1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/sched/mm.h> 106 #include <linux/timer.h> 107 #include <linux/string.h> 108 #include <linux/sockios.h> 109 #include <linux/net.h> 110 #include <linux/mm.h> 111 #include <linux/slab.h> 112 #include <linux/interrupt.h> 113 #include <linux/poll.h> 114 #include <linux/tcp.h> 115 #include <linux/init.h> 116 #include <linux/highmem.h> 117 #include <linux/user_namespace.h> 118 #include <linux/static_key.h> 119 #include <linux/memcontrol.h> 120 #include <linux/prefetch.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 145 static DEFINE_MUTEX(proto_list_mutex); 146 static LIST_HEAD(proto_list); 147 148 static void sock_inuse_add(struct net *net, int val); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family and separate keys for internal and 201 * userspace sockets. 202 */ 203 static struct lock_class_key af_family_keys[AF_MAX]; 204 static struct lock_class_key af_family_kern_keys[AF_MAX]; 205 static struct lock_class_key af_family_slock_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 207 208 /* 209 * Make lock validator output more readable. (we pre-construct these 210 * strings build-time, so that runtime initialization of socket 211 * locks is fast): 212 */ 213 214 #define _sock_locks(x) \ 215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 224 x "27" , x "28" , x "AF_CAN" , \ 225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" 230 231 static const char *const af_family_key_strings[AF_MAX+1] = { 232 _sock_locks("sk_lock-") 233 }; 234 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 235 _sock_locks("slock-") 236 }; 237 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 238 _sock_locks("clock-") 239 }; 240 241 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 242 _sock_locks("k-sk_lock-") 243 }; 244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-slock-") 246 }; 247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 248 _sock_locks("k-clock-") 249 }; 250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , 252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", 253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , 254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , 255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , 256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , 257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , 258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , 259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , 260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" , 261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , 262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , 263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , 264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , 265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" 266 }; 267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , 269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", 270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , 271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , 272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , 273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , 274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , 275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , 276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , 277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" , 278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , 279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , 280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , 281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , 282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" 283 }; 284 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , 286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", 287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , 288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , 289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , 290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , 291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , 292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , 293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , 294 "elock-27" , "elock-28" , "elock-AF_CAN" , 295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , 296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , 297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , 298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , 299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" 300 }; 301 302 /* 303 * sk_callback_lock and sk queues locking rules are per-address-family, 304 * so split the lock classes by using a per-AF key: 305 */ 306 static struct lock_class_key af_callback_keys[AF_MAX]; 307 static struct lock_class_key af_rlock_keys[AF_MAX]; 308 static struct lock_class_key af_wlock_keys[AF_MAX]; 309 static struct lock_class_key af_elock_keys[AF_MAX]; 310 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 311 312 /* Run time adjustable parameters. */ 313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 314 EXPORT_SYMBOL(sysctl_wmem_max); 315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 316 EXPORT_SYMBOL(sysctl_rmem_max); 317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 319 320 /* Maximal space eaten by iovec or ancillary data plus some space */ 321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 322 EXPORT_SYMBOL(sysctl_optmem_max); 323 324 int sysctl_tstamp_allow_data __read_mostly = 1; 325 326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 327 EXPORT_SYMBOL_GPL(memalloc_socks); 328 329 /** 330 * sk_set_memalloc - sets %SOCK_MEMALLOC 331 * @sk: socket to set it on 332 * 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 334 * It's the responsibility of the admin to adjust min_free_kbytes 335 * to meet the requirements 336 */ 337 void sk_set_memalloc(struct sock *sk) 338 { 339 sock_set_flag(sk, SOCK_MEMALLOC); 340 sk->sk_allocation |= __GFP_MEMALLOC; 341 static_key_slow_inc(&memalloc_socks); 342 } 343 EXPORT_SYMBOL_GPL(sk_set_memalloc); 344 345 void sk_clear_memalloc(struct sock *sk) 346 { 347 sock_reset_flag(sk, SOCK_MEMALLOC); 348 sk->sk_allocation &= ~__GFP_MEMALLOC; 349 static_key_slow_dec(&memalloc_socks); 350 351 /* 352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 353 * progress of swapping. SOCK_MEMALLOC may be cleared while 354 * it has rmem allocations due to the last swapfile being deactivated 355 * but there is a risk that the socket is unusable due to exceeding 356 * the rmem limits. Reclaim the reserves and obey rmem limits again. 357 */ 358 sk_mem_reclaim(sk); 359 } 360 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 361 362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 363 { 364 int ret; 365 unsigned int noreclaim_flag; 366 367 /* these should have been dropped before queueing */ 368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 369 370 noreclaim_flag = memalloc_noreclaim_save(); 371 ret = sk->sk_backlog_rcv(sk, skb); 372 memalloc_noreclaim_restore(noreclaim_flag); 373 374 return ret; 375 } 376 EXPORT_SYMBOL(__sk_backlog_rcv); 377 378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 379 { 380 struct timeval tv; 381 382 if (optlen < sizeof(tv)) 383 return -EINVAL; 384 if (copy_from_user(&tv, optval, sizeof(tv))) 385 return -EFAULT; 386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 387 return -EDOM; 388 389 if (tv.tv_sec < 0) { 390 static int warned __read_mostly; 391 392 *timeo_p = 0; 393 if (warned < 10 && net_ratelimit()) { 394 warned++; 395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 396 __func__, current->comm, task_pid_nr(current)); 397 } 398 return 0; 399 } 400 *timeo_p = MAX_SCHEDULE_TIMEOUT; 401 if (tv.tv_sec == 0 && tv.tv_usec == 0) 402 return 0; 403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); 405 return 0; 406 } 407 408 static void sock_warn_obsolete_bsdism(const char *name) 409 { 410 static int warned; 411 static char warncomm[TASK_COMM_LEN]; 412 if (strcmp(warncomm, current->comm) && warned < 5) { 413 strcpy(warncomm, current->comm); 414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 415 warncomm, name); 416 warned++; 417 } 418 } 419 420 static bool sock_needs_netstamp(const struct sock *sk) 421 { 422 switch (sk->sk_family) { 423 case AF_UNSPEC: 424 case AF_UNIX: 425 return false; 426 default: 427 return true; 428 } 429 } 430 431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 432 { 433 if (sk->sk_flags & flags) { 434 sk->sk_flags &= ~flags; 435 if (sock_needs_netstamp(sk) && 436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 437 net_disable_timestamp(); 438 } 439 } 440 441 442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 443 { 444 unsigned long flags; 445 struct sk_buff_head *list = &sk->sk_receive_queue; 446 447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 448 atomic_inc(&sk->sk_drops); 449 trace_sock_rcvqueue_full(sk, skb); 450 return -ENOMEM; 451 } 452 453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 454 atomic_inc(&sk->sk_drops); 455 return -ENOBUFS; 456 } 457 458 skb->dev = NULL; 459 skb_set_owner_r(skb, sk); 460 461 /* we escape from rcu protected region, make sure we dont leak 462 * a norefcounted dst 463 */ 464 skb_dst_force(skb); 465 466 spin_lock_irqsave(&list->lock, flags); 467 sock_skb_set_dropcount(sk, skb); 468 __skb_queue_tail(list, skb); 469 spin_unlock_irqrestore(&list->lock, flags); 470 471 if (!sock_flag(sk, SOCK_DEAD)) 472 sk->sk_data_ready(sk); 473 return 0; 474 } 475 EXPORT_SYMBOL(__sock_queue_rcv_skb); 476 477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 478 { 479 int err; 480 481 err = sk_filter(sk, skb); 482 if (err) 483 return err; 484 485 return __sock_queue_rcv_skb(sk, skb); 486 } 487 EXPORT_SYMBOL(sock_queue_rcv_skb); 488 489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 490 const int nested, unsigned int trim_cap, bool refcounted) 491 { 492 int rc = NET_RX_SUCCESS; 493 494 if (sk_filter_trim_cap(sk, skb, trim_cap)) 495 goto discard_and_relse; 496 497 skb->dev = NULL; 498 499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 500 atomic_inc(&sk->sk_drops); 501 goto discard_and_relse; 502 } 503 if (nested) 504 bh_lock_sock_nested(sk); 505 else 506 bh_lock_sock(sk); 507 if (!sock_owned_by_user(sk)) { 508 /* 509 * trylock + unlock semantics: 510 */ 511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 512 513 rc = sk_backlog_rcv(sk, skb); 514 515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 517 bh_unlock_sock(sk); 518 atomic_inc(&sk->sk_drops); 519 goto discard_and_relse; 520 } 521 522 bh_unlock_sock(sk); 523 out: 524 if (refcounted) 525 sock_put(sk); 526 return rc; 527 discard_and_relse: 528 kfree_skb(skb); 529 goto out; 530 } 531 EXPORT_SYMBOL(__sk_receive_skb); 532 533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 534 { 535 struct dst_entry *dst = __sk_dst_get(sk); 536 537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 538 sk_tx_queue_clear(sk); 539 sk->sk_dst_pending_confirm = 0; 540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 541 dst_release(dst); 542 return NULL; 543 } 544 545 return dst; 546 } 547 EXPORT_SYMBOL(__sk_dst_check); 548 549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 550 { 551 struct dst_entry *dst = sk_dst_get(sk); 552 553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 554 sk_dst_reset(sk); 555 dst_release(dst); 556 return NULL; 557 } 558 559 return dst; 560 } 561 EXPORT_SYMBOL(sk_dst_check); 562 563 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 564 int optlen) 565 { 566 int ret = -ENOPROTOOPT; 567 #ifdef CONFIG_NETDEVICES 568 struct net *net = sock_net(sk); 569 char devname[IFNAMSIZ]; 570 int index; 571 572 /* Sorry... */ 573 ret = -EPERM; 574 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 575 goto out; 576 577 ret = -EINVAL; 578 if (optlen < 0) 579 goto out; 580 581 /* Bind this socket to a particular device like "eth0", 582 * as specified in the passed interface name. If the 583 * name is "" or the option length is zero the socket 584 * is not bound. 585 */ 586 if (optlen > IFNAMSIZ - 1) 587 optlen = IFNAMSIZ - 1; 588 memset(devname, 0, sizeof(devname)); 589 590 ret = -EFAULT; 591 if (copy_from_user(devname, optval, optlen)) 592 goto out; 593 594 index = 0; 595 if (devname[0] != '\0') { 596 struct net_device *dev; 597 598 rcu_read_lock(); 599 dev = dev_get_by_name_rcu(net, devname); 600 if (dev) 601 index = dev->ifindex; 602 rcu_read_unlock(); 603 ret = -ENODEV; 604 if (!dev) 605 goto out; 606 } 607 608 lock_sock(sk); 609 sk->sk_bound_dev_if = index; 610 sk_dst_reset(sk); 611 release_sock(sk); 612 613 ret = 0; 614 615 out: 616 #endif 617 618 return ret; 619 } 620 621 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 622 int __user *optlen, int len) 623 { 624 int ret = -ENOPROTOOPT; 625 #ifdef CONFIG_NETDEVICES 626 struct net *net = sock_net(sk); 627 char devname[IFNAMSIZ]; 628 629 if (sk->sk_bound_dev_if == 0) { 630 len = 0; 631 goto zero; 632 } 633 634 ret = -EINVAL; 635 if (len < IFNAMSIZ) 636 goto out; 637 638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 639 if (ret) 640 goto out; 641 642 len = strlen(devname) + 1; 643 644 ret = -EFAULT; 645 if (copy_to_user(optval, devname, len)) 646 goto out; 647 648 zero: 649 ret = -EFAULT; 650 if (put_user(len, optlen)) 651 goto out; 652 653 ret = 0; 654 655 out: 656 #endif 657 658 return ret; 659 } 660 661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 662 { 663 if (valbool) 664 sock_set_flag(sk, bit); 665 else 666 sock_reset_flag(sk, bit); 667 } 668 669 bool sk_mc_loop(struct sock *sk) 670 { 671 if (dev_recursion_level()) 672 return false; 673 if (!sk) 674 return true; 675 switch (sk->sk_family) { 676 case AF_INET: 677 return inet_sk(sk)->mc_loop; 678 #if IS_ENABLED(CONFIG_IPV6) 679 case AF_INET6: 680 return inet6_sk(sk)->mc_loop; 681 #endif 682 } 683 WARN_ON(1); 684 return true; 685 } 686 EXPORT_SYMBOL(sk_mc_loop); 687 688 /* 689 * This is meant for all protocols to use and covers goings on 690 * at the socket level. Everything here is generic. 691 */ 692 693 int sock_setsockopt(struct socket *sock, int level, int optname, 694 char __user *optval, unsigned int optlen) 695 { 696 struct sock *sk = sock->sk; 697 int val; 698 int valbool; 699 struct linger ling; 700 int ret = 0; 701 702 /* 703 * Options without arguments 704 */ 705 706 if (optname == SO_BINDTODEVICE) 707 return sock_setbindtodevice(sk, optval, optlen); 708 709 if (optlen < sizeof(int)) 710 return -EINVAL; 711 712 if (get_user(val, (int __user *)optval)) 713 return -EFAULT; 714 715 valbool = val ? 1 : 0; 716 717 lock_sock(sk); 718 719 switch (optname) { 720 case SO_DEBUG: 721 if (val && !capable(CAP_NET_ADMIN)) 722 ret = -EACCES; 723 else 724 sock_valbool_flag(sk, SOCK_DBG, valbool); 725 break; 726 case SO_REUSEADDR: 727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 728 break; 729 case SO_REUSEPORT: 730 sk->sk_reuseport = valbool; 731 break; 732 case SO_TYPE: 733 case SO_PROTOCOL: 734 case SO_DOMAIN: 735 case SO_ERROR: 736 ret = -ENOPROTOOPT; 737 break; 738 case SO_DONTROUTE: 739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 740 break; 741 case SO_BROADCAST: 742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 743 break; 744 case SO_SNDBUF: 745 /* Don't error on this BSD doesn't and if you think 746 * about it this is right. Otherwise apps have to 747 * play 'guess the biggest size' games. RCVBUF/SNDBUF 748 * are treated in BSD as hints 749 */ 750 val = min_t(u32, val, sysctl_wmem_max); 751 set_sndbuf: 752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 754 /* Wake up sending tasks if we upped the value. */ 755 sk->sk_write_space(sk); 756 break; 757 758 case SO_SNDBUFFORCE: 759 if (!capable(CAP_NET_ADMIN)) { 760 ret = -EPERM; 761 break; 762 } 763 goto set_sndbuf; 764 765 case SO_RCVBUF: 766 /* Don't error on this BSD doesn't and if you think 767 * about it this is right. Otherwise apps have to 768 * play 'guess the biggest size' games. RCVBUF/SNDBUF 769 * are treated in BSD as hints 770 */ 771 val = min_t(u32, val, sysctl_rmem_max); 772 set_rcvbuf: 773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 774 /* 775 * We double it on the way in to account for 776 * "struct sk_buff" etc. overhead. Applications 777 * assume that the SO_RCVBUF setting they make will 778 * allow that much actual data to be received on that 779 * socket. 780 * 781 * Applications are unaware that "struct sk_buff" and 782 * other overheads allocate from the receive buffer 783 * during socket buffer allocation. 784 * 785 * And after considering the possible alternatives, 786 * returning the value we actually used in getsockopt 787 * is the most desirable behavior. 788 */ 789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 790 break; 791 792 case SO_RCVBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 goto set_rcvbuf; 798 799 case SO_KEEPALIVE: 800 if (sk->sk_prot->keepalive) 801 sk->sk_prot->keepalive(sk, valbool); 802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 803 break; 804 805 case SO_OOBINLINE: 806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 807 break; 808 809 case SO_NO_CHECK: 810 sk->sk_no_check_tx = valbool; 811 break; 812 813 case SO_PRIORITY: 814 if ((val >= 0 && val <= 6) || 815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 816 sk->sk_priority = val; 817 else 818 ret = -EPERM; 819 break; 820 821 case SO_LINGER: 822 if (optlen < sizeof(ling)) { 823 ret = -EINVAL; /* 1003.1g */ 824 break; 825 } 826 if (copy_from_user(&ling, optval, sizeof(ling))) { 827 ret = -EFAULT; 828 break; 829 } 830 if (!ling.l_onoff) 831 sock_reset_flag(sk, SOCK_LINGER); 832 else { 833 #if (BITS_PER_LONG == 32) 834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 836 else 837 #endif 838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 839 sock_set_flag(sk, SOCK_LINGER); 840 } 841 break; 842 843 case SO_BSDCOMPAT: 844 sock_warn_obsolete_bsdism("setsockopt"); 845 break; 846 847 case SO_PASSCRED: 848 if (valbool) 849 set_bit(SOCK_PASSCRED, &sock->flags); 850 else 851 clear_bit(SOCK_PASSCRED, &sock->flags); 852 break; 853 854 case SO_TIMESTAMP: 855 case SO_TIMESTAMPNS: 856 if (valbool) { 857 if (optname == SO_TIMESTAMP) 858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 859 else 860 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 861 sock_set_flag(sk, SOCK_RCVTSTAMP); 862 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 863 } else { 864 sock_reset_flag(sk, SOCK_RCVTSTAMP); 865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 866 } 867 break; 868 869 case SO_TIMESTAMPING: 870 if (val & ~SOF_TIMESTAMPING_MASK) { 871 ret = -EINVAL; 872 break; 873 } 874 875 if (val & SOF_TIMESTAMPING_OPT_ID && 876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 877 if (sk->sk_protocol == IPPROTO_TCP && 878 sk->sk_type == SOCK_STREAM) { 879 if ((1 << sk->sk_state) & 880 (TCPF_CLOSE | TCPF_LISTEN)) { 881 ret = -EINVAL; 882 break; 883 } 884 sk->sk_tskey = tcp_sk(sk)->snd_una; 885 } else { 886 sk->sk_tskey = 0; 887 } 888 } 889 890 if (val & SOF_TIMESTAMPING_OPT_STATS && 891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 892 ret = -EINVAL; 893 break; 894 } 895 896 sk->sk_tsflags = val; 897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 898 sock_enable_timestamp(sk, 899 SOCK_TIMESTAMPING_RX_SOFTWARE); 900 else 901 sock_disable_timestamp(sk, 902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 903 break; 904 905 case SO_RCVLOWAT: 906 if (val < 0) 907 val = INT_MAX; 908 sk->sk_rcvlowat = val ? : 1; 909 break; 910 911 case SO_RCVTIMEO: 912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 913 break; 914 915 case SO_SNDTIMEO: 916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 917 break; 918 919 case SO_ATTACH_FILTER: 920 ret = -EINVAL; 921 if (optlen == sizeof(struct sock_fprog)) { 922 struct sock_fprog fprog; 923 924 ret = -EFAULT; 925 if (copy_from_user(&fprog, optval, sizeof(fprog))) 926 break; 927 928 ret = sk_attach_filter(&fprog, sk); 929 } 930 break; 931 932 case SO_ATTACH_BPF: 933 ret = -EINVAL; 934 if (optlen == sizeof(u32)) { 935 u32 ufd; 936 937 ret = -EFAULT; 938 if (copy_from_user(&ufd, optval, sizeof(ufd))) 939 break; 940 941 ret = sk_attach_bpf(ufd, sk); 942 } 943 break; 944 945 case SO_ATTACH_REUSEPORT_CBPF: 946 ret = -EINVAL; 947 if (optlen == sizeof(struct sock_fprog)) { 948 struct sock_fprog fprog; 949 950 ret = -EFAULT; 951 if (copy_from_user(&fprog, optval, sizeof(fprog))) 952 break; 953 954 ret = sk_reuseport_attach_filter(&fprog, sk); 955 } 956 break; 957 958 case SO_ATTACH_REUSEPORT_EBPF: 959 ret = -EINVAL; 960 if (optlen == sizeof(u32)) { 961 u32 ufd; 962 963 ret = -EFAULT; 964 if (copy_from_user(&ufd, optval, sizeof(ufd))) 965 break; 966 967 ret = sk_reuseport_attach_bpf(ufd, sk); 968 } 969 break; 970 971 case SO_DETACH_FILTER: 972 ret = sk_detach_filter(sk); 973 break; 974 975 case SO_LOCK_FILTER: 976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 977 ret = -EPERM; 978 else 979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 980 break; 981 982 case SO_PASSSEC: 983 if (valbool) 984 set_bit(SOCK_PASSSEC, &sock->flags); 985 else 986 clear_bit(SOCK_PASSSEC, &sock->flags); 987 break; 988 case SO_MARK: 989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 990 ret = -EPERM; 991 else 992 sk->sk_mark = val; 993 break; 994 995 case SO_RXQ_OVFL: 996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 997 break; 998 999 case SO_WIFI_STATUS: 1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1001 break; 1002 1003 case SO_PEEK_OFF: 1004 if (sock->ops->set_peek_off) 1005 ret = sock->ops->set_peek_off(sk, val); 1006 else 1007 ret = -EOPNOTSUPP; 1008 break; 1009 1010 case SO_NOFCS: 1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1012 break; 1013 1014 case SO_SELECT_ERR_QUEUE: 1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1016 break; 1017 1018 #ifdef CONFIG_NET_RX_BUSY_POLL 1019 case SO_BUSY_POLL: 1020 /* allow unprivileged users to decrease the value */ 1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1022 ret = -EPERM; 1023 else { 1024 if (val < 0) 1025 ret = -EINVAL; 1026 else 1027 sk->sk_ll_usec = val; 1028 } 1029 break; 1030 #endif 1031 1032 case SO_MAX_PACING_RATE: 1033 if (val != ~0U) 1034 cmpxchg(&sk->sk_pacing_status, 1035 SK_PACING_NONE, 1036 SK_PACING_NEEDED); 1037 sk->sk_max_pacing_rate = val; 1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1039 sk->sk_max_pacing_rate); 1040 break; 1041 1042 case SO_INCOMING_CPU: 1043 sk->sk_incoming_cpu = val; 1044 break; 1045 1046 case SO_CNX_ADVICE: 1047 if (val == 1) 1048 dst_negative_advice(sk); 1049 break; 1050 1051 case SO_ZEROCOPY: 1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1053 if (sk->sk_protocol != IPPROTO_TCP) 1054 ret = -ENOTSUPP; 1055 else if (sk->sk_state != TCP_CLOSE) 1056 ret = -EBUSY; 1057 } else if (sk->sk_family != PF_RDS) { 1058 ret = -ENOTSUPP; 1059 } 1060 if (!ret) { 1061 if (val < 0 || val > 1) 1062 ret = -EINVAL; 1063 else 1064 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1065 break; 1066 } 1067 default: 1068 ret = -ENOPROTOOPT; 1069 break; 1070 } 1071 release_sock(sk); 1072 return ret; 1073 } 1074 EXPORT_SYMBOL(sock_setsockopt); 1075 1076 1077 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1078 struct ucred *ucred) 1079 { 1080 ucred->pid = pid_vnr(pid); 1081 ucred->uid = ucred->gid = -1; 1082 if (cred) { 1083 struct user_namespace *current_ns = current_user_ns(); 1084 1085 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1086 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1087 } 1088 } 1089 1090 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1091 { 1092 struct user_namespace *user_ns = current_user_ns(); 1093 int i; 1094 1095 for (i = 0; i < src->ngroups; i++) 1096 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1097 return -EFAULT; 1098 1099 return 0; 1100 } 1101 1102 int sock_getsockopt(struct socket *sock, int level, int optname, 1103 char __user *optval, int __user *optlen) 1104 { 1105 struct sock *sk = sock->sk; 1106 1107 union { 1108 int val; 1109 u64 val64; 1110 struct linger ling; 1111 struct timeval tm; 1112 } v; 1113 1114 int lv = sizeof(int); 1115 int len; 1116 1117 if (get_user(len, optlen)) 1118 return -EFAULT; 1119 if (len < 0) 1120 return -EINVAL; 1121 1122 memset(&v, 0, sizeof(v)); 1123 1124 switch (optname) { 1125 case SO_DEBUG: 1126 v.val = sock_flag(sk, SOCK_DBG); 1127 break; 1128 1129 case SO_DONTROUTE: 1130 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1131 break; 1132 1133 case SO_BROADCAST: 1134 v.val = sock_flag(sk, SOCK_BROADCAST); 1135 break; 1136 1137 case SO_SNDBUF: 1138 v.val = sk->sk_sndbuf; 1139 break; 1140 1141 case SO_RCVBUF: 1142 v.val = sk->sk_rcvbuf; 1143 break; 1144 1145 case SO_REUSEADDR: 1146 v.val = sk->sk_reuse; 1147 break; 1148 1149 case SO_REUSEPORT: 1150 v.val = sk->sk_reuseport; 1151 break; 1152 1153 case SO_KEEPALIVE: 1154 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1155 break; 1156 1157 case SO_TYPE: 1158 v.val = sk->sk_type; 1159 break; 1160 1161 case SO_PROTOCOL: 1162 v.val = sk->sk_protocol; 1163 break; 1164 1165 case SO_DOMAIN: 1166 v.val = sk->sk_family; 1167 break; 1168 1169 case SO_ERROR: 1170 v.val = -sock_error(sk); 1171 if (v.val == 0) 1172 v.val = xchg(&sk->sk_err_soft, 0); 1173 break; 1174 1175 case SO_OOBINLINE: 1176 v.val = sock_flag(sk, SOCK_URGINLINE); 1177 break; 1178 1179 case SO_NO_CHECK: 1180 v.val = sk->sk_no_check_tx; 1181 break; 1182 1183 case SO_PRIORITY: 1184 v.val = sk->sk_priority; 1185 break; 1186 1187 case SO_LINGER: 1188 lv = sizeof(v.ling); 1189 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1190 v.ling.l_linger = sk->sk_lingertime / HZ; 1191 break; 1192 1193 case SO_BSDCOMPAT: 1194 sock_warn_obsolete_bsdism("getsockopt"); 1195 break; 1196 1197 case SO_TIMESTAMP: 1198 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1199 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1200 break; 1201 1202 case SO_TIMESTAMPNS: 1203 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1204 break; 1205 1206 case SO_TIMESTAMPING: 1207 v.val = sk->sk_tsflags; 1208 break; 1209 1210 case SO_RCVTIMEO: 1211 lv = sizeof(struct timeval); 1212 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1213 v.tm.tv_sec = 0; 1214 v.tm.tv_usec = 0; 1215 } else { 1216 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1217 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; 1218 } 1219 break; 1220 1221 case SO_SNDTIMEO: 1222 lv = sizeof(struct timeval); 1223 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1224 v.tm.tv_sec = 0; 1225 v.tm.tv_usec = 0; 1226 } else { 1227 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1228 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; 1229 } 1230 break; 1231 1232 case SO_RCVLOWAT: 1233 v.val = sk->sk_rcvlowat; 1234 break; 1235 1236 case SO_SNDLOWAT: 1237 v.val = 1; 1238 break; 1239 1240 case SO_PASSCRED: 1241 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1242 break; 1243 1244 case SO_PEERCRED: 1245 { 1246 struct ucred peercred; 1247 if (len > sizeof(peercred)) 1248 len = sizeof(peercred); 1249 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1250 if (copy_to_user(optval, &peercred, len)) 1251 return -EFAULT; 1252 goto lenout; 1253 } 1254 1255 case SO_PEERGROUPS: 1256 { 1257 int ret, n; 1258 1259 if (!sk->sk_peer_cred) 1260 return -ENODATA; 1261 1262 n = sk->sk_peer_cred->group_info->ngroups; 1263 if (len < n * sizeof(gid_t)) { 1264 len = n * sizeof(gid_t); 1265 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1266 } 1267 len = n * sizeof(gid_t); 1268 1269 ret = groups_to_user((gid_t __user *)optval, 1270 sk->sk_peer_cred->group_info); 1271 if (ret) 1272 return ret; 1273 goto lenout; 1274 } 1275 1276 case SO_PEERNAME: 1277 { 1278 char address[128]; 1279 1280 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1281 if (lv < 0) 1282 return -ENOTCONN; 1283 if (lv < len) 1284 return -EINVAL; 1285 if (copy_to_user(optval, address, len)) 1286 return -EFAULT; 1287 goto lenout; 1288 } 1289 1290 /* Dubious BSD thing... Probably nobody even uses it, but 1291 * the UNIX standard wants it for whatever reason... -DaveM 1292 */ 1293 case SO_ACCEPTCONN: 1294 v.val = sk->sk_state == TCP_LISTEN; 1295 break; 1296 1297 case SO_PASSSEC: 1298 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1299 break; 1300 1301 case SO_PEERSEC: 1302 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1303 1304 case SO_MARK: 1305 v.val = sk->sk_mark; 1306 break; 1307 1308 case SO_RXQ_OVFL: 1309 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1310 break; 1311 1312 case SO_WIFI_STATUS: 1313 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1314 break; 1315 1316 case SO_PEEK_OFF: 1317 if (!sock->ops->set_peek_off) 1318 return -EOPNOTSUPP; 1319 1320 v.val = sk->sk_peek_off; 1321 break; 1322 case SO_NOFCS: 1323 v.val = sock_flag(sk, SOCK_NOFCS); 1324 break; 1325 1326 case SO_BINDTODEVICE: 1327 return sock_getbindtodevice(sk, optval, optlen, len); 1328 1329 case SO_GET_FILTER: 1330 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1331 if (len < 0) 1332 return len; 1333 1334 goto lenout; 1335 1336 case SO_LOCK_FILTER: 1337 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1338 break; 1339 1340 case SO_BPF_EXTENSIONS: 1341 v.val = bpf_tell_extensions(); 1342 break; 1343 1344 case SO_SELECT_ERR_QUEUE: 1345 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1346 break; 1347 1348 #ifdef CONFIG_NET_RX_BUSY_POLL 1349 case SO_BUSY_POLL: 1350 v.val = sk->sk_ll_usec; 1351 break; 1352 #endif 1353 1354 case SO_MAX_PACING_RATE: 1355 v.val = sk->sk_max_pacing_rate; 1356 break; 1357 1358 case SO_INCOMING_CPU: 1359 v.val = sk->sk_incoming_cpu; 1360 break; 1361 1362 case SO_MEMINFO: 1363 { 1364 u32 meminfo[SK_MEMINFO_VARS]; 1365 1366 if (get_user(len, optlen)) 1367 return -EFAULT; 1368 1369 sk_get_meminfo(sk, meminfo); 1370 1371 len = min_t(unsigned int, len, sizeof(meminfo)); 1372 if (copy_to_user(optval, &meminfo, len)) 1373 return -EFAULT; 1374 1375 goto lenout; 1376 } 1377 1378 #ifdef CONFIG_NET_RX_BUSY_POLL 1379 case SO_INCOMING_NAPI_ID: 1380 v.val = READ_ONCE(sk->sk_napi_id); 1381 1382 /* aggregate non-NAPI IDs down to 0 */ 1383 if (v.val < MIN_NAPI_ID) 1384 v.val = 0; 1385 1386 break; 1387 #endif 1388 1389 case SO_COOKIE: 1390 lv = sizeof(u64); 1391 if (len < lv) 1392 return -EINVAL; 1393 v.val64 = sock_gen_cookie(sk); 1394 break; 1395 1396 case SO_ZEROCOPY: 1397 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1398 break; 1399 1400 default: 1401 /* We implement the SO_SNDLOWAT etc to not be settable 1402 * (1003.1g 7). 1403 */ 1404 return -ENOPROTOOPT; 1405 } 1406 1407 if (len > lv) 1408 len = lv; 1409 if (copy_to_user(optval, &v, len)) 1410 return -EFAULT; 1411 lenout: 1412 if (put_user(len, optlen)) 1413 return -EFAULT; 1414 return 0; 1415 } 1416 1417 /* 1418 * Initialize an sk_lock. 1419 * 1420 * (We also register the sk_lock with the lock validator.) 1421 */ 1422 static inline void sock_lock_init(struct sock *sk) 1423 { 1424 if (sk->sk_kern_sock) 1425 sock_lock_init_class_and_name( 1426 sk, 1427 af_family_kern_slock_key_strings[sk->sk_family], 1428 af_family_kern_slock_keys + sk->sk_family, 1429 af_family_kern_key_strings[sk->sk_family], 1430 af_family_kern_keys + sk->sk_family); 1431 else 1432 sock_lock_init_class_and_name( 1433 sk, 1434 af_family_slock_key_strings[sk->sk_family], 1435 af_family_slock_keys + sk->sk_family, 1436 af_family_key_strings[sk->sk_family], 1437 af_family_keys + sk->sk_family); 1438 } 1439 1440 /* 1441 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1442 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1443 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1444 */ 1445 static void sock_copy(struct sock *nsk, const struct sock *osk) 1446 { 1447 #ifdef CONFIG_SECURITY_NETWORK 1448 void *sptr = nsk->sk_security; 1449 #endif 1450 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1451 1452 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1453 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1454 1455 #ifdef CONFIG_SECURITY_NETWORK 1456 nsk->sk_security = sptr; 1457 security_sk_clone(osk, nsk); 1458 #endif 1459 } 1460 1461 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1462 int family) 1463 { 1464 struct sock *sk; 1465 struct kmem_cache *slab; 1466 1467 slab = prot->slab; 1468 if (slab != NULL) { 1469 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1470 if (!sk) 1471 return sk; 1472 if (priority & __GFP_ZERO) 1473 sk_prot_clear_nulls(sk, prot->obj_size); 1474 } else 1475 sk = kmalloc(prot->obj_size, priority); 1476 1477 if (sk != NULL) { 1478 if (security_sk_alloc(sk, family, priority)) 1479 goto out_free; 1480 1481 if (!try_module_get(prot->owner)) 1482 goto out_free_sec; 1483 sk_tx_queue_clear(sk); 1484 } 1485 1486 return sk; 1487 1488 out_free_sec: 1489 security_sk_free(sk); 1490 out_free: 1491 if (slab != NULL) 1492 kmem_cache_free(slab, sk); 1493 else 1494 kfree(sk); 1495 return NULL; 1496 } 1497 1498 static void sk_prot_free(struct proto *prot, struct sock *sk) 1499 { 1500 struct kmem_cache *slab; 1501 struct module *owner; 1502 1503 owner = prot->owner; 1504 slab = prot->slab; 1505 1506 cgroup_sk_free(&sk->sk_cgrp_data); 1507 mem_cgroup_sk_free(sk); 1508 security_sk_free(sk); 1509 if (slab != NULL) 1510 kmem_cache_free(slab, sk); 1511 else 1512 kfree(sk); 1513 module_put(owner); 1514 } 1515 1516 /** 1517 * sk_alloc - All socket objects are allocated here 1518 * @net: the applicable net namespace 1519 * @family: protocol family 1520 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1521 * @prot: struct proto associated with this new sock instance 1522 * @kern: is this to be a kernel socket? 1523 */ 1524 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1525 struct proto *prot, int kern) 1526 { 1527 struct sock *sk; 1528 1529 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1530 if (sk) { 1531 sk->sk_family = family; 1532 /* 1533 * See comment in struct sock definition to understand 1534 * why we need sk_prot_creator -acme 1535 */ 1536 sk->sk_prot = sk->sk_prot_creator = prot; 1537 sk->sk_kern_sock = kern; 1538 sock_lock_init(sk); 1539 sk->sk_net_refcnt = kern ? 0 : 1; 1540 if (likely(sk->sk_net_refcnt)) { 1541 get_net(net); 1542 sock_inuse_add(net, 1); 1543 } 1544 1545 sock_net_set(sk, net); 1546 refcount_set(&sk->sk_wmem_alloc, 1); 1547 1548 mem_cgroup_sk_alloc(sk); 1549 cgroup_sk_alloc(&sk->sk_cgrp_data); 1550 sock_update_classid(&sk->sk_cgrp_data); 1551 sock_update_netprioidx(&sk->sk_cgrp_data); 1552 } 1553 1554 return sk; 1555 } 1556 EXPORT_SYMBOL(sk_alloc); 1557 1558 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1559 * grace period. This is the case for UDP sockets and TCP listeners. 1560 */ 1561 static void __sk_destruct(struct rcu_head *head) 1562 { 1563 struct sock *sk = container_of(head, struct sock, sk_rcu); 1564 struct sk_filter *filter; 1565 1566 if (sk->sk_destruct) 1567 sk->sk_destruct(sk); 1568 1569 filter = rcu_dereference_check(sk->sk_filter, 1570 refcount_read(&sk->sk_wmem_alloc) == 0); 1571 if (filter) { 1572 sk_filter_uncharge(sk, filter); 1573 RCU_INIT_POINTER(sk->sk_filter, NULL); 1574 } 1575 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1576 reuseport_detach_sock(sk); 1577 1578 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1579 1580 if (atomic_read(&sk->sk_omem_alloc)) 1581 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1582 __func__, atomic_read(&sk->sk_omem_alloc)); 1583 1584 if (sk->sk_frag.page) { 1585 put_page(sk->sk_frag.page); 1586 sk->sk_frag.page = NULL; 1587 } 1588 1589 if (sk->sk_peer_cred) 1590 put_cred(sk->sk_peer_cred); 1591 put_pid(sk->sk_peer_pid); 1592 if (likely(sk->sk_net_refcnt)) 1593 put_net(sock_net(sk)); 1594 sk_prot_free(sk->sk_prot_creator, sk); 1595 } 1596 1597 void sk_destruct(struct sock *sk) 1598 { 1599 if (sock_flag(sk, SOCK_RCU_FREE)) 1600 call_rcu(&sk->sk_rcu, __sk_destruct); 1601 else 1602 __sk_destruct(&sk->sk_rcu); 1603 } 1604 1605 static void __sk_free(struct sock *sk) 1606 { 1607 if (likely(sk->sk_net_refcnt)) 1608 sock_inuse_add(sock_net(sk), -1); 1609 1610 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1611 sock_diag_broadcast_destroy(sk); 1612 else 1613 sk_destruct(sk); 1614 } 1615 1616 void sk_free(struct sock *sk) 1617 { 1618 /* 1619 * We subtract one from sk_wmem_alloc and can know if 1620 * some packets are still in some tx queue. 1621 * If not null, sock_wfree() will call __sk_free(sk) later 1622 */ 1623 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1624 __sk_free(sk); 1625 } 1626 EXPORT_SYMBOL(sk_free); 1627 1628 static void sk_init_common(struct sock *sk) 1629 { 1630 skb_queue_head_init(&sk->sk_receive_queue); 1631 skb_queue_head_init(&sk->sk_write_queue); 1632 skb_queue_head_init(&sk->sk_error_queue); 1633 1634 rwlock_init(&sk->sk_callback_lock); 1635 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1636 af_rlock_keys + sk->sk_family, 1637 af_family_rlock_key_strings[sk->sk_family]); 1638 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1639 af_wlock_keys + sk->sk_family, 1640 af_family_wlock_key_strings[sk->sk_family]); 1641 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1642 af_elock_keys + sk->sk_family, 1643 af_family_elock_key_strings[sk->sk_family]); 1644 lockdep_set_class_and_name(&sk->sk_callback_lock, 1645 af_callback_keys + sk->sk_family, 1646 af_family_clock_key_strings[sk->sk_family]); 1647 } 1648 1649 /** 1650 * sk_clone_lock - clone a socket, and lock its clone 1651 * @sk: the socket to clone 1652 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1653 * 1654 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1655 */ 1656 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1657 { 1658 struct sock *newsk; 1659 bool is_charged = true; 1660 1661 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1662 if (newsk != NULL) { 1663 struct sk_filter *filter; 1664 1665 sock_copy(newsk, sk); 1666 1667 newsk->sk_prot_creator = sk->sk_prot; 1668 1669 /* SANITY */ 1670 if (likely(newsk->sk_net_refcnt)) 1671 get_net(sock_net(newsk)); 1672 sk_node_init(&newsk->sk_node); 1673 sock_lock_init(newsk); 1674 bh_lock_sock(newsk); 1675 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1676 newsk->sk_backlog.len = 0; 1677 1678 atomic_set(&newsk->sk_rmem_alloc, 0); 1679 /* 1680 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1681 */ 1682 refcount_set(&newsk->sk_wmem_alloc, 1); 1683 atomic_set(&newsk->sk_omem_alloc, 0); 1684 sk_init_common(newsk); 1685 1686 newsk->sk_dst_cache = NULL; 1687 newsk->sk_dst_pending_confirm = 0; 1688 newsk->sk_wmem_queued = 0; 1689 newsk->sk_forward_alloc = 0; 1690 atomic_set(&newsk->sk_drops, 0); 1691 newsk->sk_send_head = NULL; 1692 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1693 atomic_set(&newsk->sk_zckey, 0); 1694 1695 sock_reset_flag(newsk, SOCK_DONE); 1696 mem_cgroup_sk_alloc(newsk); 1697 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1698 1699 rcu_read_lock(); 1700 filter = rcu_dereference(sk->sk_filter); 1701 if (filter != NULL) 1702 /* though it's an empty new sock, the charging may fail 1703 * if sysctl_optmem_max was changed between creation of 1704 * original socket and cloning 1705 */ 1706 is_charged = sk_filter_charge(newsk, filter); 1707 RCU_INIT_POINTER(newsk->sk_filter, filter); 1708 rcu_read_unlock(); 1709 1710 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1711 /* We need to make sure that we don't uncharge the new 1712 * socket if we couldn't charge it in the first place 1713 * as otherwise we uncharge the parent's filter. 1714 */ 1715 if (!is_charged) 1716 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1717 sk_free_unlock_clone(newsk); 1718 newsk = NULL; 1719 goto out; 1720 } 1721 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1722 1723 newsk->sk_err = 0; 1724 newsk->sk_err_soft = 0; 1725 newsk->sk_priority = 0; 1726 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1727 atomic64_set(&newsk->sk_cookie, 0); 1728 if (likely(newsk->sk_net_refcnt)) 1729 sock_inuse_add(sock_net(newsk), 1); 1730 1731 /* 1732 * Before updating sk_refcnt, we must commit prior changes to memory 1733 * (Documentation/RCU/rculist_nulls.txt for details) 1734 */ 1735 smp_wmb(); 1736 refcount_set(&newsk->sk_refcnt, 2); 1737 1738 /* 1739 * Increment the counter in the same struct proto as the master 1740 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1741 * is the same as sk->sk_prot->socks, as this field was copied 1742 * with memcpy). 1743 * 1744 * This _changes_ the previous behaviour, where 1745 * tcp_create_openreq_child always was incrementing the 1746 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1747 * to be taken into account in all callers. -acme 1748 */ 1749 sk_refcnt_debug_inc(newsk); 1750 sk_set_socket(newsk, NULL); 1751 newsk->sk_wq = NULL; 1752 1753 if (newsk->sk_prot->sockets_allocated) 1754 sk_sockets_allocated_inc(newsk); 1755 1756 if (sock_needs_netstamp(sk) && 1757 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1758 net_enable_timestamp(); 1759 } 1760 out: 1761 return newsk; 1762 } 1763 EXPORT_SYMBOL_GPL(sk_clone_lock); 1764 1765 void sk_free_unlock_clone(struct sock *sk) 1766 { 1767 /* It is still raw copy of parent, so invalidate 1768 * destructor and make plain sk_free() */ 1769 sk->sk_destruct = NULL; 1770 bh_unlock_sock(sk); 1771 sk_free(sk); 1772 } 1773 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1774 1775 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1776 { 1777 u32 max_segs = 1; 1778 1779 sk_dst_set(sk, dst); 1780 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1781 if (sk->sk_route_caps & NETIF_F_GSO) 1782 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1783 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1784 if (sk_can_gso(sk)) { 1785 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1786 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1787 } else { 1788 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1789 sk->sk_gso_max_size = dst->dev->gso_max_size; 1790 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1791 } 1792 } 1793 sk->sk_gso_max_segs = max_segs; 1794 } 1795 EXPORT_SYMBOL_GPL(sk_setup_caps); 1796 1797 /* 1798 * Simple resource managers for sockets. 1799 */ 1800 1801 1802 /* 1803 * Write buffer destructor automatically called from kfree_skb. 1804 */ 1805 void sock_wfree(struct sk_buff *skb) 1806 { 1807 struct sock *sk = skb->sk; 1808 unsigned int len = skb->truesize; 1809 1810 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1811 /* 1812 * Keep a reference on sk_wmem_alloc, this will be released 1813 * after sk_write_space() call 1814 */ 1815 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1816 sk->sk_write_space(sk); 1817 len = 1; 1818 } 1819 /* 1820 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1821 * could not do because of in-flight packets 1822 */ 1823 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1824 __sk_free(sk); 1825 } 1826 EXPORT_SYMBOL(sock_wfree); 1827 1828 /* This variant of sock_wfree() is used by TCP, 1829 * since it sets SOCK_USE_WRITE_QUEUE. 1830 */ 1831 void __sock_wfree(struct sk_buff *skb) 1832 { 1833 struct sock *sk = skb->sk; 1834 1835 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1836 __sk_free(sk); 1837 } 1838 1839 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1840 { 1841 skb_orphan(skb); 1842 skb->sk = sk; 1843 #ifdef CONFIG_INET 1844 if (unlikely(!sk_fullsock(sk))) { 1845 skb->destructor = sock_edemux; 1846 sock_hold(sk); 1847 return; 1848 } 1849 #endif 1850 skb->destructor = sock_wfree; 1851 skb_set_hash_from_sk(skb, sk); 1852 /* 1853 * We used to take a refcount on sk, but following operation 1854 * is enough to guarantee sk_free() wont free this sock until 1855 * all in-flight packets are completed 1856 */ 1857 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1858 } 1859 EXPORT_SYMBOL(skb_set_owner_w); 1860 1861 /* This helper is used by netem, as it can hold packets in its 1862 * delay queue. We want to allow the owner socket to send more 1863 * packets, as if they were already TX completed by a typical driver. 1864 * But we also want to keep skb->sk set because some packet schedulers 1865 * rely on it (sch_fq for example). 1866 */ 1867 void skb_orphan_partial(struct sk_buff *skb) 1868 { 1869 if (skb_is_tcp_pure_ack(skb)) 1870 return; 1871 1872 if (skb->destructor == sock_wfree 1873 #ifdef CONFIG_INET 1874 || skb->destructor == tcp_wfree 1875 #endif 1876 ) { 1877 struct sock *sk = skb->sk; 1878 1879 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1880 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 1881 skb->destructor = sock_efree; 1882 } 1883 } else { 1884 skb_orphan(skb); 1885 } 1886 } 1887 EXPORT_SYMBOL(skb_orphan_partial); 1888 1889 /* 1890 * Read buffer destructor automatically called from kfree_skb. 1891 */ 1892 void sock_rfree(struct sk_buff *skb) 1893 { 1894 struct sock *sk = skb->sk; 1895 unsigned int len = skb->truesize; 1896 1897 atomic_sub(len, &sk->sk_rmem_alloc); 1898 sk_mem_uncharge(sk, len); 1899 } 1900 EXPORT_SYMBOL(sock_rfree); 1901 1902 /* 1903 * Buffer destructor for skbs that are not used directly in read or write 1904 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1905 */ 1906 void sock_efree(struct sk_buff *skb) 1907 { 1908 sock_put(skb->sk); 1909 } 1910 EXPORT_SYMBOL(sock_efree); 1911 1912 kuid_t sock_i_uid(struct sock *sk) 1913 { 1914 kuid_t uid; 1915 1916 read_lock_bh(&sk->sk_callback_lock); 1917 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1918 read_unlock_bh(&sk->sk_callback_lock); 1919 return uid; 1920 } 1921 EXPORT_SYMBOL(sock_i_uid); 1922 1923 unsigned long sock_i_ino(struct sock *sk) 1924 { 1925 unsigned long ino; 1926 1927 read_lock_bh(&sk->sk_callback_lock); 1928 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1929 read_unlock_bh(&sk->sk_callback_lock); 1930 return ino; 1931 } 1932 EXPORT_SYMBOL(sock_i_ino); 1933 1934 /* 1935 * Allocate a skb from the socket's send buffer. 1936 */ 1937 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1938 gfp_t priority) 1939 { 1940 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1941 struct sk_buff *skb = alloc_skb(size, priority); 1942 if (skb) { 1943 skb_set_owner_w(skb, sk); 1944 return skb; 1945 } 1946 } 1947 return NULL; 1948 } 1949 EXPORT_SYMBOL(sock_wmalloc); 1950 1951 static void sock_ofree(struct sk_buff *skb) 1952 { 1953 struct sock *sk = skb->sk; 1954 1955 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 1956 } 1957 1958 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1959 gfp_t priority) 1960 { 1961 struct sk_buff *skb; 1962 1963 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 1964 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 1965 sysctl_optmem_max) 1966 return NULL; 1967 1968 skb = alloc_skb(size, priority); 1969 if (!skb) 1970 return NULL; 1971 1972 atomic_add(skb->truesize, &sk->sk_omem_alloc); 1973 skb->sk = sk; 1974 skb->destructor = sock_ofree; 1975 return skb; 1976 } 1977 1978 /* 1979 * Allocate a memory block from the socket's option memory buffer. 1980 */ 1981 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1982 { 1983 if ((unsigned int)size <= sysctl_optmem_max && 1984 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1985 void *mem; 1986 /* First do the add, to avoid the race if kmalloc 1987 * might sleep. 1988 */ 1989 atomic_add(size, &sk->sk_omem_alloc); 1990 mem = kmalloc(size, priority); 1991 if (mem) 1992 return mem; 1993 atomic_sub(size, &sk->sk_omem_alloc); 1994 } 1995 return NULL; 1996 } 1997 EXPORT_SYMBOL(sock_kmalloc); 1998 1999 /* Free an option memory block. Note, we actually want the inline 2000 * here as this allows gcc to detect the nullify and fold away the 2001 * condition entirely. 2002 */ 2003 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2004 const bool nullify) 2005 { 2006 if (WARN_ON_ONCE(!mem)) 2007 return; 2008 if (nullify) 2009 kzfree(mem); 2010 else 2011 kfree(mem); 2012 atomic_sub(size, &sk->sk_omem_alloc); 2013 } 2014 2015 void sock_kfree_s(struct sock *sk, void *mem, int size) 2016 { 2017 __sock_kfree_s(sk, mem, size, false); 2018 } 2019 EXPORT_SYMBOL(sock_kfree_s); 2020 2021 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2022 { 2023 __sock_kfree_s(sk, mem, size, true); 2024 } 2025 EXPORT_SYMBOL(sock_kzfree_s); 2026 2027 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2028 I think, these locks should be removed for datagram sockets. 2029 */ 2030 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2031 { 2032 DEFINE_WAIT(wait); 2033 2034 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2035 for (;;) { 2036 if (!timeo) 2037 break; 2038 if (signal_pending(current)) 2039 break; 2040 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2041 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2042 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2043 break; 2044 if (sk->sk_shutdown & SEND_SHUTDOWN) 2045 break; 2046 if (sk->sk_err) 2047 break; 2048 timeo = schedule_timeout(timeo); 2049 } 2050 finish_wait(sk_sleep(sk), &wait); 2051 return timeo; 2052 } 2053 2054 2055 /* 2056 * Generic send/receive buffer handlers 2057 */ 2058 2059 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2060 unsigned long data_len, int noblock, 2061 int *errcode, int max_page_order) 2062 { 2063 struct sk_buff *skb; 2064 long timeo; 2065 int err; 2066 2067 timeo = sock_sndtimeo(sk, noblock); 2068 for (;;) { 2069 err = sock_error(sk); 2070 if (err != 0) 2071 goto failure; 2072 2073 err = -EPIPE; 2074 if (sk->sk_shutdown & SEND_SHUTDOWN) 2075 goto failure; 2076 2077 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2078 break; 2079 2080 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2081 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2082 err = -EAGAIN; 2083 if (!timeo) 2084 goto failure; 2085 if (signal_pending(current)) 2086 goto interrupted; 2087 timeo = sock_wait_for_wmem(sk, timeo); 2088 } 2089 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2090 errcode, sk->sk_allocation); 2091 if (skb) 2092 skb_set_owner_w(skb, sk); 2093 return skb; 2094 2095 interrupted: 2096 err = sock_intr_errno(timeo); 2097 failure: 2098 *errcode = err; 2099 return NULL; 2100 } 2101 EXPORT_SYMBOL(sock_alloc_send_pskb); 2102 2103 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2104 int noblock, int *errcode) 2105 { 2106 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2107 } 2108 EXPORT_SYMBOL(sock_alloc_send_skb); 2109 2110 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2111 struct sockcm_cookie *sockc) 2112 { 2113 u32 tsflags; 2114 2115 switch (cmsg->cmsg_type) { 2116 case SO_MARK: 2117 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2118 return -EPERM; 2119 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2120 return -EINVAL; 2121 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2122 break; 2123 case SO_TIMESTAMPING: 2124 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2125 return -EINVAL; 2126 2127 tsflags = *(u32 *)CMSG_DATA(cmsg); 2128 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2129 return -EINVAL; 2130 2131 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2132 sockc->tsflags |= tsflags; 2133 break; 2134 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2135 case SCM_RIGHTS: 2136 case SCM_CREDENTIALS: 2137 break; 2138 default: 2139 return -EINVAL; 2140 } 2141 return 0; 2142 } 2143 EXPORT_SYMBOL(__sock_cmsg_send); 2144 2145 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2146 struct sockcm_cookie *sockc) 2147 { 2148 struct cmsghdr *cmsg; 2149 int ret; 2150 2151 for_each_cmsghdr(cmsg, msg) { 2152 if (!CMSG_OK(msg, cmsg)) 2153 return -EINVAL; 2154 if (cmsg->cmsg_level != SOL_SOCKET) 2155 continue; 2156 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2157 if (ret) 2158 return ret; 2159 } 2160 return 0; 2161 } 2162 EXPORT_SYMBOL(sock_cmsg_send); 2163 2164 static void sk_enter_memory_pressure(struct sock *sk) 2165 { 2166 if (!sk->sk_prot->enter_memory_pressure) 2167 return; 2168 2169 sk->sk_prot->enter_memory_pressure(sk); 2170 } 2171 2172 static void sk_leave_memory_pressure(struct sock *sk) 2173 { 2174 if (sk->sk_prot->leave_memory_pressure) { 2175 sk->sk_prot->leave_memory_pressure(sk); 2176 } else { 2177 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2178 2179 if (memory_pressure && *memory_pressure) 2180 *memory_pressure = 0; 2181 } 2182 } 2183 2184 /* On 32bit arches, an skb frag is limited to 2^15 */ 2185 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2186 2187 /** 2188 * skb_page_frag_refill - check that a page_frag contains enough room 2189 * @sz: minimum size of the fragment we want to get 2190 * @pfrag: pointer to page_frag 2191 * @gfp: priority for memory allocation 2192 * 2193 * Note: While this allocator tries to use high order pages, there is 2194 * no guarantee that allocations succeed. Therefore, @sz MUST be 2195 * less or equal than PAGE_SIZE. 2196 */ 2197 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2198 { 2199 if (pfrag->page) { 2200 if (page_ref_count(pfrag->page) == 1) { 2201 pfrag->offset = 0; 2202 return true; 2203 } 2204 if (pfrag->offset + sz <= pfrag->size) 2205 return true; 2206 put_page(pfrag->page); 2207 } 2208 2209 pfrag->offset = 0; 2210 if (SKB_FRAG_PAGE_ORDER) { 2211 /* Avoid direct reclaim but allow kswapd to wake */ 2212 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2213 __GFP_COMP | __GFP_NOWARN | 2214 __GFP_NORETRY, 2215 SKB_FRAG_PAGE_ORDER); 2216 if (likely(pfrag->page)) { 2217 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2218 return true; 2219 } 2220 } 2221 pfrag->page = alloc_page(gfp); 2222 if (likely(pfrag->page)) { 2223 pfrag->size = PAGE_SIZE; 2224 return true; 2225 } 2226 return false; 2227 } 2228 EXPORT_SYMBOL(skb_page_frag_refill); 2229 2230 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2231 { 2232 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2233 return true; 2234 2235 sk_enter_memory_pressure(sk); 2236 sk_stream_moderate_sndbuf(sk); 2237 return false; 2238 } 2239 EXPORT_SYMBOL(sk_page_frag_refill); 2240 2241 static void __lock_sock(struct sock *sk) 2242 __releases(&sk->sk_lock.slock) 2243 __acquires(&sk->sk_lock.slock) 2244 { 2245 DEFINE_WAIT(wait); 2246 2247 for (;;) { 2248 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2249 TASK_UNINTERRUPTIBLE); 2250 spin_unlock_bh(&sk->sk_lock.slock); 2251 schedule(); 2252 spin_lock_bh(&sk->sk_lock.slock); 2253 if (!sock_owned_by_user(sk)) 2254 break; 2255 } 2256 finish_wait(&sk->sk_lock.wq, &wait); 2257 } 2258 2259 static void __release_sock(struct sock *sk) 2260 __releases(&sk->sk_lock.slock) 2261 __acquires(&sk->sk_lock.slock) 2262 { 2263 struct sk_buff *skb, *next; 2264 2265 while ((skb = sk->sk_backlog.head) != NULL) { 2266 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2267 2268 spin_unlock_bh(&sk->sk_lock.slock); 2269 2270 do { 2271 next = skb->next; 2272 prefetch(next); 2273 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2274 skb->next = NULL; 2275 sk_backlog_rcv(sk, skb); 2276 2277 cond_resched(); 2278 2279 skb = next; 2280 } while (skb != NULL); 2281 2282 spin_lock_bh(&sk->sk_lock.slock); 2283 } 2284 2285 /* 2286 * Doing the zeroing here guarantee we can not loop forever 2287 * while a wild producer attempts to flood us. 2288 */ 2289 sk->sk_backlog.len = 0; 2290 } 2291 2292 void __sk_flush_backlog(struct sock *sk) 2293 { 2294 spin_lock_bh(&sk->sk_lock.slock); 2295 __release_sock(sk); 2296 spin_unlock_bh(&sk->sk_lock.slock); 2297 } 2298 2299 /** 2300 * sk_wait_data - wait for data to arrive at sk_receive_queue 2301 * @sk: sock to wait on 2302 * @timeo: for how long 2303 * @skb: last skb seen on sk_receive_queue 2304 * 2305 * Now socket state including sk->sk_err is changed only under lock, 2306 * hence we may omit checks after joining wait queue. 2307 * We check receive queue before schedule() only as optimization; 2308 * it is very likely that release_sock() added new data. 2309 */ 2310 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2311 { 2312 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2313 int rc; 2314 2315 add_wait_queue(sk_sleep(sk), &wait); 2316 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2317 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2318 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2319 remove_wait_queue(sk_sleep(sk), &wait); 2320 return rc; 2321 } 2322 EXPORT_SYMBOL(sk_wait_data); 2323 2324 /** 2325 * __sk_mem_raise_allocated - increase memory_allocated 2326 * @sk: socket 2327 * @size: memory size to allocate 2328 * @amt: pages to allocate 2329 * @kind: allocation type 2330 * 2331 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2332 */ 2333 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2334 { 2335 struct proto *prot = sk->sk_prot; 2336 long allocated = sk_memory_allocated_add(sk, amt); 2337 2338 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2339 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2340 goto suppress_allocation; 2341 2342 /* Under limit. */ 2343 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2344 sk_leave_memory_pressure(sk); 2345 return 1; 2346 } 2347 2348 /* Under pressure. */ 2349 if (allocated > sk_prot_mem_limits(sk, 1)) 2350 sk_enter_memory_pressure(sk); 2351 2352 /* Over hard limit. */ 2353 if (allocated > sk_prot_mem_limits(sk, 2)) 2354 goto suppress_allocation; 2355 2356 /* guarantee minimum buffer size under pressure */ 2357 if (kind == SK_MEM_RECV) { 2358 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2359 return 1; 2360 2361 } else { /* SK_MEM_SEND */ 2362 int wmem0 = sk_get_wmem0(sk, prot); 2363 2364 if (sk->sk_type == SOCK_STREAM) { 2365 if (sk->sk_wmem_queued < wmem0) 2366 return 1; 2367 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2368 return 1; 2369 } 2370 } 2371 2372 if (sk_has_memory_pressure(sk)) { 2373 int alloc; 2374 2375 if (!sk_under_memory_pressure(sk)) 2376 return 1; 2377 alloc = sk_sockets_allocated_read_positive(sk); 2378 if (sk_prot_mem_limits(sk, 2) > alloc * 2379 sk_mem_pages(sk->sk_wmem_queued + 2380 atomic_read(&sk->sk_rmem_alloc) + 2381 sk->sk_forward_alloc)) 2382 return 1; 2383 } 2384 2385 suppress_allocation: 2386 2387 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2388 sk_stream_moderate_sndbuf(sk); 2389 2390 /* Fail only if socket is _under_ its sndbuf. 2391 * In this case we cannot block, so that we have to fail. 2392 */ 2393 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2394 return 1; 2395 } 2396 2397 trace_sock_exceed_buf_limit(sk, prot, allocated); 2398 2399 sk_memory_allocated_sub(sk, amt); 2400 2401 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2402 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2403 2404 return 0; 2405 } 2406 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2407 2408 /** 2409 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2410 * @sk: socket 2411 * @size: memory size to allocate 2412 * @kind: allocation type 2413 * 2414 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2415 * rmem allocation. This function assumes that protocols which have 2416 * memory_pressure use sk_wmem_queued as write buffer accounting. 2417 */ 2418 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2419 { 2420 int ret, amt = sk_mem_pages(size); 2421 2422 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2423 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2424 if (!ret) 2425 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2426 return ret; 2427 } 2428 EXPORT_SYMBOL(__sk_mem_schedule); 2429 2430 /** 2431 * __sk_mem_reduce_allocated - reclaim memory_allocated 2432 * @sk: socket 2433 * @amount: number of quanta 2434 * 2435 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2436 */ 2437 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2438 { 2439 sk_memory_allocated_sub(sk, amount); 2440 2441 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2442 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2443 2444 if (sk_under_memory_pressure(sk) && 2445 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2446 sk_leave_memory_pressure(sk); 2447 } 2448 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2449 2450 /** 2451 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2452 * @sk: socket 2453 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2454 */ 2455 void __sk_mem_reclaim(struct sock *sk, int amount) 2456 { 2457 amount >>= SK_MEM_QUANTUM_SHIFT; 2458 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2459 __sk_mem_reduce_allocated(sk, amount); 2460 } 2461 EXPORT_SYMBOL(__sk_mem_reclaim); 2462 2463 int sk_set_peek_off(struct sock *sk, int val) 2464 { 2465 sk->sk_peek_off = val; 2466 return 0; 2467 } 2468 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2469 2470 /* 2471 * Set of default routines for initialising struct proto_ops when 2472 * the protocol does not support a particular function. In certain 2473 * cases where it makes no sense for a protocol to have a "do nothing" 2474 * function, some default processing is provided. 2475 */ 2476 2477 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2478 { 2479 return -EOPNOTSUPP; 2480 } 2481 EXPORT_SYMBOL(sock_no_bind); 2482 2483 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2484 int len, int flags) 2485 { 2486 return -EOPNOTSUPP; 2487 } 2488 EXPORT_SYMBOL(sock_no_connect); 2489 2490 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2491 { 2492 return -EOPNOTSUPP; 2493 } 2494 EXPORT_SYMBOL(sock_no_socketpair); 2495 2496 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2497 bool kern) 2498 { 2499 return -EOPNOTSUPP; 2500 } 2501 EXPORT_SYMBOL(sock_no_accept); 2502 2503 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2504 int peer) 2505 { 2506 return -EOPNOTSUPP; 2507 } 2508 EXPORT_SYMBOL(sock_no_getname); 2509 2510 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2511 { 2512 return 0; 2513 } 2514 EXPORT_SYMBOL(sock_no_poll); 2515 2516 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2517 { 2518 return -EOPNOTSUPP; 2519 } 2520 EXPORT_SYMBOL(sock_no_ioctl); 2521 2522 int sock_no_listen(struct socket *sock, int backlog) 2523 { 2524 return -EOPNOTSUPP; 2525 } 2526 EXPORT_SYMBOL(sock_no_listen); 2527 2528 int sock_no_shutdown(struct socket *sock, int how) 2529 { 2530 return -EOPNOTSUPP; 2531 } 2532 EXPORT_SYMBOL(sock_no_shutdown); 2533 2534 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2535 char __user *optval, unsigned int optlen) 2536 { 2537 return -EOPNOTSUPP; 2538 } 2539 EXPORT_SYMBOL(sock_no_setsockopt); 2540 2541 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2542 char __user *optval, int __user *optlen) 2543 { 2544 return -EOPNOTSUPP; 2545 } 2546 EXPORT_SYMBOL(sock_no_getsockopt); 2547 2548 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2549 { 2550 return -EOPNOTSUPP; 2551 } 2552 EXPORT_SYMBOL(sock_no_sendmsg); 2553 2554 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2555 { 2556 return -EOPNOTSUPP; 2557 } 2558 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2559 2560 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2561 int flags) 2562 { 2563 return -EOPNOTSUPP; 2564 } 2565 EXPORT_SYMBOL(sock_no_recvmsg); 2566 2567 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2568 { 2569 /* Mirror missing mmap method error code */ 2570 return -ENODEV; 2571 } 2572 EXPORT_SYMBOL(sock_no_mmap); 2573 2574 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2575 { 2576 ssize_t res; 2577 struct msghdr msg = {.msg_flags = flags}; 2578 struct kvec iov; 2579 char *kaddr = kmap(page); 2580 iov.iov_base = kaddr + offset; 2581 iov.iov_len = size; 2582 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2583 kunmap(page); 2584 return res; 2585 } 2586 EXPORT_SYMBOL(sock_no_sendpage); 2587 2588 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2589 int offset, size_t size, int flags) 2590 { 2591 ssize_t res; 2592 struct msghdr msg = {.msg_flags = flags}; 2593 struct kvec iov; 2594 char *kaddr = kmap(page); 2595 2596 iov.iov_base = kaddr + offset; 2597 iov.iov_len = size; 2598 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2599 kunmap(page); 2600 return res; 2601 } 2602 EXPORT_SYMBOL(sock_no_sendpage_locked); 2603 2604 /* 2605 * Default Socket Callbacks 2606 */ 2607 2608 static void sock_def_wakeup(struct sock *sk) 2609 { 2610 struct socket_wq *wq; 2611 2612 rcu_read_lock(); 2613 wq = rcu_dereference(sk->sk_wq); 2614 if (skwq_has_sleeper(wq)) 2615 wake_up_interruptible_all(&wq->wait); 2616 rcu_read_unlock(); 2617 } 2618 2619 static void sock_def_error_report(struct sock *sk) 2620 { 2621 struct socket_wq *wq; 2622 2623 rcu_read_lock(); 2624 wq = rcu_dereference(sk->sk_wq); 2625 if (skwq_has_sleeper(wq)) 2626 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2627 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2628 rcu_read_unlock(); 2629 } 2630 2631 static void sock_def_readable(struct sock *sk) 2632 { 2633 struct socket_wq *wq; 2634 2635 rcu_read_lock(); 2636 wq = rcu_dereference(sk->sk_wq); 2637 if (skwq_has_sleeper(wq)) 2638 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2639 EPOLLRDNORM | EPOLLRDBAND); 2640 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2641 rcu_read_unlock(); 2642 } 2643 2644 static void sock_def_write_space(struct sock *sk) 2645 { 2646 struct socket_wq *wq; 2647 2648 rcu_read_lock(); 2649 2650 /* Do not wake up a writer until he can make "significant" 2651 * progress. --DaveM 2652 */ 2653 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2654 wq = rcu_dereference(sk->sk_wq); 2655 if (skwq_has_sleeper(wq)) 2656 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2657 EPOLLWRNORM | EPOLLWRBAND); 2658 2659 /* Should agree with poll, otherwise some programs break */ 2660 if (sock_writeable(sk)) 2661 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2662 } 2663 2664 rcu_read_unlock(); 2665 } 2666 2667 static void sock_def_destruct(struct sock *sk) 2668 { 2669 } 2670 2671 void sk_send_sigurg(struct sock *sk) 2672 { 2673 if (sk->sk_socket && sk->sk_socket->file) 2674 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2675 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2676 } 2677 EXPORT_SYMBOL(sk_send_sigurg); 2678 2679 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2680 unsigned long expires) 2681 { 2682 if (!mod_timer(timer, expires)) 2683 sock_hold(sk); 2684 } 2685 EXPORT_SYMBOL(sk_reset_timer); 2686 2687 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2688 { 2689 if (del_timer(timer)) 2690 __sock_put(sk); 2691 } 2692 EXPORT_SYMBOL(sk_stop_timer); 2693 2694 void sock_init_data(struct socket *sock, struct sock *sk) 2695 { 2696 sk_init_common(sk); 2697 sk->sk_send_head = NULL; 2698 2699 timer_setup(&sk->sk_timer, NULL, 0); 2700 2701 sk->sk_allocation = GFP_KERNEL; 2702 sk->sk_rcvbuf = sysctl_rmem_default; 2703 sk->sk_sndbuf = sysctl_wmem_default; 2704 sk->sk_state = TCP_CLOSE; 2705 sk_set_socket(sk, sock); 2706 2707 sock_set_flag(sk, SOCK_ZAPPED); 2708 2709 if (sock) { 2710 sk->sk_type = sock->type; 2711 sk->sk_wq = sock->wq; 2712 sock->sk = sk; 2713 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2714 } else { 2715 sk->sk_wq = NULL; 2716 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2717 } 2718 2719 rwlock_init(&sk->sk_callback_lock); 2720 if (sk->sk_kern_sock) 2721 lockdep_set_class_and_name( 2722 &sk->sk_callback_lock, 2723 af_kern_callback_keys + sk->sk_family, 2724 af_family_kern_clock_key_strings[sk->sk_family]); 2725 else 2726 lockdep_set_class_and_name( 2727 &sk->sk_callback_lock, 2728 af_callback_keys + sk->sk_family, 2729 af_family_clock_key_strings[sk->sk_family]); 2730 2731 sk->sk_state_change = sock_def_wakeup; 2732 sk->sk_data_ready = sock_def_readable; 2733 sk->sk_write_space = sock_def_write_space; 2734 sk->sk_error_report = sock_def_error_report; 2735 sk->sk_destruct = sock_def_destruct; 2736 2737 sk->sk_frag.page = NULL; 2738 sk->sk_frag.offset = 0; 2739 sk->sk_peek_off = -1; 2740 2741 sk->sk_peer_pid = NULL; 2742 sk->sk_peer_cred = NULL; 2743 sk->sk_write_pending = 0; 2744 sk->sk_rcvlowat = 1; 2745 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2746 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2747 2748 sk->sk_stamp = SK_DEFAULT_STAMP; 2749 atomic_set(&sk->sk_zckey, 0); 2750 2751 #ifdef CONFIG_NET_RX_BUSY_POLL 2752 sk->sk_napi_id = 0; 2753 sk->sk_ll_usec = sysctl_net_busy_read; 2754 #endif 2755 2756 sk->sk_max_pacing_rate = ~0U; 2757 sk->sk_pacing_rate = ~0U; 2758 sk->sk_pacing_shift = 10; 2759 sk->sk_incoming_cpu = -1; 2760 /* 2761 * Before updating sk_refcnt, we must commit prior changes to memory 2762 * (Documentation/RCU/rculist_nulls.txt for details) 2763 */ 2764 smp_wmb(); 2765 refcount_set(&sk->sk_refcnt, 1); 2766 atomic_set(&sk->sk_drops, 0); 2767 } 2768 EXPORT_SYMBOL(sock_init_data); 2769 2770 void lock_sock_nested(struct sock *sk, int subclass) 2771 { 2772 might_sleep(); 2773 spin_lock_bh(&sk->sk_lock.slock); 2774 if (sk->sk_lock.owned) 2775 __lock_sock(sk); 2776 sk->sk_lock.owned = 1; 2777 spin_unlock(&sk->sk_lock.slock); 2778 /* 2779 * The sk_lock has mutex_lock() semantics here: 2780 */ 2781 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2782 local_bh_enable(); 2783 } 2784 EXPORT_SYMBOL(lock_sock_nested); 2785 2786 void release_sock(struct sock *sk) 2787 { 2788 spin_lock_bh(&sk->sk_lock.slock); 2789 if (sk->sk_backlog.tail) 2790 __release_sock(sk); 2791 2792 /* Warning : release_cb() might need to release sk ownership, 2793 * ie call sock_release_ownership(sk) before us. 2794 */ 2795 if (sk->sk_prot->release_cb) 2796 sk->sk_prot->release_cb(sk); 2797 2798 sock_release_ownership(sk); 2799 if (waitqueue_active(&sk->sk_lock.wq)) 2800 wake_up(&sk->sk_lock.wq); 2801 spin_unlock_bh(&sk->sk_lock.slock); 2802 } 2803 EXPORT_SYMBOL(release_sock); 2804 2805 /** 2806 * lock_sock_fast - fast version of lock_sock 2807 * @sk: socket 2808 * 2809 * This version should be used for very small section, where process wont block 2810 * return false if fast path is taken: 2811 * 2812 * sk_lock.slock locked, owned = 0, BH disabled 2813 * 2814 * return true if slow path is taken: 2815 * 2816 * sk_lock.slock unlocked, owned = 1, BH enabled 2817 */ 2818 bool lock_sock_fast(struct sock *sk) 2819 { 2820 might_sleep(); 2821 spin_lock_bh(&sk->sk_lock.slock); 2822 2823 if (!sk->sk_lock.owned) 2824 /* 2825 * Note : We must disable BH 2826 */ 2827 return false; 2828 2829 __lock_sock(sk); 2830 sk->sk_lock.owned = 1; 2831 spin_unlock(&sk->sk_lock.slock); 2832 /* 2833 * The sk_lock has mutex_lock() semantics here: 2834 */ 2835 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2836 local_bh_enable(); 2837 return true; 2838 } 2839 EXPORT_SYMBOL(lock_sock_fast); 2840 2841 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2842 { 2843 struct timeval tv; 2844 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2845 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2846 tv = ktime_to_timeval(sk->sk_stamp); 2847 if (tv.tv_sec == -1) 2848 return -ENOENT; 2849 if (tv.tv_sec == 0) { 2850 sk->sk_stamp = ktime_get_real(); 2851 tv = ktime_to_timeval(sk->sk_stamp); 2852 } 2853 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2854 } 2855 EXPORT_SYMBOL(sock_get_timestamp); 2856 2857 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2858 { 2859 struct timespec ts; 2860 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2861 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2862 ts = ktime_to_timespec(sk->sk_stamp); 2863 if (ts.tv_sec == -1) 2864 return -ENOENT; 2865 if (ts.tv_sec == 0) { 2866 sk->sk_stamp = ktime_get_real(); 2867 ts = ktime_to_timespec(sk->sk_stamp); 2868 } 2869 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2870 } 2871 EXPORT_SYMBOL(sock_get_timestampns); 2872 2873 void sock_enable_timestamp(struct sock *sk, int flag) 2874 { 2875 if (!sock_flag(sk, flag)) { 2876 unsigned long previous_flags = sk->sk_flags; 2877 2878 sock_set_flag(sk, flag); 2879 /* 2880 * we just set one of the two flags which require net 2881 * time stamping, but time stamping might have been on 2882 * already because of the other one 2883 */ 2884 if (sock_needs_netstamp(sk) && 2885 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2886 net_enable_timestamp(); 2887 } 2888 } 2889 2890 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2891 int level, int type) 2892 { 2893 struct sock_exterr_skb *serr; 2894 struct sk_buff *skb; 2895 int copied, err; 2896 2897 err = -EAGAIN; 2898 skb = sock_dequeue_err_skb(sk); 2899 if (skb == NULL) 2900 goto out; 2901 2902 copied = skb->len; 2903 if (copied > len) { 2904 msg->msg_flags |= MSG_TRUNC; 2905 copied = len; 2906 } 2907 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2908 if (err) 2909 goto out_free_skb; 2910 2911 sock_recv_timestamp(msg, sk, skb); 2912 2913 serr = SKB_EXT_ERR(skb); 2914 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2915 2916 msg->msg_flags |= MSG_ERRQUEUE; 2917 err = copied; 2918 2919 out_free_skb: 2920 kfree_skb(skb); 2921 out: 2922 return err; 2923 } 2924 EXPORT_SYMBOL(sock_recv_errqueue); 2925 2926 /* 2927 * Get a socket option on an socket. 2928 * 2929 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2930 * asynchronous errors should be reported by getsockopt. We assume 2931 * this means if you specify SO_ERROR (otherwise whats the point of it). 2932 */ 2933 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2934 char __user *optval, int __user *optlen) 2935 { 2936 struct sock *sk = sock->sk; 2937 2938 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2939 } 2940 EXPORT_SYMBOL(sock_common_getsockopt); 2941 2942 #ifdef CONFIG_COMPAT 2943 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2944 char __user *optval, int __user *optlen) 2945 { 2946 struct sock *sk = sock->sk; 2947 2948 if (sk->sk_prot->compat_getsockopt != NULL) 2949 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2950 optval, optlen); 2951 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2952 } 2953 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2954 #endif 2955 2956 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2957 int flags) 2958 { 2959 struct sock *sk = sock->sk; 2960 int addr_len = 0; 2961 int err; 2962 2963 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2964 flags & ~MSG_DONTWAIT, &addr_len); 2965 if (err >= 0) 2966 msg->msg_namelen = addr_len; 2967 return err; 2968 } 2969 EXPORT_SYMBOL(sock_common_recvmsg); 2970 2971 /* 2972 * Set socket options on an inet socket. 2973 */ 2974 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2975 char __user *optval, unsigned int optlen) 2976 { 2977 struct sock *sk = sock->sk; 2978 2979 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2980 } 2981 EXPORT_SYMBOL(sock_common_setsockopt); 2982 2983 #ifdef CONFIG_COMPAT 2984 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2985 char __user *optval, unsigned int optlen) 2986 { 2987 struct sock *sk = sock->sk; 2988 2989 if (sk->sk_prot->compat_setsockopt != NULL) 2990 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2991 optval, optlen); 2992 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2993 } 2994 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2995 #endif 2996 2997 void sk_common_release(struct sock *sk) 2998 { 2999 if (sk->sk_prot->destroy) 3000 sk->sk_prot->destroy(sk); 3001 3002 /* 3003 * Observation: when sock_common_release is called, processes have 3004 * no access to socket. But net still has. 3005 * Step one, detach it from networking: 3006 * 3007 * A. Remove from hash tables. 3008 */ 3009 3010 sk->sk_prot->unhash(sk); 3011 3012 /* 3013 * In this point socket cannot receive new packets, but it is possible 3014 * that some packets are in flight because some CPU runs receiver and 3015 * did hash table lookup before we unhashed socket. They will achieve 3016 * receive queue and will be purged by socket destructor. 3017 * 3018 * Also we still have packets pending on receive queue and probably, 3019 * our own packets waiting in device queues. sock_destroy will drain 3020 * receive queue, but transmitted packets will delay socket destruction 3021 * until the last reference will be released. 3022 */ 3023 3024 sock_orphan(sk); 3025 3026 xfrm_sk_free_policy(sk); 3027 3028 sk_refcnt_debug_release(sk); 3029 3030 sock_put(sk); 3031 } 3032 EXPORT_SYMBOL(sk_common_release); 3033 3034 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3035 { 3036 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3037 3038 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3039 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3040 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3041 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3042 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3043 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3044 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3045 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3046 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3047 } 3048 3049 #ifdef CONFIG_PROC_FS 3050 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3051 struct prot_inuse { 3052 int val[PROTO_INUSE_NR]; 3053 }; 3054 3055 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3056 3057 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3058 { 3059 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3060 } 3061 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3062 3063 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3064 { 3065 int cpu, idx = prot->inuse_idx; 3066 int res = 0; 3067 3068 for_each_possible_cpu(cpu) 3069 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3070 3071 return res >= 0 ? res : 0; 3072 } 3073 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3074 3075 static void sock_inuse_add(struct net *net, int val) 3076 { 3077 this_cpu_add(*net->core.sock_inuse, val); 3078 } 3079 3080 int sock_inuse_get(struct net *net) 3081 { 3082 int cpu, res = 0; 3083 3084 for_each_possible_cpu(cpu) 3085 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3086 3087 return res; 3088 } 3089 3090 EXPORT_SYMBOL_GPL(sock_inuse_get); 3091 3092 static int __net_init sock_inuse_init_net(struct net *net) 3093 { 3094 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3095 if (net->core.prot_inuse == NULL) 3096 return -ENOMEM; 3097 3098 net->core.sock_inuse = alloc_percpu(int); 3099 if (net->core.sock_inuse == NULL) 3100 goto out; 3101 3102 return 0; 3103 3104 out: 3105 free_percpu(net->core.prot_inuse); 3106 return -ENOMEM; 3107 } 3108 3109 static void __net_exit sock_inuse_exit_net(struct net *net) 3110 { 3111 free_percpu(net->core.prot_inuse); 3112 free_percpu(net->core.sock_inuse); 3113 } 3114 3115 static struct pernet_operations net_inuse_ops = { 3116 .init = sock_inuse_init_net, 3117 .exit = sock_inuse_exit_net, 3118 .async = true, 3119 }; 3120 3121 static __init int net_inuse_init(void) 3122 { 3123 if (register_pernet_subsys(&net_inuse_ops)) 3124 panic("Cannot initialize net inuse counters"); 3125 3126 return 0; 3127 } 3128 3129 core_initcall(net_inuse_init); 3130 3131 static void assign_proto_idx(struct proto *prot) 3132 { 3133 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3134 3135 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3136 pr_err("PROTO_INUSE_NR exhausted\n"); 3137 return; 3138 } 3139 3140 set_bit(prot->inuse_idx, proto_inuse_idx); 3141 } 3142 3143 static void release_proto_idx(struct proto *prot) 3144 { 3145 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3146 clear_bit(prot->inuse_idx, proto_inuse_idx); 3147 } 3148 #else 3149 static inline void assign_proto_idx(struct proto *prot) 3150 { 3151 } 3152 3153 static inline void release_proto_idx(struct proto *prot) 3154 { 3155 } 3156 3157 static void sock_inuse_add(struct net *net, int val) 3158 { 3159 } 3160 #endif 3161 3162 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3163 { 3164 if (!rsk_prot) 3165 return; 3166 kfree(rsk_prot->slab_name); 3167 rsk_prot->slab_name = NULL; 3168 kmem_cache_destroy(rsk_prot->slab); 3169 rsk_prot->slab = NULL; 3170 } 3171 3172 static int req_prot_init(const struct proto *prot) 3173 { 3174 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3175 3176 if (!rsk_prot) 3177 return 0; 3178 3179 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3180 prot->name); 3181 if (!rsk_prot->slab_name) 3182 return -ENOMEM; 3183 3184 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3185 rsk_prot->obj_size, 0, 3186 prot->slab_flags, NULL); 3187 3188 if (!rsk_prot->slab) { 3189 pr_crit("%s: Can't create request sock SLAB cache!\n", 3190 prot->name); 3191 return -ENOMEM; 3192 } 3193 return 0; 3194 } 3195 3196 int proto_register(struct proto *prot, int alloc_slab) 3197 { 3198 if (alloc_slab) { 3199 prot->slab = kmem_cache_create_usercopy(prot->name, 3200 prot->obj_size, 0, 3201 SLAB_HWCACHE_ALIGN | prot->slab_flags, 3202 prot->useroffset, prot->usersize, 3203 NULL); 3204 3205 if (prot->slab == NULL) { 3206 pr_crit("%s: Can't create sock SLAB cache!\n", 3207 prot->name); 3208 goto out; 3209 } 3210 3211 if (req_prot_init(prot)) 3212 goto out_free_request_sock_slab; 3213 3214 if (prot->twsk_prot != NULL) { 3215 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3216 3217 if (prot->twsk_prot->twsk_slab_name == NULL) 3218 goto out_free_request_sock_slab; 3219 3220 prot->twsk_prot->twsk_slab = 3221 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3222 prot->twsk_prot->twsk_obj_size, 3223 0, 3224 prot->slab_flags, 3225 NULL); 3226 if (prot->twsk_prot->twsk_slab == NULL) 3227 goto out_free_timewait_sock_slab_name; 3228 } 3229 } 3230 3231 mutex_lock(&proto_list_mutex); 3232 list_add(&prot->node, &proto_list); 3233 assign_proto_idx(prot); 3234 mutex_unlock(&proto_list_mutex); 3235 return 0; 3236 3237 out_free_timewait_sock_slab_name: 3238 kfree(prot->twsk_prot->twsk_slab_name); 3239 out_free_request_sock_slab: 3240 req_prot_cleanup(prot->rsk_prot); 3241 3242 kmem_cache_destroy(prot->slab); 3243 prot->slab = NULL; 3244 out: 3245 return -ENOBUFS; 3246 } 3247 EXPORT_SYMBOL(proto_register); 3248 3249 void proto_unregister(struct proto *prot) 3250 { 3251 mutex_lock(&proto_list_mutex); 3252 release_proto_idx(prot); 3253 list_del(&prot->node); 3254 mutex_unlock(&proto_list_mutex); 3255 3256 kmem_cache_destroy(prot->slab); 3257 prot->slab = NULL; 3258 3259 req_prot_cleanup(prot->rsk_prot); 3260 3261 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3262 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3263 kfree(prot->twsk_prot->twsk_slab_name); 3264 prot->twsk_prot->twsk_slab = NULL; 3265 } 3266 } 3267 EXPORT_SYMBOL(proto_unregister); 3268 3269 #ifdef CONFIG_PROC_FS 3270 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3271 __acquires(proto_list_mutex) 3272 { 3273 mutex_lock(&proto_list_mutex); 3274 return seq_list_start_head(&proto_list, *pos); 3275 } 3276 3277 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3278 { 3279 return seq_list_next(v, &proto_list, pos); 3280 } 3281 3282 static void proto_seq_stop(struct seq_file *seq, void *v) 3283 __releases(proto_list_mutex) 3284 { 3285 mutex_unlock(&proto_list_mutex); 3286 } 3287 3288 static char proto_method_implemented(const void *method) 3289 { 3290 return method == NULL ? 'n' : 'y'; 3291 } 3292 static long sock_prot_memory_allocated(struct proto *proto) 3293 { 3294 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3295 } 3296 3297 static char *sock_prot_memory_pressure(struct proto *proto) 3298 { 3299 return proto->memory_pressure != NULL ? 3300 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3301 } 3302 3303 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3304 { 3305 3306 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3307 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3308 proto->name, 3309 proto->obj_size, 3310 sock_prot_inuse_get(seq_file_net(seq), proto), 3311 sock_prot_memory_allocated(proto), 3312 sock_prot_memory_pressure(proto), 3313 proto->max_header, 3314 proto->slab == NULL ? "no" : "yes", 3315 module_name(proto->owner), 3316 proto_method_implemented(proto->close), 3317 proto_method_implemented(proto->connect), 3318 proto_method_implemented(proto->disconnect), 3319 proto_method_implemented(proto->accept), 3320 proto_method_implemented(proto->ioctl), 3321 proto_method_implemented(proto->init), 3322 proto_method_implemented(proto->destroy), 3323 proto_method_implemented(proto->shutdown), 3324 proto_method_implemented(proto->setsockopt), 3325 proto_method_implemented(proto->getsockopt), 3326 proto_method_implemented(proto->sendmsg), 3327 proto_method_implemented(proto->recvmsg), 3328 proto_method_implemented(proto->sendpage), 3329 proto_method_implemented(proto->bind), 3330 proto_method_implemented(proto->backlog_rcv), 3331 proto_method_implemented(proto->hash), 3332 proto_method_implemented(proto->unhash), 3333 proto_method_implemented(proto->get_port), 3334 proto_method_implemented(proto->enter_memory_pressure)); 3335 } 3336 3337 static int proto_seq_show(struct seq_file *seq, void *v) 3338 { 3339 if (v == &proto_list) 3340 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3341 "protocol", 3342 "size", 3343 "sockets", 3344 "memory", 3345 "press", 3346 "maxhdr", 3347 "slab", 3348 "module", 3349 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3350 else 3351 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3352 return 0; 3353 } 3354 3355 static const struct seq_operations proto_seq_ops = { 3356 .start = proto_seq_start, 3357 .next = proto_seq_next, 3358 .stop = proto_seq_stop, 3359 .show = proto_seq_show, 3360 }; 3361 3362 static int proto_seq_open(struct inode *inode, struct file *file) 3363 { 3364 return seq_open_net(inode, file, &proto_seq_ops, 3365 sizeof(struct seq_net_private)); 3366 } 3367 3368 static const struct file_operations proto_seq_fops = { 3369 .open = proto_seq_open, 3370 .read = seq_read, 3371 .llseek = seq_lseek, 3372 .release = seq_release_net, 3373 }; 3374 3375 static __net_init int proto_init_net(struct net *net) 3376 { 3377 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3378 return -ENOMEM; 3379 3380 return 0; 3381 } 3382 3383 static __net_exit void proto_exit_net(struct net *net) 3384 { 3385 remove_proc_entry("protocols", net->proc_net); 3386 } 3387 3388 3389 static __net_initdata struct pernet_operations proto_net_ops = { 3390 .init = proto_init_net, 3391 .exit = proto_exit_net, 3392 .async = true, 3393 }; 3394 3395 static int __init proto_init(void) 3396 { 3397 return register_pernet_subsys(&proto_net_ops); 3398 } 3399 3400 subsys_initcall(proto_init); 3401 3402 #endif /* PROC_FS */ 3403 3404 #ifdef CONFIG_NET_RX_BUSY_POLL 3405 bool sk_busy_loop_end(void *p, unsigned long start_time) 3406 { 3407 struct sock *sk = p; 3408 3409 return !skb_queue_empty(&sk->sk_receive_queue) || 3410 sk_busy_loop_timeout(sk, start_time); 3411 } 3412 EXPORT_SYMBOL(sk_busy_loop_end); 3413 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3414