xref: /linux/net/core/sock.c (revision a17627ef8833ac30622a7b39b7be390e1b174405)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 /*
142  * Make lock validator output more readable. (we pre-construct these
143  * strings build-time, so that runtime initialization of socket
144  * locks is fast):
145  */
146 static const char *af_family_key_strings[AF_MAX+1] = {
147   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
157   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
159 };
160 static const char *af_family_slock_key_strings[AF_MAX+1] = {
161   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170   "slock-27"       , "slock-28"          , "slock-29"          ,
171   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172   "slock-AF_RXRPC" , "slock-AF_MAX"
173 };
174 #endif
175 
176 /*
177  * sk_callback_lock locking rules are per-address-family,
178  * so split the lock classes by using a per-AF key:
179  */
180 static struct lock_class_key af_callback_keys[AF_MAX];
181 
182 /* Take into consideration the size of the struct sk_buff overhead in the
183  * determination of these values, since that is non-constant across
184  * platforms.  This makes socket queueing behavior and performance
185  * not depend upon such differences.
186  */
187 #define _SK_MEM_PACKETS		256
188 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
189 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
190 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
191 
192 /* Run time adjustable parameters. */
193 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
194 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
195 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
196 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
197 
198 /* Maximal space eaten by iovec or ancilliary data plus some space */
199 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
200 
201 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
202 {
203 	struct timeval tv;
204 
205 	if (optlen < sizeof(tv))
206 		return -EINVAL;
207 	if (copy_from_user(&tv, optval, sizeof(tv)))
208 		return -EFAULT;
209 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
210 		return -EDOM;
211 
212 	if (tv.tv_sec < 0) {
213 		static int warned = 0;
214 		*timeo_p = 0;
215 		if (warned < 10 && net_ratelimit())
216 			warned++;
217 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
218 			       "tries to set negative timeout\n",
219 			        current->comm, current->pid);
220 		return 0;
221 	}
222 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
223 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
224 		return 0;
225 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
226 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
227 	return 0;
228 }
229 
230 static void sock_warn_obsolete_bsdism(const char *name)
231 {
232 	static int warned;
233 	static char warncomm[TASK_COMM_LEN];
234 	if (strcmp(warncomm, current->comm) && warned < 5) {
235 		strcpy(warncomm,  current->comm);
236 		printk(KERN_WARNING "process `%s' is using obsolete "
237 		       "%s SO_BSDCOMPAT\n", warncomm, name);
238 		warned++;
239 	}
240 }
241 
242 static void sock_disable_timestamp(struct sock *sk)
243 {
244 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
245 		sock_reset_flag(sk, SOCK_TIMESTAMP);
246 		net_disable_timestamp();
247 	}
248 }
249 
250 
251 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
252 {
253 	int err = 0;
254 	int skb_len;
255 
256 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
257 	   number of warnings when compiling with -W --ANK
258 	 */
259 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
260 	    (unsigned)sk->sk_rcvbuf) {
261 		err = -ENOMEM;
262 		goto out;
263 	}
264 
265 	err = sk_filter(sk, skb);
266 	if (err)
267 		goto out;
268 
269 	skb->dev = NULL;
270 	skb_set_owner_r(skb, sk);
271 
272 	/* Cache the SKB length before we tack it onto the receive
273 	 * queue.  Once it is added it no longer belongs to us and
274 	 * may be freed by other threads of control pulling packets
275 	 * from the queue.
276 	 */
277 	skb_len = skb->len;
278 
279 	skb_queue_tail(&sk->sk_receive_queue, skb);
280 
281 	if (!sock_flag(sk, SOCK_DEAD))
282 		sk->sk_data_ready(sk, skb_len);
283 out:
284 	return err;
285 }
286 EXPORT_SYMBOL(sock_queue_rcv_skb);
287 
288 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
289 {
290 	int rc = NET_RX_SUCCESS;
291 
292 	if (sk_filter(sk, skb))
293 		goto discard_and_relse;
294 
295 	skb->dev = NULL;
296 
297 	if (nested)
298 		bh_lock_sock_nested(sk);
299 	else
300 		bh_lock_sock(sk);
301 	if (!sock_owned_by_user(sk)) {
302 		/*
303 		 * trylock + unlock semantics:
304 		 */
305 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
306 
307 		rc = sk->sk_backlog_rcv(sk, skb);
308 
309 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
310 	} else
311 		sk_add_backlog(sk, skb);
312 	bh_unlock_sock(sk);
313 out:
314 	sock_put(sk);
315 	return rc;
316 discard_and_relse:
317 	kfree_skb(skb);
318 	goto out;
319 }
320 EXPORT_SYMBOL(sk_receive_skb);
321 
322 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
323 {
324 	struct dst_entry *dst = sk->sk_dst_cache;
325 
326 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 		sk->sk_dst_cache = NULL;
328 		dst_release(dst);
329 		return NULL;
330 	}
331 
332 	return dst;
333 }
334 EXPORT_SYMBOL(__sk_dst_check);
335 
336 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
337 {
338 	struct dst_entry *dst = sk_dst_get(sk);
339 
340 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
341 		sk_dst_reset(sk);
342 		dst_release(dst);
343 		return NULL;
344 	}
345 
346 	return dst;
347 }
348 EXPORT_SYMBOL(sk_dst_check);
349 
350 /*
351  *	This is meant for all protocols to use and covers goings on
352  *	at the socket level. Everything here is generic.
353  */
354 
355 int sock_setsockopt(struct socket *sock, int level, int optname,
356 		    char __user *optval, int optlen)
357 {
358 	struct sock *sk=sock->sk;
359 	struct sk_filter *filter;
360 	int val;
361 	int valbool;
362 	struct linger ling;
363 	int ret = 0;
364 
365 	/*
366 	 *	Options without arguments
367 	 */
368 
369 #ifdef SO_DONTLINGER		/* Compatibility item... */
370 	if (optname == SO_DONTLINGER) {
371 		lock_sock(sk);
372 		sock_reset_flag(sk, SOCK_LINGER);
373 		release_sock(sk);
374 		return 0;
375 	}
376 #endif
377 
378 	if (optlen < sizeof(int))
379 		return -EINVAL;
380 
381 	if (get_user(val, (int __user *)optval))
382 		return -EFAULT;
383 
384 	valbool = val?1:0;
385 
386 	lock_sock(sk);
387 
388 	switch(optname) {
389 	case SO_DEBUG:
390 		if (val && !capable(CAP_NET_ADMIN)) {
391 			ret = -EACCES;
392 		}
393 		else if (valbool)
394 			sock_set_flag(sk, SOCK_DBG);
395 		else
396 			sock_reset_flag(sk, SOCK_DBG);
397 		break;
398 	case SO_REUSEADDR:
399 		sk->sk_reuse = valbool;
400 		break;
401 	case SO_TYPE:
402 	case SO_ERROR:
403 		ret = -ENOPROTOOPT;
404 		break;
405 	case SO_DONTROUTE:
406 		if (valbool)
407 			sock_set_flag(sk, SOCK_LOCALROUTE);
408 		else
409 			sock_reset_flag(sk, SOCK_LOCALROUTE);
410 		break;
411 	case SO_BROADCAST:
412 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
413 		break;
414 	case SO_SNDBUF:
415 		/* Don't error on this BSD doesn't and if you think
416 		   about it this is right. Otherwise apps have to
417 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
418 		   are treated in BSD as hints */
419 
420 		if (val > sysctl_wmem_max)
421 			val = sysctl_wmem_max;
422 set_sndbuf:
423 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
424 		if ((val * 2) < SOCK_MIN_SNDBUF)
425 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
426 		else
427 			sk->sk_sndbuf = val * 2;
428 
429 		/*
430 		 *	Wake up sending tasks if we
431 		 *	upped the value.
432 		 */
433 		sk->sk_write_space(sk);
434 		break;
435 
436 	case SO_SNDBUFFORCE:
437 		if (!capable(CAP_NET_ADMIN)) {
438 			ret = -EPERM;
439 			break;
440 		}
441 		goto set_sndbuf;
442 
443 	case SO_RCVBUF:
444 		/* Don't error on this BSD doesn't and if you think
445 		   about it this is right. Otherwise apps have to
446 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
447 		   are treated in BSD as hints */
448 
449 		if (val > sysctl_rmem_max)
450 			val = sysctl_rmem_max;
451 set_rcvbuf:
452 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
453 		/*
454 		 * We double it on the way in to account for
455 		 * "struct sk_buff" etc. overhead.   Applications
456 		 * assume that the SO_RCVBUF setting they make will
457 		 * allow that much actual data to be received on that
458 		 * socket.
459 		 *
460 		 * Applications are unaware that "struct sk_buff" and
461 		 * other overheads allocate from the receive buffer
462 		 * during socket buffer allocation.
463 		 *
464 		 * And after considering the possible alternatives,
465 		 * returning the value we actually used in getsockopt
466 		 * is the most desirable behavior.
467 		 */
468 		if ((val * 2) < SOCK_MIN_RCVBUF)
469 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
470 		else
471 			sk->sk_rcvbuf = val * 2;
472 		break;
473 
474 	case SO_RCVBUFFORCE:
475 		if (!capable(CAP_NET_ADMIN)) {
476 			ret = -EPERM;
477 			break;
478 		}
479 		goto set_rcvbuf;
480 
481 	case SO_KEEPALIVE:
482 #ifdef CONFIG_INET
483 		if (sk->sk_protocol == IPPROTO_TCP)
484 			tcp_set_keepalive(sk, valbool);
485 #endif
486 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
487 		break;
488 
489 	case SO_OOBINLINE:
490 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
491 		break;
492 
493 	case SO_NO_CHECK:
494 		sk->sk_no_check = valbool;
495 		break;
496 
497 	case SO_PRIORITY:
498 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
499 			sk->sk_priority = val;
500 		else
501 			ret = -EPERM;
502 		break;
503 
504 	case SO_LINGER:
505 		if (optlen < sizeof(ling)) {
506 			ret = -EINVAL;	/* 1003.1g */
507 			break;
508 		}
509 		if (copy_from_user(&ling,optval,sizeof(ling))) {
510 			ret = -EFAULT;
511 			break;
512 		}
513 		if (!ling.l_onoff)
514 			sock_reset_flag(sk, SOCK_LINGER);
515 		else {
516 #if (BITS_PER_LONG == 32)
517 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
518 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
519 			else
520 #endif
521 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
522 			sock_set_flag(sk, SOCK_LINGER);
523 		}
524 		break;
525 
526 	case SO_BSDCOMPAT:
527 		sock_warn_obsolete_bsdism("setsockopt");
528 		break;
529 
530 	case SO_PASSCRED:
531 		if (valbool)
532 			set_bit(SOCK_PASSCRED, &sock->flags);
533 		else
534 			clear_bit(SOCK_PASSCRED, &sock->flags);
535 		break;
536 
537 	case SO_TIMESTAMP:
538 	case SO_TIMESTAMPNS:
539 		if (valbool)  {
540 			if (optname == SO_TIMESTAMP)
541 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
542 			else
543 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
544 			sock_set_flag(sk, SOCK_RCVTSTAMP);
545 			sock_enable_timestamp(sk);
546 		} else {
547 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
548 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
549 		}
550 		break;
551 
552 	case SO_RCVLOWAT:
553 		if (val < 0)
554 			val = INT_MAX;
555 		sk->sk_rcvlowat = val ? : 1;
556 		break;
557 
558 	case SO_RCVTIMEO:
559 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
560 		break;
561 
562 	case SO_SNDTIMEO:
563 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
564 		break;
565 
566 #ifdef CONFIG_NETDEVICES
567 	case SO_BINDTODEVICE:
568 	{
569 		char devname[IFNAMSIZ];
570 
571 		/* Sorry... */
572 		if (!capable(CAP_NET_RAW)) {
573 			ret = -EPERM;
574 			break;
575 		}
576 
577 		/* Bind this socket to a particular device like "eth0",
578 		 * as specified in the passed interface name. If the
579 		 * name is "" or the option length is zero the socket
580 		 * is not bound.
581 		 */
582 
583 		if (!valbool) {
584 			sk->sk_bound_dev_if = 0;
585 		} else {
586 			if (optlen > IFNAMSIZ - 1)
587 				optlen = IFNAMSIZ - 1;
588 			memset(devname, 0, sizeof(devname));
589 			if (copy_from_user(devname, optval, optlen)) {
590 				ret = -EFAULT;
591 				break;
592 			}
593 
594 			/* Remove any cached route for this socket. */
595 			sk_dst_reset(sk);
596 
597 			if (devname[0] == '\0') {
598 				sk->sk_bound_dev_if = 0;
599 			} else {
600 				struct net_device *dev = dev_get_by_name(devname);
601 				if (!dev) {
602 					ret = -ENODEV;
603 					break;
604 				}
605 				sk->sk_bound_dev_if = dev->ifindex;
606 				dev_put(dev);
607 			}
608 		}
609 		break;
610 	}
611 #endif
612 
613 
614 	case SO_ATTACH_FILTER:
615 		ret = -EINVAL;
616 		if (optlen == sizeof(struct sock_fprog)) {
617 			struct sock_fprog fprog;
618 
619 			ret = -EFAULT;
620 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
621 				break;
622 
623 			ret = sk_attach_filter(&fprog, sk);
624 		}
625 		break;
626 
627 	case SO_DETACH_FILTER:
628 		rcu_read_lock_bh();
629 		filter = rcu_dereference(sk->sk_filter);
630 		if (filter) {
631 			rcu_assign_pointer(sk->sk_filter, NULL);
632 			sk_filter_release(sk, filter);
633 			rcu_read_unlock_bh();
634 			break;
635 		}
636 		rcu_read_unlock_bh();
637 		ret = -ENONET;
638 		break;
639 
640 	case SO_PASSSEC:
641 		if (valbool)
642 			set_bit(SOCK_PASSSEC, &sock->flags);
643 		else
644 			clear_bit(SOCK_PASSSEC, &sock->flags);
645 		break;
646 
647 		/* We implement the SO_SNDLOWAT etc to
648 		   not be settable (1003.1g 5.3) */
649 	default:
650 		ret = -ENOPROTOOPT;
651 		break;
652 	}
653 	release_sock(sk);
654 	return ret;
655 }
656 
657 
658 int sock_getsockopt(struct socket *sock, int level, int optname,
659 		    char __user *optval, int __user *optlen)
660 {
661 	struct sock *sk = sock->sk;
662 
663 	union {
664 		int val;
665 		struct linger ling;
666 		struct timeval tm;
667 	} v;
668 
669 	unsigned int lv = sizeof(int);
670 	int len;
671 
672 	if (get_user(len, optlen))
673 		return -EFAULT;
674 	if (len < 0)
675 		return -EINVAL;
676 
677 	switch(optname) {
678 	case SO_DEBUG:
679 		v.val = sock_flag(sk, SOCK_DBG);
680 		break;
681 
682 	case SO_DONTROUTE:
683 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
684 		break;
685 
686 	case SO_BROADCAST:
687 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
688 		break;
689 
690 	case SO_SNDBUF:
691 		v.val = sk->sk_sndbuf;
692 		break;
693 
694 	case SO_RCVBUF:
695 		v.val = sk->sk_rcvbuf;
696 		break;
697 
698 	case SO_REUSEADDR:
699 		v.val = sk->sk_reuse;
700 		break;
701 
702 	case SO_KEEPALIVE:
703 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
704 		break;
705 
706 	case SO_TYPE:
707 		v.val = sk->sk_type;
708 		break;
709 
710 	case SO_ERROR:
711 		v.val = -sock_error(sk);
712 		if (v.val==0)
713 			v.val = xchg(&sk->sk_err_soft, 0);
714 		break;
715 
716 	case SO_OOBINLINE:
717 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
718 		break;
719 
720 	case SO_NO_CHECK:
721 		v.val = sk->sk_no_check;
722 		break;
723 
724 	case SO_PRIORITY:
725 		v.val = sk->sk_priority;
726 		break;
727 
728 	case SO_LINGER:
729 		lv		= sizeof(v.ling);
730 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
731 		v.ling.l_linger	= sk->sk_lingertime / HZ;
732 		break;
733 
734 	case SO_BSDCOMPAT:
735 		sock_warn_obsolete_bsdism("getsockopt");
736 		break;
737 
738 	case SO_TIMESTAMP:
739 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
740 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
741 		break;
742 
743 	case SO_TIMESTAMPNS:
744 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
745 		break;
746 
747 	case SO_RCVTIMEO:
748 		lv=sizeof(struct timeval);
749 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
750 			v.tm.tv_sec = 0;
751 			v.tm.tv_usec = 0;
752 		} else {
753 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
754 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
755 		}
756 		break;
757 
758 	case SO_SNDTIMEO:
759 		lv=sizeof(struct timeval);
760 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
761 			v.tm.tv_sec = 0;
762 			v.tm.tv_usec = 0;
763 		} else {
764 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
765 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
766 		}
767 		break;
768 
769 	case SO_RCVLOWAT:
770 		v.val = sk->sk_rcvlowat;
771 		break;
772 
773 	case SO_SNDLOWAT:
774 		v.val=1;
775 		break;
776 
777 	case SO_PASSCRED:
778 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
779 		break;
780 
781 	case SO_PEERCRED:
782 		if (len > sizeof(sk->sk_peercred))
783 			len = sizeof(sk->sk_peercred);
784 		if (copy_to_user(optval, &sk->sk_peercred, len))
785 			return -EFAULT;
786 		goto lenout;
787 
788 	case SO_PEERNAME:
789 	{
790 		char address[128];
791 
792 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
793 			return -ENOTCONN;
794 		if (lv < len)
795 			return -EINVAL;
796 		if (copy_to_user(optval, address, len))
797 			return -EFAULT;
798 		goto lenout;
799 	}
800 
801 	/* Dubious BSD thing... Probably nobody even uses it, but
802 	 * the UNIX standard wants it for whatever reason... -DaveM
803 	 */
804 	case SO_ACCEPTCONN:
805 		v.val = sk->sk_state == TCP_LISTEN;
806 		break;
807 
808 	case SO_PASSSEC:
809 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
810 		break;
811 
812 	case SO_PEERSEC:
813 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
814 
815 	default:
816 		return -ENOPROTOOPT;
817 	}
818 
819 	if (len > lv)
820 		len = lv;
821 	if (copy_to_user(optval, &v, len))
822 		return -EFAULT;
823 lenout:
824 	if (put_user(len, optlen))
825 		return -EFAULT;
826 	return 0;
827 }
828 
829 /*
830  * Initialize an sk_lock.
831  *
832  * (We also register the sk_lock with the lock validator.)
833  */
834 static inline void sock_lock_init(struct sock *sk)
835 {
836 	sock_lock_init_class_and_name(sk,
837 			af_family_slock_key_strings[sk->sk_family],
838 			af_family_slock_keys + sk->sk_family,
839 			af_family_key_strings[sk->sk_family],
840 			af_family_keys + sk->sk_family);
841 }
842 
843 /**
844  *	sk_alloc - All socket objects are allocated here
845  *	@family: protocol family
846  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
847  *	@prot: struct proto associated with this new sock instance
848  *	@zero_it: if we should zero the newly allocated sock
849  */
850 struct sock *sk_alloc(int family, gfp_t priority,
851 		      struct proto *prot, int zero_it)
852 {
853 	struct sock *sk = NULL;
854 	struct kmem_cache *slab = prot->slab;
855 
856 	if (slab != NULL)
857 		sk = kmem_cache_alloc(slab, priority);
858 	else
859 		sk = kmalloc(prot->obj_size, priority);
860 
861 	if (sk) {
862 		if (zero_it) {
863 			memset(sk, 0, prot->obj_size);
864 			sk->sk_family = family;
865 			/*
866 			 * See comment in struct sock definition to understand
867 			 * why we need sk_prot_creator -acme
868 			 */
869 			sk->sk_prot = sk->sk_prot_creator = prot;
870 			sock_lock_init(sk);
871 		}
872 
873 		if (security_sk_alloc(sk, family, priority))
874 			goto out_free;
875 
876 		if (!try_module_get(prot->owner))
877 			goto out_free;
878 	}
879 	return sk;
880 
881 out_free:
882 	if (slab != NULL)
883 		kmem_cache_free(slab, sk);
884 	else
885 		kfree(sk);
886 	return NULL;
887 }
888 
889 void sk_free(struct sock *sk)
890 {
891 	struct sk_filter *filter;
892 	struct module *owner = sk->sk_prot_creator->owner;
893 
894 	if (sk->sk_destruct)
895 		sk->sk_destruct(sk);
896 
897 	filter = rcu_dereference(sk->sk_filter);
898 	if (filter) {
899 		sk_filter_release(sk, filter);
900 		rcu_assign_pointer(sk->sk_filter, NULL);
901 	}
902 
903 	sock_disable_timestamp(sk);
904 
905 	if (atomic_read(&sk->sk_omem_alloc))
906 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
907 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
908 
909 	security_sk_free(sk);
910 	if (sk->sk_prot_creator->slab != NULL)
911 		kmem_cache_free(sk->sk_prot_creator->slab, sk);
912 	else
913 		kfree(sk);
914 	module_put(owner);
915 }
916 
917 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
918 {
919 	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
920 
921 	if (newsk != NULL) {
922 		struct sk_filter *filter;
923 
924 		sock_copy(newsk, sk);
925 
926 		/* SANITY */
927 		sk_node_init(&newsk->sk_node);
928 		sock_lock_init(newsk);
929 		bh_lock_sock(newsk);
930 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
931 
932 		atomic_set(&newsk->sk_rmem_alloc, 0);
933 		atomic_set(&newsk->sk_wmem_alloc, 0);
934 		atomic_set(&newsk->sk_omem_alloc, 0);
935 		skb_queue_head_init(&newsk->sk_receive_queue);
936 		skb_queue_head_init(&newsk->sk_write_queue);
937 #ifdef CONFIG_NET_DMA
938 		skb_queue_head_init(&newsk->sk_async_wait_queue);
939 #endif
940 
941 		rwlock_init(&newsk->sk_dst_lock);
942 		rwlock_init(&newsk->sk_callback_lock);
943 		lockdep_set_class(&newsk->sk_callback_lock,
944 				   af_callback_keys + newsk->sk_family);
945 
946 		newsk->sk_dst_cache	= NULL;
947 		newsk->sk_wmem_queued	= 0;
948 		newsk->sk_forward_alloc = 0;
949 		newsk->sk_send_head	= NULL;
950 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
951 
952 		sock_reset_flag(newsk, SOCK_DONE);
953 		skb_queue_head_init(&newsk->sk_error_queue);
954 
955 		filter = newsk->sk_filter;
956 		if (filter != NULL)
957 			sk_filter_charge(newsk, filter);
958 
959 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
960 			/* It is still raw copy of parent, so invalidate
961 			 * destructor and make plain sk_free() */
962 			newsk->sk_destruct = NULL;
963 			sk_free(newsk);
964 			newsk = NULL;
965 			goto out;
966 		}
967 
968 		newsk->sk_err	   = 0;
969 		newsk->sk_priority = 0;
970 		atomic_set(&newsk->sk_refcnt, 2);
971 
972 		/*
973 		 * Increment the counter in the same struct proto as the master
974 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
975 		 * is the same as sk->sk_prot->socks, as this field was copied
976 		 * with memcpy).
977 		 *
978 		 * This _changes_ the previous behaviour, where
979 		 * tcp_create_openreq_child always was incrementing the
980 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
981 		 * to be taken into account in all callers. -acme
982 		 */
983 		sk_refcnt_debug_inc(newsk);
984 		newsk->sk_socket = NULL;
985 		newsk->sk_sleep	 = NULL;
986 
987 		if (newsk->sk_prot->sockets_allocated)
988 			atomic_inc(newsk->sk_prot->sockets_allocated);
989 	}
990 out:
991 	return newsk;
992 }
993 
994 EXPORT_SYMBOL_GPL(sk_clone);
995 
996 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
997 {
998 	__sk_dst_set(sk, dst);
999 	sk->sk_route_caps = dst->dev->features;
1000 	if (sk->sk_route_caps & NETIF_F_GSO)
1001 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1002 	if (sk_can_gso(sk)) {
1003 		if (dst->header_len)
1004 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1005 		else
1006 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1007 	}
1008 }
1009 EXPORT_SYMBOL_GPL(sk_setup_caps);
1010 
1011 void __init sk_init(void)
1012 {
1013 	if (num_physpages <= 4096) {
1014 		sysctl_wmem_max = 32767;
1015 		sysctl_rmem_max = 32767;
1016 		sysctl_wmem_default = 32767;
1017 		sysctl_rmem_default = 32767;
1018 	} else if (num_physpages >= 131072) {
1019 		sysctl_wmem_max = 131071;
1020 		sysctl_rmem_max = 131071;
1021 	}
1022 }
1023 
1024 /*
1025  *	Simple resource managers for sockets.
1026  */
1027 
1028 
1029 /*
1030  * Write buffer destructor automatically called from kfree_skb.
1031  */
1032 void sock_wfree(struct sk_buff *skb)
1033 {
1034 	struct sock *sk = skb->sk;
1035 
1036 	/* In case it might be waiting for more memory. */
1037 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1038 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1039 		sk->sk_write_space(sk);
1040 	sock_put(sk);
1041 }
1042 
1043 /*
1044  * Read buffer destructor automatically called from kfree_skb.
1045  */
1046 void sock_rfree(struct sk_buff *skb)
1047 {
1048 	struct sock *sk = skb->sk;
1049 
1050 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1051 }
1052 
1053 
1054 int sock_i_uid(struct sock *sk)
1055 {
1056 	int uid;
1057 
1058 	read_lock(&sk->sk_callback_lock);
1059 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1060 	read_unlock(&sk->sk_callback_lock);
1061 	return uid;
1062 }
1063 
1064 unsigned long sock_i_ino(struct sock *sk)
1065 {
1066 	unsigned long ino;
1067 
1068 	read_lock(&sk->sk_callback_lock);
1069 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1070 	read_unlock(&sk->sk_callback_lock);
1071 	return ino;
1072 }
1073 
1074 /*
1075  * Allocate a skb from the socket's send buffer.
1076  */
1077 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1078 			     gfp_t priority)
1079 {
1080 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1081 		struct sk_buff * skb = alloc_skb(size, priority);
1082 		if (skb) {
1083 			skb_set_owner_w(skb, sk);
1084 			return skb;
1085 		}
1086 	}
1087 	return NULL;
1088 }
1089 
1090 /*
1091  * Allocate a skb from the socket's receive buffer.
1092  */
1093 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1094 			     gfp_t priority)
1095 {
1096 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1097 		struct sk_buff *skb = alloc_skb(size, priority);
1098 		if (skb) {
1099 			skb_set_owner_r(skb, sk);
1100 			return skb;
1101 		}
1102 	}
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Allocate a memory block from the socket's option memory buffer.
1108  */
1109 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1110 {
1111 	if ((unsigned)size <= sysctl_optmem_max &&
1112 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1113 		void *mem;
1114 		/* First do the add, to avoid the race if kmalloc
1115 		 * might sleep.
1116 		 */
1117 		atomic_add(size, &sk->sk_omem_alloc);
1118 		mem = kmalloc(size, priority);
1119 		if (mem)
1120 			return mem;
1121 		atomic_sub(size, &sk->sk_omem_alloc);
1122 	}
1123 	return NULL;
1124 }
1125 
1126 /*
1127  * Free an option memory block.
1128  */
1129 void sock_kfree_s(struct sock *sk, void *mem, int size)
1130 {
1131 	kfree(mem);
1132 	atomic_sub(size, &sk->sk_omem_alloc);
1133 }
1134 
1135 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1136    I think, these locks should be removed for datagram sockets.
1137  */
1138 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1139 {
1140 	DEFINE_WAIT(wait);
1141 
1142 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1143 	for (;;) {
1144 		if (!timeo)
1145 			break;
1146 		if (signal_pending(current))
1147 			break;
1148 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1149 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1150 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1151 			break;
1152 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1153 			break;
1154 		if (sk->sk_err)
1155 			break;
1156 		timeo = schedule_timeout(timeo);
1157 	}
1158 	finish_wait(sk->sk_sleep, &wait);
1159 	return timeo;
1160 }
1161 
1162 
1163 /*
1164  *	Generic send/receive buffer handlers
1165  */
1166 
1167 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1168 					    unsigned long header_len,
1169 					    unsigned long data_len,
1170 					    int noblock, int *errcode)
1171 {
1172 	struct sk_buff *skb;
1173 	gfp_t gfp_mask;
1174 	long timeo;
1175 	int err;
1176 
1177 	gfp_mask = sk->sk_allocation;
1178 	if (gfp_mask & __GFP_WAIT)
1179 		gfp_mask |= __GFP_REPEAT;
1180 
1181 	timeo = sock_sndtimeo(sk, noblock);
1182 	while (1) {
1183 		err = sock_error(sk);
1184 		if (err != 0)
1185 			goto failure;
1186 
1187 		err = -EPIPE;
1188 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1189 			goto failure;
1190 
1191 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1192 			skb = alloc_skb(header_len, gfp_mask);
1193 			if (skb) {
1194 				int npages;
1195 				int i;
1196 
1197 				/* No pages, we're done... */
1198 				if (!data_len)
1199 					break;
1200 
1201 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1202 				skb->truesize += data_len;
1203 				skb_shinfo(skb)->nr_frags = npages;
1204 				for (i = 0; i < npages; i++) {
1205 					struct page *page;
1206 					skb_frag_t *frag;
1207 
1208 					page = alloc_pages(sk->sk_allocation, 0);
1209 					if (!page) {
1210 						err = -ENOBUFS;
1211 						skb_shinfo(skb)->nr_frags = i;
1212 						kfree_skb(skb);
1213 						goto failure;
1214 					}
1215 
1216 					frag = &skb_shinfo(skb)->frags[i];
1217 					frag->page = page;
1218 					frag->page_offset = 0;
1219 					frag->size = (data_len >= PAGE_SIZE ?
1220 						      PAGE_SIZE :
1221 						      data_len);
1222 					data_len -= PAGE_SIZE;
1223 				}
1224 
1225 				/* Full success... */
1226 				break;
1227 			}
1228 			err = -ENOBUFS;
1229 			goto failure;
1230 		}
1231 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1232 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1233 		err = -EAGAIN;
1234 		if (!timeo)
1235 			goto failure;
1236 		if (signal_pending(current))
1237 			goto interrupted;
1238 		timeo = sock_wait_for_wmem(sk, timeo);
1239 	}
1240 
1241 	skb_set_owner_w(skb, sk);
1242 	return skb;
1243 
1244 interrupted:
1245 	err = sock_intr_errno(timeo);
1246 failure:
1247 	*errcode = err;
1248 	return NULL;
1249 }
1250 
1251 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1252 				    int noblock, int *errcode)
1253 {
1254 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1255 }
1256 
1257 static void __lock_sock(struct sock *sk)
1258 {
1259 	DEFINE_WAIT(wait);
1260 
1261 	for (;;) {
1262 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1263 					TASK_UNINTERRUPTIBLE);
1264 		spin_unlock_bh(&sk->sk_lock.slock);
1265 		schedule();
1266 		spin_lock_bh(&sk->sk_lock.slock);
1267 		if (!sock_owned_by_user(sk))
1268 			break;
1269 	}
1270 	finish_wait(&sk->sk_lock.wq, &wait);
1271 }
1272 
1273 static void __release_sock(struct sock *sk)
1274 {
1275 	struct sk_buff *skb = sk->sk_backlog.head;
1276 
1277 	do {
1278 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1279 		bh_unlock_sock(sk);
1280 
1281 		do {
1282 			struct sk_buff *next = skb->next;
1283 
1284 			skb->next = NULL;
1285 			sk->sk_backlog_rcv(sk, skb);
1286 
1287 			/*
1288 			 * We are in process context here with softirqs
1289 			 * disabled, use cond_resched_softirq() to preempt.
1290 			 * This is safe to do because we've taken the backlog
1291 			 * queue private:
1292 			 */
1293 			cond_resched_softirq();
1294 
1295 			skb = next;
1296 		} while (skb != NULL);
1297 
1298 		bh_lock_sock(sk);
1299 	} while ((skb = sk->sk_backlog.head) != NULL);
1300 }
1301 
1302 /**
1303  * sk_wait_data - wait for data to arrive at sk_receive_queue
1304  * @sk:    sock to wait on
1305  * @timeo: for how long
1306  *
1307  * Now socket state including sk->sk_err is changed only under lock,
1308  * hence we may omit checks after joining wait queue.
1309  * We check receive queue before schedule() only as optimization;
1310  * it is very likely that release_sock() added new data.
1311  */
1312 int sk_wait_data(struct sock *sk, long *timeo)
1313 {
1314 	int rc;
1315 	DEFINE_WAIT(wait);
1316 
1317 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1318 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1319 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1320 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1321 	finish_wait(sk->sk_sleep, &wait);
1322 	return rc;
1323 }
1324 
1325 EXPORT_SYMBOL(sk_wait_data);
1326 
1327 /*
1328  * Set of default routines for initialising struct proto_ops when
1329  * the protocol does not support a particular function. In certain
1330  * cases where it makes no sense for a protocol to have a "do nothing"
1331  * function, some default processing is provided.
1332  */
1333 
1334 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1335 {
1336 	return -EOPNOTSUPP;
1337 }
1338 
1339 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1340 		    int len, int flags)
1341 {
1342 	return -EOPNOTSUPP;
1343 }
1344 
1345 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1346 {
1347 	return -EOPNOTSUPP;
1348 }
1349 
1350 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1351 {
1352 	return -EOPNOTSUPP;
1353 }
1354 
1355 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1356 		    int *len, int peer)
1357 {
1358 	return -EOPNOTSUPP;
1359 }
1360 
1361 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1362 {
1363 	return 0;
1364 }
1365 
1366 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1367 {
1368 	return -EOPNOTSUPP;
1369 }
1370 
1371 int sock_no_listen(struct socket *sock, int backlog)
1372 {
1373 	return -EOPNOTSUPP;
1374 }
1375 
1376 int sock_no_shutdown(struct socket *sock, int how)
1377 {
1378 	return -EOPNOTSUPP;
1379 }
1380 
1381 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1382 		    char __user *optval, int optlen)
1383 {
1384 	return -EOPNOTSUPP;
1385 }
1386 
1387 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1388 		    char __user *optval, int __user *optlen)
1389 {
1390 	return -EOPNOTSUPP;
1391 }
1392 
1393 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1394 		    size_t len)
1395 {
1396 	return -EOPNOTSUPP;
1397 }
1398 
1399 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1400 		    size_t len, int flags)
1401 {
1402 	return -EOPNOTSUPP;
1403 }
1404 
1405 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1406 {
1407 	/* Mirror missing mmap method error code */
1408 	return -ENODEV;
1409 }
1410 
1411 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1412 {
1413 	ssize_t res;
1414 	struct msghdr msg = {.msg_flags = flags};
1415 	struct kvec iov;
1416 	char *kaddr = kmap(page);
1417 	iov.iov_base = kaddr + offset;
1418 	iov.iov_len = size;
1419 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1420 	kunmap(page);
1421 	return res;
1422 }
1423 
1424 /*
1425  *	Default Socket Callbacks
1426  */
1427 
1428 static void sock_def_wakeup(struct sock *sk)
1429 {
1430 	read_lock(&sk->sk_callback_lock);
1431 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1432 		wake_up_interruptible_all(sk->sk_sleep);
1433 	read_unlock(&sk->sk_callback_lock);
1434 }
1435 
1436 static void sock_def_error_report(struct sock *sk)
1437 {
1438 	read_lock(&sk->sk_callback_lock);
1439 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1440 		wake_up_interruptible(sk->sk_sleep);
1441 	sk_wake_async(sk,0,POLL_ERR);
1442 	read_unlock(&sk->sk_callback_lock);
1443 }
1444 
1445 static void sock_def_readable(struct sock *sk, int len)
1446 {
1447 	read_lock(&sk->sk_callback_lock);
1448 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1449 		wake_up_interruptible(sk->sk_sleep);
1450 	sk_wake_async(sk,1,POLL_IN);
1451 	read_unlock(&sk->sk_callback_lock);
1452 }
1453 
1454 static void sock_def_write_space(struct sock *sk)
1455 {
1456 	read_lock(&sk->sk_callback_lock);
1457 
1458 	/* Do not wake up a writer until he can make "significant"
1459 	 * progress.  --DaveM
1460 	 */
1461 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1462 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1463 			wake_up_interruptible(sk->sk_sleep);
1464 
1465 		/* Should agree with poll, otherwise some programs break */
1466 		if (sock_writeable(sk))
1467 			sk_wake_async(sk, 2, POLL_OUT);
1468 	}
1469 
1470 	read_unlock(&sk->sk_callback_lock);
1471 }
1472 
1473 static void sock_def_destruct(struct sock *sk)
1474 {
1475 	kfree(sk->sk_protinfo);
1476 }
1477 
1478 void sk_send_sigurg(struct sock *sk)
1479 {
1480 	if (sk->sk_socket && sk->sk_socket->file)
1481 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1482 			sk_wake_async(sk, 3, POLL_PRI);
1483 }
1484 
1485 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1486 		    unsigned long expires)
1487 {
1488 	if (!mod_timer(timer, expires))
1489 		sock_hold(sk);
1490 }
1491 
1492 EXPORT_SYMBOL(sk_reset_timer);
1493 
1494 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1495 {
1496 	if (timer_pending(timer) && del_timer(timer))
1497 		__sock_put(sk);
1498 }
1499 
1500 EXPORT_SYMBOL(sk_stop_timer);
1501 
1502 void sock_init_data(struct socket *sock, struct sock *sk)
1503 {
1504 	skb_queue_head_init(&sk->sk_receive_queue);
1505 	skb_queue_head_init(&sk->sk_write_queue);
1506 	skb_queue_head_init(&sk->sk_error_queue);
1507 #ifdef CONFIG_NET_DMA
1508 	skb_queue_head_init(&sk->sk_async_wait_queue);
1509 #endif
1510 
1511 	sk->sk_send_head	=	NULL;
1512 
1513 	init_timer(&sk->sk_timer);
1514 
1515 	sk->sk_allocation	=	GFP_KERNEL;
1516 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1517 	sk->sk_sndbuf		=	sysctl_wmem_default;
1518 	sk->sk_state		=	TCP_CLOSE;
1519 	sk->sk_socket		=	sock;
1520 
1521 	sock_set_flag(sk, SOCK_ZAPPED);
1522 
1523 	if (sock) {
1524 		sk->sk_type	=	sock->type;
1525 		sk->sk_sleep	=	&sock->wait;
1526 		sock->sk	=	sk;
1527 	} else
1528 		sk->sk_sleep	=	NULL;
1529 
1530 	rwlock_init(&sk->sk_dst_lock);
1531 	rwlock_init(&sk->sk_callback_lock);
1532 	lockdep_set_class(&sk->sk_callback_lock,
1533 			   af_callback_keys + sk->sk_family);
1534 
1535 	sk->sk_state_change	=	sock_def_wakeup;
1536 	sk->sk_data_ready	=	sock_def_readable;
1537 	sk->sk_write_space	=	sock_def_write_space;
1538 	sk->sk_error_report	=	sock_def_error_report;
1539 	sk->sk_destruct		=	sock_def_destruct;
1540 
1541 	sk->sk_sndmsg_page	=	NULL;
1542 	sk->sk_sndmsg_off	=	0;
1543 
1544 	sk->sk_peercred.pid 	=	0;
1545 	sk->sk_peercred.uid	=	-1;
1546 	sk->sk_peercred.gid	=	-1;
1547 	sk->sk_write_pending	=	0;
1548 	sk->sk_rcvlowat		=	1;
1549 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1550 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1551 
1552 	sk->sk_stamp = ktime_set(-1L, -1L);
1553 
1554 	atomic_set(&sk->sk_refcnt, 1);
1555 }
1556 
1557 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1558 {
1559 	might_sleep();
1560 	spin_lock_bh(&sk->sk_lock.slock);
1561 	if (sk->sk_lock.owner)
1562 		__lock_sock(sk);
1563 	sk->sk_lock.owner = (void *)1;
1564 	spin_unlock(&sk->sk_lock.slock);
1565 	/*
1566 	 * The sk_lock has mutex_lock() semantics here:
1567 	 */
1568 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1569 	local_bh_enable();
1570 }
1571 
1572 EXPORT_SYMBOL(lock_sock_nested);
1573 
1574 void fastcall release_sock(struct sock *sk)
1575 {
1576 	/*
1577 	 * The sk_lock has mutex_unlock() semantics:
1578 	 */
1579 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1580 
1581 	spin_lock_bh(&sk->sk_lock.slock);
1582 	if (sk->sk_backlog.tail)
1583 		__release_sock(sk);
1584 	sk->sk_lock.owner = NULL;
1585 	if (waitqueue_active(&sk->sk_lock.wq))
1586 		wake_up(&sk->sk_lock.wq);
1587 	spin_unlock_bh(&sk->sk_lock.slock);
1588 }
1589 EXPORT_SYMBOL(release_sock);
1590 
1591 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1592 {
1593 	struct timeval tv;
1594 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1595 		sock_enable_timestamp(sk);
1596 	tv = ktime_to_timeval(sk->sk_stamp);
1597 	if (tv.tv_sec == -1)
1598 		return -ENOENT;
1599 	if (tv.tv_sec == 0) {
1600 		sk->sk_stamp = ktime_get_real();
1601 		tv = ktime_to_timeval(sk->sk_stamp);
1602 	}
1603 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1604 }
1605 EXPORT_SYMBOL(sock_get_timestamp);
1606 
1607 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1608 {
1609 	struct timespec ts;
1610 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1611 		sock_enable_timestamp(sk);
1612 	ts = ktime_to_timespec(sk->sk_stamp);
1613 	if (ts.tv_sec == -1)
1614 		return -ENOENT;
1615 	if (ts.tv_sec == 0) {
1616 		sk->sk_stamp = ktime_get_real();
1617 		ts = ktime_to_timespec(sk->sk_stamp);
1618 	}
1619 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1620 }
1621 EXPORT_SYMBOL(sock_get_timestampns);
1622 
1623 void sock_enable_timestamp(struct sock *sk)
1624 {
1625 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1626 		sock_set_flag(sk, SOCK_TIMESTAMP);
1627 		net_enable_timestamp();
1628 	}
1629 }
1630 EXPORT_SYMBOL(sock_enable_timestamp);
1631 
1632 /*
1633  *	Get a socket option on an socket.
1634  *
1635  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1636  *	asynchronous errors should be reported by getsockopt. We assume
1637  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1638  */
1639 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1640 			   char __user *optval, int __user *optlen)
1641 {
1642 	struct sock *sk = sock->sk;
1643 
1644 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1645 }
1646 
1647 EXPORT_SYMBOL(sock_common_getsockopt);
1648 
1649 #ifdef CONFIG_COMPAT
1650 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1651 				  char __user *optval, int __user *optlen)
1652 {
1653 	struct sock *sk = sock->sk;
1654 
1655 	if (sk->sk_prot->compat_getsockopt != NULL)
1656 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1657 						      optval, optlen);
1658 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1659 }
1660 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1661 #endif
1662 
1663 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1664 			struct msghdr *msg, size_t size, int flags)
1665 {
1666 	struct sock *sk = sock->sk;
1667 	int addr_len = 0;
1668 	int err;
1669 
1670 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1671 				   flags & ~MSG_DONTWAIT, &addr_len);
1672 	if (err >= 0)
1673 		msg->msg_namelen = addr_len;
1674 	return err;
1675 }
1676 
1677 EXPORT_SYMBOL(sock_common_recvmsg);
1678 
1679 /*
1680  *	Set socket options on an inet socket.
1681  */
1682 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1683 			   char __user *optval, int optlen)
1684 {
1685 	struct sock *sk = sock->sk;
1686 
1687 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1688 }
1689 
1690 EXPORT_SYMBOL(sock_common_setsockopt);
1691 
1692 #ifdef CONFIG_COMPAT
1693 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1694 				  char __user *optval, int optlen)
1695 {
1696 	struct sock *sk = sock->sk;
1697 
1698 	if (sk->sk_prot->compat_setsockopt != NULL)
1699 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1700 						      optval, optlen);
1701 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1702 }
1703 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1704 #endif
1705 
1706 void sk_common_release(struct sock *sk)
1707 {
1708 	if (sk->sk_prot->destroy)
1709 		sk->sk_prot->destroy(sk);
1710 
1711 	/*
1712 	 * Observation: when sock_common_release is called, processes have
1713 	 * no access to socket. But net still has.
1714 	 * Step one, detach it from networking:
1715 	 *
1716 	 * A. Remove from hash tables.
1717 	 */
1718 
1719 	sk->sk_prot->unhash(sk);
1720 
1721 	/*
1722 	 * In this point socket cannot receive new packets, but it is possible
1723 	 * that some packets are in flight because some CPU runs receiver and
1724 	 * did hash table lookup before we unhashed socket. They will achieve
1725 	 * receive queue and will be purged by socket destructor.
1726 	 *
1727 	 * Also we still have packets pending on receive queue and probably,
1728 	 * our own packets waiting in device queues. sock_destroy will drain
1729 	 * receive queue, but transmitted packets will delay socket destruction
1730 	 * until the last reference will be released.
1731 	 */
1732 
1733 	sock_orphan(sk);
1734 
1735 	xfrm_sk_free_policy(sk);
1736 
1737 	sk_refcnt_debug_release(sk);
1738 	sock_put(sk);
1739 }
1740 
1741 EXPORT_SYMBOL(sk_common_release);
1742 
1743 static DEFINE_RWLOCK(proto_list_lock);
1744 static LIST_HEAD(proto_list);
1745 
1746 int proto_register(struct proto *prot, int alloc_slab)
1747 {
1748 	char *request_sock_slab_name = NULL;
1749 	char *timewait_sock_slab_name;
1750 	int rc = -ENOBUFS;
1751 
1752 	if (alloc_slab) {
1753 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1754 					       SLAB_HWCACHE_ALIGN, NULL, NULL);
1755 
1756 		if (prot->slab == NULL) {
1757 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1758 			       prot->name);
1759 			goto out;
1760 		}
1761 
1762 		if (prot->rsk_prot != NULL) {
1763 			static const char mask[] = "request_sock_%s";
1764 
1765 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1766 			if (request_sock_slab_name == NULL)
1767 				goto out_free_sock_slab;
1768 
1769 			sprintf(request_sock_slab_name, mask, prot->name);
1770 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1771 								 prot->rsk_prot->obj_size, 0,
1772 								 SLAB_HWCACHE_ALIGN, NULL, NULL);
1773 
1774 			if (prot->rsk_prot->slab == NULL) {
1775 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1776 				       prot->name);
1777 				goto out_free_request_sock_slab_name;
1778 			}
1779 		}
1780 
1781 		if (prot->twsk_prot != NULL) {
1782 			static const char mask[] = "tw_sock_%s";
1783 
1784 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1785 
1786 			if (timewait_sock_slab_name == NULL)
1787 				goto out_free_request_sock_slab;
1788 
1789 			sprintf(timewait_sock_slab_name, mask, prot->name);
1790 			prot->twsk_prot->twsk_slab =
1791 				kmem_cache_create(timewait_sock_slab_name,
1792 						  prot->twsk_prot->twsk_obj_size,
1793 						  0, SLAB_HWCACHE_ALIGN,
1794 						  NULL, NULL);
1795 			if (prot->twsk_prot->twsk_slab == NULL)
1796 				goto out_free_timewait_sock_slab_name;
1797 		}
1798 	}
1799 
1800 	write_lock(&proto_list_lock);
1801 	list_add(&prot->node, &proto_list);
1802 	write_unlock(&proto_list_lock);
1803 	rc = 0;
1804 out:
1805 	return rc;
1806 out_free_timewait_sock_slab_name:
1807 	kfree(timewait_sock_slab_name);
1808 out_free_request_sock_slab:
1809 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1810 		kmem_cache_destroy(prot->rsk_prot->slab);
1811 		prot->rsk_prot->slab = NULL;
1812 	}
1813 out_free_request_sock_slab_name:
1814 	kfree(request_sock_slab_name);
1815 out_free_sock_slab:
1816 	kmem_cache_destroy(prot->slab);
1817 	prot->slab = NULL;
1818 	goto out;
1819 }
1820 
1821 EXPORT_SYMBOL(proto_register);
1822 
1823 void proto_unregister(struct proto *prot)
1824 {
1825 	write_lock(&proto_list_lock);
1826 	list_del(&prot->node);
1827 	write_unlock(&proto_list_lock);
1828 
1829 	if (prot->slab != NULL) {
1830 		kmem_cache_destroy(prot->slab);
1831 		prot->slab = NULL;
1832 	}
1833 
1834 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1835 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1836 
1837 		kmem_cache_destroy(prot->rsk_prot->slab);
1838 		kfree(name);
1839 		prot->rsk_prot->slab = NULL;
1840 	}
1841 
1842 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1843 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1844 
1845 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1846 		kfree(name);
1847 		prot->twsk_prot->twsk_slab = NULL;
1848 	}
1849 }
1850 
1851 EXPORT_SYMBOL(proto_unregister);
1852 
1853 #ifdef CONFIG_PROC_FS
1854 static inline struct proto *__proto_head(void)
1855 {
1856 	return list_entry(proto_list.next, struct proto, node);
1857 }
1858 
1859 static inline struct proto *proto_head(void)
1860 {
1861 	return list_empty(&proto_list) ? NULL : __proto_head();
1862 }
1863 
1864 static inline struct proto *proto_next(struct proto *proto)
1865 {
1866 	return proto->node.next == &proto_list ? NULL :
1867 		list_entry(proto->node.next, struct proto, node);
1868 }
1869 
1870 static inline struct proto *proto_get_idx(loff_t pos)
1871 {
1872 	struct proto *proto;
1873 	loff_t i = 0;
1874 
1875 	list_for_each_entry(proto, &proto_list, node)
1876 		if (i++ == pos)
1877 			goto out;
1878 
1879 	proto = NULL;
1880 out:
1881 	return proto;
1882 }
1883 
1884 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1885 {
1886 	read_lock(&proto_list_lock);
1887 	return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1888 }
1889 
1890 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1891 {
1892 	++*pos;
1893 	return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1894 }
1895 
1896 static void proto_seq_stop(struct seq_file *seq, void *v)
1897 {
1898 	read_unlock(&proto_list_lock);
1899 }
1900 
1901 static char proto_method_implemented(const void *method)
1902 {
1903 	return method == NULL ? 'n' : 'y';
1904 }
1905 
1906 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1907 {
1908 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1909 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1910 		   proto->name,
1911 		   proto->obj_size,
1912 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1913 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1914 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1915 		   proto->max_header,
1916 		   proto->slab == NULL ? "no" : "yes",
1917 		   module_name(proto->owner),
1918 		   proto_method_implemented(proto->close),
1919 		   proto_method_implemented(proto->connect),
1920 		   proto_method_implemented(proto->disconnect),
1921 		   proto_method_implemented(proto->accept),
1922 		   proto_method_implemented(proto->ioctl),
1923 		   proto_method_implemented(proto->init),
1924 		   proto_method_implemented(proto->destroy),
1925 		   proto_method_implemented(proto->shutdown),
1926 		   proto_method_implemented(proto->setsockopt),
1927 		   proto_method_implemented(proto->getsockopt),
1928 		   proto_method_implemented(proto->sendmsg),
1929 		   proto_method_implemented(proto->recvmsg),
1930 		   proto_method_implemented(proto->sendpage),
1931 		   proto_method_implemented(proto->bind),
1932 		   proto_method_implemented(proto->backlog_rcv),
1933 		   proto_method_implemented(proto->hash),
1934 		   proto_method_implemented(proto->unhash),
1935 		   proto_method_implemented(proto->get_port),
1936 		   proto_method_implemented(proto->enter_memory_pressure));
1937 }
1938 
1939 static int proto_seq_show(struct seq_file *seq, void *v)
1940 {
1941 	if (v == SEQ_START_TOKEN)
1942 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1943 			   "protocol",
1944 			   "size",
1945 			   "sockets",
1946 			   "memory",
1947 			   "press",
1948 			   "maxhdr",
1949 			   "slab",
1950 			   "module",
1951 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1952 	else
1953 		proto_seq_printf(seq, v);
1954 	return 0;
1955 }
1956 
1957 static const struct seq_operations proto_seq_ops = {
1958 	.start  = proto_seq_start,
1959 	.next   = proto_seq_next,
1960 	.stop   = proto_seq_stop,
1961 	.show   = proto_seq_show,
1962 };
1963 
1964 static int proto_seq_open(struct inode *inode, struct file *file)
1965 {
1966 	return seq_open(file, &proto_seq_ops);
1967 }
1968 
1969 static const struct file_operations proto_seq_fops = {
1970 	.owner		= THIS_MODULE,
1971 	.open		= proto_seq_open,
1972 	.read		= seq_read,
1973 	.llseek		= seq_lseek,
1974 	.release	= seq_release,
1975 };
1976 
1977 static int __init proto_init(void)
1978 {
1979 	/* register /proc/net/protocols */
1980 	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1981 }
1982 
1983 subsys_initcall(proto_init);
1984 
1985 #endif /* PROC_FS */
1986 
1987 EXPORT_SYMBOL(sk_alloc);
1988 EXPORT_SYMBOL(sk_free);
1989 EXPORT_SYMBOL(sk_send_sigurg);
1990 EXPORT_SYMBOL(sock_alloc_send_skb);
1991 EXPORT_SYMBOL(sock_init_data);
1992 EXPORT_SYMBOL(sock_kfree_s);
1993 EXPORT_SYMBOL(sock_kmalloc);
1994 EXPORT_SYMBOL(sock_no_accept);
1995 EXPORT_SYMBOL(sock_no_bind);
1996 EXPORT_SYMBOL(sock_no_connect);
1997 EXPORT_SYMBOL(sock_no_getname);
1998 EXPORT_SYMBOL(sock_no_getsockopt);
1999 EXPORT_SYMBOL(sock_no_ioctl);
2000 EXPORT_SYMBOL(sock_no_listen);
2001 EXPORT_SYMBOL(sock_no_mmap);
2002 EXPORT_SYMBOL(sock_no_poll);
2003 EXPORT_SYMBOL(sock_no_recvmsg);
2004 EXPORT_SYMBOL(sock_no_sendmsg);
2005 EXPORT_SYMBOL(sock_no_sendpage);
2006 EXPORT_SYMBOL(sock_no_setsockopt);
2007 EXPORT_SYMBOL(sock_no_shutdown);
2008 EXPORT_SYMBOL(sock_no_socketpair);
2009 EXPORT_SYMBOL(sock_rfree);
2010 EXPORT_SYMBOL(sock_setsockopt);
2011 EXPORT_SYMBOL(sock_wfree);
2012 EXPORT_SYMBOL(sock_wmalloc);
2013 EXPORT_SYMBOL(sock_i_uid);
2014 EXPORT_SYMBOL(sock_i_ino);
2015 EXPORT_SYMBOL(sysctl_optmem_max);
2016 #ifdef CONFIG_SYSCTL
2017 EXPORT_SYMBOL(sysctl_rmem_max);
2018 EXPORT_SYMBOL(sysctl_wmem_max);
2019 #endif
2020