1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $ 11 * 12 * Authors: Ross Biro 13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Alan Cox, <A.Cox@swansea.ac.uk> 16 * 17 * Fixes: 18 * Alan Cox : Numerous verify_area() problems 19 * Alan Cox : Connecting on a connecting socket 20 * now returns an error for tcp. 21 * Alan Cox : sock->protocol is set correctly. 22 * and is not sometimes left as 0. 23 * Alan Cox : connect handles icmp errors on a 24 * connect properly. Unfortunately there 25 * is a restart syscall nasty there. I 26 * can't match BSD without hacking the C 27 * library. Ideas urgently sought! 28 * Alan Cox : Disallow bind() to addresses that are 29 * not ours - especially broadcast ones!! 30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 32 * instead they leave that for the DESTROY timer. 33 * Alan Cox : Clean up error flag in accept 34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 35 * was buggy. Put a remove_sock() in the handler 36 * for memory when we hit 0. Also altered the timer 37 * code. The ACK stuff can wait and needs major 38 * TCP layer surgery. 39 * Alan Cox : Fixed TCP ack bug, removed remove sock 40 * and fixed timer/inet_bh race. 41 * Alan Cox : Added zapped flag for TCP 42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 47 * Rick Sladkey : Relaxed UDP rules for matching packets. 48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 49 * Pauline Middelink : identd support 50 * Alan Cox : Fixed connect() taking signals I think. 51 * Alan Cox : SO_LINGER supported 52 * Alan Cox : Error reporting fixes 53 * Anonymous : inet_create tidied up (sk->reuse setting) 54 * Alan Cox : inet sockets don't set sk->type! 55 * Alan Cox : Split socket option code 56 * Alan Cox : Callbacks 57 * Alan Cox : Nagle flag for Charles & Johannes stuff 58 * Alex : Removed restriction on inet fioctl 59 * Alan Cox : Splitting INET from NET core 60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 62 * Alan Cox : Split IP from generic code 63 * Alan Cox : New kfree_skbmem() 64 * Alan Cox : Make SO_DEBUG superuser only. 65 * Alan Cox : Allow anyone to clear SO_DEBUG 66 * (compatibility fix) 67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 68 * Alan Cox : Allocator for a socket is settable. 69 * Alan Cox : SO_ERROR includes soft errors. 70 * Alan Cox : Allow NULL arguments on some SO_ opts 71 * Alan Cox : Generic socket allocation to make hooks 72 * easier (suggested by Craig Metz). 73 * Michael Pall : SO_ERROR returns positive errno again 74 * Steve Whitehouse: Added default destructor to free 75 * protocol private data. 76 * Steve Whitehouse: Added various other default routines 77 * common to several socket families. 78 * Chris Evans : Call suser() check last on F_SETOWN 79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 81 * Andi Kleen : Fix write_space callback 82 * Chris Evans : Security fixes - signedness again 83 * Arnaldo C. Melo : cleanups, use skb_queue_purge 84 * 85 * To Fix: 86 * 87 * 88 * This program is free software; you can redistribute it and/or 89 * modify it under the terms of the GNU General Public License 90 * as published by the Free Software Foundation; either version 91 * 2 of the License, or (at your option) any later version. 92 */ 93 94 #include <linux/capability.h> 95 #include <linux/config.h> 96 #include <linux/errno.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 116 #include <asm/uaccess.h> 117 #include <asm/system.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/request_sock.h> 123 #include <net/sock.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 127 #include <linux/filter.h> 128 129 #ifdef CONFIG_INET 130 #include <net/tcp.h> 131 #endif 132 133 /* Take into consideration the size of the struct sk_buff overhead in the 134 * determination of these values, since that is non-constant across 135 * platforms. This makes socket queueing behavior and performance 136 * not depend upon such differences. 137 */ 138 #define _SK_MEM_PACKETS 256 139 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 140 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 141 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 142 143 /* Run time adjustable parameters. */ 144 __u32 sysctl_wmem_max = SK_WMEM_MAX; 145 __u32 sysctl_rmem_max = SK_RMEM_MAX; 146 __u32 sysctl_wmem_default = SK_WMEM_MAX; 147 __u32 sysctl_rmem_default = SK_RMEM_MAX; 148 149 /* Maximal space eaten by iovec or ancilliary data plus some space */ 150 int sysctl_optmem_max = sizeof(unsigned long)*(2*UIO_MAXIOV + 512); 151 152 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 153 { 154 struct timeval tv; 155 156 if (optlen < sizeof(tv)) 157 return -EINVAL; 158 if (copy_from_user(&tv, optval, sizeof(tv))) 159 return -EFAULT; 160 161 *timeo_p = MAX_SCHEDULE_TIMEOUT; 162 if (tv.tv_sec == 0 && tv.tv_usec == 0) 163 return 0; 164 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 165 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 166 return 0; 167 } 168 169 static void sock_warn_obsolete_bsdism(const char *name) 170 { 171 static int warned; 172 static char warncomm[TASK_COMM_LEN]; 173 if (strcmp(warncomm, current->comm) && warned < 5) { 174 strcpy(warncomm, current->comm); 175 printk(KERN_WARNING "process `%s' is using obsolete " 176 "%s SO_BSDCOMPAT\n", warncomm, name); 177 warned++; 178 } 179 } 180 181 static void sock_disable_timestamp(struct sock *sk) 182 { 183 if (sock_flag(sk, SOCK_TIMESTAMP)) { 184 sock_reset_flag(sk, SOCK_TIMESTAMP); 185 net_disable_timestamp(); 186 } 187 } 188 189 190 /* 191 * This is meant for all protocols to use and covers goings on 192 * at the socket level. Everything here is generic. 193 */ 194 195 int sock_setsockopt(struct socket *sock, int level, int optname, 196 char __user *optval, int optlen) 197 { 198 struct sock *sk=sock->sk; 199 struct sk_filter *filter; 200 int val; 201 int valbool; 202 struct linger ling; 203 int ret = 0; 204 205 /* 206 * Options without arguments 207 */ 208 209 #ifdef SO_DONTLINGER /* Compatibility item... */ 210 if (optname == SO_DONTLINGER) { 211 lock_sock(sk); 212 sock_reset_flag(sk, SOCK_LINGER); 213 release_sock(sk); 214 return 0; 215 } 216 #endif 217 218 if(optlen<sizeof(int)) 219 return(-EINVAL); 220 221 if (get_user(val, (int __user *)optval)) 222 return -EFAULT; 223 224 valbool = val?1:0; 225 226 lock_sock(sk); 227 228 switch(optname) 229 { 230 case SO_DEBUG: 231 if(val && !capable(CAP_NET_ADMIN)) 232 { 233 ret = -EACCES; 234 } 235 else if (valbool) 236 sock_set_flag(sk, SOCK_DBG); 237 else 238 sock_reset_flag(sk, SOCK_DBG); 239 break; 240 case SO_REUSEADDR: 241 sk->sk_reuse = valbool; 242 break; 243 case SO_TYPE: 244 case SO_ERROR: 245 ret = -ENOPROTOOPT; 246 break; 247 case SO_DONTROUTE: 248 if (valbool) 249 sock_set_flag(sk, SOCK_LOCALROUTE); 250 else 251 sock_reset_flag(sk, SOCK_LOCALROUTE); 252 break; 253 case SO_BROADCAST: 254 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 255 break; 256 case SO_SNDBUF: 257 /* Don't error on this BSD doesn't and if you think 258 about it this is right. Otherwise apps have to 259 play 'guess the biggest size' games. RCVBUF/SNDBUF 260 are treated in BSD as hints */ 261 262 if (val > sysctl_wmem_max) 263 val = sysctl_wmem_max; 264 set_sndbuf: 265 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 266 if ((val * 2) < SOCK_MIN_SNDBUF) 267 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 268 else 269 sk->sk_sndbuf = val * 2; 270 271 /* 272 * Wake up sending tasks if we 273 * upped the value. 274 */ 275 sk->sk_write_space(sk); 276 break; 277 278 case SO_SNDBUFFORCE: 279 if (!capable(CAP_NET_ADMIN)) { 280 ret = -EPERM; 281 break; 282 } 283 goto set_sndbuf; 284 285 case SO_RCVBUF: 286 /* Don't error on this BSD doesn't and if you think 287 about it this is right. Otherwise apps have to 288 play 'guess the biggest size' games. RCVBUF/SNDBUF 289 are treated in BSD as hints */ 290 291 if (val > sysctl_rmem_max) 292 val = sysctl_rmem_max; 293 set_rcvbuf: 294 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 295 /* FIXME: is this lower bound the right one? */ 296 if ((val * 2) < SOCK_MIN_RCVBUF) 297 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 298 else 299 sk->sk_rcvbuf = val * 2; 300 break; 301 302 case SO_RCVBUFFORCE: 303 if (!capable(CAP_NET_ADMIN)) { 304 ret = -EPERM; 305 break; 306 } 307 goto set_rcvbuf; 308 309 case SO_KEEPALIVE: 310 #ifdef CONFIG_INET 311 if (sk->sk_protocol == IPPROTO_TCP) 312 tcp_set_keepalive(sk, valbool); 313 #endif 314 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 315 break; 316 317 case SO_OOBINLINE: 318 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 319 break; 320 321 case SO_NO_CHECK: 322 sk->sk_no_check = valbool; 323 break; 324 325 case SO_PRIORITY: 326 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 327 sk->sk_priority = val; 328 else 329 ret = -EPERM; 330 break; 331 332 case SO_LINGER: 333 if(optlen<sizeof(ling)) { 334 ret = -EINVAL; /* 1003.1g */ 335 break; 336 } 337 if (copy_from_user(&ling,optval,sizeof(ling))) { 338 ret = -EFAULT; 339 break; 340 } 341 if (!ling.l_onoff) 342 sock_reset_flag(sk, SOCK_LINGER); 343 else { 344 #if (BITS_PER_LONG == 32) 345 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 346 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 347 else 348 #endif 349 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 350 sock_set_flag(sk, SOCK_LINGER); 351 } 352 break; 353 354 case SO_BSDCOMPAT: 355 sock_warn_obsolete_bsdism("setsockopt"); 356 break; 357 358 case SO_PASSCRED: 359 if (valbool) 360 set_bit(SOCK_PASSCRED, &sock->flags); 361 else 362 clear_bit(SOCK_PASSCRED, &sock->flags); 363 break; 364 365 case SO_TIMESTAMP: 366 if (valbool) { 367 sock_set_flag(sk, SOCK_RCVTSTAMP); 368 sock_enable_timestamp(sk); 369 } else 370 sock_reset_flag(sk, SOCK_RCVTSTAMP); 371 break; 372 373 case SO_RCVLOWAT: 374 if (val < 0) 375 val = INT_MAX; 376 sk->sk_rcvlowat = val ? : 1; 377 break; 378 379 case SO_RCVTIMEO: 380 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 381 break; 382 383 case SO_SNDTIMEO: 384 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 385 break; 386 387 #ifdef CONFIG_NETDEVICES 388 case SO_BINDTODEVICE: 389 { 390 char devname[IFNAMSIZ]; 391 392 /* Sorry... */ 393 if (!capable(CAP_NET_RAW)) { 394 ret = -EPERM; 395 break; 396 } 397 398 /* Bind this socket to a particular device like "eth0", 399 * as specified in the passed interface name. If the 400 * name is "" or the option length is zero the socket 401 * is not bound. 402 */ 403 404 if (!valbool) { 405 sk->sk_bound_dev_if = 0; 406 } else { 407 if (optlen > IFNAMSIZ) 408 optlen = IFNAMSIZ; 409 if (copy_from_user(devname, optval, optlen)) { 410 ret = -EFAULT; 411 break; 412 } 413 414 /* Remove any cached route for this socket. */ 415 sk_dst_reset(sk); 416 417 if (devname[0] == '\0') { 418 sk->sk_bound_dev_if = 0; 419 } else { 420 struct net_device *dev = dev_get_by_name(devname); 421 if (!dev) { 422 ret = -ENODEV; 423 break; 424 } 425 sk->sk_bound_dev_if = dev->ifindex; 426 dev_put(dev); 427 } 428 } 429 break; 430 } 431 #endif 432 433 434 case SO_ATTACH_FILTER: 435 ret = -EINVAL; 436 if (optlen == sizeof(struct sock_fprog)) { 437 struct sock_fprog fprog; 438 439 ret = -EFAULT; 440 if (copy_from_user(&fprog, optval, sizeof(fprog))) 441 break; 442 443 ret = sk_attach_filter(&fprog, sk); 444 } 445 break; 446 447 case SO_DETACH_FILTER: 448 spin_lock_bh(&sk->sk_lock.slock); 449 filter = sk->sk_filter; 450 if (filter) { 451 sk->sk_filter = NULL; 452 spin_unlock_bh(&sk->sk_lock.slock); 453 sk_filter_release(sk, filter); 454 break; 455 } 456 spin_unlock_bh(&sk->sk_lock.slock); 457 ret = -ENONET; 458 break; 459 460 /* We implement the SO_SNDLOWAT etc to 461 not be settable (1003.1g 5.3) */ 462 default: 463 ret = -ENOPROTOOPT; 464 break; 465 } 466 release_sock(sk); 467 return ret; 468 } 469 470 471 int sock_getsockopt(struct socket *sock, int level, int optname, 472 char __user *optval, int __user *optlen) 473 { 474 struct sock *sk = sock->sk; 475 476 union 477 { 478 int val; 479 struct linger ling; 480 struct timeval tm; 481 } v; 482 483 unsigned int lv = sizeof(int); 484 int len; 485 486 if(get_user(len,optlen)) 487 return -EFAULT; 488 if(len < 0) 489 return -EINVAL; 490 491 switch(optname) 492 { 493 case SO_DEBUG: 494 v.val = sock_flag(sk, SOCK_DBG); 495 break; 496 497 case SO_DONTROUTE: 498 v.val = sock_flag(sk, SOCK_LOCALROUTE); 499 break; 500 501 case SO_BROADCAST: 502 v.val = !!sock_flag(sk, SOCK_BROADCAST); 503 break; 504 505 case SO_SNDBUF: 506 v.val = sk->sk_sndbuf; 507 break; 508 509 case SO_RCVBUF: 510 v.val = sk->sk_rcvbuf; 511 break; 512 513 case SO_REUSEADDR: 514 v.val = sk->sk_reuse; 515 break; 516 517 case SO_KEEPALIVE: 518 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 519 break; 520 521 case SO_TYPE: 522 v.val = sk->sk_type; 523 break; 524 525 case SO_ERROR: 526 v.val = -sock_error(sk); 527 if(v.val==0) 528 v.val = xchg(&sk->sk_err_soft, 0); 529 break; 530 531 case SO_OOBINLINE: 532 v.val = !!sock_flag(sk, SOCK_URGINLINE); 533 break; 534 535 case SO_NO_CHECK: 536 v.val = sk->sk_no_check; 537 break; 538 539 case SO_PRIORITY: 540 v.val = sk->sk_priority; 541 break; 542 543 case SO_LINGER: 544 lv = sizeof(v.ling); 545 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 546 v.ling.l_linger = sk->sk_lingertime / HZ; 547 break; 548 549 case SO_BSDCOMPAT: 550 sock_warn_obsolete_bsdism("getsockopt"); 551 break; 552 553 case SO_TIMESTAMP: 554 v.val = sock_flag(sk, SOCK_RCVTSTAMP); 555 break; 556 557 case SO_RCVTIMEO: 558 lv=sizeof(struct timeval); 559 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 560 v.tm.tv_sec = 0; 561 v.tm.tv_usec = 0; 562 } else { 563 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 564 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 565 } 566 break; 567 568 case SO_SNDTIMEO: 569 lv=sizeof(struct timeval); 570 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 571 v.tm.tv_sec = 0; 572 v.tm.tv_usec = 0; 573 } else { 574 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 575 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 576 } 577 break; 578 579 case SO_RCVLOWAT: 580 v.val = sk->sk_rcvlowat; 581 break; 582 583 case SO_SNDLOWAT: 584 v.val=1; 585 break; 586 587 case SO_PASSCRED: 588 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 589 break; 590 591 case SO_PEERCRED: 592 if (len > sizeof(sk->sk_peercred)) 593 len = sizeof(sk->sk_peercred); 594 if (copy_to_user(optval, &sk->sk_peercred, len)) 595 return -EFAULT; 596 goto lenout; 597 598 case SO_PEERNAME: 599 { 600 char address[128]; 601 602 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 603 return -ENOTCONN; 604 if (lv < len) 605 return -EINVAL; 606 if (copy_to_user(optval, address, len)) 607 return -EFAULT; 608 goto lenout; 609 } 610 611 /* Dubious BSD thing... Probably nobody even uses it, but 612 * the UNIX standard wants it for whatever reason... -DaveM 613 */ 614 case SO_ACCEPTCONN: 615 v.val = sk->sk_state == TCP_LISTEN; 616 break; 617 618 case SO_PEERSEC: 619 return security_socket_getpeersec(sock, optval, optlen, len); 620 621 default: 622 return(-ENOPROTOOPT); 623 } 624 if (len > lv) 625 len = lv; 626 if (copy_to_user(optval, &v, len)) 627 return -EFAULT; 628 lenout: 629 if (put_user(len, optlen)) 630 return -EFAULT; 631 return 0; 632 } 633 634 /** 635 * sk_alloc - All socket objects are allocated here 636 * @family: protocol family 637 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 638 * @prot: struct proto associated with this new sock instance 639 * @zero_it: if we should zero the newly allocated sock 640 */ 641 struct sock *sk_alloc(int family, gfp_t priority, 642 struct proto *prot, int zero_it) 643 { 644 struct sock *sk = NULL; 645 kmem_cache_t *slab = prot->slab; 646 647 if (slab != NULL) 648 sk = kmem_cache_alloc(slab, priority); 649 else 650 sk = kmalloc(prot->obj_size, priority); 651 652 if (sk) { 653 if (zero_it) { 654 memset(sk, 0, prot->obj_size); 655 sk->sk_family = family; 656 /* 657 * See comment in struct sock definition to understand 658 * why we need sk_prot_creator -acme 659 */ 660 sk->sk_prot = sk->sk_prot_creator = prot; 661 sock_lock_init(sk); 662 } 663 664 if (security_sk_alloc(sk, family, priority)) 665 goto out_free; 666 667 if (!try_module_get(prot->owner)) 668 goto out_free; 669 } 670 return sk; 671 672 out_free: 673 if (slab != NULL) 674 kmem_cache_free(slab, sk); 675 else 676 kfree(sk); 677 return NULL; 678 } 679 680 void sk_free(struct sock *sk) 681 { 682 struct sk_filter *filter; 683 struct module *owner = sk->sk_prot_creator->owner; 684 685 if (sk->sk_destruct) 686 sk->sk_destruct(sk); 687 688 filter = sk->sk_filter; 689 if (filter) { 690 sk_filter_release(sk, filter); 691 sk->sk_filter = NULL; 692 } 693 694 sock_disable_timestamp(sk); 695 696 if (atomic_read(&sk->sk_omem_alloc)) 697 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 698 __FUNCTION__, atomic_read(&sk->sk_omem_alloc)); 699 700 security_sk_free(sk); 701 if (sk->sk_prot_creator->slab != NULL) 702 kmem_cache_free(sk->sk_prot_creator->slab, sk); 703 else 704 kfree(sk); 705 module_put(owner); 706 } 707 708 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 709 { 710 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0); 711 712 if (newsk != NULL) { 713 struct sk_filter *filter; 714 715 memcpy(newsk, sk, sk->sk_prot->obj_size); 716 717 /* SANITY */ 718 sk_node_init(&newsk->sk_node); 719 sock_lock_init(newsk); 720 bh_lock_sock(newsk); 721 722 atomic_set(&newsk->sk_rmem_alloc, 0); 723 atomic_set(&newsk->sk_wmem_alloc, 0); 724 atomic_set(&newsk->sk_omem_alloc, 0); 725 skb_queue_head_init(&newsk->sk_receive_queue); 726 skb_queue_head_init(&newsk->sk_write_queue); 727 728 rwlock_init(&newsk->sk_dst_lock); 729 rwlock_init(&newsk->sk_callback_lock); 730 731 newsk->sk_dst_cache = NULL; 732 newsk->sk_wmem_queued = 0; 733 newsk->sk_forward_alloc = 0; 734 newsk->sk_send_head = NULL; 735 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 736 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 737 738 sock_reset_flag(newsk, SOCK_DONE); 739 skb_queue_head_init(&newsk->sk_error_queue); 740 741 filter = newsk->sk_filter; 742 if (filter != NULL) 743 sk_filter_charge(newsk, filter); 744 745 if (unlikely(xfrm_sk_clone_policy(newsk))) { 746 /* It is still raw copy of parent, so invalidate 747 * destructor and make plain sk_free() */ 748 newsk->sk_destruct = NULL; 749 sk_free(newsk); 750 newsk = NULL; 751 goto out; 752 } 753 754 newsk->sk_err = 0; 755 newsk->sk_priority = 0; 756 atomic_set(&newsk->sk_refcnt, 2); 757 758 /* 759 * Increment the counter in the same struct proto as the master 760 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 761 * is the same as sk->sk_prot->socks, as this field was copied 762 * with memcpy). 763 * 764 * This _changes_ the previous behaviour, where 765 * tcp_create_openreq_child always was incrementing the 766 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 767 * to be taken into account in all callers. -acme 768 */ 769 sk_refcnt_debug_inc(newsk); 770 newsk->sk_socket = NULL; 771 newsk->sk_sleep = NULL; 772 773 if (newsk->sk_prot->sockets_allocated) 774 atomic_inc(newsk->sk_prot->sockets_allocated); 775 } 776 out: 777 return newsk; 778 } 779 780 EXPORT_SYMBOL_GPL(sk_clone); 781 782 void __init sk_init(void) 783 { 784 if (num_physpages <= 4096) { 785 sysctl_wmem_max = 32767; 786 sysctl_rmem_max = 32767; 787 sysctl_wmem_default = 32767; 788 sysctl_rmem_default = 32767; 789 } else if (num_physpages >= 131072) { 790 sysctl_wmem_max = 131071; 791 sysctl_rmem_max = 131071; 792 } 793 } 794 795 /* 796 * Simple resource managers for sockets. 797 */ 798 799 800 /* 801 * Write buffer destructor automatically called from kfree_skb. 802 */ 803 void sock_wfree(struct sk_buff *skb) 804 { 805 struct sock *sk = skb->sk; 806 807 /* In case it might be waiting for more memory. */ 808 atomic_sub(skb->truesize, &sk->sk_wmem_alloc); 809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) 810 sk->sk_write_space(sk); 811 sock_put(sk); 812 } 813 814 /* 815 * Read buffer destructor automatically called from kfree_skb. 816 */ 817 void sock_rfree(struct sk_buff *skb) 818 { 819 struct sock *sk = skb->sk; 820 821 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 822 } 823 824 825 int sock_i_uid(struct sock *sk) 826 { 827 int uid; 828 829 read_lock(&sk->sk_callback_lock); 830 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 831 read_unlock(&sk->sk_callback_lock); 832 return uid; 833 } 834 835 unsigned long sock_i_ino(struct sock *sk) 836 { 837 unsigned long ino; 838 839 read_lock(&sk->sk_callback_lock); 840 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 841 read_unlock(&sk->sk_callback_lock); 842 return ino; 843 } 844 845 /* 846 * Allocate a skb from the socket's send buffer. 847 */ 848 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 849 gfp_t priority) 850 { 851 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 852 struct sk_buff * skb = alloc_skb(size, priority); 853 if (skb) { 854 skb_set_owner_w(skb, sk); 855 return skb; 856 } 857 } 858 return NULL; 859 } 860 861 /* 862 * Allocate a skb from the socket's receive buffer. 863 */ 864 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 865 gfp_t priority) 866 { 867 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 868 struct sk_buff *skb = alloc_skb(size, priority); 869 if (skb) { 870 skb_set_owner_r(skb, sk); 871 return skb; 872 } 873 } 874 return NULL; 875 } 876 877 /* 878 * Allocate a memory block from the socket's option memory buffer. 879 */ 880 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 881 { 882 if ((unsigned)size <= sysctl_optmem_max && 883 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 884 void *mem; 885 /* First do the add, to avoid the race if kmalloc 886 * might sleep. 887 */ 888 atomic_add(size, &sk->sk_omem_alloc); 889 mem = kmalloc(size, priority); 890 if (mem) 891 return mem; 892 atomic_sub(size, &sk->sk_omem_alloc); 893 } 894 return NULL; 895 } 896 897 /* 898 * Free an option memory block. 899 */ 900 void sock_kfree_s(struct sock *sk, void *mem, int size) 901 { 902 kfree(mem); 903 atomic_sub(size, &sk->sk_omem_alloc); 904 } 905 906 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 907 I think, these locks should be removed for datagram sockets. 908 */ 909 static long sock_wait_for_wmem(struct sock * sk, long timeo) 910 { 911 DEFINE_WAIT(wait); 912 913 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 914 for (;;) { 915 if (!timeo) 916 break; 917 if (signal_pending(current)) 918 break; 919 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 920 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 921 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 922 break; 923 if (sk->sk_shutdown & SEND_SHUTDOWN) 924 break; 925 if (sk->sk_err) 926 break; 927 timeo = schedule_timeout(timeo); 928 } 929 finish_wait(sk->sk_sleep, &wait); 930 return timeo; 931 } 932 933 934 /* 935 * Generic send/receive buffer handlers 936 */ 937 938 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 939 unsigned long header_len, 940 unsigned long data_len, 941 int noblock, int *errcode) 942 { 943 struct sk_buff *skb; 944 gfp_t gfp_mask; 945 long timeo; 946 int err; 947 948 gfp_mask = sk->sk_allocation; 949 if (gfp_mask & __GFP_WAIT) 950 gfp_mask |= __GFP_REPEAT; 951 952 timeo = sock_sndtimeo(sk, noblock); 953 while (1) { 954 err = sock_error(sk); 955 if (err != 0) 956 goto failure; 957 958 err = -EPIPE; 959 if (sk->sk_shutdown & SEND_SHUTDOWN) 960 goto failure; 961 962 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 963 skb = alloc_skb(header_len, sk->sk_allocation); 964 if (skb) { 965 int npages; 966 int i; 967 968 /* No pages, we're done... */ 969 if (!data_len) 970 break; 971 972 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 973 skb->truesize += data_len; 974 skb_shinfo(skb)->nr_frags = npages; 975 for (i = 0; i < npages; i++) { 976 struct page *page; 977 skb_frag_t *frag; 978 979 page = alloc_pages(sk->sk_allocation, 0); 980 if (!page) { 981 err = -ENOBUFS; 982 skb_shinfo(skb)->nr_frags = i; 983 kfree_skb(skb); 984 goto failure; 985 } 986 987 frag = &skb_shinfo(skb)->frags[i]; 988 frag->page = page; 989 frag->page_offset = 0; 990 frag->size = (data_len >= PAGE_SIZE ? 991 PAGE_SIZE : 992 data_len); 993 data_len -= PAGE_SIZE; 994 } 995 996 /* Full success... */ 997 break; 998 } 999 err = -ENOBUFS; 1000 goto failure; 1001 } 1002 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1003 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1004 err = -EAGAIN; 1005 if (!timeo) 1006 goto failure; 1007 if (signal_pending(current)) 1008 goto interrupted; 1009 timeo = sock_wait_for_wmem(sk, timeo); 1010 } 1011 1012 skb_set_owner_w(skb, sk); 1013 return skb; 1014 1015 interrupted: 1016 err = sock_intr_errno(timeo); 1017 failure: 1018 *errcode = err; 1019 return NULL; 1020 } 1021 1022 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1023 int noblock, int *errcode) 1024 { 1025 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1026 } 1027 1028 static void __lock_sock(struct sock *sk) 1029 { 1030 DEFINE_WAIT(wait); 1031 1032 for(;;) { 1033 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1034 TASK_UNINTERRUPTIBLE); 1035 spin_unlock_bh(&sk->sk_lock.slock); 1036 schedule(); 1037 spin_lock_bh(&sk->sk_lock.slock); 1038 if(!sock_owned_by_user(sk)) 1039 break; 1040 } 1041 finish_wait(&sk->sk_lock.wq, &wait); 1042 } 1043 1044 static void __release_sock(struct sock *sk) 1045 { 1046 struct sk_buff *skb = sk->sk_backlog.head; 1047 1048 do { 1049 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1050 bh_unlock_sock(sk); 1051 1052 do { 1053 struct sk_buff *next = skb->next; 1054 1055 skb->next = NULL; 1056 sk->sk_backlog_rcv(sk, skb); 1057 1058 /* 1059 * We are in process context here with softirqs 1060 * disabled, use cond_resched_softirq() to preempt. 1061 * This is safe to do because we've taken the backlog 1062 * queue private: 1063 */ 1064 cond_resched_softirq(); 1065 1066 skb = next; 1067 } while (skb != NULL); 1068 1069 bh_lock_sock(sk); 1070 } while((skb = sk->sk_backlog.head) != NULL); 1071 } 1072 1073 /** 1074 * sk_wait_data - wait for data to arrive at sk_receive_queue 1075 * @sk: sock to wait on 1076 * @timeo: for how long 1077 * 1078 * Now socket state including sk->sk_err is changed only under lock, 1079 * hence we may omit checks after joining wait queue. 1080 * We check receive queue before schedule() only as optimization; 1081 * it is very likely that release_sock() added new data. 1082 */ 1083 int sk_wait_data(struct sock *sk, long *timeo) 1084 { 1085 int rc; 1086 DEFINE_WAIT(wait); 1087 1088 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1089 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1090 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1091 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1092 finish_wait(sk->sk_sleep, &wait); 1093 return rc; 1094 } 1095 1096 EXPORT_SYMBOL(sk_wait_data); 1097 1098 /* 1099 * Set of default routines for initialising struct proto_ops when 1100 * the protocol does not support a particular function. In certain 1101 * cases where it makes no sense for a protocol to have a "do nothing" 1102 * function, some default processing is provided. 1103 */ 1104 1105 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1106 { 1107 return -EOPNOTSUPP; 1108 } 1109 1110 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1111 int len, int flags) 1112 { 1113 return -EOPNOTSUPP; 1114 } 1115 1116 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1117 { 1118 return -EOPNOTSUPP; 1119 } 1120 1121 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1122 { 1123 return -EOPNOTSUPP; 1124 } 1125 1126 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1127 int *len, int peer) 1128 { 1129 return -EOPNOTSUPP; 1130 } 1131 1132 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt) 1133 { 1134 return 0; 1135 } 1136 1137 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1138 { 1139 return -EOPNOTSUPP; 1140 } 1141 1142 int sock_no_listen(struct socket *sock, int backlog) 1143 { 1144 return -EOPNOTSUPP; 1145 } 1146 1147 int sock_no_shutdown(struct socket *sock, int how) 1148 { 1149 return -EOPNOTSUPP; 1150 } 1151 1152 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1153 char __user *optval, int optlen) 1154 { 1155 return -EOPNOTSUPP; 1156 } 1157 1158 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1159 char __user *optval, int __user *optlen) 1160 { 1161 return -EOPNOTSUPP; 1162 } 1163 1164 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1165 size_t len) 1166 { 1167 return -EOPNOTSUPP; 1168 } 1169 1170 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1171 size_t len, int flags) 1172 { 1173 return -EOPNOTSUPP; 1174 } 1175 1176 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1177 { 1178 /* Mirror missing mmap method error code */ 1179 return -ENODEV; 1180 } 1181 1182 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1183 { 1184 ssize_t res; 1185 struct msghdr msg = {.msg_flags = flags}; 1186 struct kvec iov; 1187 char *kaddr = kmap(page); 1188 iov.iov_base = kaddr + offset; 1189 iov.iov_len = size; 1190 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1191 kunmap(page); 1192 return res; 1193 } 1194 1195 /* 1196 * Default Socket Callbacks 1197 */ 1198 1199 static void sock_def_wakeup(struct sock *sk) 1200 { 1201 read_lock(&sk->sk_callback_lock); 1202 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1203 wake_up_interruptible_all(sk->sk_sleep); 1204 read_unlock(&sk->sk_callback_lock); 1205 } 1206 1207 static void sock_def_error_report(struct sock *sk) 1208 { 1209 read_lock(&sk->sk_callback_lock); 1210 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1211 wake_up_interruptible(sk->sk_sleep); 1212 sk_wake_async(sk,0,POLL_ERR); 1213 read_unlock(&sk->sk_callback_lock); 1214 } 1215 1216 static void sock_def_readable(struct sock *sk, int len) 1217 { 1218 read_lock(&sk->sk_callback_lock); 1219 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1220 wake_up_interruptible(sk->sk_sleep); 1221 sk_wake_async(sk,1,POLL_IN); 1222 read_unlock(&sk->sk_callback_lock); 1223 } 1224 1225 static void sock_def_write_space(struct sock *sk) 1226 { 1227 read_lock(&sk->sk_callback_lock); 1228 1229 /* Do not wake up a writer until he can make "significant" 1230 * progress. --DaveM 1231 */ 1232 if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1233 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1234 wake_up_interruptible(sk->sk_sleep); 1235 1236 /* Should agree with poll, otherwise some programs break */ 1237 if (sock_writeable(sk)) 1238 sk_wake_async(sk, 2, POLL_OUT); 1239 } 1240 1241 read_unlock(&sk->sk_callback_lock); 1242 } 1243 1244 static void sock_def_destruct(struct sock *sk) 1245 { 1246 kfree(sk->sk_protinfo); 1247 } 1248 1249 void sk_send_sigurg(struct sock *sk) 1250 { 1251 if (sk->sk_socket && sk->sk_socket->file) 1252 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1253 sk_wake_async(sk, 3, POLL_PRI); 1254 } 1255 1256 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1257 unsigned long expires) 1258 { 1259 if (!mod_timer(timer, expires)) 1260 sock_hold(sk); 1261 } 1262 1263 EXPORT_SYMBOL(sk_reset_timer); 1264 1265 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1266 { 1267 if (timer_pending(timer) && del_timer(timer)) 1268 __sock_put(sk); 1269 } 1270 1271 EXPORT_SYMBOL(sk_stop_timer); 1272 1273 void sock_init_data(struct socket *sock, struct sock *sk) 1274 { 1275 skb_queue_head_init(&sk->sk_receive_queue); 1276 skb_queue_head_init(&sk->sk_write_queue); 1277 skb_queue_head_init(&sk->sk_error_queue); 1278 1279 sk->sk_send_head = NULL; 1280 1281 init_timer(&sk->sk_timer); 1282 1283 sk->sk_allocation = GFP_KERNEL; 1284 sk->sk_rcvbuf = sysctl_rmem_default; 1285 sk->sk_sndbuf = sysctl_wmem_default; 1286 sk->sk_state = TCP_CLOSE; 1287 sk->sk_socket = sock; 1288 1289 sock_set_flag(sk, SOCK_ZAPPED); 1290 1291 if(sock) 1292 { 1293 sk->sk_type = sock->type; 1294 sk->sk_sleep = &sock->wait; 1295 sock->sk = sk; 1296 } else 1297 sk->sk_sleep = NULL; 1298 1299 rwlock_init(&sk->sk_dst_lock); 1300 rwlock_init(&sk->sk_callback_lock); 1301 1302 sk->sk_state_change = sock_def_wakeup; 1303 sk->sk_data_ready = sock_def_readable; 1304 sk->sk_write_space = sock_def_write_space; 1305 sk->sk_error_report = sock_def_error_report; 1306 sk->sk_destruct = sock_def_destruct; 1307 1308 sk->sk_sndmsg_page = NULL; 1309 sk->sk_sndmsg_off = 0; 1310 1311 sk->sk_peercred.pid = 0; 1312 sk->sk_peercred.uid = -1; 1313 sk->sk_peercred.gid = -1; 1314 sk->sk_write_pending = 0; 1315 sk->sk_rcvlowat = 1; 1316 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1317 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1318 1319 sk->sk_stamp.tv_sec = -1L; 1320 sk->sk_stamp.tv_usec = -1L; 1321 1322 atomic_set(&sk->sk_refcnt, 1); 1323 } 1324 1325 void fastcall lock_sock(struct sock *sk) 1326 { 1327 might_sleep(); 1328 spin_lock_bh(&(sk->sk_lock.slock)); 1329 if (sk->sk_lock.owner) 1330 __lock_sock(sk); 1331 sk->sk_lock.owner = (void *)1; 1332 spin_unlock_bh(&(sk->sk_lock.slock)); 1333 } 1334 1335 EXPORT_SYMBOL(lock_sock); 1336 1337 void fastcall release_sock(struct sock *sk) 1338 { 1339 spin_lock_bh(&(sk->sk_lock.slock)); 1340 if (sk->sk_backlog.tail) 1341 __release_sock(sk); 1342 sk->sk_lock.owner = NULL; 1343 if (waitqueue_active(&(sk->sk_lock.wq))) 1344 wake_up(&(sk->sk_lock.wq)); 1345 spin_unlock_bh(&(sk->sk_lock.slock)); 1346 } 1347 EXPORT_SYMBOL(release_sock); 1348 1349 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1350 { 1351 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1352 sock_enable_timestamp(sk); 1353 if (sk->sk_stamp.tv_sec == -1) 1354 return -ENOENT; 1355 if (sk->sk_stamp.tv_sec == 0) 1356 do_gettimeofday(&sk->sk_stamp); 1357 return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ? 1358 -EFAULT : 0; 1359 } 1360 EXPORT_SYMBOL(sock_get_timestamp); 1361 1362 void sock_enable_timestamp(struct sock *sk) 1363 { 1364 if (!sock_flag(sk, SOCK_TIMESTAMP)) { 1365 sock_set_flag(sk, SOCK_TIMESTAMP); 1366 net_enable_timestamp(); 1367 } 1368 } 1369 EXPORT_SYMBOL(sock_enable_timestamp); 1370 1371 /* 1372 * Get a socket option on an socket. 1373 * 1374 * FIX: POSIX 1003.1g is very ambiguous here. It states that 1375 * asynchronous errors should be reported by getsockopt. We assume 1376 * this means if you specify SO_ERROR (otherwise whats the point of it). 1377 */ 1378 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1379 char __user *optval, int __user *optlen) 1380 { 1381 struct sock *sk = sock->sk; 1382 1383 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1384 } 1385 1386 EXPORT_SYMBOL(sock_common_getsockopt); 1387 1388 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1389 struct msghdr *msg, size_t size, int flags) 1390 { 1391 struct sock *sk = sock->sk; 1392 int addr_len = 0; 1393 int err; 1394 1395 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 1396 flags & ~MSG_DONTWAIT, &addr_len); 1397 if (err >= 0) 1398 msg->msg_namelen = addr_len; 1399 return err; 1400 } 1401 1402 EXPORT_SYMBOL(sock_common_recvmsg); 1403 1404 /* 1405 * Set socket options on an inet socket. 1406 */ 1407 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1408 char __user *optval, int optlen) 1409 { 1410 struct sock *sk = sock->sk; 1411 1412 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 1413 } 1414 1415 EXPORT_SYMBOL(sock_common_setsockopt); 1416 1417 void sk_common_release(struct sock *sk) 1418 { 1419 if (sk->sk_prot->destroy) 1420 sk->sk_prot->destroy(sk); 1421 1422 /* 1423 * Observation: when sock_common_release is called, processes have 1424 * no access to socket. But net still has. 1425 * Step one, detach it from networking: 1426 * 1427 * A. Remove from hash tables. 1428 */ 1429 1430 sk->sk_prot->unhash(sk); 1431 1432 /* 1433 * In this point socket cannot receive new packets, but it is possible 1434 * that some packets are in flight because some CPU runs receiver and 1435 * did hash table lookup before we unhashed socket. They will achieve 1436 * receive queue and will be purged by socket destructor. 1437 * 1438 * Also we still have packets pending on receive queue and probably, 1439 * our own packets waiting in device queues. sock_destroy will drain 1440 * receive queue, but transmitted packets will delay socket destruction 1441 * until the last reference will be released. 1442 */ 1443 1444 sock_orphan(sk); 1445 1446 xfrm_sk_free_policy(sk); 1447 1448 sk_refcnt_debug_release(sk); 1449 sock_put(sk); 1450 } 1451 1452 EXPORT_SYMBOL(sk_common_release); 1453 1454 static DEFINE_RWLOCK(proto_list_lock); 1455 static LIST_HEAD(proto_list); 1456 1457 int proto_register(struct proto *prot, int alloc_slab) 1458 { 1459 char *request_sock_slab_name = NULL; 1460 char *timewait_sock_slab_name; 1461 int rc = -ENOBUFS; 1462 1463 if (alloc_slab) { 1464 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 1465 SLAB_HWCACHE_ALIGN, NULL, NULL); 1466 1467 if (prot->slab == NULL) { 1468 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 1469 prot->name); 1470 goto out; 1471 } 1472 1473 if (prot->rsk_prot != NULL) { 1474 static const char mask[] = "request_sock_%s"; 1475 1476 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 1477 if (request_sock_slab_name == NULL) 1478 goto out_free_sock_slab; 1479 1480 sprintf(request_sock_slab_name, mask, prot->name); 1481 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name, 1482 prot->rsk_prot->obj_size, 0, 1483 SLAB_HWCACHE_ALIGN, NULL, NULL); 1484 1485 if (prot->rsk_prot->slab == NULL) { 1486 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 1487 prot->name); 1488 goto out_free_request_sock_slab_name; 1489 } 1490 } 1491 1492 if (prot->twsk_prot != NULL) { 1493 static const char mask[] = "tw_sock_%s"; 1494 1495 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 1496 1497 if (timewait_sock_slab_name == NULL) 1498 goto out_free_request_sock_slab; 1499 1500 sprintf(timewait_sock_slab_name, mask, prot->name); 1501 prot->twsk_prot->twsk_slab = 1502 kmem_cache_create(timewait_sock_slab_name, 1503 prot->twsk_prot->twsk_obj_size, 1504 0, SLAB_HWCACHE_ALIGN, 1505 NULL, NULL); 1506 if (prot->twsk_prot->twsk_slab == NULL) 1507 goto out_free_timewait_sock_slab_name; 1508 } 1509 } 1510 1511 write_lock(&proto_list_lock); 1512 list_add(&prot->node, &proto_list); 1513 write_unlock(&proto_list_lock); 1514 rc = 0; 1515 out: 1516 return rc; 1517 out_free_timewait_sock_slab_name: 1518 kfree(timewait_sock_slab_name); 1519 out_free_request_sock_slab: 1520 if (prot->rsk_prot && prot->rsk_prot->slab) { 1521 kmem_cache_destroy(prot->rsk_prot->slab); 1522 prot->rsk_prot->slab = NULL; 1523 } 1524 out_free_request_sock_slab_name: 1525 kfree(request_sock_slab_name); 1526 out_free_sock_slab: 1527 kmem_cache_destroy(prot->slab); 1528 prot->slab = NULL; 1529 goto out; 1530 } 1531 1532 EXPORT_SYMBOL(proto_register); 1533 1534 void proto_unregister(struct proto *prot) 1535 { 1536 write_lock(&proto_list_lock); 1537 list_del(&prot->node); 1538 write_unlock(&proto_list_lock); 1539 1540 if (prot->slab != NULL) { 1541 kmem_cache_destroy(prot->slab); 1542 prot->slab = NULL; 1543 } 1544 1545 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 1546 const char *name = kmem_cache_name(prot->rsk_prot->slab); 1547 1548 kmem_cache_destroy(prot->rsk_prot->slab); 1549 kfree(name); 1550 prot->rsk_prot->slab = NULL; 1551 } 1552 1553 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 1554 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab); 1555 1556 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 1557 kfree(name); 1558 prot->twsk_prot->twsk_slab = NULL; 1559 } 1560 } 1561 1562 EXPORT_SYMBOL(proto_unregister); 1563 1564 #ifdef CONFIG_PROC_FS 1565 static inline struct proto *__proto_head(void) 1566 { 1567 return list_entry(proto_list.next, struct proto, node); 1568 } 1569 1570 static inline struct proto *proto_head(void) 1571 { 1572 return list_empty(&proto_list) ? NULL : __proto_head(); 1573 } 1574 1575 static inline struct proto *proto_next(struct proto *proto) 1576 { 1577 return proto->node.next == &proto_list ? NULL : 1578 list_entry(proto->node.next, struct proto, node); 1579 } 1580 1581 static inline struct proto *proto_get_idx(loff_t pos) 1582 { 1583 struct proto *proto; 1584 loff_t i = 0; 1585 1586 list_for_each_entry(proto, &proto_list, node) 1587 if (i++ == pos) 1588 goto out; 1589 1590 proto = NULL; 1591 out: 1592 return proto; 1593 } 1594 1595 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 1596 { 1597 read_lock(&proto_list_lock); 1598 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN; 1599 } 1600 1601 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1602 { 1603 ++*pos; 1604 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v); 1605 } 1606 1607 static void proto_seq_stop(struct seq_file *seq, void *v) 1608 { 1609 read_unlock(&proto_list_lock); 1610 } 1611 1612 static char proto_method_implemented(const void *method) 1613 { 1614 return method == NULL ? 'n' : 'y'; 1615 } 1616 1617 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 1618 { 1619 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 1620 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 1621 proto->name, 1622 proto->obj_size, 1623 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1, 1624 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 1625 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 1626 proto->max_header, 1627 proto->slab == NULL ? "no" : "yes", 1628 module_name(proto->owner), 1629 proto_method_implemented(proto->close), 1630 proto_method_implemented(proto->connect), 1631 proto_method_implemented(proto->disconnect), 1632 proto_method_implemented(proto->accept), 1633 proto_method_implemented(proto->ioctl), 1634 proto_method_implemented(proto->init), 1635 proto_method_implemented(proto->destroy), 1636 proto_method_implemented(proto->shutdown), 1637 proto_method_implemented(proto->setsockopt), 1638 proto_method_implemented(proto->getsockopt), 1639 proto_method_implemented(proto->sendmsg), 1640 proto_method_implemented(proto->recvmsg), 1641 proto_method_implemented(proto->sendpage), 1642 proto_method_implemented(proto->bind), 1643 proto_method_implemented(proto->backlog_rcv), 1644 proto_method_implemented(proto->hash), 1645 proto_method_implemented(proto->unhash), 1646 proto_method_implemented(proto->get_port), 1647 proto_method_implemented(proto->enter_memory_pressure)); 1648 } 1649 1650 static int proto_seq_show(struct seq_file *seq, void *v) 1651 { 1652 if (v == SEQ_START_TOKEN) 1653 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 1654 "protocol", 1655 "size", 1656 "sockets", 1657 "memory", 1658 "press", 1659 "maxhdr", 1660 "slab", 1661 "module", 1662 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 1663 else 1664 proto_seq_printf(seq, v); 1665 return 0; 1666 } 1667 1668 static struct seq_operations proto_seq_ops = { 1669 .start = proto_seq_start, 1670 .next = proto_seq_next, 1671 .stop = proto_seq_stop, 1672 .show = proto_seq_show, 1673 }; 1674 1675 static int proto_seq_open(struct inode *inode, struct file *file) 1676 { 1677 return seq_open(file, &proto_seq_ops); 1678 } 1679 1680 static struct file_operations proto_seq_fops = { 1681 .owner = THIS_MODULE, 1682 .open = proto_seq_open, 1683 .read = seq_read, 1684 .llseek = seq_lseek, 1685 .release = seq_release, 1686 }; 1687 1688 static int __init proto_init(void) 1689 { 1690 /* register /proc/net/protocols */ 1691 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0; 1692 } 1693 1694 subsys_initcall(proto_init); 1695 1696 #endif /* PROC_FS */ 1697 1698 EXPORT_SYMBOL(sk_alloc); 1699 EXPORT_SYMBOL(sk_free); 1700 EXPORT_SYMBOL(sk_send_sigurg); 1701 EXPORT_SYMBOL(sock_alloc_send_skb); 1702 EXPORT_SYMBOL(sock_init_data); 1703 EXPORT_SYMBOL(sock_kfree_s); 1704 EXPORT_SYMBOL(sock_kmalloc); 1705 EXPORT_SYMBOL(sock_no_accept); 1706 EXPORT_SYMBOL(sock_no_bind); 1707 EXPORT_SYMBOL(sock_no_connect); 1708 EXPORT_SYMBOL(sock_no_getname); 1709 EXPORT_SYMBOL(sock_no_getsockopt); 1710 EXPORT_SYMBOL(sock_no_ioctl); 1711 EXPORT_SYMBOL(sock_no_listen); 1712 EXPORT_SYMBOL(sock_no_mmap); 1713 EXPORT_SYMBOL(sock_no_poll); 1714 EXPORT_SYMBOL(sock_no_recvmsg); 1715 EXPORT_SYMBOL(sock_no_sendmsg); 1716 EXPORT_SYMBOL(sock_no_sendpage); 1717 EXPORT_SYMBOL(sock_no_setsockopt); 1718 EXPORT_SYMBOL(sock_no_shutdown); 1719 EXPORT_SYMBOL(sock_no_socketpair); 1720 EXPORT_SYMBOL(sock_rfree); 1721 EXPORT_SYMBOL(sock_setsockopt); 1722 EXPORT_SYMBOL(sock_wfree); 1723 EXPORT_SYMBOL(sock_wmalloc); 1724 EXPORT_SYMBOL(sock_i_uid); 1725 EXPORT_SYMBOL(sock_i_ino); 1726 EXPORT_SYMBOL(sysctl_optmem_max); 1727 #ifdef CONFIG_SYSCTL 1728 EXPORT_SYMBOL(sysctl_rmem_max); 1729 EXPORT_SYMBOL(sysctl_wmem_max); 1730 #endif 1731