1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 /** 150 * sk_ns_capable - General socket capability test 151 * @sk: Socket to use a capability on or through 152 * @user_ns: The user namespace of the capability to use 153 * @cap: The capability to use 154 * 155 * Test to see if the opener of the socket had when the socket was 156 * created and the current process has the capability @cap in the user 157 * namespace @user_ns. 158 */ 159 bool sk_ns_capable(const struct sock *sk, 160 struct user_namespace *user_ns, int cap) 161 { 162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 163 ns_capable(user_ns, cap); 164 } 165 EXPORT_SYMBOL(sk_ns_capable); 166 167 /** 168 * sk_capable - Socket global capability test 169 * @sk: Socket to use a capability on or through 170 * @cap: The global capability to use 171 * 172 * Test to see if the opener of the socket had when the socket was 173 * created and the current process has the capability @cap in all user 174 * namespaces. 175 */ 176 bool sk_capable(const struct sock *sk, int cap) 177 { 178 return sk_ns_capable(sk, &init_user_ns, cap); 179 } 180 EXPORT_SYMBOL(sk_capable); 181 182 /** 183 * sk_net_capable - Network namespace socket capability test 184 * @sk: Socket to use a capability on or through 185 * @cap: The capability to use 186 * 187 * Test to see if the opener of the socket had when the socket was created 188 * and the current process has the capability @cap over the network namespace 189 * the socket is a member of. 190 */ 191 bool sk_net_capable(const struct sock *sk, int cap) 192 { 193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 194 } 195 EXPORT_SYMBOL(sk_net_capable); 196 197 /* 198 * Each address family might have different locking rules, so we have 199 * one slock key per address family and separate keys for internal and 200 * userspace sockets. 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_keys[AF_MAX]; 204 static struct lock_class_key af_family_slock_keys[AF_MAX]; 205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 206 207 /* 208 * Make lock validator output more readable. (we pre-construct these 209 * strings build-time, so that runtime initialization of socket 210 * locks is fast): 211 */ 212 213 #define _sock_locks(x) \ 214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 223 x "27" , x "28" , x "AF_CAN" , \ 224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 229 x "AF_MCTP" , \ 230 x "AF_MAX" 231 232 static const char *const af_family_key_strings[AF_MAX+1] = { 233 _sock_locks("sk_lock-") 234 }; 235 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 236 _sock_locks("slock-") 237 }; 238 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 239 _sock_locks("clock-") 240 }; 241 242 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 243 _sock_locks("k-sk_lock-") 244 }; 245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-slock-") 247 }; 248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-clock-") 250 }; 251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 252 _sock_locks("rlock-") 253 }; 254 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 255 _sock_locks("wlock-") 256 }; 257 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 258 _sock_locks("elock-") 259 }; 260 261 /* 262 * sk_callback_lock and sk queues locking rules are per-address-family, 263 * so split the lock classes by using a per-AF key: 264 */ 265 static struct lock_class_key af_callback_keys[AF_MAX]; 266 static struct lock_class_key af_rlock_keys[AF_MAX]; 267 static struct lock_class_key af_wlock_keys[AF_MAX]; 268 static struct lock_class_key af_elock_keys[AF_MAX]; 269 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 270 271 /* Run time adjustable parameters. */ 272 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 273 EXPORT_SYMBOL(sysctl_wmem_max); 274 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 275 EXPORT_SYMBOL(sysctl_rmem_max); 276 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 277 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 278 279 /* Maximal space eaten by iovec or ancillary data plus some space */ 280 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 281 EXPORT_SYMBOL(sysctl_optmem_max); 282 283 int sysctl_tstamp_allow_data __read_mostly = 1; 284 285 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 286 EXPORT_SYMBOL_GPL(memalloc_socks_key); 287 288 /** 289 * sk_set_memalloc - sets %SOCK_MEMALLOC 290 * @sk: socket to set it on 291 * 292 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 293 * It's the responsibility of the admin to adjust min_free_kbytes 294 * to meet the requirements 295 */ 296 void sk_set_memalloc(struct sock *sk) 297 { 298 sock_set_flag(sk, SOCK_MEMALLOC); 299 sk->sk_allocation |= __GFP_MEMALLOC; 300 static_branch_inc(&memalloc_socks_key); 301 } 302 EXPORT_SYMBOL_GPL(sk_set_memalloc); 303 304 void sk_clear_memalloc(struct sock *sk) 305 { 306 sock_reset_flag(sk, SOCK_MEMALLOC); 307 sk->sk_allocation &= ~__GFP_MEMALLOC; 308 static_branch_dec(&memalloc_socks_key); 309 310 /* 311 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 312 * progress of swapping. SOCK_MEMALLOC may be cleared while 313 * it has rmem allocations due to the last swapfile being deactivated 314 * but there is a risk that the socket is unusable due to exceeding 315 * the rmem limits. Reclaim the reserves and obey rmem limits again. 316 */ 317 sk_mem_reclaim(sk); 318 } 319 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 320 321 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 322 { 323 int ret; 324 unsigned int noreclaim_flag; 325 326 /* these should have been dropped before queueing */ 327 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 328 329 noreclaim_flag = memalloc_noreclaim_save(); 330 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 331 tcp_v6_do_rcv, 332 tcp_v4_do_rcv, 333 sk, skb); 334 memalloc_noreclaim_restore(noreclaim_flag); 335 336 return ret; 337 } 338 EXPORT_SYMBOL(__sk_backlog_rcv); 339 340 void sk_error_report(struct sock *sk) 341 { 342 sk->sk_error_report(sk); 343 344 switch (sk->sk_family) { 345 case AF_INET: 346 fallthrough; 347 case AF_INET6: 348 trace_inet_sk_error_report(sk); 349 break; 350 default: 351 break; 352 } 353 } 354 EXPORT_SYMBOL(sk_error_report); 355 356 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 357 { 358 struct __kernel_sock_timeval tv; 359 360 if (timeo == MAX_SCHEDULE_TIMEOUT) { 361 tv.tv_sec = 0; 362 tv.tv_usec = 0; 363 } else { 364 tv.tv_sec = timeo / HZ; 365 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 366 } 367 368 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 369 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 370 *(struct old_timeval32 *)optval = tv32; 371 return sizeof(tv32); 372 } 373 374 if (old_timeval) { 375 struct __kernel_old_timeval old_tv; 376 old_tv.tv_sec = tv.tv_sec; 377 old_tv.tv_usec = tv.tv_usec; 378 *(struct __kernel_old_timeval *)optval = old_tv; 379 return sizeof(old_tv); 380 } 381 382 *(struct __kernel_sock_timeval *)optval = tv; 383 return sizeof(tv); 384 } 385 EXPORT_SYMBOL(sock_get_timeout); 386 387 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 388 sockptr_t optval, int optlen, bool old_timeval) 389 { 390 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 391 struct old_timeval32 tv32; 392 393 if (optlen < sizeof(tv32)) 394 return -EINVAL; 395 396 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 397 return -EFAULT; 398 tv->tv_sec = tv32.tv_sec; 399 tv->tv_usec = tv32.tv_usec; 400 } else if (old_timeval) { 401 struct __kernel_old_timeval old_tv; 402 403 if (optlen < sizeof(old_tv)) 404 return -EINVAL; 405 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 406 return -EFAULT; 407 tv->tv_sec = old_tv.tv_sec; 408 tv->tv_usec = old_tv.tv_usec; 409 } else { 410 if (optlen < sizeof(*tv)) 411 return -EINVAL; 412 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 413 return -EFAULT; 414 } 415 416 return 0; 417 } 418 EXPORT_SYMBOL(sock_copy_user_timeval); 419 420 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 421 bool old_timeval) 422 { 423 struct __kernel_sock_timeval tv; 424 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 425 426 if (err) 427 return err; 428 429 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 430 return -EDOM; 431 432 if (tv.tv_sec < 0) { 433 static int warned __read_mostly; 434 435 *timeo_p = 0; 436 if (warned < 10 && net_ratelimit()) { 437 warned++; 438 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 439 __func__, current->comm, task_pid_nr(current)); 440 } 441 return 0; 442 } 443 *timeo_p = MAX_SCHEDULE_TIMEOUT; 444 if (tv.tv_sec == 0 && tv.tv_usec == 0) 445 return 0; 446 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 447 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 448 return 0; 449 } 450 451 static bool sock_needs_netstamp(const struct sock *sk) 452 { 453 switch (sk->sk_family) { 454 case AF_UNSPEC: 455 case AF_UNIX: 456 return false; 457 default: 458 return true; 459 } 460 } 461 462 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 463 { 464 if (sk->sk_flags & flags) { 465 sk->sk_flags &= ~flags; 466 if (sock_needs_netstamp(sk) && 467 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 468 net_disable_timestamp(); 469 } 470 } 471 472 473 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 474 { 475 unsigned long flags; 476 struct sk_buff_head *list = &sk->sk_receive_queue; 477 478 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 479 atomic_inc(&sk->sk_drops); 480 trace_sock_rcvqueue_full(sk, skb); 481 return -ENOMEM; 482 } 483 484 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 485 atomic_inc(&sk->sk_drops); 486 return -ENOBUFS; 487 } 488 489 skb->dev = NULL; 490 skb_set_owner_r(skb, sk); 491 492 /* we escape from rcu protected region, make sure we dont leak 493 * a norefcounted dst 494 */ 495 skb_dst_force(skb); 496 497 spin_lock_irqsave(&list->lock, flags); 498 sock_skb_set_dropcount(sk, skb); 499 __skb_queue_tail(list, skb); 500 spin_unlock_irqrestore(&list->lock, flags); 501 502 if (!sock_flag(sk, SOCK_DEAD)) 503 sk->sk_data_ready(sk); 504 return 0; 505 } 506 EXPORT_SYMBOL(__sock_queue_rcv_skb); 507 508 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 509 enum skb_drop_reason *reason) 510 { 511 enum skb_drop_reason drop_reason; 512 int err; 513 514 err = sk_filter(sk, skb); 515 if (err) { 516 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 517 goto out; 518 } 519 err = __sock_queue_rcv_skb(sk, skb); 520 switch (err) { 521 case -ENOMEM: 522 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 523 break; 524 case -ENOBUFS: 525 drop_reason = SKB_DROP_REASON_PROTO_MEM; 526 break; 527 default: 528 drop_reason = SKB_NOT_DROPPED_YET; 529 break; 530 } 531 out: 532 if (reason) 533 *reason = drop_reason; 534 return err; 535 } 536 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 537 538 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 539 const int nested, unsigned int trim_cap, bool refcounted) 540 { 541 int rc = NET_RX_SUCCESS; 542 543 if (sk_filter_trim_cap(sk, skb, trim_cap)) 544 goto discard_and_relse; 545 546 skb->dev = NULL; 547 548 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 549 atomic_inc(&sk->sk_drops); 550 goto discard_and_relse; 551 } 552 if (nested) 553 bh_lock_sock_nested(sk); 554 else 555 bh_lock_sock(sk); 556 if (!sock_owned_by_user(sk)) { 557 /* 558 * trylock + unlock semantics: 559 */ 560 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 561 562 rc = sk_backlog_rcv(sk, skb); 563 564 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 565 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 566 bh_unlock_sock(sk); 567 atomic_inc(&sk->sk_drops); 568 goto discard_and_relse; 569 } 570 571 bh_unlock_sock(sk); 572 out: 573 if (refcounted) 574 sock_put(sk); 575 return rc; 576 discard_and_relse: 577 kfree_skb(skb); 578 goto out; 579 } 580 EXPORT_SYMBOL(__sk_receive_skb); 581 582 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 583 u32)); 584 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 585 u32)); 586 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 587 { 588 struct dst_entry *dst = __sk_dst_get(sk); 589 590 if (dst && dst->obsolete && 591 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 592 dst, cookie) == NULL) { 593 sk_tx_queue_clear(sk); 594 sk->sk_dst_pending_confirm = 0; 595 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 596 dst_release(dst); 597 return NULL; 598 } 599 600 return dst; 601 } 602 EXPORT_SYMBOL(__sk_dst_check); 603 604 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 605 { 606 struct dst_entry *dst = sk_dst_get(sk); 607 608 if (dst && dst->obsolete && 609 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 610 dst, cookie) == NULL) { 611 sk_dst_reset(sk); 612 dst_release(dst); 613 return NULL; 614 } 615 616 return dst; 617 } 618 EXPORT_SYMBOL(sk_dst_check); 619 620 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 621 { 622 int ret = -ENOPROTOOPT; 623 #ifdef CONFIG_NETDEVICES 624 struct net *net = sock_net(sk); 625 626 /* Sorry... */ 627 ret = -EPERM; 628 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 629 goto out; 630 631 ret = -EINVAL; 632 if (ifindex < 0) 633 goto out; 634 635 sk->sk_bound_dev_if = ifindex; 636 if (sk->sk_prot->rehash) 637 sk->sk_prot->rehash(sk); 638 sk_dst_reset(sk); 639 640 ret = 0; 641 642 out: 643 #endif 644 645 return ret; 646 } 647 648 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 649 { 650 int ret; 651 652 if (lock_sk) 653 lock_sock(sk); 654 ret = sock_bindtoindex_locked(sk, ifindex); 655 if (lock_sk) 656 release_sock(sk); 657 658 return ret; 659 } 660 EXPORT_SYMBOL(sock_bindtoindex); 661 662 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 663 { 664 int ret = -ENOPROTOOPT; 665 #ifdef CONFIG_NETDEVICES 666 struct net *net = sock_net(sk); 667 char devname[IFNAMSIZ]; 668 int index; 669 670 ret = -EINVAL; 671 if (optlen < 0) 672 goto out; 673 674 /* Bind this socket to a particular device like "eth0", 675 * as specified in the passed interface name. If the 676 * name is "" or the option length is zero the socket 677 * is not bound. 678 */ 679 if (optlen > IFNAMSIZ - 1) 680 optlen = IFNAMSIZ - 1; 681 memset(devname, 0, sizeof(devname)); 682 683 ret = -EFAULT; 684 if (copy_from_sockptr(devname, optval, optlen)) 685 goto out; 686 687 index = 0; 688 if (devname[0] != '\0') { 689 struct net_device *dev; 690 691 rcu_read_lock(); 692 dev = dev_get_by_name_rcu(net, devname); 693 if (dev) 694 index = dev->ifindex; 695 rcu_read_unlock(); 696 ret = -ENODEV; 697 if (!dev) 698 goto out; 699 } 700 701 return sock_bindtoindex(sk, index, true); 702 out: 703 #endif 704 705 return ret; 706 } 707 708 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 709 int __user *optlen, int len) 710 { 711 int ret = -ENOPROTOOPT; 712 #ifdef CONFIG_NETDEVICES 713 struct net *net = sock_net(sk); 714 char devname[IFNAMSIZ]; 715 716 if (sk->sk_bound_dev_if == 0) { 717 len = 0; 718 goto zero; 719 } 720 721 ret = -EINVAL; 722 if (len < IFNAMSIZ) 723 goto out; 724 725 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 726 if (ret) 727 goto out; 728 729 len = strlen(devname) + 1; 730 731 ret = -EFAULT; 732 if (copy_to_user(optval, devname, len)) 733 goto out; 734 735 zero: 736 ret = -EFAULT; 737 if (put_user(len, optlen)) 738 goto out; 739 740 ret = 0; 741 742 out: 743 #endif 744 745 return ret; 746 } 747 748 bool sk_mc_loop(struct sock *sk) 749 { 750 if (dev_recursion_level()) 751 return false; 752 if (!sk) 753 return true; 754 switch (sk->sk_family) { 755 case AF_INET: 756 return inet_sk(sk)->mc_loop; 757 #if IS_ENABLED(CONFIG_IPV6) 758 case AF_INET6: 759 return inet6_sk(sk)->mc_loop; 760 #endif 761 } 762 WARN_ON_ONCE(1); 763 return true; 764 } 765 EXPORT_SYMBOL(sk_mc_loop); 766 767 void sock_set_reuseaddr(struct sock *sk) 768 { 769 lock_sock(sk); 770 sk->sk_reuse = SK_CAN_REUSE; 771 release_sock(sk); 772 } 773 EXPORT_SYMBOL(sock_set_reuseaddr); 774 775 void sock_set_reuseport(struct sock *sk) 776 { 777 lock_sock(sk); 778 sk->sk_reuseport = true; 779 release_sock(sk); 780 } 781 EXPORT_SYMBOL(sock_set_reuseport); 782 783 void sock_no_linger(struct sock *sk) 784 { 785 lock_sock(sk); 786 sk->sk_lingertime = 0; 787 sock_set_flag(sk, SOCK_LINGER); 788 release_sock(sk); 789 } 790 EXPORT_SYMBOL(sock_no_linger); 791 792 void sock_set_priority(struct sock *sk, u32 priority) 793 { 794 lock_sock(sk); 795 sk->sk_priority = priority; 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_set_priority); 799 800 void sock_set_sndtimeo(struct sock *sk, s64 secs) 801 { 802 lock_sock(sk); 803 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 804 sk->sk_sndtimeo = secs * HZ; 805 else 806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 807 release_sock(sk); 808 } 809 EXPORT_SYMBOL(sock_set_sndtimeo); 810 811 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 812 { 813 if (val) { 814 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 815 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 816 sock_set_flag(sk, SOCK_RCVTSTAMP); 817 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 818 } else { 819 sock_reset_flag(sk, SOCK_RCVTSTAMP); 820 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 821 } 822 } 823 824 void sock_enable_timestamps(struct sock *sk) 825 { 826 lock_sock(sk); 827 __sock_set_timestamps(sk, true, false, true); 828 release_sock(sk); 829 } 830 EXPORT_SYMBOL(sock_enable_timestamps); 831 832 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 833 { 834 switch (optname) { 835 case SO_TIMESTAMP_OLD: 836 __sock_set_timestamps(sk, valbool, false, false); 837 break; 838 case SO_TIMESTAMP_NEW: 839 __sock_set_timestamps(sk, valbool, true, false); 840 break; 841 case SO_TIMESTAMPNS_OLD: 842 __sock_set_timestamps(sk, valbool, false, true); 843 break; 844 case SO_TIMESTAMPNS_NEW: 845 __sock_set_timestamps(sk, valbool, true, true); 846 break; 847 } 848 } 849 850 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 851 { 852 struct net *net = sock_net(sk); 853 struct net_device *dev = NULL; 854 bool match = false; 855 int *vclock_index; 856 int i, num; 857 858 if (sk->sk_bound_dev_if) 859 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 860 861 if (!dev) { 862 pr_err("%s: sock not bind to device\n", __func__); 863 return -EOPNOTSUPP; 864 } 865 866 num = ethtool_get_phc_vclocks(dev, &vclock_index); 867 dev_put(dev); 868 869 for (i = 0; i < num; i++) { 870 if (*(vclock_index + i) == phc_index) { 871 match = true; 872 break; 873 } 874 } 875 876 if (num > 0) 877 kfree(vclock_index); 878 879 if (!match) 880 return -EINVAL; 881 882 sk->sk_bind_phc = phc_index; 883 884 return 0; 885 } 886 887 int sock_set_timestamping(struct sock *sk, int optname, 888 struct so_timestamping timestamping) 889 { 890 int val = timestamping.flags; 891 int ret; 892 893 if (val & ~SOF_TIMESTAMPING_MASK) 894 return -EINVAL; 895 896 if (val & SOF_TIMESTAMPING_OPT_ID && 897 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 898 if (sk_is_tcp(sk)) { 899 if ((1 << sk->sk_state) & 900 (TCPF_CLOSE | TCPF_LISTEN)) 901 return -EINVAL; 902 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 903 } else { 904 atomic_set(&sk->sk_tskey, 0); 905 } 906 } 907 908 if (val & SOF_TIMESTAMPING_OPT_STATS && 909 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 910 return -EINVAL; 911 912 if (val & SOF_TIMESTAMPING_BIND_PHC) { 913 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 914 if (ret) 915 return ret; 916 } 917 918 sk->sk_tsflags = val; 919 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 920 921 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 922 sock_enable_timestamp(sk, 923 SOCK_TIMESTAMPING_RX_SOFTWARE); 924 else 925 sock_disable_timestamp(sk, 926 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 927 return 0; 928 } 929 930 void sock_set_keepalive(struct sock *sk) 931 { 932 lock_sock(sk); 933 if (sk->sk_prot->keepalive) 934 sk->sk_prot->keepalive(sk, true); 935 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 936 release_sock(sk); 937 } 938 EXPORT_SYMBOL(sock_set_keepalive); 939 940 static void __sock_set_rcvbuf(struct sock *sk, int val) 941 { 942 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 943 * as a negative value. 944 */ 945 val = min_t(int, val, INT_MAX / 2); 946 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 947 948 /* We double it on the way in to account for "struct sk_buff" etc. 949 * overhead. Applications assume that the SO_RCVBUF setting they make 950 * will allow that much actual data to be received on that socket. 951 * 952 * Applications are unaware that "struct sk_buff" and other overheads 953 * allocate from the receive buffer during socket buffer allocation. 954 * 955 * And after considering the possible alternatives, returning the value 956 * we actually used in getsockopt is the most desirable behavior. 957 */ 958 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 959 } 960 961 void sock_set_rcvbuf(struct sock *sk, int val) 962 { 963 lock_sock(sk); 964 __sock_set_rcvbuf(sk, val); 965 release_sock(sk); 966 } 967 EXPORT_SYMBOL(sock_set_rcvbuf); 968 969 static void __sock_set_mark(struct sock *sk, u32 val) 970 { 971 if (val != sk->sk_mark) { 972 sk->sk_mark = val; 973 sk_dst_reset(sk); 974 } 975 } 976 977 void sock_set_mark(struct sock *sk, u32 val) 978 { 979 lock_sock(sk); 980 __sock_set_mark(sk, val); 981 release_sock(sk); 982 } 983 EXPORT_SYMBOL(sock_set_mark); 984 985 static void sock_release_reserved_memory(struct sock *sk, int bytes) 986 { 987 /* Round down bytes to multiple of pages */ 988 bytes &= ~(SK_MEM_QUANTUM - 1); 989 990 WARN_ON(bytes > sk->sk_reserved_mem); 991 sk->sk_reserved_mem -= bytes; 992 sk_mem_reclaim(sk); 993 } 994 995 static int sock_reserve_memory(struct sock *sk, int bytes) 996 { 997 long allocated; 998 bool charged; 999 int pages; 1000 1001 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1002 return -EOPNOTSUPP; 1003 1004 if (!bytes) 1005 return 0; 1006 1007 pages = sk_mem_pages(bytes); 1008 1009 /* pre-charge to memcg */ 1010 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1011 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1012 if (!charged) 1013 return -ENOMEM; 1014 1015 /* pre-charge to forward_alloc */ 1016 allocated = sk_memory_allocated_add(sk, pages); 1017 /* If the system goes into memory pressure with this 1018 * precharge, give up and return error. 1019 */ 1020 if (allocated > sk_prot_mem_limits(sk, 1)) { 1021 sk_memory_allocated_sub(sk, pages); 1022 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1023 return -ENOMEM; 1024 } 1025 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT; 1026 1027 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT; 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * This is meant for all protocols to use and covers goings on 1034 * at the socket level. Everything here is generic. 1035 */ 1036 1037 int sock_setsockopt(struct socket *sock, int level, int optname, 1038 sockptr_t optval, unsigned int optlen) 1039 { 1040 struct so_timestamping timestamping; 1041 struct sock_txtime sk_txtime; 1042 struct sock *sk = sock->sk; 1043 int val; 1044 int valbool; 1045 struct linger ling; 1046 int ret = 0; 1047 1048 /* 1049 * Options without arguments 1050 */ 1051 1052 if (optname == SO_BINDTODEVICE) 1053 return sock_setbindtodevice(sk, optval, optlen); 1054 1055 if (optlen < sizeof(int)) 1056 return -EINVAL; 1057 1058 if (copy_from_sockptr(&val, optval, sizeof(val))) 1059 return -EFAULT; 1060 1061 valbool = val ? 1 : 0; 1062 1063 lock_sock(sk); 1064 1065 switch (optname) { 1066 case SO_DEBUG: 1067 if (val && !capable(CAP_NET_ADMIN)) 1068 ret = -EACCES; 1069 else 1070 sock_valbool_flag(sk, SOCK_DBG, valbool); 1071 break; 1072 case SO_REUSEADDR: 1073 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1074 break; 1075 case SO_REUSEPORT: 1076 sk->sk_reuseport = valbool; 1077 break; 1078 case SO_TYPE: 1079 case SO_PROTOCOL: 1080 case SO_DOMAIN: 1081 case SO_ERROR: 1082 ret = -ENOPROTOOPT; 1083 break; 1084 case SO_DONTROUTE: 1085 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1086 sk_dst_reset(sk); 1087 break; 1088 case SO_BROADCAST: 1089 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1090 break; 1091 case SO_SNDBUF: 1092 /* Don't error on this BSD doesn't and if you think 1093 * about it this is right. Otherwise apps have to 1094 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1095 * are treated in BSD as hints 1096 */ 1097 val = min_t(u32, val, sysctl_wmem_max); 1098 set_sndbuf: 1099 /* Ensure val * 2 fits into an int, to prevent max_t() 1100 * from treating it as a negative value. 1101 */ 1102 val = min_t(int, val, INT_MAX / 2); 1103 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1104 WRITE_ONCE(sk->sk_sndbuf, 1105 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1106 /* Wake up sending tasks if we upped the value. */ 1107 sk->sk_write_space(sk); 1108 break; 1109 1110 case SO_SNDBUFFORCE: 1111 if (!capable(CAP_NET_ADMIN)) { 1112 ret = -EPERM; 1113 break; 1114 } 1115 1116 /* No negative values (to prevent underflow, as val will be 1117 * multiplied by 2). 1118 */ 1119 if (val < 0) 1120 val = 0; 1121 goto set_sndbuf; 1122 1123 case SO_RCVBUF: 1124 /* Don't error on this BSD doesn't and if you think 1125 * about it this is right. Otherwise apps have to 1126 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1127 * are treated in BSD as hints 1128 */ 1129 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1130 break; 1131 1132 case SO_RCVBUFFORCE: 1133 if (!capable(CAP_NET_ADMIN)) { 1134 ret = -EPERM; 1135 break; 1136 } 1137 1138 /* No negative values (to prevent underflow, as val will be 1139 * multiplied by 2). 1140 */ 1141 __sock_set_rcvbuf(sk, max(val, 0)); 1142 break; 1143 1144 case SO_KEEPALIVE: 1145 if (sk->sk_prot->keepalive) 1146 sk->sk_prot->keepalive(sk, valbool); 1147 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1148 break; 1149 1150 case SO_OOBINLINE: 1151 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1152 break; 1153 1154 case SO_NO_CHECK: 1155 sk->sk_no_check_tx = valbool; 1156 break; 1157 1158 case SO_PRIORITY: 1159 if ((val >= 0 && val <= 6) || 1160 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1161 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1162 sk->sk_priority = val; 1163 else 1164 ret = -EPERM; 1165 break; 1166 1167 case SO_LINGER: 1168 if (optlen < sizeof(ling)) { 1169 ret = -EINVAL; /* 1003.1g */ 1170 break; 1171 } 1172 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1173 ret = -EFAULT; 1174 break; 1175 } 1176 if (!ling.l_onoff) 1177 sock_reset_flag(sk, SOCK_LINGER); 1178 else { 1179 #if (BITS_PER_LONG == 32) 1180 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1181 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1182 else 1183 #endif 1184 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1185 sock_set_flag(sk, SOCK_LINGER); 1186 } 1187 break; 1188 1189 case SO_BSDCOMPAT: 1190 break; 1191 1192 case SO_PASSCRED: 1193 if (valbool) 1194 set_bit(SOCK_PASSCRED, &sock->flags); 1195 else 1196 clear_bit(SOCK_PASSCRED, &sock->flags); 1197 break; 1198 1199 case SO_TIMESTAMP_OLD: 1200 case SO_TIMESTAMP_NEW: 1201 case SO_TIMESTAMPNS_OLD: 1202 case SO_TIMESTAMPNS_NEW: 1203 sock_set_timestamp(sk, optname, valbool); 1204 break; 1205 1206 case SO_TIMESTAMPING_NEW: 1207 case SO_TIMESTAMPING_OLD: 1208 if (optlen == sizeof(timestamping)) { 1209 if (copy_from_sockptr(×tamping, optval, 1210 sizeof(timestamping))) { 1211 ret = -EFAULT; 1212 break; 1213 } 1214 } else { 1215 memset(×tamping, 0, sizeof(timestamping)); 1216 timestamping.flags = val; 1217 } 1218 ret = sock_set_timestamping(sk, optname, timestamping); 1219 break; 1220 1221 case SO_RCVLOWAT: 1222 if (val < 0) 1223 val = INT_MAX; 1224 if (sock->ops->set_rcvlowat) 1225 ret = sock->ops->set_rcvlowat(sk, val); 1226 else 1227 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1228 break; 1229 1230 case SO_RCVTIMEO_OLD: 1231 case SO_RCVTIMEO_NEW: 1232 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1233 optlen, optname == SO_RCVTIMEO_OLD); 1234 break; 1235 1236 case SO_SNDTIMEO_OLD: 1237 case SO_SNDTIMEO_NEW: 1238 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1239 optlen, optname == SO_SNDTIMEO_OLD); 1240 break; 1241 1242 case SO_ATTACH_FILTER: { 1243 struct sock_fprog fprog; 1244 1245 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1246 if (!ret) 1247 ret = sk_attach_filter(&fprog, sk); 1248 break; 1249 } 1250 case SO_ATTACH_BPF: 1251 ret = -EINVAL; 1252 if (optlen == sizeof(u32)) { 1253 u32 ufd; 1254 1255 ret = -EFAULT; 1256 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1257 break; 1258 1259 ret = sk_attach_bpf(ufd, sk); 1260 } 1261 break; 1262 1263 case SO_ATTACH_REUSEPORT_CBPF: { 1264 struct sock_fprog fprog; 1265 1266 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1267 if (!ret) 1268 ret = sk_reuseport_attach_filter(&fprog, sk); 1269 break; 1270 } 1271 case SO_ATTACH_REUSEPORT_EBPF: 1272 ret = -EINVAL; 1273 if (optlen == sizeof(u32)) { 1274 u32 ufd; 1275 1276 ret = -EFAULT; 1277 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1278 break; 1279 1280 ret = sk_reuseport_attach_bpf(ufd, sk); 1281 } 1282 break; 1283 1284 case SO_DETACH_REUSEPORT_BPF: 1285 ret = reuseport_detach_prog(sk); 1286 break; 1287 1288 case SO_DETACH_FILTER: 1289 ret = sk_detach_filter(sk); 1290 break; 1291 1292 case SO_LOCK_FILTER: 1293 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1294 ret = -EPERM; 1295 else 1296 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1297 break; 1298 1299 case SO_PASSSEC: 1300 if (valbool) 1301 set_bit(SOCK_PASSSEC, &sock->flags); 1302 else 1303 clear_bit(SOCK_PASSSEC, &sock->flags); 1304 break; 1305 case SO_MARK: 1306 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1307 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1308 ret = -EPERM; 1309 break; 1310 } 1311 1312 __sock_set_mark(sk, val); 1313 break; 1314 1315 case SO_RXQ_OVFL: 1316 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1317 break; 1318 1319 case SO_WIFI_STATUS: 1320 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1321 break; 1322 1323 case SO_PEEK_OFF: 1324 if (sock->ops->set_peek_off) 1325 ret = sock->ops->set_peek_off(sk, val); 1326 else 1327 ret = -EOPNOTSUPP; 1328 break; 1329 1330 case SO_NOFCS: 1331 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1332 break; 1333 1334 case SO_SELECT_ERR_QUEUE: 1335 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1336 break; 1337 1338 #ifdef CONFIG_NET_RX_BUSY_POLL 1339 case SO_BUSY_POLL: 1340 /* allow unprivileged users to decrease the value */ 1341 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1342 ret = -EPERM; 1343 else { 1344 if (val < 0) 1345 ret = -EINVAL; 1346 else 1347 WRITE_ONCE(sk->sk_ll_usec, val); 1348 } 1349 break; 1350 case SO_PREFER_BUSY_POLL: 1351 if (valbool && !capable(CAP_NET_ADMIN)) 1352 ret = -EPERM; 1353 else 1354 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1355 break; 1356 case SO_BUSY_POLL_BUDGET: 1357 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1358 ret = -EPERM; 1359 } else { 1360 if (val < 0 || val > U16_MAX) 1361 ret = -EINVAL; 1362 else 1363 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1364 } 1365 break; 1366 #endif 1367 1368 case SO_MAX_PACING_RATE: 1369 { 1370 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1371 1372 if (sizeof(ulval) != sizeof(val) && 1373 optlen >= sizeof(ulval) && 1374 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1375 ret = -EFAULT; 1376 break; 1377 } 1378 if (ulval != ~0UL) 1379 cmpxchg(&sk->sk_pacing_status, 1380 SK_PACING_NONE, 1381 SK_PACING_NEEDED); 1382 sk->sk_max_pacing_rate = ulval; 1383 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1384 break; 1385 } 1386 case SO_INCOMING_CPU: 1387 WRITE_ONCE(sk->sk_incoming_cpu, val); 1388 break; 1389 1390 case SO_CNX_ADVICE: 1391 if (val == 1) 1392 dst_negative_advice(sk); 1393 break; 1394 1395 case SO_ZEROCOPY: 1396 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1397 if (!(sk_is_tcp(sk) || 1398 (sk->sk_type == SOCK_DGRAM && 1399 sk->sk_protocol == IPPROTO_UDP))) 1400 ret = -EOPNOTSUPP; 1401 } else if (sk->sk_family != PF_RDS) { 1402 ret = -EOPNOTSUPP; 1403 } 1404 if (!ret) { 1405 if (val < 0 || val > 1) 1406 ret = -EINVAL; 1407 else 1408 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1409 } 1410 break; 1411 1412 case SO_TXTIME: 1413 if (optlen != sizeof(struct sock_txtime)) { 1414 ret = -EINVAL; 1415 break; 1416 } else if (copy_from_sockptr(&sk_txtime, optval, 1417 sizeof(struct sock_txtime))) { 1418 ret = -EFAULT; 1419 break; 1420 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1421 ret = -EINVAL; 1422 break; 1423 } 1424 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1425 * scheduler has enough safe guards. 1426 */ 1427 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1428 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1429 ret = -EPERM; 1430 break; 1431 } 1432 sock_valbool_flag(sk, SOCK_TXTIME, true); 1433 sk->sk_clockid = sk_txtime.clockid; 1434 sk->sk_txtime_deadline_mode = 1435 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1436 sk->sk_txtime_report_errors = 1437 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1438 break; 1439 1440 case SO_BINDTOIFINDEX: 1441 ret = sock_bindtoindex_locked(sk, val); 1442 break; 1443 1444 case SO_BUF_LOCK: 1445 if (val & ~SOCK_BUF_LOCK_MASK) { 1446 ret = -EINVAL; 1447 break; 1448 } 1449 sk->sk_userlocks = val | (sk->sk_userlocks & 1450 ~SOCK_BUF_LOCK_MASK); 1451 break; 1452 1453 case SO_RESERVE_MEM: 1454 { 1455 int delta; 1456 1457 if (val < 0) { 1458 ret = -EINVAL; 1459 break; 1460 } 1461 1462 delta = val - sk->sk_reserved_mem; 1463 if (delta < 0) 1464 sock_release_reserved_memory(sk, -delta); 1465 else 1466 ret = sock_reserve_memory(sk, delta); 1467 break; 1468 } 1469 1470 case SO_TXREHASH: 1471 if (val < -1 || val > 1) { 1472 ret = -EINVAL; 1473 break; 1474 } 1475 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1476 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1477 break; 1478 1479 default: 1480 ret = -ENOPROTOOPT; 1481 break; 1482 } 1483 release_sock(sk); 1484 return ret; 1485 } 1486 EXPORT_SYMBOL(sock_setsockopt); 1487 1488 static const struct cred *sk_get_peer_cred(struct sock *sk) 1489 { 1490 const struct cred *cred; 1491 1492 spin_lock(&sk->sk_peer_lock); 1493 cred = get_cred(sk->sk_peer_cred); 1494 spin_unlock(&sk->sk_peer_lock); 1495 1496 return cred; 1497 } 1498 1499 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1500 struct ucred *ucred) 1501 { 1502 ucred->pid = pid_vnr(pid); 1503 ucred->uid = ucred->gid = -1; 1504 if (cred) { 1505 struct user_namespace *current_ns = current_user_ns(); 1506 1507 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1508 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1509 } 1510 } 1511 1512 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1513 { 1514 struct user_namespace *user_ns = current_user_ns(); 1515 int i; 1516 1517 for (i = 0; i < src->ngroups; i++) 1518 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1519 return -EFAULT; 1520 1521 return 0; 1522 } 1523 1524 int sock_getsockopt(struct socket *sock, int level, int optname, 1525 char __user *optval, int __user *optlen) 1526 { 1527 struct sock *sk = sock->sk; 1528 1529 union { 1530 int val; 1531 u64 val64; 1532 unsigned long ulval; 1533 struct linger ling; 1534 struct old_timeval32 tm32; 1535 struct __kernel_old_timeval tm; 1536 struct __kernel_sock_timeval stm; 1537 struct sock_txtime txtime; 1538 struct so_timestamping timestamping; 1539 } v; 1540 1541 int lv = sizeof(int); 1542 int len; 1543 1544 if (get_user(len, optlen)) 1545 return -EFAULT; 1546 if (len < 0) 1547 return -EINVAL; 1548 1549 memset(&v, 0, sizeof(v)); 1550 1551 switch (optname) { 1552 case SO_DEBUG: 1553 v.val = sock_flag(sk, SOCK_DBG); 1554 break; 1555 1556 case SO_DONTROUTE: 1557 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1558 break; 1559 1560 case SO_BROADCAST: 1561 v.val = sock_flag(sk, SOCK_BROADCAST); 1562 break; 1563 1564 case SO_SNDBUF: 1565 v.val = sk->sk_sndbuf; 1566 break; 1567 1568 case SO_RCVBUF: 1569 v.val = sk->sk_rcvbuf; 1570 break; 1571 1572 case SO_REUSEADDR: 1573 v.val = sk->sk_reuse; 1574 break; 1575 1576 case SO_REUSEPORT: 1577 v.val = sk->sk_reuseport; 1578 break; 1579 1580 case SO_KEEPALIVE: 1581 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1582 break; 1583 1584 case SO_TYPE: 1585 v.val = sk->sk_type; 1586 break; 1587 1588 case SO_PROTOCOL: 1589 v.val = sk->sk_protocol; 1590 break; 1591 1592 case SO_DOMAIN: 1593 v.val = sk->sk_family; 1594 break; 1595 1596 case SO_ERROR: 1597 v.val = -sock_error(sk); 1598 if (v.val == 0) 1599 v.val = xchg(&sk->sk_err_soft, 0); 1600 break; 1601 1602 case SO_OOBINLINE: 1603 v.val = sock_flag(sk, SOCK_URGINLINE); 1604 break; 1605 1606 case SO_NO_CHECK: 1607 v.val = sk->sk_no_check_tx; 1608 break; 1609 1610 case SO_PRIORITY: 1611 v.val = sk->sk_priority; 1612 break; 1613 1614 case SO_LINGER: 1615 lv = sizeof(v.ling); 1616 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1617 v.ling.l_linger = sk->sk_lingertime / HZ; 1618 break; 1619 1620 case SO_BSDCOMPAT: 1621 break; 1622 1623 case SO_TIMESTAMP_OLD: 1624 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1625 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1626 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1627 break; 1628 1629 case SO_TIMESTAMPNS_OLD: 1630 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1631 break; 1632 1633 case SO_TIMESTAMP_NEW: 1634 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1635 break; 1636 1637 case SO_TIMESTAMPNS_NEW: 1638 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1639 break; 1640 1641 case SO_TIMESTAMPING_OLD: 1642 lv = sizeof(v.timestamping); 1643 v.timestamping.flags = sk->sk_tsflags; 1644 v.timestamping.bind_phc = sk->sk_bind_phc; 1645 break; 1646 1647 case SO_RCVTIMEO_OLD: 1648 case SO_RCVTIMEO_NEW: 1649 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1650 break; 1651 1652 case SO_SNDTIMEO_OLD: 1653 case SO_SNDTIMEO_NEW: 1654 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1655 break; 1656 1657 case SO_RCVLOWAT: 1658 v.val = sk->sk_rcvlowat; 1659 break; 1660 1661 case SO_SNDLOWAT: 1662 v.val = 1; 1663 break; 1664 1665 case SO_PASSCRED: 1666 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1667 break; 1668 1669 case SO_PEERCRED: 1670 { 1671 struct ucred peercred; 1672 if (len > sizeof(peercred)) 1673 len = sizeof(peercred); 1674 1675 spin_lock(&sk->sk_peer_lock); 1676 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1677 spin_unlock(&sk->sk_peer_lock); 1678 1679 if (copy_to_user(optval, &peercred, len)) 1680 return -EFAULT; 1681 goto lenout; 1682 } 1683 1684 case SO_PEERGROUPS: 1685 { 1686 const struct cred *cred; 1687 int ret, n; 1688 1689 cred = sk_get_peer_cred(sk); 1690 if (!cred) 1691 return -ENODATA; 1692 1693 n = cred->group_info->ngroups; 1694 if (len < n * sizeof(gid_t)) { 1695 len = n * sizeof(gid_t); 1696 put_cred(cred); 1697 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1698 } 1699 len = n * sizeof(gid_t); 1700 1701 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1702 put_cred(cred); 1703 if (ret) 1704 return ret; 1705 goto lenout; 1706 } 1707 1708 case SO_PEERNAME: 1709 { 1710 char address[128]; 1711 1712 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1713 if (lv < 0) 1714 return -ENOTCONN; 1715 if (lv < len) 1716 return -EINVAL; 1717 if (copy_to_user(optval, address, len)) 1718 return -EFAULT; 1719 goto lenout; 1720 } 1721 1722 /* Dubious BSD thing... Probably nobody even uses it, but 1723 * the UNIX standard wants it for whatever reason... -DaveM 1724 */ 1725 case SO_ACCEPTCONN: 1726 v.val = sk->sk_state == TCP_LISTEN; 1727 break; 1728 1729 case SO_PASSSEC: 1730 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1731 break; 1732 1733 case SO_PEERSEC: 1734 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1735 1736 case SO_MARK: 1737 v.val = sk->sk_mark; 1738 break; 1739 1740 case SO_RXQ_OVFL: 1741 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1742 break; 1743 1744 case SO_WIFI_STATUS: 1745 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1746 break; 1747 1748 case SO_PEEK_OFF: 1749 if (!sock->ops->set_peek_off) 1750 return -EOPNOTSUPP; 1751 1752 v.val = sk->sk_peek_off; 1753 break; 1754 case SO_NOFCS: 1755 v.val = sock_flag(sk, SOCK_NOFCS); 1756 break; 1757 1758 case SO_BINDTODEVICE: 1759 return sock_getbindtodevice(sk, optval, optlen, len); 1760 1761 case SO_GET_FILTER: 1762 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1763 if (len < 0) 1764 return len; 1765 1766 goto lenout; 1767 1768 case SO_LOCK_FILTER: 1769 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1770 break; 1771 1772 case SO_BPF_EXTENSIONS: 1773 v.val = bpf_tell_extensions(); 1774 break; 1775 1776 case SO_SELECT_ERR_QUEUE: 1777 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1778 break; 1779 1780 #ifdef CONFIG_NET_RX_BUSY_POLL 1781 case SO_BUSY_POLL: 1782 v.val = sk->sk_ll_usec; 1783 break; 1784 case SO_PREFER_BUSY_POLL: 1785 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1786 break; 1787 #endif 1788 1789 case SO_MAX_PACING_RATE: 1790 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1791 lv = sizeof(v.ulval); 1792 v.ulval = sk->sk_max_pacing_rate; 1793 } else { 1794 /* 32bit version */ 1795 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1796 } 1797 break; 1798 1799 case SO_INCOMING_CPU: 1800 v.val = READ_ONCE(sk->sk_incoming_cpu); 1801 break; 1802 1803 case SO_MEMINFO: 1804 { 1805 u32 meminfo[SK_MEMINFO_VARS]; 1806 1807 sk_get_meminfo(sk, meminfo); 1808 1809 len = min_t(unsigned int, len, sizeof(meminfo)); 1810 if (copy_to_user(optval, &meminfo, len)) 1811 return -EFAULT; 1812 1813 goto lenout; 1814 } 1815 1816 #ifdef CONFIG_NET_RX_BUSY_POLL 1817 case SO_INCOMING_NAPI_ID: 1818 v.val = READ_ONCE(sk->sk_napi_id); 1819 1820 /* aggregate non-NAPI IDs down to 0 */ 1821 if (v.val < MIN_NAPI_ID) 1822 v.val = 0; 1823 1824 break; 1825 #endif 1826 1827 case SO_COOKIE: 1828 lv = sizeof(u64); 1829 if (len < lv) 1830 return -EINVAL; 1831 v.val64 = sock_gen_cookie(sk); 1832 break; 1833 1834 case SO_ZEROCOPY: 1835 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1836 break; 1837 1838 case SO_TXTIME: 1839 lv = sizeof(v.txtime); 1840 v.txtime.clockid = sk->sk_clockid; 1841 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1842 SOF_TXTIME_DEADLINE_MODE : 0; 1843 v.txtime.flags |= sk->sk_txtime_report_errors ? 1844 SOF_TXTIME_REPORT_ERRORS : 0; 1845 break; 1846 1847 case SO_BINDTOIFINDEX: 1848 v.val = sk->sk_bound_dev_if; 1849 break; 1850 1851 case SO_NETNS_COOKIE: 1852 lv = sizeof(u64); 1853 if (len != lv) 1854 return -EINVAL; 1855 v.val64 = sock_net(sk)->net_cookie; 1856 break; 1857 1858 case SO_BUF_LOCK: 1859 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1860 break; 1861 1862 case SO_RESERVE_MEM: 1863 v.val = sk->sk_reserved_mem; 1864 break; 1865 1866 case SO_TXREHASH: 1867 v.val = sk->sk_txrehash; 1868 break; 1869 1870 default: 1871 /* We implement the SO_SNDLOWAT etc to not be settable 1872 * (1003.1g 7). 1873 */ 1874 return -ENOPROTOOPT; 1875 } 1876 1877 if (len > lv) 1878 len = lv; 1879 if (copy_to_user(optval, &v, len)) 1880 return -EFAULT; 1881 lenout: 1882 if (put_user(len, optlen)) 1883 return -EFAULT; 1884 return 0; 1885 } 1886 1887 /* 1888 * Initialize an sk_lock. 1889 * 1890 * (We also register the sk_lock with the lock validator.) 1891 */ 1892 static inline void sock_lock_init(struct sock *sk) 1893 { 1894 if (sk->sk_kern_sock) 1895 sock_lock_init_class_and_name( 1896 sk, 1897 af_family_kern_slock_key_strings[sk->sk_family], 1898 af_family_kern_slock_keys + sk->sk_family, 1899 af_family_kern_key_strings[sk->sk_family], 1900 af_family_kern_keys + sk->sk_family); 1901 else 1902 sock_lock_init_class_and_name( 1903 sk, 1904 af_family_slock_key_strings[sk->sk_family], 1905 af_family_slock_keys + sk->sk_family, 1906 af_family_key_strings[sk->sk_family], 1907 af_family_keys + sk->sk_family); 1908 } 1909 1910 /* 1911 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1912 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1913 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1914 */ 1915 static void sock_copy(struct sock *nsk, const struct sock *osk) 1916 { 1917 const struct proto *prot = READ_ONCE(osk->sk_prot); 1918 #ifdef CONFIG_SECURITY_NETWORK 1919 void *sptr = nsk->sk_security; 1920 #endif 1921 1922 /* If we move sk_tx_queue_mapping out of the private section, 1923 * we must check if sk_tx_queue_clear() is called after 1924 * sock_copy() in sk_clone_lock(). 1925 */ 1926 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1927 offsetof(struct sock, sk_dontcopy_begin) || 1928 offsetof(struct sock, sk_tx_queue_mapping) >= 1929 offsetof(struct sock, sk_dontcopy_end)); 1930 1931 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1932 1933 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1934 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1935 1936 #ifdef CONFIG_SECURITY_NETWORK 1937 nsk->sk_security = sptr; 1938 security_sk_clone(osk, nsk); 1939 #endif 1940 } 1941 1942 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1943 int family) 1944 { 1945 struct sock *sk; 1946 struct kmem_cache *slab; 1947 1948 slab = prot->slab; 1949 if (slab != NULL) { 1950 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1951 if (!sk) 1952 return sk; 1953 if (want_init_on_alloc(priority)) 1954 sk_prot_clear_nulls(sk, prot->obj_size); 1955 } else 1956 sk = kmalloc(prot->obj_size, priority); 1957 1958 if (sk != NULL) { 1959 if (security_sk_alloc(sk, family, priority)) 1960 goto out_free; 1961 1962 if (!try_module_get(prot->owner)) 1963 goto out_free_sec; 1964 } 1965 1966 return sk; 1967 1968 out_free_sec: 1969 security_sk_free(sk); 1970 out_free: 1971 if (slab != NULL) 1972 kmem_cache_free(slab, sk); 1973 else 1974 kfree(sk); 1975 return NULL; 1976 } 1977 1978 static void sk_prot_free(struct proto *prot, struct sock *sk) 1979 { 1980 struct kmem_cache *slab; 1981 struct module *owner; 1982 1983 owner = prot->owner; 1984 slab = prot->slab; 1985 1986 cgroup_sk_free(&sk->sk_cgrp_data); 1987 mem_cgroup_sk_free(sk); 1988 security_sk_free(sk); 1989 if (slab != NULL) 1990 kmem_cache_free(slab, sk); 1991 else 1992 kfree(sk); 1993 module_put(owner); 1994 } 1995 1996 /** 1997 * sk_alloc - All socket objects are allocated here 1998 * @net: the applicable net namespace 1999 * @family: protocol family 2000 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2001 * @prot: struct proto associated with this new sock instance 2002 * @kern: is this to be a kernel socket? 2003 */ 2004 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2005 struct proto *prot, int kern) 2006 { 2007 struct sock *sk; 2008 2009 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2010 if (sk) { 2011 sk->sk_family = family; 2012 /* 2013 * See comment in struct sock definition to understand 2014 * why we need sk_prot_creator -acme 2015 */ 2016 sk->sk_prot = sk->sk_prot_creator = prot; 2017 sk->sk_kern_sock = kern; 2018 sock_lock_init(sk); 2019 sk->sk_net_refcnt = kern ? 0 : 1; 2020 if (likely(sk->sk_net_refcnt)) { 2021 get_net_track(net, &sk->ns_tracker, priority); 2022 sock_inuse_add(net, 1); 2023 } 2024 2025 sock_net_set(sk, net); 2026 refcount_set(&sk->sk_wmem_alloc, 1); 2027 2028 mem_cgroup_sk_alloc(sk); 2029 cgroup_sk_alloc(&sk->sk_cgrp_data); 2030 sock_update_classid(&sk->sk_cgrp_data); 2031 sock_update_netprioidx(&sk->sk_cgrp_data); 2032 sk_tx_queue_clear(sk); 2033 } 2034 2035 return sk; 2036 } 2037 EXPORT_SYMBOL(sk_alloc); 2038 2039 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2040 * grace period. This is the case for UDP sockets and TCP listeners. 2041 */ 2042 static void __sk_destruct(struct rcu_head *head) 2043 { 2044 struct sock *sk = container_of(head, struct sock, sk_rcu); 2045 struct sk_filter *filter; 2046 2047 if (sk->sk_destruct) 2048 sk->sk_destruct(sk); 2049 2050 filter = rcu_dereference_check(sk->sk_filter, 2051 refcount_read(&sk->sk_wmem_alloc) == 0); 2052 if (filter) { 2053 sk_filter_uncharge(sk, filter); 2054 RCU_INIT_POINTER(sk->sk_filter, NULL); 2055 } 2056 2057 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2058 2059 #ifdef CONFIG_BPF_SYSCALL 2060 bpf_sk_storage_free(sk); 2061 #endif 2062 2063 if (atomic_read(&sk->sk_omem_alloc)) 2064 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2065 __func__, atomic_read(&sk->sk_omem_alloc)); 2066 2067 if (sk->sk_frag.page) { 2068 put_page(sk->sk_frag.page); 2069 sk->sk_frag.page = NULL; 2070 } 2071 2072 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2073 put_cred(sk->sk_peer_cred); 2074 put_pid(sk->sk_peer_pid); 2075 2076 if (likely(sk->sk_net_refcnt)) 2077 put_net_track(sock_net(sk), &sk->ns_tracker); 2078 sk_prot_free(sk->sk_prot_creator, sk); 2079 } 2080 2081 void sk_destruct(struct sock *sk) 2082 { 2083 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2084 2085 WARN_ON_ONCE(!llist_empty(&sk->defer_list)); 2086 sk_defer_free_flush(sk); 2087 2088 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2089 reuseport_detach_sock(sk); 2090 use_call_rcu = true; 2091 } 2092 2093 if (use_call_rcu) 2094 call_rcu(&sk->sk_rcu, __sk_destruct); 2095 else 2096 __sk_destruct(&sk->sk_rcu); 2097 } 2098 2099 static void __sk_free(struct sock *sk) 2100 { 2101 if (likely(sk->sk_net_refcnt)) 2102 sock_inuse_add(sock_net(sk), -1); 2103 2104 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2105 sock_diag_broadcast_destroy(sk); 2106 else 2107 sk_destruct(sk); 2108 } 2109 2110 void sk_free(struct sock *sk) 2111 { 2112 /* 2113 * We subtract one from sk_wmem_alloc and can know if 2114 * some packets are still in some tx queue. 2115 * If not null, sock_wfree() will call __sk_free(sk) later 2116 */ 2117 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2118 __sk_free(sk); 2119 } 2120 EXPORT_SYMBOL(sk_free); 2121 2122 static void sk_init_common(struct sock *sk) 2123 { 2124 skb_queue_head_init(&sk->sk_receive_queue); 2125 skb_queue_head_init(&sk->sk_write_queue); 2126 skb_queue_head_init(&sk->sk_error_queue); 2127 2128 rwlock_init(&sk->sk_callback_lock); 2129 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2130 af_rlock_keys + sk->sk_family, 2131 af_family_rlock_key_strings[sk->sk_family]); 2132 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2133 af_wlock_keys + sk->sk_family, 2134 af_family_wlock_key_strings[sk->sk_family]); 2135 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2136 af_elock_keys + sk->sk_family, 2137 af_family_elock_key_strings[sk->sk_family]); 2138 lockdep_set_class_and_name(&sk->sk_callback_lock, 2139 af_callback_keys + sk->sk_family, 2140 af_family_clock_key_strings[sk->sk_family]); 2141 } 2142 2143 /** 2144 * sk_clone_lock - clone a socket, and lock its clone 2145 * @sk: the socket to clone 2146 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2147 * 2148 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2149 */ 2150 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2151 { 2152 struct proto *prot = READ_ONCE(sk->sk_prot); 2153 struct sk_filter *filter; 2154 bool is_charged = true; 2155 struct sock *newsk; 2156 2157 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2158 if (!newsk) 2159 goto out; 2160 2161 sock_copy(newsk, sk); 2162 2163 newsk->sk_prot_creator = prot; 2164 2165 /* SANITY */ 2166 if (likely(newsk->sk_net_refcnt)) { 2167 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2168 sock_inuse_add(sock_net(newsk), 1); 2169 } 2170 sk_node_init(&newsk->sk_node); 2171 sock_lock_init(newsk); 2172 bh_lock_sock(newsk); 2173 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2174 newsk->sk_backlog.len = 0; 2175 2176 atomic_set(&newsk->sk_rmem_alloc, 0); 2177 2178 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2179 refcount_set(&newsk->sk_wmem_alloc, 1); 2180 2181 atomic_set(&newsk->sk_omem_alloc, 0); 2182 sk_init_common(newsk); 2183 2184 newsk->sk_dst_cache = NULL; 2185 newsk->sk_dst_pending_confirm = 0; 2186 newsk->sk_wmem_queued = 0; 2187 newsk->sk_forward_alloc = 0; 2188 newsk->sk_reserved_mem = 0; 2189 atomic_set(&newsk->sk_drops, 0); 2190 newsk->sk_send_head = NULL; 2191 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2192 atomic_set(&newsk->sk_zckey, 0); 2193 2194 sock_reset_flag(newsk, SOCK_DONE); 2195 2196 /* sk->sk_memcg will be populated at accept() time */ 2197 newsk->sk_memcg = NULL; 2198 2199 cgroup_sk_clone(&newsk->sk_cgrp_data); 2200 2201 rcu_read_lock(); 2202 filter = rcu_dereference(sk->sk_filter); 2203 if (filter != NULL) 2204 /* though it's an empty new sock, the charging may fail 2205 * if sysctl_optmem_max was changed between creation of 2206 * original socket and cloning 2207 */ 2208 is_charged = sk_filter_charge(newsk, filter); 2209 RCU_INIT_POINTER(newsk->sk_filter, filter); 2210 rcu_read_unlock(); 2211 2212 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2213 /* We need to make sure that we don't uncharge the new 2214 * socket if we couldn't charge it in the first place 2215 * as otherwise we uncharge the parent's filter. 2216 */ 2217 if (!is_charged) 2218 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2219 sk_free_unlock_clone(newsk); 2220 newsk = NULL; 2221 goto out; 2222 } 2223 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2224 2225 if (bpf_sk_storage_clone(sk, newsk)) { 2226 sk_free_unlock_clone(newsk); 2227 newsk = NULL; 2228 goto out; 2229 } 2230 2231 /* Clear sk_user_data if parent had the pointer tagged 2232 * as not suitable for copying when cloning. 2233 */ 2234 if (sk_user_data_is_nocopy(newsk)) 2235 newsk->sk_user_data = NULL; 2236 2237 newsk->sk_err = 0; 2238 newsk->sk_err_soft = 0; 2239 newsk->sk_priority = 0; 2240 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2241 2242 /* Before updating sk_refcnt, we must commit prior changes to memory 2243 * (Documentation/RCU/rculist_nulls.rst for details) 2244 */ 2245 smp_wmb(); 2246 refcount_set(&newsk->sk_refcnt, 2); 2247 2248 /* Increment the counter in the same struct proto as the master 2249 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2250 * is the same as sk->sk_prot->socks, as this field was copied 2251 * with memcpy). 2252 * 2253 * This _changes_ the previous behaviour, where 2254 * tcp_create_openreq_child always was incrementing the 2255 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2256 * to be taken into account in all callers. -acme 2257 */ 2258 sk_refcnt_debug_inc(newsk); 2259 sk_set_socket(newsk, NULL); 2260 sk_tx_queue_clear(newsk); 2261 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2262 2263 if (newsk->sk_prot->sockets_allocated) 2264 sk_sockets_allocated_inc(newsk); 2265 2266 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2267 net_enable_timestamp(); 2268 out: 2269 return newsk; 2270 } 2271 EXPORT_SYMBOL_GPL(sk_clone_lock); 2272 2273 void sk_free_unlock_clone(struct sock *sk) 2274 { 2275 /* It is still raw copy of parent, so invalidate 2276 * destructor and make plain sk_free() */ 2277 sk->sk_destruct = NULL; 2278 bh_unlock_sock(sk); 2279 sk_free(sk); 2280 } 2281 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2282 2283 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2284 { 2285 u32 max_segs = 1; 2286 2287 sk_dst_set(sk, dst); 2288 sk->sk_route_caps = dst->dev->features; 2289 if (sk_is_tcp(sk)) 2290 sk->sk_route_caps |= NETIF_F_GSO; 2291 if (sk->sk_route_caps & NETIF_F_GSO) 2292 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2293 if (unlikely(sk->sk_gso_disabled)) 2294 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2295 if (sk_can_gso(sk)) { 2296 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2297 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2298 } else { 2299 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2300 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2301 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2302 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2303 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2304 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2305 } 2306 } 2307 sk->sk_gso_max_segs = max_segs; 2308 } 2309 EXPORT_SYMBOL_GPL(sk_setup_caps); 2310 2311 /* 2312 * Simple resource managers for sockets. 2313 */ 2314 2315 2316 /* 2317 * Write buffer destructor automatically called from kfree_skb. 2318 */ 2319 void sock_wfree(struct sk_buff *skb) 2320 { 2321 struct sock *sk = skb->sk; 2322 unsigned int len = skb->truesize; 2323 2324 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2325 /* 2326 * Keep a reference on sk_wmem_alloc, this will be released 2327 * after sk_write_space() call 2328 */ 2329 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2330 sk->sk_write_space(sk); 2331 len = 1; 2332 } 2333 /* 2334 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2335 * could not do because of in-flight packets 2336 */ 2337 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2338 __sk_free(sk); 2339 } 2340 EXPORT_SYMBOL(sock_wfree); 2341 2342 /* This variant of sock_wfree() is used by TCP, 2343 * since it sets SOCK_USE_WRITE_QUEUE. 2344 */ 2345 void __sock_wfree(struct sk_buff *skb) 2346 { 2347 struct sock *sk = skb->sk; 2348 2349 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2350 __sk_free(sk); 2351 } 2352 2353 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2354 { 2355 skb_orphan(skb); 2356 skb->sk = sk; 2357 #ifdef CONFIG_INET 2358 if (unlikely(!sk_fullsock(sk))) { 2359 skb->destructor = sock_edemux; 2360 sock_hold(sk); 2361 return; 2362 } 2363 #endif 2364 skb->destructor = sock_wfree; 2365 skb_set_hash_from_sk(skb, sk); 2366 /* 2367 * We used to take a refcount on sk, but following operation 2368 * is enough to guarantee sk_free() wont free this sock until 2369 * all in-flight packets are completed 2370 */ 2371 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2372 } 2373 EXPORT_SYMBOL(skb_set_owner_w); 2374 2375 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2376 { 2377 #ifdef CONFIG_TLS_DEVICE 2378 /* Drivers depend on in-order delivery for crypto offload, 2379 * partial orphan breaks out-of-order-OK logic. 2380 */ 2381 if (skb->decrypted) 2382 return false; 2383 #endif 2384 return (skb->destructor == sock_wfree || 2385 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2386 } 2387 2388 /* This helper is used by netem, as it can hold packets in its 2389 * delay queue. We want to allow the owner socket to send more 2390 * packets, as if they were already TX completed by a typical driver. 2391 * But we also want to keep skb->sk set because some packet schedulers 2392 * rely on it (sch_fq for example). 2393 */ 2394 void skb_orphan_partial(struct sk_buff *skb) 2395 { 2396 if (skb_is_tcp_pure_ack(skb)) 2397 return; 2398 2399 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2400 return; 2401 2402 skb_orphan(skb); 2403 } 2404 EXPORT_SYMBOL(skb_orphan_partial); 2405 2406 /* 2407 * Read buffer destructor automatically called from kfree_skb. 2408 */ 2409 void sock_rfree(struct sk_buff *skb) 2410 { 2411 struct sock *sk = skb->sk; 2412 unsigned int len = skb->truesize; 2413 2414 atomic_sub(len, &sk->sk_rmem_alloc); 2415 sk_mem_uncharge(sk, len); 2416 } 2417 EXPORT_SYMBOL(sock_rfree); 2418 2419 /* 2420 * Buffer destructor for skbs that are not used directly in read or write 2421 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2422 */ 2423 void sock_efree(struct sk_buff *skb) 2424 { 2425 sock_put(skb->sk); 2426 } 2427 EXPORT_SYMBOL(sock_efree); 2428 2429 /* Buffer destructor for prefetch/receive path where reference count may 2430 * not be held, e.g. for listen sockets. 2431 */ 2432 #ifdef CONFIG_INET 2433 void sock_pfree(struct sk_buff *skb) 2434 { 2435 if (sk_is_refcounted(skb->sk)) 2436 sock_gen_put(skb->sk); 2437 } 2438 EXPORT_SYMBOL(sock_pfree); 2439 #endif /* CONFIG_INET */ 2440 2441 kuid_t sock_i_uid(struct sock *sk) 2442 { 2443 kuid_t uid; 2444 2445 read_lock_bh(&sk->sk_callback_lock); 2446 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2447 read_unlock_bh(&sk->sk_callback_lock); 2448 return uid; 2449 } 2450 EXPORT_SYMBOL(sock_i_uid); 2451 2452 unsigned long sock_i_ino(struct sock *sk) 2453 { 2454 unsigned long ino; 2455 2456 read_lock_bh(&sk->sk_callback_lock); 2457 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2458 read_unlock_bh(&sk->sk_callback_lock); 2459 return ino; 2460 } 2461 EXPORT_SYMBOL(sock_i_ino); 2462 2463 /* 2464 * Allocate a skb from the socket's send buffer. 2465 */ 2466 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2467 gfp_t priority) 2468 { 2469 if (force || 2470 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2471 struct sk_buff *skb = alloc_skb(size, priority); 2472 2473 if (skb) { 2474 skb_set_owner_w(skb, sk); 2475 return skb; 2476 } 2477 } 2478 return NULL; 2479 } 2480 EXPORT_SYMBOL(sock_wmalloc); 2481 2482 static void sock_ofree(struct sk_buff *skb) 2483 { 2484 struct sock *sk = skb->sk; 2485 2486 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2487 } 2488 2489 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2490 gfp_t priority) 2491 { 2492 struct sk_buff *skb; 2493 2494 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2495 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2496 sysctl_optmem_max) 2497 return NULL; 2498 2499 skb = alloc_skb(size, priority); 2500 if (!skb) 2501 return NULL; 2502 2503 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2504 skb->sk = sk; 2505 skb->destructor = sock_ofree; 2506 return skb; 2507 } 2508 2509 /* 2510 * Allocate a memory block from the socket's option memory buffer. 2511 */ 2512 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2513 { 2514 if ((unsigned int)size <= sysctl_optmem_max && 2515 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2516 void *mem; 2517 /* First do the add, to avoid the race if kmalloc 2518 * might sleep. 2519 */ 2520 atomic_add(size, &sk->sk_omem_alloc); 2521 mem = kmalloc(size, priority); 2522 if (mem) 2523 return mem; 2524 atomic_sub(size, &sk->sk_omem_alloc); 2525 } 2526 return NULL; 2527 } 2528 EXPORT_SYMBOL(sock_kmalloc); 2529 2530 /* Free an option memory block. Note, we actually want the inline 2531 * here as this allows gcc to detect the nullify and fold away the 2532 * condition entirely. 2533 */ 2534 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2535 const bool nullify) 2536 { 2537 if (WARN_ON_ONCE(!mem)) 2538 return; 2539 if (nullify) 2540 kfree_sensitive(mem); 2541 else 2542 kfree(mem); 2543 atomic_sub(size, &sk->sk_omem_alloc); 2544 } 2545 2546 void sock_kfree_s(struct sock *sk, void *mem, int size) 2547 { 2548 __sock_kfree_s(sk, mem, size, false); 2549 } 2550 EXPORT_SYMBOL(sock_kfree_s); 2551 2552 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2553 { 2554 __sock_kfree_s(sk, mem, size, true); 2555 } 2556 EXPORT_SYMBOL(sock_kzfree_s); 2557 2558 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2559 I think, these locks should be removed for datagram sockets. 2560 */ 2561 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2562 { 2563 DEFINE_WAIT(wait); 2564 2565 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2566 for (;;) { 2567 if (!timeo) 2568 break; 2569 if (signal_pending(current)) 2570 break; 2571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2572 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2573 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2574 break; 2575 if (sk->sk_shutdown & SEND_SHUTDOWN) 2576 break; 2577 if (sk->sk_err) 2578 break; 2579 timeo = schedule_timeout(timeo); 2580 } 2581 finish_wait(sk_sleep(sk), &wait); 2582 return timeo; 2583 } 2584 2585 2586 /* 2587 * Generic send/receive buffer handlers 2588 */ 2589 2590 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2591 unsigned long data_len, int noblock, 2592 int *errcode, int max_page_order) 2593 { 2594 struct sk_buff *skb; 2595 long timeo; 2596 int err; 2597 2598 timeo = sock_sndtimeo(sk, noblock); 2599 for (;;) { 2600 err = sock_error(sk); 2601 if (err != 0) 2602 goto failure; 2603 2604 err = -EPIPE; 2605 if (sk->sk_shutdown & SEND_SHUTDOWN) 2606 goto failure; 2607 2608 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2609 break; 2610 2611 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2612 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2613 err = -EAGAIN; 2614 if (!timeo) 2615 goto failure; 2616 if (signal_pending(current)) 2617 goto interrupted; 2618 timeo = sock_wait_for_wmem(sk, timeo); 2619 } 2620 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2621 errcode, sk->sk_allocation); 2622 if (skb) 2623 skb_set_owner_w(skb, sk); 2624 return skb; 2625 2626 interrupted: 2627 err = sock_intr_errno(timeo); 2628 failure: 2629 *errcode = err; 2630 return NULL; 2631 } 2632 EXPORT_SYMBOL(sock_alloc_send_pskb); 2633 2634 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2635 int noblock, int *errcode) 2636 { 2637 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2638 } 2639 EXPORT_SYMBOL(sock_alloc_send_skb); 2640 2641 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2642 struct sockcm_cookie *sockc) 2643 { 2644 u32 tsflags; 2645 2646 switch (cmsg->cmsg_type) { 2647 case SO_MARK: 2648 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2649 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2650 return -EPERM; 2651 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2652 return -EINVAL; 2653 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2654 break; 2655 case SO_TIMESTAMPING_OLD: 2656 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2657 return -EINVAL; 2658 2659 tsflags = *(u32 *)CMSG_DATA(cmsg); 2660 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2661 return -EINVAL; 2662 2663 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2664 sockc->tsflags |= tsflags; 2665 break; 2666 case SCM_TXTIME: 2667 if (!sock_flag(sk, SOCK_TXTIME)) 2668 return -EINVAL; 2669 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2670 return -EINVAL; 2671 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2672 break; 2673 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2674 case SCM_RIGHTS: 2675 case SCM_CREDENTIALS: 2676 break; 2677 default: 2678 return -EINVAL; 2679 } 2680 return 0; 2681 } 2682 EXPORT_SYMBOL(__sock_cmsg_send); 2683 2684 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2685 struct sockcm_cookie *sockc) 2686 { 2687 struct cmsghdr *cmsg; 2688 int ret; 2689 2690 for_each_cmsghdr(cmsg, msg) { 2691 if (!CMSG_OK(msg, cmsg)) 2692 return -EINVAL; 2693 if (cmsg->cmsg_level != SOL_SOCKET) 2694 continue; 2695 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2696 if (ret) 2697 return ret; 2698 } 2699 return 0; 2700 } 2701 EXPORT_SYMBOL(sock_cmsg_send); 2702 2703 static void sk_enter_memory_pressure(struct sock *sk) 2704 { 2705 if (!sk->sk_prot->enter_memory_pressure) 2706 return; 2707 2708 sk->sk_prot->enter_memory_pressure(sk); 2709 } 2710 2711 static void sk_leave_memory_pressure(struct sock *sk) 2712 { 2713 if (sk->sk_prot->leave_memory_pressure) { 2714 sk->sk_prot->leave_memory_pressure(sk); 2715 } else { 2716 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2717 2718 if (memory_pressure && READ_ONCE(*memory_pressure)) 2719 WRITE_ONCE(*memory_pressure, 0); 2720 } 2721 } 2722 2723 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2724 2725 /** 2726 * skb_page_frag_refill - check that a page_frag contains enough room 2727 * @sz: minimum size of the fragment we want to get 2728 * @pfrag: pointer to page_frag 2729 * @gfp: priority for memory allocation 2730 * 2731 * Note: While this allocator tries to use high order pages, there is 2732 * no guarantee that allocations succeed. Therefore, @sz MUST be 2733 * less or equal than PAGE_SIZE. 2734 */ 2735 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2736 { 2737 if (pfrag->page) { 2738 if (page_ref_count(pfrag->page) == 1) { 2739 pfrag->offset = 0; 2740 return true; 2741 } 2742 if (pfrag->offset + sz <= pfrag->size) 2743 return true; 2744 put_page(pfrag->page); 2745 } 2746 2747 pfrag->offset = 0; 2748 if (SKB_FRAG_PAGE_ORDER && 2749 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2750 /* Avoid direct reclaim but allow kswapd to wake */ 2751 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2752 __GFP_COMP | __GFP_NOWARN | 2753 __GFP_NORETRY, 2754 SKB_FRAG_PAGE_ORDER); 2755 if (likely(pfrag->page)) { 2756 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2757 return true; 2758 } 2759 } 2760 pfrag->page = alloc_page(gfp); 2761 if (likely(pfrag->page)) { 2762 pfrag->size = PAGE_SIZE; 2763 return true; 2764 } 2765 return false; 2766 } 2767 EXPORT_SYMBOL(skb_page_frag_refill); 2768 2769 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2770 { 2771 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2772 return true; 2773 2774 sk_enter_memory_pressure(sk); 2775 sk_stream_moderate_sndbuf(sk); 2776 return false; 2777 } 2778 EXPORT_SYMBOL(sk_page_frag_refill); 2779 2780 void __lock_sock(struct sock *sk) 2781 __releases(&sk->sk_lock.slock) 2782 __acquires(&sk->sk_lock.slock) 2783 { 2784 DEFINE_WAIT(wait); 2785 2786 for (;;) { 2787 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2788 TASK_UNINTERRUPTIBLE); 2789 spin_unlock_bh(&sk->sk_lock.slock); 2790 schedule(); 2791 spin_lock_bh(&sk->sk_lock.slock); 2792 if (!sock_owned_by_user(sk)) 2793 break; 2794 } 2795 finish_wait(&sk->sk_lock.wq, &wait); 2796 } 2797 2798 void __release_sock(struct sock *sk) 2799 __releases(&sk->sk_lock.slock) 2800 __acquires(&sk->sk_lock.slock) 2801 { 2802 struct sk_buff *skb, *next; 2803 2804 while ((skb = sk->sk_backlog.head) != NULL) { 2805 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2806 2807 spin_unlock_bh(&sk->sk_lock.slock); 2808 2809 do { 2810 next = skb->next; 2811 prefetch(next); 2812 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2813 skb_mark_not_on_list(skb); 2814 sk_backlog_rcv(sk, skb); 2815 2816 cond_resched(); 2817 2818 skb = next; 2819 } while (skb != NULL); 2820 2821 spin_lock_bh(&sk->sk_lock.slock); 2822 } 2823 2824 /* 2825 * Doing the zeroing here guarantee we can not loop forever 2826 * while a wild producer attempts to flood us. 2827 */ 2828 sk->sk_backlog.len = 0; 2829 } 2830 2831 void __sk_flush_backlog(struct sock *sk) 2832 { 2833 spin_lock_bh(&sk->sk_lock.slock); 2834 __release_sock(sk); 2835 spin_unlock_bh(&sk->sk_lock.slock); 2836 } 2837 2838 /** 2839 * sk_wait_data - wait for data to arrive at sk_receive_queue 2840 * @sk: sock to wait on 2841 * @timeo: for how long 2842 * @skb: last skb seen on sk_receive_queue 2843 * 2844 * Now socket state including sk->sk_err is changed only under lock, 2845 * hence we may omit checks after joining wait queue. 2846 * We check receive queue before schedule() only as optimization; 2847 * it is very likely that release_sock() added new data. 2848 */ 2849 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2850 { 2851 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2852 int rc; 2853 2854 add_wait_queue(sk_sleep(sk), &wait); 2855 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2856 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2857 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2858 remove_wait_queue(sk_sleep(sk), &wait); 2859 return rc; 2860 } 2861 EXPORT_SYMBOL(sk_wait_data); 2862 2863 /** 2864 * __sk_mem_raise_allocated - increase memory_allocated 2865 * @sk: socket 2866 * @size: memory size to allocate 2867 * @amt: pages to allocate 2868 * @kind: allocation type 2869 * 2870 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2871 */ 2872 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2873 { 2874 struct proto *prot = sk->sk_prot; 2875 long allocated = sk_memory_allocated_add(sk, amt); 2876 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2877 bool charged = true; 2878 2879 if (memcg_charge && 2880 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2881 gfp_memcg_charge()))) 2882 goto suppress_allocation; 2883 2884 /* Under limit. */ 2885 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2886 sk_leave_memory_pressure(sk); 2887 return 1; 2888 } 2889 2890 /* Under pressure. */ 2891 if (allocated > sk_prot_mem_limits(sk, 1)) 2892 sk_enter_memory_pressure(sk); 2893 2894 /* Over hard limit. */ 2895 if (allocated > sk_prot_mem_limits(sk, 2)) 2896 goto suppress_allocation; 2897 2898 /* guarantee minimum buffer size under pressure */ 2899 if (kind == SK_MEM_RECV) { 2900 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2901 return 1; 2902 2903 } else { /* SK_MEM_SEND */ 2904 int wmem0 = sk_get_wmem0(sk, prot); 2905 2906 if (sk->sk_type == SOCK_STREAM) { 2907 if (sk->sk_wmem_queued < wmem0) 2908 return 1; 2909 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2910 return 1; 2911 } 2912 } 2913 2914 if (sk_has_memory_pressure(sk)) { 2915 u64 alloc; 2916 2917 if (!sk_under_memory_pressure(sk)) 2918 return 1; 2919 alloc = sk_sockets_allocated_read_positive(sk); 2920 if (sk_prot_mem_limits(sk, 2) > alloc * 2921 sk_mem_pages(sk->sk_wmem_queued + 2922 atomic_read(&sk->sk_rmem_alloc) + 2923 sk->sk_forward_alloc)) 2924 return 1; 2925 } 2926 2927 suppress_allocation: 2928 2929 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2930 sk_stream_moderate_sndbuf(sk); 2931 2932 /* Fail only if socket is _under_ its sndbuf. 2933 * In this case we cannot block, so that we have to fail. 2934 */ 2935 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2936 /* Force charge with __GFP_NOFAIL */ 2937 if (memcg_charge && !charged) { 2938 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2939 gfp_memcg_charge() | __GFP_NOFAIL); 2940 } 2941 return 1; 2942 } 2943 } 2944 2945 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2946 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2947 2948 sk_memory_allocated_sub(sk, amt); 2949 2950 if (memcg_charge && charged) 2951 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2952 2953 return 0; 2954 } 2955 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2956 2957 /** 2958 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2959 * @sk: socket 2960 * @size: memory size to allocate 2961 * @kind: allocation type 2962 * 2963 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2964 * rmem allocation. This function assumes that protocols which have 2965 * memory_pressure use sk_wmem_queued as write buffer accounting. 2966 */ 2967 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2968 { 2969 int ret, amt = sk_mem_pages(size); 2970 2971 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2972 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2973 if (!ret) 2974 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2975 return ret; 2976 } 2977 EXPORT_SYMBOL(__sk_mem_schedule); 2978 2979 /** 2980 * __sk_mem_reduce_allocated - reclaim memory_allocated 2981 * @sk: socket 2982 * @amount: number of quanta 2983 * 2984 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2985 */ 2986 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2987 { 2988 sk_memory_allocated_sub(sk, amount); 2989 2990 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2991 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2992 2993 if (sk_under_memory_pressure(sk) && 2994 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2995 sk_leave_memory_pressure(sk); 2996 } 2997 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2998 2999 /** 3000 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3001 * @sk: socket 3002 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 3003 */ 3004 void __sk_mem_reclaim(struct sock *sk, int amount) 3005 { 3006 amount >>= SK_MEM_QUANTUM_SHIFT; 3007 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 3008 __sk_mem_reduce_allocated(sk, amount); 3009 } 3010 EXPORT_SYMBOL(__sk_mem_reclaim); 3011 3012 int sk_set_peek_off(struct sock *sk, int val) 3013 { 3014 sk->sk_peek_off = val; 3015 return 0; 3016 } 3017 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3018 3019 /* 3020 * Set of default routines for initialising struct proto_ops when 3021 * the protocol does not support a particular function. In certain 3022 * cases where it makes no sense for a protocol to have a "do nothing" 3023 * function, some default processing is provided. 3024 */ 3025 3026 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3027 { 3028 return -EOPNOTSUPP; 3029 } 3030 EXPORT_SYMBOL(sock_no_bind); 3031 3032 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3033 int len, int flags) 3034 { 3035 return -EOPNOTSUPP; 3036 } 3037 EXPORT_SYMBOL(sock_no_connect); 3038 3039 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3040 { 3041 return -EOPNOTSUPP; 3042 } 3043 EXPORT_SYMBOL(sock_no_socketpair); 3044 3045 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3046 bool kern) 3047 { 3048 return -EOPNOTSUPP; 3049 } 3050 EXPORT_SYMBOL(sock_no_accept); 3051 3052 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3053 int peer) 3054 { 3055 return -EOPNOTSUPP; 3056 } 3057 EXPORT_SYMBOL(sock_no_getname); 3058 3059 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3060 { 3061 return -EOPNOTSUPP; 3062 } 3063 EXPORT_SYMBOL(sock_no_ioctl); 3064 3065 int sock_no_listen(struct socket *sock, int backlog) 3066 { 3067 return -EOPNOTSUPP; 3068 } 3069 EXPORT_SYMBOL(sock_no_listen); 3070 3071 int sock_no_shutdown(struct socket *sock, int how) 3072 { 3073 return -EOPNOTSUPP; 3074 } 3075 EXPORT_SYMBOL(sock_no_shutdown); 3076 3077 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3078 { 3079 return -EOPNOTSUPP; 3080 } 3081 EXPORT_SYMBOL(sock_no_sendmsg); 3082 3083 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3084 { 3085 return -EOPNOTSUPP; 3086 } 3087 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3088 3089 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3090 int flags) 3091 { 3092 return -EOPNOTSUPP; 3093 } 3094 EXPORT_SYMBOL(sock_no_recvmsg); 3095 3096 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3097 { 3098 /* Mirror missing mmap method error code */ 3099 return -ENODEV; 3100 } 3101 EXPORT_SYMBOL(sock_no_mmap); 3102 3103 /* 3104 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3105 * various sock-based usage counts. 3106 */ 3107 void __receive_sock(struct file *file) 3108 { 3109 struct socket *sock; 3110 3111 sock = sock_from_file(file); 3112 if (sock) { 3113 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3114 sock_update_classid(&sock->sk->sk_cgrp_data); 3115 } 3116 } 3117 3118 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3119 { 3120 ssize_t res; 3121 struct msghdr msg = {.msg_flags = flags}; 3122 struct kvec iov; 3123 char *kaddr = kmap(page); 3124 iov.iov_base = kaddr + offset; 3125 iov.iov_len = size; 3126 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3127 kunmap(page); 3128 return res; 3129 } 3130 EXPORT_SYMBOL(sock_no_sendpage); 3131 3132 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3133 int offset, size_t size, int flags) 3134 { 3135 ssize_t res; 3136 struct msghdr msg = {.msg_flags = flags}; 3137 struct kvec iov; 3138 char *kaddr = kmap(page); 3139 3140 iov.iov_base = kaddr + offset; 3141 iov.iov_len = size; 3142 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3143 kunmap(page); 3144 return res; 3145 } 3146 EXPORT_SYMBOL(sock_no_sendpage_locked); 3147 3148 /* 3149 * Default Socket Callbacks 3150 */ 3151 3152 static void sock_def_wakeup(struct sock *sk) 3153 { 3154 struct socket_wq *wq; 3155 3156 rcu_read_lock(); 3157 wq = rcu_dereference(sk->sk_wq); 3158 if (skwq_has_sleeper(wq)) 3159 wake_up_interruptible_all(&wq->wait); 3160 rcu_read_unlock(); 3161 } 3162 3163 static void sock_def_error_report(struct sock *sk) 3164 { 3165 struct socket_wq *wq; 3166 3167 rcu_read_lock(); 3168 wq = rcu_dereference(sk->sk_wq); 3169 if (skwq_has_sleeper(wq)) 3170 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3171 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3172 rcu_read_unlock(); 3173 } 3174 3175 void sock_def_readable(struct sock *sk) 3176 { 3177 struct socket_wq *wq; 3178 3179 rcu_read_lock(); 3180 wq = rcu_dereference(sk->sk_wq); 3181 if (skwq_has_sleeper(wq)) 3182 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3183 EPOLLRDNORM | EPOLLRDBAND); 3184 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3185 rcu_read_unlock(); 3186 } 3187 3188 static void sock_def_write_space(struct sock *sk) 3189 { 3190 struct socket_wq *wq; 3191 3192 rcu_read_lock(); 3193 3194 /* Do not wake up a writer until he can make "significant" 3195 * progress. --DaveM 3196 */ 3197 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 3198 wq = rcu_dereference(sk->sk_wq); 3199 if (skwq_has_sleeper(wq)) 3200 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3201 EPOLLWRNORM | EPOLLWRBAND); 3202 3203 /* Should agree with poll, otherwise some programs break */ 3204 if (sock_writeable(sk)) 3205 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3206 } 3207 3208 rcu_read_unlock(); 3209 } 3210 3211 static void sock_def_destruct(struct sock *sk) 3212 { 3213 } 3214 3215 void sk_send_sigurg(struct sock *sk) 3216 { 3217 if (sk->sk_socket && sk->sk_socket->file) 3218 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3219 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3220 } 3221 EXPORT_SYMBOL(sk_send_sigurg); 3222 3223 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3224 unsigned long expires) 3225 { 3226 if (!mod_timer(timer, expires)) 3227 sock_hold(sk); 3228 } 3229 EXPORT_SYMBOL(sk_reset_timer); 3230 3231 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3232 { 3233 if (del_timer(timer)) 3234 __sock_put(sk); 3235 } 3236 EXPORT_SYMBOL(sk_stop_timer); 3237 3238 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3239 { 3240 if (del_timer_sync(timer)) 3241 __sock_put(sk); 3242 } 3243 EXPORT_SYMBOL(sk_stop_timer_sync); 3244 3245 void sock_init_data(struct socket *sock, struct sock *sk) 3246 { 3247 sk_init_common(sk); 3248 sk->sk_send_head = NULL; 3249 3250 timer_setup(&sk->sk_timer, NULL, 0); 3251 3252 sk->sk_allocation = GFP_KERNEL; 3253 sk->sk_rcvbuf = sysctl_rmem_default; 3254 sk->sk_sndbuf = sysctl_wmem_default; 3255 sk->sk_state = TCP_CLOSE; 3256 sk_set_socket(sk, sock); 3257 3258 sock_set_flag(sk, SOCK_ZAPPED); 3259 3260 if (sock) { 3261 sk->sk_type = sock->type; 3262 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3263 sock->sk = sk; 3264 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3265 } else { 3266 RCU_INIT_POINTER(sk->sk_wq, NULL); 3267 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3268 } 3269 3270 rwlock_init(&sk->sk_callback_lock); 3271 if (sk->sk_kern_sock) 3272 lockdep_set_class_and_name( 3273 &sk->sk_callback_lock, 3274 af_kern_callback_keys + sk->sk_family, 3275 af_family_kern_clock_key_strings[sk->sk_family]); 3276 else 3277 lockdep_set_class_and_name( 3278 &sk->sk_callback_lock, 3279 af_callback_keys + sk->sk_family, 3280 af_family_clock_key_strings[sk->sk_family]); 3281 3282 sk->sk_state_change = sock_def_wakeup; 3283 sk->sk_data_ready = sock_def_readable; 3284 sk->sk_write_space = sock_def_write_space; 3285 sk->sk_error_report = sock_def_error_report; 3286 sk->sk_destruct = sock_def_destruct; 3287 3288 sk->sk_frag.page = NULL; 3289 sk->sk_frag.offset = 0; 3290 sk->sk_peek_off = -1; 3291 3292 sk->sk_peer_pid = NULL; 3293 sk->sk_peer_cred = NULL; 3294 spin_lock_init(&sk->sk_peer_lock); 3295 3296 sk->sk_write_pending = 0; 3297 sk->sk_rcvlowat = 1; 3298 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3299 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3300 3301 sk->sk_stamp = SK_DEFAULT_STAMP; 3302 #if BITS_PER_LONG==32 3303 seqlock_init(&sk->sk_stamp_seq); 3304 #endif 3305 atomic_set(&sk->sk_zckey, 0); 3306 3307 #ifdef CONFIG_NET_RX_BUSY_POLL 3308 sk->sk_napi_id = 0; 3309 sk->sk_ll_usec = sysctl_net_busy_read; 3310 #endif 3311 3312 sk->sk_max_pacing_rate = ~0UL; 3313 sk->sk_pacing_rate = ~0UL; 3314 WRITE_ONCE(sk->sk_pacing_shift, 10); 3315 sk->sk_incoming_cpu = -1; 3316 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3317 3318 sk_rx_queue_clear(sk); 3319 /* 3320 * Before updating sk_refcnt, we must commit prior changes to memory 3321 * (Documentation/RCU/rculist_nulls.rst for details) 3322 */ 3323 smp_wmb(); 3324 refcount_set(&sk->sk_refcnt, 1); 3325 atomic_set(&sk->sk_drops, 0); 3326 } 3327 EXPORT_SYMBOL(sock_init_data); 3328 3329 void lock_sock_nested(struct sock *sk, int subclass) 3330 { 3331 /* The sk_lock has mutex_lock() semantics here. */ 3332 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3333 3334 might_sleep(); 3335 spin_lock_bh(&sk->sk_lock.slock); 3336 if (sock_owned_by_user_nocheck(sk)) 3337 __lock_sock(sk); 3338 sk->sk_lock.owned = 1; 3339 spin_unlock_bh(&sk->sk_lock.slock); 3340 } 3341 EXPORT_SYMBOL(lock_sock_nested); 3342 3343 void release_sock(struct sock *sk) 3344 { 3345 spin_lock_bh(&sk->sk_lock.slock); 3346 if (sk->sk_backlog.tail) 3347 __release_sock(sk); 3348 3349 /* Warning : release_cb() might need to release sk ownership, 3350 * ie call sock_release_ownership(sk) before us. 3351 */ 3352 if (sk->sk_prot->release_cb) 3353 sk->sk_prot->release_cb(sk); 3354 3355 sock_release_ownership(sk); 3356 if (waitqueue_active(&sk->sk_lock.wq)) 3357 wake_up(&sk->sk_lock.wq); 3358 spin_unlock_bh(&sk->sk_lock.slock); 3359 } 3360 EXPORT_SYMBOL(release_sock); 3361 3362 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3363 { 3364 might_sleep(); 3365 spin_lock_bh(&sk->sk_lock.slock); 3366 3367 if (!sock_owned_by_user_nocheck(sk)) { 3368 /* 3369 * Fast path return with bottom halves disabled and 3370 * sock::sk_lock.slock held. 3371 * 3372 * The 'mutex' is not contended and holding 3373 * sock::sk_lock.slock prevents all other lockers to 3374 * proceed so the corresponding unlock_sock_fast() can 3375 * avoid the slow path of release_sock() completely and 3376 * just release slock. 3377 * 3378 * From a semantical POV this is equivalent to 'acquiring' 3379 * the 'mutex', hence the corresponding lockdep 3380 * mutex_release() has to happen in the fast path of 3381 * unlock_sock_fast(). 3382 */ 3383 return false; 3384 } 3385 3386 __lock_sock(sk); 3387 sk->sk_lock.owned = 1; 3388 __acquire(&sk->sk_lock.slock); 3389 spin_unlock_bh(&sk->sk_lock.slock); 3390 return true; 3391 } 3392 EXPORT_SYMBOL(__lock_sock_fast); 3393 3394 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3395 bool timeval, bool time32) 3396 { 3397 struct sock *sk = sock->sk; 3398 struct timespec64 ts; 3399 3400 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3401 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3402 if (ts.tv_sec == -1) 3403 return -ENOENT; 3404 if (ts.tv_sec == 0) { 3405 ktime_t kt = ktime_get_real(); 3406 sock_write_timestamp(sk, kt); 3407 ts = ktime_to_timespec64(kt); 3408 } 3409 3410 if (timeval) 3411 ts.tv_nsec /= 1000; 3412 3413 #ifdef CONFIG_COMPAT_32BIT_TIME 3414 if (time32) 3415 return put_old_timespec32(&ts, userstamp); 3416 #endif 3417 #ifdef CONFIG_SPARC64 3418 /* beware of padding in sparc64 timeval */ 3419 if (timeval && !in_compat_syscall()) { 3420 struct __kernel_old_timeval __user tv = { 3421 .tv_sec = ts.tv_sec, 3422 .tv_usec = ts.tv_nsec, 3423 }; 3424 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3425 return -EFAULT; 3426 return 0; 3427 } 3428 #endif 3429 return put_timespec64(&ts, userstamp); 3430 } 3431 EXPORT_SYMBOL(sock_gettstamp); 3432 3433 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3434 { 3435 if (!sock_flag(sk, flag)) { 3436 unsigned long previous_flags = sk->sk_flags; 3437 3438 sock_set_flag(sk, flag); 3439 /* 3440 * we just set one of the two flags which require net 3441 * time stamping, but time stamping might have been on 3442 * already because of the other one 3443 */ 3444 if (sock_needs_netstamp(sk) && 3445 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3446 net_enable_timestamp(); 3447 } 3448 } 3449 3450 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3451 int level, int type) 3452 { 3453 struct sock_exterr_skb *serr; 3454 struct sk_buff *skb; 3455 int copied, err; 3456 3457 err = -EAGAIN; 3458 skb = sock_dequeue_err_skb(sk); 3459 if (skb == NULL) 3460 goto out; 3461 3462 copied = skb->len; 3463 if (copied > len) { 3464 msg->msg_flags |= MSG_TRUNC; 3465 copied = len; 3466 } 3467 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3468 if (err) 3469 goto out_free_skb; 3470 3471 sock_recv_timestamp(msg, sk, skb); 3472 3473 serr = SKB_EXT_ERR(skb); 3474 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3475 3476 msg->msg_flags |= MSG_ERRQUEUE; 3477 err = copied; 3478 3479 out_free_skb: 3480 kfree_skb(skb); 3481 out: 3482 return err; 3483 } 3484 EXPORT_SYMBOL(sock_recv_errqueue); 3485 3486 /* 3487 * Get a socket option on an socket. 3488 * 3489 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3490 * asynchronous errors should be reported by getsockopt. We assume 3491 * this means if you specify SO_ERROR (otherwise whats the point of it). 3492 */ 3493 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3494 char __user *optval, int __user *optlen) 3495 { 3496 struct sock *sk = sock->sk; 3497 3498 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3499 } 3500 EXPORT_SYMBOL(sock_common_getsockopt); 3501 3502 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3503 int flags) 3504 { 3505 struct sock *sk = sock->sk; 3506 int addr_len = 0; 3507 int err; 3508 3509 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3510 if (err >= 0) 3511 msg->msg_namelen = addr_len; 3512 return err; 3513 } 3514 EXPORT_SYMBOL(sock_common_recvmsg); 3515 3516 /* 3517 * Set socket options on an inet socket. 3518 */ 3519 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3520 sockptr_t optval, unsigned int optlen) 3521 { 3522 struct sock *sk = sock->sk; 3523 3524 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3525 } 3526 EXPORT_SYMBOL(sock_common_setsockopt); 3527 3528 void sk_common_release(struct sock *sk) 3529 { 3530 if (sk->sk_prot->destroy) 3531 sk->sk_prot->destroy(sk); 3532 3533 /* 3534 * Observation: when sk_common_release is called, processes have 3535 * no access to socket. But net still has. 3536 * Step one, detach it from networking: 3537 * 3538 * A. Remove from hash tables. 3539 */ 3540 3541 sk->sk_prot->unhash(sk); 3542 3543 /* 3544 * In this point socket cannot receive new packets, but it is possible 3545 * that some packets are in flight because some CPU runs receiver and 3546 * did hash table lookup before we unhashed socket. They will achieve 3547 * receive queue and will be purged by socket destructor. 3548 * 3549 * Also we still have packets pending on receive queue and probably, 3550 * our own packets waiting in device queues. sock_destroy will drain 3551 * receive queue, but transmitted packets will delay socket destruction 3552 * until the last reference will be released. 3553 */ 3554 3555 sock_orphan(sk); 3556 3557 xfrm_sk_free_policy(sk); 3558 3559 sk_refcnt_debug_release(sk); 3560 3561 sock_put(sk); 3562 } 3563 EXPORT_SYMBOL(sk_common_release); 3564 3565 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3566 { 3567 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3568 3569 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3570 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3571 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3572 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3573 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3574 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3575 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3576 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3577 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3578 } 3579 3580 #ifdef CONFIG_PROC_FS 3581 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3582 3583 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3584 { 3585 int cpu, idx = prot->inuse_idx; 3586 int res = 0; 3587 3588 for_each_possible_cpu(cpu) 3589 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3590 3591 return res >= 0 ? res : 0; 3592 } 3593 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3594 3595 int sock_inuse_get(struct net *net) 3596 { 3597 int cpu, res = 0; 3598 3599 for_each_possible_cpu(cpu) 3600 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3601 3602 return res; 3603 } 3604 3605 EXPORT_SYMBOL_GPL(sock_inuse_get); 3606 3607 static int __net_init sock_inuse_init_net(struct net *net) 3608 { 3609 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3610 if (net->core.prot_inuse == NULL) 3611 return -ENOMEM; 3612 return 0; 3613 } 3614 3615 static void __net_exit sock_inuse_exit_net(struct net *net) 3616 { 3617 free_percpu(net->core.prot_inuse); 3618 } 3619 3620 static struct pernet_operations net_inuse_ops = { 3621 .init = sock_inuse_init_net, 3622 .exit = sock_inuse_exit_net, 3623 }; 3624 3625 static __init int net_inuse_init(void) 3626 { 3627 if (register_pernet_subsys(&net_inuse_ops)) 3628 panic("Cannot initialize net inuse counters"); 3629 3630 return 0; 3631 } 3632 3633 core_initcall(net_inuse_init); 3634 3635 static int assign_proto_idx(struct proto *prot) 3636 { 3637 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3638 3639 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3640 pr_err("PROTO_INUSE_NR exhausted\n"); 3641 return -ENOSPC; 3642 } 3643 3644 set_bit(prot->inuse_idx, proto_inuse_idx); 3645 return 0; 3646 } 3647 3648 static void release_proto_idx(struct proto *prot) 3649 { 3650 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3651 clear_bit(prot->inuse_idx, proto_inuse_idx); 3652 } 3653 #else 3654 static inline int assign_proto_idx(struct proto *prot) 3655 { 3656 return 0; 3657 } 3658 3659 static inline void release_proto_idx(struct proto *prot) 3660 { 3661 } 3662 3663 #endif 3664 3665 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3666 { 3667 if (!twsk_prot) 3668 return; 3669 kfree(twsk_prot->twsk_slab_name); 3670 twsk_prot->twsk_slab_name = NULL; 3671 kmem_cache_destroy(twsk_prot->twsk_slab); 3672 twsk_prot->twsk_slab = NULL; 3673 } 3674 3675 static int tw_prot_init(const struct proto *prot) 3676 { 3677 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3678 3679 if (!twsk_prot) 3680 return 0; 3681 3682 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3683 prot->name); 3684 if (!twsk_prot->twsk_slab_name) 3685 return -ENOMEM; 3686 3687 twsk_prot->twsk_slab = 3688 kmem_cache_create(twsk_prot->twsk_slab_name, 3689 twsk_prot->twsk_obj_size, 0, 3690 SLAB_ACCOUNT | prot->slab_flags, 3691 NULL); 3692 if (!twsk_prot->twsk_slab) { 3693 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3694 prot->name); 3695 return -ENOMEM; 3696 } 3697 3698 return 0; 3699 } 3700 3701 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3702 { 3703 if (!rsk_prot) 3704 return; 3705 kfree(rsk_prot->slab_name); 3706 rsk_prot->slab_name = NULL; 3707 kmem_cache_destroy(rsk_prot->slab); 3708 rsk_prot->slab = NULL; 3709 } 3710 3711 static int req_prot_init(const struct proto *prot) 3712 { 3713 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3714 3715 if (!rsk_prot) 3716 return 0; 3717 3718 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3719 prot->name); 3720 if (!rsk_prot->slab_name) 3721 return -ENOMEM; 3722 3723 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3724 rsk_prot->obj_size, 0, 3725 SLAB_ACCOUNT | prot->slab_flags, 3726 NULL); 3727 3728 if (!rsk_prot->slab) { 3729 pr_crit("%s: Can't create request sock SLAB cache!\n", 3730 prot->name); 3731 return -ENOMEM; 3732 } 3733 return 0; 3734 } 3735 3736 int proto_register(struct proto *prot, int alloc_slab) 3737 { 3738 int ret = -ENOBUFS; 3739 3740 if (prot->memory_allocated && !prot->sysctl_mem) { 3741 pr_err("%s: missing sysctl_mem\n", prot->name); 3742 return -EINVAL; 3743 } 3744 if (alloc_slab) { 3745 prot->slab = kmem_cache_create_usercopy(prot->name, 3746 prot->obj_size, 0, 3747 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3748 prot->slab_flags, 3749 prot->useroffset, prot->usersize, 3750 NULL); 3751 3752 if (prot->slab == NULL) { 3753 pr_crit("%s: Can't create sock SLAB cache!\n", 3754 prot->name); 3755 goto out; 3756 } 3757 3758 if (req_prot_init(prot)) 3759 goto out_free_request_sock_slab; 3760 3761 if (tw_prot_init(prot)) 3762 goto out_free_timewait_sock_slab; 3763 } 3764 3765 mutex_lock(&proto_list_mutex); 3766 ret = assign_proto_idx(prot); 3767 if (ret) { 3768 mutex_unlock(&proto_list_mutex); 3769 goto out_free_timewait_sock_slab; 3770 } 3771 list_add(&prot->node, &proto_list); 3772 mutex_unlock(&proto_list_mutex); 3773 return ret; 3774 3775 out_free_timewait_sock_slab: 3776 if (alloc_slab) 3777 tw_prot_cleanup(prot->twsk_prot); 3778 out_free_request_sock_slab: 3779 if (alloc_slab) { 3780 req_prot_cleanup(prot->rsk_prot); 3781 3782 kmem_cache_destroy(prot->slab); 3783 prot->slab = NULL; 3784 } 3785 out: 3786 return ret; 3787 } 3788 EXPORT_SYMBOL(proto_register); 3789 3790 void proto_unregister(struct proto *prot) 3791 { 3792 mutex_lock(&proto_list_mutex); 3793 release_proto_idx(prot); 3794 list_del(&prot->node); 3795 mutex_unlock(&proto_list_mutex); 3796 3797 kmem_cache_destroy(prot->slab); 3798 prot->slab = NULL; 3799 3800 req_prot_cleanup(prot->rsk_prot); 3801 tw_prot_cleanup(prot->twsk_prot); 3802 } 3803 EXPORT_SYMBOL(proto_unregister); 3804 3805 int sock_load_diag_module(int family, int protocol) 3806 { 3807 if (!protocol) { 3808 if (!sock_is_registered(family)) 3809 return -ENOENT; 3810 3811 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3812 NETLINK_SOCK_DIAG, family); 3813 } 3814 3815 #ifdef CONFIG_INET 3816 if (family == AF_INET && 3817 protocol != IPPROTO_RAW && 3818 protocol < MAX_INET_PROTOS && 3819 !rcu_access_pointer(inet_protos[protocol])) 3820 return -ENOENT; 3821 #endif 3822 3823 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3824 NETLINK_SOCK_DIAG, family, protocol); 3825 } 3826 EXPORT_SYMBOL(sock_load_diag_module); 3827 3828 #ifdef CONFIG_PROC_FS 3829 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3830 __acquires(proto_list_mutex) 3831 { 3832 mutex_lock(&proto_list_mutex); 3833 return seq_list_start_head(&proto_list, *pos); 3834 } 3835 3836 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3837 { 3838 return seq_list_next(v, &proto_list, pos); 3839 } 3840 3841 static void proto_seq_stop(struct seq_file *seq, void *v) 3842 __releases(proto_list_mutex) 3843 { 3844 mutex_unlock(&proto_list_mutex); 3845 } 3846 3847 static char proto_method_implemented(const void *method) 3848 { 3849 return method == NULL ? 'n' : 'y'; 3850 } 3851 static long sock_prot_memory_allocated(struct proto *proto) 3852 { 3853 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3854 } 3855 3856 static const char *sock_prot_memory_pressure(struct proto *proto) 3857 { 3858 return proto->memory_pressure != NULL ? 3859 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3860 } 3861 3862 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3863 { 3864 3865 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3866 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3867 proto->name, 3868 proto->obj_size, 3869 sock_prot_inuse_get(seq_file_net(seq), proto), 3870 sock_prot_memory_allocated(proto), 3871 sock_prot_memory_pressure(proto), 3872 proto->max_header, 3873 proto->slab == NULL ? "no" : "yes", 3874 module_name(proto->owner), 3875 proto_method_implemented(proto->close), 3876 proto_method_implemented(proto->connect), 3877 proto_method_implemented(proto->disconnect), 3878 proto_method_implemented(proto->accept), 3879 proto_method_implemented(proto->ioctl), 3880 proto_method_implemented(proto->init), 3881 proto_method_implemented(proto->destroy), 3882 proto_method_implemented(proto->shutdown), 3883 proto_method_implemented(proto->setsockopt), 3884 proto_method_implemented(proto->getsockopt), 3885 proto_method_implemented(proto->sendmsg), 3886 proto_method_implemented(proto->recvmsg), 3887 proto_method_implemented(proto->sendpage), 3888 proto_method_implemented(proto->bind), 3889 proto_method_implemented(proto->backlog_rcv), 3890 proto_method_implemented(proto->hash), 3891 proto_method_implemented(proto->unhash), 3892 proto_method_implemented(proto->get_port), 3893 proto_method_implemented(proto->enter_memory_pressure)); 3894 } 3895 3896 static int proto_seq_show(struct seq_file *seq, void *v) 3897 { 3898 if (v == &proto_list) 3899 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3900 "protocol", 3901 "size", 3902 "sockets", 3903 "memory", 3904 "press", 3905 "maxhdr", 3906 "slab", 3907 "module", 3908 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3909 else 3910 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3911 return 0; 3912 } 3913 3914 static const struct seq_operations proto_seq_ops = { 3915 .start = proto_seq_start, 3916 .next = proto_seq_next, 3917 .stop = proto_seq_stop, 3918 .show = proto_seq_show, 3919 }; 3920 3921 static __net_init int proto_init_net(struct net *net) 3922 { 3923 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3924 sizeof(struct seq_net_private))) 3925 return -ENOMEM; 3926 3927 return 0; 3928 } 3929 3930 static __net_exit void proto_exit_net(struct net *net) 3931 { 3932 remove_proc_entry("protocols", net->proc_net); 3933 } 3934 3935 3936 static __net_initdata struct pernet_operations proto_net_ops = { 3937 .init = proto_init_net, 3938 .exit = proto_exit_net, 3939 }; 3940 3941 static int __init proto_init(void) 3942 { 3943 return register_pernet_subsys(&proto_net_ops); 3944 } 3945 3946 subsys_initcall(proto_init); 3947 3948 #endif /* PROC_FS */ 3949 3950 #ifdef CONFIG_NET_RX_BUSY_POLL 3951 bool sk_busy_loop_end(void *p, unsigned long start_time) 3952 { 3953 struct sock *sk = p; 3954 3955 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3956 sk_busy_loop_timeout(sk, start_time); 3957 } 3958 EXPORT_SYMBOL(sk_busy_loop_end); 3959 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3960 3961 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3962 { 3963 if (!sk->sk_prot->bind_add) 3964 return -EOPNOTSUPP; 3965 return sk->sk_prot->bind_add(sk, addr, addr_len); 3966 } 3967 EXPORT_SYMBOL(sock_bind_add); 3968