1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 static DEFINE_MUTEX(proto_list_mutex); 143 static LIST_HEAD(proto_list); 144 145 static void sock_inuse_add(struct net *net, int val); 146 147 /** 148 * sk_ns_capable - General socket capability test 149 * @sk: Socket to use a capability on or through 150 * @user_ns: The user namespace of the capability to use 151 * @cap: The capability to use 152 * 153 * Test to see if the opener of the socket had when the socket was 154 * created and the current process has the capability @cap in the user 155 * namespace @user_ns. 156 */ 157 bool sk_ns_capable(const struct sock *sk, 158 struct user_namespace *user_ns, int cap) 159 { 160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 161 ns_capable(user_ns, cap); 162 } 163 EXPORT_SYMBOL(sk_ns_capable); 164 165 /** 166 * sk_capable - Socket global capability test 167 * @sk: Socket to use a capability on or through 168 * @cap: The global capability to use 169 * 170 * Test to see if the opener of the socket had when the socket was 171 * created and the current process has the capability @cap in all user 172 * namespaces. 173 */ 174 bool sk_capable(const struct sock *sk, int cap) 175 { 176 return sk_ns_capable(sk, &init_user_ns, cap); 177 } 178 EXPORT_SYMBOL(sk_capable); 179 180 /** 181 * sk_net_capable - Network namespace socket capability test 182 * @sk: Socket to use a capability on or through 183 * @cap: The capability to use 184 * 185 * Test to see if the opener of the socket had when the socket was created 186 * and the current process has the capability @cap over the network namespace 187 * the socket is a member of. 188 */ 189 bool sk_net_capable(const struct sock *sk, int cap) 190 { 191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 192 } 193 EXPORT_SYMBOL(sk_net_capable); 194 195 /* 196 * Each address family might have different locking rules, so we have 197 * one slock key per address family and separate keys for internal and 198 * userspace sockets. 199 */ 200 static struct lock_class_key af_family_keys[AF_MAX]; 201 static struct lock_class_key af_family_kern_keys[AF_MAX]; 202 static struct lock_class_key af_family_slock_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 211 #define _sock_locks(x) \ 212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 221 x "27" , x "28" , x "AF_CAN" , \ 222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 227 x "AF_MAX" 228 229 static const char *const af_family_key_strings[AF_MAX+1] = { 230 _sock_locks("sk_lock-") 231 }; 232 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 233 _sock_locks("slock-") 234 }; 235 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 236 _sock_locks("clock-") 237 }; 238 239 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 240 _sock_locks("k-sk_lock-") 241 }; 242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("k-slock-") 244 }; 245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-clock-") 247 }; 248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 249 _sock_locks("rlock-") 250 }; 251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 252 _sock_locks("wlock-") 253 }; 254 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 255 _sock_locks("elock-") 256 }; 257 258 /* 259 * sk_callback_lock and sk queues locking rules are per-address-family, 260 * so split the lock classes by using a per-AF key: 261 */ 262 static struct lock_class_key af_callback_keys[AF_MAX]; 263 static struct lock_class_key af_rlock_keys[AF_MAX]; 264 static struct lock_class_key af_wlock_keys[AF_MAX]; 265 static struct lock_class_key af_elock_keys[AF_MAX]; 266 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 267 268 /* Run time adjustable parameters. */ 269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 270 EXPORT_SYMBOL(sysctl_wmem_max); 271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 272 EXPORT_SYMBOL(sysctl_rmem_max); 273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 275 276 /* Maximal space eaten by iovec or ancillary data plus some space */ 277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 278 EXPORT_SYMBOL(sysctl_optmem_max); 279 280 int sysctl_tstamp_allow_data __read_mostly = 1; 281 282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 283 EXPORT_SYMBOL_GPL(memalloc_socks_key); 284 285 /** 286 * sk_set_memalloc - sets %SOCK_MEMALLOC 287 * @sk: socket to set it on 288 * 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 290 * It's the responsibility of the admin to adjust min_free_kbytes 291 * to meet the requirements 292 */ 293 void sk_set_memalloc(struct sock *sk) 294 { 295 sock_set_flag(sk, SOCK_MEMALLOC); 296 sk->sk_allocation |= __GFP_MEMALLOC; 297 static_branch_inc(&memalloc_socks_key); 298 } 299 EXPORT_SYMBOL_GPL(sk_set_memalloc); 300 301 void sk_clear_memalloc(struct sock *sk) 302 { 303 sock_reset_flag(sk, SOCK_MEMALLOC); 304 sk->sk_allocation &= ~__GFP_MEMALLOC; 305 static_branch_dec(&memalloc_socks_key); 306 307 /* 308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 309 * progress of swapping. SOCK_MEMALLOC may be cleared while 310 * it has rmem allocations due to the last swapfile being deactivated 311 * but there is a risk that the socket is unusable due to exceeding 312 * the rmem limits. Reclaim the reserves and obey rmem limits again. 313 */ 314 sk_mem_reclaim(sk); 315 } 316 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 317 318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 319 { 320 int ret; 321 unsigned int noreclaim_flag; 322 323 /* these should have been dropped before queueing */ 324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 325 326 noreclaim_flag = memalloc_noreclaim_save(); 327 ret = sk->sk_backlog_rcv(sk, skb); 328 memalloc_noreclaim_restore(noreclaim_flag); 329 330 return ret; 331 } 332 EXPORT_SYMBOL(__sk_backlog_rcv); 333 334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 335 { 336 struct __kernel_sock_timeval tv; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 return sizeof(old_tv); 358 } 359 360 *(struct __kernel_sock_timeval *)optval = tv; 361 return sizeof(tv); 362 } 363 364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 365 bool old_timeval) 366 { 367 struct __kernel_sock_timeval tv; 368 369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 370 struct old_timeval32 tv32; 371 372 if (optlen < sizeof(tv32)) 373 return -EINVAL; 374 375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 376 return -EFAULT; 377 tv.tv_sec = tv32.tv_sec; 378 tv.tv_usec = tv32.tv_usec; 379 } else if (old_timeval) { 380 struct __kernel_old_timeval old_tv; 381 382 if (optlen < sizeof(old_tv)) 383 return -EINVAL; 384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 385 return -EFAULT; 386 tv.tv_sec = old_tv.tv_sec; 387 tv.tv_usec = old_tv.tv_usec; 388 } else { 389 if (optlen < sizeof(tv)) 390 return -EINVAL; 391 if (copy_from_sockptr(&tv, optval, sizeof(tv))) 392 return -EFAULT; 393 } 394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 395 return -EDOM; 396 397 if (tv.tv_sec < 0) { 398 static int warned __read_mostly; 399 400 *timeo_p = 0; 401 if (warned < 10 && net_ratelimit()) { 402 warned++; 403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 404 __func__, current->comm, task_pid_nr(current)); 405 } 406 return 0; 407 } 408 *timeo_p = MAX_SCHEDULE_TIMEOUT; 409 if (tv.tv_sec == 0 && tv.tv_usec == 0) 410 return 0; 411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 413 return 0; 414 } 415 416 static bool sock_needs_netstamp(const struct sock *sk) 417 { 418 switch (sk->sk_family) { 419 case AF_UNSPEC: 420 case AF_UNIX: 421 return false; 422 default: 423 return true; 424 } 425 } 426 427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 428 { 429 if (sk->sk_flags & flags) { 430 sk->sk_flags &= ~flags; 431 if (sock_needs_netstamp(sk) && 432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 433 net_disable_timestamp(); 434 } 435 } 436 437 438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 439 { 440 unsigned long flags; 441 struct sk_buff_head *list = &sk->sk_receive_queue; 442 443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 444 atomic_inc(&sk->sk_drops); 445 trace_sock_rcvqueue_full(sk, skb); 446 return -ENOMEM; 447 } 448 449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 450 atomic_inc(&sk->sk_drops); 451 return -ENOBUFS; 452 } 453 454 skb->dev = NULL; 455 skb_set_owner_r(skb, sk); 456 457 /* we escape from rcu protected region, make sure we dont leak 458 * a norefcounted dst 459 */ 460 skb_dst_force(skb); 461 462 spin_lock_irqsave(&list->lock, flags); 463 sock_skb_set_dropcount(sk, skb); 464 __skb_queue_tail(list, skb); 465 spin_unlock_irqrestore(&list->lock, flags); 466 467 if (!sock_flag(sk, SOCK_DEAD)) 468 sk->sk_data_ready(sk); 469 return 0; 470 } 471 EXPORT_SYMBOL(__sock_queue_rcv_skb); 472 473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 474 { 475 int err; 476 477 err = sk_filter(sk, skb); 478 if (err) 479 return err; 480 481 return __sock_queue_rcv_skb(sk, skb); 482 } 483 EXPORT_SYMBOL(sock_queue_rcv_skb); 484 485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 486 const int nested, unsigned int trim_cap, bool refcounted) 487 { 488 int rc = NET_RX_SUCCESS; 489 490 if (sk_filter_trim_cap(sk, skb, trim_cap)) 491 goto discard_and_relse; 492 493 skb->dev = NULL; 494 495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 496 atomic_inc(&sk->sk_drops); 497 goto discard_and_relse; 498 } 499 if (nested) 500 bh_lock_sock_nested(sk); 501 else 502 bh_lock_sock(sk); 503 if (!sock_owned_by_user(sk)) { 504 /* 505 * trylock + unlock semantics: 506 */ 507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 508 509 rc = sk_backlog_rcv(sk, skb); 510 511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 513 bh_unlock_sock(sk); 514 atomic_inc(&sk->sk_drops); 515 goto discard_and_relse; 516 } 517 518 bh_unlock_sock(sk); 519 out: 520 if (refcounted) 521 sock_put(sk); 522 return rc; 523 discard_and_relse: 524 kfree_skb(skb); 525 goto out; 526 } 527 EXPORT_SYMBOL(__sk_receive_skb); 528 529 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 530 u32)); 531 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 532 u32)); 533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 534 { 535 struct dst_entry *dst = __sk_dst_get(sk); 536 537 if (dst && dst->obsolete && 538 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 539 dst, cookie) == NULL) { 540 sk_tx_queue_clear(sk); 541 sk->sk_dst_pending_confirm = 0; 542 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 543 dst_release(dst); 544 return NULL; 545 } 546 547 return dst; 548 } 549 EXPORT_SYMBOL(__sk_dst_check); 550 551 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 552 { 553 struct dst_entry *dst = sk_dst_get(sk); 554 555 if (dst && dst->obsolete && 556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 557 dst, cookie) == NULL) { 558 sk_dst_reset(sk); 559 dst_release(dst); 560 return NULL; 561 } 562 563 return dst; 564 } 565 EXPORT_SYMBOL(sk_dst_check); 566 567 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 568 { 569 int ret = -ENOPROTOOPT; 570 #ifdef CONFIG_NETDEVICES 571 struct net *net = sock_net(sk); 572 573 /* Sorry... */ 574 ret = -EPERM; 575 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 576 goto out; 577 578 ret = -EINVAL; 579 if (ifindex < 0) 580 goto out; 581 582 sk->sk_bound_dev_if = ifindex; 583 if (sk->sk_prot->rehash) 584 sk->sk_prot->rehash(sk); 585 sk_dst_reset(sk); 586 587 ret = 0; 588 589 out: 590 #endif 591 592 return ret; 593 } 594 595 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 596 { 597 int ret; 598 599 if (lock_sk) 600 lock_sock(sk); 601 ret = sock_bindtoindex_locked(sk, ifindex); 602 if (lock_sk) 603 release_sock(sk); 604 605 return ret; 606 } 607 EXPORT_SYMBOL(sock_bindtoindex); 608 609 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 610 { 611 int ret = -ENOPROTOOPT; 612 #ifdef CONFIG_NETDEVICES 613 struct net *net = sock_net(sk); 614 char devname[IFNAMSIZ]; 615 int index; 616 617 ret = -EINVAL; 618 if (optlen < 0) 619 goto out; 620 621 /* Bind this socket to a particular device like "eth0", 622 * as specified in the passed interface name. If the 623 * name is "" or the option length is zero the socket 624 * is not bound. 625 */ 626 if (optlen > IFNAMSIZ - 1) 627 optlen = IFNAMSIZ - 1; 628 memset(devname, 0, sizeof(devname)); 629 630 ret = -EFAULT; 631 if (copy_from_sockptr(devname, optval, optlen)) 632 goto out; 633 634 index = 0; 635 if (devname[0] != '\0') { 636 struct net_device *dev; 637 638 rcu_read_lock(); 639 dev = dev_get_by_name_rcu(net, devname); 640 if (dev) 641 index = dev->ifindex; 642 rcu_read_unlock(); 643 ret = -ENODEV; 644 if (!dev) 645 goto out; 646 } 647 648 return sock_bindtoindex(sk, index, true); 649 out: 650 #endif 651 652 return ret; 653 } 654 655 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 656 int __user *optlen, int len) 657 { 658 int ret = -ENOPROTOOPT; 659 #ifdef CONFIG_NETDEVICES 660 struct net *net = sock_net(sk); 661 char devname[IFNAMSIZ]; 662 663 if (sk->sk_bound_dev_if == 0) { 664 len = 0; 665 goto zero; 666 } 667 668 ret = -EINVAL; 669 if (len < IFNAMSIZ) 670 goto out; 671 672 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 673 if (ret) 674 goto out; 675 676 len = strlen(devname) + 1; 677 678 ret = -EFAULT; 679 if (copy_to_user(optval, devname, len)) 680 goto out; 681 682 zero: 683 ret = -EFAULT; 684 if (put_user(len, optlen)) 685 goto out; 686 687 ret = 0; 688 689 out: 690 #endif 691 692 return ret; 693 } 694 695 bool sk_mc_loop(struct sock *sk) 696 { 697 if (dev_recursion_level()) 698 return false; 699 if (!sk) 700 return true; 701 switch (sk->sk_family) { 702 case AF_INET: 703 return inet_sk(sk)->mc_loop; 704 #if IS_ENABLED(CONFIG_IPV6) 705 case AF_INET6: 706 return inet6_sk(sk)->mc_loop; 707 #endif 708 } 709 WARN_ON_ONCE(1); 710 return true; 711 } 712 EXPORT_SYMBOL(sk_mc_loop); 713 714 void sock_set_reuseaddr(struct sock *sk) 715 { 716 lock_sock(sk); 717 sk->sk_reuse = SK_CAN_REUSE; 718 release_sock(sk); 719 } 720 EXPORT_SYMBOL(sock_set_reuseaddr); 721 722 void sock_set_reuseport(struct sock *sk) 723 { 724 lock_sock(sk); 725 sk->sk_reuseport = true; 726 release_sock(sk); 727 } 728 EXPORT_SYMBOL(sock_set_reuseport); 729 730 void sock_no_linger(struct sock *sk) 731 { 732 lock_sock(sk); 733 sk->sk_lingertime = 0; 734 sock_set_flag(sk, SOCK_LINGER); 735 release_sock(sk); 736 } 737 EXPORT_SYMBOL(sock_no_linger); 738 739 void sock_set_priority(struct sock *sk, u32 priority) 740 { 741 lock_sock(sk); 742 sk->sk_priority = priority; 743 release_sock(sk); 744 } 745 EXPORT_SYMBOL(sock_set_priority); 746 747 void sock_set_sndtimeo(struct sock *sk, s64 secs) 748 { 749 lock_sock(sk); 750 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 751 sk->sk_sndtimeo = secs * HZ; 752 else 753 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 754 release_sock(sk); 755 } 756 EXPORT_SYMBOL(sock_set_sndtimeo); 757 758 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 759 { 760 if (val) { 761 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 762 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 763 sock_set_flag(sk, SOCK_RCVTSTAMP); 764 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 765 } else { 766 sock_reset_flag(sk, SOCK_RCVTSTAMP); 767 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 768 } 769 } 770 771 void sock_enable_timestamps(struct sock *sk) 772 { 773 lock_sock(sk); 774 __sock_set_timestamps(sk, true, false, true); 775 release_sock(sk); 776 } 777 EXPORT_SYMBOL(sock_enable_timestamps); 778 779 void sock_set_keepalive(struct sock *sk) 780 { 781 lock_sock(sk); 782 if (sk->sk_prot->keepalive) 783 sk->sk_prot->keepalive(sk, true); 784 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 785 release_sock(sk); 786 } 787 EXPORT_SYMBOL(sock_set_keepalive); 788 789 static void __sock_set_rcvbuf(struct sock *sk, int val) 790 { 791 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 792 * as a negative value. 793 */ 794 val = min_t(int, val, INT_MAX / 2); 795 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 796 797 /* We double it on the way in to account for "struct sk_buff" etc. 798 * overhead. Applications assume that the SO_RCVBUF setting they make 799 * will allow that much actual data to be received on that socket. 800 * 801 * Applications are unaware that "struct sk_buff" and other overheads 802 * allocate from the receive buffer during socket buffer allocation. 803 * 804 * And after considering the possible alternatives, returning the value 805 * we actually used in getsockopt is the most desirable behavior. 806 */ 807 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 808 } 809 810 void sock_set_rcvbuf(struct sock *sk, int val) 811 { 812 lock_sock(sk); 813 __sock_set_rcvbuf(sk, val); 814 release_sock(sk); 815 } 816 EXPORT_SYMBOL(sock_set_rcvbuf); 817 818 void sock_set_mark(struct sock *sk, u32 val) 819 { 820 lock_sock(sk); 821 sk->sk_mark = val; 822 release_sock(sk); 823 } 824 EXPORT_SYMBOL(sock_set_mark); 825 826 /* 827 * This is meant for all protocols to use and covers goings on 828 * at the socket level. Everything here is generic. 829 */ 830 831 int sock_setsockopt(struct socket *sock, int level, int optname, 832 sockptr_t optval, unsigned int optlen) 833 { 834 struct sock_txtime sk_txtime; 835 struct sock *sk = sock->sk; 836 int val; 837 int valbool; 838 struct linger ling; 839 int ret = 0; 840 841 /* 842 * Options without arguments 843 */ 844 845 if (optname == SO_BINDTODEVICE) 846 return sock_setbindtodevice(sk, optval, optlen); 847 848 if (optlen < sizeof(int)) 849 return -EINVAL; 850 851 if (copy_from_sockptr(&val, optval, sizeof(val))) 852 return -EFAULT; 853 854 valbool = val ? 1 : 0; 855 856 lock_sock(sk); 857 858 switch (optname) { 859 case SO_DEBUG: 860 if (val && !capable(CAP_NET_ADMIN)) 861 ret = -EACCES; 862 else 863 sock_valbool_flag(sk, SOCK_DBG, valbool); 864 break; 865 case SO_REUSEADDR: 866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 867 break; 868 case SO_REUSEPORT: 869 sk->sk_reuseport = valbool; 870 break; 871 case SO_TYPE: 872 case SO_PROTOCOL: 873 case SO_DOMAIN: 874 case SO_ERROR: 875 ret = -ENOPROTOOPT; 876 break; 877 case SO_DONTROUTE: 878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 879 sk_dst_reset(sk); 880 break; 881 case SO_BROADCAST: 882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 883 break; 884 case SO_SNDBUF: 885 /* Don't error on this BSD doesn't and if you think 886 * about it this is right. Otherwise apps have to 887 * play 'guess the biggest size' games. RCVBUF/SNDBUF 888 * are treated in BSD as hints 889 */ 890 val = min_t(u32, val, sysctl_wmem_max); 891 set_sndbuf: 892 /* Ensure val * 2 fits into an int, to prevent max_t() 893 * from treating it as a negative value. 894 */ 895 val = min_t(int, val, INT_MAX / 2); 896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 897 WRITE_ONCE(sk->sk_sndbuf, 898 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 899 /* Wake up sending tasks if we upped the value. */ 900 sk->sk_write_space(sk); 901 break; 902 903 case SO_SNDBUFFORCE: 904 if (!capable(CAP_NET_ADMIN)) { 905 ret = -EPERM; 906 break; 907 } 908 909 /* No negative values (to prevent underflow, as val will be 910 * multiplied by 2). 911 */ 912 if (val < 0) 913 val = 0; 914 goto set_sndbuf; 915 916 case SO_RCVBUF: 917 /* Don't error on this BSD doesn't and if you think 918 * about it this is right. Otherwise apps have to 919 * play 'guess the biggest size' games. RCVBUF/SNDBUF 920 * are treated in BSD as hints 921 */ 922 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 923 break; 924 925 case SO_RCVBUFFORCE: 926 if (!capable(CAP_NET_ADMIN)) { 927 ret = -EPERM; 928 break; 929 } 930 931 /* No negative values (to prevent underflow, as val will be 932 * multiplied by 2). 933 */ 934 __sock_set_rcvbuf(sk, max(val, 0)); 935 break; 936 937 case SO_KEEPALIVE: 938 if (sk->sk_prot->keepalive) 939 sk->sk_prot->keepalive(sk, valbool); 940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 941 break; 942 943 case SO_OOBINLINE: 944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 945 break; 946 947 case SO_NO_CHECK: 948 sk->sk_no_check_tx = valbool; 949 break; 950 951 case SO_PRIORITY: 952 if ((val >= 0 && val <= 6) || 953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 954 sk->sk_priority = val; 955 else 956 ret = -EPERM; 957 break; 958 959 case SO_LINGER: 960 if (optlen < sizeof(ling)) { 961 ret = -EINVAL; /* 1003.1g */ 962 break; 963 } 964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 965 ret = -EFAULT; 966 break; 967 } 968 if (!ling.l_onoff) 969 sock_reset_flag(sk, SOCK_LINGER); 970 else { 971 #if (BITS_PER_LONG == 32) 972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 974 else 975 #endif 976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 977 sock_set_flag(sk, SOCK_LINGER); 978 } 979 break; 980 981 case SO_BSDCOMPAT: 982 break; 983 984 case SO_PASSCRED: 985 if (valbool) 986 set_bit(SOCK_PASSCRED, &sock->flags); 987 else 988 clear_bit(SOCK_PASSCRED, &sock->flags); 989 break; 990 991 case SO_TIMESTAMP_OLD: 992 __sock_set_timestamps(sk, valbool, false, false); 993 break; 994 case SO_TIMESTAMP_NEW: 995 __sock_set_timestamps(sk, valbool, true, false); 996 break; 997 case SO_TIMESTAMPNS_OLD: 998 __sock_set_timestamps(sk, valbool, false, true); 999 break; 1000 case SO_TIMESTAMPNS_NEW: 1001 __sock_set_timestamps(sk, valbool, true, true); 1002 break; 1003 case SO_TIMESTAMPING_NEW: 1004 case SO_TIMESTAMPING_OLD: 1005 if (val & ~SOF_TIMESTAMPING_MASK) { 1006 ret = -EINVAL; 1007 break; 1008 } 1009 1010 if (val & SOF_TIMESTAMPING_OPT_ID && 1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 1012 if (sk->sk_protocol == IPPROTO_TCP && 1013 sk->sk_type == SOCK_STREAM) { 1014 if ((1 << sk->sk_state) & 1015 (TCPF_CLOSE | TCPF_LISTEN)) { 1016 ret = -EINVAL; 1017 break; 1018 } 1019 sk->sk_tskey = tcp_sk(sk)->snd_una; 1020 } else { 1021 sk->sk_tskey = 0; 1022 } 1023 } 1024 1025 if (val & SOF_TIMESTAMPING_OPT_STATS && 1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 1027 ret = -EINVAL; 1028 break; 1029 } 1030 1031 sk->sk_tsflags = val; 1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 1033 1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 1035 sock_enable_timestamp(sk, 1036 SOCK_TIMESTAMPING_RX_SOFTWARE); 1037 else 1038 sock_disable_timestamp(sk, 1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 1040 break; 1041 1042 case SO_RCVLOWAT: 1043 if (val < 0) 1044 val = INT_MAX; 1045 if (sock->ops->set_rcvlowat) 1046 ret = sock->ops->set_rcvlowat(sk, val); 1047 else 1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1049 break; 1050 1051 case SO_RCVTIMEO_OLD: 1052 case SO_RCVTIMEO_NEW: 1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1054 optlen, optname == SO_RCVTIMEO_OLD); 1055 break; 1056 1057 case SO_SNDTIMEO_OLD: 1058 case SO_SNDTIMEO_NEW: 1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1060 optlen, optname == SO_SNDTIMEO_OLD); 1061 break; 1062 1063 case SO_ATTACH_FILTER: { 1064 struct sock_fprog fprog; 1065 1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1067 if (!ret) 1068 ret = sk_attach_filter(&fprog, sk); 1069 break; 1070 } 1071 case SO_ATTACH_BPF: 1072 ret = -EINVAL; 1073 if (optlen == sizeof(u32)) { 1074 u32 ufd; 1075 1076 ret = -EFAULT; 1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1078 break; 1079 1080 ret = sk_attach_bpf(ufd, sk); 1081 } 1082 break; 1083 1084 case SO_ATTACH_REUSEPORT_CBPF: { 1085 struct sock_fprog fprog; 1086 1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1088 if (!ret) 1089 ret = sk_reuseport_attach_filter(&fprog, sk); 1090 break; 1091 } 1092 case SO_ATTACH_REUSEPORT_EBPF: 1093 ret = -EINVAL; 1094 if (optlen == sizeof(u32)) { 1095 u32 ufd; 1096 1097 ret = -EFAULT; 1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1099 break; 1100 1101 ret = sk_reuseport_attach_bpf(ufd, sk); 1102 } 1103 break; 1104 1105 case SO_DETACH_REUSEPORT_BPF: 1106 ret = reuseport_detach_prog(sk); 1107 break; 1108 1109 case SO_DETACH_FILTER: 1110 ret = sk_detach_filter(sk); 1111 break; 1112 1113 case SO_LOCK_FILTER: 1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1115 ret = -EPERM; 1116 else 1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1118 break; 1119 1120 case SO_PASSSEC: 1121 if (valbool) 1122 set_bit(SOCK_PASSSEC, &sock->flags); 1123 else 1124 clear_bit(SOCK_PASSSEC, &sock->flags); 1125 break; 1126 case SO_MARK: 1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1128 ret = -EPERM; 1129 } else if (val != sk->sk_mark) { 1130 sk->sk_mark = val; 1131 sk_dst_reset(sk); 1132 } 1133 break; 1134 1135 case SO_RXQ_OVFL: 1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1137 break; 1138 1139 case SO_WIFI_STATUS: 1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1141 break; 1142 1143 case SO_PEEK_OFF: 1144 if (sock->ops->set_peek_off) 1145 ret = sock->ops->set_peek_off(sk, val); 1146 else 1147 ret = -EOPNOTSUPP; 1148 break; 1149 1150 case SO_NOFCS: 1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1152 break; 1153 1154 case SO_SELECT_ERR_QUEUE: 1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1156 break; 1157 1158 #ifdef CONFIG_NET_RX_BUSY_POLL 1159 case SO_BUSY_POLL: 1160 /* allow unprivileged users to decrease the value */ 1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1162 ret = -EPERM; 1163 else { 1164 if (val < 0) 1165 ret = -EINVAL; 1166 else 1167 sk->sk_ll_usec = val; 1168 } 1169 break; 1170 case SO_PREFER_BUSY_POLL: 1171 if (valbool && !capable(CAP_NET_ADMIN)) 1172 ret = -EPERM; 1173 else 1174 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1175 break; 1176 case SO_BUSY_POLL_BUDGET: 1177 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1178 ret = -EPERM; 1179 } else { 1180 if (val < 0 || val > U16_MAX) 1181 ret = -EINVAL; 1182 else 1183 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1184 } 1185 break; 1186 #endif 1187 1188 case SO_MAX_PACING_RATE: 1189 { 1190 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1191 1192 if (sizeof(ulval) != sizeof(val) && 1193 optlen >= sizeof(ulval) && 1194 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1195 ret = -EFAULT; 1196 break; 1197 } 1198 if (ulval != ~0UL) 1199 cmpxchg(&sk->sk_pacing_status, 1200 SK_PACING_NONE, 1201 SK_PACING_NEEDED); 1202 sk->sk_max_pacing_rate = ulval; 1203 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1204 break; 1205 } 1206 case SO_INCOMING_CPU: 1207 WRITE_ONCE(sk->sk_incoming_cpu, val); 1208 break; 1209 1210 case SO_CNX_ADVICE: 1211 if (val == 1) 1212 dst_negative_advice(sk); 1213 break; 1214 1215 case SO_ZEROCOPY: 1216 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1217 if (!((sk->sk_type == SOCK_STREAM && 1218 sk->sk_protocol == IPPROTO_TCP) || 1219 (sk->sk_type == SOCK_DGRAM && 1220 sk->sk_protocol == IPPROTO_UDP))) 1221 ret = -ENOTSUPP; 1222 } else if (sk->sk_family != PF_RDS) { 1223 ret = -ENOTSUPP; 1224 } 1225 if (!ret) { 1226 if (val < 0 || val > 1) 1227 ret = -EINVAL; 1228 else 1229 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1230 } 1231 break; 1232 1233 case SO_TXTIME: 1234 if (optlen != sizeof(struct sock_txtime)) { 1235 ret = -EINVAL; 1236 break; 1237 } else if (copy_from_sockptr(&sk_txtime, optval, 1238 sizeof(struct sock_txtime))) { 1239 ret = -EFAULT; 1240 break; 1241 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1242 ret = -EINVAL; 1243 break; 1244 } 1245 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1246 * scheduler has enough safe guards. 1247 */ 1248 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1249 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1250 ret = -EPERM; 1251 break; 1252 } 1253 sock_valbool_flag(sk, SOCK_TXTIME, true); 1254 sk->sk_clockid = sk_txtime.clockid; 1255 sk->sk_txtime_deadline_mode = 1256 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1257 sk->sk_txtime_report_errors = 1258 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1259 break; 1260 1261 case SO_BINDTOIFINDEX: 1262 ret = sock_bindtoindex_locked(sk, val); 1263 break; 1264 1265 default: 1266 ret = -ENOPROTOOPT; 1267 break; 1268 } 1269 release_sock(sk); 1270 return ret; 1271 } 1272 EXPORT_SYMBOL(sock_setsockopt); 1273 1274 1275 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1276 struct ucred *ucred) 1277 { 1278 ucred->pid = pid_vnr(pid); 1279 ucred->uid = ucred->gid = -1; 1280 if (cred) { 1281 struct user_namespace *current_ns = current_user_ns(); 1282 1283 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1284 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1285 } 1286 } 1287 1288 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1289 { 1290 struct user_namespace *user_ns = current_user_ns(); 1291 int i; 1292 1293 for (i = 0; i < src->ngroups; i++) 1294 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1295 return -EFAULT; 1296 1297 return 0; 1298 } 1299 1300 int sock_getsockopt(struct socket *sock, int level, int optname, 1301 char __user *optval, int __user *optlen) 1302 { 1303 struct sock *sk = sock->sk; 1304 1305 union { 1306 int val; 1307 u64 val64; 1308 unsigned long ulval; 1309 struct linger ling; 1310 struct old_timeval32 tm32; 1311 struct __kernel_old_timeval tm; 1312 struct __kernel_sock_timeval stm; 1313 struct sock_txtime txtime; 1314 } v; 1315 1316 int lv = sizeof(int); 1317 int len; 1318 1319 if (get_user(len, optlen)) 1320 return -EFAULT; 1321 if (len < 0) 1322 return -EINVAL; 1323 1324 memset(&v, 0, sizeof(v)); 1325 1326 switch (optname) { 1327 case SO_DEBUG: 1328 v.val = sock_flag(sk, SOCK_DBG); 1329 break; 1330 1331 case SO_DONTROUTE: 1332 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1333 break; 1334 1335 case SO_BROADCAST: 1336 v.val = sock_flag(sk, SOCK_BROADCAST); 1337 break; 1338 1339 case SO_SNDBUF: 1340 v.val = sk->sk_sndbuf; 1341 break; 1342 1343 case SO_RCVBUF: 1344 v.val = sk->sk_rcvbuf; 1345 break; 1346 1347 case SO_REUSEADDR: 1348 v.val = sk->sk_reuse; 1349 break; 1350 1351 case SO_REUSEPORT: 1352 v.val = sk->sk_reuseport; 1353 break; 1354 1355 case SO_KEEPALIVE: 1356 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1357 break; 1358 1359 case SO_TYPE: 1360 v.val = sk->sk_type; 1361 break; 1362 1363 case SO_PROTOCOL: 1364 v.val = sk->sk_protocol; 1365 break; 1366 1367 case SO_DOMAIN: 1368 v.val = sk->sk_family; 1369 break; 1370 1371 case SO_ERROR: 1372 v.val = -sock_error(sk); 1373 if (v.val == 0) 1374 v.val = xchg(&sk->sk_err_soft, 0); 1375 break; 1376 1377 case SO_OOBINLINE: 1378 v.val = sock_flag(sk, SOCK_URGINLINE); 1379 break; 1380 1381 case SO_NO_CHECK: 1382 v.val = sk->sk_no_check_tx; 1383 break; 1384 1385 case SO_PRIORITY: 1386 v.val = sk->sk_priority; 1387 break; 1388 1389 case SO_LINGER: 1390 lv = sizeof(v.ling); 1391 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1392 v.ling.l_linger = sk->sk_lingertime / HZ; 1393 break; 1394 1395 case SO_BSDCOMPAT: 1396 break; 1397 1398 case SO_TIMESTAMP_OLD: 1399 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1400 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1401 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1402 break; 1403 1404 case SO_TIMESTAMPNS_OLD: 1405 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1406 break; 1407 1408 case SO_TIMESTAMP_NEW: 1409 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1410 break; 1411 1412 case SO_TIMESTAMPNS_NEW: 1413 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1414 break; 1415 1416 case SO_TIMESTAMPING_OLD: 1417 v.val = sk->sk_tsflags; 1418 break; 1419 1420 case SO_RCVTIMEO_OLD: 1421 case SO_RCVTIMEO_NEW: 1422 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1423 break; 1424 1425 case SO_SNDTIMEO_OLD: 1426 case SO_SNDTIMEO_NEW: 1427 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1428 break; 1429 1430 case SO_RCVLOWAT: 1431 v.val = sk->sk_rcvlowat; 1432 break; 1433 1434 case SO_SNDLOWAT: 1435 v.val = 1; 1436 break; 1437 1438 case SO_PASSCRED: 1439 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1440 break; 1441 1442 case SO_PEERCRED: 1443 { 1444 struct ucred peercred; 1445 if (len > sizeof(peercred)) 1446 len = sizeof(peercred); 1447 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1448 if (copy_to_user(optval, &peercred, len)) 1449 return -EFAULT; 1450 goto lenout; 1451 } 1452 1453 case SO_PEERGROUPS: 1454 { 1455 int ret, n; 1456 1457 if (!sk->sk_peer_cred) 1458 return -ENODATA; 1459 1460 n = sk->sk_peer_cred->group_info->ngroups; 1461 if (len < n * sizeof(gid_t)) { 1462 len = n * sizeof(gid_t); 1463 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1464 } 1465 len = n * sizeof(gid_t); 1466 1467 ret = groups_to_user((gid_t __user *)optval, 1468 sk->sk_peer_cred->group_info); 1469 if (ret) 1470 return ret; 1471 goto lenout; 1472 } 1473 1474 case SO_PEERNAME: 1475 { 1476 char address[128]; 1477 1478 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1479 if (lv < 0) 1480 return -ENOTCONN; 1481 if (lv < len) 1482 return -EINVAL; 1483 if (copy_to_user(optval, address, len)) 1484 return -EFAULT; 1485 goto lenout; 1486 } 1487 1488 /* Dubious BSD thing... Probably nobody even uses it, but 1489 * the UNIX standard wants it for whatever reason... -DaveM 1490 */ 1491 case SO_ACCEPTCONN: 1492 v.val = sk->sk_state == TCP_LISTEN; 1493 break; 1494 1495 case SO_PASSSEC: 1496 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1497 break; 1498 1499 case SO_PEERSEC: 1500 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1501 1502 case SO_MARK: 1503 v.val = sk->sk_mark; 1504 break; 1505 1506 case SO_RXQ_OVFL: 1507 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1508 break; 1509 1510 case SO_WIFI_STATUS: 1511 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1512 break; 1513 1514 case SO_PEEK_OFF: 1515 if (!sock->ops->set_peek_off) 1516 return -EOPNOTSUPP; 1517 1518 v.val = sk->sk_peek_off; 1519 break; 1520 case SO_NOFCS: 1521 v.val = sock_flag(sk, SOCK_NOFCS); 1522 break; 1523 1524 case SO_BINDTODEVICE: 1525 return sock_getbindtodevice(sk, optval, optlen, len); 1526 1527 case SO_GET_FILTER: 1528 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1529 if (len < 0) 1530 return len; 1531 1532 goto lenout; 1533 1534 case SO_LOCK_FILTER: 1535 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1536 break; 1537 1538 case SO_BPF_EXTENSIONS: 1539 v.val = bpf_tell_extensions(); 1540 break; 1541 1542 case SO_SELECT_ERR_QUEUE: 1543 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1544 break; 1545 1546 #ifdef CONFIG_NET_RX_BUSY_POLL 1547 case SO_BUSY_POLL: 1548 v.val = sk->sk_ll_usec; 1549 break; 1550 case SO_PREFER_BUSY_POLL: 1551 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1552 break; 1553 #endif 1554 1555 case SO_MAX_PACING_RATE: 1556 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1557 lv = sizeof(v.ulval); 1558 v.ulval = sk->sk_max_pacing_rate; 1559 } else { 1560 /* 32bit version */ 1561 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1562 } 1563 break; 1564 1565 case SO_INCOMING_CPU: 1566 v.val = READ_ONCE(sk->sk_incoming_cpu); 1567 break; 1568 1569 case SO_MEMINFO: 1570 { 1571 u32 meminfo[SK_MEMINFO_VARS]; 1572 1573 sk_get_meminfo(sk, meminfo); 1574 1575 len = min_t(unsigned int, len, sizeof(meminfo)); 1576 if (copy_to_user(optval, &meminfo, len)) 1577 return -EFAULT; 1578 1579 goto lenout; 1580 } 1581 1582 #ifdef CONFIG_NET_RX_BUSY_POLL 1583 case SO_INCOMING_NAPI_ID: 1584 v.val = READ_ONCE(sk->sk_napi_id); 1585 1586 /* aggregate non-NAPI IDs down to 0 */ 1587 if (v.val < MIN_NAPI_ID) 1588 v.val = 0; 1589 1590 break; 1591 #endif 1592 1593 case SO_COOKIE: 1594 lv = sizeof(u64); 1595 if (len < lv) 1596 return -EINVAL; 1597 v.val64 = sock_gen_cookie(sk); 1598 break; 1599 1600 case SO_ZEROCOPY: 1601 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1602 break; 1603 1604 case SO_TXTIME: 1605 lv = sizeof(v.txtime); 1606 v.txtime.clockid = sk->sk_clockid; 1607 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1608 SOF_TXTIME_DEADLINE_MODE : 0; 1609 v.txtime.flags |= sk->sk_txtime_report_errors ? 1610 SOF_TXTIME_REPORT_ERRORS : 0; 1611 break; 1612 1613 case SO_BINDTOIFINDEX: 1614 v.val = sk->sk_bound_dev_if; 1615 break; 1616 1617 default: 1618 /* We implement the SO_SNDLOWAT etc to not be settable 1619 * (1003.1g 7). 1620 */ 1621 return -ENOPROTOOPT; 1622 } 1623 1624 if (len > lv) 1625 len = lv; 1626 if (copy_to_user(optval, &v, len)) 1627 return -EFAULT; 1628 lenout: 1629 if (put_user(len, optlen)) 1630 return -EFAULT; 1631 return 0; 1632 } 1633 1634 /* 1635 * Initialize an sk_lock. 1636 * 1637 * (We also register the sk_lock with the lock validator.) 1638 */ 1639 static inline void sock_lock_init(struct sock *sk) 1640 { 1641 if (sk->sk_kern_sock) 1642 sock_lock_init_class_and_name( 1643 sk, 1644 af_family_kern_slock_key_strings[sk->sk_family], 1645 af_family_kern_slock_keys + sk->sk_family, 1646 af_family_kern_key_strings[sk->sk_family], 1647 af_family_kern_keys + sk->sk_family); 1648 else 1649 sock_lock_init_class_and_name( 1650 sk, 1651 af_family_slock_key_strings[sk->sk_family], 1652 af_family_slock_keys + sk->sk_family, 1653 af_family_key_strings[sk->sk_family], 1654 af_family_keys + sk->sk_family); 1655 } 1656 1657 /* 1658 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1659 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1660 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1661 */ 1662 static void sock_copy(struct sock *nsk, const struct sock *osk) 1663 { 1664 const struct proto *prot = READ_ONCE(osk->sk_prot); 1665 #ifdef CONFIG_SECURITY_NETWORK 1666 void *sptr = nsk->sk_security; 1667 #endif 1668 1669 /* If we move sk_tx_queue_mapping out of the private section, 1670 * we must check if sk_tx_queue_clear() is called after 1671 * sock_copy() in sk_clone_lock(). 1672 */ 1673 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1674 offsetof(struct sock, sk_dontcopy_begin) || 1675 offsetof(struct sock, sk_tx_queue_mapping) >= 1676 offsetof(struct sock, sk_dontcopy_end)); 1677 1678 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1679 1680 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1681 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1682 1683 #ifdef CONFIG_SECURITY_NETWORK 1684 nsk->sk_security = sptr; 1685 security_sk_clone(osk, nsk); 1686 #endif 1687 } 1688 1689 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1690 int family) 1691 { 1692 struct sock *sk; 1693 struct kmem_cache *slab; 1694 1695 slab = prot->slab; 1696 if (slab != NULL) { 1697 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1698 if (!sk) 1699 return sk; 1700 if (want_init_on_alloc(priority)) 1701 sk_prot_clear_nulls(sk, prot->obj_size); 1702 } else 1703 sk = kmalloc(prot->obj_size, priority); 1704 1705 if (sk != NULL) { 1706 if (security_sk_alloc(sk, family, priority)) 1707 goto out_free; 1708 1709 if (!try_module_get(prot->owner)) 1710 goto out_free_sec; 1711 } 1712 1713 return sk; 1714 1715 out_free_sec: 1716 security_sk_free(sk); 1717 out_free: 1718 if (slab != NULL) 1719 kmem_cache_free(slab, sk); 1720 else 1721 kfree(sk); 1722 return NULL; 1723 } 1724 1725 static void sk_prot_free(struct proto *prot, struct sock *sk) 1726 { 1727 struct kmem_cache *slab; 1728 struct module *owner; 1729 1730 owner = prot->owner; 1731 slab = prot->slab; 1732 1733 cgroup_sk_free(&sk->sk_cgrp_data); 1734 mem_cgroup_sk_free(sk); 1735 security_sk_free(sk); 1736 if (slab != NULL) 1737 kmem_cache_free(slab, sk); 1738 else 1739 kfree(sk); 1740 module_put(owner); 1741 } 1742 1743 /** 1744 * sk_alloc - All socket objects are allocated here 1745 * @net: the applicable net namespace 1746 * @family: protocol family 1747 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1748 * @prot: struct proto associated with this new sock instance 1749 * @kern: is this to be a kernel socket? 1750 */ 1751 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1752 struct proto *prot, int kern) 1753 { 1754 struct sock *sk; 1755 1756 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1757 if (sk) { 1758 sk->sk_family = family; 1759 /* 1760 * See comment in struct sock definition to understand 1761 * why we need sk_prot_creator -acme 1762 */ 1763 sk->sk_prot = sk->sk_prot_creator = prot; 1764 sk->sk_kern_sock = kern; 1765 sock_lock_init(sk); 1766 sk->sk_net_refcnt = kern ? 0 : 1; 1767 if (likely(sk->sk_net_refcnt)) { 1768 get_net(net); 1769 sock_inuse_add(net, 1); 1770 } 1771 1772 sock_net_set(sk, net); 1773 refcount_set(&sk->sk_wmem_alloc, 1); 1774 1775 mem_cgroup_sk_alloc(sk); 1776 cgroup_sk_alloc(&sk->sk_cgrp_data); 1777 sock_update_classid(&sk->sk_cgrp_data); 1778 sock_update_netprioidx(&sk->sk_cgrp_data); 1779 sk_tx_queue_clear(sk); 1780 } 1781 1782 return sk; 1783 } 1784 EXPORT_SYMBOL(sk_alloc); 1785 1786 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1787 * grace period. This is the case for UDP sockets and TCP listeners. 1788 */ 1789 static void __sk_destruct(struct rcu_head *head) 1790 { 1791 struct sock *sk = container_of(head, struct sock, sk_rcu); 1792 struct sk_filter *filter; 1793 1794 if (sk->sk_destruct) 1795 sk->sk_destruct(sk); 1796 1797 filter = rcu_dereference_check(sk->sk_filter, 1798 refcount_read(&sk->sk_wmem_alloc) == 0); 1799 if (filter) { 1800 sk_filter_uncharge(sk, filter); 1801 RCU_INIT_POINTER(sk->sk_filter, NULL); 1802 } 1803 1804 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1805 1806 #ifdef CONFIG_BPF_SYSCALL 1807 bpf_sk_storage_free(sk); 1808 #endif 1809 1810 if (atomic_read(&sk->sk_omem_alloc)) 1811 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1812 __func__, atomic_read(&sk->sk_omem_alloc)); 1813 1814 if (sk->sk_frag.page) { 1815 put_page(sk->sk_frag.page); 1816 sk->sk_frag.page = NULL; 1817 } 1818 1819 if (sk->sk_peer_cred) 1820 put_cred(sk->sk_peer_cred); 1821 put_pid(sk->sk_peer_pid); 1822 if (likely(sk->sk_net_refcnt)) 1823 put_net(sock_net(sk)); 1824 sk_prot_free(sk->sk_prot_creator, sk); 1825 } 1826 1827 void sk_destruct(struct sock *sk) 1828 { 1829 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1830 1831 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1832 reuseport_detach_sock(sk); 1833 use_call_rcu = true; 1834 } 1835 1836 if (use_call_rcu) 1837 call_rcu(&sk->sk_rcu, __sk_destruct); 1838 else 1839 __sk_destruct(&sk->sk_rcu); 1840 } 1841 1842 static void __sk_free(struct sock *sk) 1843 { 1844 if (likely(sk->sk_net_refcnt)) 1845 sock_inuse_add(sock_net(sk), -1); 1846 1847 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1848 sock_diag_broadcast_destroy(sk); 1849 else 1850 sk_destruct(sk); 1851 } 1852 1853 void sk_free(struct sock *sk) 1854 { 1855 /* 1856 * We subtract one from sk_wmem_alloc and can know if 1857 * some packets are still in some tx queue. 1858 * If not null, sock_wfree() will call __sk_free(sk) later 1859 */ 1860 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1861 __sk_free(sk); 1862 } 1863 EXPORT_SYMBOL(sk_free); 1864 1865 static void sk_init_common(struct sock *sk) 1866 { 1867 skb_queue_head_init(&sk->sk_receive_queue); 1868 skb_queue_head_init(&sk->sk_write_queue); 1869 skb_queue_head_init(&sk->sk_error_queue); 1870 1871 rwlock_init(&sk->sk_callback_lock); 1872 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1873 af_rlock_keys + sk->sk_family, 1874 af_family_rlock_key_strings[sk->sk_family]); 1875 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1876 af_wlock_keys + sk->sk_family, 1877 af_family_wlock_key_strings[sk->sk_family]); 1878 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1879 af_elock_keys + sk->sk_family, 1880 af_family_elock_key_strings[sk->sk_family]); 1881 lockdep_set_class_and_name(&sk->sk_callback_lock, 1882 af_callback_keys + sk->sk_family, 1883 af_family_clock_key_strings[sk->sk_family]); 1884 } 1885 1886 /** 1887 * sk_clone_lock - clone a socket, and lock its clone 1888 * @sk: the socket to clone 1889 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1890 * 1891 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1892 */ 1893 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1894 { 1895 struct proto *prot = READ_ONCE(sk->sk_prot); 1896 struct sk_filter *filter; 1897 bool is_charged = true; 1898 struct sock *newsk; 1899 1900 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 1901 if (!newsk) 1902 goto out; 1903 1904 sock_copy(newsk, sk); 1905 1906 newsk->sk_prot_creator = prot; 1907 1908 /* SANITY */ 1909 if (likely(newsk->sk_net_refcnt)) 1910 get_net(sock_net(newsk)); 1911 sk_node_init(&newsk->sk_node); 1912 sock_lock_init(newsk); 1913 bh_lock_sock(newsk); 1914 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1915 newsk->sk_backlog.len = 0; 1916 1917 atomic_set(&newsk->sk_rmem_alloc, 0); 1918 1919 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 1920 refcount_set(&newsk->sk_wmem_alloc, 1); 1921 1922 atomic_set(&newsk->sk_omem_alloc, 0); 1923 sk_init_common(newsk); 1924 1925 newsk->sk_dst_cache = NULL; 1926 newsk->sk_dst_pending_confirm = 0; 1927 newsk->sk_wmem_queued = 0; 1928 newsk->sk_forward_alloc = 0; 1929 atomic_set(&newsk->sk_drops, 0); 1930 newsk->sk_send_head = NULL; 1931 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1932 atomic_set(&newsk->sk_zckey, 0); 1933 1934 sock_reset_flag(newsk, SOCK_DONE); 1935 1936 /* sk->sk_memcg will be populated at accept() time */ 1937 newsk->sk_memcg = NULL; 1938 1939 cgroup_sk_clone(&newsk->sk_cgrp_data); 1940 1941 rcu_read_lock(); 1942 filter = rcu_dereference(sk->sk_filter); 1943 if (filter != NULL) 1944 /* though it's an empty new sock, the charging may fail 1945 * if sysctl_optmem_max was changed between creation of 1946 * original socket and cloning 1947 */ 1948 is_charged = sk_filter_charge(newsk, filter); 1949 RCU_INIT_POINTER(newsk->sk_filter, filter); 1950 rcu_read_unlock(); 1951 1952 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1953 /* We need to make sure that we don't uncharge the new 1954 * socket if we couldn't charge it in the first place 1955 * as otherwise we uncharge the parent's filter. 1956 */ 1957 if (!is_charged) 1958 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1959 sk_free_unlock_clone(newsk); 1960 newsk = NULL; 1961 goto out; 1962 } 1963 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1964 1965 if (bpf_sk_storage_clone(sk, newsk)) { 1966 sk_free_unlock_clone(newsk); 1967 newsk = NULL; 1968 goto out; 1969 } 1970 1971 /* Clear sk_user_data if parent had the pointer tagged 1972 * as not suitable for copying when cloning. 1973 */ 1974 if (sk_user_data_is_nocopy(newsk)) 1975 newsk->sk_user_data = NULL; 1976 1977 newsk->sk_err = 0; 1978 newsk->sk_err_soft = 0; 1979 newsk->sk_priority = 0; 1980 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1981 if (likely(newsk->sk_net_refcnt)) 1982 sock_inuse_add(sock_net(newsk), 1); 1983 1984 /* Before updating sk_refcnt, we must commit prior changes to memory 1985 * (Documentation/RCU/rculist_nulls.rst for details) 1986 */ 1987 smp_wmb(); 1988 refcount_set(&newsk->sk_refcnt, 2); 1989 1990 /* Increment the counter in the same struct proto as the master 1991 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1992 * is the same as sk->sk_prot->socks, as this field was copied 1993 * with memcpy). 1994 * 1995 * This _changes_ the previous behaviour, where 1996 * tcp_create_openreq_child always was incrementing the 1997 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1998 * to be taken into account in all callers. -acme 1999 */ 2000 sk_refcnt_debug_inc(newsk); 2001 sk_set_socket(newsk, NULL); 2002 sk_tx_queue_clear(newsk); 2003 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2004 2005 if (newsk->sk_prot->sockets_allocated) 2006 sk_sockets_allocated_inc(newsk); 2007 2008 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2009 net_enable_timestamp(); 2010 out: 2011 return newsk; 2012 } 2013 EXPORT_SYMBOL_GPL(sk_clone_lock); 2014 2015 void sk_free_unlock_clone(struct sock *sk) 2016 { 2017 /* It is still raw copy of parent, so invalidate 2018 * destructor and make plain sk_free() */ 2019 sk->sk_destruct = NULL; 2020 bh_unlock_sock(sk); 2021 sk_free(sk); 2022 } 2023 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2024 2025 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2026 { 2027 u32 max_segs = 1; 2028 2029 sk_dst_set(sk, dst); 2030 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 2031 if (sk->sk_route_caps & NETIF_F_GSO) 2032 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2033 sk->sk_route_caps &= ~sk->sk_route_nocaps; 2034 if (sk_can_gso(sk)) { 2035 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2036 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2037 } else { 2038 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2039 sk->sk_gso_max_size = dst->dev->gso_max_size; 2040 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 2041 } 2042 } 2043 sk->sk_gso_max_segs = max_segs; 2044 } 2045 EXPORT_SYMBOL_GPL(sk_setup_caps); 2046 2047 /* 2048 * Simple resource managers for sockets. 2049 */ 2050 2051 2052 /* 2053 * Write buffer destructor automatically called from kfree_skb. 2054 */ 2055 void sock_wfree(struct sk_buff *skb) 2056 { 2057 struct sock *sk = skb->sk; 2058 unsigned int len = skb->truesize; 2059 2060 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2061 /* 2062 * Keep a reference on sk_wmem_alloc, this will be released 2063 * after sk_write_space() call 2064 */ 2065 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2066 sk->sk_write_space(sk); 2067 len = 1; 2068 } 2069 /* 2070 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2071 * could not do because of in-flight packets 2072 */ 2073 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2074 __sk_free(sk); 2075 } 2076 EXPORT_SYMBOL(sock_wfree); 2077 2078 /* This variant of sock_wfree() is used by TCP, 2079 * since it sets SOCK_USE_WRITE_QUEUE. 2080 */ 2081 void __sock_wfree(struct sk_buff *skb) 2082 { 2083 struct sock *sk = skb->sk; 2084 2085 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2086 __sk_free(sk); 2087 } 2088 2089 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2090 { 2091 skb_orphan(skb); 2092 skb->sk = sk; 2093 #ifdef CONFIG_INET 2094 if (unlikely(!sk_fullsock(sk))) { 2095 skb->destructor = sock_edemux; 2096 sock_hold(sk); 2097 return; 2098 } 2099 #endif 2100 skb->destructor = sock_wfree; 2101 skb_set_hash_from_sk(skb, sk); 2102 /* 2103 * We used to take a refcount on sk, but following operation 2104 * is enough to guarantee sk_free() wont free this sock until 2105 * all in-flight packets are completed 2106 */ 2107 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2108 } 2109 EXPORT_SYMBOL(skb_set_owner_w); 2110 2111 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2112 { 2113 #ifdef CONFIG_TLS_DEVICE 2114 /* Drivers depend on in-order delivery for crypto offload, 2115 * partial orphan breaks out-of-order-OK logic. 2116 */ 2117 if (skb->decrypted) 2118 return false; 2119 #endif 2120 return (skb->destructor == sock_wfree || 2121 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2122 } 2123 2124 /* This helper is used by netem, as it can hold packets in its 2125 * delay queue. We want to allow the owner socket to send more 2126 * packets, as if they were already TX completed by a typical driver. 2127 * But we also want to keep skb->sk set because some packet schedulers 2128 * rely on it (sch_fq for example). 2129 */ 2130 void skb_orphan_partial(struct sk_buff *skb) 2131 { 2132 if (skb_is_tcp_pure_ack(skb)) 2133 return; 2134 2135 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2136 return; 2137 2138 skb_orphan(skb); 2139 } 2140 EXPORT_SYMBOL(skb_orphan_partial); 2141 2142 /* 2143 * Read buffer destructor automatically called from kfree_skb. 2144 */ 2145 void sock_rfree(struct sk_buff *skb) 2146 { 2147 struct sock *sk = skb->sk; 2148 unsigned int len = skb->truesize; 2149 2150 atomic_sub(len, &sk->sk_rmem_alloc); 2151 sk_mem_uncharge(sk, len); 2152 } 2153 EXPORT_SYMBOL(sock_rfree); 2154 2155 /* 2156 * Buffer destructor for skbs that are not used directly in read or write 2157 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2158 */ 2159 void sock_efree(struct sk_buff *skb) 2160 { 2161 sock_put(skb->sk); 2162 } 2163 EXPORT_SYMBOL(sock_efree); 2164 2165 /* Buffer destructor for prefetch/receive path where reference count may 2166 * not be held, e.g. for listen sockets. 2167 */ 2168 #ifdef CONFIG_INET 2169 void sock_pfree(struct sk_buff *skb) 2170 { 2171 if (sk_is_refcounted(skb->sk)) 2172 sock_gen_put(skb->sk); 2173 } 2174 EXPORT_SYMBOL(sock_pfree); 2175 #endif /* CONFIG_INET */ 2176 2177 kuid_t sock_i_uid(struct sock *sk) 2178 { 2179 kuid_t uid; 2180 2181 read_lock_bh(&sk->sk_callback_lock); 2182 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2183 read_unlock_bh(&sk->sk_callback_lock); 2184 return uid; 2185 } 2186 EXPORT_SYMBOL(sock_i_uid); 2187 2188 unsigned long sock_i_ino(struct sock *sk) 2189 { 2190 unsigned long ino; 2191 2192 read_lock_bh(&sk->sk_callback_lock); 2193 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2194 read_unlock_bh(&sk->sk_callback_lock); 2195 return ino; 2196 } 2197 EXPORT_SYMBOL(sock_i_ino); 2198 2199 /* 2200 * Allocate a skb from the socket's send buffer. 2201 */ 2202 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2203 gfp_t priority) 2204 { 2205 if (force || 2206 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2207 struct sk_buff *skb = alloc_skb(size, priority); 2208 2209 if (skb) { 2210 skb_set_owner_w(skb, sk); 2211 return skb; 2212 } 2213 } 2214 return NULL; 2215 } 2216 EXPORT_SYMBOL(sock_wmalloc); 2217 2218 static void sock_ofree(struct sk_buff *skb) 2219 { 2220 struct sock *sk = skb->sk; 2221 2222 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2223 } 2224 2225 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2226 gfp_t priority) 2227 { 2228 struct sk_buff *skb; 2229 2230 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2231 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2232 sysctl_optmem_max) 2233 return NULL; 2234 2235 skb = alloc_skb(size, priority); 2236 if (!skb) 2237 return NULL; 2238 2239 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2240 skb->sk = sk; 2241 skb->destructor = sock_ofree; 2242 return skb; 2243 } 2244 2245 /* 2246 * Allocate a memory block from the socket's option memory buffer. 2247 */ 2248 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2249 { 2250 if ((unsigned int)size <= sysctl_optmem_max && 2251 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2252 void *mem; 2253 /* First do the add, to avoid the race if kmalloc 2254 * might sleep. 2255 */ 2256 atomic_add(size, &sk->sk_omem_alloc); 2257 mem = kmalloc(size, priority); 2258 if (mem) 2259 return mem; 2260 atomic_sub(size, &sk->sk_omem_alloc); 2261 } 2262 return NULL; 2263 } 2264 EXPORT_SYMBOL(sock_kmalloc); 2265 2266 /* Free an option memory block. Note, we actually want the inline 2267 * here as this allows gcc to detect the nullify and fold away the 2268 * condition entirely. 2269 */ 2270 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2271 const bool nullify) 2272 { 2273 if (WARN_ON_ONCE(!mem)) 2274 return; 2275 if (nullify) 2276 kfree_sensitive(mem); 2277 else 2278 kfree(mem); 2279 atomic_sub(size, &sk->sk_omem_alloc); 2280 } 2281 2282 void sock_kfree_s(struct sock *sk, void *mem, int size) 2283 { 2284 __sock_kfree_s(sk, mem, size, false); 2285 } 2286 EXPORT_SYMBOL(sock_kfree_s); 2287 2288 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2289 { 2290 __sock_kfree_s(sk, mem, size, true); 2291 } 2292 EXPORT_SYMBOL(sock_kzfree_s); 2293 2294 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2295 I think, these locks should be removed for datagram sockets. 2296 */ 2297 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2298 { 2299 DEFINE_WAIT(wait); 2300 2301 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2302 for (;;) { 2303 if (!timeo) 2304 break; 2305 if (signal_pending(current)) 2306 break; 2307 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2308 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2309 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2310 break; 2311 if (sk->sk_shutdown & SEND_SHUTDOWN) 2312 break; 2313 if (sk->sk_err) 2314 break; 2315 timeo = schedule_timeout(timeo); 2316 } 2317 finish_wait(sk_sleep(sk), &wait); 2318 return timeo; 2319 } 2320 2321 2322 /* 2323 * Generic send/receive buffer handlers 2324 */ 2325 2326 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2327 unsigned long data_len, int noblock, 2328 int *errcode, int max_page_order) 2329 { 2330 struct sk_buff *skb; 2331 long timeo; 2332 int err; 2333 2334 timeo = sock_sndtimeo(sk, noblock); 2335 for (;;) { 2336 err = sock_error(sk); 2337 if (err != 0) 2338 goto failure; 2339 2340 err = -EPIPE; 2341 if (sk->sk_shutdown & SEND_SHUTDOWN) 2342 goto failure; 2343 2344 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2345 break; 2346 2347 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2348 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2349 err = -EAGAIN; 2350 if (!timeo) 2351 goto failure; 2352 if (signal_pending(current)) 2353 goto interrupted; 2354 timeo = sock_wait_for_wmem(sk, timeo); 2355 } 2356 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2357 errcode, sk->sk_allocation); 2358 if (skb) 2359 skb_set_owner_w(skb, sk); 2360 return skb; 2361 2362 interrupted: 2363 err = sock_intr_errno(timeo); 2364 failure: 2365 *errcode = err; 2366 return NULL; 2367 } 2368 EXPORT_SYMBOL(sock_alloc_send_pskb); 2369 2370 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2371 int noblock, int *errcode) 2372 { 2373 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2374 } 2375 EXPORT_SYMBOL(sock_alloc_send_skb); 2376 2377 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2378 struct sockcm_cookie *sockc) 2379 { 2380 u32 tsflags; 2381 2382 switch (cmsg->cmsg_type) { 2383 case SO_MARK: 2384 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2385 return -EPERM; 2386 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2387 return -EINVAL; 2388 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2389 break; 2390 case SO_TIMESTAMPING_OLD: 2391 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2392 return -EINVAL; 2393 2394 tsflags = *(u32 *)CMSG_DATA(cmsg); 2395 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2396 return -EINVAL; 2397 2398 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2399 sockc->tsflags |= tsflags; 2400 break; 2401 case SCM_TXTIME: 2402 if (!sock_flag(sk, SOCK_TXTIME)) 2403 return -EINVAL; 2404 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2405 return -EINVAL; 2406 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2407 break; 2408 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2409 case SCM_RIGHTS: 2410 case SCM_CREDENTIALS: 2411 break; 2412 default: 2413 return -EINVAL; 2414 } 2415 return 0; 2416 } 2417 EXPORT_SYMBOL(__sock_cmsg_send); 2418 2419 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2420 struct sockcm_cookie *sockc) 2421 { 2422 struct cmsghdr *cmsg; 2423 int ret; 2424 2425 for_each_cmsghdr(cmsg, msg) { 2426 if (!CMSG_OK(msg, cmsg)) 2427 return -EINVAL; 2428 if (cmsg->cmsg_level != SOL_SOCKET) 2429 continue; 2430 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2431 if (ret) 2432 return ret; 2433 } 2434 return 0; 2435 } 2436 EXPORT_SYMBOL(sock_cmsg_send); 2437 2438 static void sk_enter_memory_pressure(struct sock *sk) 2439 { 2440 if (!sk->sk_prot->enter_memory_pressure) 2441 return; 2442 2443 sk->sk_prot->enter_memory_pressure(sk); 2444 } 2445 2446 static void sk_leave_memory_pressure(struct sock *sk) 2447 { 2448 if (sk->sk_prot->leave_memory_pressure) { 2449 sk->sk_prot->leave_memory_pressure(sk); 2450 } else { 2451 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2452 2453 if (memory_pressure && READ_ONCE(*memory_pressure)) 2454 WRITE_ONCE(*memory_pressure, 0); 2455 } 2456 } 2457 2458 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2459 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2460 2461 /** 2462 * skb_page_frag_refill - check that a page_frag contains enough room 2463 * @sz: minimum size of the fragment we want to get 2464 * @pfrag: pointer to page_frag 2465 * @gfp: priority for memory allocation 2466 * 2467 * Note: While this allocator tries to use high order pages, there is 2468 * no guarantee that allocations succeed. Therefore, @sz MUST be 2469 * less or equal than PAGE_SIZE. 2470 */ 2471 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2472 { 2473 if (pfrag->page) { 2474 if (page_ref_count(pfrag->page) == 1) { 2475 pfrag->offset = 0; 2476 return true; 2477 } 2478 if (pfrag->offset + sz <= pfrag->size) 2479 return true; 2480 put_page(pfrag->page); 2481 } 2482 2483 pfrag->offset = 0; 2484 if (SKB_FRAG_PAGE_ORDER && 2485 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2486 /* Avoid direct reclaim but allow kswapd to wake */ 2487 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2488 __GFP_COMP | __GFP_NOWARN | 2489 __GFP_NORETRY, 2490 SKB_FRAG_PAGE_ORDER); 2491 if (likely(pfrag->page)) { 2492 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2493 return true; 2494 } 2495 } 2496 pfrag->page = alloc_page(gfp); 2497 if (likely(pfrag->page)) { 2498 pfrag->size = PAGE_SIZE; 2499 return true; 2500 } 2501 return false; 2502 } 2503 EXPORT_SYMBOL(skb_page_frag_refill); 2504 2505 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2506 { 2507 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2508 return true; 2509 2510 sk_enter_memory_pressure(sk); 2511 sk_stream_moderate_sndbuf(sk); 2512 return false; 2513 } 2514 EXPORT_SYMBOL(sk_page_frag_refill); 2515 2516 void __lock_sock(struct sock *sk) 2517 __releases(&sk->sk_lock.slock) 2518 __acquires(&sk->sk_lock.slock) 2519 { 2520 DEFINE_WAIT(wait); 2521 2522 for (;;) { 2523 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2524 TASK_UNINTERRUPTIBLE); 2525 spin_unlock_bh(&sk->sk_lock.slock); 2526 schedule(); 2527 spin_lock_bh(&sk->sk_lock.slock); 2528 if (!sock_owned_by_user(sk)) 2529 break; 2530 } 2531 finish_wait(&sk->sk_lock.wq, &wait); 2532 } 2533 2534 void __release_sock(struct sock *sk) 2535 __releases(&sk->sk_lock.slock) 2536 __acquires(&sk->sk_lock.slock) 2537 { 2538 struct sk_buff *skb, *next; 2539 2540 while ((skb = sk->sk_backlog.head) != NULL) { 2541 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2542 2543 spin_unlock_bh(&sk->sk_lock.slock); 2544 2545 do { 2546 next = skb->next; 2547 prefetch(next); 2548 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2549 skb_mark_not_on_list(skb); 2550 sk_backlog_rcv(sk, skb); 2551 2552 cond_resched(); 2553 2554 skb = next; 2555 } while (skb != NULL); 2556 2557 spin_lock_bh(&sk->sk_lock.slock); 2558 } 2559 2560 /* 2561 * Doing the zeroing here guarantee we can not loop forever 2562 * while a wild producer attempts to flood us. 2563 */ 2564 sk->sk_backlog.len = 0; 2565 } 2566 2567 void __sk_flush_backlog(struct sock *sk) 2568 { 2569 spin_lock_bh(&sk->sk_lock.slock); 2570 __release_sock(sk); 2571 spin_unlock_bh(&sk->sk_lock.slock); 2572 } 2573 2574 /** 2575 * sk_wait_data - wait for data to arrive at sk_receive_queue 2576 * @sk: sock to wait on 2577 * @timeo: for how long 2578 * @skb: last skb seen on sk_receive_queue 2579 * 2580 * Now socket state including sk->sk_err is changed only under lock, 2581 * hence we may omit checks after joining wait queue. 2582 * We check receive queue before schedule() only as optimization; 2583 * it is very likely that release_sock() added new data. 2584 */ 2585 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2586 { 2587 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2588 int rc; 2589 2590 add_wait_queue(sk_sleep(sk), &wait); 2591 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2592 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2593 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2594 remove_wait_queue(sk_sleep(sk), &wait); 2595 return rc; 2596 } 2597 EXPORT_SYMBOL(sk_wait_data); 2598 2599 /** 2600 * __sk_mem_raise_allocated - increase memory_allocated 2601 * @sk: socket 2602 * @size: memory size to allocate 2603 * @amt: pages to allocate 2604 * @kind: allocation type 2605 * 2606 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2607 */ 2608 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2609 { 2610 struct proto *prot = sk->sk_prot; 2611 long allocated = sk_memory_allocated_add(sk, amt); 2612 bool charged = true; 2613 2614 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2615 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2616 goto suppress_allocation; 2617 2618 /* Under limit. */ 2619 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2620 sk_leave_memory_pressure(sk); 2621 return 1; 2622 } 2623 2624 /* Under pressure. */ 2625 if (allocated > sk_prot_mem_limits(sk, 1)) 2626 sk_enter_memory_pressure(sk); 2627 2628 /* Over hard limit. */ 2629 if (allocated > sk_prot_mem_limits(sk, 2)) 2630 goto suppress_allocation; 2631 2632 /* guarantee minimum buffer size under pressure */ 2633 if (kind == SK_MEM_RECV) { 2634 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2635 return 1; 2636 2637 } else { /* SK_MEM_SEND */ 2638 int wmem0 = sk_get_wmem0(sk, prot); 2639 2640 if (sk->sk_type == SOCK_STREAM) { 2641 if (sk->sk_wmem_queued < wmem0) 2642 return 1; 2643 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2644 return 1; 2645 } 2646 } 2647 2648 if (sk_has_memory_pressure(sk)) { 2649 u64 alloc; 2650 2651 if (!sk_under_memory_pressure(sk)) 2652 return 1; 2653 alloc = sk_sockets_allocated_read_positive(sk); 2654 if (sk_prot_mem_limits(sk, 2) > alloc * 2655 sk_mem_pages(sk->sk_wmem_queued + 2656 atomic_read(&sk->sk_rmem_alloc) + 2657 sk->sk_forward_alloc)) 2658 return 1; 2659 } 2660 2661 suppress_allocation: 2662 2663 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2664 sk_stream_moderate_sndbuf(sk); 2665 2666 /* Fail only if socket is _under_ its sndbuf. 2667 * In this case we cannot block, so that we have to fail. 2668 */ 2669 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2670 return 1; 2671 } 2672 2673 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2674 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2675 2676 sk_memory_allocated_sub(sk, amt); 2677 2678 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2679 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2680 2681 return 0; 2682 } 2683 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2684 2685 /** 2686 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2687 * @sk: socket 2688 * @size: memory size to allocate 2689 * @kind: allocation type 2690 * 2691 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2692 * rmem allocation. This function assumes that protocols which have 2693 * memory_pressure use sk_wmem_queued as write buffer accounting. 2694 */ 2695 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2696 { 2697 int ret, amt = sk_mem_pages(size); 2698 2699 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2700 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2701 if (!ret) 2702 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2703 return ret; 2704 } 2705 EXPORT_SYMBOL(__sk_mem_schedule); 2706 2707 /** 2708 * __sk_mem_reduce_allocated - reclaim memory_allocated 2709 * @sk: socket 2710 * @amount: number of quanta 2711 * 2712 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2713 */ 2714 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2715 { 2716 sk_memory_allocated_sub(sk, amount); 2717 2718 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2719 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2720 2721 if (sk_under_memory_pressure(sk) && 2722 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2723 sk_leave_memory_pressure(sk); 2724 } 2725 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2726 2727 /** 2728 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2729 * @sk: socket 2730 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2731 */ 2732 void __sk_mem_reclaim(struct sock *sk, int amount) 2733 { 2734 amount >>= SK_MEM_QUANTUM_SHIFT; 2735 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2736 __sk_mem_reduce_allocated(sk, amount); 2737 } 2738 EXPORT_SYMBOL(__sk_mem_reclaim); 2739 2740 int sk_set_peek_off(struct sock *sk, int val) 2741 { 2742 sk->sk_peek_off = val; 2743 return 0; 2744 } 2745 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2746 2747 /* 2748 * Set of default routines for initialising struct proto_ops when 2749 * the protocol does not support a particular function. In certain 2750 * cases where it makes no sense for a protocol to have a "do nothing" 2751 * function, some default processing is provided. 2752 */ 2753 2754 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2755 { 2756 return -EOPNOTSUPP; 2757 } 2758 EXPORT_SYMBOL(sock_no_bind); 2759 2760 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2761 int len, int flags) 2762 { 2763 return -EOPNOTSUPP; 2764 } 2765 EXPORT_SYMBOL(sock_no_connect); 2766 2767 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2768 { 2769 return -EOPNOTSUPP; 2770 } 2771 EXPORT_SYMBOL(sock_no_socketpair); 2772 2773 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2774 bool kern) 2775 { 2776 return -EOPNOTSUPP; 2777 } 2778 EXPORT_SYMBOL(sock_no_accept); 2779 2780 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2781 int peer) 2782 { 2783 return -EOPNOTSUPP; 2784 } 2785 EXPORT_SYMBOL(sock_no_getname); 2786 2787 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2788 { 2789 return -EOPNOTSUPP; 2790 } 2791 EXPORT_SYMBOL(sock_no_ioctl); 2792 2793 int sock_no_listen(struct socket *sock, int backlog) 2794 { 2795 return -EOPNOTSUPP; 2796 } 2797 EXPORT_SYMBOL(sock_no_listen); 2798 2799 int sock_no_shutdown(struct socket *sock, int how) 2800 { 2801 return -EOPNOTSUPP; 2802 } 2803 EXPORT_SYMBOL(sock_no_shutdown); 2804 2805 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2806 { 2807 return -EOPNOTSUPP; 2808 } 2809 EXPORT_SYMBOL(sock_no_sendmsg); 2810 2811 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2812 { 2813 return -EOPNOTSUPP; 2814 } 2815 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2816 2817 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2818 int flags) 2819 { 2820 return -EOPNOTSUPP; 2821 } 2822 EXPORT_SYMBOL(sock_no_recvmsg); 2823 2824 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2825 { 2826 /* Mirror missing mmap method error code */ 2827 return -ENODEV; 2828 } 2829 EXPORT_SYMBOL(sock_no_mmap); 2830 2831 /* 2832 * When a file is received (via SCM_RIGHTS, etc), we must bump the 2833 * various sock-based usage counts. 2834 */ 2835 void __receive_sock(struct file *file) 2836 { 2837 struct socket *sock; 2838 2839 sock = sock_from_file(file); 2840 if (sock) { 2841 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 2842 sock_update_classid(&sock->sk->sk_cgrp_data); 2843 } 2844 } 2845 2846 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2847 { 2848 ssize_t res; 2849 struct msghdr msg = {.msg_flags = flags}; 2850 struct kvec iov; 2851 char *kaddr = kmap(page); 2852 iov.iov_base = kaddr + offset; 2853 iov.iov_len = size; 2854 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2855 kunmap(page); 2856 return res; 2857 } 2858 EXPORT_SYMBOL(sock_no_sendpage); 2859 2860 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2861 int offset, size_t size, int flags) 2862 { 2863 ssize_t res; 2864 struct msghdr msg = {.msg_flags = flags}; 2865 struct kvec iov; 2866 char *kaddr = kmap(page); 2867 2868 iov.iov_base = kaddr + offset; 2869 iov.iov_len = size; 2870 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2871 kunmap(page); 2872 return res; 2873 } 2874 EXPORT_SYMBOL(sock_no_sendpage_locked); 2875 2876 /* 2877 * Default Socket Callbacks 2878 */ 2879 2880 static void sock_def_wakeup(struct sock *sk) 2881 { 2882 struct socket_wq *wq; 2883 2884 rcu_read_lock(); 2885 wq = rcu_dereference(sk->sk_wq); 2886 if (skwq_has_sleeper(wq)) 2887 wake_up_interruptible_all(&wq->wait); 2888 rcu_read_unlock(); 2889 } 2890 2891 static void sock_def_error_report(struct sock *sk) 2892 { 2893 struct socket_wq *wq; 2894 2895 rcu_read_lock(); 2896 wq = rcu_dereference(sk->sk_wq); 2897 if (skwq_has_sleeper(wq)) 2898 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2899 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2900 rcu_read_unlock(); 2901 } 2902 2903 void sock_def_readable(struct sock *sk) 2904 { 2905 struct socket_wq *wq; 2906 2907 rcu_read_lock(); 2908 wq = rcu_dereference(sk->sk_wq); 2909 if (skwq_has_sleeper(wq)) 2910 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2911 EPOLLRDNORM | EPOLLRDBAND); 2912 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2913 rcu_read_unlock(); 2914 } 2915 2916 static void sock_def_write_space(struct sock *sk) 2917 { 2918 struct socket_wq *wq; 2919 2920 rcu_read_lock(); 2921 2922 /* Do not wake up a writer until he can make "significant" 2923 * progress. --DaveM 2924 */ 2925 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2926 wq = rcu_dereference(sk->sk_wq); 2927 if (skwq_has_sleeper(wq)) 2928 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2929 EPOLLWRNORM | EPOLLWRBAND); 2930 2931 /* Should agree with poll, otherwise some programs break */ 2932 if (sock_writeable(sk)) 2933 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2934 } 2935 2936 rcu_read_unlock(); 2937 } 2938 2939 static void sock_def_destruct(struct sock *sk) 2940 { 2941 } 2942 2943 void sk_send_sigurg(struct sock *sk) 2944 { 2945 if (sk->sk_socket && sk->sk_socket->file) 2946 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2947 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2948 } 2949 EXPORT_SYMBOL(sk_send_sigurg); 2950 2951 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2952 unsigned long expires) 2953 { 2954 if (!mod_timer(timer, expires)) 2955 sock_hold(sk); 2956 } 2957 EXPORT_SYMBOL(sk_reset_timer); 2958 2959 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2960 { 2961 if (del_timer(timer)) 2962 __sock_put(sk); 2963 } 2964 EXPORT_SYMBOL(sk_stop_timer); 2965 2966 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 2967 { 2968 if (del_timer_sync(timer)) 2969 __sock_put(sk); 2970 } 2971 EXPORT_SYMBOL(sk_stop_timer_sync); 2972 2973 void sock_init_data(struct socket *sock, struct sock *sk) 2974 { 2975 sk_init_common(sk); 2976 sk->sk_send_head = NULL; 2977 2978 timer_setup(&sk->sk_timer, NULL, 0); 2979 2980 sk->sk_allocation = GFP_KERNEL; 2981 sk->sk_rcvbuf = sysctl_rmem_default; 2982 sk->sk_sndbuf = sysctl_wmem_default; 2983 sk->sk_state = TCP_CLOSE; 2984 sk_set_socket(sk, sock); 2985 2986 sock_set_flag(sk, SOCK_ZAPPED); 2987 2988 if (sock) { 2989 sk->sk_type = sock->type; 2990 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2991 sock->sk = sk; 2992 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2993 } else { 2994 RCU_INIT_POINTER(sk->sk_wq, NULL); 2995 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2996 } 2997 2998 rwlock_init(&sk->sk_callback_lock); 2999 if (sk->sk_kern_sock) 3000 lockdep_set_class_and_name( 3001 &sk->sk_callback_lock, 3002 af_kern_callback_keys + sk->sk_family, 3003 af_family_kern_clock_key_strings[sk->sk_family]); 3004 else 3005 lockdep_set_class_and_name( 3006 &sk->sk_callback_lock, 3007 af_callback_keys + sk->sk_family, 3008 af_family_clock_key_strings[sk->sk_family]); 3009 3010 sk->sk_state_change = sock_def_wakeup; 3011 sk->sk_data_ready = sock_def_readable; 3012 sk->sk_write_space = sock_def_write_space; 3013 sk->sk_error_report = sock_def_error_report; 3014 sk->sk_destruct = sock_def_destruct; 3015 3016 sk->sk_frag.page = NULL; 3017 sk->sk_frag.offset = 0; 3018 sk->sk_peek_off = -1; 3019 3020 sk->sk_peer_pid = NULL; 3021 sk->sk_peer_cred = NULL; 3022 sk->sk_write_pending = 0; 3023 sk->sk_rcvlowat = 1; 3024 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3025 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3026 3027 sk->sk_stamp = SK_DEFAULT_STAMP; 3028 #if BITS_PER_LONG==32 3029 seqlock_init(&sk->sk_stamp_seq); 3030 #endif 3031 atomic_set(&sk->sk_zckey, 0); 3032 3033 #ifdef CONFIG_NET_RX_BUSY_POLL 3034 sk->sk_napi_id = 0; 3035 sk->sk_ll_usec = sysctl_net_busy_read; 3036 #endif 3037 3038 sk->sk_max_pacing_rate = ~0UL; 3039 sk->sk_pacing_rate = ~0UL; 3040 WRITE_ONCE(sk->sk_pacing_shift, 10); 3041 sk->sk_incoming_cpu = -1; 3042 3043 sk_rx_queue_clear(sk); 3044 /* 3045 * Before updating sk_refcnt, we must commit prior changes to memory 3046 * (Documentation/RCU/rculist_nulls.rst for details) 3047 */ 3048 smp_wmb(); 3049 refcount_set(&sk->sk_refcnt, 1); 3050 atomic_set(&sk->sk_drops, 0); 3051 } 3052 EXPORT_SYMBOL(sock_init_data); 3053 3054 void lock_sock_nested(struct sock *sk, int subclass) 3055 { 3056 might_sleep(); 3057 spin_lock_bh(&sk->sk_lock.slock); 3058 if (sk->sk_lock.owned) 3059 __lock_sock(sk); 3060 sk->sk_lock.owned = 1; 3061 spin_unlock(&sk->sk_lock.slock); 3062 /* 3063 * The sk_lock has mutex_lock() semantics here: 3064 */ 3065 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3066 local_bh_enable(); 3067 } 3068 EXPORT_SYMBOL(lock_sock_nested); 3069 3070 void release_sock(struct sock *sk) 3071 { 3072 spin_lock_bh(&sk->sk_lock.slock); 3073 if (sk->sk_backlog.tail) 3074 __release_sock(sk); 3075 3076 /* Warning : release_cb() might need to release sk ownership, 3077 * ie call sock_release_ownership(sk) before us. 3078 */ 3079 if (sk->sk_prot->release_cb) 3080 sk->sk_prot->release_cb(sk); 3081 3082 sock_release_ownership(sk); 3083 if (waitqueue_active(&sk->sk_lock.wq)) 3084 wake_up(&sk->sk_lock.wq); 3085 spin_unlock_bh(&sk->sk_lock.slock); 3086 } 3087 EXPORT_SYMBOL(release_sock); 3088 3089 /** 3090 * lock_sock_fast - fast version of lock_sock 3091 * @sk: socket 3092 * 3093 * This version should be used for very small section, where process wont block 3094 * return false if fast path is taken: 3095 * 3096 * sk_lock.slock locked, owned = 0, BH disabled 3097 * 3098 * return true if slow path is taken: 3099 * 3100 * sk_lock.slock unlocked, owned = 1, BH enabled 3101 */ 3102 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3103 { 3104 might_sleep(); 3105 spin_lock_bh(&sk->sk_lock.slock); 3106 3107 if (!sk->sk_lock.owned) 3108 /* 3109 * Note : We must disable BH 3110 */ 3111 return false; 3112 3113 __lock_sock(sk); 3114 sk->sk_lock.owned = 1; 3115 spin_unlock(&sk->sk_lock.slock); 3116 /* 3117 * The sk_lock has mutex_lock() semantics here: 3118 */ 3119 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3120 __acquire(&sk->sk_lock.slock); 3121 local_bh_enable(); 3122 return true; 3123 } 3124 EXPORT_SYMBOL(lock_sock_fast); 3125 3126 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3127 bool timeval, bool time32) 3128 { 3129 struct sock *sk = sock->sk; 3130 struct timespec64 ts; 3131 3132 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3133 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3134 if (ts.tv_sec == -1) 3135 return -ENOENT; 3136 if (ts.tv_sec == 0) { 3137 ktime_t kt = ktime_get_real(); 3138 sock_write_timestamp(sk, kt); 3139 ts = ktime_to_timespec64(kt); 3140 } 3141 3142 if (timeval) 3143 ts.tv_nsec /= 1000; 3144 3145 #ifdef CONFIG_COMPAT_32BIT_TIME 3146 if (time32) 3147 return put_old_timespec32(&ts, userstamp); 3148 #endif 3149 #ifdef CONFIG_SPARC64 3150 /* beware of padding in sparc64 timeval */ 3151 if (timeval && !in_compat_syscall()) { 3152 struct __kernel_old_timeval __user tv = { 3153 .tv_sec = ts.tv_sec, 3154 .tv_usec = ts.tv_nsec, 3155 }; 3156 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3157 return -EFAULT; 3158 return 0; 3159 } 3160 #endif 3161 return put_timespec64(&ts, userstamp); 3162 } 3163 EXPORT_SYMBOL(sock_gettstamp); 3164 3165 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3166 { 3167 if (!sock_flag(sk, flag)) { 3168 unsigned long previous_flags = sk->sk_flags; 3169 3170 sock_set_flag(sk, flag); 3171 /* 3172 * we just set one of the two flags which require net 3173 * time stamping, but time stamping might have been on 3174 * already because of the other one 3175 */ 3176 if (sock_needs_netstamp(sk) && 3177 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3178 net_enable_timestamp(); 3179 } 3180 } 3181 3182 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3183 int level, int type) 3184 { 3185 struct sock_exterr_skb *serr; 3186 struct sk_buff *skb; 3187 int copied, err; 3188 3189 err = -EAGAIN; 3190 skb = sock_dequeue_err_skb(sk); 3191 if (skb == NULL) 3192 goto out; 3193 3194 copied = skb->len; 3195 if (copied > len) { 3196 msg->msg_flags |= MSG_TRUNC; 3197 copied = len; 3198 } 3199 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3200 if (err) 3201 goto out_free_skb; 3202 3203 sock_recv_timestamp(msg, sk, skb); 3204 3205 serr = SKB_EXT_ERR(skb); 3206 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3207 3208 msg->msg_flags |= MSG_ERRQUEUE; 3209 err = copied; 3210 3211 out_free_skb: 3212 kfree_skb(skb); 3213 out: 3214 return err; 3215 } 3216 EXPORT_SYMBOL(sock_recv_errqueue); 3217 3218 /* 3219 * Get a socket option on an socket. 3220 * 3221 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3222 * asynchronous errors should be reported by getsockopt. We assume 3223 * this means if you specify SO_ERROR (otherwise whats the point of it). 3224 */ 3225 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3226 char __user *optval, int __user *optlen) 3227 { 3228 struct sock *sk = sock->sk; 3229 3230 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3231 } 3232 EXPORT_SYMBOL(sock_common_getsockopt); 3233 3234 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3235 int flags) 3236 { 3237 struct sock *sk = sock->sk; 3238 int addr_len = 0; 3239 int err; 3240 3241 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3242 flags & ~MSG_DONTWAIT, &addr_len); 3243 if (err >= 0) 3244 msg->msg_namelen = addr_len; 3245 return err; 3246 } 3247 EXPORT_SYMBOL(sock_common_recvmsg); 3248 3249 /* 3250 * Set socket options on an inet socket. 3251 */ 3252 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3253 sockptr_t optval, unsigned int optlen) 3254 { 3255 struct sock *sk = sock->sk; 3256 3257 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3258 } 3259 EXPORT_SYMBOL(sock_common_setsockopt); 3260 3261 void sk_common_release(struct sock *sk) 3262 { 3263 if (sk->sk_prot->destroy) 3264 sk->sk_prot->destroy(sk); 3265 3266 /* 3267 * Observation: when sk_common_release is called, processes have 3268 * no access to socket. But net still has. 3269 * Step one, detach it from networking: 3270 * 3271 * A. Remove from hash tables. 3272 */ 3273 3274 sk->sk_prot->unhash(sk); 3275 3276 /* 3277 * In this point socket cannot receive new packets, but it is possible 3278 * that some packets are in flight because some CPU runs receiver and 3279 * did hash table lookup before we unhashed socket. They will achieve 3280 * receive queue and will be purged by socket destructor. 3281 * 3282 * Also we still have packets pending on receive queue and probably, 3283 * our own packets waiting in device queues. sock_destroy will drain 3284 * receive queue, but transmitted packets will delay socket destruction 3285 * until the last reference will be released. 3286 */ 3287 3288 sock_orphan(sk); 3289 3290 xfrm_sk_free_policy(sk); 3291 3292 sk_refcnt_debug_release(sk); 3293 3294 sock_put(sk); 3295 } 3296 EXPORT_SYMBOL(sk_common_release); 3297 3298 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3299 { 3300 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3301 3302 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3303 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3304 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3305 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3306 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3307 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3308 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3309 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3310 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3311 } 3312 3313 #ifdef CONFIG_PROC_FS 3314 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3315 struct prot_inuse { 3316 int val[PROTO_INUSE_NR]; 3317 }; 3318 3319 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3320 3321 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3322 { 3323 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3324 } 3325 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3326 3327 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3328 { 3329 int cpu, idx = prot->inuse_idx; 3330 int res = 0; 3331 3332 for_each_possible_cpu(cpu) 3333 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3334 3335 return res >= 0 ? res : 0; 3336 } 3337 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3338 3339 static void sock_inuse_add(struct net *net, int val) 3340 { 3341 this_cpu_add(*net->core.sock_inuse, val); 3342 } 3343 3344 int sock_inuse_get(struct net *net) 3345 { 3346 int cpu, res = 0; 3347 3348 for_each_possible_cpu(cpu) 3349 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3350 3351 return res; 3352 } 3353 3354 EXPORT_SYMBOL_GPL(sock_inuse_get); 3355 3356 static int __net_init sock_inuse_init_net(struct net *net) 3357 { 3358 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3359 if (net->core.prot_inuse == NULL) 3360 return -ENOMEM; 3361 3362 net->core.sock_inuse = alloc_percpu(int); 3363 if (net->core.sock_inuse == NULL) 3364 goto out; 3365 3366 return 0; 3367 3368 out: 3369 free_percpu(net->core.prot_inuse); 3370 return -ENOMEM; 3371 } 3372 3373 static void __net_exit sock_inuse_exit_net(struct net *net) 3374 { 3375 free_percpu(net->core.prot_inuse); 3376 free_percpu(net->core.sock_inuse); 3377 } 3378 3379 static struct pernet_operations net_inuse_ops = { 3380 .init = sock_inuse_init_net, 3381 .exit = sock_inuse_exit_net, 3382 }; 3383 3384 static __init int net_inuse_init(void) 3385 { 3386 if (register_pernet_subsys(&net_inuse_ops)) 3387 panic("Cannot initialize net inuse counters"); 3388 3389 return 0; 3390 } 3391 3392 core_initcall(net_inuse_init); 3393 3394 static int assign_proto_idx(struct proto *prot) 3395 { 3396 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3397 3398 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3399 pr_err("PROTO_INUSE_NR exhausted\n"); 3400 return -ENOSPC; 3401 } 3402 3403 set_bit(prot->inuse_idx, proto_inuse_idx); 3404 return 0; 3405 } 3406 3407 static void release_proto_idx(struct proto *prot) 3408 { 3409 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3410 clear_bit(prot->inuse_idx, proto_inuse_idx); 3411 } 3412 #else 3413 static inline int assign_proto_idx(struct proto *prot) 3414 { 3415 return 0; 3416 } 3417 3418 static inline void release_proto_idx(struct proto *prot) 3419 { 3420 } 3421 3422 static void sock_inuse_add(struct net *net, int val) 3423 { 3424 } 3425 #endif 3426 3427 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3428 { 3429 if (!twsk_prot) 3430 return; 3431 kfree(twsk_prot->twsk_slab_name); 3432 twsk_prot->twsk_slab_name = NULL; 3433 kmem_cache_destroy(twsk_prot->twsk_slab); 3434 twsk_prot->twsk_slab = NULL; 3435 } 3436 3437 static int tw_prot_init(const struct proto *prot) 3438 { 3439 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3440 3441 if (!twsk_prot) 3442 return 0; 3443 3444 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3445 prot->name); 3446 if (!twsk_prot->twsk_slab_name) 3447 return -ENOMEM; 3448 3449 twsk_prot->twsk_slab = 3450 kmem_cache_create(twsk_prot->twsk_slab_name, 3451 twsk_prot->twsk_obj_size, 0, 3452 SLAB_ACCOUNT | prot->slab_flags, 3453 NULL); 3454 if (!twsk_prot->twsk_slab) { 3455 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3456 prot->name); 3457 return -ENOMEM; 3458 } 3459 3460 return 0; 3461 } 3462 3463 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3464 { 3465 if (!rsk_prot) 3466 return; 3467 kfree(rsk_prot->slab_name); 3468 rsk_prot->slab_name = NULL; 3469 kmem_cache_destroy(rsk_prot->slab); 3470 rsk_prot->slab = NULL; 3471 } 3472 3473 static int req_prot_init(const struct proto *prot) 3474 { 3475 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3476 3477 if (!rsk_prot) 3478 return 0; 3479 3480 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3481 prot->name); 3482 if (!rsk_prot->slab_name) 3483 return -ENOMEM; 3484 3485 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3486 rsk_prot->obj_size, 0, 3487 SLAB_ACCOUNT | prot->slab_flags, 3488 NULL); 3489 3490 if (!rsk_prot->slab) { 3491 pr_crit("%s: Can't create request sock SLAB cache!\n", 3492 prot->name); 3493 return -ENOMEM; 3494 } 3495 return 0; 3496 } 3497 3498 int proto_register(struct proto *prot, int alloc_slab) 3499 { 3500 int ret = -ENOBUFS; 3501 3502 if (alloc_slab) { 3503 prot->slab = kmem_cache_create_usercopy(prot->name, 3504 prot->obj_size, 0, 3505 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3506 prot->slab_flags, 3507 prot->useroffset, prot->usersize, 3508 NULL); 3509 3510 if (prot->slab == NULL) { 3511 pr_crit("%s: Can't create sock SLAB cache!\n", 3512 prot->name); 3513 goto out; 3514 } 3515 3516 if (req_prot_init(prot)) 3517 goto out_free_request_sock_slab; 3518 3519 if (tw_prot_init(prot)) 3520 goto out_free_timewait_sock_slab; 3521 } 3522 3523 mutex_lock(&proto_list_mutex); 3524 ret = assign_proto_idx(prot); 3525 if (ret) { 3526 mutex_unlock(&proto_list_mutex); 3527 goto out_free_timewait_sock_slab; 3528 } 3529 list_add(&prot->node, &proto_list); 3530 mutex_unlock(&proto_list_mutex); 3531 return ret; 3532 3533 out_free_timewait_sock_slab: 3534 if (alloc_slab) 3535 tw_prot_cleanup(prot->twsk_prot); 3536 out_free_request_sock_slab: 3537 if (alloc_slab) { 3538 req_prot_cleanup(prot->rsk_prot); 3539 3540 kmem_cache_destroy(prot->slab); 3541 prot->slab = NULL; 3542 } 3543 out: 3544 return ret; 3545 } 3546 EXPORT_SYMBOL(proto_register); 3547 3548 void proto_unregister(struct proto *prot) 3549 { 3550 mutex_lock(&proto_list_mutex); 3551 release_proto_idx(prot); 3552 list_del(&prot->node); 3553 mutex_unlock(&proto_list_mutex); 3554 3555 kmem_cache_destroy(prot->slab); 3556 prot->slab = NULL; 3557 3558 req_prot_cleanup(prot->rsk_prot); 3559 tw_prot_cleanup(prot->twsk_prot); 3560 } 3561 EXPORT_SYMBOL(proto_unregister); 3562 3563 int sock_load_diag_module(int family, int protocol) 3564 { 3565 if (!protocol) { 3566 if (!sock_is_registered(family)) 3567 return -ENOENT; 3568 3569 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3570 NETLINK_SOCK_DIAG, family); 3571 } 3572 3573 #ifdef CONFIG_INET 3574 if (family == AF_INET && 3575 protocol != IPPROTO_RAW && 3576 protocol < MAX_INET_PROTOS && 3577 !rcu_access_pointer(inet_protos[protocol])) 3578 return -ENOENT; 3579 #endif 3580 3581 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3582 NETLINK_SOCK_DIAG, family, protocol); 3583 } 3584 EXPORT_SYMBOL(sock_load_diag_module); 3585 3586 #ifdef CONFIG_PROC_FS 3587 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3588 __acquires(proto_list_mutex) 3589 { 3590 mutex_lock(&proto_list_mutex); 3591 return seq_list_start_head(&proto_list, *pos); 3592 } 3593 3594 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3595 { 3596 return seq_list_next(v, &proto_list, pos); 3597 } 3598 3599 static void proto_seq_stop(struct seq_file *seq, void *v) 3600 __releases(proto_list_mutex) 3601 { 3602 mutex_unlock(&proto_list_mutex); 3603 } 3604 3605 static char proto_method_implemented(const void *method) 3606 { 3607 return method == NULL ? 'n' : 'y'; 3608 } 3609 static long sock_prot_memory_allocated(struct proto *proto) 3610 { 3611 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3612 } 3613 3614 static const char *sock_prot_memory_pressure(struct proto *proto) 3615 { 3616 return proto->memory_pressure != NULL ? 3617 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3618 } 3619 3620 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3621 { 3622 3623 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3624 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3625 proto->name, 3626 proto->obj_size, 3627 sock_prot_inuse_get(seq_file_net(seq), proto), 3628 sock_prot_memory_allocated(proto), 3629 sock_prot_memory_pressure(proto), 3630 proto->max_header, 3631 proto->slab == NULL ? "no" : "yes", 3632 module_name(proto->owner), 3633 proto_method_implemented(proto->close), 3634 proto_method_implemented(proto->connect), 3635 proto_method_implemented(proto->disconnect), 3636 proto_method_implemented(proto->accept), 3637 proto_method_implemented(proto->ioctl), 3638 proto_method_implemented(proto->init), 3639 proto_method_implemented(proto->destroy), 3640 proto_method_implemented(proto->shutdown), 3641 proto_method_implemented(proto->setsockopt), 3642 proto_method_implemented(proto->getsockopt), 3643 proto_method_implemented(proto->sendmsg), 3644 proto_method_implemented(proto->recvmsg), 3645 proto_method_implemented(proto->sendpage), 3646 proto_method_implemented(proto->bind), 3647 proto_method_implemented(proto->backlog_rcv), 3648 proto_method_implemented(proto->hash), 3649 proto_method_implemented(proto->unhash), 3650 proto_method_implemented(proto->get_port), 3651 proto_method_implemented(proto->enter_memory_pressure)); 3652 } 3653 3654 static int proto_seq_show(struct seq_file *seq, void *v) 3655 { 3656 if (v == &proto_list) 3657 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3658 "protocol", 3659 "size", 3660 "sockets", 3661 "memory", 3662 "press", 3663 "maxhdr", 3664 "slab", 3665 "module", 3666 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3667 else 3668 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3669 return 0; 3670 } 3671 3672 static const struct seq_operations proto_seq_ops = { 3673 .start = proto_seq_start, 3674 .next = proto_seq_next, 3675 .stop = proto_seq_stop, 3676 .show = proto_seq_show, 3677 }; 3678 3679 static __net_init int proto_init_net(struct net *net) 3680 { 3681 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3682 sizeof(struct seq_net_private))) 3683 return -ENOMEM; 3684 3685 return 0; 3686 } 3687 3688 static __net_exit void proto_exit_net(struct net *net) 3689 { 3690 remove_proc_entry("protocols", net->proc_net); 3691 } 3692 3693 3694 static __net_initdata struct pernet_operations proto_net_ops = { 3695 .init = proto_init_net, 3696 .exit = proto_exit_net, 3697 }; 3698 3699 static int __init proto_init(void) 3700 { 3701 return register_pernet_subsys(&proto_net_ops); 3702 } 3703 3704 subsys_initcall(proto_init); 3705 3706 #endif /* PROC_FS */ 3707 3708 #ifdef CONFIG_NET_RX_BUSY_POLL 3709 bool sk_busy_loop_end(void *p, unsigned long start_time) 3710 { 3711 struct sock *sk = p; 3712 3713 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3714 sk_busy_loop_timeout(sk, start_time); 3715 } 3716 EXPORT_SYMBOL(sk_busy_loop_end); 3717 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3718 3719 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3720 { 3721 if (!sk->sk_prot->bind_add) 3722 return -EOPNOTSUPP; 3723 return sk->sk_prot->bind_add(sk, addr, addr_len); 3724 } 3725 EXPORT_SYMBOL(sock_bind_add); 3726