1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 static DEFINE_MUTEX(proto_list_mutex); 143 static LIST_HEAD(proto_list); 144 145 static void sock_inuse_add(struct net *net, int val); 146 147 /** 148 * sk_ns_capable - General socket capability test 149 * @sk: Socket to use a capability on or through 150 * @user_ns: The user namespace of the capability to use 151 * @cap: The capability to use 152 * 153 * Test to see if the opener of the socket had when the socket was 154 * created and the current process has the capability @cap in the user 155 * namespace @user_ns. 156 */ 157 bool sk_ns_capable(const struct sock *sk, 158 struct user_namespace *user_ns, int cap) 159 { 160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 161 ns_capable(user_ns, cap); 162 } 163 EXPORT_SYMBOL(sk_ns_capable); 164 165 /** 166 * sk_capable - Socket global capability test 167 * @sk: Socket to use a capability on or through 168 * @cap: The global capability to use 169 * 170 * Test to see if the opener of the socket had when the socket was 171 * created and the current process has the capability @cap in all user 172 * namespaces. 173 */ 174 bool sk_capable(const struct sock *sk, int cap) 175 { 176 return sk_ns_capable(sk, &init_user_ns, cap); 177 } 178 EXPORT_SYMBOL(sk_capable); 179 180 /** 181 * sk_net_capable - Network namespace socket capability test 182 * @sk: Socket to use a capability on or through 183 * @cap: The capability to use 184 * 185 * Test to see if the opener of the socket had when the socket was created 186 * and the current process has the capability @cap over the network namespace 187 * the socket is a member of. 188 */ 189 bool sk_net_capable(const struct sock *sk, int cap) 190 { 191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 192 } 193 EXPORT_SYMBOL(sk_net_capable); 194 195 /* 196 * Each address family might have different locking rules, so we have 197 * one slock key per address family and separate keys for internal and 198 * userspace sockets. 199 */ 200 static struct lock_class_key af_family_keys[AF_MAX]; 201 static struct lock_class_key af_family_kern_keys[AF_MAX]; 202 static struct lock_class_key af_family_slock_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 211 #define _sock_locks(x) \ 212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 221 x "27" , x "28" , x "AF_CAN" , \ 222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 227 x "AF_MAX" 228 229 static const char *const af_family_key_strings[AF_MAX+1] = { 230 _sock_locks("sk_lock-") 231 }; 232 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 233 _sock_locks("slock-") 234 }; 235 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 236 _sock_locks("clock-") 237 }; 238 239 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 240 _sock_locks("k-sk_lock-") 241 }; 242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("k-slock-") 244 }; 245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-clock-") 247 }; 248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 249 _sock_locks("rlock-") 250 }; 251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 252 _sock_locks("wlock-") 253 }; 254 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 255 _sock_locks("elock-") 256 }; 257 258 /* 259 * sk_callback_lock and sk queues locking rules are per-address-family, 260 * so split the lock classes by using a per-AF key: 261 */ 262 static struct lock_class_key af_callback_keys[AF_MAX]; 263 static struct lock_class_key af_rlock_keys[AF_MAX]; 264 static struct lock_class_key af_wlock_keys[AF_MAX]; 265 static struct lock_class_key af_elock_keys[AF_MAX]; 266 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 267 268 /* Run time adjustable parameters. */ 269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 270 EXPORT_SYMBOL(sysctl_wmem_max); 271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 272 EXPORT_SYMBOL(sysctl_rmem_max); 273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 275 276 /* Maximal space eaten by iovec or ancillary data plus some space */ 277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 278 EXPORT_SYMBOL(sysctl_optmem_max); 279 280 int sysctl_tstamp_allow_data __read_mostly = 1; 281 282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 283 EXPORT_SYMBOL_GPL(memalloc_socks_key); 284 285 /** 286 * sk_set_memalloc - sets %SOCK_MEMALLOC 287 * @sk: socket to set it on 288 * 289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 290 * It's the responsibility of the admin to adjust min_free_kbytes 291 * to meet the requirements 292 */ 293 void sk_set_memalloc(struct sock *sk) 294 { 295 sock_set_flag(sk, SOCK_MEMALLOC); 296 sk->sk_allocation |= __GFP_MEMALLOC; 297 static_branch_inc(&memalloc_socks_key); 298 } 299 EXPORT_SYMBOL_GPL(sk_set_memalloc); 300 301 void sk_clear_memalloc(struct sock *sk) 302 { 303 sock_reset_flag(sk, SOCK_MEMALLOC); 304 sk->sk_allocation &= ~__GFP_MEMALLOC; 305 static_branch_dec(&memalloc_socks_key); 306 307 /* 308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 309 * progress of swapping. SOCK_MEMALLOC may be cleared while 310 * it has rmem allocations due to the last swapfile being deactivated 311 * but there is a risk that the socket is unusable due to exceeding 312 * the rmem limits. Reclaim the reserves and obey rmem limits again. 313 */ 314 sk_mem_reclaim(sk); 315 } 316 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 317 318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 319 { 320 int ret; 321 unsigned int noreclaim_flag; 322 323 /* these should have been dropped before queueing */ 324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 325 326 noreclaim_flag = memalloc_noreclaim_save(); 327 ret = sk->sk_backlog_rcv(sk, skb); 328 memalloc_noreclaim_restore(noreclaim_flag); 329 330 return ret; 331 } 332 EXPORT_SYMBOL(__sk_backlog_rcv); 333 334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 335 { 336 struct __kernel_sock_timeval tv; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 return sizeof(old_tv); 358 } 359 360 *(struct __kernel_sock_timeval *)optval = tv; 361 return sizeof(tv); 362 } 363 364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 365 bool old_timeval) 366 { 367 struct __kernel_sock_timeval tv; 368 369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 370 struct old_timeval32 tv32; 371 372 if (optlen < sizeof(tv32)) 373 return -EINVAL; 374 375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 376 return -EFAULT; 377 tv.tv_sec = tv32.tv_sec; 378 tv.tv_usec = tv32.tv_usec; 379 } else if (old_timeval) { 380 struct __kernel_old_timeval old_tv; 381 382 if (optlen < sizeof(old_tv)) 383 return -EINVAL; 384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 385 return -EFAULT; 386 tv.tv_sec = old_tv.tv_sec; 387 tv.tv_usec = old_tv.tv_usec; 388 } else { 389 if (optlen < sizeof(tv)) 390 return -EINVAL; 391 if (copy_from_sockptr(&tv, optval, sizeof(tv))) 392 return -EFAULT; 393 } 394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 395 return -EDOM; 396 397 if (tv.tv_sec < 0) { 398 static int warned __read_mostly; 399 400 *timeo_p = 0; 401 if (warned < 10 && net_ratelimit()) { 402 warned++; 403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 404 __func__, current->comm, task_pid_nr(current)); 405 } 406 return 0; 407 } 408 *timeo_p = MAX_SCHEDULE_TIMEOUT; 409 if (tv.tv_sec == 0 && tv.tv_usec == 0) 410 return 0; 411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 413 return 0; 414 } 415 416 static void sock_warn_obsolete_bsdism(const char *name) 417 { 418 static int warned; 419 static char warncomm[TASK_COMM_LEN]; 420 if (strcmp(warncomm, current->comm) && warned < 5) { 421 strcpy(warncomm, current->comm); 422 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 423 warncomm, name); 424 warned++; 425 } 426 } 427 428 static bool sock_needs_netstamp(const struct sock *sk) 429 { 430 switch (sk->sk_family) { 431 case AF_UNSPEC: 432 case AF_UNIX: 433 return false; 434 default: 435 return true; 436 } 437 } 438 439 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 440 { 441 if (sk->sk_flags & flags) { 442 sk->sk_flags &= ~flags; 443 if (sock_needs_netstamp(sk) && 444 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 445 net_disable_timestamp(); 446 } 447 } 448 449 450 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 451 { 452 unsigned long flags; 453 struct sk_buff_head *list = &sk->sk_receive_queue; 454 455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 456 atomic_inc(&sk->sk_drops); 457 trace_sock_rcvqueue_full(sk, skb); 458 return -ENOMEM; 459 } 460 461 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 462 atomic_inc(&sk->sk_drops); 463 return -ENOBUFS; 464 } 465 466 skb->dev = NULL; 467 skb_set_owner_r(skb, sk); 468 469 /* we escape from rcu protected region, make sure we dont leak 470 * a norefcounted dst 471 */ 472 skb_dst_force(skb); 473 474 spin_lock_irqsave(&list->lock, flags); 475 sock_skb_set_dropcount(sk, skb); 476 __skb_queue_tail(list, skb); 477 spin_unlock_irqrestore(&list->lock, flags); 478 479 if (!sock_flag(sk, SOCK_DEAD)) 480 sk->sk_data_ready(sk); 481 return 0; 482 } 483 EXPORT_SYMBOL(__sock_queue_rcv_skb); 484 485 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 486 { 487 int err; 488 489 err = sk_filter(sk, skb); 490 if (err) 491 return err; 492 493 return __sock_queue_rcv_skb(sk, skb); 494 } 495 EXPORT_SYMBOL(sock_queue_rcv_skb); 496 497 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 498 const int nested, unsigned int trim_cap, bool refcounted) 499 { 500 int rc = NET_RX_SUCCESS; 501 502 if (sk_filter_trim_cap(sk, skb, trim_cap)) 503 goto discard_and_relse; 504 505 skb->dev = NULL; 506 507 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 508 atomic_inc(&sk->sk_drops); 509 goto discard_and_relse; 510 } 511 if (nested) 512 bh_lock_sock_nested(sk); 513 else 514 bh_lock_sock(sk); 515 if (!sock_owned_by_user(sk)) { 516 /* 517 * trylock + unlock semantics: 518 */ 519 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 520 521 rc = sk_backlog_rcv(sk, skb); 522 523 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 524 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 525 bh_unlock_sock(sk); 526 atomic_inc(&sk->sk_drops); 527 goto discard_and_relse; 528 } 529 530 bh_unlock_sock(sk); 531 out: 532 if (refcounted) 533 sock_put(sk); 534 return rc; 535 discard_and_relse: 536 kfree_skb(skb); 537 goto out; 538 } 539 EXPORT_SYMBOL(__sk_receive_skb); 540 541 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 542 { 543 struct dst_entry *dst = __sk_dst_get(sk); 544 545 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 546 sk_tx_queue_clear(sk); 547 sk->sk_dst_pending_confirm = 0; 548 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 549 dst_release(dst); 550 return NULL; 551 } 552 553 return dst; 554 } 555 EXPORT_SYMBOL(__sk_dst_check); 556 557 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 558 { 559 struct dst_entry *dst = sk_dst_get(sk); 560 561 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 562 sk_dst_reset(sk); 563 dst_release(dst); 564 return NULL; 565 } 566 567 return dst; 568 } 569 EXPORT_SYMBOL(sk_dst_check); 570 571 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 572 { 573 int ret = -ENOPROTOOPT; 574 #ifdef CONFIG_NETDEVICES 575 struct net *net = sock_net(sk); 576 577 /* Sorry... */ 578 ret = -EPERM; 579 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 580 goto out; 581 582 ret = -EINVAL; 583 if (ifindex < 0) 584 goto out; 585 586 sk->sk_bound_dev_if = ifindex; 587 if (sk->sk_prot->rehash) 588 sk->sk_prot->rehash(sk); 589 sk_dst_reset(sk); 590 591 ret = 0; 592 593 out: 594 #endif 595 596 return ret; 597 } 598 599 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 600 { 601 int ret; 602 603 if (lock_sk) 604 lock_sock(sk); 605 ret = sock_bindtoindex_locked(sk, ifindex); 606 if (lock_sk) 607 release_sock(sk); 608 609 return ret; 610 } 611 EXPORT_SYMBOL(sock_bindtoindex); 612 613 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 614 { 615 int ret = -ENOPROTOOPT; 616 #ifdef CONFIG_NETDEVICES 617 struct net *net = sock_net(sk); 618 char devname[IFNAMSIZ]; 619 int index; 620 621 ret = -EINVAL; 622 if (optlen < 0) 623 goto out; 624 625 /* Bind this socket to a particular device like "eth0", 626 * as specified in the passed interface name. If the 627 * name is "" or the option length is zero the socket 628 * is not bound. 629 */ 630 if (optlen > IFNAMSIZ - 1) 631 optlen = IFNAMSIZ - 1; 632 memset(devname, 0, sizeof(devname)); 633 634 ret = -EFAULT; 635 if (copy_from_sockptr(devname, optval, optlen)) 636 goto out; 637 638 index = 0; 639 if (devname[0] != '\0') { 640 struct net_device *dev; 641 642 rcu_read_lock(); 643 dev = dev_get_by_name_rcu(net, devname); 644 if (dev) 645 index = dev->ifindex; 646 rcu_read_unlock(); 647 ret = -ENODEV; 648 if (!dev) 649 goto out; 650 } 651 652 return sock_bindtoindex(sk, index, true); 653 out: 654 #endif 655 656 return ret; 657 } 658 659 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 660 int __user *optlen, int len) 661 { 662 int ret = -ENOPROTOOPT; 663 #ifdef CONFIG_NETDEVICES 664 struct net *net = sock_net(sk); 665 char devname[IFNAMSIZ]; 666 667 if (sk->sk_bound_dev_if == 0) { 668 len = 0; 669 goto zero; 670 } 671 672 ret = -EINVAL; 673 if (len < IFNAMSIZ) 674 goto out; 675 676 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 677 if (ret) 678 goto out; 679 680 len = strlen(devname) + 1; 681 682 ret = -EFAULT; 683 if (copy_to_user(optval, devname, len)) 684 goto out; 685 686 zero: 687 ret = -EFAULT; 688 if (put_user(len, optlen)) 689 goto out; 690 691 ret = 0; 692 693 out: 694 #endif 695 696 return ret; 697 } 698 699 bool sk_mc_loop(struct sock *sk) 700 { 701 if (dev_recursion_level()) 702 return false; 703 if (!sk) 704 return true; 705 switch (sk->sk_family) { 706 case AF_INET: 707 return inet_sk(sk)->mc_loop; 708 #if IS_ENABLED(CONFIG_IPV6) 709 case AF_INET6: 710 return inet6_sk(sk)->mc_loop; 711 #endif 712 } 713 WARN_ON_ONCE(1); 714 return true; 715 } 716 EXPORT_SYMBOL(sk_mc_loop); 717 718 void sock_set_reuseaddr(struct sock *sk) 719 { 720 lock_sock(sk); 721 sk->sk_reuse = SK_CAN_REUSE; 722 release_sock(sk); 723 } 724 EXPORT_SYMBOL(sock_set_reuseaddr); 725 726 void sock_set_reuseport(struct sock *sk) 727 { 728 lock_sock(sk); 729 sk->sk_reuseport = true; 730 release_sock(sk); 731 } 732 EXPORT_SYMBOL(sock_set_reuseport); 733 734 void sock_no_linger(struct sock *sk) 735 { 736 lock_sock(sk); 737 sk->sk_lingertime = 0; 738 sock_set_flag(sk, SOCK_LINGER); 739 release_sock(sk); 740 } 741 EXPORT_SYMBOL(sock_no_linger); 742 743 void sock_set_priority(struct sock *sk, u32 priority) 744 { 745 lock_sock(sk); 746 sk->sk_priority = priority; 747 release_sock(sk); 748 } 749 EXPORT_SYMBOL(sock_set_priority); 750 751 void sock_set_sndtimeo(struct sock *sk, s64 secs) 752 { 753 lock_sock(sk); 754 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 755 sk->sk_sndtimeo = secs * HZ; 756 else 757 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 758 release_sock(sk); 759 } 760 EXPORT_SYMBOL(sock_set_sndtimeo); 761 762 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 763 { 764 if (val) { 765 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 766 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 767 sock_set_flag(sk, SOCK_RCVTSTAMP); 768 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 769 } else { 770 sock_reset_flag(sk, SOCK_RCVTSTAMP); 771 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 772 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 773 } 774 } 775 776 void sock_enable_timestamps(struct sock *sk) 777 { 778 lock_sock(sk); 779 __sock_set_timestamps(sk, true, false, true); 780 release_sock(sk); 781 } 782 EXPORT_SYMBOL(sock_enable_timestamps); 783 784 void sock_set_keepalive(struct sock *sk) 785 { 786 lock_sock(sk); 787 if (sk->sk_prot->keepalive) 788 sk->sk_prot->keepalive(sk, true); 789 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 790 release_sock(sk); 791 } 792 EXPORT_SYMBOL(sock_set_keepalive); 793 794 static void __sock_set_rcvbuf(struct sock *sk, int val) 795 { 796 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 797 * as a negative value. 798 */ 799 val = min_t(int, val, INT_MAX / 2); 800 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 801 802 /* We double it on the way in to account for "struct sk_buff" etc. 803 * overhead. Applications assume that the SO_RCVBUF setting they make 804 * will allow that much actual data to be received on that socket. 805 * 806 * Applications are unaware that "struct sk_buff" and other overheads 807 * allocate from the receive buffer during socket buffer allocation. 808 * 809 * And after considering the possible alternatives, returning the value 810 * we actually used in getsockopt is the most desirable behavior. 811 */ 812 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 813 } 814 815 void sock_set_rcvbuf(struct sock *sk, int val) 816 { 817 lock_sock(sk); 818 __sock_set_rcvbuf(sk, val); 819 release_sock(sk); 820 } 821 EXPORT_SYMBOL(sock_set_rcvbuf); 822 823 void sock_set_mark(struct sock *sk, u32 val) 824 { 825 lock_sock(sk); 826 sk->sk_mark = val; 827 release_sock(sk); 828 } 829 EXPORT_SYMBOL(sock_set_mark); 830 831 /* 832 * This is meant for all protocols to use and covers goings on 833 * at the socket level. Everything here is generic. 834 */ 835 836 int sock_setsockopt(struct socket *sock, int level, int optname, 837 sockptr_t optval, unsigned int optlen) 838 { 839 struct sock_txtime sk_txtime; 840 struct sock *sk = sock->sk; 841 int val; 842 int valbool; 843 struct linger ling; 844 int ret = 0; 845 846 /* 847 * Options without arguments 848 */ 849 850 if (optname == SO_BINDTODEVICE) 851 return sock_setbindtodevice(sk, optval, optlen); 852 853 if (optlen < sizeof(int)) 854 return -EINVAL; 855 856 if (copy_from_sockptr(&val, optval, sizeof(val))) 857 return -EFAULT; 858 859 valbool = val ? 1 : 0; 860 861 lock_sock(sk); 862 863 switch (optname) { 864 case SO_DEBUG: 865 if (val && !capable(CAP_NET_ADMIN)) 866 ret = -EACCES; 867 else 868 sock_valbool_flag(sk, SOCK_DBG, valbool); 869 break; 870 case SO_REUSEADDR: 871 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 872 break; 873 case SO_REUSEPORT: 874 sk->sk_reuseport = valbool; 875 break; 876 case SO_TYPE: 877 case SO_PROTOCOL: 878 case SO_DOMAIN: 879 case SO_ERROR: 880 ret = -ENOPROTOOPT; 881 break; 882 case SO_DONTROUTE: 883 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 884 sk_dst_reset(sk); 885 break; 886 case SO_BROADCAST: 887 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 888 break; 889 case SO_SNDBUF: 890 /* Don't error on this BSD doesn't and if you think 891 * about it this is right. Otherwise apps have to 892 * play 'guess the biggest size' games. RCVBUF/SNDBUF 893 * are treated in BSD as hints 894 */ 895 val = min_t(u32, val, sysctl_wmem_max); 896 set_sndbuf: 897 /* Ensure val * 2 fits into an int, to prevent max_t() 898 * from treating it as a negative value. 899 */ 900 val = min_t(int, val, INT_MAX / 2); 901 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 902 WRITE_ONCE(sk->sk_sndbuf, 903 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 904 /* Wake up sending tasks if we upped the value. */ 905 sk->sk_write_space(sk); 906 break; 907 908 case SO_SNDBUFFORCE: 909 if (!capable(CAP_NET_ADMIN)) { 910 ret = -EPERM; 911 break; 912 } 913 914 /* No negative values (to prevent underflow, as val will be 915 * multiplied by 2). 916 */ 917 if (val < 0) 918 val = 0; 919 goto set_sndbuf; 920 921 case SO_RCVBUF: 922 /* Don't error on this BSD doesn't and if you think 923 * about it this is right. Otherwise apps have to 924 * play 'guess the biggest size' games. RCVBUF/SNDBUF 925 * are treated in BSD as hints 926 */ 927 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 928 break; 929 930 case SO_RCVBUFFORCE: 931 if (!capable(CAP_NET_ADMIN)) { 932 ret = -EPERM; 933 break; 934 } 935 936 /* No negative values (to prevent underflow, as val will be 937 * multiplied by 2). 938 */ 939 __sock_set_rcvbuf(sk, max(val, 0)); 940 break; 941 942 case SO_KEEPALIVE: 943 if (sk->sk_prot->keepalive) 944 sk->sk_prot->keepalive(sk, valbool); 945 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 946 break; 947 948 case SO_OOBINLINE: 949 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 950 break; 951 952 case SO_NO_CHECK: 953 sk->sk_no_check_tx = valbool; 954 break; 955 956 case SO_PRIORITY: 957 if ((val >= 0 && val <= 6) || 958 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 959 sk->sk_priority = val; 960 else 961 ret = -EPERM; 962 break; 963 964 case SO_LINGER: 965 if (optlen < sizeof(ling)) { 966 ret = -EINVAL; /* 1003.1g */ 967 break; 968 } 969 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 970 ret = -EFAULT; 971 break; 972 } 973 if (!ling.l_onoff) 974 sock_reset_flag(sk, SOCK_LINGER); 975 else { 976 #if (BITS_PER_LONG == 32) 977 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 978 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 979 else 980 #endif 981 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 982 sock_set_flag(sk, SOCK_LINGER); 983 } 984 break; 985 986 case SO_BSDCOMPAT: 987 sock_warn_obsolete_bsdism("setsockopt"); 988 break; 989 990 case SO_PASSCRED: 991 if (valbool) 992 set_bit(SOCK_PASSCRED, &sock->flags); 993 else 994 clear_bit(SOCK_PASSCRED, &sock->flags); 995 break; 996 997 case SO_TIMESTAMP_OLD: 998 __sock_set_timestamps(sk, valbool, false, false); 999 break; 1000 case SO_TIMESTAMP_NEW: 1001 __sock_set_timestamps(sk, valbool, true, false); 1002 break; 1003 case SO_TIMESTAMPNS_OLD: 1004 __sock_set_timestamps(sk, valbool, false, true); 1005 break; 1006 case SO_TIMESTAMPNS_NEW: 1007 __sock_set_timestamps(sk, valbool, true, true); 1008 break; 1009 case SO_TIMESTAMPING_NEW: 1010 sock_set_flag(sk, SOCK_TSTAMP_NEW); 1011 /* fall through */ 1012 case SO_TIMESTAMPING_OLD: 1013 if (val & ~SOF_TIMESTAMPING_MASK) { 1014 ret = -EINVAL; 1015 break; 1016 } 1017 1018 if (val & SOF_TIMESTAMPING_OPT_ID && 1019 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 1020 if (sk->sk_protocol == IPPROTO_TCP && 1021 sk->sk_type == SOCK_STREAM) { 1022 if ((1 << sk->sk_state) & 1023 (TCPF_CLOSE | TCPF_LISTEN)) { 1024 ret = -EINVAL; 1025 break; 1026 } 1027 sk->sk_tskey = tcp_sk(sk)->snd_una; 1028 } else { 1029 sk->sk_tskey = 0; 1030 } 1031 } 1032 1033 if (val & SOF_TIMESTAMPING_OPT_STATS && 1034 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 1035 ret = -EINVAL; 1036 break; 1037 } 1038 1039 sk->sk_tsflags = val; 1040 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 1041 sock_enable_timestamp(sk, 1042 SOCK_TIMESTAMPING_RX_SOFTWARE); 1043 else { 1044 if (optname == SO_TIMESTAMPING_NEW) 1045 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 1046 1047 sock_disable_timestamp(sk, 1048 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 1049 } 1050 break; 1051 1052 case SO_RCVLOWAT: 1053 if (val < 0) 1054 val = INT_MAX; 1055 if (sock->ops->set_rcvlowat) 1056 ret = sock->ops->set_rcvlowat(sk, val); 1057 else 1058 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1059 break; 1060 1061 case SO_RCVTIMEO_OLD: 1062 case SO_RCVTIMEO_NEW: 1063 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1064 optlen, optname == SO_RCVTIMEO_OLD); 1065 break; 1066 1067 case SO_SNDTIMEO_OLD: 1068 case SO_SNDTIMEO_NEW: 1069 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1070 optlen, optname == SO_SNDTIMEO_OLD); 1071 break; 1072 1073 case SO_ATTACH_FILTER: { 1074 struct sock_fprog fprog; 1075 1076 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1077 if (!ret) 1078 ret = sk_attach_filter(&fprog, sk); 1079 break; 1080 } 1081 case SO_ATTACH_BPF: 1082 ret = -EINVAL; 1083 if (optlen == sizeof(u32)) { 1084 u32 ufd; 1085 1086 ret = -EFAULT; 1087 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1088 break; 1089 1090 ret = sk_attach_bpf(ufd, sk); 1091 } 1092 break; 1093 1094 case SO_ATTACH_REUSEPORT_CBPF: { 1095 struct sock_fprog fprog; 1096 1097 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1098 if (!ret) 1099 ret = sk_reuseport_attach_filter(&fprog, sk); 1100 break; 1101 } 1102 case SO_ATTACH_REUSEPORT_EBPF: 1103 ret = -EINVAL; 1104 if (optlen == sizeof(u32)) { 1105 u32 ufd; 1106 1107 ret = -EFAULT; 1108 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1109 break; 1110 1111 ret = sk_reuseport_attach_bpf(ufd, sk); 1112 } 1113 break; 1114 1115 case SO_DETACH_REUSEPORT_BPF: 1116 ret = reuseport_detach_prog(sk); 1117 break; 1118 1119 case SO_DETACH_FILTER: 1120 ret = sk_detach_filter(sk); 1121 break; 1122 1123 case SO_LOCK_FILTER: 1124 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1125 ret = -EPERM; 1126 else 1127 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1128 break; 1129 1130 case SO_PASSSEC: 1131 if (valbool) 1132 set_bit(SOCK_PASSSEC, &sock->flags); 1133 else 1134 clear_bit(SOCK_PASSSEC, &sock->flags); 1135 break; 1136 case SO_MARK: 1137 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1138 ret = -EPERM; 1139 } else if (val != sk->sk_mark) { 1140 sk->sk_mark = val; 1141 sk_dst_reset(sk); 1142 } 1143 break; 1144 1145 case SO_RXQ_OVFL: 1146 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1147 break; 1148 1149 case SO_WIFI_STATUS: 1150 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1151 break; 1152 1153 case SO_PEEK_OFF: 1154 if (sock->ops->set_peek_off) 1155 ret = sock->ops->set_peek_off(sk, val); 1156 else 1157 ret = -EOPNOTSUPP; 1158 break; 1159 1160 case SO_NOFCS: 1161 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1162 break; 1163 1164 case SO_SELECT_ERR_QUEUE: 1165 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1166 break; 1167 1168 #ifdef CONFIG_NET_RX_BUSY_POLL 1169 case SO_BUSY_POLL: 1170 /* allow unprivileged users to decrease the value */ 1171 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1172 ret = -EPERM; 1173 else { 1174 if (val < 0) 1175 ret = -EINVAL; 1176 else 1177 sk->sk_ll_usec = val; 1178 } 1179 break; 1180 #endif 1181 1182 case SO_MAX_PACING_RATE: 1183 { 1184 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1185 1186 if (sizeof(ulval) != sizeof(val) && 1187 optlen >= sizeof(ulval) && 1188 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1189 ret = -EFAULT; 1190 break; 1191 } 1192 if (ulval != ~0UL) 1193 cmpxchg(&sk->sk_pacing_status, 1194 SK_PACING_NONE, 1195 SK_PACING_NEEDED); 1196 sk->sk_max_pacing_rate = ulval; 1197 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1198 break; 1199 } 1200 case SO_INCOMING_CPU: 1201 WRITE_ONCE(sk->sk_incoming_cpu, val); 1202 break; 1203 1204 case SO_CNX_ADVICE: 1205 if (val == 1) 1206 dst_negative_advice(sk); 1207 break; 1208 1209 case SO_ZEROCOPY: 1210 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1211 if (!((sk->sk_type == SOCK_STREAM && 1212 sk->sk_protocol == IPPROTO_TCP) || 1213 (sk->sk_type == SOCK_DGRAM && 1214 sk->sk_protocol == IPPROTO_UDP))) 1215 ret = -ENOTSUPP; 1216 } else if (sk->sk_family != PF_RDS) { 1217 ret = -ENOTSUPP; 1218 } 1219 if (!ret) { 1220 if (val < 0 || val > 1) 1221 ret = -EINVAL; 1222 else 1223 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1224 } 1225 break; 1226 1227 case SO_TXTIME: 1228 if (optlen != sizeof(struct sock_txtime)) { 1229 ret = -EINVAL; 1230 break; 1231 } else if (copy_from_sockptr(&sk_txtime, optval, 1232 sizeof(struct sock_txtime))) { 1233 ret = -EFAULT; 1234 break; 1235 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1236 ret = -EINVAL; 1237 break; 1238 } 1239 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1240 * scheduler has enough safe guards. 1241 */ 1242 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1243 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1244 ret = -EPERM; 1245 break; 1246 } 1247 sock_valbool_flag(sk, SOCK_TXTIME, true); 1248 sk->sk_clockid = sk_txtime.clockid; 1249 sk->sk_txtime_deadline_mode = 1250 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1251 sk->sk_txtime_report_errors = 1252 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1253 break; 1254 1255 case SO_BINDTOIFINDEX: 1256 ret = sock_bindtoindex_locked(sk, val); 1257 break; 1258 1259 default: 1260 ret = -ENOPROTOOPT; 1261 break; 1262 } 1263 release_sock(sk); 1264 return ret; 1265 } 1266 EXPORT_SYMBOL(sock_setsockopt); 1267 1268 1269 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1270 struct ucred *ucred) 1271 { 1272 ucred->pid = pid_vnr(pid); 1273 ucred->uid = ucred->gid = -1; 1274 if (cred) { 1275 struct user_namespace *current_ns = current_user_ns(); 1276 1277 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1278 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1279 } 1280 } 1281 1282 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1283 { 1284 struct user_namespace *user_ns = current_user_ns(); 1285 int i; 1286 1287 for (i = 0; i < src->ngroups; i++) 1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1289 return -EFAULT; 1290 1291 return 0; 1292 } 1293 1294 int sock_getsockopt(struct socket *sock, int level, int optname, 1295 char __user *optval, int __user *optlen) 1296 { 1297 struct sock *sk = sock->sk; 1298 1299 union { 1300 int val; 1301 u64 val64; 1302 unsigned long ulval; 1303 struct linger ling; 1304 struct old_timeval32 tm32; 1305 struct __kernel_old_timeval tm; 1306 struct __kernel_sock_timeval stm; 1307 struct sock_txtime txtime; 1308 } v; 1309 1310 int lv = sizeof(int); 1311 int len; 1312 1313 if (get_user(len, optlen)) 1314 return -EFAULT; 1315 if (len < 0) 1316 return -EINVAL; 1317 1318 memset(&v, 0, sizeof(v)); 1319 1320 switch (optname) { 1321 case SO_DEBUG: 1322 v.val = sock_flag(sk, SOCK_DBG); 1323 break; 1324 1325 case SO_DONTROUTE: 1326 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1327 break; 1328 1329 case SO_BROADCAST: 1330 v.val = sock_flag(sk, SOCK_BROADCAST); 1331 break; 1332 1333 case SO_SNDBUF: 1334 v.val = sk->sk_sndbuf; 1335 break; 1336 1337 case SO_RCVBUF: 1338 v.val = sk->sk_rcvbuf; 1339 break; 1340 1341 case SO_REUSEADDR: 1342 v.val = sk->sk_reuse; 1343 break; 1344 1345 case SO_REUSEPORT: 1346 v.val = sk->sk_reuseport; 1347 break; 1348 1349 case SO_KEEPALIVE: 1350 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1351 break; 1352 1353 case SO_TYPE: 1354 v.val = sk->sk_type; 1355 break; 1356 1357 case SO_PROTOCOL: 1358 v.val = sk->sk_protocol; 1359 break; 1360 1361 case SO_DOMAIN: 1362 v.val = sk->sk_family; 1363 break; 1364 1365 case SO_ERROR: 1366 v.val = -sock_error(sk); 1367 if (v.val == 0) 1368 v.val = xchg(&sk->sk_err_soft, 0); 1369 break; 1370 1371 case SO_OOBINLINE: 1372 v.val = sock_flag(sk, SOCK_URGINLINE); 1373 break; 1374 1375 case SO_NO_CHECK: 1376 v.val = sk->sk_no_check_tx; 1377 break; 1378 1379 case SO_PRIORITY: 1380 v.val = sk->sk_priority; 1381 break; 1382 1383 case SO_LINGER: 1384 lv = sizeof(v.ling); 1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1386 v.ling.l_linger = sk->sk_lingertime / HZ; 1387 break; 1388 1389 case SO_BSDCOMPAT: 1390 sock_warn_obsolete_bsdism("getsockopt"); 1391 break; 1392 1393 case SO_TIMESTAMP_OLD: 1394 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1395 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1396 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1397 break; 1398 1399 case SO_TIMESTAMPNS_OLD: 1400 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1401 break; 1402 1403 case SO_TIMESTAMP_NEW: 1404 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1405 break; 1406 1407 case SO_TIMESTAMPNS_NEW: 1408 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1409 break; 1410 1411 case SO_TIMESTAMPING_OLD: 1412 v.val = sk->sk_tsflags; 1413 break; 1414 1415 case SO_RCVTIMEO_OLD: 1416 case SO_RCVTIMEO_NEW: 1417 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1418 break; 1419 1420 case SO_SNDTIMEO_OLD: 1421 case SO_SNDTIMEO_NEW: 1422 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1423 break; 1424 1425 case SO_RCVLOWAT: 1426 v.val = sk->sk_rcvlowat; 1427 break; 1428 1429 case SO_SNDLOWAT: 1430 v.val = 1; 1431 break; 1432 1433 case SO_PASSCRED: 1434 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1435 break; 1436 1437 case SO_PEERCRED: 1438 { 1439 struct ucred peercred; 1440 if (len > sizeof(peercred)) 1441 len = sizeof(peercred); 1442 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1443 if (copy_to_user(optval, &peercred, len)) 1444 return -EFAULT; 1445 goto lenout; 1446 } 1447 1448 case SO_PEERGROUPS: 1449 { 1450 int ret, n; 1451 1452 if (!sk->sk_peer_cred) 1453 return -ENODATA; 1454 1455 n = sk->sk_peer_cred->group_info->ngroups; 1456 if (len < n * sizeof(gid_t)) { 1457 len = n * sizeof(gid_t); 1458 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1459 } 1460 len = n * sizeof(gid_t); 1461 1462 ret = groups_to_user((gid_t __user *)optval, 1463 sk->sk_peer_cred->group_info); 1464 if (ret) 1465 return ret; 1466 goto lenout; 1467 } 1468 1469 case SO_PEERNAME: 1470 { 1471 char address[128]; 1472 1473 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1474 if (lv < 0) 1475 return -ENOTCONN; 1476 if (lv < len) 1477 return -EINVAL; 1478 if (copy_to_user(optval, address, len)) 1479 return -EFAULT; 1480 goto lenout; 1481 } 1482 1483 /* Dubious BSD thing... Probably nobody even uses it, but 1484 * the UNIX standard wants it for whatever reason... -DaveM 1485 */ 1486 case SO_ACCEPTCONN: 1487 v.val = sk->sk_state == TCP_LISTEN; 1488 break; 1489 1490 case SO_PASSSEC: 1491 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1492 break; 1493 1494 case SO_PEERSEC: 1495 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1496 1497 case SO_MARK: 1498 v.val = sk->sk_mark; 1499 break; 1500 1501 case SO_RXQ_OVFL: 1502 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1503 break; 1504 1505 case SO_WIFI_STATUS: 1506 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1507 break; 1508 1509 case SO_PEEK_OFF: 1510 if (!sock->ops->set_peek_off) 1511 return -EOPNOTSUPP; 1512 1513 v.val = sk->sk_peek_off; 1514 break; 1515 case SO_NOFCS: 1516 v.val = sock_flag(sk, SOCK_NOFCS); 1517 break; 1518 1519 case SO_BINDTODEVICE: 1520 return sock_getbindtodevice(sk, optval, optlen, len); 1521 1522 case SO_GET_FILTER: 1523 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1524 if (len < 0) 1525 return len; 1526 1527 goto lenout; 1528 1529 case SO_LOCK_FILTER: 1530 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1531 break; 1532 1533 case SO_BPF_EXTENSIONS: 1534 v.val = bpf_tell_extensions(); 1535 break; 1536 1537 case SO_SELECT_ERR_QUEUE: 1538 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1539 break; 1540 1541 #ifdef CONFIG_NET_RX_BUSY_POLL 1542 case SO_BUSY_POLL: 1543 v.val = sk->sk_ll_usec; 1544 break; 1545 #endif 1546 1547 case SO_MAX_PACING_RATE: 1548 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1549 lv = sizeof(v.ulval); 1550 v.ulval = sk->sk_max_pacing_rate; 1551 } else { 1552 /* 32bit version */ 1553 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1554 } 1555 break; 1556 1557 case SO_INCOMING_CPU: 1558 v.val = READ_ONCE(sk->sk_incoming_cpu); 1559 break; 1560 1561 case SO_MEMINFO: 1562 { 1563 u32 meminfo[SK_MEMINFO_VARS]; 1564 1565 sk_get_meminfo(sk, meminfo); 1566 1567 len = min_t(unsigned int, len, sizeof(meminfo)); 1568 if (copy_to_user(optval, &meminfo, len)) 1569 return -EFAULT; 1570 1571 goto lenout; 1572 } 1573 1574 #ifdef CONFIG_NET_RX_BUSY_POLL 1575 case SO_INCOMING_NAPI_ID: 1576 v.val = READ_ONCE(sk->sk_napi_id); 1577 1578 /* aggregate non-NAPI IDs down to 0 */ 1579 if (v.val < MIN_NAPI_ID) 1580 v.val = 0; 1581 1582 break; 1583 #endif 1584 1585 case SO_COOKIE: 1586 lv = sizeof(u64); 1587 if (len < lv) 1588 return -EINVAL; 1589 v.val64 = sock_gen_cookie(sk); 1590 break; 1591 1592 case SO_ZEROCOPY: 1593 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1594 break; 1595 1596 case SO_TXTIME: 1597 lv = sizeof(v.txtime); 1598 v.txtime.clockid = sk->sk_clockid; 1599 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1600 SOF_TXTIME_DEADLINE_MODE : 0; 1601 v.txtime.flags |= sk->sk_txtime_report_errors ? 1602 SOF_TXTIME_REPORT_ERRORS : 0; 1603 break; 1604 1605 case SO_BINDTOIFINDEX: 1606 v.val = sk->sk_bound_dev_if; 1607 break; 1608 1609 default: 1610 /* We implement the SO_SNDLOWAT etc to not be settable 1611 * (1003.1g 7). 1612 */ 1613 return -ENOPROTOOPT; 1614 } 1615 1616 if (len > lv) 1617 len = lv; 1618 if (copy_to_user(optval, &v, len)) 1619 return -EFAULT; 1620 lenout: 1621 if (put_user(len, optlen)) 1622 return -EFAULT; 1623 return 0; 1624 } 1625 1626 /* 1627 * Initialize an sk_lock. 1628 * 1629 * (We also register the sk_lock with the lock validator.) 1630 */ 1631 static inline void sock_lock_init(struct sock *sk) 1632 { 1633 if (sk->sk_kern_sock) 1634 sock_lock_init_class_and_name( 1635 sk, 1636 af_family_kern_slock_key_strings[sk->sk_family], 1637 af_family_kern_slock_keys + sk->sk_family, 1638 af_family_kern_key_strings[sk->sk_family], 1639 af_family_kern_keys + sk->sk_family); 1640 else 1641 sock_lock_init_class_and_name( 1642 sk, 1643 af_family_slock_key_strings[sk->sk_family], 1644 af_family_slock_keys + sk->sk_family, 1645 af_family_key_strings[sk->sk_family], 1646 af_family_keys + sk->sk_family); 1647 } 1648 1649 /* 1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1651 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1653 */ 1654 static void sock_copy(struct sock *nsk, const struct sock *osk) 1655 { 1656 const struct proto *prot = READ_ONCE(osk->sk_prot); 1657 #ifdef CONFIG_SECURITY_NETWORK 1658 void *sptr = nsk->sk_security; 1659 #endif 1660 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1661 1662 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1663 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1664 1665 #ifdef CONFIG_SECURITY_NETWORK 1666 nsk->sk_security = sptr; 1667 security_sk_clone(osk, nsk); 1668 #endif 1669 } 1670 1671 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1672 int family) 1673 { 1674 struct sock *sk; 1675 struct kmem_cache *slab; 1676 1677 slab = prot->slab; 1678 if (slab != NULL) { 1679 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1680 if (!sk) 1681 return sk; 1682 if (want_init_on_alloc(priority)) 1683 sk_prot_clear_nulls(sk, prot->obj_size); 1684 } else 1685 sk = kmalloc(prot->obj_size, priority); 1686 1687 if (sk != NULL) { 1688 if (security_sk_alloc(sk, family, priority)) 1689 goto out_free; 1690 1691 if (!try_module_get(prot->owner)) 1692 goto out_free_sec; 1693 sk_tx_queue_clear(sk); 1694 } 1695 1696 return sk; 1697 1698 out_free_sec: 1699 security_sk_free(sk); 1700 out_free: 1701 if (slab != NULL) 1702 kmem_cache_free(slab, sk); 1703 else 1704 kfree(sk); 1705 return NULL; 1706 } 1707 1708 static void sk_prot_free(struct proto *prot, struct sock *sk) 1709 { 1710 struct kmem_cache *slab; 1711 struct module *owner; 1712 1713 owner = prot->owner; 1714 slab = prot->slab; 1715 1716 cgroup_sk_free(&sk->sk_cgrp_data); 1717 mem_cgroup_sk_free(sk); 1718 security_sk_free(sk); 1719 if (slab != NULL) 1720 kmem_cache_free(slab, sk); 1721 else 1722 kfree(sk); 1723 module_put(owner); 1724 } 1725 1726 /** 1727 * sk_alloc - All socket objects are allocated here 1728 * @net: the applicable net namespace 1729 * @family: protocol family 1730 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1731 * @prot: struct proto associated with this new sock instance 1732 * @kern: is this to be a kernel socket? 1733 */ 1734 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1735 struct proto *prot, int kern) 1736 { 1737 struct sock *sk; 1738 1739 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1740 if (sk) { 1741 sk->sk_family = family; 1742 /* 1743 * See comment in struct sock definition to understand 1744 * why we need sk_prot_creator -acme 1745 */ 1746 sk->sk_prot = sk->sk_prot_creator = prot; 1747 sk->sk_kern_sock = kern; 1748 sock_lock_init(sk); 1749 sk->sk_net_refcnt = kern ? 0 : 1; 1750 if (likely(sk->sk_net_refcnt)) { 1751 get_net(net); 1752 sock_inuse_add(net, 1); 1753 } 1754 1755 sock_net_set(sk, net); 1756 refcount_set(&sk->sk_wmem_alloc, 1); 1757 1758 mem_cgroup_sk_alloc(sk); 1759 cgroup_sk_alloc(&sk->sk_cgrp_data); 1760 sock_update_classid(&sk->sk_cgrp_data); 1761 sock_update_netprioidx(&sk->sk_cgrp_data); 1762 sk_tx_queue_clear(sk); 1763 } 1764 1765 return sk; 1766 } 1767 EXPORT_SYMBOL(sk_alloc); 1768 1769 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1770 * grace period. This is the case for UDP sockets and TCP listeners. 1771 */ 1772 static void __sk_destruct(struct rcu_head *head) 1773 { 1774 struct sock *sk = container_of(head, struct sock, sk_rcu); 1775 struct sk_filter *filter; 1776 1777 if (sk->sk_destruct) 1778 sk->sk_destruct(sk); 1779 1780 filter = rcu_dereference_check(sk->sk_filter, 1781 refcount_read(&sk->sk_wmem_alloc) == 0); 1782 if (filter) { 1783 sk_filter_uncharge(sk, filter); 1784 RCU_INIT_POINTER(sk->sk_filter, NULL); 1785 } 1786 1787 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1788 1789 #ifdef CONFIG_BPF_SYSCALL 1790 bpf_sk_storage_free(sk); 1791 #endif 1792 1793 if (atomic_read(&sk->sk_omem_alloc)) 1794 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1795 __func__, atomic_read(&sk->sk_omem_alloc)); 1796 1797 if (sk->sk_frag.page) { 1798 put_page(sk->sk_frag.page); 1799 sk->sk_frag.page = NULL; 1800 } 1801 1802 if (sk->sk_peer_cred) 1803 put_cred(sk->sk_peer_cred); 1804 put_pid(sk->sk_peer_pid); 1805 if (likely(sk->sk_net_refcnt)) 1806 put_net(sock_net(sk)); 1807 sk_prot_free(sk->sk_prot_creator, sk); 1808 } 1809 1810 void sk_destruct(struct sock *sk) 1811 { 1812 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1813 1814 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1815 reuseport_detach_sock(sk); 1816 use_call_rcu = true; 1817 } 1818 1819 if (use_call_rcu) 1820 call_rcu(&sk->sk_rcu, __sk_destruct); 1821 else 1822 __sk_destruct(&sk->sk_rcu); 1823 } 1824 1825 static void __sk_free(struct sock *sk) 1826 { 1827 if (likely(sk->sk_net_refcnt)) 1828 sock_inuse_add(sock_net(sk), -1); 1829 1830 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1831 sock_diag_broadcast_destroy(sk); 1832 else 1833 sk_destruct(sk); 1834 } 1835 1836 void sk_free(struct sock *sk) 1837 { 1838 /* 1839 * We subtract one from sk_wmem_alloc and can know if 1840 * some packets are still in some tx queue. 1841 * If not null, sock_wfree() will call __sk_free(sk) later 1842 */ 1843 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1844 __sk_free(sk); 1845 } 1846 EXPORT_SYMBOL(sk_free); 1847 1848 static void sk_init_common(struct sock *sk) 1849 { 1850 skb_queue_head_init(&sk->sk_receive_queue); 1851 skb_queue_head_init(&sk->sk_write_queue); 1852 skb_queue_head_init(&sk->sk_error_queue); 1853 1854 rwlock_init(&sk->sk_callback_lock); 1855 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1856 af_rlock_keys + sk->sk_family, 1857 af_family_rlock_key_strings[sk->sk_family]); 1858 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1859 af_wlock_keys + sk->sk_family, 1860 af_family_wlock_key_strings[sk->sk_family]); 1861 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1862 af_elock_keys + sk->sk_family, 1863 af_family_elock_key_strings[sk->sk_family]); 1864 lockdep_set_class_and_name(&sk->sk_callback_lock, 1865 af_callback_keys + sk->sk_family, 1866 af_family_clock_key_strings[sk->sk_family]); 1867 } 1868 1869 /** 1870 * sk_clone_lock - clone a socket, and lock its clone 1871 * @sk: the socket to clone 1872 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1873 * 1874 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1875 */ 1876 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1877 { 1878 struct proto *prot = READ_ONCE(sk->sk_prot); 1879 struct sock *newsk; 1880 bool is_charged = true; 1881 1882 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 1883 if (newsk != NULL) { 1884 struct sk_filter *filter; 1885 1886 sock_copy(newsk, sk); 1887 1888 newsk->sk_prot_creator = prot; 1889 1890 /* SANITY */ 1891 if (likely(newsk->sk_net_refcnt)) 1892 get_net(sock_net(newsk)); 1893 sk_node_init(&newsk->sk_node); 1894 sock_lock_init(newsk); 1895 bh_lock_sock(newsk); 1896 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1897 newsk->sk_backlog.len = 0; 1898 1899 atomic_set(&newsk->sk_rmem_alloc, 0); 1900 /* 1901 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1902 */ 1903 refcount_set(&newsk->sk_wmem_alloc, 1); 1904 atomic_set(&newsk->sk_omem_alloc, 0); 1905 sk_init_common(newsk); 1906 1907 newsk->sk_dst_cache = NULL; 1908 newsk->sk_dst_pending_confirm = 0; 1909 newsk->sk_wmem_queued = 0; 1910 newsk->sk_forward_alloc = 0; 1911 atomic_set(&newsk->sk_drops, 0); 1912 newsk->sk_send_head = NULL; 1913 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1914 atomic_set(&newsk->sk_zckey, 0); 1915 1916 sock_reset_flag(newsk, SOCK_DONE); 1917 1918 /* sk->sk_memcg will be populated at accept() time */ 1919 newsk->sk_memcg = NULL; 1920 1921 cgroup_sk_clone(&newsk->sk_cgrp_data); 1922 1923 rcu_read_lock(); 1924 filter = rcu_dereference(sk->sk_filter); 1925 if (filter != NULL) 1926 /* though it's an empty new sock, the charging may fail 1927 * if sysctl_optmem_max was changed between creation of 1928 * original socket and cloning 1929 */ 1930 is_charged = sk_filter_charge(newsk, filter); 1931 RCU_INIT_POINTER(newsk->sk_filter, filter); 1932 rcu_read_unlock(); 1933 1934 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1935 /* We need to make sure that we don't uncharge the new 1936 * socket if we couldn't charge it in the first place 1937 * as otherwise we uncharge the parent's filter. 1938 */ 1939 if (!is_charged) 1940 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1941 sk_free_unlock_clone(newsk); 1942 newsk = NULL; 1943 goto out; 1944 } 1945 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1946 1947 if (bpf_sk_storage_clone(sk, newsk)) { 1948 sk_free_unlock_clone(newsk); 1949 newsk = NULL; 1950 goto out; 1951 } 1952 1953 /* Clear sk_user_data if parent had the pointer tagged 1954 * as not suitable for copying when cloning. 1955 */ 1956 if (sk_user_data_is_nocopy(newsk)) 1957 newsk->sk_user_data = NULL; 1958 1959 newsk->sk_err = 0; 1960 newsk->sk_err_soft = 0; 1961 newsk->sk_priority = 0; 1962 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1963 if (likely(newsk->sk_net_refcnt)) 1964 sock_inuse_add(sock_net(newsk), 1); 1965 1966 /* 1967 * Before updating sk_refcnt, we must commit prior changes to memory 1968 * (Documentation/RCU/rculist_nulls.rst for details) 1969 */ 1970 smp_wmb(); 1971 refcount_set(&newsk->sk_refcnt, 2); 1972 1973 /* 1974 * Increment the counter in the same struct proto as the master 1975 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1976 * is the same as sk->sk_prot->socks, as this field was copied 1977 * with memcpy). 1978 * 1979 * This _changes_ the previous behaviour, where 1980 * tcp_create_openreq_child always was incrementing the 1981 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1982 * to be taken into account in all callers. -acme 1983 */ 1984 sk_refcnt_debug_inc(newsk); 1985 sk_set_socket(newsk, NULL); 1986 sk_tx_queue_clear(newsk); 1987 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1988 1989 if (newsk->sk_prot->sockets_allocated) 1990 sk_sockets_allocated_inc(newsk); 1991 1992 if (sock_needs_netstamp(sk) && 1993 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1994 net_enable_timestamp(); 1995 } 1996 out: 1997 return newsk; 1998 } 1999 EXPORT_SYMBOL_GPL(sk_clone_lock); 2000 2001 void sk_free_unlock_clone(struct sock *sk) 2002 { 2003 /* It is still raw copy of parent, so invalidate 2004 * destructor and make plain sk_free() */ 2005 sk->sk_destruct = NULL; 2006 bh_unlock_sock(sk); 2007 sk_free(sk); 2008 } 2009 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2010 2011 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2012 { 2013 u32 max_segs = 1; 2014 2015 sk_dst_set(sk, dst); 2016 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 2017 if (sk->sk_route_caps & NETIF_F_GSO) 2018 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2019 sk->sk_route_caps &= ~sk->sk_route_nocaps; 2020 if (sk_can_gso(sk)) { 2021 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2022 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2023 } else { 2024 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2025 sk->sk_gso_max_size = dst->dev->gso_max_size; 2026 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 2027 } 2028 } 2029 sk->sk_gso_max_segs = max_segs; 2030 } 2031 EXPORT_SYMBOL_GPL(sk_setup_caps); 2032 2033 /* 2034 * Simple resource managers for sockets. 2035 */ 2036 2037 2038 /* 2039 * Write buffer destructor automatically called from kfree_skb. 2040 */ 2041 void sock_wfree(struct sk_buff *skb) 2042 { 2043 struct sock *sk = skb->sk; 2044 unsigned int len = skb->truesize; 2045 2046 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2047 /* 2048 * Keep a reference on sk_wmem_alloc, this will be released 2049 * after sk_write_space() call 2050 */ 2051 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2052 sk->sk_write_space(sk); 2053 len = 1; 2054 } 2055 /* 2056 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2057 * could not do because of in-flight packets 2058 */ 2059 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2060 __sk_free(sk); 2061 } 2062 EXPORT_SYMBOL(sock_wfree); 2063 2064 /* This variant of sock_wfree() is used by TCP, 2065 * since it sets SOCK_USE_WRITE_QUEUE. 2066 */ 2067 void __sock_wfree(struct sk_buff *skb) 2068 { 2069 struct sock *sk = skb->sk; 2070 2071 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2072 __sk_free(sk); 2073 } 2074 2075 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2076 { 2077 skb_orphan(skb); 2078 skb->sk = sk; 2079 #ifdef CONFIG_INET 2080 if (unlikely(!sk_fullsock(sk))) { 2081 skb->destructor = sock_edemux; 2082 sock_hold(sk); 2083 return; 2084 } 2085 #endif 2086 skb->destructor = sock_wfree; 2087 skb_set_hash_from_sk(skb, sk); 2088 /* 2089 * We used to take a refcount on sk, but following operation 2090 * is enough to guarantee sk_free() wont free this sock until 2091 * all in-flight packets are completed 2092 */ 2093 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2094 } 2095 EXPORT_SYMBOL(skb_set_owner_w); 2096 2097 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2098 { 2099 #ifdef CONFIG_TLS_DEVICE 2100 /* Drivers depend on in-order delivery for crypto offload, 2101 * partial orphan breaks out-of-order-OK logic. 2102 */ 2103 if (skb->decrypted) 2104 return false; 2105 #endif 2106 return (skb->destructor == sock_wfree || 2107 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2108 } 2109 2110 /* This helper is used by netem, as it can hold packets in its 2111 * delay queue. We want to allow the owner socket to send more 2112 * packets, as if they were already TX completed by a typical driver. 2113 * But we also want to keep skb->sk set because some packet schedulers 2114 * rely on it (sch_fq for example). 2115 */ 2116 void skb_orphan_partial(struct sk_buff *skb) 2117 { 2118 if (skb_is_tcp_pure_ack(skb)) 2119 return; 2120 2121 if (can_skb_orphan_partial(skb)) { 2122 struct sock *sk = skb->sk; 2123 2124 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2125 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2126 skb->destructor = sock_efree; 2127 } 2128 } else { 2129 skb_orphan(skb); 2130 } 2131 } 2132 EXPORT_SYMBOL(skb_orphan_partial); 2133 2134 /* 2135 * Read buffer destructor automatically called from kfree_skb. 2136 */ 2137 void sock_rfree(struct sk_buff *skb) 2138 { 2139 struct sock *sk = skb->sk; 2140 unsigned int len = skb->truesize; 2141 2142 atomic_sub(len, &sk->sk_rmem_alloc); 2143 sk_mem_uncharge(sk, len); 2144 } 2145 EXPORT_SYMBOL(sock_rfree); 2146 2147 /* 2148 * Buffer destructor for skbs that are not used directly in read or write 2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2150 */ 2151 void sock_efree(struct sk_buff *skb) 2152 { 2153 sock_put(skb->sk); 2154 } 2155 EXPORT_SYMBOL(sock_efree); 2156 2157 /* Buffer destructor for prefetch/receive path where reference count may 2158 * not be held, e.g. for listen sockets. 2159 */ 2160 #ifdef CONFIG_INET 2161 void sock_pfree(struct sk_buff *skb) 2162 { 2163 if (sk_is_refcounted(skb->sk)) 2164 sock_gen_put(skb->sk); 2165 } 2166 EXPORT_SYMBOL(sock_pfree); 2167 #endif /* CONFIG_INET */ 2168 2169 kuid_t sock_i_uid(struct sock *sk) 2170 { 2171 kuid_t uid; 2172 2173 read_lock_bh(&sk->sk_callback_lock); 2174 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2175 read_unlock_bh(&sk->sk_callback_lock); 2176 return uid; 2177 } 2178 EXPORT_SYMBOL(sock_i_uid); 2179 2180 unsigned long sock_i_ino(struct sock *sk) 2181 { 2182 unsigned long ino; 2183 2184 read_lock_bh(&sk->sk_callback_lock); 2185 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2186 read_unlock_bh(&sk->sk_callback_lock); 2187 return ino; 2188 } 2189 EXPORT_SYMBOL(sock_i_ino); 2190 2191 /* 2192 * Allocate a skb from the socket's send buffer. 2193 */ 2194 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2195 gfp_t priority) 2196 { 2197 if (force || 2198 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2199 struct sk_buff *skb = alloc_skb(size, priority); 2200 2201 if (skb) { 2202 skb_set_owner_w(skb, sk); 2203 return skb; 2204 } 2205 } 2206 return NULL; 2207 } 2208 EXPORT_SYMBOL(sock_wmalloc); 2209 2210 static void sock_ofree(struct sk_buff *skb) 2211 { 2212 struct sock *sk = skb->sk; 2213 2214 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2215 } 2216 2217 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2218 gfp_t priority) 2219 { 2220 struct sk_buff *skb; 2221 2222 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2223 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2224 sysctl_optmem_max) 2225 return NULL; 2226 2227 skb = alloc_skb(size, priority); 2228 if (!skb) 2229 return NULL; 2230 2231 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2232 skb->sk = sk; 2233 skb->destructor = sock_ofree; 2234 return skb; 2235 } 2236 2237 /* 2238 * Allocate a memory block from the socket's option memory buffer. 2239 */ 2240 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2241 { 2242 if ((unsigned int)size <= sysctl_optmem_max && 2243 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2244 void *mem; 2245 /* First do the add, to avoid the race if kmalloc 2246 * might sleep. 2247 */ 2248 atomic_add(size, &sk->sk_omem_alloc); 2249 mem = kmalloc(size, priority); 2250 if (mem) 2251 return mem; 2252 atomic_sub(size, &sk->sk_omem_alloc); 2253 } 2254 return NULL; 2255 } 2256 EXPORT_SYMBOL(sock_kmalloc); 2257 2258 /* Free an option memory block. Note, we actually want the inline 2259 * here as this allows gcc to detect the nullify and fold away the 2260 * condition entirely. 2261 */ 2262 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2263 const bool nullify) 2264 { 2265 if (WARN_ON_ONCE(!mem)) 2266 return; 2267 if (nullify) 2268 kfree_sensitive(mem); 2269 else 2270 kfree(mem); 2271 atomic_sub(size, &sk->sk_omem_alloc); 2272 } 2273 2274 void sock_kfree_s(struct sock *sk, void *mem, int size) 2275 { 2276 __sock_kfree_s(sk, mem, size, false); 2277 } 2278 EXPORT_SYMBOL(sock_kfree_s); 2279 2280 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2281 { 2282 __sock_kfree_s(sk, mem, size, true); 2283 } 2284 EXPORT_SYMBOL(sock_kzfree_s); 2285 2286 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2287 I think, these locks should be removed for datagram sockets. 2288 */ 2289 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2290 { 2291 DEFINE_WAIT(wait); 2292 2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2294 for (;;) { 2295 if (!timeo) 2296 break; 2297 if (signal_pending(current)) 2298 break; 2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2302 break; 2303 if (sk->sk_shutdown & SEND_SHUTDOWN) 2304 break; 2305 if (sk->sk_err) 2306 break; 2307 timeo = schedule_timeout(timeo); 2308 } 2309 finish_wait(sk_sleep(sk), &wait); 2310 return timeo; 2311 } 2312 2313 2314 /* 2315 * Generic send/receive buffer handlers 2316 */ 2317 2318 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2319 unsigned long data_len, int noblock, 2320 int *errcode, int max_page_order) 2321 { 2322 struct sk_buff *skb; 2323 long timeo; 2324 int err; 2325 2326 timeo = sock_sndtimeo(sk, noblock); 2327 for (;;) { 2328 err = sock_error(sk); 2329 if (err != 0) 2330 goto failure; 2331 2332 err = -EPIPE; 2333 if (sk->sk_shutdown & SEND_SHUTDOWN) 2334 goto failure; 2335 2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2337 break; 2338 2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2341 err = -EAGAIN; 2342 if (!timeo) 2343 goto failure; 2344 if (signal_pending(current)) 2345 goto interrupted; 2346 timeo = sock_wait_for_wmem(sk, timeo); 2347 } 2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2349 errcode, sk->sk_allocation); 2350 if (skb) 2351 skb_set_owner_w(skb, sk); 2352 return skb; 2353 2354 interrupted: 2355 err = sock_intr_errno(timeo); 2356 failure: 2357 *errcode = err; 2358 return NULL; 2359 } 2360 EXPORT_SYMBOL(sock_alloc_send_pskb); 2361 2362 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2363 int noblock, int *errcode) 2364 { 2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2366 } 2367 EXPORT_SYMBOL(sock_alloc_send_skb); 2368 2369 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2370 struct sockcm_cookie *sockc) 2371 { 2372 u32 tsflags; 2373 2374 switch (cmsg->cmsg_type) { 2375 case SO_MARK: 2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2377 return -EPERM; 2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2379 return -EINVAL; 2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2381 break; 2382 case SO_TIMESTAMPING_OLD: 2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2384 return -EINVAL; 2385 2386 tsflags = *(u32 *)CMSG_DATA(cmsg); 2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2388 return -EINVAL; 2389 2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2391 sockc->tsflags |= tsflags; 2392 break; 2393 case SCM_TXTIME: 2394 if (!sock_flag(sk, SOCK_TXTIME)) 2395 return -EINVAL; 2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2397 return -EINVAL; 2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2399 break; 2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2401 case SCM_RIGHTS: 2402 case SCM_CREDENTIALS: 2403 break; 2404 default: 2405 return -EINVAL; 2406 } 2407 return 0; 2408 } 2409 EXPORT_SYMBOL(__sock_cmsg_send); 2410 2411 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2412 struct sockcm_cookie *sockc) 2413 { 2414 struct cmsghdr *cmsg; 2415 int ret; 2416 2417 for_each_cmsghdr(cmsg, msg) { 2418 if (!CMSG_OK(msg, cmsg)) 2419 return -EINVAL; 2420 if (cmsg->cmsg_level != SOL_SOCKET) 2421 continue; 2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2423 if (ret) 2424 return ret; 2425 } 2426 return 0; 2427 } 2428 EXPORT_SYMBOL(sock_cmsg_send); 2429 2430 static void sk_enter_memory_pressure(struct sock *sk) 2431 { 2432 if (!sk->sk_prot->enter_memory_pressure) 2433 return; 2434 2435 sk->sk_prot->enter_memory_pressure(sk); 2436 } 2437 2438 static void sk_leave_memory_pressure(struct sock *sk) 2439 { 2440 if (sk->sk_prot->leave_memory_pressure) { 2441 sk->sk_prot->leave_memory_pressure(sk); 2442 } else { 2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2444 2445 if (memory_pressure && READ_ONCE(*memory_pressure)) 2446 WRITE_ONCE(*memory_pressure, 0); 2447 } 2448 } 2449 2450 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2451 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2452 2453 /** 2454 * skb_page_frag_refill - check that a page_frag contains enough room 2455 * @sz: minimum size of the fragment we want to get 2456 * @pfrag: pointer to page_frag 2457 * @gfp: priority for memory allocation 2458 * 2459 * Note: While this allocator tries to use high order pages, there is 2460 * no guarantee that allocations succeed. Therefore, @sz MUST be 2461 * less or equal than PAGE_SIZE. 2462 */ 2463 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2464 { 2465 if (pfrag->page) { 2466 if (page_ref_count(pfrag->page) == 1) { 2467 pfrag->offset = 0; 2468 return true; 2469 } 2470 if (pfrag->offset + sz <= pfrag->size) 2471 return true; 2472 put_page(pfrag->page); 2473 } 2474 2475 pfrag->offset = 0; 2476 if (SKB_FRAG_PAGE_ORDER && 2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2478 /* Avoid direct reclaim but allow kswapd to wake */ 2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2480 __GFP_COMP | __GFP_NOWARN | 2481 __GFP_NORETRY, 2482 SKB_FRAG_PAGE_ORDER); 2483 if (likely(pfrag->page)) { 2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2485 return true; 2486 } 2487 } 2488 pfrag->page = alloc_page(gfp); 2489 if (likely(pfrag->page)) { 2490 pfrag->size = PAGE_SIZE; 2491 return true; 2492 } 2493 return false; 2494 } 2495 EXPORT_SYMBOL(skb_page_frag_refill); 2496 2497 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2498 { 2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2500 return true; 2501 2502 sk_enter_memory_pressure(sk); 2503 sk_stream_moderate_sndbuf(sk); 2504 return false; 2505 } 2506 EXPORT_SYMBOL(sk_page_frag_refill); 2507 2508 static void __lock_sock(struct sock *sk) 2509 __releases(&sk->sk_lock.slock) 2510 __acquires(&sk->sk_lock.slock) 2511 { 2512 DEFINE_WAIT(wait); 2513 2514 for (;;) { 2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2516 TASK_UNINTERRUPTIBLE); 2517 spin_unlock_bh(&sk->sk_lock.slock); 2518 schedule(); 2519 spin_lock_bh(&sk->sk_lock.slock); 2520 if (!sock_owned_by_user(sk)) 2521 break; 2522 } 2523 finish_wait(&sk->sk_lock.wq, &wait); 2524 } 2525 2526 void __release_sock(struct sock *sk) 2527 __releases(&sk->sk_lock.slock) 2528 __acquires(&sk->sk_lock.slock) 2529 { 2530 struct sk_buff *skb, *next; 2531 2532 while ((skb = sk->sk_backlog.head) != NULL) { 2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2534 2535 spin_unlock_bh(&sk->sk_lock.slock); 2536 2537 do { 2538 next = skb->next; 2539 prefetch(next); 2540 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2541 skb_mark_not_on_list(skb); 2542 sk_backlog_rcv(sk, skb); 2543 2544 cond_resched(); 2545 2546 skb = next; 2547 } while (skb != NULL); 2548 2549 spin_lock_bh(&sk->sk_lock.slock); 2550 } 2551 2552 /* 2553 * Doing the zeroing here guarantee we can not loop forever 2554 * while a wild producer attempts to flood us. 2555 */ 2556 sk->sk_backlog.len = 0; 2557 } 2558 2559 void __sk_flush_backlog(struct sock *sk) 2560 { 2561 spin_lock_bh(&sk->sk_lock.slock); 2562 __release_sock(sk); 2563 spin_unlock_bh(&sk->sk_lock.slock); 2564 } 2565 2566 /** 2567 * sk_wait_data - wait for data to arrive at sk_receive_queue 2568 * @sk: sock to wait on 2569 * @timeo: for how long 2570 * @skb: last skb seen on sk_receive_queue 2571 * 2572 * Now socket state including sk->sk_err is changed only under lock, 2573 * hence we may omit checks after joining wait queue. 2574 * We check receive queue before schedule() only as optimization; 2575 * it is very likely that release_sock() added new data. 2576 */ 2577 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2578 { 2579 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2580 int rc; 2581 2582 add_wait_queue(sk_sleep(sk), &wait); 2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2586 remove_wait_queue(sk_sleep(sk), &wait); 2587 return rc; 2588 } 2589 EXPORT_SYMBOL(sk_wait_data); 2590 2591 /** 2592 * __sk_mem_raise_allocated - increase memory_allocated 2593 * @sk: socket 2594 * @size: memory size to allocate 2595 * @amt: pages to allocate 2596 * @kind: allocation type 2597 * 2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2599 */ 2600 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2601 { 2602 struct proto *prot = sk->sk_prot; 2603 long allocated = sk_memory_allocated_add(sk, amt); 2604 bool charged = true; 2605 2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2608 goto suppress_allocation; 2609 2610 /* Under limit. */ 2611 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2612 sk_leave_memory_pressure(sk); 2613 return 1; 2614 } 2615 2616 /* Under pressure. */ 2617 if (allocated > sk_prot_mem_limits(sk, 1)) 2618 sk_enter_memory_pressure(sk); 2619 2620 /* Over hard limit. */ 2621 if (allocated > sk_prot_mem_limits(sk, 2)) 2622 goto suppress_allocation; 2623 2624 /* guarantee minimum buffer size under pressure */ 2625 if (kind == SK_MEM_RECV) { 2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2627 return 1; 2628 2629 } else { /* SK_MEM_SEND */ 2630 int wmem0 = sk_get_wmem0(sk, prot); 2631 2632 if (sk->sk_type == SOCK_STREAM) { 2633 if (sk->sk_wmem_queued < wmem0) 2634 return 1; 2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2636 return 1; 2637 } 2638 } 2639 2640 if (sk_has_memory_pressure(sk)) { 2641 u64 alloc; 2642 2643 if (!sk_under_memory_pressure(sk)) 2644 return 1; 2645 alloc = sk_sockets_allocated_read_positive(sk); 2646 if (sk_prot_mem_limits(sk, 2) > alloc * 2647 sk_mem_pages(sk->sk_wmem_queued + 2648 atomic_read(&sk->sk_rmem_alloc) + 2649 sk->sk_forward_alloc)) 2650 return 1; 2651 } 2652 2653 suppress_allocation: 2654 2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2656 sk_stream_moderate_sndbuf(sk); 2657 2658 /* Fail only if socket is _under_ its sndbuf. 2659 * In this case we cannot block, so that we have to fail. 2660 */ 2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2662 return 1; 2663 } 2664 2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2667 2668 sk_memory_allocated_sub(sk, amt); 2669 2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2676 2677 /** 2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2679 * @sk: socket 2680 * @size: memory size to allocate 2681 * @kind: allocation type 2682 * 2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2684 * rmem allocation. This function assumes that protocols which have 2685 * memory_pressure use sk_wmem_queued as write buffer accounting. 2686 */ 2687 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2688 { 2689 int ret, amt = sk_mem_pages(size); 2690 2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2693 if (!ret) 2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2695 return ret; 2696 } 2697 EXPORT_SYMBOL(__sk_mem_schedule); 2698 2699 /** 2700 * __sk_mem_reduce_allocated - reclaim memory_allocated 2701 * @sk: socket 2702 * @amount: number of quanta 2703 * 2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2705 */ 2706 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2707 { 2708 sk_memory_allocated_sub(sk, amount); 2709 2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2712 2713 if (sk_under_memory_pressure(sk) && 2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2715 sk_leave_memory_pressure(sk); 2716 } 2717 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2718 2719 /** 2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2721 * @sk: socket 2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2723 */ 2724 void __sk_mem_reclaim(struct sock *sk, int amount) 2725 { 2726 amount >>= SK_MEM_QUANTUM_SHIFT; 2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2728 __sk_mem_reduce_allocated(sk, amount); 2729 } 2730 EXPORT_SYMBOL(__sk_mem_reclaim); 2731 2732 int sk_set_peek_off(struct sock *sk, int val) 2733 { 2734 sk->sk_peek_off = val; 2735 return 0; 2736 } 2737 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2738 2739 /* 2740 * Set of default routines for initialising struct proto_ops when 2741 * the protocol does not support a particular function. In certain 2742 * cases where it makes no sense for a protocol to have a "do nothing" 2743 * function, some default processing is provided. 2744 */ 2745 2746 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2747 { 2748 return -EOPNOTSUPP; 2749 } 2750 EXPORT_SYMBOL(sock_no_bind); 2751 2752 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2753 int len, int flags) 2754 { 2755 return -EOPNOTSUPP; 2756 } 2757 EXPORT_SYMBOL(sock_no_connect); 2758 2759 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2760 { 2761 return -EOPNOTSUPP; 2762 } 2763 EXPORT_SYMBOL(sock_no_socketpair); 2764 2765 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2766 bool kern) 2767 { 2768 return -EOPNOTSUPP; 2769 } 2770 EXPORT_SYMBOL(sock_no_accept); 2771 2772 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2773 int peer) 2774 { 2775 return -EOPNOTSUPP; 2776 } 2777 EXPORT_SYMBOL(sock_no_getname); 2778 2779 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2780 { 2781 return -EOPNOTSUPP; 2782 } 2783 EXPORT_SYMBOL(sock_no_ioctl); 2784 2785 int sock_no_listen(struct socket *sock, int backlog) 2786 { 2787 return -EOPNOTSUPP; 2788 } 2789 EXPORT_SYMBOL(sock_no_listen); 2790 2791 int sock_no_shutdown(struct socket *sock, int how) 2792 { 2793 return -EOPNOTSUPP; 2794 } 2795 EXPORT_SYMBOL(sock_no_shutdown); 2796 2797 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2798 { 2799 return -EOPNOTSUPP; 2800 } 2801 EXPORT_SYMBOL(sock_no_sendmsg); 2802 2803 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2804 { 2805 return -EOPNOTSUPP; 2806 } 2807 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2808 2809 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2810 int flags) 2811 { 2812 return -EOPNOTSUPP; 2813 } 2814 EXPORT_SYMBOL(sock_no_recvmsg); 2815 2816 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2817 { 2818 /* Mirror missing mmap method error code */ 2819 return -ENODEV; 2820 } 2821 EXPORT_SYMBOL(sock_no_mmap); 2822 2823 /* 2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the 2825 * various sock-based usage counts. 2826 */ 2827 void __receive_sock(struct file *file) 2828 { 2829 struct socket *sock; 2830 int error; 2831 2832 /* 2833 * The resulting value of "error" is ignored here since we only 2834 * need to take action when the file is a socket and testing 2835 * "sock" for NULL is sufficient. 2836 */ 2837 sock = sock_from_file(file, &error); 2838 if (sock) { 2839 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 2840 sock_update_classid(&sock->sk->sk_cgrp_data); 2841 } 2842 } 2843 2844 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2845 { 2846 ssize_t res; 2847 struct msghdr msg = {.msg_flags = flags}; 2848 struct kvec iov; 2849 char *kaddr = kmap(page); 2850 iov.iov_base = kaddr + offset; 2851 iov.iov_len = size; 2852 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2853 kunmap(page); 2854 return res; 2855 } 2856 EXPORT_SYMBOL(sock_no_sendpage); 2857 2858 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2859 int offset, size_t size, int flags) 2860 { 2861 ssize_t res; 2862 struct msghdr msg = {.msg_flags = flags}; 2863 struct kvec iov; 2864 char *kaddr = kmap(page); 2865 2866 iov.iov_base = kaddr + offset; 2867 iov.iov_len = size; 2868 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2869 kunmap(page); 2870 return res; 2871 } 2872 EXPORT_SYMBOL(sock_no_sendpage_locked); 2873 2874 /* 2875 * Default Socket Callbacks 2876 */ 2877 2878 static void sock_def_wakeup(struct sock *sk) 2879 { 2880 struct socket_wq *wq; 2881 2882 rcu_read_lock(); 2883 wq = rcu_dereference(sk->sk_wq); 2884 if (skwq_has_sleeper(wq)) 2885 wake_up_interruptible_all(&wq->wait); 2886 rcu_read_unlock(); 2887 } 2888 2889 static void sock_def_error_report(struct sock *sk) 2890 { 2891 struct socket_wq *wq; 2892 2893 rcu_read_lock(); 2894 wq = rcu_dereference(sk->sk_wq); 2895 if (skwq_has_sleeper(wq)) 2896 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2898 rcu_read_unlock(); 2899 } 2900 2901 void sock_def_readable(struct sock *sk) 2902 { 2903 struct socket_wq *wq; 2904 2905 rcu_read_lock(); 2906 wq = rcu_dereference(sk->sk_wq); 2907 if (skwq_has_sleeper(wq)) 2908 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2909 EPOLLRDNORM | EPOLLRDBAND); 2910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2911 rcu_read_unlock(); 2912 } 2913 2914 static void sock_def_write_space(struct sock *sk) 2915 { 2916 struct socket_wq *wq; 2917 2918 rcu_read_lock(); 2919 2920 /* Do not wake up a writer until he can make "significant" 2921 * progress. --DaveM 2922 */ 2923 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2924 wq = rcu_dereference(sk->sk_wq); 2925 if (skwq_has_sleeper(wq)) 2926 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2927 EPOLLWRNORM | EPOLLWRBAND); 2928 2929 /* Should agree with poll, otherwise some programs break */ 2930 if (sock_writeable(sk)) 2931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2932 } 2933 2934 rcu_read_unlock(); 2935 } 2936 2937 static void sock_def_destruct(struct sock *sk) 2938 { 2939 } 2940 2941 void sk_send_sigurg(struct sock *sk) 2942 { 2943 if (sk->sk_socket && sk->sk_socket->file) 2944 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2945 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2946 } 2947 EXPORT_SYMBOL(sk_send_sigurg); 2948 2949 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2950 unsigned long expires) 2951 { 2952 if (!mod_timer(timer, expires)) 2953 sock_hold(sk); 2954 } 2955 EXPORT_SYMBOL(sk_reset_timer); 2956 2957 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2958 { 2959 if (del_timer(timer)) 2960 __sock_put(sk); 2961 } 2962 EXPORT_SYMBOL(sk_stop_timer); 2963 2964 void sock_init_data(struct socket *sock, struct sock *sk) 2965 { 2966 sk_init_common(sk); 2967 sk->sk_send_head = NULL; 2968 2969 timer_setup(&sk->sk_timer, NULL, 0); 2970 2971 sk->sk_allocation = GFP_KERNEL; 2972 sk->sk_rcvbuf = sysctl_rmem_default; 2973 sk->sk_sndbuf = sysctl_wmem_default; 2974 sk->sk_state = TCP_CLOSE; 2975 sk_set_socket(sk, sock); 2976 2977 sock_set_flag(sk, SOCK_ZAPPED); 2978 2979 if (sock) { 2980 sk->sk_type = sock->type; 2981 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2982 sock->sk = sk; 2983 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2984 } else { 2985 RCU_INIT_POINTER(sk->sk_wq, NULL); 2986 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2987 } 2988 2989 rwlock_init(&sk->sk_callback_lock); 2990 if (sk->sk_kern_sock) 2991 lockdep_set_class_and_name( 2992 &sk->sk_callback_lock, 2993 af_kern_callback_keys + sk->sk_family, 2994 af_family_kern_clock_key_strings[sk->sk_family]); 2995 else 2996 lockdep_set_class_and_name( 2997 &sk->sk_callback_lock, 2998 af_callback_keys + sk->sk_family, 2999 af_family_clock_key_strings[sk->sk_family]); 3000 3001 sk->sk_state_change = sock_def_wakeup; 3002 sk->sk_data_ready = sock_def_readable; 3003 sk->sk_write_space = sock_def_write_space; 3004 sk->sk_error_report = sock_def_error_report; 3005 sk->sk_destruct = sock_def_destruct; 3006 3007 sk->sk_frag.page = NULL; 3008 sk->sk_frag.offset = 0; 3009 sk->sk_peek_off = -1; 3010 3011 sk->sk_peer_pid = NULL; 3012 sk->sk_peer_cred = NULL; 3013 sk->sk_write_pending = 0; 3014 sk->sk_rcvlowat = 1; 3015 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3016 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3017 3018 sk->sk_stamp = SK_DEFAULT_STAMP; 3019 #if BITS_PER_LONG==32 3020 seqlock_init(&sk->sk_stamp_seq); 3021 #endif 3022 atomic_set(&sk->sk_zckey, 0); 3023 3024 #ifdef CONFIG_NET_RX_BUSY_POLL 3025 sk->sk_napi_id = 0; 3026 sk->sk_ll_usec = sysctl_net_busy_read; 3027 #endif 3028 3029 sk->sk_max_pacing_rate = ~0UL; 3030 sk->sk_pacing_rate = ~0UL; 3031 WRITE_ONCE(sk->sk_pacing_shift, 10); 3032 sk->sk_incoming_cpu = -1; 3033 3034 sk_rx_queue_clear(sk); 3035 /* 3036 * Before updating sk_refcnt, we must commit prior changes to memory 3037 * (Documentation/RCU/rculist_nulls.rst for details) 3038 */ 3039 smp_wmb(); 3040 refcount_set(&sk->sk_refcnt, 1); 3041 atomic_set(&sk->sk_drops, 0); 3042 } 3043 EXPORT_SYMBOL(sock_init_data); 3044 3045 void lock_sock_nested(struct sock *sk, int subclass) 3046 { 3047 might_sleep(); 3048 spin_lock_bh(&sk->sk_lock.slock); 3049 if (sk->sk_lock.owned) 3050 __lock_sock(sk); 3051 sk->sk_lock.owned = 1; 3052 spin_unlock(&sk->sk_lock.slock); 3053 /* 3054 * The sk_lock has mutex_lock() semantics here: 3055 */ 3056 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3057 local_bh_enable(); 3058 } 3059 EXPORT_SYMBOL(lock_sock_nested); 3060 3061 void release_sock(struct sock *sk) 3062 { 3063 spin_lock_bh(&sk->sk_lock.slock); 3064 if (sk->sk_backlog.tail) 3065 __release_sock(sk); 3066 3067 /* Warning : release_cb() might need to release sk ownership, 3068 * ie call sock_release_ownership(sk) before us. 3069 */ 3070 if (sk->sk_prot->release_cb) 3071 sk->sk_prot->release_cb(sk); 3072 3073 sock_release_ownership(sk); 3074 if (waitqueue_active(&sk->sk_lock.wq)) 3075 wake_up(&sk->sk_lock.wq); 3076 spin_unlock_bh(&sk->sk_lock.slock); 3077 } 3078 EXPORT_SYMBOL(release_sock); 3079 3080 /** 3081 * lock_sock_fast - fast version of lock_sock 3082 * @sk: socket 3083 * 3084 * This version should be used for very small section, where process wont block 3085 * return false if fast path is taken: 3086 * 3087 * sk_lock.slock locked, owned = 0, BH disabled 3088 * 3089 * return true if slow path is taken: 3090 * 3091 * sk_lock.slock unlocked, owned = 1, BH enabled 3092 */ 3093 bool lock_sock_fast(struct sock *sk) 3094 { 3095 might_sleep(); 3096 spin_lock_bh(&sk->sk_lock.slock); 3097 3098 if (!sk->sk_lock.owned) 3099 /* 3100 * Note : We must disable BH 3101 */ 3102 return false; 3103 3104 __lock_sock(sk); 3105 sk->sk_lock.owned = 1; 3106 spin_unlock(&sk->sk_lock.slock); 3107 /* 3108 * The sk_lock has mutex_lock() semantics here: 3109 */ 3110 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3111 local_bh_enable(); 3112 return true; 3113 } 3114 EXPORT_SYMBOL(lock_sock_fast); 3115 3116 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3117 bool timeval, bool time32) 3118 { 3119 struct sock *sk = sock->sk; 3120 struct timespec64 ts; 3121 3122 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3123 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3124 if (ts.tv_sec == -1) 3125 return -ENOENT; 3126 if (ts.tv_sec == 0) { 3127 ktime_t kt = ktime_get_real(); 3128 sock_write_timestamp(sk, kt); 3129 ts = ktime_to_timespec64(kt); 3130 } 3131 3132 if (timeval) 3133 ts.tv_nsec /= 1000; 3134 3135 #ifdef CONFIG_COMPAT_32BIT_TIME 3136 if (time32) 3137 return put_old_timespec32(&ts, userstamp); 3138 #endif 3139 #ifdef CONFIG_SPARC64 3140 /* beware of padding in sparc64 timeval */ 3141 if (timeval && !in_compat_syscall()) { 3142 struct __kernel_old_timeval __user tv = { 3143 .tv_sec = ts.tv_sec, 3144 .tv_usec = ts.tv_nsec, 3145 }; 3146 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3147 return -EFAULT; 3148 return 0; 3149 } 3150 #endif 3151 return put_timespec64(&ts, userstamp); 3152 } 3153 EXPORT_SYMBOL(sock_gettstamp); 3154 3155 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3156 { 3157 if (!sock_flag(sk, flag)) { 3158 unsigned long previous_flags = sk->sk_flags; 3159 3160 sock_set_flag(sk, flag); 3161 /* 3162 * we just set one of the two flags which require net 3163 * time stamping, but time stamping might have been on 3164 * already because of the other one 3165 */ 3166 if (sock_needs_netstamp(sk) && 3167 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3168 net_enable_timestamp(); 3169 } 3170 } 3171 3172 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3173 int level, int type) 3174 { 3175 struct sock_exterr_skb *serr; 3176 struct sk_buff *skb; 3177 int copied, err; 3178 3179 err = -EAGAIN; 3180 skb = sock_dequeue_err_skb(sk); 3181 if (skb == NULL) 3182 goto out; 3183 3184 copied = skb->len; 3185 if (copied > len) { 3186 msg->msg_flags |= MSG_TRUNC; 3187 copied = len; 3188 } 3189 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3190 if (err) 3191 goto out_free_skb; 3192 3193 sock_recv_timestamp(msg, sk, skb); 3194 3195 serr = SKB_EXT_ERR(skb); 3196 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3197 3198 msg->msg_flags |= MSG_ERRQUEUE; 3199 err = copied; 3200 3201 out_free_skb: 3202 kfree_skb(skb); 3203 out: 3204 return err; 3205 } 3206 EXPORT_SYMBOL(sock_recv_errqueue); 3207 3208 /* 3209 * Get a socket option on an socket. 3210 * 3211 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3212 * asynchronous errors should be reported by getsockopt. We assume 3213 * this means if you specify SO_ERROR (otherwise whats the point of it). 3214 */ 3215 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3216 char __user *optval, int __user *optlen) 3217 { 3218 struct sock *sk = sock->sk; 3219 3220 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3221 } 3222 EXPORT_SYMBOL(sock_common_getsockopt); 3223 3224 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3225 int flags) 3226 { 3227 struct sock *sk = sock->sk; 3228 int addr_len = 0; 3229 int err; 3230 3231 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3232 flags & ~MSG_DONTWAIT, &addr_len); 3233 if (err >= 0) 3234 msg->msg_namelen = addr_len; 3235 return err; 3236 } 3237 EXPORT_SYMBOL(sock_common_recvmsg); 3238 3239 /* 3240 * Set socket options on an inet socket. 3241 */ 3242 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3243 sockptr_t optval, unsigned int optlen) 3244 { 3245 struct sock *sk = sock->sk; 3246 3247 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3248 } 3249 EXPORT_SYMBOL(sock_common_setsockopt); 3250 3251 void sk_common_release(struct sock *sk) 3252 { 3253 if (sk->sk_prot->destroy) 3254 sk->sk_prot->destroy(sk); 3255 3256 /* 3257 * Observation: when sock_common_release is called, processes have 3258 * no access to socket. But net still has. 3259 * Step one, detach it from networking: 3260 * 3261 * A. Remove from hash tables. 3262 */ 3263 3264 sk->sk_prot->unhash(sk); 3265 3266 /* 3267 * In this point socket cannot receive new packets, but it is possible 3268 * that some packets are in flight because some CPU runs receiver and 3269 * did hash table lookup before we unhashed socket. They will achieve 3270 * receive queue and will be purged by socket destructor. 3271 * 3272 * Also we still have packets pending on receive queue and probably, 3273 * our own packets waiting in device queues. sock_destroy will drain 3274 * receive queue, but transmitted packets will delay socket destruction 3275 * until the last reference will be released. 3276 */ 3277 3278 sock_orphan(sk); 3279 3280 xfrm_sk_free_policy(sk); 3281 3282 sk_refcnt_debug_release(sk); 3283 3284 sock_put(sk); 3285 } 3286 EXPORT_SYMBOL(sk_common_release); 3287 3288 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3289 { 3290 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3291 3292 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3293 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3294 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3295 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3296 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3297 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3298 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3299 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3300 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3301 } 3302 3303 #ifdef CONFIG_PROC_FS 3304 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3305 struct prot_inuse { 3306 int val[PROTO_INUSE_NR]; 3307 }; 3308 3309 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3310 3311 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3312 { 3313 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3314 } 3315 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3316 3317 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3318 { 3319 int cpu, idx = prot->inuse_idx; 3320 int res = 0; 3321 3322 for_each_possible_cpu(cpu) 3323 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3324 3325 return res >= 0 ? res : 0; 3326 } 3327 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3328 3329 static void sock_inuse_add(struct net *net, int val) 3330 { 3331 this_cpu_add(*net->core.sock_inuse, val); 3332 } 3333 3334 int sock_inuse_get(struct net *net) 3335 { 3336 int cpu, res = 0; 3337 3338 for_each_possible_cpu(cpu) 3339 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3340 3341 return res; 3342 } 3343 3344 EXPORT_SYMBOL_GPL(sock_inuse_get); 3345 3346 static int __net_init sock_inuse_init_net(struct net *net) 3347 { 3348 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3349 if (net->core.prot_inuse == NULL) 3350 return -ENOMEM; 3351 3352 net->core.sock_inuse = alloc_percpu(int); 3353 if (net->core.sock_inuse == NULL) 3354 goto out; 3355 3356 return 0; 3357 3358 out: 3359 free_percpu(net->core.prot_inuse); 3360 return -ENOMEM; 3361 } 3362 3363 static void __net_exit sock_inuse_exit_net(struct net *net) 3364 { 3365 free_percpu(net->core.prot_inuse); 3366 free_percpu(net->core.sock_inuse); 3367 } 3368 3369 static struct pernet_operations net_inuse_ops = { 3370 .init = sock_inuse_init_net, 3371 .exit = sock_inuse_exit_net, 3372 }; 3373 3374 static __init int net_inuse_init(void) 3375 { 3376 if (register_pernet_subsys(&net_inuse_ops)) 3377 panic("Cannot initialize net inuse counters"); 3378 3379 return 0; 3380 } 3381 3382 core_initcall(net_inuse_init); 3383 3384 static int assign_proto_idx(struct proto *prot) 3385 { 3386 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3387 3388 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3389 pr_err("PROTO_INUSE_NR exhausted\n"); 3390 return -ENOSPC; 3391 } 3392 3393 set_bit(prot->inuse_idx, proto_inuse_idx); 3394 return 0; 3395 } 3396 3397 static void release_proto_idx(struct proto *prot) 3398 { 3399 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3400 clear_bit(prot->inuse_idx, proto_inuse_idx); 3401 } 3402 #else 3403 static inline int assign_proto_idx(struct proto *prot) 3404 { 3405 return 0; 3406 } 3407 3408 static inline void release_proto_idx(struct proto *prot) 3409 { 3410 } 3411 3412 static void sock_inuse_add(struct net *net, int val) 3413 { 3414 } 3415 #endif 3416 3417 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3418 { 3419 if (!twsk_prot) 3420 return; 3421 kfree(twsk_prot->twsk_slab_name); 3422 twsk_prot->twsk_slab_name = NULL; 3423 kmem_cache_destroy(twsk_prot->twsk_slab); 3424 twsk_prot->twsk_slab = NULL; 3425 } 3426 3427 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3428 { 3429 if (!rsk_prot) 3430 return; 3431 kfree(rsk_prot->slab_name); 3432 rsk_prot->slab_name = NULL; 3433 kmem_cache_destroy(rsk_prot->slab); 3434 rsk_prot->slab = NULL; 3435 } 3436 3437 static int req_prot_init(const struct proto *prot) 3438 { 3439 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3440 3441 if (!rsk_prot) 3442 return 0; 3443 3444 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3445 prot->name); 3446 if (!rsk_prot->slab_name) 3447 return -ENOMEM; 3448 3449 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3450 rsk_prot->obj_size, 0, 3451 SLAB_ACCOUNT | prot->slab_flags, 3452 NULL); 3453 3454 if (!rsk_prot->slab) { 3455 pr_crit("%s: Can't create request sock SLAB cache!\n", 3456 prot->name); 3457 return -ENOMEM; 3458 } 3459 return 0; 3460 } 3461 3462 int proto_register(struct proto *prot, int alloc_slab) 3463 { 3464 int ret = -ENOBUFS; 3465 3466 if (alloc_slab) { 3467 prot->slab = kmem_cache_create_usercopy(prot->name, 3468 prot->obj_size, 0, 3469 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3470 prot->slab_flags, 3471 prot->useroffset, prot->usersize, 3472 NULL); 3473 3474 if (prot->slab == NULL) { 3475 pr_crit("%s: Can't create sock SLAB cache!\n", 3476 prot->name); 3477 goto out; 3478 } 3479 3480 if (req_prot_init(prot)) 3481 goto out_free_request_sock_slab; 3482 3483 if (prot->twsk_prot != NULL) { 3484 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3485 3486 if (prot->twsk_prot->twsk_slab_name == NULL) 3487 goto out_free_request_sock_slab; 3488 3489 prot->twsk_prot->twsk_slab = 3490 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3491 prot->twsk_prot->twsk_obj_size, 3492 0, 3493 SLAB_ACCOUNT | 3494 prot->slab_flags, 3495 NULL); 3496 if (prot->twsk_prot->twsk_slab == NULL) 3497 goto out_free_timewait_sock_slab; 3498 } 3499 } 3500 3501 mutex_lock(&proto_list_mutex); 3502 ret = assign_proto_idx(prot); 3503 if (ret) { 3504 mutex_unlock(&proto_list_mutex); 3505 goto out_free_timewait_sock_slab; 3506 } 3507 list_add(&prot->node, &proto_list); 3508 mutex_unlock(&proto_list_mutex); 3509 return ret; 3510 3511 out_free_timewait_sock_slab: 3512 if (alloc_slab && prot->twsk_prot) 3513 tw_prot_cleanup(prot->twsk_prot); 3514 out_free_request_sock_slab: 3515 if (alloc_slab) { 3516 req_prot_cleanup(prot->rsk_prot); 3517 3518 kmem_cache_destroy(prot->slab); 3519 prot->slab = NULL; 3520 } 3521 out: 3522 return ret; 3523 } 3524 EXPORT_SYMBOL(proto_register); 3525 3526 void proto_unregister(struct proto *prot) 3527 { 3528 mutex_lock(&proto_list_mutex); 3529 release_proto_idx(prot); 3530 list_del(&prot->node); 3531 mutex_unlock(&proto_list_mutex); 3532 3533 kmem_cache_destroy(prot->slab); 3534 prot->slab = NULL; 3535 3536 req_prot_cleanup(prot->rsk_prot); 3537 tw_prot_cleanup(prot->twsk_prot); 3538 } 3539 EXPORT_SYMBOL(proto_unregister); 3540 3541 int sock_load_diag_module(int family, int protocol) 3542 { 3543 if (!protocol) { 3544 if (!sock_is_registered(family)) 3545 return -ENOENT; 3546 3547 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3548 NETLINK_SOCK_DIAG, family); 3549 } 3550 3551 #ifdef CONFIG_INET 3552 if (family == AF_INET && 3553 protocol != IPPROTO_RAW && 3554 protocol < MAX_INET_PROTOS && 3555 !rcu_access_pointer(inet_protos[protocol])) 3556 return -ENOENT; 3557 #endif 3558 3559 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3560 NETLINK_SOCK_DIAG, family, protocol); 3561 } 3562 EXPORT_SYMBOL(sock_load_diag_module); 3563 3564 #ifdef CONFIG_PROC_FS 3565 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3566 __acquires(proto_list_mutex) 3567 { 3568 mutex_lock(&proto_list_mutex); 3569 return seq_list_start_head(&proto_list, *pos); 3570 } 3571 3572 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3573 { 3574 return seq_list_next(v, &proto_list, pos); 3575 } 3576 3577 static void proto_seq_stop(struct seq_file *seq, void *v) 3578 __releases(proto_list_mutex) 3579 { 3580 mutex_unlock(&proto_list_mutex); 3581 } 3582 3583 static char proto_method_implemented(const void *method) 3584 { 3585 return method == NULL ? 'n' : 'y'; 3586 } 3587 static long sock_prot_memory_allocated(struct proto *proto) 3588 { 3589 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3590 } 3591 3592 static const char *sock_prot_memory_pressure(struct proto *proto) 3593 { 3594 return proto->memory_pressure != NULL ? 3595 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3596 } 3597 3598 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3599 { 3600 3601 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3602 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3603 proto->name, 3604 proto->obj_size, 3605 sock_prot_inuse_get(seq_file_net(seq), proto), 3606 sock_prot_memory_allocated(proto), 3607 sock_prot_memory_pressure(proto), 3608 proto->max_header, 3609 proto->slab == NULL ? "no" : "yes", 3610 module_name(proto->owner), 3611 proto_method_implemented(proto->close), 3612 proto_method_implemented(proto->connect), 3613 proto_method_implemented(proto->disconnect), 3614 proto_method_implemented(proto->accept), 3615 proto_method_implemented(proto->ioctl), 3616 proto_method_implemented(proto->init), 3617 proto_method_implemented(proto->destroy), 3618 proto_method_implemented(proto->shutdown), 3619 proto_method_implemented(proto->setsockopt), 3620 proto_method_implemented(proto->getsockopt), 3621 proto_method_implemented(proto->sendmsg), 3622 proto_method_implemented(proto->recvmsg), 3623 proto_method_implemented(proto->sendpage), 3624 proto_method_implemented(proto->bind), 3625 proto_method_implemented(proto->backlog_rcv), 3626 proto_method_implemented(proto->hash), 3627 proto_method_implemented(proto->unhash), 3628 proto_method_implemented(proto->get_port), 3629 proto_method_implemented(proto->enter_memory_pressure)); 3630 } 3631 3632 static int proto_seq_show(struct seq_file *seq, void *v) 3633 { 3634 if (v == &proto_list) 3635 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3636 "protocol", 3637 "size", 3638 "sockets", 3639 "memory", 3640 "press", 3641 "maxhdr", 3642 "slab", 3643 "module", 3644 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3645 else 3646 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3647 return 0; 3648 } 3649 3650 static const struct seq_operations proto_seq_ops = { 3651 .start = proto_seq_start, 3652 .next = proto_seq_next, 3653 .stop = proto_seq_stop, 3654 .show = proto_seq_show, 3655 }; 3656 3657 static __net_init int proto_init_net(struct net *net) 3658 { 3659 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3660 sizeof(struct seq_net_private))) 3661 return -ENOMEM; 3662 3663 return 0; 3664 } 3665 3666 static __net_exit void proto_exit_net(struct net *net) 3667 { 3668 remove_proc_entry("protocols", net->proc_net); 3669 } 3670 3671 3672 static __net_initdata struct pernet_operations proto_net_ops = { 3673 .init = proto_init_net, 3674 .exit = proto_exit_net, 3675 }; 3676 3677 static int __init proto_init(void) 3678 { 3679 return register_pernet_subsys(&proto_net_ops); 3680 } 3681 3682 subsys_initcall(proto_init); 3683 3684 #endif /* PROC_FS */ 3685 3686 #ifdef CONFIG_NET_RX_BUSY_POLL 3687 bool sk_busy_loop_end(void *p, unsigned long start_time) 3688 { 3689 struct sock *sk = p; 3690 3691 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3692 sk_busy_loop_timeout(sk, start_time); 3693 } 3694 EXPORT_SYMBOL(sk_busy_loop_end); 3695 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3696 3697 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3698 { 3699 if (!sk->sk_prot->bind_add) 3700 return -EOPNOTSUPP; 3701 return sk->sk_prot->bind_add(sk, addr, addr_len); 3702 } 3703 EXPORT_SYMBOL(sock_bind_add); 3704