1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 #include <linux/mroute.h> 118 #include <linux/mroute6.h> 119 #include <linux/icmpv6.h> 120 121 #include <linux/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 #include <net/bpf_sk_storage.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 #include <net/phonet/phonet.h> 145 146 #include <linux/ethtool.h> 147 148 #include "dev.h" 149 150 static DEFINE_MUTEX(proto_list_mutex); 151 static LIST_HEAD(proto_list); 152 153 static void sock_def_write_space_wfree(struct sock *sk); 154 static void sock_def_write_space(struct sock *sk); 155 156 /** 157 * sk_ns_capable - General socket capability test 158 * @sk: Socket to use a capability on or through 159 * @user_ns: The user namespace of the capability to use 160 * @cap: The capability to use 161 * 162 * Test to see if the opener of the socket had when the socket was 163 * created and the current process has the capability @cap in the user 164 * namespace @user_ns. 165 */ 166 bool sk_ns_capable(const struct sock *sk, 167 struct user_namespace *user_ns, int cap) 168 { 169 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 170 ns_capable(user_ns, cap); 171 } 172 EXPORT_SYMBOL(sk_ns_capable); 173 174 /** 175 * sk_capable - Socket global capability test 176 * @sk: Socket to use a capability on or through 177 * @cap: The global capability to use 178 * 179 * Test to see if the opener of the socket had when the socket was 180 * created and the current process has the capability @cap in all user 181 * namespaces. 182 */ 183 bool sk_capable(const struct sock *sk, int cap) 184 { 185 return sk_ns_capable(sk, &init_user_ns, cap); 186 } 187 EXPORT_SYMBOL(sk_capable); 188 189 /** 190 * sk_net_capable - Network namespace socket capability test 191 * @sk: Socket to use a capability on or through 192 * @cap: The capability to use 193 * 194 * Test to see if the opener of the socket had when the socket was created 195 * and the current process has the capability @cap over the network namespace 196 * the socket is a member of. 197 */ 198 bool sk_net_capable(const struct sock *sk, int cap) 199 { 200 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 201 } 202 EXPORT_SYMBOL(sk_net_capable); 203 204 /* 205 * Each address family might have different locking rules, so we have 206 * one slock key per address family and separate keys for internal and 207 * userspace sockets. 208 */ 209 static struct lock_class_key af_family_keys[AF_MAX]; 210 static struct lock_class_key af_family_kern_keys[AF_MAX]; 211 static struct lock_class_key af_family_slock_keys[AF_MAX]; 212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 213 214 /* 215 * Make lock validator output more readable. (we pre-construct these 216 * strings build-time, so that runtime initialization of socket 217 * locks is fast): 218 */ 219 220 #define _sock_locks(x) \ 221 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 222 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 223 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 224 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 225 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 226 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 227 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 228 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 229 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 230 x "27" , x "28" , x "AF_CAN" , \ 231 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 232 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 233 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 234 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 235 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 236 x "AF_MCTP" , \ 237 x "AF_MAX" 238 239 static const char *const af_family_key_strings[AF_MAX+1] = { 240 _sock_locks("sk_lock-") 241 }; 242 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("slock-") 244 }; 245 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("clock-") 247 }; 248 249 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 250 _sock_locks("k-sk_lock-") 251 }; 252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 253 _sock_locks("k-slock-") 254 }; 255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-clock-") 257 }; 258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 259 _sock_locks("rlock-") 260 }; 261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 262 _sock_locks("wlock-") 263 }; 264 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 265 _sock_locks("elock-") 266 }; 267 268 /* 269 * sk_callback_lock and sk queues locking rules are per-address-family, 270 * so split the lock classes by using a per-AF key: 271 */ 272 static struct lock_class_key af_callback_keys[AF_MAX]; 273 static struct lock_class_key af_rlock_keys[AF_MAX]; 274 static struct lock_class_key af_wlock_keys[AF_MAX]; 275 static struct lock_class_key af_elock_keys[AF_MAX]; 276 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 long val; 429 430 if (err) 431 return err; 432 433 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 434 return -EDOM; 435 436 if (tv.tv_sec < 0) { 437 static int warned __read_mostly; 438 439 WRITE_ONCE(*timeo_p, 0); 440 if (warned < 10 && net_ratelimit()) { 441 warned++; 442 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 443 __func__, current->comm, task_pid_nr(current)); 444 } 445 return 0; 446 } 447 val = MAX_SCHEDULE_TIMEOUT; 448 if ((tv.tv_sec || tv.tv_usec) && 449 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 450 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 451 USEC_PER_SEC / HZ); 452 WRITE_ONCE(*timeo_p, val); 453 return 0; 454 } 455 456 static bool sock_needs_netstamp(const struct sock *sk) 457 { 458 switch (sk->sk_family) { 459 case AF_UNSPEC: 460 case AF_UNIX: 461 return false; 462 default: 463 return true; 464 } 465 } 466 467 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 468 { 469 if (sk->sk_flags & flags) { 470 sk->sk_flags &= ~flags; 471 if (sock_needs_netstamp(sk) && 472 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 473 net_disable_timestamp(); 474 } 475 } 476 477 478 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 479 { 480 unsigned long flags; 481 struct sk_buff_head *list = &sk->sk_receive_queue; 482 483 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 484 atomic_inc(&sk->sk_drops); 485 trace_sock_rcvqueue_full(sk, skb); 486 return -ENOMEM; 487 } 488 489 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 490 atomic_inc(&sk->sk_drops); 491 return -ENOBUFS; 492 } 493 494 skb->dev = NULL; 495 skb_set_owner_r(skb, sk); 496 497 /* we escape from rcu protected region, make sure we dont leak 498 * a norefcounted dst 499 */ 500 skb_dst_force(skb); 501 502 spin_lock_irqsave(&list->lock, flags); 503 sock_skb_set_dropcount(sk, skb); 504 __skb_queue_tail(list, skb); 505 spin_unlock_irqrestore(&list->lock, flags); 506 507 if (!sock_flag(sk, SOCK_DEAD)) 508 sk->sk_data_ready(sk); 509 return 0; 510 } 511 EXPORT_SYMBOL(__sock_queue_rcv_skb); 512 513 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 514 enum skb_drop_reason *reason) 515 { 516 enum skb_drop_reason drop_reason; 517 int err; 518 519 err = sk_filter(sk, skb); 520 if (err) { 521 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 522 goto out; 523 } 524 err = __sock_queue_rcv_skb(sk, skb); 525 switch (err) { 526 case -ENOMEM: 527 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 528 break; 529 case -ENOBUFS: 530 drop_reason = SKB_DROP_REASON_PROTO_MEM; 531 break; 532 default: 533 drop_reason = SKB_NOT_DROPPED_YET; 534 break; 535 } 536 out: 537 if (reason) 538 *reason = drop_reason; 539 return err; 540 } 541 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 542 543 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 544 const int nested, unsigned int trim_cap, bool refcounted) 545 { 546 int rc = NET_RX_SUCCESS; 547 548 if (sk_filter_trim_cap(sk, skb, trim_cap)) 549 goto discard_and_relse; 550 551 skb->dev = NULL; 552 553 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 554 atomic_inc(&sk->sk_drops); 555 goto discard_and_relse; 556 } 557 if (nested) 558 bh_lock_sock_nested(sk); 559 else 560 bh_lock_sock(sk); 561 if (!sock_owned_by_user(sk)) { 562 /* 563 * trylock + unlock semantics: 564 */ 565 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 566 567 rc = sk_backlog_rcv(sk, skb); 568 569 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 570 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 571 bh_unlock_sock(sk); 572 atomic_inc(&sk->sk_drops); 573 goto discard_and_relse; 574 } 575 576 bh_unlock_sock(sk); 577 out: 578 if (refcounted) 579 sock_put(sk); 580 return rc; 581 discard_and_relse: 582 kfree_skb(skb); 583 goto out; 584 } 585 EXPORT_SYMBOL(__sk_receive_skb); 586 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 588 u32)); 589 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 590 u32)); 591 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 592 { 593 struct dst_entry *dst = __sk_dst_get(sk); 594 595 if (dst && dst->obsolete && 596 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 597 dst, cookie) == NULL) { 598 sk_tx_queue_clear(sk); 599 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 600 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 601 dst_release(dst); 602 return NULL; 603 } 604 605 return dst; 606 } 607 EXPORT_SYMBOL(__sk_dst_check); 608 609 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 610 { 611 struct dst_entry *dst = sk_dst_get(sk); 612 613 if (dst && dst->obsolete && 614 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 615 dst, cookie) == NULL) { 616 sk_dst_reset(sk); 617 dst_release(dst); 618 return NULL; 619 } 620 621 return dst; 622 } 623 EXPORT_SYMBOL(sk_dst_check); 624 625 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 626 { 627 int ret = -ENOPROTOOPT; 628 #ifdef CONFIG_NETDEVICES 629 struct net *net = sock_net(sk); 630 631 /* Sorry... */ 632 ret = -EPERM; 633 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 634 goto out; 635 636 ret = -EINVAL; 637 if (ifindex < 0) 638 goto out; 639 640 /* Paired with all READ_ONCE() done locklessly. */ 641 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 642 643 if (sk->sk_prot->rehash) 644 sk->sk_prot->rehash(sk); 645 sk_dst_reset(sk); 646 647 ret = 0; 648 649 out: 650 #endif 651 652 return ret; 653 } 654 655 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 656 { 657 int ret; 658 659 if (lock_sk) 660 lock_sock(sk); 661 ret = sock_bindtoindex_locked(sk, ifindex); 662 if (lock_sk) 663 release_sock(sk); 664 665 return ret; 666 } 667 EXPORT_SYMBOL(sock_bindtoindex); 668 669 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 670 { 671 int ret = -ENOPROTOOPT; 672 #ifdef CONFIG_NETDEVICES 673 struct net *net = sock_net(sk); 674 char devname[IFNAMSIZ]; 675 int index; 676 677 ret = -EINVAL; 678 if (optlen < 0) 679 goto out; 680 681 /* Bind this socket to a particular device like "eth0", 682 * as specified in the passed interface name. If the 683 * name is "" or the option length is zero the socket 684 * is not bound. 685 */ 686 if (optlen > IFNAMSIZ - 1) 687 optlen = IFNAMSIZ - 1; 688 memset(devname, 0, sizeof(devname)); 689 690 ret = -EFAULT; 691 if (copy_from_sockptr(devname, optval, optlen)) 692 goto out; 693 694 index = 0; 695 if (devname[0] != '\0') { 696 struct net_device *dev; 697 698 rcu_read_lock(); 699 dev = dev_get_by_name_rcu(net, devname); 700 if (dev) 701 index = dev->ifindex; 702 rcu_read_unlock(); 703 ret = -ENODEV; 704 if (!dev) 705 goto out; 706 } 707 708 sockopt_lock_sock(sk); 709 ret = sock_bindtoindex_locked(sk, index); 710 sockopt_release_sock(sk); 711 out: 712 #endif 713 714 return ret; 715 } 716 717 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 718 sockptr_t optlen, int len) 719 { 720 int ret = -ENOPROTOOPT; 721 #ifdef CONFIG_NETDEVICES 722 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 723 struct net *net = sock_net(sk); 724 char devname[IFNAMSIZ]; 725 726 if (bound_dev_if == 0) { 727 len = 0; 728 goto zero; 729 } 730 731 ret = -EINVAL; 732 if (len < IFNAMSIZ) 733 goto out; 734 735 ret = netdev_get_name(net, devname, bound_dev_if); 736 if (ret) 737 goto out; 738 739 len = strlen(devname) + 1; 740 741 ret = -EFAULT; 742 if (copy_to_sockptr(optval, devname, len)) 743 goto out; 744 745 zero: 746 ret = -EFAULT; 747 if (copy_to_sockptr(optlen, &len, sizeof(int))) 748 goto out; 749 750 ret = 0; 751 752 out: 753 #endif 754 755 return ret; 756 } 757 758 bool sk_mc_loop(const struct sock *sk) 759 { 760 if (dev_recursion_level()) 761 return false; 762 if (!sk) 763 return true; 764 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 765 switch (READ_ONCE(sk->sk_family)) { 766 case AF_INET: 767 return inet_test_bit(MC_LOOP, sk); 768 #if IS_ENABLED(CONFIG_IPV6) 769 case AF_INET6: 770 return inet6_test_bit(MC6_LOOP, sk); 771 #endif 772 } 773 WARN_ON_ONCE(1); 774 return true; 775 } 776 EXPORT_SYMBOL(sk_mc_loop); 777 778 void sock_set_reuseaddr(struct sock *sk) 779 { 780 lock_sock(sk); 781 sk->sk_reuse = SK_CAN_REUSE; 782 release_sock(sk); 783 } 784 EXPORT_SYMBOL(sock_set_reuseaddr); 785 786 void sock_set_reuseport(struct sock *sk) 787 { 788 lock_sock(sk); 789 sk->sk_reuseport = true; 790 release_sock(sk); 791 } 792 EXPORT_SYMBOL(sock_set_reuseport); 793 794 void sock_no_linger(struct sock *sk) 795 { 796 lock_sock(sk); 797 WRITE_ONCE(sk->sk_lingertime, 0); 798 sock_set_flag(sk, SOCK_LINGER); 799 release_sock(sk); 800 } 801 EXPORT_SYMBOL(sock_no_linger); 802 803 void sock_set_priority(struct sock *sk, u32 priority) 804 { 805 WRITE_ONCE(sk->sk_priority, priority); 806 } 807 EXPORT_SYMBOL(sock_set_priority); 808 809 void sock_set_sndtimeo(struct sock *sk, s64 secs) 810 { 811 lock_sock(sk); 812 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 813 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 814 else 815 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 816 release_sock(sk); 817 } 818 EXPORT_SYMBOL(sock_set_sndtimeo); 819 820 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 821 { 822 if (val) { 823 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 824 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 825 sock_set_flag(sk, SOCK_RCVTSTAMP); 826 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 827 } else { 828 sock_reset_flag(sk, SOCK_RCVTSTAMP); 829 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 830 } 831 } 832 833 void sock_enable_timestamps(struct sock *sk) 834 { 835 lock_sock(sk); 836 __sock_set_timestamps(sk, true, false, true); 837 release_sock(sk); 838 } 839 EXPORT_SYMBOL(sock_enable_timestamps); 840 841 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 842 { 843 switch (optname) { 844 case SO_TIMESTAMP_OLD: 845 __sock_set_timestamps(sk, valbool, false, false); 846 break; 847 case SO_TIMESTAMP_NEW: 848 __sock_set_timestamps(sk, valbool, true, false); 849 break; 850 case SO_TIMESTAMPNS_OLD: 851 __sock_set_timestamps(sk, valbool, false, true); 852 break; 853 case SO_TIMESTAMPNS_NEW: 854 __sock_set_timestamps(sk, valbool, true, true); 855 break; 856 } 857 } 858 859 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 860 { 861 struct net *net = sock_net(sk); 862 struct net_device *dev = NULL; 863 bool match = false; 864 int *vclock_index; 865 int i, num; 866 867 if (sk->sk_bound_dev_if) 868 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 869 870 if (!dev) { 871 pr_err("%s: sock not bind to device\n", __func__); 872 return -EOPNOTSUPP; 873 } 874 875 num = ethtool_get_phc_vclocks(dev, &vclock_index); 876 dev_put(dev); 877 878 for (i = 0; i < num; i++) { 879 if (*(vclock_index + i) == phc_index) { 880 match = true; 881 break; 882 } 883 } 884 885 if (num > 0) 886 kfree(vclock_index); 887 888 if (!match) 889 return -EINVAL; 890 891 WRITE_ONCE(sk->sk_bind_phc, phc_index); 892 893 return 0; 894 } 895 896 int sock_set_timestamping(struct sock *sk, int optname, 897 struct so_timestamping timestamping) 898 { 899 int val = timestamping.flags; 900 int ret; 901 902 if (val & ~SOF_TIMESTAMPING_MASK) 903 return -EINVAL; 904 905 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 906 !(val & SOF_TIMESTAMPING_OPT_ID)) 907 return -EINVAL; 908 909 if (val & SOF_TIMESTAMPING_OPT_ID && 910 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 911 if (sk_is_tcp(sk)) { 912 if ((1 << sk->sk_state) & 913 (TCPF_CLOSE | TCPF_LISTEN)) 914 return -EINVAL; 915 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 916 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 917 else 918 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 919 } else { 920 atomic_set(&sk->sk_tskey, 0); 921 } 922 } 923 924 if (val & SOF_TIMESTAMPING_OPT_STATS && 925 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 926 return -EINVAL; 927 928 if (val & SOF_TIMESTAMPING_BIND_PHC) { 929 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 930 if (ret) 931 return ret; 932 } 933 934 WRITE_ONCE(sk->sk_tsflags, val); 935 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 936 937 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 938 sock_enable_timestamp(sk, 939 SOCK_TIMESTAMPING_RX_SOFTWARE); 940 else 941 sock_disable_timestamp(sk, 942 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 943 return 0; 944 } 945 946 void sock_set_keepalive(struct sock *sk) 947 { 948 lock_sock(sk); 949 if (sk->sk_prot->keepalive) 950 sk->sk_prot->keepalive(sk, true); 951 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 952 release_sock(sk); 953 } 954 EXPORT_SYMBOL(sock_set_keepalive); 955 956 static void __sock_set_rcvbuf(struct sock *sk, int val) 957 { 958 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 959 * as a negative value. 960 */ 961 val = min_t(int, val, INT_MAX / 2); 962 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 963 964 /* We double it on the way in to account for "struct sk_buff" etc. 965 * overhead. Applications assume that the SO_RCVBUF setting they make 966 * will allow that much actual data to be received on that socket. 967 * 968 * Applications are unaware that "struct sk_buff" and other overheads 969 * allocate from the receive buffer during socket buffer allocation. 970 * 971 * And after considering the possible alternatives, returning the value 972 * we actually used in getsockopt is the most desirable behavior. 973 */ 974 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 975 } 976 977 void sock_set_rcvbuf(struct sock *sk, int val) 978 { 979 lock_sock(sk); 980 __sock_set_rcvbuf(sk, val); 981 release_sock(sk); 982 } 983 EXPORT_SYMBOL(sock_set_rcvbuf); 984 985 static void __sock_set_mark(struct sock *sk, u32 val) 986 { 987 if (val != sk->sk_mark) { 988 WRITE_ONCE(sk->sk_mark, val); 989 sk_dst_reset(sk); 990 } 991 } 992 993 void sock_set_mark(struct sock *sk, u32 val) 994 { 995 lock_sock(sk); 996 __sock_set_mark(sk, val); 997 release_sock(sk); 998 } 999 EXPORT_SYMBOL(sock_set_mark); 1000 1001 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1002 { 1003 /* Round down bytes to multiple of pages */ 1004 bytes = round_down(bytes, PAGE_SIZE); 1005 1006 WARN_ON(bytes > sk->sk_reserved_mem); 1007 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1008 sk_mem_reclaim(sk); 1009 } 1010 1011 static int sock_reserve_memory(struct sock *sk, int bytes) 1012 { 1013 long allocated; 1014 bool charged; 1015 int pages; 1016 1017 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1018 return -EOPNOTSUPP; 1019 1020 if (!bytes) 1021 return 0; 1022 1023 pages = sk_mem_pages(bytes); 1024 1025 /* pre-charge to memcg */ 1026 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1027 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1028 if (!charged) 1029 return -ENOMEM; 1030 1031 /* pre-charge to forward_alloc */ 1032 sk_memory_allocated_add(sk, pages); 1033 allocated = sk_memory_allocated(sk); 1034 /* If the system goes into memory pressure with this 1035 * precharge, give up and return error. 1036 */ 1037 if (allocated > sk_prot_mem_limits(sk, 1)) { 1038 sk_memory_allocated_sub(sk, pages); 1039 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1040 return -ENOMEM; 1041 } 1042 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1043 1044 WRITE_ONCE(sk->sk_reserved_mem, 1045 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1046 1047 return 0; 1048 } 1049 1050 void sockopt_lock_sock(struct sock *sk) 1051 { 1052 /* When current->bpf_ctx is set, the setsockopt is called from 1053 * a bpf prog. bpf has ensured the sk lock has been 1054 * acquired before calling setsockopt(). 1055 */ 1056 if (has_current_bpf_ctx()) 1057 return; 1058 1059 lock_sock(sk); 1060 } 1061 EXPORT_SYMBOL(sockopt_lock_sock); 1062 1063 void sockopt_release_sock(struct sock *sk) 1064 { 1065 if (has_current_bpf_ctx()) 1066 return; 1067 1068 release_sock(sk); 1069 } 1070 EXPORT_SYMBOL(sockopt_release_sock); 1071 1072 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1073 { 1074 return has_current_bpf_ctx() || ns_capable(ns, cap); 1075 } 1076 EXPORT_SYMBOL(sockopt_ns_capable); 1077 1078 bool sockopt_capable(int cap) 1079 { 1080 return has_current_bpf_ctx() || capable(cap); 1081 } 1082 EXPORT_SYMBOL(sockopt_capable); 1083 1084 /* 1085 * This is meant for all protocols to use and covers goings on 1086 * at the socket level. Everything here is generic. 1087 */ 1088 1089 int sk_setsockopt(struct sock *sk, int level, int optname, 1090 sockptr_t optval, unsigned int optlen) 1091 { 1092 struct so_timestamping timestamping; 1093 struct socket *sock = sk->sk_socket; 1094 struct sock_txtime sk_txtime; 1095 int val; 1096 int valbool; 1097 struct linger ling; 1098 int ret = 0; 1099 1100 /* 1101 * Options without arguments 1102 */ 1103 1104 if (optname == SO_BINDTODEVICE) 1105 return sock_setbindtodevice(sk, optval, optlen); 1106 1107 if (optlen < sizeof(int)) 1108 return -EINVAL; 1109 1110 if (copy_from_sockptr(&val, optval, sizeof(val))) 1111 return -EFAULT; 1112 1113 valbool = val ? 1 : 0; 1114 1115 /* handle options which do not require locking the socket. */ 1116 switch (optname) { 1117 case SO_PRIORITY: 1118 if ((val >= 0 && val <= 6) || 1119 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1120 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1121 sock_set_priority(sk, val); 1122 return 0; 1123 } 1124 return -EPERM; 1125 case SO_PASSSEC: 1126 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1127 return 0; 1128 case SO_PASSCRED: 1129 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1130 return 0; 1131 case SO_PASSPIDFD: 1132 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1133 return 0; 1134 case SO_TYPE: 1135 case SO_PROTOCOL: 1136 case SO_DOMAIN: 1137 case SO_ERROR: 1138 return -ENOPROTOOPT; 1139 #ifdef CONFIG_NET_RX_BUSY_POLL 1140 case SO_BUSY_POLL: 1141 if (val < 0) 1142 return -EINVAL; 1143 WRITE_ONCE(sk->sk_ll_usec, val); 1144 return 0; 1145 case SO_PREFER_BUSY_POLL: 1146 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1147 return -EPERM; 1148 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1149 return 0; 1150 case SO_BUSY_POLL_BUDGET: 1151 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1152 !sockopt_capable(CAP_NET_ADMIN)) 1153 return -EPERM; 1154 if (val < 0 || val > U16_MAX) 1155 return -EINVAL; 1156 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1157 return 0; 1158 #endif 1159 case SO_MAX_PACING_RATE: 1160 { 1161 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1162 unsigned long pacing_rate; 1163 1164 if (sizeof(ulval) != sizeof(val) && 1165 optlen >= sizeof(ulval) && 1166 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1167 return -EFAULT; 1168 } 1169 if (ulval != ~0UL) 1170 cmpxchg(&sk->sk_pacing_status, 1171 SK_PACING_NONE, 1172 SK_PACING_NEEDED); 1173 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1174 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1175 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1176 if (ulval < pacing_rate) 1177 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1178 return 0; 1179 } 1180 case SO_TXREHASH: 1181 if (val < -1 || val > 1) 1182 return -EINVAL; 1183 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1184 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1185 /* Paired with READ_ONCE() in tcp_rtx_synack() 1186 * and sk_getsockopt(). 1187 */ 1188 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1189 return 0; 1190 } 1191 1192 sockopt_lock_sock(sk); 1193 1194 switch (optname) { 1195 case SO_DEBUG: 1196 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1197 ret = -EACCES; 1198 else 1199 sock_valbool_flag(sk, SOCK_DBG, valbool); 1200 break; 1201 case SO_REUSEADDR: 1202 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1203 break; 1204 case SO_REUSEPORT: 1205 sk->sk_reuseport = valbool; 1206 break; 1207 case SO_DONTROUTE: 1208 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1209 sk_dst_reset(sk); 1210 break; 1211 case SO_BROADCAST: 1212 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1213 break; 1214 case SO_SNDBUF: 1215 /* Don't error on this BSD doesn't and if you think 1216 * about it this is right. Otherwise apps have to 1217 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1218 * are treated in BSD as hints 1219 */ 1220 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1221 set_sndbuf: 1222 /* Ensure val * 2 fits into an int, to prevent max_t() 1223 * from treating it as a negative value. 1224 */ 1225 val = min_t(int, val, INT_MAX / 2); 1226 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1227 WRITE_ONCE(sk->sk_sndbuf, 1228 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1229 /* Wake up sending tasks if we upped the value. */ 1230 sk->sk_write_space(sk); 1231 break; 1232 1233 case SO_SNDBUFFORCE: 1234 if (!sockopt_capable(CAP_NET_ADMIN)) { 1235 ret = -EPERM; 1236 break; 1237 } 1238 1239 /* No negative values (to prevent underflow, as val will be 1240 * multiplied by 2). 1241 */ 1242 if (val < 0) 1243 val = 0; 1244 goto set_sndbuf; 1245 1246 case SO_RCVBUF: 1247 /* Don't error on this BSD doesn't and if you think 1248 * about it this is right. Otherwise apps have to 1249 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1250 * are treated in BSD as hints 1251 */ 1252 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1253 break; 1254 1255 case SO_RCVBUFFORCE: 1256 if (!sockopt_capable(CAP_NET_ADMIN)) { 1257 ret = -EPERM; 1258 break; 1259 } 1260 1261 /* No negative values (to prevent underflow, as val will be 1262 * multiplied by 2). 1263 */ 1264 __sock_set_rcvbuf(sk, max(val, 0)); 1265 break; 1266 1267 case SO_KEEPALIVE: 1268 if (sk->sk_prot->keepalive) 1269 sk->sk_prot->keepalive(sk, valbool); 1270 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1271 break; 1272 1273 case SO_OOBINLINE: 1274 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1275 break; 1276 1277 case SO_NO_CHECK: 1278 sk->sk_no_check_tx = valbool; 1279 break; 1280 1281 case SO_LINGER: 1282 if (optlen < sizeof(ling)) { 1283 ret = -EINVAL; /* 1003.1g */ 1284 break; 1285 } 1286 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1287 ret = -EFAULT; 1288 break; 1289 } 1290 if (!ling.l_onoff) { 1291 sock_reset_flag(sk, SOCK_LINGER); 1292 } else { 1293 unsigned long t_sec = ling.l_linger; 1294 1295 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1296 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1297 else 1298 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1299 sock_set_flag(sk, SOCK_LINGER); 1300 } 1301 break; 1302 1303 case SO_BSDCOMPAT: 1304 break; 1305 1306 case SO_TIMESTAMP_OLD: 1307 case SO_TIMESTAMP_NEW: 1308 case SO_TIMESTAMPNS_OLD: 1309 case SO_TIMESTAMPNS_NEW: 1310 sock_set_timestamp(sk, optname, valbool); 1311 break; 1312 1313 case SO_TIMESTAMPING_NEW: 1314 case SO_TIMESTAMPING_OLD: 1315 if (optlen == sizeof(timestamping)) { 1316 if (copy_from_sockptr(×tamping, optval, 1317 sizeof(timestamping))) { 1318 ret = -EFAULT; 1319 break; 1320 } 1321 } else { 1322 memset(×tamping, 0, sizeof(timestamping)); 1323 timestamping.flags = val; 1324 } 1325 ret = sock_set_timestamping(sk, optname, timestamping); 1326 break; 1327 1328 case SO_RCVLOWAT: 1329 { 1330 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1331 1332 if (val < 0) 1333 val = INT_MAX; 1334 if (sock) 1335 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1336 if (set_rcvlowat) 1337 ret = set_rcvlowat(sk, val); 1338 else 1339 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1340 break; 1341 } 1342 case SO_RCVTIMEO_OLD: 1343 case SO_RCVTIMEO_NEW: 1344 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1345 optlen, optname == SO_RCVTIMEO_OLD); 1346 break; 1347 1348 case SO_SNDTIMEO_OLD: 1349 case SO_SNDTIMEO_NEW: 1350 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1351 optlen, optname == SO_SNDTIMEO_OLD); 1352 break; 1353 1354 case SO_ATTACH_FILTER: { 1355 struct sock_fprog fprog; 1356 1357 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1358 if (!ret) 1359 ret = sk_attach_filter(&fprog, sk); 1360 break; 1361 } 1362 case SO_ATTACH_BPF: 1363 ret = -EINVAL; 1364 if (optlen == sizeof(u32)) { 1365 u32 ufd; 1366 1367 ret = -EFAULT; 1368 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1369 break; 1370 1371 ret = sk_attach_bpf(ufd, sk); 1372 } 1373 break; 1374 1375 case SO_ATTACH_REUSEPORT_CBPF: { 1376 struct sock_fprog fprog; 1377 1378 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1379 if (!ret) 1380 ret = sk_reuseport_attach_filter(&fprog, sk); 1381 break; 1382 } 1383 case SO_ATTACH_REUSEPORT_EBPF: 1384 ret = -EINVAL; 1385 if (optlen == sizeof(u32)) { 1386 u32 ufd; 1387 1388 ret = -EFAULT; 1389 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1390 break; 1391 1392 ret = sk_reuseport_attach_bpf(ufd, sk); 1393 } 1394 break; 1395 1396 case SO_DETACH_REUSEPORT_BPF: 1397 ret = reuseport_detach_prog(sk); 1398 break; 1399 1400 case SO_DETACH_FILTER: 1401 ret = sk_detach_filter(sk); 1402 break; 1403 1404 case SO_LOCK_FILTER: 1405 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1406 ret = -EPERM; 1407 else 1408 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1409 break; 1410 1411 case SO_MARK: 1412 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1413 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1414 ret = -EPERM; 1415 break; 1416 } 1417 1418 __sock_set_mark(sk, val); 1419 break; 1420 case SO_RCVMARK: 1421 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1422 break; 1423 1424 case SO_RXQ_OVFL: 1425 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1426 break; 1427 1428 case SO_WIFI_STATUS: 1429 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1430 break; 1431 1432 case SO_PEEK_OFF: 1433 { 1434 int (*set_peek_off)(struct sock *sk, int val); 1435 1436 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1437 if (set_peek_off) 1438 ret = set_peek_off(sk, val); 1439 else 1440 ret = -EOPNOTSUPP; 1441 break; 1442 } 1443 1444 case SO_NOFCS: 1445 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1446 break; 1447 1448 case SO_SELECT_ERR_QUEUE: 1449 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1450 break; 1451 1452 1453 case SO_INCOMING_CPU: 1454 reuseport_update_incoming_cpu(sk, val); 1455 break; 1456 1457 case SO_CNX_ADVICE: 1458 if (val == 1) 1459 dst_negative_advice(sk); 1460 break; 1461 1462 case SO_ZEROCOPY: 1463 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1464 if (!(sk_is_tcp(sk) || 1465 (sk->sk_type == SOCK_DGRAM && 1466 sk->sk_protocol == IPPROTO_UDP))) 1467 ret = -EOPNOTSUPP; 1468 } else if (sk->sk_family != PF_RDS) { 1469 ret = -EOPNOTSUPP; 1470 } 1471 if (!ret) { 1472 if (val < 0 || val > 1) 1473 ret = -EINVAL; 1474 else 1475 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1476 } 1477 break; 1478 1479 case SO_TXTIME: 1480 if (optlen != sizeof(struct sock_txtime)) { 1481 ret = -EINVAL; 1482 break; 1483 } else if (copy_from_sockptr(&sk_txtime, optval, 1484 sizeof(struct sock_txtime))) { 1485 ret = -EFAULT; 1486 break; 1487 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1488 ret = -EINVAL; 1489 break; 1490 } 1491 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1492 * scheduler has enough safe guards. 1493 */ 1494 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1495 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1496 ret = -EPERM; 1497 break; 1498 } 1499 sock_valbool_flag(sk, SOCK_TXTIME, true); 1500 sk->sk_clockid = sk_txtime.clockid; 1501 sk->sk_txtime_deadline_mode = 1502 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1503 sk->sk_txtime_report_errors = 1504 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1505 break; 1506 1507 case SO_BINDTOIFINDEX: 1508 ret = sock_bindtoindex_locked(sk, val); 1509 break; 1510 1511 case SO_BUF_LOCK: 1512 if (val & ~SOCK_BUF_LOCK_MASK) { 1513 ret = -EINVAL; 1514 break; 1515 } 1516 sk->sk_userlocks = val | (sk->sk_userlocks & 1517 ~SOCK_BUF_LOCK_MASK); 1518 break; 1519 1520 case SO_RESERVE_MEM: 1521 { 1522 int delta; 1523 1524 if (val < 0) { 1525 ret = -EINVAL; 1526 break; 1527 } 1528 1529 delta = val - sk->sk_reserved_mem; 1530 if (delta < 0) 1531 sock_release_reserved_memory(sk, -delta); 1532 else 1533 ret = sock_reserve_memory(sk, delta); 1534 break; 1535 } 1536 1537 default: 1538 ret = -ENOPROTOOPT; 1539 break; 1540 } 1541 sockopt_release_sock(sk); 1542 return ret; 1543 } 1544 1545 int sock_setsockopt(struct socket *sock, int level, int optname, 1546 sockptr_t optval, unsigned int optlen) 1547 { 1548 return sk_setsockopt(sock->sk, level, optname, 1549 optval, optlen); 1550 } 1551 EXPORT_SYMBOL(sock_setsockopt); 1552 1553 static const struct cred *sk_get_peer_cred(struct sock *sk) 1554 { 1555 const struct cred *cred; 1556 1557 spin_lock(&sk->sk_peer_lock); 1558 cred = get_cred(sk->sk_peer_cred); 1559 spin_unlock(&sk->sk_peer_lock); 1560 1561 return cred; 1562 } 1563 1564 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1565 struct ucred *ucred) 1566 { 1567 ucred->pid = pid_vnr(pid); 1568 ucred->uid = ucred->gid = -1; 1569 if (cred) { 1570 struct user_namespace *current_ns = current_user_ns(); 1571 1572 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1573 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1574 } 1575 } 1576 1577 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1578 { 1579 struct user_namespace *user_ns = current_user_ns(); 1580 int i; 1581 1582 for (i = 0; i < src->ngroups; i++) { 1583 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1584 1585 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1586 return -EFAULT; 1587 } 1588 1589 return 0; 1590 } 1591 1592 int sk_getsockopt(struct sock *sk, int level, int optname, 1593 sockptr_t optval, sockptr_t optlen) 1594 { 1595 struct socket *sock = sk->sk_socket; 1596 1597 union { 1598 int val; 1599 u64 val64; 1600 unsigned long ulval; 1601 struct linger ling; 1602 struct old_timeval32 tm32; 1603 struct __kernel_old_timeval tm; 1604 struct __kernel_sock_timeval stm; 1605 struct sock_txtime txtime; 1606 struct so_timestamping timestamping; 1607 } v; 1608 1609 int lv = sizeof(int); 1610 int len; 1611 1612 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1613 return -EFAULT; 1614 if (len < 0) 1615 return -EINVAL; 1616 1617 memset(&v, 0, sizeof(v)); 1618 1619 switch (optname) { 1620 case SO_DEBUG: 1621 v.val = sock_flag(sk, SOCK_DBG); 1622 break; 1623 1624 case SO_DONTROUTE: 1625 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1626 break; 1627 1628 case SO_BROADCAST: 1629 v.val = sock_flag(sk, SOCK_BROADCAST); 1630 break; 1631 1632 case SO_SNDBUF: 1633 v.val = READ_ONCE(sk->sk_sndbuf); 1634 break; 1635 1636 case SO_RCVBUF: 1637 v.val = READ_ONCE(sk->sk_rcvbuf); 1638 break; 1639 1640 case SO_REUSEADDR: 1641 v.val = sk->sk_reuse; 1642 break; 1643 1644 case SO_REUSEPORT: 1645 v.val = sk->sk_reuseport; 1646 break; 1647 1648 case SO_KEEPALIVE: 1649 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1650 break; 1651 1652 case SO_TYPE: 1653 v.val = sk->sk_type; 1654 break; 1655 1656 case SO_PROTOCOL: 1657 v.val = sk->sk_protocol; 1658 break; 1659 1660 case SO_DOMAIN: 1661 v.val = sk->sk_family; 1662 break; 1663 1664 case SO_ERROR: 1665 v.val = -sock_error(sk); 1666 if (v.val == 0) 1667 v.val = xchg(&sk->sk_err_soft, 0); 1668 break; 1669 1670 case SO_OOBINLINE: 1671 v.val = sock_flag(sk, SOCK_URGINLINE); 1672 break; 1673 1674 case SO_NO_CHECK: 1675 v.val = sk->sk_no_check_tx; 1676 break; 1677 1678 case SO_PRIORITY: 1679 v.val = READ_ONCE(sk->sk_priority); 1680 break; 1681 1682 case SO_LINGER: 1683 lv = sizeof(v.ling); 1684 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1685 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1686 break; 1687 1688 case SO_BSDCOMPAT: 1689 break; 1690 1691 case SO_TIMESTAMP_OLD: 1692 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1693 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1694 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1695 break; 1696 1697 case SO_TIMESTAMPNS_OLD: 1698 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1699 break; 1700 1701 case SO_TIMESTAMP_NEW: 1702 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1703 break; 1704 1705 case SO_TIMESTAMPNS_NEW: 1706 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1707 break; 1708 1709 case SO_TIMESTAMPING_OLD: 1710 lv = sizeof(v.timestamping); 1711 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1712 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1713 break; 1714 1715 case SO_RCVTIMEO_OLD: 1716 case SO_RCVTIMEO_NEW: 1717 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1718 SO_RCVTIMEO_OLD == optname); 1719 break; 1720 1721 case SO_SNDTIMEO_OLD: 1722 case SO_SNDTIMEO_NEW: 1723 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1724 SO_SNDTIMEO_OLD == optname); 1725 break; 1726 1727 case SO_RCVLOWAT: 1728 v.val = READ_ONCE(sk->sk_rcvlowat); 1729 break; 1730 1731 case SO_SNDLOWAT: 1732 v.val = 1; 1733 break; 1734 1735 case SO_PASSCRED: 1736 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1737 break; 1738 1739 case SO_PASSPIDFD: 1740 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1741 break; 1742 1743 case SO_PEERCRED: 1744 { 1745 struct ucred peercred; 1746 if (len > sizeof(peercred)) 1747 len = sizeof(peercred); 1748 1749 spin_lock(&sk->sk_peer_lock); 1750 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1751 spin_unlock(&sk->sk_peer_lock); 1752 1753 if (copy_to_sockptr(optval, &peercred, len)) 1754 return -EFAULT; 1755 goto lenout; 1756 } 1757 1758 case SO_PEERPIDFD: 1759 { 1760 struct pid *peer_pid; 1761 struct file *pidfd_file = NULL; 1762 int pidfd; 1763 1764 if (len > sizeof(pidfd)) 1765 len = sizeof(pidfd); 1766 1767 spin_lock(&sk->sk_peer_lock); 1768 peer_pid = get_pid(sk->sk_peer_pid); 1769 spin_unlock(&sk->sk_peer_lock); 1770 1771 if (!peer_pid) 1772 return -ENODATA; 1773 1774 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1775 put_pid(peer_pid); 1776 if (pidfd < 0) 1777 return pidfd; 1778 1779 if (copy_to_sockptr(optval, &pidfd, len) || 1780 copy_to_sockptr(optlen, &len, sizeof(int))) { 1781 put_unused_fd(pidfd); 1782 fput(pidfd_file); 1783 1784 return -EFAULT; 1785 } 1786 1787 fd_install(pidfd, pidfd_file); 1788 return 0; 1789 } 1790 1791 case SO_PEERGROUPS: 1792 { 1793 const struct cred *cred; 1794 int ret, n; 1795 1796 cred = sk_get_peer_cred(sk); 1797 if (!cred) 1798 return -ENODATA; 1799 1800 n = cred->group_info->ngroups; 1801 if (len < n * sizeof(gid_t)) { 1802 len = n * sizeof(gid_t); 1803 put_cred(cred); 1804 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1805 } 1806 len = n * sizeof(gid_t); 1807 1808 ret = groups_to_user(optval, cred->group_info); 1809 put_cred(cred); 1810 if (ret) 1811 return ret; 1812 goto lenout; 1813 } 1814 1815 case SO_PEERNAME: 1816 { 1817 struct sockaddr_storage address; 1818 1819 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1820 if (lv < 0) 1821 return -ENOTCONN; 1822 if (lv < len) 1823 return -EINVAL; 1824 if (copy_to_sockptr(optval, &address, len)) 1825 return -EFAULT; 1826 goto lenout; 1827 } 1828 1829 /* Dubious BSD thing... Probably nobody even uses it, but 1830 * the UNIX standard wants it for whatever reason... -DaveM 1831 */ 1832 case SO_ACCEPTCONN: 1833 v.val = sk->sk_state == TCP_LISTEN; 1834 break; 1835 1836 case SO_PASSSEC: 1837 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1838 break; 1839 1840 case SO_PEERSEC: 1841 return security_socket_getpeersec_stream(sock, 1842 optval, optlen, len); 1843 1844 case SO_MARK: 1845 v.val = READ_ONCE(sk->sk_mark); 1846 break; 1847 1848 case SO_RCVMARK: 1849 v.val = sock_flag(sk, SOCK_RCVMARK); 1850 break; 1851 1852 case SO_RXQ_OVFL: 1853 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1854 break; 1855 1856 case SO_WIFI_STATUS: 1857 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1858 break; 1859 1860 case SO_PEEK_OFF: 1861 if (!READ_ONCE(sock->ops)->set_peek_off) 1862 return -EOPNOTSUPP; 1863 1864 v.val = READ_ONCE(sk->sk_peek_off); 1865 break; 1866 case SO_NOFCS: 1867 v.val = sock_flag(sk, SOCK_NOFCS); 1868 break; 1869 1870 case SO_BINDTODEVICE: 1871 return sock_getbindtodevice(sk, optval, optlen, len); 1872 1873 case SO_GET_FILTER: 1874 len = sk_get_filter(sk, optval, len); 1875 if (len < 0) 1876 return len; 1877 1878 goto lenout; 1879 1880 case SO_LOCK_FILTER: 1881 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1882 break; 1883 1884 case SO_BPF_EXTENSIONS: 1885 v.val = bpf_tell_extensions(); 1886 break; 1887 1888 case SO_SELECT_ERR_QUEUE: 1889 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1890 break; 1891 1892 #ifdef CONFIG_NET_RX_BUSY_POLL 1893 case SO_BUSY_POLL: 1894 v.val = READ_ONCE(sk->sk_ll_usec); 1895 break; 1896 case SO_PREFER_BUSY_POLL: 1897 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1898 break; 1899 #endif 1900 1901 case SO_MAX_PACING_RATE: 1902 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1903 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1904 lv = sizeof(v.ulval); 1905 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1906 } else { 1907 /* 32bit version */ 1908 v.val = min_t(unsigned long, ~0U, 1909 READ_ONCE(sk->sk_max_pacing_rate)); 1910 } 1911 break; 1912 1913 case SO_INCOMING_CPU: 1914 v.val = READ_ONCE(sk->sk_incoming_cpu); 1915 break; 1916 1917 case SO_MEMINFO: 1918 { 1919 u32 meminfo[SK_MEMINFO_VARS]; 1920 1921 sk_get_meminfo(sk, meminfo); 1922 1923 len = min_t(unsigned int, len, sizeof(meminfo)); 1924 if (copy_to_sockptr(optval, &meminfo, len)) 1925 return -EFAULT; 1926 1927 goto lenout; 1928 } 1929 1930 #ifdef CONFIG_NET_RX_BUSY_POLL 1931 case SO_INCOMING_NAPI_ID: 1932 v.val = READ_ONCE(sk->sk_napi_id); 1933 1934 /* aggregate non-NAPI IDs down to 0 */ 1935 if (v.val < MIN_NAPI_ID) 1936 v.val = 0; 1937 1938 break; 1939 #endif 1940 1941 case SO_COOKIE: 1942 lv = sizeof(u64); 1943 if (len < lv) 1944 return -EINVAL; 1945 v.val64 = sock_gen_cookie(sk); 1946 break; 1947 1948 case SO_ZEROCOPY: 1949 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1950 break; 1951 1952 case SO_TXTIME: 1953 lv = sizeof(v.txtime); 1954 v.txtime.clockid = sk->sk_clockid; 1955 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1956 SOF_TXTIME_DEADLINE_MODE : 0; 1957 v.txtime.flags |= sk->sk_txtime_report_errors ? 1958 SOF_TXTIME_REPORT_ERRORS : 0; 1959 break; 1960 1961 case SO_BINDTOIFINDEX: 1962 v.val = READ_ONCE(sk->sk_bound_dev_if); 1963 break; 1964 1965 case SO_NETNS_COOKIE: 1966 lv = sizeof(u64); 1967 if (len != lv) 1968 return -EINVAL; 1969 v.val64 = sock_net(sk)->net_cookie; 1970 break; 1971 1972 case SO_BUF_LOCK: 1973 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1974 break; 1975 1976 case SO_RESERVE_MEM: 1977 v.val = READ_ONCE(sk->sk_reserved_mem); 1978 break; 1979 1980 case SO_TXREHASH: 1981 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 1982 v.val = READ_ONCE(sk->sk_txrehash); 1983 break; 1984 1985 default: 1986 /* We implement the SO_SNDLOWAT etc to not be settable 1987 * (1003.1g 7). 1988 */ 1989 return -ENOPROTOOPT; 1990 } 1991 1992 if (len > lv) 1993 len = lv; 1994 if (copy_to_sockptr(optval, &v, len)) 1995 return -EFAULT; 1996 lenout: 1997 if (copy_to_sockptr(optlen, &len, sizeof(int))) 1998 return -EFAULT; 1999 return 0; 2000 } 2001 2002 /* 2003 * Initialize an sk_lock. 2004 * 2005 * (We also register the sk_lock with the lock validator.) 2006 */ 2007 static inline void sock_lock_init(struct sock *sk) 2008 { 2009 if (sk->sk_kern_sock) 2010 sock_lock_init_class_and_name( 2011 sk, 2012 af_family_kern_slock_key_strings[sk->sk_family], 2013 af_family_kern_slock_keys + sk->sk_family, 2014 af_family_kern_key_strings[sk->sk_family], 2015 af_family_kern_keys + sk->sk_family); 2016 else 2017 sock_lock_init_class_and_name( 2018 sk, 2019 af_family_slock_key_strings[sk->sk_family], 2020 af_family_slock_keys + sk->sk_family, 2021 af_family_key_strings[sk->sk_family], 2022 af_family_keys + sk->sk_family); 2023 } 2024 2025 /* 2026 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2027 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2028 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2029 */ 2030 static void sock_copy(struct sock *nsk, const struct sock *osk) 2031 { 2032 const struct proto *prot = READ_ONCE(osk->sk_prot); 2033 #ifdef CONFIG_SECURITY_NETWORK 2034 void *sptr = nsk->sk_security; 2035 #endif 2036 2037 /* If we move sk_tx_queue_mapping out of the private section, 2038 * we must check if sk_tx_queue_clear() is called after 2039 * sock_copy() in sk_clone_lock(). 2040 */ 2041 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2042 offsetof(struct sock, sk_dontcopy_begin) || 2043 offsetof(struct sock, sk_tx_queue_mapping) >= 2044 offsetof(struct sock, sk_dontcopy_end)); 2045 2046 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2047 2048 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2049 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2050 2051 #ifdef CONFIG_SECURITY_NETWORK 2052 nsk->sk_security = sptr; 2053 security_sk_clone(osk, nsk); 2054 #endif 2055 } 2056 2057 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2058 int family) 2059 { 2060 struct sock *sk; 2061 struct kmem_cache *slab; 2062 2063 slab = prot->slab; 2064 if (slab != NULL) { 2065 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2066 if (!sk) 2067 return sk; 2068 if (want_init_on_alloc(priority)) 2069 sk_prot_clear_nulls(sk, prot->obj_size); 2070 } else 2071 sk = kmalloc(prot->obj_size, priority); 2072 2073 if (sk != NULL) { 2074 if (security_sk_alloc(sk, family, priority)) 2075 goto out_free; 2076 2077 if (!try_module_get(prot->owner)) 2078 goto out_free_sec; 2079 } 2080 2081 return sk; 2082 2083 out_free_sec: 2084 security_sk_free(sk); 2085 out_free: 2086 if (slab != NULL) 2087 kmem_cache_free(slab, sk); 2088 else 2089 kfree(sk); 2090 return NULL; 2091 } 2092 2093 static void sk_prot_free(struct proto *prot, struct sock *sk) 2094 { 2095 struct kmem_cache *slab; 2096 struct module *owner; 2097 2098 owner = prot->owner; 2099 slab = prot->slab; 2100 2101 cgroup_sk_free(&sk->sk_cgrp_data); 2102 mem_cgroup_sk_free(sk); 2103 security_sk_free(sk); 2104 if (slab != NULL) 2105 kmem_cache_free(slab, sk); 2106 else 2107 kfree(sk); 2108 module_put(owner); 2109 } 2110 2111 /** 2112 * sk_alloc - All socket objects are allocated here 2113 * @net: the applicable net namespace 2114 * @family: protocol family 2115 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2116 * @prot: struct proto associated with this new sock instance 2117 * @kern: is this to be a kernel socket? 2118 */ 2119 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2120 struct proto *prot, int kern) 2121 { 2122 struct sock *sk; 2123 2124 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2125 if (sk) { 2126 sk->sk_family = family; 2127 /* 2128 * See comment in struct sock definition to understand 2129 * why we need sk_prot_creator -acme 2130 */ 2131 sk->sk_prot = sk->sk_prot_creator = prot; 2132 sk->sk_kern_sock = kern; 2133 sock_lock_init(sk); 2134 sk->sk_net_refcnt = kern ? 0 : 1; 2135 if (likely(sk->sk_net_refcnt)) { 2136 get_net_track(net, &sk->ns_tracker, priority); 2137 sock_inuse_add(net, 1); 2138 } else { 2139 __netns_tracker_alloc(net, &sk->ns_tracker, 2140 false, priority); 2141 } 2142 2143 sock_net_set(sk, net); 2144 refcount_set(&sk->sk_wmem_alloc, 1); 2145 2146 mem_cgroup_sk_alloc(sk); 2147 cgroup_sk_alloc(&sk->sk_cgrp_data); 2148 sock_update_classid(&sk->sk_cgrp_data); 2149 sock_update_netprioidx(&sk->sk_cgrp_data); 2150 sk_tx_queue_clear(sk); 2151 } 2152 2153 return sk; 2154 } 2155 EXPORT_SYMBOL(sk_alloc); 2156 2157 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2158 * grace period. This is the case for UDP sockets and TCP listeners. 2159 */ 2160 static void __sk_destruct(struct rcu_head *head) 2161 { 2162 struct sock *sk = container_of(head, struct sock, sk_rcu); 2163 struct sk_filter *filter; 2164 2165 if (sk->sk_destruct) 2166 sk->sk_destruct(sk); 2167 2168 filter = rcu_dereference_check(sk->sk_filter, 2169 refcount_read(&sk->sk_wmem_alloc) == 0); 2170 if (filter) { 2171 sk_filter_uncharge(sk, filter); 2172 RCU_INIT_POINTER(sk->sk_filter, NULL); 2173 } 2174 2175 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2176 2177 #ifdef CONFIG_BPF_SYSCALL 2178 bpf_sk_storage_free(sk); 2179 #endif 2180 2181 if (atomic_read(&sk->sk_omem_alloc)) 2182 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2183 __func__, atomic_read(&sk->sk_omem_alloc)); 2184 2185 if (sk->sk_frag.page) { 2186 put_page(sk->sk_frag.page); 2187 sk->sk_frag.page = NULL; 2188 } 2189 2190 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2191 put_cred(sk->sk_peer_cred); 2192 put_pid(sk->sk_peer_pid); 2193 2194 if (likely(sk->sk_net_refcnt)) 2195 put_net_track(sock_net(sk), &sk->ns_tracker); 2196 else 2197 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2198 2199 sk_prot_free(sk->sk_prot_creator, sk); 2200 } 2201 2202 void sk_destruct(struct sock *sk) 2203 { 2204 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2205 2206 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2207 reuseport_detach_sock(sk); 2208 use_call_rcu = true; 2209 } 2210 2211 if (use_call_rcu) 2212 call_rcu(&sk->sk_rcu, __sk_destruct); 2213 else 2214 __sk_destruct(&sk->sk_rcu); 2215 } 2216 2217 static void __sk_free(struct sock *sk) 2218 { 2219 if (likely(sk->sk_net_refcnt)) 2220 sock_inuse_add(sock_net(sk), -1); 2221 2222 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2223 sock_diag_broadcast_destroy(sk); 2224 else 2225 sk_destruct(sk); 2226 } 2227 2228 void sk_free(struct sock *sk) 2229 { 2230 /* 2231 * We subtract one from sk_wmem_alloc and can know if 2232 * some packets are still in some tx queue. 2233 * If not null, sock_wfree() will call __sk_free(sk) later 2234 */ 2235 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2236 __sk_free(sk); 2237 } 2238 EXPORT_SYMBOL(sk_free); 2239 2240 static void sk_init_common(struct sock *sk) 2241 { 2242 skb_queue_head_init(&sk->sk_receive_queue); 2243 skb_queue_head_init(&sk->sk_write_queue); 2244 skb_queue_head_init(&sk->sk_error_queue); 2245 2246 rwlock_init(&sk->sk_callback_lock); 2247 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2248 af_rlock_keys + sk->sk_family, 2249 af_family_rlock_key_strings[sk->sk_family]); 2250 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2251 af_wlock_keys + sk->sk_family, 2252 af_family_wlock_key_strings[sk->sk_family]); 2253 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2254 af_elock_keys + sk->sk_family, 2255 af_family_elock_key_strings[sk->sk_family]); 2256 lockdep_set_class_and_name(&sk->sk_callback_lock, 2257 af_callback_keys + sk->sk_family, 2258 af_family_clock_key_strings[sk->sk_family]); 2259 } 2260 2261 /** 2262 * sk_clone_lock - clone a socket, and lock its clone 2263 * @sk: the socket to clone 2264 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2265 * 2266 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2267 */ 2268 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2269 { 2270 struct proto *prot = READ_ONCE(sk->sk_prot); 2271 struct sk_filter *filter; 2272 bool is_charged = true; 2273 struct sock *newsk; 2274 2275 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2276 if (!newsk) 2277 goto out; 2278 2279 sock_copy(newsk, sk); 2280 2281 newsk->sk_prot_creator = prot; 2282 2283 /* SANITY */ 2284 if (likely(newsk->sk_net_refcnt)) { 2285 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2286 sock_inuse_add(sock_net(newsk), 1); 2287 } else { 2288 /* Kernel sockets are not elevating the struct net refcount. 2289 * Instead, use a tracker to more easily detect if a layer 2290 * is not properly dismantling its kernel sockets at netns 2291 * destroy time. 2292 */ 2293 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2294 false, priority); 2295 } 2296 sk_node_init(&newsk->sk_node); 2297 sock_lock_init(newsk); 2298 bh_lock_sock(newsk); 2299 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2300 newsk->sk_backlog.len = 0; 2301 2302 atomic_set(&newsk->sk_rmem_alloc, 0); 2303 2304 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2305 refcount_set(&newsk->sk_wmem_alloc, 1); 2306 2307 atomic_set(&newsk->sk_omem_alloc, 0); 2308 sk_init_common(newsk); 2309 2310 newsk->sk_dst_cache = NULL; 2311 newsk->sk_dst_pending_confirm = 0; 2312 newsk->sk_wmem_queued = 0; 2313 newsk->sk_forward_alloc = 0; 2314 newsk->sk_reserved_mem = 0; 2315 atomic_set(&newsk->sk_drops, 0); 2316 newsk->sk_send_head = NULL; 2317 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2318 atomic_set(&newsk->sk_zckey, 0); 2319 2320 sock_reset_flag(newsk, SOCK_DONE); 2321 2322 /* sk->sk_memcg will be populated at accept() time */ 2323 newsk->sk_memcg = NULL; 2324 2325 cgroup_sk_clone(&newsk->sk_cgrp_data); 2326 2327 rcu_read_lock(); 2328 filter = rcu_dereference(sk->sk_filter); 2329 if (filter != NULL) 2330 /* though it's an empty new sock, the charging may fail 2331 * if sysctl_optmem_max was changed between creation of 2332 * original socket and cloning 2333 */ 2334 is_charged = sk_filter_charge(newsk, filter); 2335 RCU_INIT_POINTER(newsk->sk_filter, filter); 2336 rcu_read_unlock(); 2337 2338 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2339 /* We need to make sure that we don't uncharge the new 2340 * socket if we couldn't charge it in the first place 2341 * as otherwise we uncharge the parent's filter. 2342 */ 2343 if (!is_charged) 2344 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2345 sk_free_unlock_clone(newsk); 2346 newsk = NULL; 2347 goto out; 2348 } 2349 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2350 2351 if (bpf_sk_storage_clone(sk, newsk)) { 2352 sk_free_unlock_clone(newsk); 2353 newsk = NULL; 2354 goto out; 2355 } 2356 2357 /* Clear sk_user_data if parent had the pointer tagged 2358 * as not suitable for copying when cloning. 2359 */ 2360 if (sk_user_data_is_nocopy(newsk)) 2361 newsk->sk_user_data = NULL; 2362 2363 newsk->sk_err = 0; 2364 newsk->sk_err_soft = 0; 2365 newsk->sk_priority = 0; 2366 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2367 2368 /* Before updating sk_refcnt, we must commit prior changes to memory 2369 * (Documentation/RCU/rculist_nulls.rst for details) 2370 */ 2371 smp_wmb(); 2372 refcount_set(&newsk->sk_refcnt, 2); 2373 2374 sk_set_socket(newsk, NULL); 2375 sk_tx_queue_clear(newsk); 2376 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2377 2378 if (newsk->sk_prot->sockets_allocated) 2379 sk_sockets_allocated_inc(newsk); 2380 2381 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2382 net_enable_timestamp(); 2383 out: 2384 return newsk; 2385 } 2386 EXPORT_SYMBOL_GPL(sk_clone_lock); 2387 2388 void sk_free_unlock_clone(struct sock *sk) 2389 { 2390 /* It is still raw copy of parent, so invalidate 2391 * destructor and make plain sk_free() */ 2392 sk->sk_destruct = NULL; 2393 bh_unlock_sock(sk); 2394 sk_free(sk); 2395 } 2396 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2397 2398 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2399 { 2400 bool is_ipv6 = false; 2401 u32 max_size; 2402 2403 #if IS_ENABLED(CONFIG_IPV6) 2404 is_ipv6 = (sk->sk_family == AF_INET6 && 2405 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2406 #endif 2407 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2408 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2409 READ_ONCE(dst->dev->gso_ipv4_max_size); 2410 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2411 max_size = GSO_LEGACY_MAX_SIZE; 2412 2413 return max_size - (MAX_TCP_HEADER + 1); 2414 } 2415 2416 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2417 { 2418 u32 max_segs = 1; 2419 2420 sk->sk_route_caps = dst->dev->features; 2421 if (sk_is_tcp(sk)) 2422 sk->sk_route_caps |= NETIF_F_GSO; 2423 if (sk->sk_route_caps & NETIF_F_GSO) 2424 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2425 if (unlikely(sk->sk_gso_disabled)) 2426 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2427 if (sk_can_gso(sk)) { 2428 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2429 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2430 } else { 2431 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2432 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2433 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2434 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2435 } 2436 } 2437 sk->sk_gso_max_segs = max_segs; 2438 sk_dst_set(sk, dst); 2439 } 2440 EXPORT_SYMBOL_GPL(sk_setup_caps); 2441 2442 /* 2443 * Simple resource managers for sockets. 2444 */ 2445 2446 2447 /* 2448 * Write buffer destructor automatically called from kfree_skb. 2449 */ 2450 void sock_wfree(struct sk_buff *skb) 2451 { 2452 struct sock *sk = skb->sk; 2453 unsigned int len = skb->truesize; 2454 bool free; 2455 2456 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2457 if (sock_flag(sk, SOCK_RCU_FREE) && 2458 sk->sk_write_space == sock_def_write_space) { 2459 rcu_read_lock(); 2460 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2461 sock_def_write_space_wfree(sk); 2462 rcu_read_unlock(); 2463 if (unlikely(free)) 2464 __sk_free(sk); 2465 return; 2466 } 2467 2468 /* 2469 * Keep a reference on sk_wmem_alloc, this will be released 2470 * after sk_write_space() call 2471 */ 2472 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2473 sk->sk_write_space(sk); 2474 len = 1; 2475 } 2476 /* 2477 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2478 * could not do because of in-flight packets 2479 */ 2480 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2481 __sk_free(sk); 2482 } 2483 EXPORT_SYMBOL(sock_wfree); 2484 2485 /* This variant of sock_wfree() is used by TCP, 2486 * since it sets SOCK_USE_WRITE_QUEUE. 2487 */ 2488 void __sock_wfree(struct sk_buff *skb) 2489 { 2490 struct sock *sk = skb->sk; 2491 2492 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2493 __sk_free(sk); 2494 } 2495 2496 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2497 { 2498 skb_orphan(skb); 2499 skb->sk = sk; 2500 #ifdef CONFIG_INET 2501 if (unlikely(!sk_fullsock(sk))) { 2502 skb->destructor = sock_edemux; 2503 sock_hold(sk); 2504 return; 2505 } 2506 #endif 2507 skb->destructor = sock_wfree; 2508 skb_set_hash_from_sk(skb, sk); 2509 /* 2510 * We used to take a refcount on sk, but following operation 2511 * is enough to guarantee sk_free() wont free this sock until 2512 * all in-flight packets are completed 2513 */ 2514 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2515 } 2516 EXPORT_SYMBOL(skb_set_owner_w); 2517 2518 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2519 { 2520 #ifdef CONFIG_TLS_DEVICE 2521 /* Drivers depend on in-order delivery for crypto offload, 2522 * partial orphan breaks out-of-order-OK logic. 2523 */ 2524 if (skb->decrypted) 2525 return false; 2526 #endif 2527 return (skb->destructor == sock_wfree || 2528 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2529 } 2530 2531 /* This helper is used by netem, as it can hold packets in its 2532 * delay queue. We want to allow the owner socket to send more 2533 * packets, as if they were already TX completed by a typical driver. 2534 * But we also want to keep skb->sk set because some packet schedulers 2535 * rely on it (sch_fq for example). 2536 */ 2537 void skb_orphan_partial(struct sk_buff *skb) 2538 { 2539 if (skb_is_tcp_pure_ack(skb)) 2540 return; 2541 2542 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2543 return; 2544 2545 skb_orphan(skb); 2546 } 2547 EXPORT_SYMBOL(skb_orphan_partial); 2548 2549 /* 2550 * Read buffer destructor automatically called from kfree_skb. 2551 */ 2552 void sock_rfree(struct sk_buff *skb) 2553 { 2554 struct sock *sk = skb->sk; 2555 unsigned int len = skb->truesize; 2556 2557 atomic_sub(len, &sk->sk_rmem_alloc); 2558 sk_mem_uncharge(sk, len); 2559 } 2560 EXPORT_SYMBOL(sock_rfree); 2561 2562 /* 2563 * Buffer destructor for skbs that are not used directly in read or write 2564 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2565 */ 2566 void sock_efree(struct sk_buff *skb) 2567 { 2568 sock_put(skb->sk); 2569 } 2570 EXPORT_SYMBOL(sock_efree); 2571 2572 /* Buffer destructor for prefetch/receive path where reference count may 2573 * not be held, e.g. for listen sockets. 2574 */ 2575 #ifdef CONFIG_INET 2576 void sock_pfree(struct sk_buff *skb) 2577 { 2578 if (sk_is_refcounted(skb->sk)) 2579 sock_gen_put(skb->sk); 2580 } 2581 EXPORT_SYMBOL(sock_pfree); 2582 #endif /* CONFIG_INET */ 2583 2584 kuid_t sock_i_uid(struct sock *sk) 2585 { 2586 kuid_t uid; 2587 2588 read_lock_bh(&sk->sk_callback_lock); 2589 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2590 read_unlock_bh(&sk->sk_callback_lock); 2591 return uid; 2592 } 2593 EXPORT_SYMBOL(sock_i_uid); 2594 2595 unsigned long __sock_i_ino(struct sock *sk) 2596 { 2597 unsigned long ino; 2598 2599 read_lock(&sk->sk_callback_lock); 2600 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2601 read_unlock(&sk->sk_callback_lock); 2602 return ino; 2603 } 2604 EXPORT_SYMBOL(__sock_i_ino); 2605 2606 unsigned long sock_i_ino(struct sock *sk) 2607 { 2608 unsigned long ino; 2609 2610 local_bh_disable(); 2611 ino = __sock_i_ino(sk); 2612 local_bh_enable(); 2613 return ino; 2614 } 2615 EXPORT_SYMBOL(sock_i_ino); 2616 2617 /* 2618 * Allocate a skb from the socket's send buffer. 2619 */ 2620 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2621 gfp_t priority) 2622 { 2623 if (force || 2624 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2625 struct sk_buff *skb = alloc_skb(size, priority); 2626 2627 if (skb) { 2628 skb_set_owner_w(skb, sk); 2629 return skb; 2630 } 2631 } 2632 return NULL; 2633 } 2634 EXPORT_SYMBOL(sock_wmalloc); 2635 2636 static void sock_ofree(struct sk_buff *skb) 2637 { 2638 struct sock *sk = skb->sk; 2639 2640 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2641 } 2642 2643 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2644 gfp_t priority) 2645 { 2646 struct sk_buff *skb; 2647 2648 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2649 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2650 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2651 return NULL; 2652 2653 skb = alloc_skb(size, priority); 2654 if (!skb) 2655 return NULL; 2656 2657 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2658 skb->sk = sk; 2659 skb->destructor = sock_ofree; 2660 return skb; 2661 } 2662 2663 /* 2664 * Allocate a memory block from the socket's option memory buffer. 2665 */ 2666 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2667 { 2668 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2669 2670 if ((unsigned int)size <= optmem_max && 2671 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2672 void *mem; 2673 /* First do the add, to avoid the race if kmalloc 2674 * might sleep. 2675 */ 2676 atomic_add(size, &sk->sk_omem_alloc); 2677 mem = kmalloc(size, priority); 2678 if (mem) 2679 return mem; 2680 atomic_sub(size, &sk->sk_omem_alloc); 2681 } 2682 return NULL; 2683 } 2684 EXPORT_SYMBOL(sock_kmalloc); 2685 2686 /* Free an option memory block. Note, we actually want the inline 2687 * here as this allows gcc to detect the nullify and fold away the 2688 * condition entirely. 2689 */ 2690 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2691 const bool nullify) 2692 { 2693 if (WARN_ON_ONCE(!mem)) 2694 return; 2695 if (nullify) 2696 kfree_sensitive(mem); 2697 else 2698 kfree(mem); 2699 atomic_sub(size, &sk->sk_omem_alloc); 2700 } 2701 2702 void sock_kfree_s(struct sock *sk, void *mem, int size) 2703 { 2704 __sock_kfree_s(sk, mem, size, false); 2705 } 2706 EXPORT_SYMBOL(sock_kfree_s); 2707 2708 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2709 { 2710 __sock_kfree_s(sk, mem, size, true); 2711 } 2712 EXPORT_SYMBOL(sock_kzfree_s); 2713 2714 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2715 I think, these locks should be removed for datagram sockets. 2716 */ 2717 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2718 { 2719 DEFINE_WAIT(wait); 2720 2721 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2722 for (;;) { 2723 if (!timeo) 2724 break; 2725 if (signal_pending(current)) 2726 break; 2727 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2728 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2729 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2730 break; 2731 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2732 break; 2733 if (READ_ONCE(sk->sk_err)) 2734 break; 2735 timeo = schedule_timeout(timeo); 2736 } 2737 finish_wait(sk_sleep(sk), &wait); 2738 return timeo; 2739 } 2740 2741 2742 /* 2743 * Generic send/receive buffer handlers 2744 */ 2745 2746 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2747 unsigned long data_len, int noblock, 2748 int *errcode, int max_page_order) 2749 { 2750 struct sk_buff *skb; 2751 long timeo; 2752 int err; 2753 2754 timeo = sock_sndtimeo(sk, noblock); 2755 for (;;) { 2756 err = sock_error(sk); 2757 if (err != 0) 2758 goto failure; 2759 2760 err = -EPIPE; 2761 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2762 goto failure; 2763 2764 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2765 break; 2766 2767 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2768 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2769 err = -EAGAIN; 2770 if (!timeo) 2771 goto failure; 2772 if (signal_pending(current)) 2773 goto interrupted; 2774 timeo = sock_wait_for_wmem(sk, timeo); 2775 } 2776 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2777 errcode, sk->sk_allocation); 2778 if (skb) 2779 skb_set_owner_w(skb, sk); 2780 return skb; 2781 2782 interrupted: 2783 err = sock_intr_errno(timeo); 2784 failure: 2785 *errcode = err; 2786 return NULL; 2787 } 2788 EXPORT_SYMBOL(sock_alloc_send_pskb); 2789 2790 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2791 struct sockcm_cookie *sockc) 2792 { 2793 u32 tsflags; 2794 2795 switch (cmsg->cmsg_type) { 2796 case SO_MARK: 2797 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2798 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2799 return -EPERM; 2800 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2801 return -EINVAL; 2802 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2803 break; 2804 case SO_TIMESTAMPING_OLD: 2805 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2806 return -EINVAL; 2807 2808 tsflags = *(u32 *)CMSG_DATA(cmsg); 2809 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2810 return -EINVAL; 2811 2812 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2813 sockc->tsflags |= tsflags; 2814 break; 2815 case SCM_TXTIME: 2816 if (!sock_flag(sk, SOCK_TXTIME)) 2817 return -EINVAL; 2818 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2819 return -EINVAL; 2820 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2821 break; 2822 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2823 case SCM_RIGHTS: 2824 case SCM_CREDENTIALS: 2825 break; 2826 default: 2827 return -EINVAL; 2828 } 2829 return 0; 2830 } 2831 EXPORT_SYMBOL(__sock_cmsg_send); 2832 2833 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2834 struct sockcm_cookie *sockc) 2835 { 2836 struct cmsghdr *cmsg; 2837 int ret; 2838 2839 for_each_cmsghdr(cmsg, msg) { 2840 if (!CMSG_OK(msg, cmsg)) 2841 return -EINVAL; 2842 if (cmsg->cmsg_level != SOL_SOCKET) 2843 continue; 2844 ret = __sock_cmsg_send(sk, cmsg, sockc); 2845 if (ret) 2846 return ret; 2847 } 2848 return 0; 2849 } 2850 EXPORT_SYMBOL(sock_cmsg_send); 2851 2852 static void sk_enter_memory_pressure(struct sock *sk) 2853 { 2854 if (!sk->sk_prot->enter_memory_pressure) 2855 return; 2856 2857 sk->sk_prot->enter_memory_pressure(sk); 2858 } 2859 2860 static void sk_leave_memory_pressure(struct sock *sk) 2861 { 2862 if (sk->sk_prot->leave_memory_pressure) { 2863 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2864 tcp_leave_memory_pressure, sk); 2865 } else { 2866 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2867 2868 if (memory_pressure && READ_ONCE(*memory_pressure)) 2869 WRITE_ONCE(*memory_pressure, 0); 2870 } 2871 } 2872 2873 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2874 2875 /** 2876 * skb_page_frag_refill - check that a page_frag contains enough room 2877 * @sz: minimum size of the fragment we want to get 2878 * @pfrag: pointer to page_frag 2879 * @gfp: priority for memory allocation 2880 * 2881 * Note: While this allocator tries to use high order pages, there is 2882 * no guarantee that allocations succeed. Therefore, @sz MUST be 2883 * less or equal than PAGE_SIZE. 2884 */ 2885 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2886 { 2887 if (pfrag->page) { 2888 if (page_ref_count(pfrag->page) == 1) { 2889 pfrag->offset = 0; 2890 return true; 2891 } 2892 if (pfrag->offset + sz <= pfrag->size) 2893 return true; 2894 put_page(pfrag->page); 2895 } 2896 2897 pfrag->offset = 0; 2898 if (SKB_FRAG_PAGE_ORDER && 2899 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2900 /* Avoid direct reclaim but allow kswapd to wake */ 2901 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2902 __GFP_COMP | __GFP_NOWARN | 2903 __GFP_NORETRY, 2904 SKB_FRAG_PAGE_ORDER); 2905 if (likely(pfrag->page)) { 2906 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2907 return true; 2908 } 2909 } 2910 pfrag->page = alloc_page(gfp); 2911 if (likely(pfrag->page)) { 2912 pfrag->size = PAGE_SIZE; 2913 return true; 2914 } 2915 return false; 2916 } 2917 EXPORT_SYMBOL(skb_page_frag_refill); 2918 2919 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2920 { 2921 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2922 return true; 2923 2924 sk_enter_memory_pressure(sk); 2925 sk_stream_moderate_sndbuf(sk); 2926 return false; 2927 } 2928 EXPORT_SYMBOL(sk_page_frag_refill); 2929 2930 void __lock_sock(struct sock *sk) 2931 __releases(&sk->sk_lock.slock) 2932 __acquires(&sk->sk_lock.slock) 2933 { 2934 DEFINE_WAIT(wait); 2935 2936 for (;;) { 2937 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2938 TASK_UNINTERRUPTIBLE); 2939 spin_unlock_bh(&sk->sk_lock.slock); 2940 schedule(); 2941 spin_lock_bh(&sk->sk_lock.slock); 2942 if (!sock_owned_by_user(sk)) 2943 break; 2944 } 2945 finish_wait(&sk->sk_lock.wq, &wait); 2946 } 2947 2948 void __release_sock(struct sock *sk) 2949 __releases(&sk->sk_lock.slock) 2950 __acquires(&sk->sk_lock.slock) 2951 { 2952 struct sk_buff *skb, *next; 2953 2954 while ((skb = sk->sk_backlog.head) != NULL) { 2955 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2956 2957 spin_unlock_bh(&sk->sk_lock.slock); 2958 2959 do { 2960 next = skb->next; 2961 prefetch(next); 2962 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2963 skb_mark_not_on_list(skb); 2964 sk_backlog_rcv(sk, skb); 2965 2966 cond_resched(); 2967 2968 skb = next; 2969 } while (skb != NULL); 2970 2971 spin_lock_bh(&sk->sk_lock.slock); 2972 } 2973 2974 /* 2975 * Doing the zeroing here guarantee we can not loop forever 2976 * while a wild producer attempts to flood us. 2977 */ 2978 sk->sk_backlog.len = 0; 2979 } 2980 2981 void __sk_flush_backlog(struct sock *sk) 2982 { 2983 spin_lock_bh(&sk->sk_lock.slock); 2984 __release_sock(sk); 2985 2986 if (sk->sk_prot->release_cb) 2987 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 2988 tcp_release_cb, sk); 2989 2990 spin_unlock_bh(&sk->sk_lock.slock); 2991 } 2992 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2993 2994 /** 2995 * sk_wait_data - wait for data to arrive at sk_receive_queue 2996 * @sk: sock to wait on 2997 * @timeo: for how long 2998 * @skb: last skb seen on sk_receive_queue 2999 * 3000 * Now socket state including sk->sk_err is changed only under lock, 3001 * hence we may omit checks after joining wait queue. 3002 * We check receive queue before schedule() only as optimization; 3003 * it is very likely that release_sock() added new data. 3004 */ 3005 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3006 { 3007 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3008 int rc; 3009 3010 add_wait_queue(sk_sleep(sk), &wait); 3011 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3012 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3013 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3014 remove_wait_queue(sk_sleep(sk), &wait); 3015 return rc; 3016 } 3017 EXPORT_SYMBOL(sk_wait_data); 3018 3019 /** 3020 * __sk_mem_raise_allocated - increase memory_allocated 3021 * @sk: socket 3022 * @size: memory size to allocate 3023 * @amt: pages to allocate 3024 * @kind: allocation type 3025 * 3026 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3027 * 3028 * Unlike the globally shared limits among the sockets under same protocol, 3029 * consuming the budget of a memcg won't have direct effect on other ones. 3030 * So be optimistic about memcg's tolerance, and leave the callers to decide 3031 * whether or not to raise allocated through sk_under_memory_pressure() or 3032 * its variants. 3033 */ 3034 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3035 { 3036 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3037 struct proto *prot = sk->sk_prot; 3038 bool charged = false; 3039 long allocated; 3040 3041 sk_memory_allocated_add(sk, amt); 3042 allocated = sk_memory_allocated(sk); 3043 3044 if (memcg) { 3045 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3046 goto suppress_allocation; 3047 charged = true; 3048 } 3049 3050 /* Under limit. */ 3051 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3052 sk_leave_memory_pressure(sk); 3053 return 1; 3054 } 3055 3056 /* Under pressure. */ 3057 if (allocated > sk_prot_mem_limits(sk, 1)) 3058 sk_enter_memory_pressure(sk); 3059 3060 /* Over hard limit. */ 3061 if (allocated > sk_prot_mem_limits(sk, 2)) 3062 goto suppress_allocation; 3063 3064 /* Guarantee minimum buffer size under pressure (either global 3065 * or memcg) to make sure features described in RFC 7323 (TCP 3066 * Extensions for High Performance) work properly. 3067 * 3068 * This rule does NOT stand when exceeds global or memcg's hard 3069 * limit, or else a DoS attack can be taken place by spawning 3070 * lots of sockets whose usage are under minimum buffer size. 3071 */ 3072 if (kind == SK_MEM_RECV) { 3073 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3074 return 1; 3075 3076 } else { /* SK_MEM_SEND */ 3077 int wmem0 = sk_get_wmem0(sk, prot); 3078 3079 if (sk->sk_type == SOCK_STREAM) { 3080 if (sk->sk_wmem_queued < wmem0) 3081 return 1; 3082 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3083 return 1; 3084 } 3085 } 3086 3087 if (sk_has_memory_pressure(sk)) { 3088 u64 alloc; 3089 3090 /* The following 'average' heuristic is within the 3091 * scope of global accounting, so it only makes 3092 * sense for global memory pressure. 3093 */ 3094 if (!sk_under_global_memory_pressure(sk)) 3095 return 1; 3096 3097 /* Try to be fair among all the sockets under global 3098 * pressure by allowing the ones that below average 3099 * usage to raise. 3100 */ 3101 alloc = sk_sockets_allocated_read_positive(sk); 3102 if (sk_prot_mem_limits(sk, 2) > alloc * 3103 sk_mem_pages(sk->sk_wmem_queued + 3104 atomic_read(&sk->sk_rmem_alloc) + 3105 sk->sk_forward_alloc)) 3106 return 1; 3107 } 3108 3109 suppress_allocation: 3110 3111 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3112 sk_stream_moderate_sndbuf(sk); 3113 3114 /* Fail only if socket is _under_ its sndbuf. 3115 * In this case we cannot block, so that we have to fail. 3116 */ 3117 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3118 /* Force charge with __GFP_NOFAIL */ 3119 if (memcg && !charged) { 3120 mem_cgroup_charge_skmem(memcg, amt, 3121 gfp_memcg_charge() | __GFP_NOFAIL); 3122 } 3123 return 1; 3124 } 3125 } 3126 3127 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3128 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3129 3130 sk_memory_allocated_sub(sk, amt); 3131 3132 if (charged) 3133 mem_cgroup_uncharge_skmem(memcg, amt); 3134 3135 return 0; 3136 } 3137 3138 /** 3139 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3140 * @sk: socket 3141 * @size: memory size to allocate 3142 * @kind: allocation type 3143 * 3144 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3145 * rmem allocation. This function assumes that protocols which have 3146 * memory_pressure use sk_wmem_queued as write buffer accounting. 3147 */ 3148 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3149 { 3150 int ret, amt = sk_mem_pages(size); 3151 3152 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3153 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3154 if (!ret) 3155 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3156 return ret; 3157 } 3158 EXPORT_SYMBOL(__sk_mem_schedule); 3159 3160 /** 3161 * __sk_mem_reduce_allocated - reclaim memory_allocated 3162 * @sk: socket 3163 * @amount: number of quanta 3164 * 3165 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3166 */ 3167 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3168 { 3169 sk_memory_allocated_sub(sk, amount); 3170 3171 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3172 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3173 3174 if (sk_under_global_memory_pressure(sk) && 3175 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3176 sk_leave_memory_pressure(sk); 3177 } 3178 3179 /** 3180 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3181 * @sk: socket 3182 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3183 */ 3184 void __sk_mem_reclaim(struct sock *sk, int amount) 3185 { 3186 amount >>= PAGE_SHIFT; 3187 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3188 __sk_mem_reduce_allocated(sk, amount); 3189 } 3190 EXPORT_SYMBOL(__sk_mem_reclaim); 3191 3192 int sk_set_peek_off(struct sock *sk, int val) 3193 { 3194 WRITE_ONCE(sk->sk_peek_off, val); 3195 return 0; 3196 } 3197 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3198 3199 /* 3200 * Set of default routines for initialising struct proto_ops when 3201 * the protocol does not support a particular function. In certain 3202 * cases where it makes no sense for a protocol to have a "do nothing" 3203 * function, some default processing is provided. 3204 */ 3205 3206 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3207 { 3208 return -EOPNOTSUPP; 3209 } 3210 EXPORT_SYMBOL(sock_no_bind); 3211 3212 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3213 int len, int flags) 3214 { 3215 return -EOPNOTSUPP; 3216 } 3217 EXPORT_SYMBOL(sock_no_connect); 3218 3219 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3220 { 3221 return -EOPNOTSUPP; 3222 } 3223 EXPORT_SYMBOL(sock_no_socketpair); 3224 3225 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3226 bool kern) 3227 { 3228 return -EOPNOTSUPP; 3229 } 3230 EXPORT_SYMBOL(sock_no_accept); 3231 3232 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3233 int peer) 3234 { 3235 return -EOPNOTSUPP; 3236 } 3237 EXPORT_SYMBOL(sock_no_getname); 3238 3239 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3240 { 3241 return -EOPNOTSUPP; 3242 } 3243 EXPORT_SYMBOL(sock_no_ioctl); 3244 3245 int sock_no_listen(struct socket *sock, int backlog) 3246 { 3247 return -EOPNOTSUPP; 3248 } 3249 EXPORT_SYMBOL(sock_no_listen); 3250 3251 int sock_no_shutdown(struct socket *sock, int how) 3252 { 3253 return -EOPNOTSUPP; 3254 } 3255 EXPORT_SYMBOL(sock_no_shutdown); 3256 3257 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3258 { 3259 return -EOPNOTSUPP; 3260 } 3261 EXPORT_SYMBOL(sock_no_sendmsg); 3262 3263 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3264 { 3265 return -EOPNOTSUPP; 3266 } 3267 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3268 3269 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3270 int flags) 3271 { 3272 return -EOPNOTSUPP; 3273 } 3274 EXPORT_SYMBOL(sock_no_recvmsg); 3275 3276 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3277 { 3278 /* Mirror missing mmap method error code */ 3279 return -ENODEV; 3280 } 3281 EXPORT_SYMBOL(sock_no_mmap); 3282 3283 /* 3284 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3285 * various sock-based usage counts. 3286 */ 3287 void __receive_sock(struct file *file) 3288 { 3289 struct socket *sock; 3290 3291 sock = sock_from_file(file); 3292 if (sock) { 3293 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3294 sock_update_classid(&sock->sk->sk_cgrp_data); 3295 } 3296 } 3297 3298 /* 3299 * Default Socket Callbacks 3300 */ 3301 3302 static void sock_def_wakeup(struct sock *sk) 3303 { 3304 struct socket_wq *wq; 3305 3306 rcu_read_lock(); 3307 wq = rcu_dereference(sk->sk_wq); 3308 if (skwq_has_sleeper(wq)) 3309 wake_up_interruptible_all(&wq->wait); 3310 rcu_read_unlock(); 3311 } 3312 3313 static void sock_def_error_report(struct sock *sk) 3314 { 3315 struct socket_wq *wq; 3316 3317 rcu_read_lock(); 3318 wq = rcu_dereference(sk->sk_wq); 3319 if (skwq_has_sleeper(wq)) 3320 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3321 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3322 rcu_read_unlock(); 3323 } 3324 3325 void sock_def_readable(struct sock *sk) 3326 { 3327 struct socket_wq *wq; 3328 3329 trace_sk_data_ready(sk); 3330 3331 rcu_read_lock(); 3332 wq = rcu_dereference(sk->sk_wq); 3333 if (skwq_has_sleeper(wq)) 3334 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3335 EPOLLRDNORM | EPOLLRDBAND); 3336 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3337 rcu_read_unlock(); 3338 } 3339 3340 static void sock_def_write_space(struct sock *sk) 3341 { 3342 struct socket_wq *wq; 3343 3344 rcu_read_lock(); 3345 3346 /* Do not wake up a writer until he can make "significant" 3347 * progress. --DaveM 3348 */ 3349 if (sock_writeable(sk)) { 3350 wq = rcu_dereference(sk->sk_wq); 3351 if (skwq_has_sleeper(wq)) 3352 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3353 EPOLLWRNORM | EPOLLWRBAND); 3354 3355 /* Should agree with poll, otherwise some programs break */ 3356 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3357 } 3358 3359 rcu_read_unlock(); 3360 } 3361 3362 /* An optimised version of sock_def_write_space(), should only be called 3363 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3364 * ->sk_wmem_alloc. 3365 */ 3366 static void sock_def_write_space_wfree(struct sock *sk) 3367 { 3368 /* Do not wake up a writer until he can make "significant" 3369 * progress. --DaveM 3370 */ 3371 if (sock_writeable(sk)) { 3372 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3373 3374 /* rely on refcount_sub from sock_wfree() */ 3375 smp_mb__after_atomic(); 3376 if (wq && waitqueue_active(&wq->wait)) 3377 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3378 EPOLLWRNORM | EPOLLWRBAND); 3379 3380 /* Should agree with poll, otherwise some programs break */ 3381 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3382 } 3383 } 3384 3385 static void sock_def_destruct(struct sock *sk) 3386 { 3387 } 3388 3389 void sk_send_sigurg(struct sock *sk) 3390 { 3391 if (sk->sk_socket && sk->sk_socket->file) 3392 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3393 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3394 } 3395 EXPORT_SYMBOL(sk_send_sigurg); 3396 3397 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3398 unsigned long expires) 3399 { 3400 if (!mod_timer(timer, expires)) 3401 sock_hold(sk); 3402 } 3403 EXPORT_SYMBOL(sk_reset_timer); 3404 3405 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3406 { 3407 if (del_timer(timer)) 3408 __sock_put(sk); 3409 } 3410 EXPORT_SYMBOL(sk_stop_timer); 3411 3412 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3413 { 3414 if (del_timer_sync(timer)) 3415 __sock_put(sk); 3416 } 3417 EXPORT_SYMBOL(sk_stop_timer_sync); 3418 3419 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3420 { 3421 sk_init_common(sk); 3422 sk->sk_send_head = NULL; 3423 3424 timer_setup(&sk->sk_timer, NULL, 0); 3425 3426 sk->sk_allocation = GFP_KERNEL; 3427 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3428 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3429 sk->sk_state = TCP_CLOSE; 3430 sk->sk_use_task_frag = true; 3431 sk_set_socket(sk, sock); 3432 3433 sock_set_flag(sk, SOCK_ZAPPED); 3434 3435 if (sock) { 3436 sk->sk_type = sock->type; 3437 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3438 sock->sk = sk; 3439 } else { 3440 RCU_INIT_POINTER(sk->sk_wq, NULL); 3441 } 3442 sk->sk_uid = uid; 3443 3444 rwlock_init(&sk->sk_callback_lock); 3445 if (sk->sk_kern_sock) 3446 lockdep_set_class_and_name( 3447 &sk->sk_callback_lock, 3448 af_kern_callback_keys + sk->sk_family, 3449 af_family_kern_clock_key_strings[sk->sk_family]); 3450 else 3451 lockdep_set_class_and_name( 3452 &sk->sk_callback_lock, 3453 af_callback_keys + sk->sk_family, 3454 af_family_clock_key_strings[sk->sk_family]); 3455 3456 sk->sk_state_change = sock_def_wakeup; 3457 sk->sk_data_ready = sock_def_readable; 3458 sk->sk_write_space = sock_def_write_space; 3459 sk->sk_error_report = sock_def_error_report; 3460 sk->sk_destruct = sock_def_destruct; 3461 3462 sk->sk_frag.page = NULL; 3463 sk->sk_frag.offset = 0; 3464 sk->sk_peek_off = -1; 3465 3466 sk->sk_peer_pid = NULL; 3467 sk->sk_peer_cred = NULL; 3468 spin_lock_init(&sk->sk_peer_lock); 3469 3470 sk->sk_write_pending = 0; 3471 sk->sk_rcvlowat = 1; 3472 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3473 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3474 3475 sk->sk_stamp = SK_DEFAULT_STAMP; 3476 #if BITS_PER_LONG==32 3477 seqlock_init(&sk->sk_stamp_seq); 3478 #endif 3479 atomic_set(&sk->sk_zckey, 0); 3480 3481 #ifdef CONFIG_NET_RX_BUSY_POLL 3482 sk->sk_napi_id = 0; 3483 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3484 #endif 3485 3486 sk->sk_max_pacing_rate = ~0UL; 3487 sk->sk_pacing_rate = ~0UL; 3488 WRITE_ONCE(sk->sk_pacing_shift, 10); 3489 sk->sk_incoming_cpu = -1; 3490 3491 sk_rx_queue_clear(sk); 3492 /* 3493 * Before updating sk_refcnt, we must commit prior changes to memory 3494 * (Documentation/RCU/rculist_nulls.rst for details) 3495 */ 3496 smp_wmb(); 3497 refcount_set(&sk->sk_refcnt, 1); 3498 atomic_set(&sk->sk_drops, 0); 3499 } 3500 EXPORT_SYMBOL(sock_init_data_uid); 3501 3502 void sock_init_data(struct socket *sock, struct sock *sk) 3503 { 3504 kuid_t uid = sock ? 3505 SOCK_INODE(sock)->i_uid : 3506 make_kuid(sock_net(sk)->user_ns, 0); 3507 3508 sock_init_data_uid(sock, sk, uid); 3509 } 3510 EXPORT_SYMBOL(sock_init_data); 3511 3512 void lock_sock_nested(struct sock *sk, int subclass) 3513 { 3514 /* The sk_lock has mutex_lock() semantics here. */ 3515 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3516 3517 might_sleep(); 3518 spin_lock_bh(&sk->sk_lock.slock); 3519 if (sock_owned_by_user_nocheck(sk)) 3520 __lock_sock(sk); 3521 sk->sk_lock.owned = 1; 3522 spin_unlock_bh(&sk->sk_lock.slock); 3523 } 3524 EXPORT_SYMBOL(lock_sock_nested); 3525 3526 void release_sock(struct sock *sk) 3527 { 3528 spin_lock_bh(&sk->sk_lock.slock); 3529 if (sk->sk_backlog.tail) 3530 __release_sock(sk); 3531 3532 if (sk->sk_prot->release_cb) 3533 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3534 tcp_release_cb, sk); 3535 3536 sock_release_ownership(sk); 3537 if (waitqueue_active(&sk->sk_lock.wq)) 3538 wake_up(&sk->sk_lock.wq); 3539 spin_unlock_bh(&sk->sk_lock.slock); 3540 } 3541 EXPORT_SYMBOL(release_sock); 3542 3543 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3544 { 3545 might_sleep(); 3546 spin_lock_bh(&sk->sk_lock.slock); 3547 3548 if (!sock_owned_by_user_nocheck(sk)) { 3549 /* 3550 * Fast path return with bottom halves disabled and 3551 * sock::sk_lock.slock held. 3552 * 3553 * The 'mutex' is not contended and holding 3554 * sock::sk_lock.slock prevents all other lockers to 3555 * proceed so the corresponding unlock_sock_fast() can 3556 * avoid the slow path of release_sock() completely and 3557 * just release slock. 3558 * 3559 * From a semantical POV this is equivalent to 'acquiring' 3560 * the 'mutex', hence the corresponding lockdep 3561 * mutex_release() has to happen in the fast path of 3562 * unlock_sock_fast(). 3563 */ 3564 return false; 3565 } 3566 3567 __lock_sock(sk); 3568 sk->sk_lock.owned = 1; 3569 __acquire(&sk->sk_lock.slock); 3570 spin_unlock_bh(&sk->sk_lock.slock); 3571 return true; 3572 } 3573 EXPORT_SYMBOL(__lock_sock_fast); 3574 3575 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3576 bool timeval, bool time32) 3577 { 3578 struct sock *sk = sock->sk; 3579 struct timespec64 ts; 3580 3581 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3582 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3583 if (ts.tv_sec == -1) 3584 return -ENOENT; 3585 if (ts.tv_sec == 0) { 3586 ktime_t kt = ktime_get_real(); 3587 sock_write_timestamp(sk, kt); 3588 ts = ktime_to_timespec64(kt); 3589 } 3590 3591 if (timeval) 3592 ts.tv_nsec /= 1000; 3593 3594 #ifdef CONFIG_COMPAT_32BIT_TIME 3595 if (time32) 3596 return put_old_timespec32(&ts, userstamp); 3597 #endif 3598 #ifdef CONFIG_SPARC64 3599 /* beware of padding in sparc64 timeval */ 3600 if (timeval && !in_compat_syscall()) { 3601 struct __kernel_old_timeval __user tv = { 3602 .tv_sec = ts.tv_sec, 3603 .tv_usec = ts.tv_nsec, 3604 }; 3605 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3606 return -EFAULT; 3607 return 0; 3608 } 3609 #endif 3610 return put_timespec64(&ts, userstamp); 3611 } 3612 EXPORT_SYMBOL(sock_gettstamp); 3613 3614 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3615 { 3616 if (!sock_flag(sk, flag)) { 3617 unsigned long previous_flags = sk->sk_flags; 3618 3619 sock_set_flag(sk, flag); 3620 /* 3621 * we just set one of the two flags which require net 3622 * time stamping, but time stamping might have been on 3623 * already because of the other one 3624 */ 3625 if (sock_needs_netstamp(sk) && 3626 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3627 net_enable_timestamp(); 3628 } 3629 } 3630 3631 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3632 int level, int type) 3633 { 3634 struct sock_exterr_skb *serr; 3635 struct sk_buff *skb; 3636 int copied, err; 3637 3638 err = -EAGAIN; 3639 skb = sock_dequeue_err_skb(sk); 3640 if (skb == NULL) 3641 goto out; 3642 3643 copied = skb->len; 3644 if (copied > len) { 3645 msg->msg_flags |= MSG_TRUNC; 3646 copied = len; 3647 } 3648 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3649 if (err) 3650 goto out_free_skb; 3651 3652 sock_recv_timestamp(msg, sk, skb); 3653 3654 serr = SKB_EXT_ERR(skb); 3655 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3656 3657 msg->msg_flags |= MSG_ERRQUEUE; 3658 err = copied; 3659 3660 out_free_skb: 3661 kfree_skb(skb); 3662 out: 3663 return err; 3664 } 3665 EXPORT_SYMBOL(sock_recv_errqueue); 3666 3667 /* 3668 * Get a socket option on an socket. 3669 * 3670 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3671 * asynchronous errors should be reported by getsockopt. We assume 3672 * this means if you specify SO_ERROR (otherwise whats the point of it). 3673 */ 3674 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3675 char __user *optval, int __user *optlen) 3676 { 3677 struct sock *sk = sock->sk; 3678 3679 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3680 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3681 } 3682 EXPORT_SYMBOL(sock_common_getsockopt); 3683 3684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3685 int flags) 3686 { 3687 struct sock *sk = sock->sk; 3688 int addr_len = 0; 3689 int err; 3690 3691 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3692 if (err >= 0) 3693 msg->msg_namelen = addr_len; 3694 return err; 3695 } 3696 EXPORT_SYMBOL(sock_common_recvmsg); 3697 3698 /* 3699 * Set socket options on an inet socket. 3700 */ 3701 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3702 sockptr_t optval, unsigned int optlen) 3703 { 3704 struct sock *sk = sock->sk; 3705 3706 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3707 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3708 } 3709 EXPORT_SYMBOL(sock_common_setsockopt); 3710 3711 void sk_common_release(struct sock *sk) 3712 { 3713 if (sk->sk_prot->destroy) 3714 sk->sk_prot->destroy(sk); 3715 3716 /* 3717 * Observation: when sk_common_release is called, processes have 3718 * no access to socket. But net still has. 3719 * Step one, detach it from networking: 3720 * 3721 * A. Remove from hash tables. 3722 */ 3723 3724 sk->sk_prot->unhash(sk); 3725 3726 /* 3727 * In this point socket cannot receive new packets, but it is possible 3728 * that some packets are in flight because some CPU runs receiver and 3729 * did hash table lookup before we unhashed socket. They will achieve 3730 * receive queue and will be purged by socket destructor. 3731 * 3732 * Also we still have packets pending on receive queue and probably, 3733 * our own packets waiting in device queues. sock_destroy will drain 3734 * receive queue, but transmitted packets will delay socket destruction 3735 * until the last reference will be released. 3736 */ 3737 3738 sock_orphan(sk); 3739 3740 xfrm_sk_free_policy(sk); 3741 3742 sock_put(sk); 3743 } 3744 EXPORT_SYMBOL(sk_common_release); 3745 3746 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3747 { 3748 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3749 3750 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3751 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3752 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3753 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3754 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3755 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3756 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3757 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3758 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3759 } 3760 3761 #ifdef CONFIG_PROC_FS 3762 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3763 3764 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3765 { 3766 int cpu, idx = prot->inuse_idx; 3767 int res = 0; 3768 3769 for_each_possible_cpu(cpu) 3770 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3771 3772 return res >= 0 ? res : 0; 3773 } 3774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3775 3776 int sock_inuse_get(struct net *net) 3777 { 3778 int cpu, res = 0; 3779 3780 for_each_possible_cpu(cpu) 3781 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3782 3783 return res; 3784 } 3785 3786 EXPORT_SYMBOL_GPL(sock_inuse_get); 3787 3788 static int __net_init sock_inuse_init_net(struct net *net) 3789 { 3790 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3791 if (net->core.prot_inuse == NULL) 3792 return -ENOMEM; 3793 return 0; 3794 } 3795 3796 static void __net_exit sock_inuse_exit_net(struct net *net) 3797 { 3798 free_percpu(net->core.prot_inuse); 3799 } 3800 3801 static struct pernet_operations net_inuse_ops = { 3802 .init = sock_inuse_init_net, 3803 .exit = sock_inuse_exit_net, 3804 }; 3805 3806 static __init int net_inuse_init(void) 3807 { 3808 if (register_pernet_subsys(&net_inuse_ops)) 3809 panic("Cannot initialize net inuse counters"); 3810 3811 return 0; 3812 } 3813 3814 core_initcall(net_inuse_init); 3815 3816 static int assign_proto_idx(struct proto *prot) 3817 { 3818 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3819 3820 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3821 pr_err("PROTO_INUSE_NR exhausted\n"); 3822 return -ENOSPC; 3823 } 3824 3825 set_bit(prot->inuse_idx, proto_inuse_idx); 3826 return 0; 3827 } 3828 3829 static void release_proto_idx(struct proto *prot) 3830 { 3831 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3832 clear_bit(prot->inuse_idx, proto_inuse_idx); 3833 } 3834 #else 3835 static inline int assign_proto_idx(struct proto *prot) 3836 { 3837 return 0; 3838 } 3839 3840 static inline void release_proto_idx(struct proto *prot) 3841 { 3842 } 3843 3844 #endif 3845 3846 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3847 { 3848 if (!twsk_prot) 3849 return; 3850 kfree(twsk_prot->twsk_slab_name); 3851 twsk_prot->twsk_slab_name = NULL; 3852 kmem_cache_destroy(twsk_prot->twsk_slab); 3853 twsk_prot->twsk_slab = NULL; 3854 } 3855 3856 static int tw_prot_init(const struct proto *prot) 3857 { 3858 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3859 3860 if (!twsk_prot) 3861 return 0; 3862 3863 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3864 prot->name); 3865 if (!twsk_prot->twsk_slab_name) 3866 return -ENOMEM; 3867 3868 twsk_prot->twsk_slab = 3869 kmem_cache_create(twsk_prot->twsk_slab_name, 3870 twsk_prot->twsk_obj_size, 0, 3871 SLAB_ACCOUNT | prot->slab_flags, 3872 NULL); 3873 if (!twsk_prot->twsk_slab) { 3874 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3875 prot->name); 3876 return -ENOMEM; 3877 } 3878 3879 return 0; 3880 } 3881 3882 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3883 { 3884 if (!rsk_prot) 3885 return; 3886 kfree(rsk_prot->slab_name); 3887 rsk_prot->slab_name = NULL; 3888 kmem_cache_destroy(rsk_prot->slab); 3889 rsk_prot->slab = NULL; 3890 } 3891 3892 static int req_prot_init(const struct proto *prot) 3893 { 3894 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3895 3896 if (!rsk_prot) 3897 return 0; 3898 3899 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3900 prot->name); 3901 if (!rsk_prot->slab_name) 3902 return -ENOMEM; 3903 3904 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3905 rsk_prot->obj_size, 0, 3906 SLAB_ACCOUNT | prot->slab_flags, 3907 NULL); 3908 3909 if (!rsk_prot->slab) { 3910 pr_crit("%s: Can't create request sock SLAB cache!\n", 3911 prot->name); 3912 return -ENOMEM; 3913 } 3914 return 0; 3915 } 3916 3917 int proto_register(struct proto *prot, int alloc_slab) 3918 { 3919 int ret = -ENOBUFS; 3920 3921 if (prot->memory_allocated && !prot->sysctl_mem) { 3922 pr_err("%s: missing sysctl_mem\n", prot->name); 3923 return -EINVAL; 3924 } 3925 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3926 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3927 return -EINVAL; 3928 } 3929 if (alloc_slab) { 3930 prot->slab = kmem_cache_create_usercopy(prot->name, 3931 prot->obj_size, 0, 3932 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3933 prot->slab_flags, 3934 prot->useroffset, prot->usersize, 3935 NULL); 3936 3937 if (prot->slab == NULL) { 3938 pr_crit("%s: Can't create sock SLAB cache!\n", 3939 prot->name); 3940 goto out; 3941 } 3942 3943 if (req_prot_init(prot)) 3944 goto out_free_request_sock_slab; 3945 3946 if (tw_prot_init(prot)) 3947 goto out_free_timewait_sock_slab; 3948 } 3949 3950 mutex_lock(&proto_list_mutex); 3951 ret = assign_proto_idx(prot); 3952 if (ret) { 3953 mutex_unlock(&proto_list_mutex); 3954 goto out_free_timewait_sock_slab; 3955 } 3956 list_add(&prot->node, &proto_list); 3957 mutex_unlock(&proto_list_mutex); 3958 return ret; 3959 3960 out_free_timewait_sock_slab: 3961 if (alloc_slab) 3962 tw_prot_cleanup(prot->twsk_prot); 3963 out_free_request_sock_slab: 3964 if (alloc_slab) { 3965 req_prot_cleanup(prot->rsk_prot); 3966 3967 kmem_cache_destroy(prot->slab); 3968 prot->slab = NULL; 3969 } 3970 out: 3971 return ret; 3972 } 3973 EXPORT_SYMBOL(proto_register); 3974 3975 void proto_unregister(struct proto *prot) 3976 { 3977 mutex_lock(&proto_list_mutex); 3978 release_proto_idx(prot); 3979 list_del(&prot->node); 3980 mutex_unlock(&proto_list_mutex); 3981 3982 kmem_cache_destroy(prot->slab); 3983 prot->slab = NULL; 3984 3985 req_prot_cleanup(prot->rsk_prot); 3986 tw_prot_cleanup(prot->twsk_prot); 3987 } 3988 EXPORT_SYMBOL(proto_unregister); 3989 3990 int sock_load_diag_module(int family, int protocol) 3991 { 3992 if (!protocol) { 3993 if (!sock_is_registered(family)) 3994 return -ENOENT; 3995 3996 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3997 NETLINK_SOCK_DIAG, family); 3998 } 3999 4000 #ifdef CONFIG_INET 4001 if (family == AF_INET && 4002 protocol != IPPROTO_RAW && 4003 protocol < MAX_INET_PROTOS && 4004 !rcu_access_pointer(inet_protos[protocol])) 4005 return -ENOENT; 4006 #endif 4007 4008 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4009 NETLINK_SOCK_DIAG, family, protocol); 4010 } 4011 EXPORT_SYMBOL(sock_load_diag_module); 4012 4013 #ifdef CONFIG_PROC_FS 4014 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4015 __acquires(proto_list_mutex) 4016 { 4017 mutex_lock(&proto_list_mutex); 4018 return seq_list_start_head(&proto_list, *pos); 4019 } 4020 4021 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4022 { 4023 return seq_list_next(v, &proto_list, pos); 4024 } 4025 4026 static void proto_seq_stop(struct seq_file *seq, void *v) 4027 __releases(proto_list_mutex) 4028 { 4029 mutex_unlock(&proto_list_mutex); 4030 } 4031 4032 static char proto_method_implemented(const void *method) 4033 { 4034 return method == NULL ? 'n' : 'y'; 4035 } 4036 static long sock_prot_memory_allocated(struct proto *proto) 4037 { 4038 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4039 } 4040 4041 static const char *sock_prot_memory_pressure(struct proto *proto) 4042 { 4043 return proto->memory_pressure != NULL ? 4044 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4045 } 4046 4047 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4048 { 4049 4050 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4051 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4052 proto->name, 4053 proto->obj_size, 4054 sock_prot_inuse_get(seq_file_net(seq), proto), 4055 sock_prot_memory_allocated(proto), 4056 sock_prot_memory_pressure(proto), 4057 proto->max_header, 4058 proto->slab == NULL ? "no" : "yes", 4059 module_name(proto->owner), 4060 proto_method_implemented(proto->close), 4061 proto_method_implemented(proto->connect), 4062 proto_method_implemented(proto->disconnect), 4063 proto_method_implemented(proto->accept), 4064 proto_method_implemented(proto->ioctl), 4065 proto_method_implemented(proto->init), 4066 proto_method_implemented(proto->destroy), 4067 proto_method_implemented(proto->shutdown), 4068 proto_method_implemented(proto->setsockopt), 4069 proto_method_implemented(proto->getsockopt), 4070 proto_method_implemented(proto->sendmsg), 4071 proto_method_implemented(proto->recvmsg), 4072 proto_method_implemented(proto->bind), 4073 proto_method_implemented(proto->backlog_rcv), 4074 proto_method_implemented(proto->hash), 4075 proto_method_implemented(proto->unhash), 4076 proto_method_implemented(proto->get_port), 4077 proto_method_implemented(proto->enter_memory_pressure)); 4078 } 4079 4080 static int proto_seq_show(struct seq_file *seq, void *v) 4081 { 4082 if (v == &proto_list) 4083 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4084 "protocol", 4085 "size", 4086 "sockets", 4087 "memory", 4088 "press", 4089 "maxhdr", 4090 "slab", 4091 "module", 4092 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4093 else 4094 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4095 return 0; 4096 } 4097 4098 static const struct seq_operations proto_seq_ops = { 4099 .start = proto_seq_start, 4100 .next = proto_seq_next, 4101 .stop = proto_seq_stop, 4102 .show = proto_seq_show, 4103 }; 4104 4105 static __net_init int proto_init_net(struct net *net) 4106 { 4107 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4108 sizeof(struct seq_net_private))) 4109 return -ENOMEM; 4110 4111 return 0; 4112 } 4113 4114 static __net_exit void proto_exit_net(struct net *net) 4115 { 4116 remove_proc_entry("protocols", net->proc_net); 4117 } 4118 4119 4120 static __net_initdata struct pernet_operations proto_net_ops = { 4121 .init = proto_init_net, 4122 .exit = proto_exit_net, 4123 }; 4124 4125 static int __init proto_init(void) 4126 { 4127 return register_pernet_subsys(&proto_net_ops); 4128 } 4129 4130 subsys_initcall(proto_init); 4131 4132 #endif /* PROC_FS */ 4133 4134 #ifdef CONFIG_NET_RX_BUSY_POLL 4135 bool sk_busy_loop_end(void *p, unsigned long start_time) 4136 { 4137 struct sock *sk = p; 4138 4139 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4140 sk_busy_loop_timeout(sk, start_time); 4141 } 4142 EXPORT_SYMBOL(sk_busy_loop_end); 4143 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4144 4145 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4146 { 4147 if (!sk->sk_prot->bind_add) 4148 return -EOPNOTSUPP; 4149 return sk->sk_prot->bind_add(sk, addr, addr_len); 4150 } 4151 EXPORT_SYMBOL(sock_bind_add); 4152 4153 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4154 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4155 void __user *arg, void *karg, size_t size) 4156 { 4157 int ret; 4158 4159 if (copy_from_user(karg, arg, size)) 4160 return -EFAULT; 4161 4162 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4163 if (ret) 4164 return ret; 4165 4166 if (copy_to_user(arg, karg, size)) 4167 return -EFAULT; 4168 4169 return 0; 4170 } 4171 EXPORT_SYMBOL(sock_ioctl_inout); 4172 4173 /* This is the most common ioctl prep function, where the result (4 bytes) is 4174 * copied back to userspace if the ioctl() returns successfully. No input is 4175 * copied from userspace as input argument. 4176 */ 4177 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4178 { 4179 int ret, karg = 0; 4180 4181 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4182 if (ret) 4183 return ret; 4184 4185 return put_user(karg, (int __user *)arg); 4186 } 4187 4188 /* A wrapper around sock ioctls, which copies the data from userspace 4189 * (depending on the protocol/ioctl), and copies back the result to userspace. 4190 * The main motivation for this function is to pass kernel memory to the 4191 * protocol ioctl callbacks, instead of userspace memory. 4192 */ 4193 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4194 { 4195 int rc = 1; 4196 4197 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4198 rc = ipmr_sk_ioctl(sk, cmd, arg); 4199 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4200 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4201 else if (sk_is_phonet(sk)) 4202 rc = phonet_sk_ioctl(sk, cmd, arg); 4203 4204 /* If ioctl was processed, returns its value */ 4205 if (rc <= 0) 4206 return rc; 4207 4208 /* Otherwise call the default handler */ 4209 return sock_ioctl_out(sk, cmd, arg); 4210 } 4211 EXPORT_SYMBOL(sk_ioctl); 4212