1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 return sock_bindtoindex(sk, index, true); 707 out: 708 #endif 709 710 return ret; 711 } 712 713 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 714 int __user *optlen, int len) 715 { 716 int ret = -ENOPROTOOPT; 717 #ifdef CONFIG_NETDEVICES 718 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 719 struct net *net = sock_net(sk); 720 char devname[IFNAMSIZ]; 721 722 if (bound_dev_if == 0) { 723 len = 0; 724 goto zero; 725 } 726 727 ret = -EINVAL; 728 if (len < IFNAMSIZ) 729 goto out; 730 731 ret = netdev_get_name(net, devname, bound_dev_if); 732 if (ret) 733 goto out; 734 735 len = strlen(devname) + 1; 736 737 ret = -EFAULT; 738 if (copy_to_user(optval, devname, len)) 739 goto out; 740 741 zero: 742 ret = -EFAULT; 743 if (put_user(len, optlen)) 744 goto out; 745 746 ret = 0; 747 748 out: 749 #endif 750 751 return ret; 752 } 753 754 bool sk_mc_loop(struct sock *sk) 755 { 756 if (dev_recursion_level()) 757 return false; 758 if (!sk) 759 return true; 760 switch (sk->sk_family) { 761 case AF_INET: 762 return inet_sk(sk)->mc_loop; 763 #if IS_ENABLED(CONFIG_IPV6) 764 case AF_INET6: 765 return inet6_sk(sk)->mc_loop; 766 #endif 767 } 768 WARN_ON_ONCE(1); 769 return true; 770 } 771 EXPORT_SYMBOL(sk_mc_loop); 772 773 void sock_set_reuseaddr(struct sock *sk) 774 { 775 lock_sock(sk); 776 sk->sk_reuse = SK_CAN_REUSE; 777 release_sock(sk); 778 } 779 EXPORT_SYMBOL(sock_set_reuseaddr); 780 781 void sock_set_reuseport(struct sock *sk) 782 { 783 lock_sock(sk); 784 sk->sk_reuseport = true; 785 release_sock(sk); 786 } 787 EXPORT_SYMBOL(sock_set_reuseport); 788 789 void sock_no_linger(struct sock *sk) 790 { 791 lock_sock(sk); 792 sk->sk_lingertime = 0; 793 sock_set_flag(sk, SOCK_LINGER); 794 release_sock(sk); 795 } 796 EXPORT_SYMBOL(sock_no_linger); 797 798 void sock_set_priority(struct sock *sk, u32 priority) 799 { 800 lock_sock(sk); 801 sk->sk_priority = priority; 802 release_sock(sk); 803 } 804 EXPORT_SYMBOL(sock_set_priority); 805 806 void sock_set_sndtimeo(struct sock *sk, s64 secs) 807 { 808 lock_sock(sk); 809 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 810 sk->sk_sndtimeo = secs * HZ; 811 else 812 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 813 release_sock(sk); 814 } 815 EXPORT_SYMBOL(sock_set_sndtimeo); 816 817 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 818 { 819 if (val) { 820 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 821 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 822 sock_set_flag(sk, SOCK_RCVTSTAMP); 823 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 824 } else { 825 sock_reset_flag(sk, SOCK_RCVTSTAMP); 826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 827 } 828 } 829 830 void sock_enable_timestamps(struct sock *sk) 831 { 832 lock_sock(sk); 833 __sock_set_timestamps(sk, true, false, true); 834 release_sock(sk); 835 } 836 EXPORT_SYMBOL(sock_enable_timestamps); 837 838 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 839 { 840 switch (optname) { 841 case SO_TIMESTAMP_OLD: 842 __sock_set_timestamps(sk, valbool, false, false); 843 break; 844 case SO_TIMESTAMP_NEW: 845 __sock_set_timestamps(sk, valbool, true, false); 846 break; 847 case SO_TIMESTAMPNS_OLD: 848 __sock_set_timestamps(sk, valbool, false, true); 849 break; 850 case SO_TIMESTAMPNS_NEW: 851 __sock_set_timestamps(sk, valbool, true, true); 852 break; 853 } 854 } 855 856 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 857 { 858 struct net *net = sock_net(sk); 859 struct net_device *dev = NULL; 860 bool match = false; 861 int *vclock_index; 862 int i, num; 863 864 if (sk->sk_bound_dev_if) 865 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 866 867 if (!dev) { 868 pr_err("%s: sock not bind to device\n", __func__); 869 return -EOPNOTSUPP; 870 } 871 872 num = ethtool_get_phc_vclocks(dev, &vclock_index); 873 dev_put(dev); 874 875 for (i = 0; i < num; i++) { 876 if (*(vclock_index + i) == phc_index) { 877 match = true; 878 break; 879 } 880 } 881 882 if (num > 0) 883 kfree(vclock_index); 884 885 if (!match) 886 return -EINVAL; 887 888 sk->sk_bind_phc = phc_index; 889 890 return 0; 891 } 892 893 int sock_set_timestamping(struct sock *sk, int optname, 894 struct so_timestamping timestamping) 895 { 896 int val = timestamping.flags; 897 int ret; 898 899 if (val & ~SOF_TIMESTAMPING_MASK) 900 return -EINVAL; 901 902 if (val & SOF_TIMESTAMPING_OPT_ID && 903 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 904 if (sk_is_tcp(sk)) { 905 if ((1 << sk->sk_state) & 906 (TCPF_CLOSE | TCPF_LISTEN)) 907 return -EINVAL; 908 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 909 } else { 910 atomic_set(&sk->sk_tskey, 0); 911 } 912 } 913 914 if (val & SOF_TIMESTAMPING_OPT_STATS && 915 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 916 return -EINVAL; 917 918 if (val & SOF_TIMESTAMPING_BIND_PHC) { 919 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 920 if (ret) 921 return ret; 922 } 923 924 sk->sk_tsflags = val; 925 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 926 927 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 928 sock_enable_timestamp(sk, 929 SOCK_TIMESTAMPING_RX_SOFTWARE); 930 else 931 sock_disable_timestamp(sk, 932 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 933 return 0; 934 } 935 936 void sock_set_keepalive(struct sock *sk) 937 { 938 lock_sock(sk); 939 if (sk->sk_prot->keepalive) 940 sk->sk_prot->keepalive(sk, true); 941 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 942 release_sock(sk); 943 } 944 EXPORT_SYMBOL(sock_set_keepalive); 945 946 static void __sock_set_rcvbuf(struct sock *sk, int val) 947 { 948 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 949 * as a negative value. 950 */ 951 val = min_t(int, val, INT_MAX / 2); 952 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 953 954 /* We double it on the way in to account for "struct sk_buff" etc. 955 * overhead. Applications assume that the SO_RCVBUF setting they make 956 * will allow that much actual data to be received on that socket. 957 * 958 * Applications are unaware that "struct sk_buff" and other overheads 959 * allocate from the receive buffer during socket buffer allocation. 960 * 961 * And after considering the possible alternatives, returning the value 962 * we actually used in getsockopt is the most desirable behavior. 963 */ 964 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 965 } 966 967 void sock_set_rcvbuf(struct sock *sk, int val) 968 { 969 lock_sock(sk); 970 __sock_set_rcvbuf(sk, val); 971 release_sock(sk); 972 } 973 EXPORT_SYMBOL(sock_set_rcvbuf); 974 975 static void __sock_set_mark(struct sock *sk, u32 val) 976 { 977 if (val != sk->sk_mark) { 978 sk->sk_mark = val; 979 sk_dst_reset(sk); 980 } 981 } 982 983 void sock_set_mark(struct sock *sk, u32 val) 984 { 985 lock_sock(sk); 986 __sock_set_mark(sk, val); 987 release_sock(sk); 988 } 989 EXPORT_SYMBOL(sock_set_mark); 990 991 static void sock_release_reserved_memory(struct sock *sk, int bytes) 992 { 993 /* Round down bytes to multiple of pages */ 994 bytes &= ~(SK_MEM_QUANTUM - 1); 995 996 WARN_ON(bytes > sk->sk_reserved_mem); 997 sk->sk_reserved_mem -= bytes; 998 sk_mem_reclaim(sk); 999 } 1000 1001 static int sock_reserve_memory(struct sock *sk, int bytes) 1002 { 1003 long allocated; 1004 bool charged; 1005 int pages; 1006 1007 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1008 return -EOPNOTSUPP; 1009 1010 if (!bytes) 1011 return 0; 1012 1013 pages = sk_mem_pages(bytes); 1014 1015 /* pre-charge to memcg */ 1016 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1017 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1018 if (!charged) 1019 return -ENOMEM; 1020 1021 /* pre-charge to forward_alloc */ 1022 allocated = sk_memory_allocated_add(sk, pages); 1023 /* If the system goes into memory pressure with this 1024 * precharge, give up and return error. 1025 */ 1026 if (allocated > sk_prot_mem_limits(sk, 1)) { 1027 sk_memory_allocated_sub(sk, pages); 1028 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1029 return -ENOMEM; 1030 } 1031 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT; 1032 1033 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT; 1034 1035 return 0; 1036 } 1037 1038 /* 1039 * This is meant for all protocols to use and covers goings on 1040 * at the socket level. Everything here is generic. 1041 */ 1042 1043 int sock_setsockopt(struct socket *sock, int level, int optname, 1044 sockptr_t optval, unsigned int optlen) 1045 { 1046 struct so_timestamping timestamping; 1047 struct sock_txtime sk_txtime; 1048 struct sock *sk = sock->sk; 1049 int val; 1050 int valbool; 1051 struct linger ling; 1052 int ret = 0; 1053 1054 /* 1055 * Options without arguments 1056 */ 1057 1058 if (optname == SO_BINDTODEVICE) 1059 return sock_setbindtodevice(sk, optval, optlen); 1060 1061 if (optlen < sizeof(int)) 1062 return -EINVAL; 1063 1064 if (copy_from_sockptr(&val, optval, sizeof(val))) 1065 return -EFAULT; 1066 1067 valbool = val ? 1 : 0; 1068 1069 lock_sock(sk); 1070 1071 switch (optname) { 1072 case SO_DEBUG: 1073 if (val && !capable(CAP_NET_ADMIN)) 1074 ret = -EACCES; 1075 else 1076 sock_valbool_flag(sk, SOCK_DBG, valbool); 1077 break; 1078 case SO_REUSEADDR: 1079 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1080 break; 1081 case SO_REUSEPORT: 1082 sk->sk_reuseport = valbool; 1083 break; 1084 case SO_TYPE: 1085 case SO_PROTOCOL: 1086 case SO_DOMAIN: 1087 case SO_ERROR: 1088 ret = -ENOPROTOOPT; 1089 break; 1090 case SO_DONTROUTE: 1091 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1092 sk_dst_reset(sk); 1093 break; 1094 case SO_BROADCAST: 1095 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1096 break; 1097 case SO_SNDBUF: 1098 /* Don't error on this BSD doesn't and if you think 1099 * about it this is right. Otherwise apps have to 1100 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1101 * are treated in BSD as hints 1102 */ 1103 val = min_t(u32, val, sysctl_wmem_max); 1104 set_sndbuf: 1105 /* Ensure val * 2 fits into an int, to prevent max_t() 1106 * from treating it as a negative value. 1107 */ 1108 val = min_t(int, val, INT_MAX / 2); 1109 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1110 WRITE_ONCE(sk->sk_sndbuf, 1111 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1112 /* Wake up sending tasks if we upped the value. */ 1113 sk->sk_write_space(sk); 1114 break; 1115 1116 case SO_SNDBUFFORCE: 1117 if (!capable(CAP_NET_ADMIN)) { 1118 ret = -EPERM; 1119 break; 1120 } 1121 1122 /* No negative values (to prevent underflow, as val will be 1123 * multiplied by 2). 1124 */ 1125 if (val < 0) 1126 val = 0; 1127 goto set_sndbuf; 1128 1129 case SO_RCVBUF: 1130 /* Don't error on this BSD doesn't and if you think 1131 * about it this is right. Otherwise apps have to 1132 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1133 * are treated in BSD as hints 1134 */ 1135 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1136 break; 1137 1138 case SO_RCVBUFFORCE: 1139 if (!capable(CAP_NET_ADMIN)) { 1140 ret = -EPERM; 1141 break; 1142 } 1143 1144 /* No negative values (to prevent underflow, as val will be 1145 * multiplied by 2). 1146 */ 1147 __sock_set_rcvbuf(sk, max(val, 0)); 1148 break; 1149 1150 case SO_KEEPALIVE: 1151 if (sk->sk_prot->keepalive) 1152 sk->sk_prot->keepalive(sk, valbool); 1153 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1154 break; 1155 1156 case SO_OOBINLINE: 1157 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1158 break; 1159 1160 case SO_NO_CHECK: 1161 sk->sk_no_check_tx = valbool; 1162 break; 1163 1164 case SO_PRIORITY: 1165 if ((val >= 0 && val <= 6) || 1166 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1167 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1168 sk->sk_priority = val; 1169 else 1170 ret = -EPERM; 1171 break; 1172 1173 case SO_LINGER: 1174 if (optlen < sizeof(ling)) { 1175 ret = -EINVAL; /* 1003.1g */ 1176 break; 1177 } 1178 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1179 ret = -EFAULT; 1180 break; 1181 } 1182 if (!ling.l_onoff) 1183 sock_reset_flag(sk, SOCK_LINGER); 1184 else { 1185 #if (BITS_PER_LONG == 32) 1186 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1187 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1188 else 1189 #endif 1190 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1191 sock_set_flag(sk, SOCK_LINGER); 1192 } 1193 break; 1194 1195 case SO_BSDCOMPAT: 1196 break; 1197 1198 case SO_PASSCRED: 1199 if (valbool) 1200 set_bit(SOCK_PASSCRED, &sock->flags); 1201 else 1202 clear_bit(SOCK_PASSCRED, &sock->flags); 1203 break; 1204 1205 case SO_TIMESTAMP_OLD: 1206 case SO_TIMESTAMP_NEW: 1207 case SO_TIMESTAMPNS_OLD: 1208 case SO_TIMESTAMPNS_NEW: 1209 sock_set_timestamp(sk, optname, valbool); 1210 break; 1211 1212 case SO_TIMESTAMPING_NEW: 1213 case SO_TIMESTAMPING_OLD: 1214 if (optlen == sizeof(timestamping)) { 1215 if (copy_from_sockptr(×tamping, optval, 1216 sizeof(timestamping))) { 1217 ret = -EFAULT; 1218 break; 1219 } 1220 } else { 1221 memset(×tamping, 0, sizeof(timestamping)); 1222 timestamping.flags = val; 1223 } 1224 ret = sock_set_timestamping(sk, optname, timestamping); 1225 break; 1226 1227 case SO_RCVLOWAT: 1228 if (val < 0) 1229 val = INT_MAX; 1230 if (sock->ops->set_rcvlowat) 1231 ret = sock->ops->set_rcvlowat(sk, val); 1232 else 1233 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1234 break; 1235 1236 case SO_RCVTIMEO_OLD: 1237 case SO_RCVTIMEO_NEW: 1238 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1239 optlen, optname == SO_RCVTIMEO_OLD); 1240 break; 1241 1242 case SO_SNDTIMEO_OLD: 1243 case SO_SNDTIMEO_NEW: 1244 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1245 optlen, optname == SO_SNDTIMEO_OLD); 1246 break; 1247 1248 case SO_ATTACH_FILTER: { 1249 struct sock_fprog fprog; 1250 1251 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1252 if (!ret) 1253 ret = sk_attach_filter(&fprog, sk); 1254 break; 1255 } 1256 case SO_ATTACH_BPF: 1257 ret = -EINVAL; 1258 if (optlen == sizeof(u32)) { 1259 u32 ufd; 1260 1261 ret = -EFAULT; 1262 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1263 break; 1264 1265 ret = sk_attach_bpf(ufd, sk); 1266 } 1267 break; 1268 1269 case SO_ATTACH_REUSEPORT_CBPF: { 1270 struct sock_fprog fprog; 1271 1272 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1273 if (!ret) 1274 ret = sk_reuseport_attach_filter(&fprog, sk); 1275 break; 1276 } 1277 case SO_ATTACH_REUSEPORT_EBPF: 1278 ret = -EINVAL; 1279 if (optlen == sizeof(u32)) { 1280 u32 ufd; 1281 1282 ret = -EFAULT; 1283 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1284 break; 1285 1286 ret = sk_reuseport_attach_bpf(ufd, sk); 1287 } 1288 break; 1289 1290 case SO_DETACH_REUSEPORT_BPF: 1291 ret = reuseport_detach_prog(sk); 1292 break; 1293 1294 case SO_DETACH_FILTER: 1295 ret = sk_detach_filter(sk); 1296 break; 1297 1298 case SO_LOCK_FILTER: 1299 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1300 ret = -EPERM; 1301 else 1302 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1303 break; 1304 1305 case SO_PASSSEC: 1306 if (valbool) 1307 set_bit(SOCK_PASSSEC, &sock->flags); 1308 else 1309 clear_bit(SOCK_PASSSEC, &sock->flags); 1310 break; 1311 case SO_MARK: 1312 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1313 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1314 ret = -EPERM; 1315 break; 1316 } 1317 1318 __sock_set_mark(sk, val); 1319 break; 1320 case SO_RCVMARK: 1321 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1322 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1323 ret = -EPERM; 1324 break; 1325 } 1326 1327 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1328 break; 1329 1330 case SO_RXQ_OVFL: 1331 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1332 break; 1333 1334 case SO_WIFI_STATUS: 1335 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1336 break; 1337 1338 case SO_PEEK_OFF: 1339 if (sock->ops->set_peek_off) 1340 ret = sock->ops->set_peek_off(sk, val); 1341 else 1342 ret = -EOPNOTSUPP; 1343 break; 1344 1345 case SO_NOFCS: 1346 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1347 break; 1348 1349 case SO_SELECT_ERR_QUEUE: 1350 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1351 break; 1352 1353 #ifdef CONFIG_NET_RX_BUSY_POLL 1354 case SO_BUSY_POLL: 1355 /* allow unprivileged users to decrease the value */ 1356 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1357 ret = -EPERM; 1358 else { 1359 if (val < 0) 1360 ret = -EINVAL; 1361 else 1362 WRITE_ONCE(sk->sk_ll_usec, val); 1363 } 1364 break; 1365 case SO_PREFER_BUSY_POLL: 1366 if (valbool && !capable(CAP_NET_ADMIN)) 1367 ret = -EPERM; 1368 else 1369 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1370 break; 1371 case SO_BUSY_POLL_BUDGET: 1372 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1373 ret = -EPERM; 1374 } else { 1375 if (val < 0 || val > U16_MAX) 1376 ret = -EINVAL; 1377 else 1378 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1379 } 1380 break; 1381 #endif 1382 1383 case SO_MAX_PACING_RATE: 1384 { 1385 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1386 1387 if (sizeof(ulval) != sizeof(val) && 1388 optlen >= sizeof(ulval) && 1389 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1390 ret = -EFAULT; 1391 break; 1392 } 1393 if (ulval != ~0UL) 1394 cmpxchg(&sk->sk_pacing_status, 1395 SK_PACING_NONE, 1396 SK_PACING_NEEDED); 1397 sk->sk_max_pacing_rate = ulval; 1398 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1399 break; 1400 } 1401 case SO_INCOMING_CPU: 1402 WRITE_ONCE(sk->sk_incoming_cpu, val); 1403 break; 1404 1405 case SO_CNX_ADVICE: 1406 if (val == 1) 1407 dst_negative_advice(sk); 1408 break; 1409 1410 case SO_ZEROCOPY: 1411 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1412 if (!(sk_is_tcp(sk) || 1413 (sk->sk_type == SOCK_DGRAM && 1414 sk->sk_protocol == IPPROTO_UDP))) 1415 ret = -EOPNOTSUPP; 1416 } else if (sk->sk_family != PF_RDS) { 1417 ret = -EOPNOTSUPP; 1418 } 1419 if (!ret) { 1420 if (val < 0 || val > 1) 1421 ret = -EINVAL; 1422 else 1423 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1424 } 1425 break; 1426 1427 case SO_TXTIME: 1428 if (optlen != sizeof(struct sock_txtime)) { 1429 ret = -EINVAL; 1430 break; 1431 } else if (copy_from_sockptr(&sk_txtime, optval, 1432 sizeof(struct sock_txtime))) { 1433 ret = -EFAULT; 1434 break; 1435 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1436 ret = -EINVAL; 1437 break; 1438 } 1439 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1440 * scheduler has enough safe guards. 1441 */ 1442 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1443 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1444 ret = -EPERM; 1445 break; 1446 } 1447 sock_valbool_flag(sk, SOCK_TXTIME, true); 1448 sk->sk_clockid = sk_txtime.clockid; 1449 sk->sk_txtime_deadline_mode = 1450 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1451 sk->sk_txtime_report_errors = 1452 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1453 break; 1454 1455 case SO_BINDTOIFINDEX: 1456 ret = sock_bindtoindex_locked(sk, val); 1457 break; 1458 1459 case SO_BUF_LOCK: 1460 if (val & ~SOCK_BUF_LOCK_MASK) { 1461 ret = -EINVAL; 1462 break; 1463 } 1464 sk->sk_userlocks = val | (sk->sk_userlocks & 1465 ~SOCK_BUF_LOCK_MASK); 1466 break; 1467 1468 case SO_RESERVE_MEM: 1469 { 1470 int delta; 1471 1472 if (val < 0) { 1473 ret = -EINVAL; 1474 break; 1475 } 1476 1477 delta = val - sk->sk_reserved_mem; 1478 if (delta < 0) 1479 sock_release_reserved_memory(sk, -delta); 1480 else 1481 ret = sock_reserve_memory(sk, delta); 1482 break; 1483 } 1484 1485 case SO_TXREHASH: 1486 if (val < -1 || val > 1) { 1487 ret = -EINVAL; 1488 break; 1489 } 1490 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1491 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1492 break; 1493 1494 default: 1495 ret = -ENOPROTOOPT; 1496 break; 1497 } 1498 release_sock(sk); 1499 return ret; 1500 } 1501 EXPORT_SYMBOL(sock_setsockopt); 1502 1503 static const struct cred *sk_get_peer_cred(struct sock *sk) 1504 { 1505 const struct cred *cred; 1506 1507 spin_lock(&sk->sk_peer_lock); 1508 cred = get_cred(sk->sk_peer_cred); 1509 spin_unlock(&sk->sk_peer_lock); 1510 1511 return cred; 1512 } 1513 1514 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1515 struct ucred *ucred) 1516 { 1517 ucred->pid = pid_vnr(pid); 1518 ucred->uid = ucred->gid = -1; 1519 if (cred) { 1520 struct user_namespace *current_ns = current_user_ns(); 1521 1522 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1523 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1524 } 1525 } 1526 1527 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1528 { 1529 struct user_namespace *user_ns = current_user_ns(); 1530 int i; 1531 1532 for (i = 0; i < src->ngroups; i++) 1533 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1534 return -EFAULT; 1535 1536 return 0; 1537 } 1538 1539 int sock_getsockopt(struct socket *sock, int level, int optname, 1540 char __user *optval, int __user *optlen) 1541 { 1542 struct sock *sk = sock->sk; 1543 1544 union { 1545 int val; 1546 u64 val64; 1547 unsigned long ulval; 1548 struct linger ling; 1549 struct old_timeval32 tm32; 1550 struct __kernel_old_timeval tm; 1551 struct __kernel_sock_timeval stm; 1552 struct sock_txtime txtime; 1553 struct so_timestamping timestamping; 1554 } v; 1555 1556 int lv = sizeof(int); 1557 int len; 1558 1559 if (get_user(len, optlen)) 1560 return -EFAULT; 1561 if (len < 0) 1562 return -EINVAL; 1563 1564 memset(&v, 0, sizeof(v)); 1565 1566 switch (optname) { 1567 case SO_DEBUG: 1568 v.val = sock_flag(sk, SOCK_DBG); 1569 break; 1570 1571 case SO_DONTROUTE: 1572 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1573 break; 1574 1575 case SO_BROADCAST: 1576 v.val = sock_flag(sk, SOCK_BROADCAST); 1577 break; 1578 1579 case SO_SNDBUF: 1580 v.val = sk->sk_sndbuf; 1581 break; 1582 1583 case SO_RCVBUF: 1584 v.val = sk->sk_rcvbuf; 1585 break; 1586 1587 case SO_REUSEADDR: 1588 v.val = sk->sk_reuse; 1589 break; 1590 1591 case SO_REUSEPORT: 1592 v.val = sk->sk_reuseport; 1593 break; 1594 1595 case SO_KEEPALIVE: 1596 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1597 break; 1598 1599 case SO_TYPE: 1600 v.val = sk->sk_type; 1601 break; 1602 1603 case SO_PROTOCOL: 1604 v.val = sk->sk_protocol; 1605 break; 1606 1607 case SO_DOMAIN: 1608 v.val = sk->sk_family; 1609 break; 1610 1611 case SO_ERROR: 1612 v.val = -sock_error(sk); 1613 if (v.val == 0) 1614 v.val = xchg(&sk->sk_err_soft, 0); 1615 break; 1616 1617 case SO_OOBINLINE: 1618 v.val = sock_flag(sk, SOCK_URGINLINE); 1619 break; 1620 1621 case SO_NO_CHECK: 1622 v.val = sk->sk_no_check_tx; 1623 break; 1624 1625 case SO_PRIORITY: 1626 v.val = sk->sk_priority; 1627 break; 1628 1629 case SO_LINGER: 1630 lv = sizeof(v.ling); 1631 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1632 v.ling.l_linger = sk->sk_lingertime / HZ; 1633 break; 1634 1635 case SO_BSDCOMPAT: 1636 break; 1637 1638 case SO_TIMESTAMP_OLD: 1639 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1640 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1641 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1642 break; 1643 1644 case SO_TIMESTAMPNS_OLD: 1645 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1646 break; 1647 1648 case SO_TIMESTAMP_NEW: 1649 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1650 break; 1651 1652 case SO_TIMESTAMPNS_NEW: 1653 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1654 break; 1655 1656 case SO_TIMESTAMPING_OLD: 1657 lv = sizeof(v.timestamping); 1658 v.timestamping.flags = sk->sk_tsflags; 1659 v.timestamping.bind_phc = sk->sk_bind_phc; 1660 break; 1661 1662 case SO_RCVTIMEO_OLD: 1663 case SO_RCVTIMEO_NEW: 1664 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1665 break; 1666 1667 case SO_SNDTIMEO_OLD: 1668 case SO_SNDTIMEO_NEW: 1669 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1670 break; 1671 1672 case SO_RCVLOWAT: 1673 v.val = sk->sk_rcvlowat; 1674 break; 1675 1676 case SO_SNDLOWAT: 1677 v.val = 1; 1678 break; 1679 1680 case SO_PASSCRED: 1681 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1682 break; 1683 1684 case SO_PEERCRED: 1685 { 1686 struct ucred peercred; 1687 if (len > sizeof(peercred)) 1688 len = sizeof(peercred); 1689 1690 spin_lock(&sk->sk_peer_lock); 1691 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1692 spin_unlock(&sk->sk_peer_lock); 1693 1694 if (copy_to_user(optval, &peercred, len)) 1695 return -EFAULT; 1696 goto lenout; 1697 } 1698 1699 case SO_PEERGROUPS: 1700 { 1701 const struct cred *cred; 1702 int ret, n; 1703 1704 cred = sk_get_peer_cred(sk); 1705 if (!cred) 1706 return -ENODATA; 1707 1708 n = cred->group_info->ngroups; 1709 if (len < n * sizeof(gid_t)) { 1710 len = n * sizeof(gid_t); 1711 put_cred(cred); 1712 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1713 } 1714 len = n * sizeof(gid_t); 1715 1716 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1717 put_cred(cred); 1718 if (ret) 1719 return ret; 1720 goto lenout; 1721 } 1722 1723 case SO_PEERNAME: 1724 { 1725 char address[128]; 1726 1727 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1728 if (lv < 0) 1729 return -ENOTCONN; 1730 if (lv < len) 1731 return -EINVAL; 1732 if (copy_to_user(optval, address, len)) 1733 return -EFAULT; 1734 goto lenout; 1735 } 1736 1737 /* Dubious BSD thing... Probably nobody even uses it, but 1738 * the UNIX standard wants it for whatever reason... -DaveM 1739 */ 1740 case SO_ACCEPTCONN: 1741 v.val = sk->sk_state == TCP_LISTEN; 1742 break; 1743 1744 case SO_PASSSEC: 1745 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1746 break; 1747 1748 case SO_PEERSEC: 1749 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1750 1751 case SO_MARK: 1752 v.val = sk->sk_mark; 1753 break; 1754 1755 case SO_RCVMARK: 1756 v.val = sock_flag(sk, SOCK_RCVMARK); 1757 break; 1758 1759 case SO_RXQ_OVFL: 1760 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1761 break; 1762 1763 case SO_WIFI_STATUS: 1764 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1765 break; 1766 1767 case SO_PEEK_OFF: 1768 if (!sock->ops->set_peek_off) 1769 return -EOPNOTSUPP; 1770 1771 v.val = sk->sk_peek_off; 1772 break; 1773 case SO_NOFCS: 1774 v.val = sock_flag(sk, SOCK_NOFCS); 1775 break; 1776 1777 case SO_BINDTODEVICE: 1778 return sock_getbindtodevice(sk, optval, optlen, len); 1779 1780 case SO_GET_FILTER: 1781 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1782 if (len < 0) 1783 return len; 1784 1785 goto lenout; 1786 1787 case SO_LOCK_FILTER: 1788 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1789 break; 1790 1791 case SO_BPF_EXTENSIONS: 1792 v.val = bpf_tell_extensions(); 1793 break; 1794 1795 case SO_SELECT_ERR_QUEUE: 1796 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1797 break; 1798 1799 #ifdef CONFIG_NET_RX_BUSY_POLL 1800 case SO_BUSY_POLL: 1801 v.val = sk->sk_ll_usec; 1802 break; 1803 case SO_PREFER_BUSY_POLL: 1804 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1805 break; 1806 #endif 1807 1808 case SO_MAX_PACING_RATE: 1809 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1810 lv = sizeof(v.ulval); 1811 v.ulval = sk->sk_max_pacing_rate; 1812 } else { 1813 /* 32bit version */ 1814 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1815 } 1816 break; 1817 1818 case SO_INCOMING_CPU: 1819 v.val = READ_ONCE(sk->sk_incoming_cpu); 1820 break; 1821 1822 case SO_MEMINFO: 1823 { 1824 u32 meminfo[SK_MEMINFO_VARS]; 1825 1826 sk_get_meminfo(sk, meminfo); 1827 1828 len = min_t(unsigned int, len, sizeof(meminfo)); 1829 if (copy_to_user(optval, &meminfo, len)) 1830 return -EFAULT; 1831 1832 goto lenout; 1833 } 1834 1835 #ifdef CONFIG_NET_RX_BUSY_POLL 1836 case SO_INCOMING_NAPI_ID: 1837 v.val = READ_ONCE(sk->sk_napi_id); 1838 1839 /* aggregate non-NAPI IDs down to 0 */ 1840 if (v.val < MIN_NAPI_ID) 1841 v.val = 0; 1842 1843 break; 1844 #endif 1845 1846 case SO_COOKIE: 1847 lv = sizeof(u64); 1848 if (len < lv) 1849 return -EINVAL; 1850 v.val64 = sock_gen_cookie(sk); 1851 break; 1852 1853 case SO_ZEROCOPY: 1854 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1855 break; 1856 1857 case SO_TXTIME: 1858 lv = sizeof(v.txtime); 1859 v.txtime.clockid = sk->sk_clockid; 1860 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1861 SOF_TXTIME_DEADLINE_MODE : 0; 1862 v.txtime.flags |= sk->sk_txtime_report_errors ? 1863 SOF_TXTIME_REPORT_ERRORS : 0; 1864 break; 1865 1866 case SO_BINDTOIFINDEX: 1867 v.val = READ_ONCE(sk->sk_bound_dev_if); 1868 break; 1869 1870 case SO_NETNS_COOKIE: 1871 lv = sizeof(u64); 1872 if (len != lv) 1873 return -EINVAL; 1874 v.val64 = sock_net(sk)->net_cookie; 1875 break; 1876 1877 case SO_BUF_LOCK: 1878 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1879 break; 1880 1881 case SO_RESERVE_MEM: 1882 v.val = sk->sk_reserved_mem; 1883 break; 1884 1885 case SO_TXREHASH: 1886 v.val = sk->sk_txrehash; 1887 break; 1888 1889 default: 1890 /* We implement the SO_SNDLOWAT etc to not be settable 1891 * (1003.1g 7). 1892 */ 1893 return -ENOPROTOOPT; 1894 } 1895 1896 if (len > lv) 1897 len = lv; 1898 if (copy_to_user(optval, &v, len)) 1899 return -EFAULT; 1900 lenout: 1901 if (put_user(len, optlen)) 1902 return -EFAULT; 1903 return 0; 1904 } 1905 1906 /* 1907 * Initialize an sk_lock. 1908 * 1909 * (We also register the sk_lock with the lock validator.) 1910 */ 1911 static inline void sock_lock_init(struct sock *sk) 1912 { 1913 if (sk->sk_kern_sock) 1914 sock_lock_init_class_and_name( 1915 sk, 1916 af_family_kern_slock_key_strings[sk->sk_family], 1917 af_family_kern_slock_keys + sk->sk_family, 1918 af_family_kern_key_strings[sk->sk_family], 1919 af_family_kern_keys + sk->sk_family); 1920 else 1921 sock_lock_init_class_and_name( 1922 sk, 1923 af_family_slock_key_strings[sk->sk_family], 1924 af_family_slock_keys + sk->sk_family, 1925 af_family_key_strings[sk->sk_family], 1926 af_family_keys + sk->sk_family); 1927 } 1928 1929 /* 1930 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1931 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1932 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1933 */ 1934 static void sock_copy(struct sock *nsk, const struct sock *osk) 1935 { 1936 const struct proto *prot = READ_ONCE(osk->sk_prot); 1937 #ifdef CONFIG_SECURITY_NETWORK 1938 void *sptr = nsk->sk_security; 1939 #endif 1940 1941 /* If we move sk_tx_queue_mapping out of the private section, 1942 * we must check if sk_tx_queue_clear() is called after 1943 * sock_copy() in sk_clone_lock(). 1944 */ 1945 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1946 offsetof(struct sock, sk_dontcopy_begin) || 1947 offsetof(struct sock, sk_tx_queue_mapping) >= 1948 offsetof(struct sock, sk_dontcopy_end)); 1949 1950 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1951 1952 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1953 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1954 1955 #ifdef CONFIG_SECURITY_NETWORK 1956 nsk->sk_security = sptr; 1957 security_sk_clone(osk, nsk); 1958 #endif 1959 } 1960 1961 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1962 int family) 1963 { 1964 struct sock *sk; 1965 struct kmem_cache *slab; 1966 1967 slab = prot->slab; 1968 if (slab != NULL) { 1969 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1970 if (!sk) 1971 return sk; 1972 if (want_init_on_alloc(priority)) 1973 sk_prot_clear_nulls(sk, prot->obj_size); 1974 } else 1975 sk = kmalloc(prot->obj_size, priority); 1976 1977 if (sk != NULL) { 1978 if (security_sk_alloc(sk, family, priority)) 1979 goto out_free; 1980 1981 if (!try_module_get(prot->owner)) 1982 goto out_free_sec; 1983 } 1984 1985 return sk; 1986 1987 out_free_sec: 1988 security_sk_free(sk); 1989 out_free: 1990 if (slab != NULL) 1991 kmem_cache_free(slab, sk); 1992 else 1993 kfree(sk); 1994 return NULL; 1995 } 1996 1997 static void sk_prot_free(struct proto *prot, struct sock *sk) 1998 { 1999 struct kmem_cache *slab; 2000 struct module *owner; 2001 2002 owner = prot->owner; 2003 slab = prot->slab; 2004 2005 cgroup_sk_free(&sk->sk_cgrp_data); 2006 mem_cgroup_sk_free(sk); 2007 security_sk_free(sk); 2008 if (slab != NULL) 2009 kmem_cache_free(slab, sk); 2010 else 2011 kfree(sk); 2012 module_put(owner); 2013 } 2014 2015 /** 2016 * sk_alloc - All socket objects are allocated here 2017 * @net: the applicable net namespace 2018 * @family: protocol family 2019 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2020 * @prot: struct proto associated with this new sock instance 2021 * @kern: is this to be a kernel socket? 2022 */ 2023 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2024 struct proto *prot, int kern) 2025 { 2026 struct sock *sk; 2027 2028 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2029 if (sk) { 2030 sk->sk_family = family; 2031 /* 2032 * See comment in struct sock definition to understand 2033 * why we need sk_prot_creator -acme 2034 */ 2035 sk->sk_prot = sk->sk_prot_creator = prot; 2036 sk->sk_kern_sock = kern; 2037 sock_lock_init(sk); 2038 sk->sk_net_refcnt = kern ? 0 : 1; 2039 if (likely(sk->sk_net_refcnt)) { 2040 get_net_track(net, &sk->ns_tracker, priority); 2041 sock_inuse_add(net, 1); 2042 } 2043 2044 sock_net_set(sk, net); 2045 refcount_set(&sk->sk_wmem_alloc, 1); 2046 2047 mem_cgroup_sk_alloc(sk); 2048 cgroup_sk_alloc(&sk->sk_cgrp_data); 2049 sock_update_classid(&sk->sk_cgrp_data); 2050 sock_update_netprioidx(&sk->sk_cgrp_data); 2051 sk_tx_queue_clear(sk); 2052 } 2053 2054 return sk; 2055 } 2056 EXPORT_SYMBOL(sk_alloc); 2057 2058 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2059 * grace period. This is the case for UDP sockets and TCP listeners. 2060 */ 2061 static void __sk_destruct(struct rcu_head *head) 2062 { 2063 struct sock *sk = container_of(head, struct sock, sk_rcu); 2064 struct sk_filter *filter; 2065 2066 if (sk->sk_destruct) 2067 sk->sk_destruct(sk); 2068 2069 filter = rcu_dereference_check(sk->sk_filter, 2070 refcount_read(&sk->sk_wmem_alloc) == 0); 2071 if (filter) { 2072 sk_filter_uncharge(sk, filter); 2073 RCU_INIT_POINTER(sk->sk_filter, NULL); 2074 } 2075 2076 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2077 2078 #ifdef CONFIG_BPF_SYSCALL 2079 bpf_sk_storage_free(sk); 2080 #endif 2081 2082 if (atomic_read(&sk->sk_omem_alloc)) 2083 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2084 __func__, atomic_read(&sk->sk_omem_alloc)); 2085 2086 if (sk->sk_frag.page) { 2087 put_page(sk->sk_frag.page); 2088 sk->sk_frag.page = NULL; 2089 } 2090 2091 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2092 put_cred(sk->sk_peer_cred); 2093 put_pid(sk->sk_peer_pid); 2094 2095 if (likely(sk->sk_net_refcnt)) 2096 put_net_track(sock_net(sk), &sk->ns_tracker); 2097 sk_prot_free(sk->sk_prot_creator, sk); 2098 } 2099 2100 void sk_destruct(struct sock *sk) 2101 { 2102 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2103 2104 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2105 reuseport_detach_sock(sk); 2106 use_call_rcu = true; 2107 } 2108 2109 if (use_call_rcu) 2110 call_rcu(&sk->sk_rcu, __sk_destruct); 2111 else 2112 __sk_destruct(&sk->sk_rcu); 2113 } 2114 2115 static void __sk_free(struct sock *sk) 2116 { 2117 if (likely(sk->sk_net_refcnt)) 2118 sock_inuse_add(sock_net(sk), -1); 2119 2120 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2121 sock_diag_broadcast_destroy(sk); 2122 else 2123 sk_destruct(sk); 2124 } 2125 2126 void sk_free(struct sock *sk) 2127 { 2128 /* 2129 * We subtract one from sk_wmem_alloc and can know if 2130 * some packets are still in some tx queue. 2131 * If not null, sock_wfree() will call __sk_free(sk) later 2132 */ 2133 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2134 __sk_free(sk); 2135 } 2136 EXPORT_SYMBOL(sk_free); 2137 2138 static void sk_init_common(struct sock *sk) 2139 { 2140 skb_queue_head_init(&sk->sk_receive_queue); 2141 skb_queue_head_init(&sk->sk_write_queue); 2142 skb_queue_head_init(&sk->sk_error_queue); 2143 2144 rwlock_init(&sk->sk_callback_lock); 2145 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2146 af_rlock_keys + sk->sk_family, 2147 af_family_rlock_key_strings[sk->sk_family]); 2148 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2149 af_wlock_keys + sk->sk_family, 2150 af_family_wlock_key_strings[sk->sk_family]); 2151 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2152 af_elock_keys + sk->sk_family, 2153 af_family_elock_key_strings[sk->sk_family]); 2154 lockdep_set_class_and_name(&sk->sk_callback_lock, 2155 af_callback_keys + sk->sk_family, 2156 af_family_clock_key_strings[sk->sk_family]); 2157 } 2158 2159 /** 2160 * sk_clone_lock - clone a socket, and lock its clone 2161 * @sk: the socket to clone 2162 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2163 * 2164 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2165 */ 2166 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2167 { 2168 struct proto *prot = READ_ONCE(sk->sk_prot); 2169 struct sk_filter *filter; 2170 bool is_charged = true; 2171 struct sock *newsk; 2172 2173 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2174 if (!newsk) 2175 goto out; 2176 2177 sock_copy(newsk, sk); 2178 2179 newsk->sk_prot_creator = prot; 2180 2181 /* SANITY */ 2182 if (likely(newsk->sk_net_refcnt)) { 2183 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2184 sock_inuse_add(sock_net(newsk), 1); 2185 } 2186 sk_node_init(&newsk->sk_node); 2187 sock_lock_init(newsk); 2188 bh_lock_sock(newsk); 2189 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2190 newsk->sk_backlog.len = 0; 2191 2192 atomic_set(&newsk->sk_rmem_alloc, 0); 2193 2194 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2195 refcount_set(&newsk->sk_wmem_alloc, 1); 2196 2197 atomic_set(&newsk->sk_omem_alloc, 0); 2198 sk_init_common(newsk); 2199 2200 newsk->sk_dst_cache = NULL; 2201 newsk->sk_dst_pending_confirm = 0; 2202 newsk->sk_wmem_queued = 0; 2203 newsk->sk_forward_alloc = 0; 2204 newsk->sk_reserved_mem = 0; 2205 atomic_set(&newsk->sk_drops, 0); 2206 newsk->sk_send_head = NULL; 2207 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2208 atomic_set(&newsk->sk_zckey, 0); 2209 2210 sock_reset_flag(newsk, SOCK_DONE); 2211 2212 /* sk->sk_memcg will be populated at accept() time */ 2213 newsk->sk_memcg = NULL; 2214 2215 cgroup_sk_clone(&newsk->sk_cgrp_data); 2216 2217 rcu_read_lock(); 2218 filter = rcu_dereference(sk->sk_filter); 2219 if (filter != NULL) 2220 /* though it's an empty new sock, the charging may fail 2221 * if sysctl_optmem_max was changed between creation of 2222 * original socket and cloning 2223 */ 2224 is_charged = sk_filter_charge(newsk, filter); 2225 RCU_INIT_POINTER(newsk->sk_filter, filter); 2226 rcu_read_unlock(); 2227 2228 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2229 /* We need to make sure that we don't uncharge the new 2230 * socket if we couldn't charge it in the first place 2231 * as otherwise we uncharge the parent's filter. 2232 */ 2233 if (!is_charged) 2234 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2235 sk_free_unlock_clone(newsk); 2236 newsk = NULL; 2237 goto out; 2238 } 2239 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2240 2241 if (bpf_sk_storage_clone(sk, newsk)) { 2242 sk_free_unlock_clone(newsk); 2243 newsk = NULL; 2244 goto out; 2245 } 2246 2247 /* Clear sk_user_data if parent had the pointer tagged 2248 * as not suitable for copying when cloning. 2249 */ 2250 if (sk_user_data_is_nocopy(newsk)) 2251 newsk->sk_user_data = NULL; 2252 2253 newsk->sk_err = 0; 2254 newsk->sk_err_soft = 0; 2255 newsk->sk_priority = 0; 2256 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2257 2258 /* Before updating sk_refcnt, we must commit prior changes to memory 2259 * (Documentation/RCU/rculist_nulls.rst for details) 2260 */ 2261 smp_wmb(); 2262 refcount_set(&newsk->sk_refcnt, 2); 2263 2264 /* Increment the counter in the same struct proto as the master 2265 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2266 * is the same as sk->sk_prot->socks, as this field was copied 2267 * with memcpy). 2268 * 2269 * This _changes_ the previous behaviour, where 2270 * tcp_create_openreq_child always was incrementing the 2271 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2272 * to be taken into account in all callers. -acme 2273 */ 2274 sk_refcnt_debug_inc(newsk); 2275 sk_set_socket(newsk, NULL); 2276 sk_tx_queue_clear(newsk); 2277 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2278 2279 if (newsk->sk_prot->sockets_allocated) 2280 sk_sockets_allocated_inc(newsk); 2281 2282 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2283 net_enable_timestamp(); 2284 out: 2285 return newsk; 2286 } 2287 EXPORT_SYMBOL_GPL(sk_clone_lock); 2288 2289 void sk_free_unlock_clone(struct sock *sk) 2290 { 2291 /* It is still raw copy of parent, so invalidate 2292 * destructor and make plain sk_free() */ 2293 sk->sk_destruct = NULL; 2294 bh_unlock_sock(sk); 2295 sk_free(sk); 2296 } 2297 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2298 2299 static void sk_trim_gso_size(struct sock *sk) 2300 { 2301 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE) 2302 return; 2303 #if IS_ENABLED(CONFIG_IPV6) 2304 if (sk->sk_family == AF_INET6 && 2305 sk_is_tcp(sk) && 2306 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 2307 return; 2308 #endif 2309 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE; 2310 } 2311 2312 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2313 { 2314 u32 max_segs = 1; 2315 2316 sk_dst_set(sk, dst); 2317 sk->sk_route_caps = dst->dev->features; 2318 if (sk_is_tcp(sk)) 2319 sk->sk_route_caps |= NETIF_F_GSO; 2320 if (sk->sk_route_caps & NETIF_F_GSO) 2321 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2322 if (unlikely(sk->sk_gso_disabled)) 2323 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2324 if (sk_can_gso(sk)) { 2325 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2326 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2327 } else { 2328 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2329 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2330 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2331 sk_trim_gso_size(sk); 2332 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2333 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2334 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2335 } 2336 } 2337 sk->sk_gso_max_segs = max_segs; 2338 } 2339 EXPORT_SYMBOL_GPL(sk_setup_caps); 2340 2341 /* 2342 * Simple resource managers for sockets. 2343 */ 2344 2345 2346 /* 2347 * Write buffer destructor automatically called from kfree_skb. 2348 */ 2349 void sock_wfree(struct sk_buff *skb) 2350 { 2351 struct sock *sk = skb->sk; 2352 unsigned int len = skb->truesize; 2353 bool free; 2354 2355 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2356 if (sock_flag(sk, SOCK_RCU_FREE) && 2357 sk->sk_write_space == sock_def_write_space) { 2358 rcu_read_lock(); 2359 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2360 sock_def_write_space_wfree(sk); 2361 rcu_read_unlock(); 2362 if (unlikely(free)) 2363 __sk_free(sk); 2364 return; 2365 } 2366 2367 /* 2368 * Keep a reference on sk_wmem_alloc, this will be released 2369 * after sk_write_space() call 2370 */ 2371 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2372 sk->sk_write_space(sk); 2373 len = 1; 2374 } 2375 /* 2376 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2377 * could not do because of in-flight packets 2378 */ 2379 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2380 __sk_free(sk); 2381 } 2382 EXPORT_SYMBOL(sock_wfree); 2383 2384 /* This variant of sock_wfree() is used by TCP, 2385 * since it sets SOCK_USE_WRITE_QUEUE. 2386 */ 2387 void __sock_wfree(struct sk_buff *skb) 2388 { 2389 struct sock *sk = skb->sk; 2390 2391 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2392 __sk_free(sk); 2393 } 2394 2395 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2396 { 2397 skb_orphan(skb); 2398 skb->sk = sk; 2399 #ifdef CONFIG_INET 2400 if (unlikely(!sk_fullsock(sk))) { 2401 skb->destructor = sock_edemux; 2402 sock_hold(sk); 2403 return; 2404 } 2405 #endif 2406 skb->destructor = sock_wfree; 2407 skb_set_hash_from_sk(skb, sk); 2408 /* 2409 * We used to take a refcount on sk, but following operation 2410 * is enough to guarantee sk_free() wont free this sock until 2411 * all in-flight packets are completed 2412 */ 2413 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2414 } 2415 EXPORT_SYMBOL(skb_set_owner_w); 2416 2417 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2418 { 2419 #ifdef CONFIG_TLS_DEVICE 2420 /* Drivers depend on in-order delivery for crypto offload, 2421 * partial orphan breaks out-of-order-OK logic. 2422 */ 2423 if (skb->decrypted) 2424 return false; 2425 #endif 2426 return (skb->destructor == sock_wfree || 2427 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2428 } 2429 2430 /* This helper is used by netem, as it can hold packets in its 2431 * delay queue. We want to allow the owner socket to send more 2432 * packets, as if they were already TX completed by a typical driver. 2433 * But we also want to keep skb->sk set because some packet schedulers 2434 * rely on it (sch_fq for example). 2435 */ 2436 void skb_orphan_partial(struct sk_buff *skb) 2437 { 2438 if (skb_is_tcp_pure_ack(skb)) 2439 return; 2440 2441 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2442 return; 2443 2444 skb_orphan(skb); 2445 } 2446 EXPORT_SYMBOL(skb_orphan_partial); 2447 2448 /* 2449 * Read buffer destructor automatically called from kfree_skb. 2450 */ 2451 void sock_rfree(struct sk_buff *skb) 2452 { 2453 struct sock *sk = skb->sk; 2454 unsigned int len = skb->truesize; 2455 2456 atomic_sub(len, &sk->sk_rmem_alloc); 2457 sk_mem_uncharge(sk, len); 2458 } 2459 EXPORT_SYMBOL(sock_rfree); 2460 2461 /* 2462 * Buffer destructor for skbs that are not used directly in read or write 2463 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2464 */ 2465 void sock_efree(struct sk_buff *skb) 2466 { 2467 sock_put(skb->sk); 2468 } 2469 EXPORT_SYMBOL(sock_efree); 2470 2471 /* Buffer destructor for prefetch/receive path where reference count may 2472 * not be held, e.g. for listen sockets. 2473 */ 2474 #ifdef CONFIG_INET 2475 void sock_pfree(struct sk_buff *skb) 2476 { 2477 if (sk_is_refcounted(skb->sk)) 2478 sock_gen_put(skb->sk); 2479 } 2480 EXPORT_SYMBOL(sock_pfree); 2481 #endif /* CONFIG_INET */ 2482 2483 kuid_t sock_i_uid(struct sock *sk) 2484 { 2485 kuid_t uid; 2486 2487 read_lock_bh(&sk->sk_callback_lock); 2488 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2489 read_unlock_bh(&sk->sk_callback_lock); 2490 return uid; 2491 } 2492 EXPORT_SYMBOL(sock_i_uid); 2493 2494 unsigned long sock_i_ino(struct sock *sk) 2495 { 2496 unsigned long ino; 2497 2498 read_lock_bh(&sk->sk_callback_lock); 2499 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2500 read_unlock_bh(&sk->sk_callback_lock); 2501 return ino; 2502 } 2503 EXPORT_SYMBOL(sock_i_ino); 2504 2505 /* 2506 * Allocate a skb from the socket's send buffer. 2507 */ 2508 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2509 gfp_t priority) 2510 { 2511 if (force || 2512 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2513 struct sk_buff *skb = alloc_skb(size, priority); 2514 2515 if (skb) { 2516 skb_set_owner_w(skb, sk); 2517 return skb; 2518 } 2519 } 2520 return NULL; 2521 } 2522 EXPORT_SYMBOL(sock_wmalloc); 2523 2524 static void sock_ofree(struct sk_buff *skb) 2525 { 2526 struct sock *sk = skb->sk; 2527 2528 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2529 } 2530 2531 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2532 gfp_t priority) 2533 { 2534 struct sk_buff *skb; 2535 2536 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2537 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2538 sysctl_optmem_max) 2539 return NULL; 2540 2541 skb = alloc_skb(size, priority); 2542 if (!skb) 2543 return NULL; 2544 2545 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2546 skb->sk = sk; 2547 skb->destructor = sock_ofree; 2548 return skb; 2549 } 2550 2551 /* 2552 * Allocate a memory block from the socket's option memory buffer. 2553 */ 2554 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2555 { 2556 if ((unsigned int)size <= sysctl_optmem_max && 2557 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2558 void *mem; 2559 /* First do the add, to avoid the race if kmalloc 2560 * might sleep. 2561 */ 2562 atomic_add(size, &sk->sk_omem_alloc); 2563 mem = kmalloc(size, priority); 2564 if (mem) 2565 return mem; 2566 atomic_sub(size, &sk->sk_omem_alloc); 2567 } 2568 return NULL; 2569 } 2570 EXPORT_SYMBOL(sock_kmalloc); 2571 2572 /* Free an option memory block. Note, we actually want the inline 2573 * here as this allows gcc to detect the nullify and fold away the 2574 * condition entirely. 2575 */ 2576 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2577 const bool nullify) 2578 { 2579 if (WARN_ON_ONCE(!mem)) 2580 return; 2581 if (nullify) 2582 kfree_sensitive(mem); 2583 else 2584 kfree(mem); 2585 atomic_sub(size, &sk->sk_omem_alloc); 2586 } 2587 2588 void sock_kfree_s(struct sock *sk, void *mem, int size) 2589 { 2590 __sock_kfree_s(sk, mem, size, false); 2591 } 2592 EXPORT_SYMBOL(sock_kfree_s); 2593 2594 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2595 { 2596 __sock_kfree_s(sk, mem, size, true); 2597 } 2598 EXPORT_SYMBOL(sock_kzfree_s); 2599 2600 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2601 I think, these locks should be removed for datagram sockets. 2602 */ 2603 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2604 { 2605 DEFINE_WAIT(wait); 2606 2607 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2608 for (;;) { 2609 if (!timeo) 2610 break; 2611 if (signal_pending(current)) 2612 break; 2613 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2614 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2615 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2616 break; 2617 if (sk->sk_shutdown & SEND_SHUTDOWN) 2618 break; 2619 if (sk->sk_err) 2620 break; 2621 timeo = schedule_timeout(timeo); 2622 } 2623 finish_wait(sk_sleep(sk), &wait); 2624 return timeo; 2625 } 2626 2627 2628 /* 2629 * Generic send/receive buffer handlers 2630 */ 2631 2632 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2633 unsigned long data_len, int noblock, 2634 int *errcode, int max_page_order) 2635 { 2636 struct sk_buff *skb; 2637 long timeo; 2638 int err; 2639 2640 timeo = sock_sndtimeo(sk, noblock); 2641 for (;;) { 2642 err = sock_error(sk); 2643 if (err != 0) 2644 goto failure; 2645 2646 err = -EPIPE; 2647 if (sk->sk_shutdown & SEND_SHUTDOWN) 2648 goto failure; 2649 2650 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2651 break; 2652 2653 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2654 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2655 err = -EAGAIN; 2656 if (!timeo) 2657 goto failure; 2658 if (signal_pending(current)) 2659 goto interrupted; 2660 timeo = sock_wait_for_wmem(sk, timeo); 2661 } 2662 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2663 errcode, sk->sk_allocation); 2664 if (skb) 2665 skb_set_owner_w(skb, sk); 2666 return skb; 2667 2668 interrupted: 2669 err = sock_intr_errno(timeo); 2670 failure: 2671 *errcode = err; 2672 return NULL; 2673 } 2674 EXPORT_SYMBOL(sock_alloc_send_pskb); 2675 2676 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2677 struct sockcm_cookie *sockc) 2678 { 2679 u32 tsflags; 2680 2681 switch (cmsg->cmsg_type) { 2682 case SO_MARK: 2683 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2684 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2685 return -EPERM; 2686 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2687 return -EINVAL; 2688 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2689 break; 2690 case SO_TIMESTAMPING_OLD: 2691 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2692 return -EINVAL; 2693 2694 tsflags = *(u32 *)CMSG_DATA(cmsg); 2695 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2696 return -EINVAL; 2697 2698 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2699 sockc->tsflags |= tsflags; 2700 break; 2701 case SCM_TXTIME: 2702 if (!sock_flag(sk, SOCK_TXTIME)) 2703 return -EINVAL; 2704 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2705 return -EINVAL; 2706 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2707 break; 2708 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2709 case SCM_RIGHTS: 2710 case SCM_CREDENTIALS: 2711 break; 2712 default: 2713 return -EINVAL; 2714 } 2715 return 0; 2716 } 2717 EXPORT_SYMBOL(__sock_cmsg_send); 2718 2719 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2720 struct sockcm_cookie *sockc) 2721 { 2722 struct cmsghdr *cmsg; 2723 int ret; 2724 2725 for_each_cmsghdr(cmsg, msg) { 2726 if (!CMSG_OK(msg, cmsg)) 2727 return -EINVAL; 2728 if (cmsg->cmsg_level != SOL_SOCKET) 2729 continue; 2730 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2731 if (ret) 2732 return ret; 2733 } 2734 return 0; 2735 } 2736 EXPORT_SYMBOL(sock_cmsg_send); 2737 2738 static void sk_enter_memory_pressure(struct sock *sk) 2739 { 2740 if (!sk->sk_prot->enter_memory_pressure) 2741 return; 2742 2743 sk->sk_prot->enter_memory_pressure(sk); 2744 } 2745 2746 static void sk_leave_memory_pressure(struct sock *sk) 2747 { 2748 if (sk->sk_prot->leave_memory_pressure) { 2749 sk->sk_prot->leave_memory_pressure(sk); 2750 } else { 2751 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2752 2753 if (memory_pressure && READ_ONCE(*memory_pressure)) 2754 WRITE_ONCE(*memory_pressure, 0); 2755 } 2756 } 2757 2758 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2759 2760 /** 2761 * skb_page_frag_refill - check that a page_frag contains enough room 2762 * @sz: minimum size of the fragment we want to get 2763 * @pfrag: pointer to page_frag 2764 * @gfp: priority for memory allocation 2765 * 2766 * Note: While this allocator tries to use high order pages, there is 2767 * no guarantee that allocations succeed. Therefore, @sz MUST be 2768 * less or equal than PAGE_SIZE. 2769 */ 2770 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2771 { 2772 if (pfrag->page) { 2773 if (page_ref_count(pfrag->page) == 1) { 2774 pfrag->offset = 0; 2775 return true; 2776 } 2777 if (pfrag->offset + sz <= pfrag->size) 2778 return true; 2779 put_page(pfrag->page); 2780 } 2781 2782 pfrag->offset = 0; 2783 if (SKB_FRAG_PAGE_ORDER && 2784 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2785 /* Avoid direct reclaim but allow kswapd to wake */ 2786 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2787 __GFP_COMP | __GFP_NOWARN | 2788 __GFP_NORETRY, 2789 SKB_FRAG_PAGE_ORDER); 2790 if (likely(pfrag->page)) { 2791 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2792 return true; 2793 } 2794 } 2795 pfrag->page = alloc_page(gfp); 2796 if (likely(pfrag->page)) { 2797 pfrag->size = PAGE_SIZE; 2798 return true; 2799 } 2800 return false; 2801 } 2802 EXPORT_SYMBOL(skb_page_frag_refill); 2803 2804 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2805 { 2806 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2807 return true; 2808 2809 sk_enter_memory_pressure(sk); 2810 sk_stream_moderate_sndbuf(sk); 2811 return false; 2812 } 2813 EXPORT_SYMBOL(sk_page_frag_refill); 2814 2815 void __lock_sock(struct sock *sk) 2816 __releases(&sk->sk_lock.slock) 2817 __acquires(&sk->sk_lock.slock) 2818 { 2819 DEFINE_WAIT(wait); 2820 2821 for (;;) { 2822 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2823 TASK_UNINTERRUPTIBLE); 2824 spin_unlock_bh(&sk->sk_lock.slock); 2825 schedule(); 2826 spin_lock_bh(&sk->sk_lock.slock); 2827 if (!sock_owned_by_user(sk)) 2828 break; 2829 } 2830 finish_wait(&sk->sk_lock.wq, &wait); 2831 } 2832 2833 void __release_sock(struct sock *sk) 2834 __releases(&sk->sk_lock.slock) 2835 __acquires(&sk->sk_lock.slock) 2836 { 2837 struct sk_buff *skb, *next; 2838 2839 while ((skb = sk->sk_backlog.head) != NULL) { 2840 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2841 2842 spin_unlock_bh(&sk->sk_lock.slock); 2843 2844 do { 2845 next = skb->next; 2846 prefetch(next); 2847 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2848 skb_mark_not_on_list(skb); 2849 sk_backlog_rcv(sk, skb); 2850 2851 cond_resched(); 2852 2853 skb = next; 2854 } while (skb != NULL); 2855 2856 spin_lock_bh(&sk->sk_lock.slock); 2857 } 2858 2859 /* 2860 * Doing the zeroing here guarantee we can not loop forever 2861 * while a wild producer attempts to flood us. 2862 */ 2863 sk->sk_backlog.len = 0; 2864 } 2865 2866 void __sk_flush_backlog(struct sock *sk) 2867 { 2868 spin_lock_bh(&sk->sk_lock.slock); 2869 __release_sock(sk); 2870 spin_unlock_bh(&sk->sk_lock.slock); 2871 } 2872 2873 /** 2874 * sk_wait_data - wait for data to arrive at sk_receive_queue 2875 * @sk: sock to wait on 2876 * @timeo: for how long 2877 * @skb: last skb seen on sk_receive_queue 2878 * 2879 * Now socket state including sk->sk_err is changed only under lock, 2880 * hence we may omit checks after joining wait queue. 2881 * We check receive queue before schedule() only as optimization; 2882 * it is very likely that release_sock() added new data. 2883 */ 2884 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2885 { 2886 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2887 int rc; 2888 2889 add_wait_queue(sk_sleep(sk), &wait); 2890 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2891 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2892 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2893 remove_wait_queue(sk_sleep(sk), &wait); 2894 return rc; 2895 } 2896 EXPORT_SYMBOL(sk_wait_data); 2897 2898 /** 2899 * __sk_mem_raise_allocated - increase memory_allocated 2900 * @sk: socket 2901 * @size: memory size to allocate 2902 * @amt: pages to allocate 2903 * @kind: allocation type 2904 * 2905 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2906 */ 2907 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2908 { 2909 struct proto *prot = sk->sk_prot; 2910 long allocated = sk_memory_allocated_add(sk, amt); 2911 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2912 bool charged = true; 2913 2914 if (memcg_charge && 2915 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2916 gfp_memcg_charge()))) 2917 goto suppress_allocation; 2918 2919 /* Under limit. */ 2920 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2921 sk_leave_memory_pressure(sk); 2922 return 1; 2923 } 2924 2925 /* Under pressure. */ 2926 if (allocated > sk_prot_mem_limits(sk, 1)) 2927 sk_enter_memory_pressure(sk); 2928 2929 /* Over hard limit. */ 2930 if (allocated > sk_prot_mem_limits(sk, 2)) 2931 goto suppress_allocation; 2932 2933 /* guarantee minimum buffer size under pressure */ 2934 if (kind == SK_MEM_RECV) { 2935 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2936 return 1; 2937 2938 } else { /* SK_MEM_SEND */ 2939 int wmem0 = sk_get_wmem0(sk, prot); 2940 2941 if (sk->sk_type == SOCK_STREAM) { 2942 if (sk->sk_wmem_queued < wmem0) 2943 return 1; 2944 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2945 return 1; 2946 } 2947 } 2948 2949 if (sk_has_memory_pressure(sk)) { 2950 u64 alloc; 2951 2952 if (!sk_under_memory_pressure(sk)) 2953 return 1; 2954 alloc = sk_sockets_allocated_read_positive(sk); 2955 if (sk_prot_mem_limits(sk, 2) > alloc * 2956 sk_mem_pages(sk->sk_wmem_queued + 2957 atomic_read(&sk->sk_rmem_alloc) + 2958 sk->sk_forward_alloc)) 2959 return 1; 2960 } 2961 2962 suppress_allocation: 2963 2964 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2965 sk_stream_moderate_sndbuf(sk); 2966 2967 /* Fail only if socket is _under_ its sndbuf. 2968 * In this case we cannot block, so that we have to fail. 2969 */ 2970 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2971 /* Force charge with __GFP_NOFAIL */ 2972 if (memcg_charge && !charged) { 2973 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2974 gfp_memcg_charge() | __GFP_NOFAIL); 2975 } 2976 return 1; 2977 } 2978 } 2979 2980 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2981 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2982 2983 sk_memory_allocated_sub(sk, amt); 2984 2985 if (memcg_charge && charged) 2986 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2987 2988 return 0; 2989 } 2990 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2991 2992 /** 2993 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2994 * @sk: socket 2995 * @size: memory size to allocate 2996 * @kind: allocation type 2997 * 2998 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2999 * rmem allocation. This function assumes that protocols which have 3000 * memory_pressure use sk_wmem_queued as write buffer accounting. 3001 */ 3002 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3003 { 3004 int ret, amt = sk_mem_pages(size); 3005 3006 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 3007 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3008 if (!ret) 3009 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 3010 return ret; 3011 } 3012 EXPORT_SYMBOL(__sk_mem_schedule); 3013 3014 /** 3015 * __sk_mem_reduce_allocated - reclaim memory_allocated 3016 * @sk: socket 3017 * @amount: number of quanta 3018 * 3019 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3020 */ 3021 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3022 { 3023 sk_memory_allocated_sub(sk, amount); 3024 3025 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3026 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3027 3028 if (sk_under_memory_pressure(sk) && 3029 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3030 sk_leave_memory_pressure(sk); 3031 } 3032 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 3033 3034 /** 3035 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3036 * @sk: socket 3037 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 3038 */ 3039 void __sk_mem_reclaim(struct sock *sk, int amount) 3040 { 3041 amount >>= SK_MEM_QUANTUM_SHIFT; 3042 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 3043 __sk_mem_reduce_allocated(sk, amount); 3044 } 3045 EXPORT_SYMBOL(__sk_mem_reclaim); 3046 3047 int sk_set_peek_off(struct sock *sk, int val) 3048 { 3049 sk->sk_peek_off = val; 3050 return 0; 3051 } 3052 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3053 3054 /* 3055 * Set of default routines for initialising struct proto_ops when 3056 * the protocol does not support a particular function. In certain 3057 * cases where it makes no sense for a protocol to have a "do nothing" 3058 * function, some default processing is provided. 3059 */ 3060 3061 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3062 { 3063 return -EOPNOTSUPP; 3064 } 3065 EXPORT_SYMBOL(sock_no_bind); 3066 3067 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3068 int len, int flags) 3069 { 3070 return -EOPNOTSUPP; 3071 } 3072 EXPORT_SYMBOL(sock_no_connect); 3073 3074 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3075 { 3076 return -EOPNOTSUPP; 3077 } 3078 EXPORT_SYMBOL(sock_no_socketpair); 3079 3080 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3081 bool kern) 3082 { 3083 return -EOPNOTSUPP; 3084 } 3085 EXPORT_SYMBOL(sock_no_accept); 3086 3087 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3088 int peer) 3089 { 3090 return -EOPNOTSUPP; 3091 } 3092 EXPORT_SYMBOL(sock_no_getname); 3093 3094 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3095 { 3096 return -EOPNOTSUPP; 3097 } 3098 EXPORT_SYMBOL(sock_no_ioctl); 3099 3100 int sock_no_listen(struct socket *sock, int backlog) 3101 { 3102 return -EOPNOTSUPP; 3103 } 3104 EXPORT_SYMBOL(sock_no_listen); 3105 3106 int sock_no_shutdown(struct socket *sock, int how) 3107 { 3108 return -EOPNOTSUPP; 3109 } 3110 EXPORT_SYMBOL(sock_no_shutdown); 3111 3112 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3113 { 3114 return -EOPNOTSUPP; 3115 } 3116 EXPORT_SYMBOL(sock_no_sendmsg); 3117 3118 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3119 { 3120 return -EOPNOTSUPP; 3121 } 3122 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3123 3124 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3125 int flags) 3126 { 3127 return -EOPNOTSUPP; 3128 } 3129 EXPORT_SYMBOL(sock_no_recvmsg); 3130 3131 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3132 { 3133 /* Mirror missing mmap method error code */ 3134 return -ENODEV; 3135 } 3136 EXPORT_SYMBOL(sock_no_mmap); 3137 3138 /* 3139 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3140 * various sock-based usage counts. 3141 */ 3142 void __receive_sock(struct file *file) 3143 { 3144 struct socket *sock; 3145 3146 sock = sock_from_file(file); 3147 if (sock) { 3148 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3149 sock_update_classid(&sock->sk->sk_cgrp_data); 3150 } 3151 } 3152 3153 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3154 { 3155 ssize_t res; 3156 struct msghdr msg = {.msg_flags = flags}; 3157 struct kvec iov; 3158 char *kaddr = kmap(page); 3159 iov.iov_base = kaddr + offset; 3160 iov.iov_len = size; 3161 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3162 kunmap(page); 3163 return res; 3164 } 3165 EXPORT_SYMBOL(sock_no_sendpage); 3166 3167 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3168 int offset, size_t size, int flags) 3169 { 3170 ssize_t res; 3171 struct msghdr msg = {.msg_flags = flags}; 3172 struct kvec iov; 3173 char *kaddr = kmap(page); 3174 3175 iov.iov_base = kaddr + offset; 3176 iov.iov_len = size; 3177 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3178 kunmap(page); 3179 return res; 3180 } 3181 EXPORT_SYMBOL(sock_no_sendpage_locked); 3182 3183 /* 3184 * Default Socket Callbacks 3185 */ 3186 3187 static void sock_def_wakeup(struct sock *sk) 3188 { 3189 struct socket_wq *wq; 3190 3191 rcu_read_lock(); 3192 wq = rcu_dereference(sk->sk_wq); 3193 if (skwq_has_sleeper(wq)) 3194 wake_up_interruptible_all(&wq->wait); 3195 rcu_read_unlock(); 3196 } 3197 3198 static void sock_def_error_report(struct sock *sk) 3199 { 3200 struct socket_wq *wq; 3201 3202 rcu_read_lock(); 3203 wq = rcu_dereference(sk->sk_wq); 3204 if (skwq_has_sleeper(wq)) 3205 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3206 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3207 rcu_read_unlock(); 3208 } 3209 3210 void sock_def_readable(struct sock *sk) 3211 { 3212 struct socket_wq *wq; 3213 3214 rcu_read_lock(); 3215 wq = rcu_dereference(sk->sk_wq); 3216 if (skwq_has_sleeper(wq)) 3217 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3218 EPOLLRDNORM | EPOLLRDBAND); 3219 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3220 rcu_read_unlock(); 3221 } 3222 3223 static void sock_def_write_space(struct sock *sk) 3224 { 3225 struct socket_wq *wq; 3226 3227 rcu_read_lock(); 3228 3229 /* Do not wake up a writer until he can make "significant" 3230 * progress. --DaveM 3231 */ 3232 if (sock_writeable(sk)) { 3233 wq = rcu_dereference(sk->sk_wq); 3234 if (skwq_has_sleeper(wq)) 3235 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3236 EPOLLWRNORM | EPOLLWRBAND); 3237 3238 /* Should agree with poll, otherwise some programs break */ 3239 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3240 } 3241 3242 rcu_read_unlock(); 3243 } 3244 3245 /* An optimised version of sock_def_write_space(), should only be called 3246 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3247 * ->sk_wmem_alloc. 3248 */ 3249 static void sock_def_write_space_wfree(struct sock *sk) 3250 { 3251 /* Do not wake up a writer until he can make "significant" 3252 * progress. --DaveM 3253 */ 3254 if (sock_writeable(sk)) { 3255 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3256 3257 /* rely on refcount_sub from sock_wfree() */ 3258 smp_mb__after_atomic(); 3259 if (wq && waitqueue_active(&wq->wait)) 3260 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3261 EPOLLWRNORM | EPOLLWRBAND); 3262 3263 /* Should agree with poll, otherwise some programs break */ 3264 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3265 } 3266 } 3267 3268 static void sock_def_destruct(struct sock *sk) 3269 { 3270 } 3271 3272 void sk_send_sigurg(struct sock *sk) 3273 { 3274 if (sk->sk_socket && sk->sk_socket->file) 3275 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3276 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3277 } 3278 EXPORT_SYMBOL(sk_send_sigurg); 3279 3280 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3281 unsigned long expires) 3282 { 3283 if (!mod_timer(timer, expires)) 3284 sock_hold(sk); 3285 } 3286 EXPORT_SYMBOL(sk_reset_timer); 3287 3288 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3289 { 3290 if (del_timer(timer)) 3291 __sock_put(sk); 3292 } 3293 EXPORT_SYMBOL(sk_stop_timer); 3294 3295 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3296 { 3297 if (del_timer_sync(timer)) 3298 __sock_put(sk); 3299 } 3300 EXPORT_SYMBOL(sk_stop_timer_sync); 3301 3302 void sock_init_data(struct socket *sock, struct sock *sk) 3303 { 3304 sk_init_common(sk); 3305 sk->sk_send_head = NULL; 3306 3307 timer_setup(&sk->sk_timer, NULL, 0); 3308 3309 sk->sk_allocation = GFP_KERNEL; 3310 sk->sk_rcvbuf = sysctl_rmem_default; 3311 sk->sk_sndbuf = sysctl_wmem_default; 3312 sk->sk_state = TCP_CLOSE; 3313 sk_set_socket(sk, sock); 3314 3315 sock_set_flag(sk, SOCK_ZAPPED); 3316 3317 if (sock) { 3318 sk->sk_type = sock->type; 3319 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3320 sock->sk = sk; 3321 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3322 } else { 3323 RCU_INIT_POINTER(sk->sk_wq, NULL); 3324 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3325 } 3326 3327 rwlock_init(&sk->sk_callback_lock); 3328 if (sk->sk_kern_sock) 3329 lockdep_set_class_and_name( 3330 &sk->sk_callback_lock, 3331 af_kern_callback_keys + sk->sk_family, 3332 af_family_kern_clock_key_strings[sk->sk_family]); 3333 else 3334 lockdep_set_class_and_name( 3335 &sk->sk_callback_lock, 3336 af_callback_keys + sk->sk_family, 3337 af_family_clock_key_strings[sk->sk_family]); 3338 3339 sk->sk_state_change = sock_def_wakeup; 3340 sk->sk_data_ready = sock_def_readable; 3341 sk->sk_write_space = sock_def_write_space; 3342 sk->sk_error_report = sock_def_error_report; 3343 sk->sk_destruct = sock_def_destruct; 3344 3345 sk->sk_frag.page = NULL; 3346 sk->sk_frag.offset = 0; 3347 sk->sk_peek_off = -1; 3348 3349 sk->sk_peer_pid = NULL; 3350 sk->sk_peer_cred = NULL; 3351 spin_lock_init(&sk->sk_peer_lock); 3352 3353 sk->sk_write_pending = 0; 3354 sk->sk_rcvlowat = 1; 3355 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3356 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3357 3358 sk->sk_stamp = SK_DEFAULT_STAMP; 3359 #if BITS_PER_LONG==32 3360 seqlock_init(&sk->sk_stamp_seq); 3361 #endif 3362 atomic_set(&sk->sk_zckey, 0); 3363 3364 #ifdef CONFIG_NET_RX_BUSY_POLL 3365 sk->sk_napi_id = 0; 3366 sk->sk_ll_usec = sysctl_net_busy_read; 3367 #endif 3368 3369 sk->sk_max_pacing_rate = ~0UL; 3370 sk->sk_pacing_rate = ~0UL; 3371 WRITE_ONCE(sk->sk_pacing_shift, 10); 3372 sk->sk_incoming_cpu = -1; 3373 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3374 3375 sk_rx_queue_clear(sk); 3376 /* 3377 * Before updating sk_refcnt, we must commit prior changes to memory 3378 * (Documentation/RCU/rculist_nulls.rst for details) 3379 */ 3380 smp_wmb(); 3381 refcount_set(&sk->sk_refcnt, 1); 3382 atomic_set(&sk->sk_drops, 0); 3383 } 3384 EXPORT_SYMBOL(sock_init_data); 3385 3386 void lock_sock_nested(struct sock *sk, int subclass) 3387 { 3388 /* The sk_lock has mutex_lock() semantics here. */ 3389 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3390 3391 might_sleep(); 3392 spin_lock_bh(&sk->sk_lock.slock); 3393 if (sock_owned_by_user_nocheck(sk)) 3394 __lock_sock(sk); 3395 sk->sk_lock.owned = 1; 3396 spin_unlock_bh(&sk->sk_lock.slock); 3397 } 3398 EXPORT_SYMBOL(lock_sock_nested); 3399 3400 void release_sock(struct sock *sk) 3401 { 3402 spin_lock_bh(&sk->sk_lock.slock); 3403 if (sk->sk_backlog.tail) 3404 __release_sock(sk); 3405 3406 /* Warning : release_cb() might need to release sk ownership, 3407 * ie call sock_release_ownership(sk) before us. 3408 */ 3409 if (sk->sk_prot->release_cb) 3410 sk->sk_prot->release_cb(sk); 3411 3412 sock_release_ownership(sk); 3413 if (waitqueue_active(&sk->sk_lock.wq)) 3414 wake_up(&sk->sk_lock.wq); 3415 spin_unlock_bh(&sk->sk_lock.slock); 3416 } 3417 EXPORT_SYMBOL(release_sock); 3418 3419 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3420 { 3421 might_sleep(); 3422 spin_lock_bh(&sk->sk_lock.slock); 3423 3424 if (!sock_owned_by_user_nocheck(sk)) { 3425 /* 3426 * Fast path return with bottom halves disabled and 3427 * sock::sk_lock.slock held. 3428 * 3429 * The 'mutex' is not contended and holding 3430 * sock::sk_lock.slock prevents all other lockers to 3431 * proceed so the corresponding unlock_sock_fast() can 3432 * avoid the slow path of release_sock() completely and 3433 * just release slock. 3434 * 3435 * From a semantical POV this is equivalent to 'acquiring' 3436 * the 'mutex', hence the corresponding lockdep 3437 * mutex_release() has to happen in the fast path of 3438 * unlock_sock_fast(). 3439 */ 3440 return false; 3441 } 3442 3443 __lock_sock(sk); 3444 sk->sk_lock.owned = 1; 3445 __acquire(&sk->sk_lock.slock); 3446 spin_unlock_bh(&sk->sk_lock.slock); 3447 return true; 3448 } 3449 EXPORT_SYMBOL(__lock_sock_fast); 3450 3451 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3452 bool timeval, bool time32) 3453 { 3454 struct sock *sk = sock->sk; 3455 struct timespec64 ts; 3456 3457 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3458 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3459 if (ts.tv_sec == -1) 3460 return -ENOENT; 3461 if (ts.tv_sec == 0) { 3462 ktime_t kt = ktime_get_real(); 3463 sock_write_timestamp(sk, kt); 3464 ts = ktime_to_timespec64(kt); 3465 } 3466 3467 if (timeval) 3468 ts.tv_nsec /= 1000; 3469 3470 #ifdef CONFIG_COMPAT_32BIT_TIME 3471 if (time32) 3472 return put_old_timespec32(&ts, userstamp); 3473 #endif 3474 #ifdef CONFIG_SPARC64 3475 /* beware of padding in sparc64 timeval */ 3476 if (timeval && !in_compat_syscall()) { 3477 struct __kernel_old_timeval __user tv = { 3478 .tv_sec = ts.tv_sec, 3479 .tv_usec = ts.tv_nsec, 3480 }; 3481 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3482 return -EFAULT; 3483 return 0; 3484 } 3485 #endif 3486 return put_timespec64(&ts, userstamp); 3487 } 3488 EXPORT_SYMBOL(sock_gettstamp); 3489 3490 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3491 { 3492 if (!sock_flag(sk, flag)) { 3493 unsigned long previous_flags = sk->sk_flags; 3494 3495 sock_set_flag(sk, flag); 3496 /* 3497 * we just set one of the two flags which require net 3498 * time stamping, but time stamping might have been on 3499 * already because of the other one 3500 */ 3501 if (sock_needs_netstamp(sk) && 3502 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3503 net_enable_timestamp(); 3504 } 3505 } 3506 3507 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3508 int level, int type) 3509 { 3510 struct sock_exterr_skb *serr; 3511 struct sk_buff *skb; 3512 int copied, err; 3513 3514 err = -EAGAIN; 3515 skb = sock_dequeue_err_skb(sk); 3516 if (skb == NULL) 3517 goto out; 3518 3519 copied = skb->len; 3520 if (copied > len) { 3521 msg->msg_flags |= MSG_TRUNC; 3522 copied = len; 3523 } 3524 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3525 if (err) 3526 goto out_free_skb; 3527 3528 sock_recv_timestamp(msg, sk, skb); 3529 3530 serr = SKB_EXT_ERR(skb); 3531 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3532 3533 msg->msg_flags |= MSG_ERRQUEUE; 3534 err = copied; 3535 3536 out_free_skb: 3537 kfree_skb(skb); 3538 out: 3539 return err; 3540 } 3541 EXPORT_SYMBOL(sock_recv_errqueue); 3542 3543 /* 3544 * Get a socket option on an socket. 3545 * 3546 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3547 * asynchronous errors should be reported by getsockopt. We assume 3548 * this means if you specify SO_ERROR (otherwise whats the point of it). 3549 */ 3550 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3551 char __user *optval, int __user *optlen) 3552 { 3553 struct sock *sk = sock->sk; 3554 3555 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3556 } 3557 EXPORT_SYMBOL(sock_common_getsockopt); 3558 3559 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3560 int flags) 3561 { 3562 struct sock *sk = sock->sk; 3563 int addr_len = 0; 3564 int err; 3565 3566 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3567 if (err >= 0) 3568 msg->msg_namelen = addr_len; 3569 return err; 3570 } 3571 EXPORT_SYMBOL(sock_common_recvmsg); 3572 3573 /* 3574 * Set socket options on an inet socket. 3575 */ 3576 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3577 sockptr_t optval, unsigned int optlen) 3578 { 3579 struct sock *sk = sock->sk; 3580 3581 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3582 } 3583 EXPORT_SYMBOL(sock_common_setsockopt); 3584 3585 void sk_common_release(struct sock *sk) 3586 { 3587 if (sk->sk_prot->destroy) 3588 sk->sk_prot->destroy(sk); 3589 3590 /* 3591 * Observation: when sk_common_release is called, processes have 3592 * no access to socket. But net still has. 3593 * Step one, detach it from networking: 3594 * 3595 * A. Remove from hash tables. 3596 */ 3597 3598 sk->sk_prot->unhash(sk); 3599 3600 /* 3601 * In this point socket cannot receive new packets, but it is possible 3602 * that some packets are in flight because some CPU runs receiver and 3603 * did hash table lookup before we unhashed socket. They will achieve 3604 * receive queue and will be purged by socket destructor. 3605 * 3606 * Also we still have packets pending on receive queue and probably, 3607 * our own packets waiting in device queues. sock_destroy will drain 3608 * receive queue, but transmitted packets will delay socket destruction 3609 * until the last reference will be released. 3610 */ 3611 3612 sock_orphan(sk); 3613 3614 xfrm_sk_free_policy(sk); 3615 3616 sk_refcnt_debug_release(sk); 3617 3618 sock_put(sk); 3619 } 3620 EXPORT_SYMBOL(sk_common_release); 3621 3622 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3623 { 3624 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3625 3626 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3627 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3628 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3629 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3630 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3631 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3632 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3633 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3634 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3635 } 3636 3637 #ifdef CONFIG_PROC_FS 3638 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3639 3640 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3641 { 3642 int cpu, idx = prot->inuse_idx; 3643 int res = 0; 3644 3645 for_each_possible_cpu(cpu) 3646 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3647 3648 return res >= 0 ? res : 0; 3649 } 3650 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3651 3652 int sock_inuse_get(struct net *net) 3653 { 3654 int cpu, res = 0; 3655 3656 for_each_possible_cpu(cpu) 3657 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3658 3659 return res; 3660 } 3661 3662 EXPORT_SYMBOL_GPL(sock_inuse_get); 3663 3664 static int __net_init sock_inuse_init_net(struct net *net) 3665 { 3666 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3667 if (net->core.prot_inuse == NULL) 3668 return -ENOMEM; 3669 return 0; 3670 } 3671 3672 static void __net_exit sock_inuse_exit_net(struct net *net) 3673 { 3674 free_percpu(net->core.prot_inuse); 3675 } 3676 3677 static struct pernet_operations net_inuse_ops = { 3678 .init = sock_inuse_init_net, 3679 .exit = sock_inuse_exit_net, 3680 }; 3681 3682 static __init int net_inuse_init(void) 3683 { 3684 if (register_pernet_subsys(&net_inuse_ops)) 3685 panic("Cannot initialize net inuse counters"); 3686 3687 return 0; 3688 } 3689 3690 core_initcall(net_inuse_init); 3691 3692 static int assign_proto_idx(struct proto *prot) 3693 { 3694 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3695 3696 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3697 pr_err("PROTO_INUSE_NR exhausted\n"); 3698 return -ENOSPC; 3699 } 3700 3701 set_bit(prot->inuse_idx, proto_inuse_idx); 3702 return 0; 3703 } 3704 3705 static void release_proto_idx(struct proto *prot) 3706 { 3707 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3708 clear_bit(prot->inuse_idx, proto_inuse_idx); 3709 } 3710 #else 3711 static inline int assign_proto_idx(struct proto *prot) 3712 { 3713 return 0; 3714 } 3715 3716 static inline void release_proto_idx(struct proto *prot) 3717 { 3718 } 3719 3720 #endif 3721 3722 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3723 { 3724 if (!twsk_prot) 3725 return; 3726 kfree(twsk_prot->twsk_slab_name); 3727 twsk_prot->twsk_slab_name = NULL; 3728 kmem_cache_destroy(twsk_prot->twsk_slab); 3729 twsk_prot->twsk_slab = NULL; 3730 } 3731 3732 static int tw_prot_init(const struct proto *prot) 3733 { 3734 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3735 3736 if (!twsk_prot) 3737 return 0; 3738 3739 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3740 prot->name); 3741 if (!twsk_prot->twsk_slab_name) 3742 return -ENOMEM; 3743 3744 twsk_prot->twsk_slab = 3745 kmem_cache_create(twsk_prot->twsk_slab_name, 3746 twsk_prot->twsk_obj_size, 0, 3747 SLAB_ACCOUNT | prot->slab_flags, 3748 NULL); 3749 if (!twsk_prot->twsk_slab) { 3750 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3751 prot->name); 3752 return -ENOMEM; 3753 } 3754 3755 return 0; 3756 } 3757 3758 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3759 { 3760 if (!rsk_prot) 3761 return; 3762 kfree(rsk_prot->slab_name); 3763 rsk_prot->slab_name = NULL; 3764 kmem_cache_destroy(rsk_prot->slab); 3765 rsk_prot->slab = NULL; 3766 } 3767 3768 static int req_prot_init(const struct proto *prot) 3769 { 3770 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3771 3772 if (!rsk_prot) 3773 return 0; 3774 3775 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3776 prot->name); 3777 if (!rsk_prot->slab_name) 3778 return -ENOMEM; 3779 3780 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3781 rsk_prot->obj_size, 0, 3782 SLAB_ACCOUNT | prot->slab_flags, 3783 NULL); 3784 3785 if (!rsk_prot->slab) { 3786 pr_crit("%s: Can't create request sock SLAB cache!\n", 3787 prot->name); 3788 return -ENOMEM; 3789 } 3790 return 0; 3791 } 3792 3793 int proto_register(struct proto *prot, int alloc_slab) 3794 { 3795 int ret = -ENOBUFS; 3796 3797 if (prot->memory_allocated && !prot->sysctl_mem) { 3798 pr_err("%s: missing sysctl_mem\n", prot->name); 3799 return -EINVAL; 3800 } 3801 if (alloc_slab) { 3802 prot->slab = kmem_cache_create_usercopy(prot->name, 3803 prot->obj_size, 0, 3804 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3805 prot->slab_flags, 3806 prot->useroffset, prot->usersize, 3807 NULL); 3808 3809 if (prot->slab == NULL) { 3810 pr_crit("%s: Can't create sock SLAB cache!\n", 3811 prot->name); 3812 goto out; 3813 } 3814 3815 if (req_prot_init(prot)) 3816 goto out_free_request_sock_slab; 3817 3818 if (tw_prot_init(prot)) 3819 goto out_free_timewait_sock_slab; 3820 } 3821 3822 mutex_lock(&proto_list_mutex); 3823 ret = assign_proto_idx(prot); 3824 if (ret) { 3825 mutex_unlock(&proto_list_mutex); 3826 goto out_free_timewait_sock_slab; 3827 } 3828 list_add(&prot->node, &proto_list); 3829 mutex_unlock(&proto_list_mutex); 3830 return ret; 3831 3832 out_free_timewait_sock_slab: 3833 if (alloc_slab) 3834 tw_prot_cleanup(prot->twsk_prot); 3835 out_free_request_sock_slab: 3836 if (alloc_slab) { 3837 req_prot_cleanup(prot->rsk_prot); 3838 3839 kmem_cache_destroy(prot->slab); 3840 prot->slab = NULL; 3841 } 3842 out: 3843 return ret; 3844 } 3845 EXPORT_SYMBOL(proto_register); 3846 3847 void proto_unregister(struct proto *prot) 3848 { 3849 mutex_lock(&proto_list_mutex); 3850 release_proto_idx(prot); 3851 list_del(&prot->node); 3852 mutex_unlock(&proto_list_mutex); 3853 3854 kmem_cache_destroy(prot->slab); 3855 prot->slab = NULL; 3856 3857 req_prot_cleanup(prot->rsk_prot); 3858 tw_prot_cleanup(prot->twsk_prot); 3859 } 3860 EXPORT_SYMBOL(proto_unregister); 3861 3862 int sock_load_diag_module(int family, int protocol) 3863 { 3864 if (!protocol) { 3865 if (!sock_is_registered(family)) 3866 return -ENOENT; 3867 3868 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3869 NETLINK_SOCK_DIAG, family); 3870 } 3871 3872 #ifdef CONFIG_INET 3873 if (family == AF_INET && 3874 protocol != IPPROTO_RAW && 3875 protocol < MAX_INET_PROTOS && 3876 !rcu_access_pointer(inet_protos[protocol])) 3877 return -ENOENT; 3878 #endif 3879 3880 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3881 NETLINK_SOCK_DIAG, family, protocol); 3882 } 3883 EXPORT_SYMBOL(sock_load_diag_module); 3884 3885 #ifdef CONFIG_PROC_FS 3886 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3887 __acquires(proto_list_mutex) 3888 { 3889 mutex_lock(&proto_list_mutex); 3890 return seq_list_start_head(&proto_list, *pos); 3891 } 3892 3893 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3894 { 3895 return seq_list_next(v, &proto_list, pos); 3896 } 3897 3898 static void proto_seq_stop(struct seq_file *seq, void *v) 3899 __releases(proto_list_mutex) 3900 { 3901 mutex_unlock(&proto_list_mutex); 3902 } 3903 3904 static char proto_method_implemented(const void *method) 3905 { 3906 return method == NULL ? 'n' : 'y'; 3907 } 3908 static long sock_prot_memory_allocated(struct proto *proto) 3909 { 3910 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3911 } 3912 3913 static const char *sock_prot_memory_pressure(struct proto *proto) 3914 { 3915 return proto->memory_pressure != NULL ? 3916 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3917 } 3918 3919 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3920 { 3921 3922 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3923 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3924 proto->name, 3925 proto->obj_size, 3926 sock_prot_inuse_get(seq_file_net(seq), proto), 3927 sock_prot_memory_allocated(proto), 3928 sock_prot_memory_pressure(proto), 3929 proto->max_header, 3930 proto->slab == NULL ? "no" : "yes", 3931 module_name(proto->owner), 3932 proto_method_implemented(proto->close), 3933 proto_method_implemented(proto->connect), 3934 proto_method_implemented(proto->disconnect), 3935 proto_method_implemented(proto->accept), 3936 proto_method_implemented(proto->ioctl), 3937 proto_method_implemented(proto->init), 3938 proto_method_implemented(proto->destroy), 3939 proto_method_implemented(proto->shutdown), 3940 proto_method_implemented(proto->setsockopt), 3941 proto_method_implemented(proto->getsockopt), 3942 proto_method_implemented(proto->sendmsg), 3943 proto_method_implemented(proto->recvmsg), 3944 proto_method_implemented(proto->sendpage), 3945 proto_method_implemented(proto->bind), 3946 proto_method_implemented(proto->backlog_rcv), 3947 proto_method_implemented(proto->hash), 3948 proto_method_implemented(proto->unhash), 3949 proto_method_implemented(proto->get_port), 3950 proto_method_implemented(proto->enter_memory_pressure)); 3951 } 3952 3953 static int proto_seq_show(struct seq_file *seq, void *v) 3954 { 3955 if (v == &proto_list) 3956 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3957 "protocol", 3958 "size", 3959 "sockets", 3960 "memory", 3961 "press", 3962 "maxhdr", 3963 "slab", 3964 "module", 3965 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3966 else 3967 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3968 return 0; 3969 } 3970 3971 static const struct seq_operations proto_seq_ops = { 3972 .start = proto_seq_start, 3973 .next = proto_seq_next, 3974 .stop = proto_seq_stop, 3975 .show = proto_seq_show, 3976 }; 3977 3978 static __net_init int proto_init_net(struct net *net) 3979 { 3980 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3981 sizeof(struct seq_net_private))) 3982 return -ENOMEM; 3983 3984 return 0; 3985 } 3986 3987 static __net_exit void proto_exit_net(struct net *net) 3988 { 3989 remove_proc_entry("protocols", net->proc_net); 3990 } 3991 3992 3993 static __net_initdata struct pernet_operations proto_net_ops = { 3994 .init = proto_init_net, 3995 .exit = proto_exit_net, 3996 }; 3997 3998 static int __init proto_init(void) 3999 { 4000 return register_pernet_subsys(&proto_net_ops); 4001 } 4002 4003 subsys_initcall(proto_init); 4004 4005 #endif /* PROC_FS */ 4006 4007 #ifdef CONFIG_NET_RX_BUSY_POLL 4008 bool sk_busy_loop_end(void *p, unsigned long start_time) 4009 { 4010 struct sock *sk = p; 4011 4012 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4013 sk_busy_loop_timeout(sk, start_time); 4014 } 4015 EXPORT_SYMBOL(sk_busy_loop_end); 4016 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4017 4018 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4019 { 4020 if (!sk->sk_prot->bind_add) 4021 return -EOPNOTSUPP; 4022 return sk->sk_prot->bind_add(sk, addr, addr_len); 4023 } 4024 EXPORT_SYMBOL(sock_bind_add); 4025