt),
2305 		   proto_method_implemented(proto->getsockopt),
2306 		   proto_method_implemented(proto->sendmsg),
2307 		   proto_method_implemented(proto->recvmsg),
2308 		   proto_method_implemented(proto->sendpage),
2309 		   proto_method_implemented(proto->bind),
2310 		   proto_method_implemented(proto->backlog_rcv),
2311 		   proto_method_implemented(proto->hash),
2312 		   proto_method_implemented(proto->unhash),
2313 		   proto_method_implemented(proto->get_port),
2314 		   proto_method_implemented(proto->enter_memory_pressure));
2315 }
2316 
2317 static int proto_seq_show(struct seq_file *seq, void *v)
2318 {
2319 	if (v == &proto_list)
2320 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2321 			   "protocol",
2322 			   "size",
2323 			   "sockets",
2324 			   "memory",
2325 			   "press",
2326 			   "maxhdr",
2327 			   "slab",
2328 			   "module",
2329 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2330 	else
2331 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2332 	return 0;
2333 }
2334 
2335 static const struct seq_operations proto_seq_ops = {
2336 	.start  = proto_seq_start,
2337 	.next   = proto_seq_next,
2338 	.stop   = proto_seq_stop,
2339 	.show   = proto_seq_show,
2340 };
2341 
2342 static int proto_seq_open(struct inode *inode, struct file *file)
2343 {
2344 	return seq_open_net(inode, file, &proto_seq_ops,
2345 			    sizeof(struct seq_net_private));
2346 }
2347 
2348 static const struct file_operations proto_seq_fops = {
2349 	.owner		= THIS_MODULE,
2350 	.open		= proto_seq_open,
2351 	.read		= seq_read,
2352 	.llseek		= seq_lseek,
2353 	.release	= seq_release_net,
2354 };
2355 
2356 static __net_init int proto_init_net(struct net *net)
2357 {
2358 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2359 		return -ENOMEM;
2360 
2361 	return 0;
2362 }
2363 
2364 static __net_exit void proto_exit_net(struct net *net)
2365 {
2366 	proc_net_remove(net, "protocols");
2367 }
2368 
2369 
2370 static __net_initdata struct pernet_operations proto_net_ops = {
2371 	.init = proto_init_net,
2372 	.exit = proto_exit_net,
2373 };
2374 
2375 static int __init proto_init(void)
2376 {
2377 	return register_pernet_subsys(&proto_net_ops);
2378 }
2379 
2380 subsys_initcall(proto_init);
2381 
2382 #endif /* PROC_FS */
2383