xref: /linux/net/core/sock.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_IEEE802154",
159   "sk_lock-AF_MAX"
160 };
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174   "slock-AF_IEEE802154",
175   "slock-AF_MAX"
176 };
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190   "clock-AF_IEEE802154",
191   "clock-AF_MAX"
192 };
193 
194 /*
195  * sk_callback_lock locking rules are per-address-family,
196  * so split the lock classes by using a per-AF key:
197  */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199 
200 /* Take into consideration the size of the struct sk_buff overhead in the
201  * determination of these values, since that is non-constant across
202  * platforms.  This makes socket queueing behavior and performance
203  * not depend upon such differences.
204  */
205 #define _SK_MEM_PACKETS		256
206 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215 
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219 
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 	struct timeval tv;
223 
224 	if (optlen < sizeof(tv))
225 		return -EINVAL;
226 	if (copy_from_user(&tv, optval, sizeof(tv)))
227 		return -EFAULT;
228 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 		return -EDOM;
230 
231 	if (tv.tv_sec < 0) {
232 		static int warned __read_mostly;
233 
234 		*timeo_p = 0;
235 		if (warned < 10 && net_ratelimit()) {
236 			warned++;
237 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 			       "tries to set negative timeout\n",
239 				current->comm, task_pid_nr(current));
240 		}
241 		return 0;
242 	}
243 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 		return 0;
246 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 	return 0;
249 }
250 
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 	static int warned;
254 	static char warncomm[TASK_COMM_LEN];
255 	if (strcmp(warncomm, current->comm) && warned < 5) {
256 		strcpy(warncomm,  current->comm);
257 		printk(KERN_WARNING "process `%s' is using obsolete "
258 		       "%s SO_BSDCOMPAT\n", warncomm, name);
259 		warned++;
260 	}
261 }
262 
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 	if (sock_flag(sk, flag)) {
266 		sock_reset_flag(sk, flag);
267 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 			net_disable_timestamp();
270 		}
271 	}
272 }
273 
274 
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 	int err = 0;
278 	int skb_len;
279 
280 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 	   number of warnings when compiling with -W --ANK
282 	 */
283 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 	    (unsigned)sk->sk_rcvbuf) {
285 		err = -ENOMEM;
286 		goto out;
287 	}
288 
289 	err = sk_filter(sk, skb);
290 	if (err)
291 		goto out;
292 
293 	if (!sk_rmem_schedule(sk, skb->truesize)) {
294 		err = -ENOBUFS;
295 		goto out;
296 	}
297 
298 	skb->dev = NULL;
299 	skb_set_owner_r(skb, sk);
300 
301 	/* Cache the SKB length before we tack it onto the receive
302 	 * queue.  Once it is added it no longer belongs to us and
303 	 * may be freed by other threads of control pulling packets
304 	 * from the queue.
305 	 */
306 	skb_len = skb->len;
307 
308 	skb_queue_tail(&sk->sk_receive_queue, skb);
309 
310 	if (!sock_flag(sk, SOCK_DEAD))
311 		sk->sk_data_ready(sk, skb_len);
312 out:
313 	return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316 
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 	int rc = NET_RX_SUCCESS;
320 
321 	if (sk_filter(sk, skb))
322 		goto discard_and_relse;
323 
324 	skb->dev = NULL;
325 
326 	if (nested)
327 		bh_lock_sock_nested(sk);
328 	else
329 		bh_lock_sock(sk);
330 	if (!sock_owned_by_user(sk)) {
331 		/*
332 		 * trylock + unlock semantics:
333 		 */
334 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335 
336 		rc = sk_backlog_rcv(sk, skb);
337 
338 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 	} else
340 		sk_add_backlog(sk, skb);
341 	bh_unlock_sock(sk);
342 out:
343 	sock_put(sk);
344 	return rc;
345 discard_and_relse:
346 	kfree_skb(skb);
347 	goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350 
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 	struct dst_entry *dst = sk->sk_dst_cache;
354 
355 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 		sk->sk_dst_cache = NULL;
357 		dst_release(dst);
358 		return NULL;
359 	}
360 
361 	return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364 
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 	struct dst_entry *dst = sk_dst_get(sk);
368 
369 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 		sk_dst_reset(sk);
371 		dst_release(dst);
372 		return NULL;
373 	}
374 
375 	return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378 
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 	int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 	struct net *net = sock_net(sk);
384 	char devname[IFNAMSIZ];
385 	int index;
386 
387 	/* Sorry... */
388 	ret = -EPERM;
389 	if (!capable(CAP_NET_RAW))
390 		goto out;
391 
392 	ret = -EINVAL;
393 	if (optlen < 0)
394 		goto out;
395 
396 	/* Bind this socket to a particular device like "eth0",
397 	 * as specified in the passed interface name. If the
398 	 * name is "" or the option length is zero the socket
399 	 * is not bound.
400 	 */
401 	if (optlen > IFNAMSIZ - 1)
402 		optlen = IFNAMSIZ - 1;
403 	memset(devname, 0, sizeof(devname));
404 
405 	ret = -EFAULT;
406 	if (copy_from_user(devname, optval, optlen))
407 		goto out;
408 
409 	if (devname[0] == '\0') {
410 		index = 0;
411 	} else {
412 		struct net_device *dev = dev_get_by_name(net, devname);
413 
414 		ret = -ENODEV;
415 		if (!dev)
416 			goto out;
417 
418 		index = dev->ifindex;
419 		dev_put(dev);
420 	}
421 
422 	lock_sock(sk);
423 	sk->sk_bound_dev_if = index;
424 	sk_dst_reset(sk);
425 	release_sock(sk);
426 
427 	ret = 0;
428 
429 out:
430 #endif
431 
432 	return ret;
433 }
434 
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 	if (valbool)
438 		sock_set_flag(sk, bit);
439 	else
440 		sock_reset_flag(sk, bit);
441 }
442 
443 /*
444  *	This is meant for all protocols to use and covers goings on
445  *	at the socket level. Everything here is generic.
446  */
447 
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 		    char __user *optval, unsigned int optlen)
450 {
451 	struct sock *sk = sock->sk;
452 	int val;
453 	int valbool;
454 	struct linger ling;
455 	int ret = 0;
456 
457 	/*
458 	 *	Options without arguments
459 	 */
460 
461 	if (optname == SO_BINDTODEVICE)
462 		return sock_bindtodevice(sk, optval, optlen);
463 
464 	if (optlen < sizeof(int))
465 		return -EINVAL;
466 
467 	if (get_user(val, (int __user *)optval))
468 		return -EFAULT;
469 
470 	valbool = val ? 1 : 0;
471 
472 	lock_sock(sk);
473 
474 	switch (optname) {
475 	case SO_DEBUG:
476 		if (val && !capable(CAP_NET_ADMIN))
477 			ret = -EACCES;
478 		else
479 			sock_valbool_flag(sk, SOCK_DBG, valbool);
480 		break;
481 	case SO_REUSEADDR:
482 		sk->sk_reuse = valbool;
483 		break;
484 	case SO_TYPE:
485 	case SO_PROTOCOL:
486 	case SO_DOMAIN:
487 	case SO_ERROR:
488 		ret = -ENOPROTOOPT;
489 		break;
490 	case SO_DONTROUTE:
491 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
492 		break;
493 	case SO_BROADCAST:
494 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
495 		break;
496 	case SO_SNDBUF:
497 		/* Don't error on this BSD doesn't and if you think
498 		   about it this is right. Otherwise apps have to
499 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
500 		   are treated in BSD as hints */
501 
502 		if (val > sysctl_wmem_max)
503 			val = sysctl_wmem_max;
504 set_sndbuf:
505 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
506 		if ((val * 2) < SOCK_MIN_SNDBUF)
507 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
508 		else
509 			sk->sk_sndbuf = val * 2;
510 
511 		/*
512 		 *	Wake up sending tasks if we
513 		 *	upped the value.
514 		 */
515 		sk->sk_write_space(sk);
516 		break;
517 
518 	case SO_SNDBUFFORCE:
519 		if (!capable(CAP_NET_ADMIN)) {
520 			ret = -EPERM;
521 			break;
522 		}
523 		goto set_sndbuf;
524 
525 	case SO_RCVBUF:
526 		/* Don't error on this BSD doesn't and if you think
527 		   about it this is right. Otherwise apps have to
528 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
529 		   are treated in BSD as hints */
530 
531 		if (val > sysctl_rmem_max)
532 			val = sysctl_rmem_max;
533 set_rcvbuf:
534 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
535 		/*
536 		 * We double it on the way in to account for
537 		 * "struct sk_buff" etc. overhead.   Applications
538 		 * assume that the SO_RCVBUF setting they make will
539 		 * allow that much actual data to be received on that
540 		 * socket.
541 		 *
542 		 * Applications are unaware that "struct sk_buff" and
543 		 * other overheads allocate from the receive buffer
544 		 * during socket buffer allocation.
545 		 *
546 		 * And after considering the possible alternatives,
547 		 * returning the value we actually used in getsockopt
548 		 * is the most desirable behavior.
549 		 */
550 		if ((val * 2) < SOCK_MIN_RCVBUF)
551 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
552 		else
553 			sk->sk_rcvbuf = val * 2;
554 		break;
555 
556 	case SO_RCVBUFFORCE:
557 		if (!capable(CAP_NET_ADMIN)) {
558 			ret = -EPERM;
559 			break;
560 		}
561 		goto set_rcvbuf;
562 
563 	case SO_KEEPALIVE:
564 #ifdef CONFIG_INET
565 		if (sk->sk_protocol == IPPROTO_TCP)
566 			tcp_set_keepalive(sk, valbool);
567 #endif
568 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
569 		break;
570 
571 	case SO_OOBINLINE:
572 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
573 		break;
574 
575 	case SO_NO_CHECK:
576 		sk->sk_no_check = valbool;
577 		break;
578 
579 	case SO_PRIORITY:
580 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
581 			sk->sk_priority = val;
582 		else
583 			ret = -EPERM;
584 		break;
585 
586 	case SO_LINGER:
587 		if (optlen < sizeof(ling)) {
588 			ret = -EINVAL;	/* 1003.1g */
589 			break;
590 		}
591 		if (copy_from_user(&ling, optval, sizeof(ling))) {
592 			ret = -EFAULT;
593 			break;
594 		}
595 		if (!ling.l_onoff)
596 			sock_reset_flag(sk, SOCK_LINGER);
597 		else {
598 #if (BITS_PER_LONG == 32)
599 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
600 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
601 			else
602 #endif
603 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
604 			sock_set_flag(sk, SOCK_LINGER);
605 		}
606 		break;
607 
608 	case SO_BSDCOMPAT:
609 		sock_warn_obsolete_bsdism("setsockopt");
610 		break;
611 
612 	case SO_PASSCRED:
613 		if (valbool)
614 			set_bit(SOCK_PASSCRED, &sock->flags);
615 		else
616 			clear_bit(SOCK_PASSCRED, &sock->flags);
617 		break;
618 
619 	case SO_TIMESTAMP:
620 	case SO_TIMESTAMPNS:
621 		if (valbool)  {
622 			if (optname == SO_TIMESTAMP)
623 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
624 			else
625 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
626 			sock_set_flag(sk, SOCK_RCVTSTAMP);
627 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
628 		} else {
629 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
630 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
631 		}
632 		break;
633 
634 	case SO_TIMESTAMPING:
635 		if (val & ~SOF_TIMESTAMPING_MASK) {
636 			ret = -EINVAL;
637 			break;
638 		}
639 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
640 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
641 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
642 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
643 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
644 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
645 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
646 			sock_enable_timestamp(sk,
647 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
648 		else
649 			sock_disable_timestamp(sk,
650 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
651 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
652 				  val & SOF_TIMESTAMPING_SOFTWARE);
653 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
654 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
655 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
656 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
657 		break;
658 
659 	case SO_RCVLOWAT:
660 		if (val < 0)
661 			val = INT_MAX;
662 		sk->sk_rcvlowat = val ? : 1;
663 		break;
664 
665 	case SO_RCVTIMEO:
666 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
667 		break;
668 
669 	case SO_SNDTIMEO:
670 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
671 		break;
672 
673 	case SO_ATTACH_FILTER:
674 		ret = -EINVAL;
675 		if (optlen == sizeof(struct sock_fprog)) {
676 			struct sock_fprog fprog;
677 
678 			ret = -EFAULT;
679 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
680 				break;
681 
682 			ret = sk_attach_filter(&fprog, sk);
683 		}
684 		break;
685 
686 	case SO_DETACH_FILTER:
687 		ret = sk_detach_filter(sk);
688 		break;
689 
690 	case SO_PASSSEC:
691 		if (valbool)
692 			set_bit(SOCK_PASSSEC, &sock->flags);
693 		else
694 			clear_bit(SOCK_PASSSEC, &sock->flags);
695 		break;
696 	case SO_MARK:
697 		if (!capable(CAP_NET_ADMIN))
698 			ret = -EPERM;
699 		else
700 			sk->sk_mark = val;
701 		break;
702 
703 		/* We implement the SO_SNDLOWAT etc to
704 		   not be settable (1003.1g 5.3) */
705 	default:
706 		ret = -ENOPROTOOPT;
707 		break;
708 	}
709 	release_sock(sk);
710 	return ret;
711 }
712 EXPORT_SYMBOL(sock_setsockopt);
713 
714 
715 int sock_getsockopt(struct socket *sock, int level, int optname,
716 		    char __user *optval, int __user *optlen)
717 {
718 	struct sock *sk = sock->sk;
719 
720 	union {
721 		int val;
722 		struct linger ling;
723 		struct timeval tm;
724 	} v;
725 
726 	unsigned int lv = sizeof(int);
727 	int len;
728 
729 	if (get_user(len, optlen))
730 		return -EFAULT;
731 	if (len < 0)
732 		return -EINVAL;
733 
734 	memset(&v, 0, sizeof(v));
735 
736 	switch (optname) {
737 	case SO_DEBUG:
738 		v.val = sock_flag(sk, SOCK_DBG);
739 		break;
740 
741 	case SO_DONTROUTE:
742 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
743 		break;
744 
745 	case SO_BROADCAST:
746 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
747 		break;
748 
749 	case SO_SNDBUF:
750 		v.val = sk->sk_sndbuf;
751 		break;
752 
753 	case SO_RCVBUF:
754 		v.val = sk->sk_rcvbuf;
755 		break;
756 
757 	case SO_REUSEADDR:
758 		v.val = sk->sk_reuse;
759 		break;
760 
761 	case SO_KEEPALIVE:
762 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
763 		break;
764 
765 	case SO_TYPE:
766 		v.val = sk->sk_type;
767 		break;
768 
769 	case SO_PROTOCOL:
770 		v.val = sk->sk_protocol;
771 		break;
772 
773 	case SO_DOMAIN:
774 		v.val = sk->sk_family;
775 		break;
776 
777 	case SO_ERROR:
778 		v.val = -sock_error(sk);
779 		if (v.val == 0)
780 			v.val = xchg(&sk->sk_err_soft, 0);
781 		break;
782 
783 	case SO_OOBINLINE:
784 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
785 		break;
786 
787 	case SO_NO_CHECK:
788 		v.val = sk->sk_no_check;
789 		break;
790 
791 	case SO_PRIORITY:
792 		v.val = sk->sk_priority;
793 		break;
794 
795 	case SO_LINGER:
796 		lv		= sizeof(v.ling);
797 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
798 		v.ling.l_linger	= sk->sk_lingertime / HZ;
799 		break;
800 
801 	case SO_BSDCOMPAT:
802 		sock_warn_obsolete_bsdism("getsockopt");
803 		break;
804 
805 	case SO_TIMESTAMP:
806 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
807 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
808 		break;
809 
810 	case SO_TIMESTAMPNS:
811 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
812 		break;
813 
814 	case SO_TIMESTAMPING:
815 		v.val = 0;
816 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
817 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
818 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
819 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
820 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
821 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
822 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
823 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
824 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
825 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
826 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
827 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
828 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
829 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
830 		break;
831 
832 	case SO_RCVTIMEO:
833 		lv = sizeof(struct timeval);
834 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
835 			v.tm.tv_sec = 0;
836 			v.tm.tv_usec = 0;
837 		} else {
838 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
839 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
840 		}
841 		break;
842 
843 	case SO_SNDTIMEO:
844 		lv = sizeof(struct timeval);
845 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
846 			v.tm.tv_sec = 0;
847 			v.tm.tv_usec = 0;
848 		} else {
849 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
850 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
851 		}
852 		break;
853 
854 	case SO_RCVLOWAT:
855 		v.val = sk->sk_rcvlowat;
856 		break;
857 
858 	case SO_SNDLOWAT:
859 		v.val = 1;
860 		break;
861 
862 	case SO_PASSCRED:
863 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
864 		break;
865 
866 	case SO_PEERCRED:
867 		if (len > sizeof(sk->sk_peercred))
868 			len = sizeof(sk->sk_peercred);
869 		if (copy_to_user(optval, &sk->sk_peercred, len))
870 			return -EFAULT;
871 		goto lenout;
872 
873 	case SO_PEERNAME:
874 	{
875 		char address[128];
876 
877 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
878 			return -ENOTCONN;
879 		if (lv < len)
880 			return -EINVAL;
881 		if (copy_to_user(optval, address, len))
882 			return -EFAULT;
883 		goto lenout;
884 	}
885 
886 	/* Dubious BSD thing... Probably nobody even uses it, but
887 	 * the UNIX standard wants it for whatever reason... -DaveM
888 	 */
889 	case SO_ACCEPTCONN:
890 		v.val = sk->sk_state == TCP_LISTEN;
891 		break;
892 
893 	case SO_PASSSEC:
894 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
895 		break;
896 
897 	case SO_PEERSEC:
898 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
899 
900 	case SO_MARK:
901 		v.val = sk->sk_mark;
902 		break;
903 
904 	default:
905 		return -ENOPROTOOPT;
906 	}
907 
908 	if (len > lv)
909 		len = lv;
910 	if (copy_to_user(optval, &v, len))
911 		return -EFAULT;
912 lenout:
913 	if (put_user(len, optlen))
914 		return -EFAULT;
915 	return 0;
916 }
917 
918 /*
919  * Initialize an sk_lock.
920  *
921  * (We also register the sk_lock with the lock validator.)
922  */
923 static inline void sock_lock_init(struct sock *sk)
924 {
925 	sock_lock_init_class_and_name(sk,
926 			af_family_slock_key_strings[sk->sk_family],
927 			af_family_slock_keys + sk->sk_family,
928 			af_family_key_strings[sk->sk_family],
929 			af_family_keys + sk->sk_family);
930 }
931 
932 /*
933  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
934  * even temporarly, because of RCU lookups. sk_node should also be left as is.
935  */
936 static void sock_copy(struct sock *nsk, const struct sock *osk)
937 {
938 #ifdef CONFIG_SECURITY_NETWORK
939 	void *sptr = nsk->sk_security;
940 #endif
941 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
942 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
943 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
944 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
945 #ifdef CONFIG_SECURITY_NETWORK
946 	nsk->sk_security = sptr;
947 	security_sk_clone(osk, nsk);
948 #endif
949 }
950 
951 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
952 		int family)
953 {
954 	struct sock *sk;
955 	struct kmem_cache *slab;
956 
957 	slab = prot->slab;
958 	if (slab != NULL) {
959 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
960 		if (!sk)
961 			return sk;
962 		if (priority & __GFP_ZERO) {
963 			/*
964 			 * caches using SLAB_DESTROY_BY_RCU should let
965 			 * sk_node.next un-modified. Special care is taken
966 			 * when initializing object to zero.
967 			 */
968 			if (offsetof(struct sock, sk_node.next) != 0)
969 				memset(sk, 0, offsetof(struct sock, sk_node.next));
970 			memset(&sk->sk_node.pprev, 0,
971 			       prot->obj_size - offsetof(struct sock,
972 							 sk_node.pprev));
973 		}
974 	}
975 	else
976 		sk = kmalloc(prot->obj_size, priority);
977 
978 	if (sk != NULL) {
979 		kmemcheck_annotate_bitfield(sk, flags);
980 
981 		if (security_sk_alloc(sk, family, priority))
982 			goto out_free;
983 
984 		if (!try_module_get(prot->owner))
985 			goto out_free_sec;
986 	}
987 
988 	return sk;
989 
990 out_free_sec:
991 	security_sk_free(sk);
992 out_free:
993 	if (slab != NULL)
994 		kmem_cache_free(slab, sk);
995 	else
996 		kfree(sk);
997 	return NULL;
998 }
999 
1000 static void sk_prot_free(struct proto *prot, struct sock *sk)
1001 {
1002 	struct kmem_cache *slab;
1003 	struct module *owner;
1004 
1005 	owner = prot->owner;
1006 	slab = prot->slab;
1007 
1008 	security_sk_free(sk);
1009 	if (slab != NULL)
1010 		kmem_cache_free(slab, sk);
1011 	else
1012 		kfree(sk);
1013 	module_put(owner);
1014 }
1015 
1016 /**
1017  *	sk_alloc - All socket objects are allocated here
1018  *	@net: the applicable net namespace
1019  *	@family: protocol family
1020  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1021  *	@prot: struct proto associated with this new sock instance
1022  */
1023 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1024 		      struct proto *prot)
1025 {
1026 	struct sock *sk;
1027 
1028 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1029 	if (sk) {
1030 		sk->sk_family = family;
1031 		/*
1032 		 * See comment in struct sock definition to understand
1033 		 * why we need sk_prot_creator -acme
1034 		 */
1035 		sk->sk_prot = sk->sk_prot_creator = prot;
1036 		sock_lock_init(sk);
1037 		sock_net_set(sk, get_net(net));
1038 		atomic_set(&sk->sk_wmem_alloc, 1);
1039 	}
1040 
1041 	return sk;
1042 }
1043 EXPORT_SYMBOL(sk_alloc);
1044 
1045 static void __sk_free(struct sock *sk)
1046 {
1047 	struct sk_filter *filter;
1048 
1049 	if (sk->sk_destruct)
1050 		sk->sk_destruct(sk);
1051 
1052 	filter = rcu_dereference(sk->sk_filter);
1053 	if (filter) {
1054 		sk_filter_uncharge(sk, filter);
1055 		rcu_assign_pointer(sk->sk_filter, NULL);
1056 	}
1057 
1058 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1059 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1060 
1061 	if (atomic_read(&sk->sk_omem_alloc))
1062 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1063 		       __func__, atomic_read(&sk->sk_omem_alloc));
1064 
1065 	put_net(sock_net(sk));
1066 	sk_prot_free(sk->sk_prot_creator, sk);
1067 }
1068 
1069 void sk_free(struct sock *sk)
1070 {
1071 	/*
1072 	 * We substract one from sk_wmem_alloc and can know if
1073 	 * some packets are still in some tx queue.
1074 	 * If not null, sock_wfree() will call __sk_free(sk) later
1075 	 */
1076 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1077 		__sk_free(sk);
1078 }
1079 EXPORT_SYMBOL(sk_free);
1080 
1081 /*
1082  * Last sock_put should drop referrence to sk->sk_net. It has already
1083  * been dropped in sk_change_net. Taking referrence to stopping namespace
1084  * is not an option.
1085  * Take referrence to a socket to remove it from hash _alive_ and after that
1086  * destroy it in the context of init_net.
1087  */
1088 void sk_release_kernel(struct sock *sk)
1089 {
1090 	if (sk == NULL || sk->sk_socket == NULL)
1091 		return;
1092 
1093 	sock_hold(sk);
1094 	sock_release(sk->sk_socket);
1095 	release_net(sock_net(sk));
1096 	sock_net_set(sk, get_net(&init_net));
1097 	sock_put(sk);
1098 }
1099 EXPORT_SYMBOL(sk_release_kernel);
1100 
1101 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1102 {
1103 	struct sock *newsk;
1104 
1105 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1106 	if (newsk != NULL) {
1107 		struct sk_filter *filter;
1108 
1109 		sock_copy(newsk, sk);
1110 
1111 		/* SANITY */
1112 		get_net(sock_net(newsk));
1113 		sk_node_init(&newsk->sk_node);
1114 		sock_lock_init(newsk);
1115 		bh_lock_sock(newsk);
1116 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1117 
1118 		atomic_set(&newsk->sk_rmem_alloc, 0);
1119 		/*
1120 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1121 		 */
1122 		atomic_set(&newsk->sk_wmem_alloc, 1);
1123 		atomic_set(&newsk->sk_omem_alloc, 0);
1124 		skb_queue_head_init(&newsk->sk_receive_queue);
1125 		skb_queue_head_init(&newsk->sk_write_queue);
1126 #ifdef CONFIG_NET_DMA
1127 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1128 #endif
1129 
1130 		rwlock_init(&newsk->sk_dst_lock);
1131 		rwlock_init(&newsk->sk_callback_lock);
1132 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1133 				af_callback_keys + newsk->sk_family,
1134 				af_family_clock_key_strings[newsk->sk_family]);
1135 
1136 		newsk->sk_dst_cache	= NULL;
1137 		newsk->sk_wmem_queued	= 0;
1138 		newsk->sk_forward_alloc = 0;
1139 		newsk->sk_send_head	= NULL;
1140 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1141 
1142 		sock_reset_flag(newsk, SOCK_DONE);
1143 		skb_queue_head_init(&newsk->sk_error_queue);
1144 
1145 		filter = newsk->sk_filter;
1146 		if (filter != NULL)
1147 			sk_filter_charge(newsk, filter);
1148 
1149 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1150 			/* It is still raw copy of parent, so invalidate
1151 			 * destructor and make plain sk_free() */
1152 			newsk->sk_destruct = NULL;
1153 			sk_free(newsk);
1154 			newsk = NULL;
1155 			goto out;
1156 		}
1157 
1158 		newsk->sk_err	   = 0;
1159 		newsk->sk_priority = 0;
1160 		/*
1161 		 * Before updating sk_refcnt, we must commit prior changes to memory
1162 		 * (Documentation/RCU/rculist_nulls.txt for details)
1163 		 */
1164 		smp_wmb();
1165 		atomic_set(&newsk->sk_refcnt, 2);
1166 
1167 		/*
1168 		 * Increment the counter in the same struct proto as the master
1169 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1170 		 * is the same as sk->sk_prot->socks, as this field was copied
1171 		 * with memcpy).
1172 		 *
1173 		 * This _changes_ the previous behaviour, where
1174 		 * tcp_create_openreq_child always was incrementing the
1175 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1176 		 * to be taken into account in all callers. -acme
1177 		 */
1178 		sk_refcnt_debug_inc(newsk);
1179 		sk_set_socket(newsk, NULL);
1180 		newsk->sk_sleep	 = NULL;
1181 
1182 		if (newsk->sk_prot->sockets_allocated)
1183 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1184 	}
1185 out:
1186 	return newsk;
1187 }
1188 EXPORT_SYMBOL_GPL(sk_clone);
1189 
1190 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1191 {
1192 	__sk_dst_set(sk, dst);
1193 	sk->sk_route_caps = dst->dev->features;
1194 	if (sk->sk_route_caps & NETIF_F_GSO)
1195 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1196 	if (sk_can_gso(sk)) {
1197 		if (dst->header_len) {
1198 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1199 		} else {
1200 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1201 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1202 		}
1203 	}
1204 }
1205 EXPORT_SYMBOL_GPL(sk_setup_caps);
1206 
1207 void __init sk_init(void)
1208 {
1209 	if (totalram_pages <= 4096) {
1210 		sysctl_wmem_max = 32767;
1211 		sysctl_rmem_max = 32767;
1212 		sysctl_wmem_default = 32767;
1213 		sysctl_rmem_default = 32767;
1214 	} else if (totalram_pages >= 131072) {
1215 		sysctl_wmem_max = 131071;
1216 		sysctl_rmem_max = 131071;
1217 	}
1218 }
1219 
1220 /*
1221  *	Simple resource managers for sockets.
1222  */
1223 
1224 
1225 /*
1226  * Write buffer destructor automatically called from kfree_skb.
1227  */
1228 void sock_wfree(struct sk_buff *skb)
1229 {
1230 	struct sock *sk = skb->sk;
1231 	unsigned int len = skb->truesize;
1232 
1233 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1234 		/*
1235 		 * Keep a reference on sk_wmem_alloc, this will be released
1236 		 * after sk_write_space() call
1237 		 */
1238 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1239 		sk->sk_write_space(sk);
1240 		len = 1;
1241 	}
1242 	/*
1243 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1244 	 * could not do because of in-flight packets
1245 	 */
1246 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1247 		__sk_free(sk);
1248 }
1249 EXPORT_SYMBOL(sock_wfree);
1250 
1251 /*
1252  * Read buffer destructor automatically called from kfree_skb.
1253  */
1254 void sock_rfree(struct sk_buff *skb)
1255 {
1256 	struct sock *sk = skb->sk;
1257 
1258 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1259 	sk_mem_uncharge(skb->sk, skb->truesize);
1260 }
1261 EXPORT_SYMBOL(sock_rfree);
1262 
1263 
1264 int sock_i_uid(struct sock *sk)
1265 {
1266 	int uid;
1267 
1268 	read_lock(&sk->sk_callback_lock);
1269 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1270 	read_unlock(&sk->sk_callback_lock);
1271 	return uid;
1272 }
1273 EXPORT_SYMBOL(sock_i_uid);
1274 
1275 unsigned long sock_i_ino(struct sock *sk)
1276 {
1277 	unsigned long ino;
1278 
1279 	read_lock(&sk->sk_callback_lock);
1280 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1281 	read_unlock(&sk->sk_callback_lock);
1282 	return ino;
1283 }
1284 EXPORT_SYMBOL(sock_i_ino);
1285 
1286 /*
1287  * Allocate a skb from the socket's send buffer.
1288  */
1289 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1290 			     gfp_t priority)
1291 {
1292 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1293 		struct sk_buff *skb = alloc_skb(size, priority);
1294 		if (skb) {
1295 			skb_set_owner_w(skb, sk);
1296 			return skb;
1297 		}
1298 	}
1299 	return NULL;
1300 }
1301 EXPORT_SYMBOL(sock_wmalloc);
1302 
1303 /*
1304  * Allocate a skb from the socket's receive buffer.
1305  */
1306 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1307 			     gfp_t priority)
1308 {
1309 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1310 		struct sk_buff *skb = alloc_skb(size, priority);
1311 		if (skb) {
1312 			skb_set_owner_r(skb, sk);
1313 			return skb;
1314 		}
1315 	}
1316 	return NULL;
1317 }
1318 
1319 /*
1320  * Allocate a memory block from the socket's option memory buffer.
1321  */
1322 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1323 {
1324 	if ((unsigned)size <= sysctl_optmem_max &&
1325 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1326 		void *mem;
1327 		/* First do the add, to avoid the race if kmalloc
1328 		 * might sleep.
1329 		 */
1330 		atomic_add(size, &sk->sk_omem_alloc);
1331 		mem = kmalloc(size, priority);
1332 		if (mem)
1333 			return mem;
1334 		atomic_sub(size, &sk->sk_omem_alloc);
1335 	}
1336 	return NULL;
1337 }
1338 EXPORT_SYMBOL(sock_kmalloc);
1339 
1340 /*
1341  * Free an option memory block.
1342  */
1343 void sock_kfree_s(struct sock *sk, void *mem, int size)
1344 {
1345 	kfree(mem);
1346 	atomic_sub(size, &sk->sk_omem_alloc);
1347 }
1348 EXPORT_SYMBOL(sock_kfree_s);
1349 
1350 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1351    I think, these locks should be removed for datagram sockets.
1352  */
1353 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1354 {
1355 	DEFINE_WAIT(wait);
1356 
1357 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1358 	for (;;) {
1359 		if (!timeo)
1360 			break;
1361 		if (signal_pending(current))
1362 			break;
1363 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1364 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1365 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1366 			break;
1367 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1368 			break;
1369 		if (sk->sk_err)
1370 			break;
1371 		timeo = schedule_timeout(timeo);
1372 	}
1373 	finish_wait(sk->sk_sleep, &wait);
1374 	return timeo;
1375 }
1376 
1377 
1378 /*
1379  *	Generic send/receive buffer handlers
1380  */
1381 
1382 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1383 				     unsigned long data_len, int noblock,
1384 				     int *errcode)
1385 {
1386 	struct sk_buff *skb;
1387 	gfp_t gfp_mask;
1388 	long timeo;
1389 	int err;
1390 
1391 	gfp_mask = sk->sk_allocation;
1392 	if (gfp_mask & __GFP_WAIT)
1393 		gfp_mask |= __GFP_REPEAT;
1394 
1395 	timeo = sock_sndtimeo(sk, noblock);
1396 	while (1) {
1397 		err = sock_error(sk);
1398 		if (err != 0)
1399 			goto failure;
1400 
1401 		err = -EPIPE;
1402 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1403 			goto failure;
1404 
1405 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1406 			skb = alloc_skb(header_len, gfp_mask);
1407 			if (skb) {
1408 				int npages;
1409 				int i;
1410 
1411 				/* No pages, we're done... */
1412 				if (!data_len)
1413 					break;
1414 
1415 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1416 				skb->truesize += data_len;
1417 				skb_shinfo(skb)->nr_frags = npages;
1418 				for (i = 0; i < npages; i++) {
1419 					struct page *page;
1420 					skb_frag_t *frag;
1421 
1422 					page = alloc_pages(sk->sk_allocation, 0);
1423 					if (!page) {
1424 						err = -ENOBUFS;
1425 						skb_shinfo(skb)->nr_frags = i;
1426 						kfree_skb(skb);
1427 						goto failure;
1428 					}
1429 
1430 					frag = &skb_shinfo(skb)->frags[i];
1431 					frag->page = page;
1432 					frag->page_offset = 0;
1433 					frag->size = (data_len >= PAGE_SIZE ?
1434 						      PAGE_SIZE :
1435 						      data_len);
1436 					data_len -= PAGE_SIZE;
1437 				}
1438 
1439 				/* Full success... */
1440 				break;
1441 			}
1442 			err = -ENOBUFS;
1443 			goto failure;
1444 		}
1445 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1446 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1447 		err = -EAGAIN;
1448 		if (!timeo)
1449 			goto failure;
1450 		if (signal_pending(current))
1451 			goto interrupted;
1452 		timeo = sock_wait_for_wmem(sk, timeo);
1453 	}
1454 
1455 	skb_set_owner_w(skb, sk);
1456 	return skb;
1457 
1458 interrupted:
1459 	err = sock_intr_errno(timeo);
1460 failure:
1461 	*errcode = err;
1462 	return NULL;
1463 }
1464 EXPORT_SYMBOL(sock_alloc_send_pskb);
1465 
1466 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1467 				    int noblock, int *errcode)
1468 {
1469 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1470 }
1471 EXPORT_SYMBOL(sock_alloc_send_skb);
1472 
1473 static void __lock_sock(struct sock *sk)
1474 {
1475 	DEFINE_WAIT(wait);
1476 
1477 	for (;;) {
1478 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1479 					TASK_UNINTERRUPTIBLE);
1480 		spin_unlock_bh(&sk->sk_lock.slock);
1481 		schedule();
1482 		spin_lock_bh(&sk->sk_lock.slock);
1483 		if (!sock_owned_by_user(sk))
1484 			break;
1485 	}
1486 	finish_wait(&sk->sk_lock.wq, &wait);
1487 }
1488 
1489 static void __release_sock(struct sock *sk)
1490 {
1491 	struct sk_buff *skb = sk->sk_backlog.head;
1492 
1493 	do {
1494 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1495 		bh_unlock_sock(sk);
1496 
1497 		do {
1498 			struct sk_buff *next = skb->next;
1499 
1500 			skb->next = NULL;
1501 			sk_backlog_rcv(sk, skb);
1502 
1503 			/*
1504 			 * We are in process context here with softirqs
1505 			 * disabled, use cond_resched_softirq() to preempt.
1506 			 * This is safe to do because we've taken the backlog
1507 			 * queue private:
1508 			 */
1509 			cond_resched_softirq();
1510 
1511 			skb = next;
1512 		} while (skb != NULL);
1513 
1514 		bh_lock_sock(sk);
1515 	} while ((skb = sk->sk_backlog.head) != NULL);
1516 }
1517 
1518 /**
1519  * sk_wait_data - wait for data to arrive at sk_receive_queue
1520  * @sk:    sock to wait on
1521  * @timeo: for how long
1522  *
1523  * Now socket state including sk->sk_err is changed only under lock,
1524  * hence we may omit checks after joining wait queue.
1525  * We check receive queue before schedule() only as optimization;
1526  * it is very likely that release_sock() added new data.
1527  */
1528 int sk_wait_data(struct sock *sk, long *timeo)
1529 {
1530 	int rc;
1531 	DEFINE_WAIT(wait);
1532 
1533 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1534 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1535 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1536 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1537 	finish_wait(sk->sk_sleep, &wait);
1538 	return rc;
1539 }
1540 EXPORT_SYMBOL(sk_wait_data);
1541 
1542 /**
1543  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1544  *	@sk: socket
1545  *	@size: memory size to allocate
1546  *	@kind: allocation type
1547  *
1548  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1549  *	rmem allocation. This function assumes that protocols which have
1550  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1551  */
1552 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1553 {
1554 	struct proto *prot = sk->sk_prot;
1555 	int amt = sk_mem_pages(size);
1556 	int allocated;
1557 
1558 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1559 	allocated = atomic_add_return(amt, prot->memory_allocated);
1560 
1561 	/* Under limit. */
1562 	if (allocated <= prot->sysctl_mem[0]) {
1563 		if (prot->memory_pressure && *prot->memory_pressure)
1564 			*prot->memory_pressure = 0;
1565 		return 1;
1566 	}
1567 
1568 	/* Under pressure. */
1569 	if (allocated > prot->sysctl_mem[1])
1570 		if (prot->enter_memory_pressure)
1571 			prot->enter_memory_pressure(sk);
1572 
1573 	/* Over hard limit. */
1574 	if (allocated > prot->sysctl_mem[2])
1575 		goto suppress_allocation;
1576 
1577 	/* guarantee minimum buffer size under pressure */
1578 	if (kind == SK_MEM_RECV) {
1579 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1580 			return 1;
1581 	} else { /* SK_MEM_SEND */
1582 		if (sk->sk_type == SOCK_STREAM) {
1583 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1584 				return 1;
1585 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1586 			   prot->sysctl_wmem[0])
1587 				return 1;
1588 	}
1589 
1590 	if (prot->memory_pressure) {
1591 		int alloc;
1592 
1593 		if (!*prot->memory_pressure)
1594 			return 1;
1595 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1596 		if (prot->sysctl_mem[2] > alloc *
1597 		    sk_mem_pages(sk->sk_wmem_queued +
1598 				 atomic_read(&sk->sk_rmem_alloc) +
1599 				 sk->sk_forward_alloc))
1600 			return 1;
1601 	}
1602 
1603 suppress_allocation:
1604 
1605 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1606 		sk_stream_moderate_sndbuf(sk);
1607 
1608 		/* Fail only if socket is _under_ its sndbuf.
1609 		 * In this case we cannot block, so that we have to fail.
1610 		 */
1611 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1612 			return 1;
1613 	}
1614 
1615 	/* Alas. Undo changes. */
1616 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1617 	atomic_sub(amt, prot->memory_allocated);
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(__sk_mem_schedule);
1621 
1622 /**
1623  *	__sk_reclaim - reclaim memory_allocated
1624  *	@sk: socket
1625  */
1626 void __sk_mem_reclaim(struct sock *sk)
1627 {
1628 	struct proto *prot = sk->sk_prot;
1629 
1630 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1631 		   prot->memory_allocated);
1632 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1633 
1634 	if (prot->memory_pressure && *prot->memory_pressure &&
1635 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1636 		*prot->memory_pressure = 0;
1637 }
1638 EXPORT_SYMBOL(__sk_mem_reclaim);
1639 
1640 
1641 /*
1642  * Set of default routines for initialising struct proto_ops when
1643  * the protocol does not support a particular function. In certain
1644  * cases where it makes no sense for a protocol to have a "do nothing"
1645  * function, some default processing is provided.
1646  */
1647 
1648 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1649 {
1650 	return -EOPNOTSUPP;
1651 }
1652 EXPORT_SYMBOL(sock_no_bind);
1653 
1654 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1655 		    int len, int flags)
1656 {
1657 	return -EOPNOTSUPP;
1658 }
1659 EXPORT_SYMBOL(sock_no_connect);
1660 
1661 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1662 {
1663 	return -EOPNOTSUPP;
1664 }
1665 EXPORT_SYMBOL(sock_no_socketpair);
1666 
1667 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1668 {
1669 	return -EOPNOTSUPP;
1670 }
1671 EXPORT_SYMBOL(sock_no_accept);
1672 
1673 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1674 		    int *len, int peer)
1675 {
1676 	return -EOPNOTSUPP;
1677 }
1678 EXPORT_SYMBOL(sock_no_getname);
1679 
1680 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1681 {
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL(sock_no_poll);
1685 
1686 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1687 {
1688 	return -EOPNOTSUPP;
1689 }
1690 EXPORT_SYMBOL(sock_no_ioctl);
1691 
1692 int sock_no_listen(struct socket *sock, int backlog)
1693 {
1694 	return -EOPNOTSUPP;
1695 }
1696 EXPORT_SYMBOL(sock_no_listen);
1697 
1698 int sock_no_shutdown(struct socket *sock, int how)
1699 {
1700 	return -EOPNOTSUPP;
1701 }
1702 EXPORT_SYMBOL(sock_no_shutdown);
1703 
1704 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1705 		    char __user *optval, unsigned int optlen)
1706 {
1707 	return -EOPNOTSUPP;
1708 }
1709 EXPORT_SYMBOL(sock_no_setsockopt);
1710 
1711 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1712 		    char __user *optval, int __user *optlen)
1713 {
1714 	return -EOPNOTSUPP;
1715 }
1716 EXPORT_SYMBOL(sock_no_getsockopt);
1717 
1718 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1719 		    size_t len)
1720 {
1721 	return -EOPNOTSUPP;
1722 }
1723 EXPORT_SYMBOL(sock_no_sendmsg);
1724 
1725 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1726 		    size_t len, int flags)
1727 {
1728 	return -EOPNOTSUPP;
1729 }
1730 EXPORT_SYMBOL(sock_no_recvmsg);
1731 
1732 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1733 {
1734 	/* Mirror missing mmap method error code */
1735 	return -ENODEV;
1736 }
1737 EXPORT_SYMBOL(sock_no_mmap);
1738 
1739 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1740 {
1741 	ssize_t res;
1742 	struct msghdr msg = {.msg_flags = flags};
1743 	struct kvec iov;
1744 	char *kaddr = kmap(page);
1745 	iov.iov_base = kaddr + offset;
1746 	iov.iov_len = size;
1747 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1748 	kunmap(page);
1749 	return res;
1750 }
1751 EXPORT_SYMBOL(sock_no_sendpage);
1752 
1753 /*
1754  *	Default Socket Callbacks
1755  */
1756 
1757 static void sock_def_wakeup(struct sock *sk)
1758 {
1759 	read_lock(&sk->sk_callback_lock);
1760 	if (sk_has_sleeper(sk))
1761 		wake_up_interruptible_all(sk->sk_sleep);
1762 	read_unlock(&sk->sk_callback_lock);
1763 }
1764 
1765 static void sock_def_error_report(struct sock *sk)
1766 {
1767 	read_lock(&sk->sk_callback_lock);
1768 	if (sk_has_sleeper(sk))
1769 		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1770 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1771 	read_unlock(&sk->sk_callback_lock);
1772 }
1773 
1774 static void sock_def_readable(struct sock *sk, int len)
1775 {
1776 	read_lock(&sk->sk_callback_lock);
1777 	if (sk_has_sleeper(sk))
1778 		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1779 						POLLRDNORM | POLLRDBAND);
1780 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1781 	read_unlock(&sk->sk_callback_lock);
1782 }
1783 
1784 static void sock_def_write_space(struct sock *sk)
1785 {
1786 	read_lock(&sk->sk_callback_lock);
1787 
1788 	/* Do not wake up a writer until he can make "significant"
1789 	 * progress.  --DaveM
1790 	 */
1791 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1792 		if (sk_has_sleeper(sk))
1793 			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1794 						POLLWRNORM | POLLWRBAND);
1795 
1796 		/* Should agree with poll, otherwise some programs break */
1797 		if (sock_writeable(sk))
1798 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1799 	}
1800 
1801 	read_unlock(&sk->sk_callback_lock);
1802 }
1803 
1804 static void sock_def_destruct(struct sock *sk)
1805 {
1806 	kfree(sk->sk_protinfo);
1807 }
1808 
1809 void sk_send_sigurg(struct sock *sk)
1810 {
1811 	if (sk->sk_socket && sk->sk_socket->file)
1812 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1813 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1814 }
1815 EXPORT_SYMBOL(sk_send_sigurg);
1816 
1817 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1818 		    unsigned long expires)
1819 {
1820 	if (!mod_timer(timer, expires))
1821 		sock_hold(sk);
1822 }
1823 EXPORT_SYMBOL(sk_reset_timer);
1824 
1825 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1826 {
1827 	if (timer_pending(timer) && del_timer(timer))
1828 		__sock_put(sk);
1829 }
1830 EXPORT_SYMBOL(sk_stop_timer);
1831 
1832 void sock_init_data(struct socket *sock, struct sock *sk)
1833 {
1834 	skb_queue_head_init(&sk->sk_receive_queue);
1835 	skb_queue_head_init(&sk->sk_write_queue);
1836 	skb_queue_head_init(&sk->sk_error_queue);
1837 #ifdef CONFIG_NET_DMA
1838 	skb_queue_head_init(&sk->sk_async_wait_queue);
1839 #endif
1840 
1841 	sk->sk_send_head	=	NULL;
1842 
1843 	init_timer(&sk->sk_timer);
1844 
1845 	sk->sk_allocation	=	GFP_KERNEL;
1846 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1847 	sk->sk_sndbuf		=	sysctl_wmem_default;
1848 	sk->sk_state		=	TCP_CLOSE;
1849 	sk_set_socket(sk, sock);
1850 
1851 	sock_set_flag(sk, SOCK_ZAPPED);
1852 
1853 	if (sock) {
1854 		sk->sk_type	=	sock->type;
1855 		sk->sk_sleep	=	&sock->wait;
1856 		sock->sk	=	sk;
1857 	} else
1858 		sk->sk_sleep	=	NULL;
1859 
1860 	rwlock_init(&sk->sk_dst_lock);
1861 	rwlock_init(&sk->sk_callback_lock);
1862 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1863 			af_callback_keys + sk->sk_family,
1864 			af_family_clock_key_strings[sk->sk_family]);
1865 
1866 	sk->sk_state_change	=	sock_def_wakeup;
1867 	sk->sk_data_ready	=	sock_def_readable;
1868 	sk->sk_write_space	=	sock_def_write_space;
1869 	sk->sk_error_report	=	sock_def_error_report;
1870 	sk->sk_destruct		=	sock_def_destruct;
1871 
1872 	sk->sk_sndmsg_page	=	NULL;
1873 	sk->sk_sndmsg_off	=	0;
1874 
1875 	sk->sk_peercred.pid 	=	0;
1876 	sk->sk_peercred.uid	=	-1;
1877 	sk->sk_peercred.gid	=	-1;
1878 	sk->sk_write_pending	=	0;
1879 	sk->sk_rcvlowat		=	1;
1880 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1881 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1882 
1883 	sk->sk_stamp = ktime_set(-1L, 0);
1884 
1885 	/*
1886 	 * Before updating sk_refcnt, we must commit prior changes to memory
1887 	 * (Documentation/RCU/rculist_nulls.txt for details)
1888 	 */
1889 	smp_wmb();
1890 	atomic_set(&sk->sk_refcnt, 1);
1891 	atomic_set(&sk->sk_drops, 0);
1892 }
1893 EXPORT_SYMBOL(sock_init_data);
1894 
1895 void lock_sock_nested(struct sock *sk, int subclass)
1896 {
1897 	might_sleep();
1898 	spin_lock_bh(&sk->sk_lock.slock);
1899 	if (sk->sk_lock.owned)
1900 		__lock_sock(sk);
1901 	sk->sk_lock.owned = 1;
1902 	spin_unlock(&sk->sk_lock.slock);
1903 	/*
1904 	 * The sk_lock has mutex_lock() semantics here:
1905 	 */
1906 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1907 	local_bh_enable();
1908 }
1909 EXPORT_SYMBOL(lock_sock_nested);
1910 
1911 void release_sock(struct sock *sk)
1912 {
1913 	/*
1914 	 * The sk_lock has mutex_unlock() semantics:
1915 	 */
1916 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1917 
1918 	spin_lock_bh(&sk->sk_lock.slock);
1919 	if (sk->sk_backlog.tail)
1920 		__release_sock(sk);
1921 	sk->sk_lock.owned = 0;
1922 	if (waitqueue_active(&sk->sk_lock.wq))
1923 		wake_up(&sk->sk_lock.wq);
1924 	spin_unlock_bh(&sk->sk_lock.slock);
1925 }
1926 EXPORT_SYMBOL(release_sock);
1927 
1928 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1929 {
1930 	struct timeval tv;
1931 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1932 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1933 	tv = ktime_to_timeval(sk->sk_stamp);
1934 	if (tv.tv_sec == -1)
1935 		return -ENOENT;
1936 	if (tv.tv_sec == 0) {
1937 		sk->sk_stamp = ktime_get_real();
1938 		tv = ktime_to_timeval(sk->sk_stamp);
1939 	}
1940 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1941 }
1942 EXPORT_SYMBOL(sock_get_timestamp);
1943 
1944 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1945 {
1946 	struct timespec ts;
1947 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1948 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1949 	ts = ktime_to_timespec(sk->sk_stamp);
1950 	if (ts.tv_sec == -1)
1951 		return -ENOENT;
1952 	if (ts.tv_sec == 0) {
1953 		sk->sk_stamp = ktime_get_real();
1954 		ts = ktime_to_timespec(sk->sk_stamp);
1955 	}
1956 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1957 }
1958 EXPORT_SYMBOL(sock_get_timestampns);
1959 
1960 void sock_enable_timestamp(struct sock *sk, int flag)
1961 {
1962 	if (!sock_flag(sk, flag)) {
1963 		sock_set_flag(sk, flag);
1964 		/*
1965 		 * we just set one of the two flags which require net
1966 		 * time stamping, but time stamping might have been on
1967 		 * already because of the other one
1968 		 */
1969 		if (!sock_flag(sk,
1970 				flag == SOCK_TIMESTAMP ?
1971 				SOCK_TIMESTAMPING_RX_SOFTWARE :
1972 				SOCK_TIMESTAMP))
1973 			net_enable_timestamp();
1974 	}
1975 }
1976 
1977 /*
1978  *	Get a socket option on an socket.
1979  *
1980  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1981  *	asynchronous errors should be reported by getsockopt. We assume
1982  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1983  */
1984 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1985 			   char __user *optval, int __user *optlen)
1986 {
1987 	struct sock *sk = sock->sk;
1988 
1989 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1990 }
1991 EXPORT_SYMBOL(sock_common_getsockopt);
1992 
1993 #ifdef CONFIG_COMPAT
1994 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1995 				  char __user *optval, int __user *optlen)
1996 {
1997 	struct sock *sk = sock->sk;
1998 
1999 	if (sk->sk_prot->compat_getsockopt != NULL)
2000 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2001 						      optval, optlen);
2002 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2003 }
2004 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2005 #endif
2006 
2007 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2008 			struct msghdr *msg, size_t size, int flags)
2009 {
2010 	struct sock *sk = sock->sk;
2011 	int addr_len = 0;
2012 	int err;
2013 
2014 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2015 				   flags & ~MSG_DONTWAIT, &addr_len);
2016 	if (err >= 0)
2017 		msg->msg_namelen = addr_len;
2018 	return err;
2019 }
2020 EXPORT_SYMBOL(sock_common_recvmsg);
2021 
2022 /*
2023  *	Set socket options on an inet socket.
2024  */
2025 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2026 			   char __user *optval, unsigned int optlen)
2027 {
2028 	struct sock *sk = sock->sk;
2029 
2030 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2031 }
2032 EXPORT_SYMBOL(sock_common_setsockopt);
2033 
2034 #ifdef CONFIG_COMPAT
2035 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2036 				  char __user *optval, unsigned int optlen)
2037 {
2038 	struct sock *sk = sock->sk;
2039 
2040 	if (sk->sk_prot->compat_setsockopt != NULL)
2041 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2042 						      optval, optlen);
2043 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2044 }
2045 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2046 #endif
2047 
2048 void sk_common_release(struct sock *sk)
2049 {
2050 	if (sk->sk_prot->destroy)
2051 		sk->sk_prot->destroy(sk);
2052 
2053 	/*
2054 	 * Observation: when sock_common_release is called, processes have
2055 	 * no access to socket. But net still has.
2056 	 * Step one, detach it from networking:
2057 	 *
2058 	 * A. Remove from hash tables.
2059 	 */
2060 
2061 	sk->sk_prot->unhash(sk);
2062 
2063 	/*
2064 	 * In this point socket cannot receive new packets, but it is possible
2065 	 * that some packets are in flight because some CPU runs receiver and
2066 	 * did hash table lookup before we unhashed socket. They will achieve
2067 	 * receive queue and will be purged by socket destructor.
2068 	 *
2069 	 * Also we still have packets pending on receive queue and probably,
2070 	 * our own packets waiting in device queues. sock_destroy will drain
2071 	 * receive queue, but transmitted packets will delay socket destruction
2072 	 * until the last reference will be released.
2073 	 */
2074 
2075 	sock_orphan(sk);
2076 
2077 	xfrm_sk_free_policy(sk);
2078 
2079 	sk_refcnt_debug_release(sk);
2080 	sock_put(sk);
2081 }
2082 EXPORT_SYMBOL(sk_common_release);
2083 
2084 static DEFINE_RWLOCK(proto_list_lock);
2085 static LIST_HEAD(proto_list);
2086 
2087 #ifdef CONFIG_PROC_FS
2088 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2089 struct prot_inuse {
2090 	int val[PROTO_INUSE_NR];
2091 };
2092 
2093 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2094 
2095 #ifdef CONFIG_NET_NS
2096 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2097 {
2098 	int cpu = smp_processor_id();
2099 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2100 }
2101 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2102 
2103 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2104 {
2105 	int cpu, idx = prot->inuse_idx;
2106 	int res = 0;
2107 
2108 	for_each_possible_cpu(cpu)
2109 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2110 
2111 	return res >= 0 ? res : 0;
2112 }
2113 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2114 
2115 static int sock_inuse_init_net(struct net *net)
2116 {
2117 	net->core.inuse = alloc_percpu(struct prot_inuse);
2118 	return net->core.inuse ? 0 : -ENOMEM;
2119 }
2120 
2121 static void sock_inuse_exit_net(struct net *net)
2122 {
2123 	free_percpu(net->core.inuse);
2124 }
2125 
2126 static struct pernet_operations net_inuse_ops = {
2127 	.init = sock_inuse_init_net,
2128 	.exit = sock_inuse_exit_net,
2129 };
2130 
2131 static __init int net_inuse_init(void)
2132 {
2133 	if (register_pernet_subsys(&net_inuse_ops))
2134 		panic("Cannot initialize net inuse counters");
2135 
2136 	return 0;
2137 }
2138 
2139 core_initcall(net_inuse_init);
2140 #else
2141 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2142 
2143 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2144 {
2145 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2146 }
2147 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2148 
2149 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2150 {
2151 	int cpu, idx = prot->inuse_idx;
2152 	int res = 0;
2153 
2154 	for_each_possible_cpu(cpu)
2155 		res += per_cpu(prot_inuse, cpu).val[idx];
2156 
2157 	return res >= 0 ? res : 0;
2158 }
2159 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2160 #endif
2161 
2162 static void assign_proto_idx(struct proto *prot)
2163 {
2164 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2165 
2166 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2167 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2168 		return;
2169 	}
2170 
2171 	set_bit(prot->inuse_idx, proto_inuse_idx);
2172 }
2173 
2174 static void release_proto_idx(struct proto *prot)
2175 {
2176 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2177 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2178 }
2179 #else
2180 static inline void assign_proto_idx(struct proto *prot)
2181 {
2182 }
2183 
2184 static inline void release_proto_idx(struct proto *prot)
2185 {
2186 }
2187 #endif
2188 
2189 int proto_register(struct proto *prot, int alloc_slab)
2190 {
2191 	if (alloc_slab) {
2192 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2193 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2194 					NULL);
2195 
2196 		if (prot->slab == NULL) {
2197 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2198 			       prot->name);
2199 			goto out;
2200 		}
2201 
2202 		if (prot->rsk_prot != NULL) {
2203 			static const char mask[] = "request_sock_%s";
2204 
2205 			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2206 			if (prot->rsk_prot->slab_name == NULL)
2207 				goto out_free_sock_slab;
2208 
2209 			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2210 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2211 								 prot->rsk_prot->obj_size, 0,
2212 								 SLAB_HWCACHE_ALIGN, NULL);
2213 
2214 			if (prot->rsk_prot->slab == NULL) {
2215 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2216 				       prot->name);
2217 				goto out_free_request_sock_slab_name;
2218 			}
2219 		}
2220 
2221 		if (prot->twsk_prot != NULL) {
2222 			static const char mask[] = "tw_sock_%s";
2223 
2224 			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2225 
2226 			if (prot->twsk_prot->twsk_slab_name == NULL)
2227 				goto out_free_request_sock_slab;
2228 
2229 			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2230 			prot->twsk_prot->twsk_slab =
2231 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2232 						  prot->twsk_prot->twsk_obj_size,
2233 						  0,
2234 						  SLAB_HWCACHE_ALIGN |
2235 							prot->slab_flags,
2236 						  NULL);
2237 			if (prot->twsk_prot->twsk_slab == NULL)
2238 				goto out_free_timewait_sock_slab_name;
2239 		}
2240 	}
2241 
2242 	write_lock(&proto_list_lock);
2243 	list_add(&prot->node, &proto_list);
2244 	assign_proto_idx(prot);
2245 	write_unlock(&proto_list_lock);
2246 	return 0;
2247 
2248 out_free_timewait_sock_slab_name:
2249 	kfree(prot->twsk_prot->twsk_slab_name);
2250 out_free_request_sock_slab:
2251 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2252 		kmem_cache_destroy(prot->rsk_prot->slab);
2253 		prot->rsk_prot->slab = NULL;
2254 	}
2255 out_free_request_sock_slab_name:
2256 	kfree(prot->rsk_prot->slab_name);
2257 out_free_sock_slab:
2258 	kmem_cache_destroy(prot->slab);
2259 	prot->slab = NULL;
2260 out:
2261 	return -ENOBUFS;
2262 }
2263 EXPORT_SYMBOL(proto_register);
2264 
2265 void proto_unregister(struct proto *prot)
2266 {
2267 	write_lock(&proto_list_lock);
2268 	release_proto_idx(prot);
2269 	list_del(&prot->node);
2270 	write_unlock(&proto_list_lock);
2271 
2272 	if (prot->slab != NULL) {
2273 		kmem_cache_destroy(prot->slab);
2274 		prot->slab = NULL;
2275 	}
2276 
2277 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2278 		kmem_cache_destroy(prot->rsk_prot->slab);
2279 		kfree(prot->rsk_prot->slab_name);
2280 		prot->rsk_prot->slab = NULL;
2281 	}
2282 
2283 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2284 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2285 		kfree(prot->twsk_prot->twsk_slab_name);
2286 		prot->twsk_prot->twsk_slab = NULL;
2287 	}
2288 }
2289 EXPORT_SYMBOL(proto_unregister);
2290 
2291 #ifdef CONFIG_PROC_FS
2292 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2293 	__acquires(proto_list_lock)
2294 {
2295 	read_lock(&proto_list_lock);
2296 	return seq_list_start_head(&proto_list, *pos);
2297 }
2298 
2299 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2300 {
2301 	return seq_list_next(v, &proto_list, pos);
2302 }
2303 
2304 static void proto_seq_stop(struct seq_file *seq, void *v)
2305 	__releases(proto_list_lock)
2306 {
2307 	read_unlock(&proto_list_lock);
2308 }
2309 
2310 static char proto_method_implemented(const void *method)
2311 {
2312 	return method == NULL ? 'n' : 'y';
2313 }
2314 
2315 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2316 {
2317 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2318 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2319 		   proto->name,
2320 		   proto->obj_size,
2321 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2322 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2323 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2324 		   proto->max_header,
2325 		   proto->slab == NULL ? "no" : "yes",
2326 		   module_name(proto->owner),
2327 		   proto_method_implemented(proto->close),
2328 		   proto_method_implemented(proto->connect),
2329 		   proto_method_implemented(proto->disconnect),
2330 		   proto_method_implemented(proto->accept),
2331 		   proto_method_implemented(proto->ioctl),
2332 		   proto_method_implemented(proto->init),
2333 		   proto_method_implemented(proto->destroy),
2334 		   proto_method_implemented(proto->shutdown),
2335 		   proto_method_implemented(proto->setsockopt),
2336 		   proto_method_implemented(proto->getsockopt),
2337 		   proto_method_implemented(proto->sendmsg),
2338 		   proto_method_implemented(proto->recvmsg),
2339 		   proto_method_implemented(proto->sendpage),
2340 		   proto_method_implemented(proto->bind),
2341 		   proto_method_implemented(proto->backlog_rcv),
2342 		   proto_method_implemented(proto->hash),
2343 		   proto_method_implemented(proto->unhash),
2344 		   proto_method_implemented(proto->get_port),
2345 		   proto_method_implemented(proto->enter_memory_pressure));
2346 }
2347 
2348 static int proto_seq_show(struct seq_file *seq, void *v)
2349 {
2350 	if (v == &proto_list)
2351 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2352 			   "protocol",
2353 			   "size",
2354 			   "sockets",
2355 			   "memory",
2356 			   "press",
2357 			   "maxhdr",
2358 			   "slab",
2359 			   "module",
2360 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2361 	else
2362 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2363 	return 0;
2364 }
2365 
2366 static const struct seq_operations proto_seq_ops = {
2367 	.start  = proto_seq_start,
2368 	.next   = proto_seq_next,
2369 	.stop   = proto_seq_stop,
2370 	.show   = proto_seq_show,
2371 };
2372 
2373 static int proto_seq_open(struct inode *inode, struct file *file)
2374 {
2375 	return seq_open_net(inode, file, &proto_seq_ops,
2376 			    sizeof(struct seq_net_private));
2377 }
2378 
2379 static const struct file_operations proto_seq_fops = {
2380 	.owner		= THIS_MODULE,
2381 	.open		= proto_seq_open,
2382 	.read		= seq_read,
2383 	.llseek		= seq_lseek,
2384 	.release	= seq_release_net,
2385 };
2386 
2387 static __net_init int proto_init_net(struct net *net)
2388 {
2389 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2390 		return -ENOMEM;
2391 
2392 	return 0;
2393 }
2394 
2395 static __net_exit void proto_exit_net(struct net *net)
2396 {
2397 	proc_net_remove(net, "protocols");
2398 }
2399 
2400 
2401 static __net_initdata struct pernet_operations proto_net_ops = {
2402 	.init = proto_init_net,
2403 	.exit = proto_exit_net,
2404 };
2405 
2406 static int __init proto_init(void)
2407 {
2408 	return register_pernet_subsys(&proto_net_ops);
2409 }
2410 
2411 subsys_initcall(proto_init);
2412 
2413 #endif /* PROC_FS */
2414