xref: /linux/net/core/sock.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117 
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128 
129 #include <linux/filter.h>
130 
131 #ifdef CONFIG_INET
132 #include <net/tcp.h>
133 #endif
134 
135 /*
136  * Each address family might have different locking rules, so we have
137  * one slock key per address family:
138  */
139 static struct lock_class_key af_family_keys[AF_MAX];
140 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *const af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161   "sk_lock-AF_MAX"
162 };
163 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176   "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177   "slock-AF_MAX"
178 };
179 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192   "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193   "clock-AF_MAX"
194 };
195 
196 /*
197  * sk_callback_lock locking rules are per-address-family,
198  * so split the lock classes by using a per-AF key:
199  */
200 static struct lock_class_key af_callback_keys[AF_MAX];
201 
202 /* Take into consideration the size of the struct sk_buff overhead in the
203  * determination of these values, since that is non-constant across
204  * platforms.  This makes socket queueing behavior and performance
205  * not depend upon such differences.
206  */
207 #define _SK_MEM_PACKETS		256
208 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211 
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217 
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220 EXPORT_SYMBOL(sysctl_optmem_max);
221 
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id = -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225 #endif
226 
227 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228 {
229 	struct timeval tv;
230 
231 	if (optlen < sizeof(tv))
232 		return -EINVAL;
233 	if (copy_from_user(&tv, optval, sizeof(tv)))
234 		return -EFAULT;
235 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236 		return -EDOM;
237 
238 	if (tv.tv_sec < 0) {
239 		static int warned __read_mostly;
240 
241 		*timeo_p = 0;
242 		if (warned < 10 && net_ratelimit()) {
243 			warned++;
244 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245 			       "tries to set negative timeout\n",
246 				current->comm, task_pid_nr(current));
247 		}
248 		return 0;
249 	}
250 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
251 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
252 		return 0;
253 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255 	return 0;
256 }
257 
258 static void sock_warn_obsolete_bsdism(const char *name)
259 {
260 	static int warned;
261 	static char warncomm[TASK_COMM_LEN];
262 	if (strcmp(warncomm, current->comm) && warned < 5) {
263 		strcpy(warncomm,  current->comm);
264 		printk(KERN_WARNING "process `%s' is using obsolete "
265 		       "%s SO_BSDCOMPAT\n", warncomm, name);
266 		warned++;
267 	}
268 }
269 
270 static void sock_disable_timestamp(struct sock *sk, int flag)
271 {
272 	if (sock_flag(sk, flag)) {
273 		sock_reset_flag(sk, flag);
274 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276 			net_disable_timestamp();
277 		}
278 	}
279 }
280 
281 
282 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283 {
284 	int err;
285 	int skb_len;
286 	unsigned long flags;
287 	struct sk_buff_head *list = &sk->sk_receive_queue;
288 
289 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290 	   number of warnings when compiling with -W --ANK
291 	 */
292 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293 	    (unsigned)sk->sk_rcvbuf) {
294 		atomic_inc(&sk->sk_drops);
295 		return -ENOMEM;
296 	}
297 
298 	err = sk_filter(sk, skb);
299 	if (err)
300 		return err;
301 
302 	if (!sk_rmem_schedule(sk, skb->truesize)) {
303 		atomic_inc(&sk->sk_drops);
304 		return -ENOBUFS;
305 	}
306 
307 	skb->dev = NULL;
308 	skb_set_owner_r(skb, sk);
309 
310 	/* Cache the SKB length before we tack it onto the receive
311 	 * queue.  Once it is added it no longer belongs to us and
312 	 * may be freed by other threads of control pulling packets
313 	 * from the queue.
314 	 */
315 	skb_len = skb->len;
316 
317 	/* we escape from rcu protected region, make sure we dont leak
318 	 * a norefcounted dst
319 	 */
320 	skb_dst_force(skb);
321 
322 	spin_lock_irqsave(&list->lock, flags);
323 	skb->dropcount = atomic_read(&sk->sk_drops);
324 	__skb_queue_tail(list, skb);
325 	spin_unlock_irqrestore(&list->lock, flags);
326 
327 	if (!sock_flag(sk, SOCK_DEAD))
328 		sk->sk_data_ready(sk, skb_len);
329 	return 0;
330 }
331 EXPORT_SYMBOL(sock_queue_rcv_skb);
332 
333 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 {
335 	int rc = NET_RX_SUCCESS;
336 
337 	if (sk_filter(sk, skb))
338 		goto discard_and_relse;
339 
340 	skb->dev = NULL;
341 
342 	if (sk_rcvqueues_full(sk, skb)) {
343 		atomic_inc(&sk->sk_drops);
344 		goto discard_and_relse;
345 	}
346 	if (nested)
347 		bh_lock_sock_nested(sk);
348 	else
349 		bh_lock_sock(sk);
350 	if (!sock_owned_by_user(sk)) {
351 		/*
352 		 * trylock + unlock semantics:
353 		 */
354 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355 
356 		rc = sk_backlog_rcv(sk, skb);
357 
358 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359 	} else if (sk_add_backlog(sk, skb)) {
360 		bh_unlock_sock(sk);
361 		atomic_inc(&sk->sk_drops);
362 		goto discard_and_relse;
363 	}
364 
365 	bh_unlock_sock(sk);
366 out:
367 	sock_put(sk);
368 	return rc;
369 discard_and_relse:
370 	kfree_skb(skb);
371 	goto out;
372 }
373 EXPORT_SYMBOL(sk_receive_skb);
374 
375 void sk_reset_txq(struct sock *sk)
376 {
377 	sk_tx_queue_clear(sk);
378 }
379 EXPORT_SYMBOL(sk_reset_txq);
380 
381 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 {
383 	struct dst_entry *dst = __sk_dst_get(sk);
384 
385 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386 		sk_tx_queue_clear(sk);
387 		rcu_assign_pointer(sk->sk_dst_cache, NULL);
388 		dst_release(dst);
389 		return NULL;
390 	}
391 
392 	return dst;
393 }
394 EXPORT_SYMBOL(__sk_dst_check);
395 
396 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 {
398 	struct dst_entry *dst = sk_dst_get(sk);
399 
400 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401 		sk_dst_reset(sk);
402 		dst_release(dst);
403 		return NULL;
404 	}
405 
406 	return dst;
407 }
408 EXPORT_SYMBOL(sk_dst_check);
409 
410 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 {
412 	int ret = -ENOPROTOOPT;
413 #ifdef CONFIG_NETDEVICES
414 	struct net *net = sock_net(sk);
415 	char devname[IFNAMSIZ];
416 	int index;
417 
418 	/* Sorry... */
419 	ret = -EPERM;
420 	if (!capable(CAP_NET_RAW))
421 		goto out;
422 
423 	ret = -EINVAL;
424 	if (optlen < 0)
425 		goto out;
426 
427 	/* Bind this socket to a particular device like "eth0",
428 	 * as specified in the passed interface name. If the
429 	 * name is "" or the option length is zero the socket
430 	 * is not bound.
431 	 */
432 	if (optlen > IFNAMSIZ - 1)
433 		optlen = IFNAMSIZ - 1;
434 	memset(devname, 0, sizeof(devname));
435 
436 	ret = -EFAULT;
437 	if (copy_from_user(devname, optval, optlen))
438 		goto out;
439 
440 	index = 0;
441 	if (devname[0] != '\0') {
442 		struct net_device *dev;
443 
444 		rcu_read_lock();
445 		dev = dev_get_by_name_rcu(net, devname);
446 		if (dev)
447 			index = dev->ifindex;
448 		rcu_read_unlock();
449 		ret = -ENODEV;
450 		if (!dev)
451 			goto out;
452 	}
453 
454 	lock_sock(sk);
455 	sk->sk_bound_dev_if = index;
456 	sk_dst_reset(sk);
457 	release_sock(sk);
458 
459 	ret = 0;
460 
461 out:
462 #endif
463 
464 	return ret;
465 }
466 
467 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468 {
469 	if (valbool)
470 		sock_set_flag(sk, bit);
471 	else
472 		sock_reset_flag(sk, bit);
473 }
474 
475 /*
476  *	This is meant for all protocols to use and covers goings on
477  *	at the socket level. Everything here is generic.
478  */
479 
480 int sock_setsockopt(struct socket *sock, int level, int optname,
481 		    char __user *optval, unsigned int optlen)
482 {
483 	struct sock *sk = sock->sk;
484 	int val;
485 	int valbool;
486 	struct linger ling;
487 	int ret = 0;
488 
489 	/*
490 	 *	Options without arguments
491 	 */
492 
493 	if (optname == SO_BINDTODEVICE)
494 		return sock_bindtodevice(sk, optval, optlen);
495 
496 	if (optlen < sizeof(int))
497 		return -EINVAL;
498 
499 	if (get_user(val, (int __user *)optval))
500 		return -EFAULT;
501 
502 	valbool = val ? 1 : 0;
503 
504 	lock_sock(sk);
505 
506 	switch (optname) {
507 	case SO_DEBUG:
508 		if (val && !capable(CAP_NET_ADMIN))
509 			ret = -EACCES;
510 		else
511 			sock_valbool_flag(sk, SOCK_DBG, valbool);
512 		break;
513 	case SO_REUSEADDR:
514 		sk->sk_reuse = valbool;
515 		break;
516 	case SO_TYPE:
517 	case SO_PROTOCOL:
518 	case SO_DOMAIN:
519 	case SO_ERROR:
520 		ret = -ENOPROTOOPT;
521 		break;
522 	case SO_DONTROUTE:
523 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524 		break;
525 	case SO_BROADCAST:
526 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527 		break;
528 	case SO_SNDBUF:
529 		/* Don't error on this BSD doesn't and if you think
530 		   about it this is right. Otherwise apps have to
531 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
532 		   are treated in BSD as hints */
533 
534 		if (val > sysctl_wmem_max)
535 			val = sysctl_wmem_max;
536 set_sndbuf:
537 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538 		if ((val * 2) < SOCK_MIN_SNDBUF)
539 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540 		else
541 			sk->sk_sndbuf = val * 2;
542 
543 		/*
544 		 *	Wake up sending tasks if we
545 		 *	upped the value.
546 		 */
547 		sk->sk_write_space(sk);
548 		break;
549 
550 	case SO_SNDBUFFORCE:
551 		if (!capable(CAP_NET_ADMIN)) {
552 			ret = -EPERM;
553 			break;
554 		}
555 		goto set_sndbuf;
556 
557 	case SO_RCVBUF:
558 		/* Don't error on this BSD doesn't and if you think
559 		   about it this is right. Otherwise apps have to
560 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
561 		   are treated in BSD as hints */
562 
563 		if (val > sysctl_rmem_max)
564 			val = sysctl_rmem_max;
565 set_rcvbuf:
566 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567 		/*
568 		 * We double it on the way in to account for
569 		 * "struct sk_buff" etc. overhead.   Applications
570 		 * assume that the SO_RCVBUF setting they make will
571 		 * allow that much actual data to be received on that
572 		 * socket.
573 		 *
574 		 * Applications are unaware that "struct sk_buff" and
575 		 * other overheads allocate from the receive buffer
576 		 * during socket buffer allocation.
577 		 *
578 		 * And after considering the possible alternatives,
579 		 * returning the value we actually used in getsockopt
580 		 * is the most desirable behavior.
581 		 */
582 		if ((val * 2) < SOCK_MIN_RCVBUF)
583 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584 		else
585 			sk->sk_rcvbuf = val * 2;
586 		break;
587 
588 	case SO_RCVBUFFORCE:
589 		if (!capable(CAP_NET_ADMIN)) {
590 			ret = -EPERM;
591 			break;
592 		}
593 		goto set_rcvbuf;
594 
595 	case SO_KEEPALIVE:
596 #ifdef CONFIG_INET
597 		if (sk->sk_protocol == IPPROTO_TCP)
598 			tcp_set_keepalive(sk, valbool);
599 #endif
600 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601 		break;
602 
603 	case SO_OOBINLINE:
604 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605 		break;
606 
607 	case SO_NO_CHECK:
608 		sk->sk_no_check = valbool;
609 		break;
610 
611 	case SO_PRIORITY:
612 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613 			sk->sk_priority = val;
614 		else
615 			ret = -EPERM;
616 		break;
617 
618 	case SO_LINGER:
619 		if (optlen < sizeof(ling)) {
620 			ret = -EINVAL;	/* 1003.1g */
621 			break;
622 		}
623 		if (copy_from_user(&ling, optval, sizeof(ling))) {
624 			ret = -EFAULT;
625 			break;
626 		}
627 		if (!ling.l_onoff)
628 			sock_reset_flag(sk, SOCK_LINGER);
629 		else {
630 #if (BITS_PER_LONG == 32)
631 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633 			else
634 #endif
635 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636 			sock_set_flag(sk, SOCK_LINGER);
637 		}
638 		break;
639 
640 	case SO_BSDCOMPAT:
641 		sock_warn_obsolete_bsdism("setsockopt");
642 		break;
643 
644 	case SO_PASSCRED:
645 		if (valbool)
646 			set_bit(SOCK_PASSCRED, &sock->flags);
647 		else
648 			clear_bit(SOCK_PASSCRED, &sock->flags);
649 		break;
650 
651 	case SO_TIMESTAMP:
652 	case SO_TIMESTAMPNS:
653 		if (valbool)  {
654 			if (optname == SO_TIMESTAMP)
655 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656 			else
657 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658 			sock_set_flag(sk, SOCK_RCVTSTAMP);
659 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660 		} else {
661 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
662 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663 		}
664 		break;
665 
666 	case SO_TIMESTAMPING:
667 		if (val & ~SOF_TIMESTAMPING_MASK) {
668 			ret = -EINVAL;
669 			break;
670 		}
671 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
673 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
675 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
677 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678 			sock_enable_timestamp(sk,
679 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
680 		else
681 			sock_disable_timestamp(sk,
682 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
683 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684 				  val & SOF_TIMESTAMPING_SOFTWARE);
685 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
687 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
689 		break;
690 
691 	case SO_RCVLOWAT:
692 		if (val < 0)
693 			val = INT_MAX;
694 		sk->sk_rcvlowat = val ? : 1;
695 		break;
696 
697 	case SO_RCVTIMEO:
698 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699 		break;
700 
701 	case SO_SNDTIMEO:
702 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703 		break;
704 
705 	case SO_ATTACH_FILTER:
706 		ret = -EINVAL;
707 		if (optlen == sizeof(struct sock_fprog)) {
708 			struct sock_fprog fprog;
709 
710 			ret = -EFAULT;
711 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
712 				break;
713 
714 			ret = sk_attach_filter(&fprog, sk);
715 		}
716 		break;
717 
718 	case SO_DETACH_FILTER:
719 		ret = sk_detach_filter(sk);
720 		break;
721 
722 	case SO_PASSSEC:
723 		if (valbool)
724 			set_bit(SOCK_PASSSEC, &sock->flags);
725 		else
726 			clear_bit(SOCK_PASSSEC, &sock->flags);
727 		break;
728 	case SO_MARK:
729 		if (!capable(CAP_NET_ADMIN))
730 			ret = -EPERM;
731 		else
732 			sk->sk_mark = val;
733 		break;
734 
735 		/* We implement the SO_SNDLOWAT etc to
736 		   not be settable (1003.1g 5.3) */
737 	case SO_RXQ_OVFL:
738 		if (valbool)
739 			sock_set_flag(sk, SOCK_RXQ_OVFL);
740 		else
741 			sock_reset_flag(sk, SOCK_RXQ_OVFL);
742 		break;
743 	default:
744 		ret = -ENOPROTOOPT;
745 		break;
746 	}
747 	release_sock(sk);
748 	return ret;
749 }
750 EXPORT_SYMBOL(sock_setsockopt);
751 
752 
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
754 		   struct ucred *ucred)
755 {
756 	ucred->pid = pid_vnr(pid);
757 	ucred->uid = ucred->gid = -1;
758 	if (cred) {
759 		struct user_namespace *current_ns = current_user_ns();
760 
761 		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762 		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763 	}
764 }
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
766 
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768 		    char __user *optval, int __user *optlen)
769 {
770 	struct sock *sk = sock->sk;
771 
772 	union {
773 		int val;
774 		struct linger ling;
775 		struct timeval tm;
776 	} v;
777 
778 	int lv = sizeof(int);
779 	int len;
780 
781 	if (get_user(len, optlen))
782 		return -EFAULT;
783 	if (len < 0)
784 		return -EINVAL;
785 
786 	memset(&v, 0, sizeof(v));
787 
788 	switch (optname) {
789 	case SO_DEBUG:
790 		v.val = sock_flag(sk, SOCK_DBG);
791 		break;
792 
793 	case SO_DONTROUTE:
794 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
795 		break;
796 
797 	case SO_BROADCAST:
798 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
799 		break;
800 
801 	case SO_SNDBUF:
802 		v.val = sk->sk_sndbuf;
803 		break;
804 
805 	case SO_RCVBUF:
806 		v.val = sk->sk_rcvbuf;
807 		break;
808 
809 	case SO_REUSEADDR:
810 		v.val = sk->sk_reuse;
811 		break;
812 
813 	case SO_KEEPALIVE:
814 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815 		break;
816 
817 	case SO_TYPE:
818 		v.val = sk->sk_type;
819 		break;
820 
821 	case SO_PROTOCOL:
822 		v.val = sk->sk_protocol;
823 		break;
824 
825 	case SO_DOMAIN:
826 		v.val = sk->sk_family;
827 		break;
828 
829 	case SO_ERROR:
830 		v.val = -sock_error(sk);
831 		if (v.val == 0)
832 			v.val = xchg(&sk->sk_err_soft, 0);
833 		break;
834 
835 	case SO_OOBINLINE:
836 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
837 		break;
838 
839 	case SO_NO_CHECK:
840 		v.val = sk->sk_no_check;
841 		break;
842 
843 	case SO_PRIORITY:
844 		v.val = sk->sk_priority;
845 		break;
846 
847 	case SO_LINGER:
848 		lv		= sizeof(v.ling);
849 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
850 		v.ling.l_linger	= sk->sk_lingertime / HZ;
851 		break;
852 
853 	case SO_BSDCOMPAT:
854 		sock_warn_obsolete_bsdism("getsockopt");
855 		break;
856 
857 	case SO_TIMESTAMP:
858 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
860 		break;
861 
862 	case SO_TIMESTAMPNS:
863 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864 		break;
865 
866 	case SO_TIMESTAMPING:
867 		v.val = 0;
868 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
878 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882 		break;
883 
884 	case SO_RCVTIMEO:
885 		lv = sizeof(struct timeval);
886 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887 			v.tm.tv_sec = 0;
888 			v.tm.tv_usec = 0;
889 		} else {
890 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892 		}
893 		break;
894 
895 	case SO_SNDTIMEO:
896 		lv = sizeof(struct timeval);
897 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898 			v.tm.tv_sec = 0;
899 			v.tm.tv_usec = 0;
900 		} else {
901 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903 		}
904 		break;
905 
906 	case SO_RCVLOWAT:
907 		v.val = sk->sk_rcvlowat;
908 		break;
909 
910 	case SO_SNDLOWAT:
911 		v.val = 1;
912 		break;
913 
914 	case SO_PASSCRED:
915 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916 		break;
917 
918 	case SO_PEERCRED:
919 	{
920 		struct ucred peercred;
921 		if (len > sizeof(peercred))
922 			len = sizeof(peercred);
923 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924 		if (copy_to_user(optval, &peercred, len))
925 			return -EFAULT;
926 		goto lenout;
927 	}
928 
929 	case SO_PEERNAME:
930 	{
931 		char address[128];
932 
933 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934 			return -ENOTCONN;
935 		if (lv < len)
936 			return -EINVAL;
937 		if (copy_to_user(optval, address, len))
938 			return -EFAULT;
939 		goto lenout;
940 	}
941 
942 	/* Dubious BSD thing... Probably nobody even uses it, but
943 	 * the UNIX standard wants it for whatever reason... -DaveM
944 	 */
945 	case SO_ACCEPTCONN:
946 		v.val = sk->sk_state == TCP_LISTEN;
947 		break;
948 
949 	case SO_PASSSEC:
950 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951 		break;
952 
953 	case SO_PEERSEC:
954 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
955 
956 	case SO_MARK:
957 		v.val = sk->sk_mark;
958 		break;
959 
960 	case SO_RXQ_OVFL:
961 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962 		break;
963 
964 	default:
965 		return -ENOPROTOOPT;
966 	}
967 
968 	if (len > lv)
969 		len = lv;
970 	if (copy_to_user(optval, &v, len))
971 		return -EFAULT;
972 lenout:
973 	if (put_user(len, optlen))
974 		return -EFAULT;
975 	return 0;
976 }
977 
978 /*
979  * Initialize an sk_lock.
980  *
981  * (We also register the sk_lock with the lock validator.)
982  */
983 static inline void sock_lock_init(struct sock *sk)
984 {
985 	sock_lock_init_class_and_name(sk,
986 			af_family_slock_key_strings[sk->sk_family],
987 			af_family_slock_keys + sk->sk_family,
988 			af_family_key_strings[sk->sk_family],
989 			af_family_keys + sk->sk_family);
990 }
991 
992 /*
993  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994  * even temporarly, because of RCU lookups. sk_node should also be left as is.
995  */
996 static void sock_copy(struct sock *nsk, const struct sock *osk)
997 {
998 #ifdef CONFIG_SECURITY_NETWORK
999 	void *sptr = nsk->sk_security;
1000 #endif
1001 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
1002 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
1003 		     sizeof(osk->sk_tx_queue_mapping));
1004 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
1005 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
1006 #ifdef CONFIG_SECURITY_NETWORK
1007 	nsk->sk_security = sptr;
1008 	security_sk_clone(osk, nsk);
1009 #endif
1010 }
1011 
1012 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1013 		int family)
1014 {
1015 	struct sock *sk;
1016 	struct kmem_cache *slab;
1017 
1018 	slab = prot->slab;
1019 	if (slab != NULL) {
1020 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1021 		if (!sk)
1022 			return sk;
1023 		if (priority & __GFP_ZERO) {
1024 			/*
1025 			 * caches using SLAB_DESTROY_BY_RCU should let
1026 			 * sk_node.next un-modified. Special care is taken
1027 			 * when initializing object to zero.
1028 			 */
1029 			if (offsetof(struct sock, sk_node.next) != 0)
1030 				memset(sk, 0, offsetof(struct sock, sk_node.next));
1031 			memset(&sk->sk_node.pprev, 0,
1032 			       prot->obj_size - offsetof(struct sock,
1033 							 sk_node.pprev));
1034 		}
1035 	}
1036 	else
1037 		sk = kmalloc(prot->obj_size, priority);
1038 
1039 	if (sk != NULL) {
1040 		kmemcheck_annotate_bitfield(sk, flags);
1041 
1042 		if (security_sk_alloc(sk, family, priority))
1043 			goto out_free;
1044 
1045 		if (!try_module_get(prot->owner))
1046 			goto out_free_sec;
1047 		sk_tx_queue_clear(sk);
1048 	}
1049 
1050 	return sk;
1051 
1052 out_free_sec:
1053 	security_sk_free(sk);
1054 out_free:
1055 	if (slab != NULL)
1056 		kmem_cache_free(slab, sk);
1057 	else
1058 		kfree(sk);
1059 	return NULL;
1060 }
1061 
1062 static void sk_prot_free(struct proto *prot, struct sock *sk)
1063 {
1064 	struct kmem_cache *slab;
1065 	struct module *owner;
1066 
1067 	owner = prot->owner;
1068 	slab = prot->slab;
1069 
1070 	security_sk_free(sk);
1071 	if (slab != NULL)
1072 		kmem_cache_free(slab, sk);
1073 	else
1074 		kfree(sk);
1075 	module_put(owner);
1076 }
1077 
1078 #ifdef CONFIG_CGROUPS
1079 void sock_update_classid(struct sock *sk)
1080 {
1081 	u32 classid;
1082 
1083 	rcu_read_lock();  /* doing current task, which cannot vanish. */
1084 	classid = task_cls_classid(current);
1085 	rcu_read_unlock();
1086 	if (classid && classid != sk->sk_classid)
1087 		sk->sk_classid = classid;
1088 }
1089 EXPORT_SYMBOL(sock_update_classid);
1090 #endif
1091 
1092 /**
1093  *	sk_alloc - All socket objects are allocated here
1094  *	@net: the applicable net namespace
1095  *	@family: protocol family
1096  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1097  *	@prot: struct proto associated with this new sock instance
1098  */
1099 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1100 		      struct proto *prot)
1101 {
1102 	struct sock *sk;
1103 
1104 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1105 	if (sk) {
1106 		sk->sk_family = family;
1107 		/*
1108 		 * See comment in struct sock definition to understand
1109 		 * why we need sk_prot_creator -acme
1110 		 */
1111 		sk->sk_prot = sk->sk_prot_creator = prot;
1112 		sock_lock_init(sk);
1113 		sock_net_set(sk, get_net(net));
1114 		atomic_set(&sk->sk_wmem_alloc, 1);
1115 
1116 		sock_update_classid(sk);
1117 	}
1118 
1119 	return sk;
1120 }
1121 EXPORT_SYMBOL(sk_alloc);
1122 
1123 static void __sk_free(struct sock *sk)
1124 {
1125 	struct sk_filter *filter;
1126 
1127 	if (sk->sk_destruct)
1128 		sk->sk_destruct(sk);
1129 
1130 	filter = rcu_dereference_check(sk->sk_filter,
1131 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1132 	if (filter) {
1133 		sk_filter_uncharge(sk, filter);
1134 		rcu_assign_pointer(sk->sk_filter, NULL);
1135 	}
1136 
1137 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1138 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1139 
1140 	if (atomic_read(&sk->sk_omem_alloc))
1141 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1142 		       __func__, atomic_read(&sk->sk_omem_alloc));
1143 
1144 	if (sk->sk_peer_cred)
1145 		put_cred(sk->sk_peer_cred);
1146 	put_pid(sk->sk_peer_pid);
1147 	put_net(sock_net(sk));
1148 	sk_prot_free(sk->sk_prot_creator, sk);
1149 }
1150 
1151 void sk_free(struct sock *sk)
1152 {
1153 	/*
1154 	 * We substract one from sk_wmem_alloc and can know if
1155 	 * some packets are still in some tx queue.
1156 	 * If not null, sock_wfree() will call __sk_free(sk) later
1157 	 */
1158 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1159 		__sk_free(sk);
1160 }
1161 EXPORT_SYMBOL(sk_free);
1162 
1163 /*
1164  * Last sock_put should drop referrence to sk->sk_net. It has already
1165  * been dropped in sk_change_net. Taking referrence to stopping namespace
1166  * is not an option.
1167  * Take referrence to a socket to remove it from hash _alive_ and after that
1168  * destroy it in the context of init_net.
1169  */
1170 void sk_release_kernel(struct sock *sk)
1171 {
1172 	if (sk == NULL || sk->sk_socket == NULL)
1173 		return;
1174 
1175 	sock_hold(sk);
1176 	sock_release(sk->sk_socket);
1177 	release_net(sock_net(sk));
1178 	sock_net_set(sk, get_net(&init_net));
1179 	sock_put(sk);
1180 }
1181 EXPORT_SYMBOL(sk_release_kernel);
1182 
1183 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1184 {
1185 	struct sock *newsk;
1186 
1187 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1188 	if (newsk != NULL) {
1189 		struct sk_filter *filter;
1190 
1191 		sock_copy(newsk, sk);
1192 
1193 		/* SANITY */
1194 		get_net(sock_net(newsk));
1195 		sk_node_init(&newsk->sk_node);
1196 		sock_lock_init(newsk);
1197 		bh_lock_sock(newsk);
1198 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1199 		newsk->sk_backlog.len = 0;
1200 
1201 		atomic_set(&newsk->sk_rmem_alloc, 0);
1202 		/*
1203 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1204 		 */
1205 		atomic_set(&newsk->sk_wmem_alloc, 1);
1206 		atomic_set(&newsk->sk_omem_alloc, 0);
1207 		skb_queue_head_init(&newsk->sk_receive_queue);
1208 		skb_queue_head_init(&newsk->sk_write_queue);
1209 #ifdef CONFIG_NET_DMA
1210 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1211 #endif
1212 
1213 		spin_lock_init(&newsk->sk_dst_lock);
1214 		rwlock_init(&newsk->sk_callback_lock);
1215 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1216 				af_callback_keys + newsk->sk_family,
1217 				af_family_clock_key_strings[newsk->sk_family]);
1218 
1219 		newsk->sk_dst_cache	= NULL;
1220 		newsk->sk_wmem_queued	= 0;
1221 		newsk->sk_forward_alloc = 0;
1222 		newsk->sk_send_head	= NULL;
1223 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1224 
1225 		sock_reset_flag(newsk, SOCK_DONE);
1226 		skb_queue_head_init(&newsk->sk_error_queue);
1227 
1228 		filter = newsk->sk_filter;
1229 		if (filter != NULL)
1230 			sk_filter_charge(newsk, filter);
1231 
1232 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1233 			/* It is still raw copy of parent, so invalidate
1234 			 * destructor and make plain sk_free() */
1235 			newsk->sk_destruct = NULL;
1236 			sk_free(newsk);
1237 			newsk = NULL;
1238 			goto out;
1239 		}
1240 
1241 		newsk->sk_err	   = 0;
1242 		newsk->sk_priority = 0;
1243 		/*
1244 		 * Before updating sk_refcnt, we must commit prior changes to memory
1245 		 * (Documentation/RCU/rculist_nulls.txt for details)
1246 		 */
1247 		smp_wmb();
1248 		atomic_set(&newsk->sk_refcnt, 2);
1249 
1250 		/*
1251 		 * Increment the counter in the same struct proto as the master
1252 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1253 		 * is the same as sk->sk_prot->socks, as this field was copied
1254 		 * with memcpy).
1255 		 *
1256 		 * This _changes_ the previous behaviour, where
1257 		 * tcp_create_openreq_child always was incrementing the
1258 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1259 		 * to be taken into account in all callers. -acme
1260 		 */
1261 		sk_refcnt_debug_inc(newsk);
1262 		sk_set_socket(newsk, NULL);
1263 		newsk->sk_wq = NULL;
1264 
1265 		if (newsk->sk_prot->sockets_allocated)
1266 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1267 
1268 		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1269 		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1270 			net_enable_timestamp();
1271 	}
1272 out:
1273 	return newsk;
1274 }
1275 EXPORT_SYMBOL_GPL(sk_clone);
1276 
1277 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1278 {
1279 	__sk_dst_set(sk, dst);
1280 	sk->sk_route_caps = dst->dev->features;
1281 	if (sk->sk_route_caps & NETIF_F_GSO)
1282 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1283 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1284 	if (sk_can_gso(sk)) {
1285 		if (dst->header_len) {
1286 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1287 		} else {
1288 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1289 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1290 		}
1291 	}
1292 }
1293 EXPORT_SYMBOL_GPL(sk_setup_caps);
1294 
1295 void __init sk_init(void)
1296 {
1297 	if (totalram_pages <= 4096) {
1298 		sysctl_wmem_max = 32767;
1299 		sysctl_rmem_max = 32767;
1300 		sysctl_wmem_default = 32767;
1301 		sysctl_rmem_default = 32767;
1302 	} else if (totalram_pages >= 131072) {
1303 		sysctl_wmem_max = 131071;
1304 		sysctl_rmem_max = 131071;
1305 	}
1306 }
1307 
1308 /*
1309  *	Simple resource managers for sockets.
1310  */
1311 
1312 
1313 /*
1314  * Write buffer destructor automatically called from kfree_skb.
1315  */
1316 void sock_wfree(struct sk_buff *skb)
1317 {
1318 	struct sock *sk = skb->sk;
1319 	unsigned int len = skb->truesize;
1320 
1321 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1322 		/*
1323 		 * Keep a reference on sk_wmem_alloc, this will be released
1324 		 * after sk_write_space() call
1325 		 */
1326 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1327 		sk->sk_write_space(sk);
1328 		len = 1;
1329 	}
1330 	/*
1331 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1332 	 * could not do because of in-flight packets
1333 	 */
1334 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1335 		__sk_free(sk);
1336 }
1337 EXPORT_SYMBOL(sock_wfree);
1338 
1339 /*
1340  * Read buffer destructor automatically called from kfree_skb.
1341  */
1342 void sock_rfree(struct sk_buff *skb)
1343 {
1344 	struct sock *sk = skb->sk;
1345 	unsigned int len = skb->truesize;
1346 
1347 	atomic_sub(len, &sk->sk_rmem_alloc);
1348 	sk_mem_uncharge(sk, len);
1349 }
1350 EXPORT_SYMBOL(sock_rfree);
1351 
1352 
1353 int sock_i_uid(struct sock *sk)
1354 {
1355 	int uid;
1356 
1357 	read_lock_bh(&sk->sk_callback_lock);
1358 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1359 	read_unlock_bh(&sk->sk_callback_lock);
1360 	return uid;
1361 }
1362 EXPORT_SYMBOL(sock_i_uid);
1363 
1364 unsigned long sock_i_ino(struct sock *sk)
1365 {
1366 	unsigned long ino;
1367 
1368 	read_lock_bh(&sk->sk_callback_lock);
1369 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1370 	read_unlock_bh(&sk->sk_callback_lock);
1371 	return ino;
1372 }
1373 EXPORT_SYMBOL(sock_i_ino);
1374 
1375 /*
1376  * Allocate a skb from the socket's send buffer.
1377  */
1378 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1379 			     gfp_t priority)
1380 {
1381 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1382 		struct sk_buff *skb = alloc_skb(size, priority);
1383 		if (skb) {
1384 			skb_set_owner_w(skb, sk);
1385 			return skb;
1386 		}
1387 	}
1388 	return NULL;
1389 }
1390 EXPORT_SYMBOL(sock_wmalloc);
1391 
1392 /*
1393  * Allocate a skb from the socket's receive buffer.
1394  */
1395 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1396 			     gfp_t priority)
1397 {
1398 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1399 		struct sk_buff *skb = alloc_skb(size, priority);
1400 		if (skb) {
1401 			skb_set_owner_r(skb, sk);
1402 			return skb;
1403 		}
1404 	}
1405 	return NULL;
1406 }
1407 
1408 /*
1409  * Allocate a memory block from the socket's option memory buffer.
1410  */
1411 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1412 {
1413 	if ((unsigned)size <= sysctl_optmem_max &&
1414 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1415 		void *mem;
1416 		/* First do the add, to avoid the race if kmalloc
1417 		 * might sleep.
1418 		 */
1419 		atomic_add(size, &sk->sk_omem_alloc);
1420 		mem = kmalloc(size, priority);
1421 		if (mem)
1422 			return mem;
1423 		atomic_sub(size, &sk->sk_omem_alloc);
1424 	}
1425 	return NULL;
1426 }
1427 EXPORT_SYMBOL(sock_kmalloc);
1428 
1429 /*
1430  * Free an option memory block.
1431  */
1432 void sock_kfree_s(struct sock *sk, void *mem, int size)
1433 {
1434 	kfree(mem);
1435 	atomic_sub(size, &sk->sk_omem_alloc);
1436 }
1437 EXPORT_SYMBOL(sock_kfree_s);
1438 
1439 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1440    I think, these locks should be removed for datagram sockets.
1441  */
1442 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1443 {
1444 	DEFINE_WAIT(wait);
1445 
1446 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1447 	for (;;) {
1448 		if (!timeo)
1449 			break;
1450 		if (signal_pending(current))
1451 			break;
1452 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1453 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1454 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1455 			break;
1456 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1457 			break;
1458 		if (sk->sk_err)
1459 			break;
1460 		timeo = schedule_timeout(timeo);
1461 	}
1462 	finish_wait(sk_sleep(sk), &wait);
1463 	return timeo;
1464 }
1465 
1466 
1467 /*
1468  *	Generic send/receive buffer handlers
1469  */
1470 
1471 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1472 				     unsigned long data_len, int noblock,
1473 				     int *errcode)
1474 {
1475 	struct sk_buff *skb;
1476 	gfp_t gfp_mask;
1477 	long timeo;
1478 	int err;
1479 
1480 	gfp_mask = sk->sk_allocation;
1481 	if (gfp_mask & __GFP_WAIT)
1482 		gfp_mask |= __GFP_REPEAT;
1483 
1484 	timeo = sock_sndtimeo(sk, noblock);
1485 	while (1) {
1486 		err = sock_error(sk);
1487 		if (err != 0)
1488 			goto failure;
1489 
1490 		err = -EPIPE;
1491 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1492 			goto failure;
1493 
1494 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1495 			skb = alloc_skb(header_len, gfp_mask);
1496 			if (skb) {
1497 				int npages;
1498 				int i;
1499 
1500 				/* No pages, we're done... */
1501 				if (!data_len)
1502 					break;
1503 
1504 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1505 				skb->truesize += data_len;
1506 				skb_shinfo(skb)->nr_frags = npages;
1507 				for (i = 0; i < npages; i++) {
1508 					struct page *page;
1509 					skb_frag_t *frag;
1510 
1511 					page = alloc_pages(sk->sk_allocation, 0);
1512 					if (!page) {
1513 						err = -ENOBUFS;
1514 						skb_shinfo(skb)->nr_frags = i;
1515 						kfree_skb(skb);
1516 						goto failure;
1517 					}
1518 
1519 					frag = &skb_shinfo(skb)->frags[i];
1520 					frag->page = page;
1521 					frag->page_offset = 0;
1522 					frag->size = (data_len >= PAGE_SIZE ?
1523 						      PAGE_SIZE :
1524 						      data_len);
1525 					data_len -= PAGE_SIZE;
1526 				}
1527 
1528 				/* Full success... */
1529 				break;
1530 			}
1531 			err = -ENOBUFS;
1532 			goto failure;
1533 		}
1534 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1535 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1536 		err = -EAGAIN;
1537 		if (!timeo)
1538 			goto failure;
1539 		if (signal_pending(current))
1540 			goto interrupted;
1541 		timeo = sock_wait_for_wmem(sk, timeo);
1542 	}
1543 
1544 	skb_set_owner_w(skb, sk);
1545 	return skb;
1546 
1547 interrupted:
1548 	err = sock_intr_errno(timeo);
1549 failure:
1550 	*errcode = err;
1551 	return NULL;
1552 }
1553 EXPORT_SYMBOL(sock_alloc_send_pskb);
1554 
1555 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1556 				    int noblock, int *errcode)
1557 {
1558 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1559 }
1560 EXPORT_SYMBOL(sock_alloc_send_skb);
1561 
1562 static void __lock_sock(struct sock *sk)
1563 	__releases(&sk->sk_lock.slock)
1564 	__acquires(&sk->sk_lock.slock)
1565 {
1566 	DEFINE_WAIT(wait);
1567 
1568 	for (;;) {
1569 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1570 					TASK_UNINTERRUPTIBLE);
1571 		spin_unlock_bh(&sk->sk_lock.slock);
1572 		schedule();
1573 		spin_lock_bh(&sk->sk_lock.slock);
1574 		if (!sock_owned_by_user(sk))
1575 			break;
1576 	}
1577 	finish_wait(&sk->sk_lock.wq, &wait);
1578 }
1579 
1580 static void __release_sock(struct sock *sk)
1581 	__releases(&sk->sk_lock.slock)
1582 	__acquires(&sk->sk_lock.slock)
1583 {
1584 	struct sk_buff *skb = sk->sk_backlog.head;
1585 
1586 	do {
1587 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1588 		bh_unlock_sock(sk);
1589 
1590 		do {
1591 			struct sk_buff *next = skb->next;
1592 
1593 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1594 			skb->next = NULL;
1595 			sk_backlog_rcv(sk, skb);
1596 
1597 			/*
1598 			 * We are in process context here with softirqs
1599 			 * disabled, use cond_resched_softirq() to preempt.
1600 			 * This is safe to do because we've taken the backlog
1601 			 * queue private:
1602 			 */
1603 			cond_resched_softirq();
1604 
1605 			skb = next;
1606 		} while (skb != NULL);
1607 
1608 		bh_lock_sock(sk);
1609 	} while ((skb = sk->sk_backlog.head) != NULL);
1610 
1611 	/*
1612 	 * Doing the zeroing here guarantee we can not loop forever
1613 	 * while a wild producer attempts to flood us.
1614 	 */
1615 	sk->sk_backlog.len = 0;
1616 }
1617 
1618 /**
1619  * sk_wait_data - wait for data to arrive at sk_receive_queue
1620  * @sk:    sock to wait on
1621  * @timeo: for how long
1622  *
1623  * Now socket state including sk->sk_err is changed only under lock,
1624  * hence we may omit checks after joining wait queue.
1625  * We check receive queue before schedule() only as optimization;
1626  * it is very likely that release_sock() added new data.
1627  */
1628 int sk_wait_data(struct sock *sk, long *timeo)
1629 {
1630 	int rc;
1631 	DEFINE_WAIT(wait);
1632 
1633 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1634 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1635 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1636 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1637 	finish_wait(sk_sleep(sk), &wait);
1638 	return rc;
1639 }
1640 EXPORT_SYMBOL(sk_wait_data);
1641 
1642 /**
1643  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1644  *	@sk: socket
1645  *	@size: memory size to allocate
1646  *	@kind: allocation type
1647  *
1648  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1649  *	rmem allocation. This function assumes that protocols which have
1650  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1651  */
1652 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1653 {
1654 	struct proto *prot = sk->sk_prot;
1655 	int amt = sk_mem_pages(size);
1656 	int allocated;
1657 
1658 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1659 	allocated = atomic_add_return(amt, prot->memory_allocated);
1660 
1661 	/* Under limit. */
1662 	if (allocated <= prot->sysctl_mem[0]) {
1663 		if (prot->memory_pressure && *prot->memory_pressure)
1664 			*prot->memory_pressure = 0;
1665 		return 1;
1666 	}
1667 
1668 	/* Under pressure. */
1669 	if (allocated > prot->sysctl_mem[1])
1670 		if (prot->enter_memory_pressure)
1671 			prot->enter_memory_pressure(sk);
1672 
1673 	/* Over hard limit. */
1674 	if (allocated > prot->sysctl_mem[2])
1675 		goto suppress_allocation;
1676 
1677 	/* guarantee minimum buffer size under pressure */
1678 	if (kind == SK_MEM_RECV) {
1679 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1680 			return 1;
1681 	} else { /* SK_MEM_SEND */
1682 		if (sk->sk_type == SOCK_STREAM) {
1683 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1684 				return 1;
1685 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1686 			   prot->sysctl_wmem[0])
1687 				return 1;
1688 	}
1689 
1690 	if (prot->memory_pressure) {
1691 		int alloc;
1692 
1693 		if (!*prot->memory_pressure)
1694 			return 1;
1695 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1696 		if (prot->sysctl_mem[2] > alloc *
1697 		    sk_mem_pages(sk->sk_wmem_queued +
1698 				 atomic_read(&sk->sk_rmem_alloc) +
1699 				 sk->sk_forward_alloc))
1700 			return 1;
1701 	}
1702 
1703 suppress_allocation:
1704 
1705 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1706 		sk_stream_moderate_sndbuf(sk);
1707 
1708 		/* Fail only if socket is _under_ its sndbuf.
1709 		 * In this case we cannot block, so that we have to fail.
1710 		 */
1711 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1712 			return 1;
1713 	}
1714 
1715 	/* Alas. Undo changes. */
1716 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1717 	atomic_sub(amt, prot->memory_allocated);
1718 	return 0;
1719 }
1720 EXPORT_SYMBOL(__sk_mem_schedule);
1721 
1722 /**
1723  *	__sk_reclaim - reclaim memory_allocated
1724  *	@sk: socket
1725  */
1726 void __sk_mem_reclaim(struct sock *sk)
1727 {
1728 	struct proto *prot = sk->sk_prot;
1729 
1730 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1731 		   prot->memory_allocated);
1732 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1733 
1734 	if (prot->memory_pressure && *prot->memory_pressure &&
1735 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1736 		*prot->memory_pressure = 0;
1737 }
1738 EXPORT_SYMBOL(__sk_mem_reclaim);
1739 
1740 
1741 /*
1742  * Set of default routines for initialising struct proto_ops when
1743  * the protocol does not support a particular function. In certain
1744  * cases where it makes no sense for a protocol to have a "do nothing"
1745  * function, some default processing is provided.
1746  */
1747 
1748 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1749 {
1750 	return -EOPNOTSUPP;
1751 }
1752 EXPORT_SYMBOL(sock_no_bind);
1753 
1754 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1755 		    int len, int flags)
1756 {
1757 	return -EOPNOTSUPP;
1758 }
1759 EXPORT_SYMBOL(sock_no_connect);
1760 
1761 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1762 {
1763 	return -EOPNOTSUPP;
1764 }
1765 EXPORT_SYMBOL(sock_no_socketpair);
1766 
1767 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1768 {
1769 	return -EOPNOTSUPP;
1770 }
1771 EXPORT_SYMBOL(sock_no_accept);
1772 
1773 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1774 		    int *len, int peer)
1775 {
1776 	return -EOPNOTSUPP;
1777 }
1778 EXPORT_SYMBOL(sock_no_getname);
1779 
1780 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1781 {
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(sock_no_poll);
1785 
1786 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1787 {
1788 	return -EOPNOTSUPP;
1789 }
1790 EXPORT_SYMBOL(sock_no_ioctl);
1791 
1792 int sock_no_listen(struct socket *sock, int backlog)
1793 {
1794 	return -EOPNOTSUPP;
1795 }
1796 EXPORT_SYMBOL(sock_no_listen);
1797 
1798 int sock_no_shutdown(struct socket *sock, int how)
1799 {
1800 	return -EOPNOTSUPP;
1801 }
1802 EXPORT_SYMBOL(sock_no_shutdown);
1803 
1804 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1805 		    char __user *optval, unsigned int optlen)
1806 {
1807 	return -EOPNOTSUPP;
1808 }
1809 EXPORT_SYMBOL(sock_no_setsockopt);
1810 
1811 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1812 		    char __user *optval, int __user *optlen)
1813 {
1814 	return -EOPNOTSUPP;
1815 }
1816 EXPORT_SYMBOL(sock_no_getsockopt);
1817 
1818 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1819 		    size_t len)
1820 {
1821 	return -EOPNOTSUPP;
1822 }
1823 EXPORT_SYMBOL(sock_no_sendmsg);
1824 
1825 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1826 		    size_t len, int flags)
1827 {
1828 	return -EOPNOTSUPP;
1829 }
1830 EXPORT_SYMBOL(sock_no_recvmsg);
1831 
1832 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1833 {
1834 	/* Mirror missing mmap method error code */
1835 	return -ENODEV;
1836 }
1837 EXPORT_SYMBOL(sock_no_mmap);
1838 
1839 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1840 {
1841 	ssize_t res;
1842 	struct msghdr msg = {.msg_flags = flags};
1843 	struct kvec iov;
1844 	char *kaddr = kmap(page);
1845 	iov.iov_base = kaddr + offset;
1846 	iov.iov_len = size;
1847 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1848 	kunmap(page);
1849 	return res;
1850 }
1851 EXPORT_SYMBOL(sock_no_sendpage);
1852 
1853 /*
1854  *	Default Socket Callbacks
1855  */
1856 
1857 static void sock_def_wakeup(struct sock *sk)
1858 {
1859 	struct socket_wq *wq;
1860 
1861 	rcu_read_lock();
1862 	wq = rcu_dereference(sk->sk_wq);
1863 	if (wq_has_sleeper(wq))
1864 		wake_up_interruptible_all(&wq->wait);
1865 	rcu_read_unlock();
1866 }
1867 
1868 static void sock_def_error_report(struct sock *sk)
1869 {
1870 	struct socket_wq *wq;
1871 
1872 	rcu_read_lock();
1873 	wq = rcu_dereference(sk->sk_wq);
1874 	if (wq_has_sleeper(wq))
1875 		wake_up_interruptible_poll(&wq->wait, POLLERR);
1876 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1877 	rcu_read_unlock();
1878 }
1879 
1880 static void sock_def_readable(struct sock *sk, int len)
1881 {
1882 	struct socket_wq *wq;
1883 
1884 	rcu_read_lock();
1885 	wq = rcu_dereference(sk->sk_wq);
1886 	if (wq_has_sleeper(wq))
1887 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1888 						POLLRDNORM | POLLRDBAND);
1889 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1890 	rcu_read_unlock();
1891 }
1892 
1893 static void sock_def_write_space(struct sock *sk)
1894 {
1895 	struct socket_wq *wq;
1896 
1897 	rcu_read_lock();
1898 
1899 	/* Do not wake up a writer until he can make "significant"
1900 	 * progress.  --DaveM
1901 	 */
1902 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1903 		wq = rcu_dereference(sk->sk_wq);
1904 		if (wq_has_sleeper(wq))
1905 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1906 						POLLWRNORM | POLLWRBAND);
1907 
1908 		/* Should agree with poll, otherwise some programs break */
1909 		if (sock_writeable(sk))
1910 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1911 	}
1912 
1913 	rcu_read_unlock();
1914 }
1915 
1916 static void sock_def_destruct(struct sock *sk)
1917 {
1918 	kfree(sk->sk_protinfo);
1919 }
1920 
1921 void sk_send_sigurg(struct sock *sk)
1922 {
1923 	if (sk->sk_socket && sk->sk_socket->file)
1924 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1925 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1926 }
1927 EXPORT_SYMBOL(sk_send_sigurg);
1928 
1929 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1930 		    unsigned long expires)
1931 {
1932 	if (!mod_timer(timer, expires))
1933 		sock_hold(sk);
1934 }
1935 EXPORT_SYMBOL(sk_reset_timer);
1936 
1937 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1938 {
1939 	if (timer_pending(timer) && del_timer(timer))
1940 		__sock_put(sk);
1941 }
1942 EXPORT_SYMBOL(sk_stop_timer);
1943 
1944 void sock_init_data(struct socket *sock, struct sock *sk)
1945 {
1946 	skb_queue_head_init(&sk->sk_receive_queue);
1947 	skb_queue_head_init(&sk->sk_write_queue);
1948 	skb_queue_head_init(&sk->sk_error_queue);
1949 #ifdef CONFIG_NET_DMA
1950 	skb_queue_head_init(&sk->sk_async_wait_queue);
1951 #endif
1952 
1953 	sk->sk_send_head	=	NULL;
1954 
1955 	init_timer(&sk->sk_timer);
1956 
1957 	sk->sk_allocation	=	GFP_KERNEL;
1958 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1959 	sk->sk_sndbuf		=	sysctl_wmem_default;
1960 	sk->sk_state		=	TCP_CLOSE;
1961 	sk_set_socket(sk, sock);
1962 
1963 	sock_set_flag(sk, SOCK_ZAPPED);
1964 
1965 	if (sock) {
1966 		sk->sk_type	=	sock->type;
1967 		sk->sk_wq	=	sock->wq;
1968 		sock->sk	=	sk;
1969 	} else
1970 		sk->sk_wq	=	NULL;
1971 
1972 	spin_lock_init(&sk->sk_dst_lock);
1973 	rwlock_init(&sk->sk_callback_lock);
1974 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1975 			af_callback_keys + sk->sk_family,
1976 			af_family_clock_key_strings[sk->sk_family]);
1977 
1978 	sk->sk_state_change	=	sock_def_wakeup;
1979 	sk->sk_data_ready	=	sock_def_readable;
1980 	sk->sk_write_space	=	sock_def_write_space;
1981 	sk->sk_error_report	=	sock_def_error_report;
1982 	sk->sk_destruct		=	sock_def_destruct;
1983 
1984 	sk->sk_sndmsg_page	=	NULL;
1985 	sk->sk_sndmsg_off	=	0;
1986 
1987 	sk->sk_peer_pid 	=	NULL;
1988 	sk->sk_peer_cred	=	NULL;
1989 	sk->sk_write_pending	=	0;
1990 	sk->sk_rcvlowat		=	1;
1991 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1992 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1993 
1994 	sk->sk_stamp = ktime_set(-1L, 0);
1995 
1996 	/*
1997 	 * Before updating sk_refcnt, we must commit prior changes to memory
1998 	 * (Documentation/RCU/rculist_nulls.txt for details)
1999 	 */
2000 	smp_wmb();
2001 	atomic_set(&sk->sk_refcnt, 1);
2002 	atomic_set(&sk->sk_drops, 0);
2003 }
2004 EXPORT_SYMBOL(sock_init_data);
2005 
2006 void lock_sock_nested(struct sock *sk, int subclass)
2007 {
2008 	might_sleep();
2009 	spin_lock_bh(&sk->sk_lock.slock);
2010 	if (sk->sk_lock.owned)
2011 		__lock_sock(sk);
2012 	sk->sk_lock.owned = 1;
2013 	spin_unlock(&sk->sk_lock.slock);
2014 	/*
2015 	 * The sk_lock has mutex_lock() semantics here:
2016 	 */
2017 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2018 	local_bh_enable();
2019 }
2020 EXPORT_SYMBOL(lock_sock_nested);
2021 
2022 void release_sock(struct sock *sk)
2023 {
2024 	/*
2025 	 * The sk_lock has mutex_unlock() semantics:
2026 	 */
2027 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2028 
2029 	spin_lock_bh(&sk->sk_lock.slock);
2030 	if (sk->sk_backlog.tail)
2031 		__release_sock(sk);
2032 	sk->sk_lock.owned = 0;
2033 	if (waitqueue_active(&sk->sk_lock.wq))
2034 		wake_up(&sk->sk_lock.wq);
2035 	spin_unlock_bh(&sk->sk_lock.slock);
2036 }
2037 EXPORT_SYMBOL(release_sock);
2038 
2039 /**
2040  * lock_sock_fast - fast version of lock_sock
2041  * @sk: socket
2042  *
2043  * This version should be used for very small section, where process wont block
2044  * return false if fast path is taken
2045  *   sk_lock.slock locked, owned = 0, BH disabled
2046  * return true if slow path is taken
2047  *   sk_lock.slock unlocked, owned = 1, BH enabled
2048  */
2049 bool lock_sock_fast(struct sock *sk)
2050 {
2051 	might_sleep();
2052 	spin_lock_bh(&sk->sk_lock.slock);
2053 
2054 	if (!sk->sk_lock.owned)
2055 		/*
2056 		 * Note : We must disable BH
2057 		 */
2058 		return false;
2059 
2060 	__lock_sock(sk);
2061 	sk->sk_lock.owned = 1;
2062 	spin_unlock(&sk->sk_lock.slock);
2063 	/*
2064 	 * The sk_lock has mutex_lock() semantics here:
2065 	 */
2066 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2067 	local_bh_enable();
2068 	return true;
2069 }
2070 EXPORT_SYMBOL(lock_sock_fast);
2071 
2072 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2073 {
2074 	struct timeval tv;
2075 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2076 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2077 	tv = ktime_to_timeval(sk->sk_stamp);
2078 	if (tv.tv_sec == -1)
2079 		return -ENOENT;
2080 	if (tv.tv_sec == 0) {
2081 		sk->sk_stamp = ktime_get_real();
2082 		tv = ktime_to_timeval(sk->sk_stamp);
2083 	}
2084 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2085 }
2086 EXPORT_SYMBOL(sock_get_timestamp);
2087 
2088 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2089 {
2090 	struct timespec ts;
2091 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2092 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2093 	ts = ktime_to_timespec(sk->sk_stamp);
2094 	if (ts.tv_sec == -1)
2095 		return -ENOENT;
2096 	if (ts.tv_sec == 0) {
2097 		sk->sk_stamp = ktime_get_real();
2098 		ts = ktime_to_timespec(sk->sk_stamp);
2099 	}
2100 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2101 }
2102 EXPORT_SYMBOL(sock_get_timestampns);
2103 
2104 void sock_enable_timestamp(struct sock *sk, int flag)
2105 {
2106 	if (!sock_flag(sk, flag)) {
2107 		sock_set_flag(sk, flag);
2108 		/*
2109 		 * we just set one of the two flags which require net
2110 		 * time stamping, but time stamping might have been on
2111 		 * already because of the other one
2112 		 */
2113 		if (!sock_flag(sk,
2114 				flag == SOCK_TIMESTAMP ?
2115 				SOCK_TIMESTAMPING_RX_SOFTWARE :
2116 				SOCK_TIMESTAMP))
2117 			net_enable_timestamp();
2118 	}
2119 }
2120 
2121 /*
2122  *	Get a socket option on an socket.
2123  *
2124  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2125  *	asynchronous errors should be reported by getsockopt. We assume
2126  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2127  */
2128 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2129 			   char __user *optval, int __user *optlen)
2130 {
2131 	struct sock *sk = sock->sk;
2132 
2133 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2134 }
2135 EXPORT_SYMBOL(sock_common_getsockopt);
2136 
2137 #ifdef CONFIG_COMPAT
2138 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2139 				  char __user *optval, int __user *optlen)
2140 {
2141 	struct sock *sk = sock->sk;
2142 
2143 	if (sk->sk_prot->compat_getsockopt != NULL)
2144 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2145 						      optval, optlen);
2146 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2147 }
2148 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2149 #endif
2150 
2151 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2152 			struct msghdr *msg, size_t size, int flags)
2153 {
2154 	struct sock *sk = sock->sk;
2155 	int addr_len = 0;
2156 	int err;
2157 
2158 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2159 				   flags & ~MSG_DONTWAIT, &addr_len);
2160 	if (err >= 0)
2161 		msg->msg_namelen = addr_len;
2162 	return err;
2163 }
2164 EXPORT_SYMBOL(sock_common_recvmsg);
2165 
2166 /*
2167  *	Set socket options on an inet socket.
2168  */
2169 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2170 			   char __user *optval, unsigned int optlen)
2171 {
2172 	struct sock *sk = sock->sk;
2173 
2174 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2175 }
2176 EXPORT_SYMBOL(sock_common_setsockopt);
2177 
2178 #ifdef CONFIG_COMPAT
2179 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2180 				  char __user *optval, unsigned int optlen)
2181 {
2182 	struct sock *sk = sock->sk;
2183 
2184 	if (sk->sk_prot->compat_setsockopt != NULL)
2185 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2186 						      optval, optlen);
2187 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2188 }
2189 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2190 #endif
2191 
2192 void sk_common_release(struct sock *sk)
2193 {
2194 	if (sk->sk_prot->destroy)
2195 		sk->sk_prot->destroy(sk);
2196 
2197 	/*
2198 	 * Observation: when sock_common_release is called, processes have
2199 	 * no access to socket. But net still has.
2200 	 * Step one, detach it from networking:
2201 	 *
2202 	 * A. Remove from hash tables.
2203 	 */
2204 
2205 	sk->sk_prot->unhash(sk);
2206 
2207 	/*
2208 	 * In this point socket cannot receive new packets, but it is possible
2209 	 * that some packets are in flight because some CPU runs receiver and
2210 	 * did hash table lookup before we unhashed socket. They will achieve
2211 	 * receive queue and will be purged by socket destructor.
2212 	 *
2213 	 * Also we still have packets pending on receive queue and probably,
2214 	 * our own packets waiting in device queues. sock_destroy will drain
2215 	 * receive queue, but transmitted packets will delay socket destruction
2216 	 * until the last reference will be released.
2217 	 */
2218 
2219 	sock_orphan(sk);
2220 
2221 	xfrm_sk_free_policy(sk);
2222 
2223 	sk_refcnt_debug_release(sk);
2224 	sock_put(sk);
2225 }
2226 EXPORT_SYMBOL(sk_common_release);
2227 
2228 static DEFINE_RWLOCK(proto_list_lock);
2229 static LIST_HEAD(proto_list);
2230 
2231 #ifdef CONFIG_PROC_FS
2232 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2233 struct prot_inuse {
2234 	int val[PROTO_INUSE_NR];
2235 };
2236 
2237 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2238 
2239 #ifdef CONFIG_NET_NS
2240 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2241 {
2242 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2243 }
2244 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2245 
2246 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2247 {
2248 	int cpu, idx = prot->inuse_idx;
2249 	int res = 0;
2250 
2251 	for_each_possible_cpu(cpu)
2252 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2253 
2254 	return res >= 0 ? res : 0;
2255 }
2256 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2257 
2258 static int __net_init sock_inuse_init_net(struct net *net)
2259 {
2260 	net->core.inuse = alloc_percpu(struct prot_inuse);
2261 	return net->core.inuse ? 0 : -ENOMEM;
2262 }
2263 
2264 static void __net_exit sock_inuse_exit_net(struct net *net)
2265 {
2266 	free_percpu(net->core.inuse);
2267 }
2268 
2269 static struct pernet_operations net_inuse_ops = {
2270 	.init = sock_inuse_init_net,
2271 	.exit = sock_inuse_exit_net,
2272 };
2273 
2274 static __init int net_inuse_init(void)
2275 {
2276 	if (register_pernet_subsys(&net_inuse_ops))
2277 		panic("Cannot initialize net inuse counters");
2278 
2279 	return 0;
2280 }
2281 
2282 core_initcall(net_inuse_init);
2283 #else
2284 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2285 
2286 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2287 {
2288 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2289 }
2290 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2291 
2292 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2293 {
2294 	int cpu, idx = prot->inuse_idx;
2295 	int res = 0;
2296 
2297 	for_each_possible_cpu(cpu)
2298 		res += per_cpu(prot_inuse, cpu).val[idx];
2299 
2300 	return res >= 0 ? res : 0;
2301 }
2302 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2303 #endif
2304 
2305 static void assign_proto_idx(struct proto *prot)
2306 {
2307 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2308 
2309 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2310 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2311 		return;
2312 	}
2313 
2314 	set_bit(prot->inuse_idx, proto_inuse_idx);
2315 }
2316 
2317 static void release_proto_idx(struct proto *prot)
2318 {
2319 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2320 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2321 }
2322 #else
2323 static inline void assign_proto_idx(struct proto *prot)
2324 {
2325 }
2326 
2327 static inline void release_proto_idx(struct proto *prot)
2328 {
2329 }
2330 #endif
2331 
2332 int proto_register(struct proto *prot, int alloc_slab)
2333 {
2334 	if (alloc_slab) {
2335 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2336 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2337 					NULL);
2338 
2339 		if (prot->slab == NULL) {
2340 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2341 			       prot->name);
2342 			goto out;
2343 		}
2344 
2345 		if (prot->rsk_prot != NULL) {
2346 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2347 			if (prot->rsk_prot->slab_name == NULL)
2348 				goto out_free_sock_slab;
2349 
2350 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2351 								 prot->rsk_prot->obj_size, 0,
2352 								 SLAB_HWCACHE_ALIGN, NULL);
2353 
2354 			if (prot->rsk_prot->slab == NULL) {
2355 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2356 				       prot->name);
2357 				goto out_free_request_sock_slab_name;
2358 			}
2359 		}
2360 
2361 		if (prot->twsk_prot != NULL) {
2362 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2363 
2364 			if (prot->twsk_prot->twsk_slab_name == NULL)
2365 				goto out_free_request_sock_slab;
2366 
2367 			prot->twsk_prot->twsk_slab =
2368 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2369 						  prot->twsk_prot->twsk_obj_size,
2370 						  0,
2371 						  SLAB_HWCACHE_ALIGN |
2372 							prot->slab_flags,
2373 						  NULL);
2374 			if (prot->twsk_prot->twsk_slab == NULL)
2375 				goto out_free_timewait_sock_slab_name;
2376 		}
2377 	}
2378 
2379 	write_lock(&proto_list_lock);
2380 	list_add(&prot->node, &proto_list);
2381 	assign_proto_idx(prot);
2382 	write_unlock(&proto_list_lock);
2383 	return 0;
2384 
2385 out_free_timewait_sock_slab_name:
2386 	kfree(prot->twsk_prot->twsk_slab_name);
2387 out_free_request_sock_slab:
2388 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2389 		kmem_cache_destroy(prot->rsk_prot->slab);
2390 		prot->rsk_prot->slab = NULL;
2391 	}
2392 out_free_request_sock_slab_name:
2393 	if (prot->rsk_prot)
2394 		kfree(prot->rsk_prot->slab_name);
2395 out_free_sock_slab:
2396 	kmem_cache_destroy(prot->slab);
2397 	prot->slab = NULL;
2398 out:
2399 	return -ENOBUFS;
2400 }
2401 EXPORT_SYMBOL(proto_register);
2402 
2403 void proto_unregister(struct proto *prot)
2404 {
2405 	write_lock(&proto_list_lock);
2406 	release_proto_idx(prot);
2407 	list_del(&prot->node);
2408 	write_unlock(&proto_list_lock);
2409 
2410 	if (prot->slab != NULL) {
2411 		kmem_cache_destroy(prot->slab);
2412 		prot->slab = NULL;
2413 	}
2414 
2415 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2416 		kmem_cache_destroy(prot->rsk_prot->slab);
2417 		kfree(prot->rsk_prot->slab_name);
2418 		prot->rsk_prot->slab = NULL;
2419 	}
2420 
2421 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2422 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2423 		kfree(prot->twsk_prot->twsk_slab_name);
2424 		prot->twsk_prot->twsk_slab = NULL;
2425 	}
2426 }
2427 EXPORT_SYMBOL(proto_unregister);
2428 
2429 #ifdef CONFIG_PROC_FS
2430 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2431 	__acquires(proto_list_lock)
2432 {
2433 	read_lock(&proto_list_lock);
2434 	return seq_list_start_head(&proto_list, *pos);
2435 }
2436 
2437 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2438 {
2439 	return seq_list_next(v, &proto_list, pos);
2440 }
2441 
2442 static void proto_seq_stop(struct seq_file *seq, void *v)
2443 	__releases(proto_list_lock)
2444 {
2445 	read_unlock(&proto_list_lock);
2446 }
2447 
2448 static char proto_method_implemented(const void *method)
2449 {
2450 	return method == NULL ? 'n' : 'y';
2451 }
2452 
2453 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2454 {
2455 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2456 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2457 		   proto->name,
2458 		   proto->obj_size,
2459 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2460 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2461 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2462 		   proto->max_header,
2463 		   proto->slab == NULL ? "no" : "yes",
2464 		   module_name(proto->owner),
2465 		   proto_method_implemented(proto->close),
2466 		   proto_method_implemented(proto->connect),
2467 		   proto_method_implemented(proto->disconnect),
2468 		   proto_method_implemented(proto->accept),
2469 		   proto_method_implemented(proto->ioctl),
2470 		   proto_method_implemented(proto->init),
2471 		   proto_method_implemented(proto->destroy),
2472 		   proto_method_implemented(proto->shutdown),
2473 		   proto_method_implemented(proto->setsockopt),
2474 		   proto_method_implemented(proto->getsockopt),
2475 		   proto_method_implemented(proto->sendmsg),
2476 		   proto_method_implemented(proto->recvmsg),
2477 		   proto_method_implemented(proto->sendpage),
2478 		   proto_method_implemented(proto->bind),
2479 		   proto_method_implemented(proto->backlog_rcv),
2480 		   proto_method_implemented(proto->hash),
2481 		   proto_method_implemented(proto->unhash),
2482 		   proto_method_implemented(proto->get_port),
2483 		   proto_method_implemented(proto->enter_memory_pressure));
2484 }
2485 
2486 static int proto_seq_show(struct seq_file *seq, void *v)
2487 {
2488 	if (v == &proto_list)
2489 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2490 			   "protocol",
2491 			   "size",
2492 			   "sockets",
2493 			   "memory",
2494 			   "press",
2495 			   "maxhdr",
2496 			   "slab",
2497 			   "module",
2498 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2499 	else
2500 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2501 	return 0;
2502 }
2503 
2504 static const struct seq_operations proto_seq_ops = {
2505 	.start  = proto_seq_start,
2506 	.next   = proto_seq_next,
2507 	.stop   = proto_seq_stop,
2508 	.show   = proto_seq_show,
2509 };
2510 
2511 static int proto_seq_open(struct inode *inode, struct file *file)
2512 {
2513 	return seq_open_net(inode, file, &proto_seq_ops,
2514 			    sizeof(struct seq_net_private));
2515 }
2516 
2517 static const struct file_operations proto_seq_fops = {
2518 	.owner		= THIS_MODULE,
2519 	.open		= proto_seq_open,
2520 	.read		= seq_read,
2521 	.llseek		= seq_lseek,
2522 	.release	= seq_release_net,
2523 };
2524 
2525 static __net_init int proto_init_net(struct net *net)
2526 {
2527 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2528 		return -ENOMEM;
2529 
2530 	return 0;
2531 }
2532 
2533 static __net_exit void proto_exit_net(struct net *net)
2534 {
2535 	proc_net_remove(net, "protocols");
2536 }
2537 
2538 
2539 static __net_initdata struct pernet_operations proto_net_ops = {
2540 	.init = proto_init_net,
2541 	.exit = proto_exit_net,
2542 };
2543 
2544 static int __init proto_init(void)
2545 {
2546 	return register_pernet_subsys(&proto_net_ops);
2547 }
2548 
2549 subsys_initcall(proto_init);
2550 
2551 #endif /* PROC_FS */
2552