xref: /linux/net/core/sock.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 
128 #include <linux/filter.h>
129 
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133 
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190 
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196 
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS		256
203 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206 
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212 
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215 
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 	struct timeval tv;
219 
220 	if (optlen < sizeof(tv))
221 		return -EINVAL;
222 	if (copy_from_user(&tv, optval, sizeof(tv)))
223 		return -EFAULT;
224 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 		return -EDOM;
226 
227 	if (tv.tv_sec < 0) {
228 		static int warned __read_mostly;
229 
230 		*timeo_p = 0;
231 		if (warned < 10 && net_ratelimit())
232 			warned++;
233 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 			       "tries to set negative timeout\n",
235 				current->comm, task_pid_nr(current));
236 		return 0;
237 	}
238 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 		return 0;
241 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 	return 0;
244 }
245 
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 	static int warned;
249 	static char warncomm[TASK_COMM_LEN];
250 	if (strcmp(warncomm, current->comm) && warned < 5) {
251 		strcpy(warncomm,  current->comm);
252 		printk(KERN_WARNING "process `%s' is using obsolete "
253 		       "%s SO_BSDCOMPAT\n", warncomm, name);
254 		warned++;
255 	}
256 }
257 
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 		sock_reset_flag(sk, SOCK_TIMESTAMP);
262 		net_disable_timestamp();
263 	}
264 }
265 
266 
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 	int err = 0;
270 	int skb_len;
271 
272 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 	   number of warnings when compiling with -W --ANK
274 	 */
275 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 	    (unsigned)sk->sk_rcvbuf) {
277 		err = -ENOMEM;
278 		goto out;
279 	}
280 
281 	err = sk_filter(sk, skb);
282 	if (err)
283 		goto out;
284 
285 	skb->dev = NULL;
286 	skb_set_owner_r(skb, sk);
287 
288 	/* Cache the SKB length before we tack it onto the receive
289 	 * queue.  Once it is added it no longer belongs to us and
290 	 * may be freed by other threads of control pulling packets
291 	 * from the queue.
292 	 */
293 	skb_len = skb->len;
294 
295 	skb_queue_tail(&sk->sk_receive_queue, skb);
296 
297 	if (!sock_flag(sk, SOCK_DEAD))
298 		sk->sk_data_ready(sk, skb_len);
299 out:
300 	return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303 
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306 	int rc = NET_RX_SUCCESS;
307 
308 	if (sk_filter(sk, skb))
309 		goto discard_and_relse;
310 
311 	skb->dev = NULL;
312 
313 	if (nested)
314 		bh_lock_sock_nested(sk);
315 	else
316 		bh_lock_sock(sk);
317 	if (!sock_owned_by_user(sk)) {
318 		/*
319 		 * trylock + unlock semantics:
320 		 */
321 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322 
323 		rc = sk->sk_backlog_rcv(sk, skb);
324 
325 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326 	} else
327 		sk_add_backlog(sk, skb);
328 	bh_unlock_sock(sk);
329 out:
330 	sock_put(sk);
331 	return rc;
332 discard_and_relse:
333 	kfree_skb(skb);
334 	goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337 
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340 	struct dst_entry *dst = sk->sk_dst_cache;
341 
342 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343 		sk->sk_dst_cache = NULL;
344 		dst_release(dst);
345 		return NULL;
346 	}
347 
348 	return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351 
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354 	struct dst_entry *dst = sk_dst_get(sk);
355 
356 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357 		sk_dst_reset(sk);
358 		dst_release(dst);
359 		return NULL;
360 	}
361 
362 	return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365 
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368 	int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370 	struct net *net = sk->sk_net;
371 	char devname[IFNAMSIZ];
372 	int index;
373 
374 	/* Sorry... */
375 	ret = -EPERM;
376 	if (!capable(CAP_NET_RAW))
377 		goto out;
378 
379 	ret = -EINVAL;
380 	if (optlen < 0)
381 		goto out;
382 
383 	/* Bind this socket to a particular device like "eth0",
384 	 * as specified in the passed interface name. If the
385 	 * name is "" or the option length is zero the socket
386 	 * is not bound.
387 	 */
388 	if (optlen > IFNAMSIZ - 1)
389 		optlen = IFNAMSIZ - 1;
390 	memset(devname, 0, sizeof(devname));
391 
392 	ret = -EFAULT;
393 	if (copy_from_user(devname, optval, optlen))
394 		goto out;
395 
396 	if (devname[0] == '\0') {
397 		index = 0;
398 	} else {
399 		struct net_device *dev = dev_get_by_name(net, devname);
400 
401 		ret = -ENODEV;
402 		if (!dev)
403 			goto out;
404 
405 		index = dev->ifindex;
406 		dev_put(dev);
407 	}
408 
409 	lock_sock(sk);
410 	sk->sk_bound_dev_if = index;
411 	sk_dst_reset(sk);
412 	release_sock(sk);
413 
414 	ret = 0;
415 
416 out:
417 #endif
418 
419 	return ret;
420 }
421 
422 /*
423  *	This is meant for all protocols to use and covers goings on
424  *	at the socket level. Everything here is generic.
425  */
426 
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428 		    char __user *optval, int optlen)
429 {
430 	struct sock *sk=sock->sk;
431 	int val;
432 	int valbool;
433 	struct linger ling;
434 	int ret = 0;
435 
436 	/*
437 	 *	Options without arguments
438 	 */
439 
440 #ifdef SO_DONTLINGER		/* Compatibility item... */
441 	if (optname == SO_DONTLINGER) {
442 		lock_sock(sk);
443 		sock_reset_flag(sk, SOCK_LINGER);
444 		release_sock(sk);
445 		return 0;
446 	}
447 #endif
448 
449 	if (optname == SO_BINDTODEVICE)
450 		return sock_bindtodevice(sk, optval, optlen);
451 
452 	if (optlen < sizeof(int))
453 		return -EINVAL;
454 
455 	if (get_user(val, (int __user *)optval))
456 		return -EFAULT;
457 
458 	valbool = val?1:0;
459 
460 	lock_sock(sk);
461 
462 	switch(optname) {
463 	case SO_DEBUG:
464 		if (val && !capable(CAP_NET_ADMIN)) {
465 			ret = -EACCES;
466 		}
467 		else if (valbool)
468 			sock_set_flag(sk, SOCK_DBG);
469 		else
470 			sock_reset_flag(sk, SOCK_DBG);
471 		break;
472 	case SO_REUSEADDR:
473 		sk->sk_reuse = valbool;
474 		break;
475 	case SO_TYPE:
476 	case SO_ERROR:
477 		ret = -ENOPROTOOPT;
478 		break;
479 	case SO_DONTROUTE:
480 		if (valbool)
481 			sock_set_flag(sk, SOCK_LOCALROUTE);
482 		else
483 			sock_reset_flag(sk, SOCK_LOCALROUTE);
484 		break;
485 	case SO_BROADCAST:
486 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487 		break;
488 	case SO_SNDBUF:
489 		/* Don't error on this BSD doesn't and if you think
490 		   about it this is right. Otherwise apps have to
491 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492 		   are treated in BSD as hints */
493 
494 		if (val > sysctl_wmem_max)
495 			val = sysctl_wmem_max;
496 set_sndbuf:
497 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498 		if ((val * 2) < SOCK_MIN_SNDBUF)
499 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500 		else
501 			sk->sk_sndbuf = val * 2;
502 
503 		/*
504 		 *	Wake up sending tasks if we
505 		 *	upped the value.
506 		 */
507 		sk->sk_write_space(sk);
508 		break;
509 
510 	case SO_SNDBUFFORCE:
511 		if (!capable(CAP_NET_ADMIN)) {
512 			ret = -EPERM;
513 			break;
514 		}
515 		goto set_sndbuf;
516 
517 	case SO_RCVBUF:
518 		/* Don't error on this BSD doesn't and if you think
519 		   about it this is right. Otherwise apps have to
520 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521 		   are treated in BSD as hints */
522 
523 		if (val > sysctl_rmem_max)
524 			val = sysctl_rmem_max;
525 set_rcvbuf:
526 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527 		/*
528 		 * We double it on the way in to account for
529 		 * "struct sk_buff" etc. overhead.   Applications
530 		 * assume that the SO_RCVBUF setting they make will
531 		 * allow that much actual data to be received on that
532 		 * socket.
533 		 *
534 		 * Applications are unaware that "struct sk_buff" and
535 		 * other overheads allocate from the receive buffer
536 		 * during socket buffer allocation.
537 		 *
538 		 * And after considering the possible alternatives,
539 		 * returning the value we actually used in getsockopt
540 		 * is the most desirable behavior.
541 		 */
542 		if ((val * 2) < SOCK_MIN_RCVBUF)
543 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544 		else
545 			sk->sk_rcvbuf = val * 2;
546 		break;
547 
548 	case SO_RCVBUFFORCE:
549 		if (!capable(CAP_NET_ADMIN)) {
550 			ret = -EPERM;
551 			break;
552 		}
553 		goto set_rcvbuf;
554 
555 	case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557 		if (sk->sk_protocol == IPPROTO_TCP)
558 			tcp_set_keepalive(sk, valbool);
559 #endif
560 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561 		break;
562 
563 	case SO_OOBINLINE:
564 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565 		break;
566 
567 	case SO_NO_CHECK:
568 		sk->sk_no_check = valbool;
569 		break;
570 
571 	case SO_PRIORITY:
572 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573 			sk->sk_priority = val;
574 		else
575 			ret = -EPERM;
576 		break;
577 
578 	case SO_LINGER:
579 		if (optlen < sizeof(ling)) {
580 			ret = -EINVAL;	/* 1003.1g */
581 			break;
582 		}
583 		if (copy_from_user(&ling,optval,sizeof(ling))) {
584 			ret = -EFAULT;
585 			break;
586 		}
587 		if (!ling.l_onoff)
588 			sock_reset_flag(sk, SOCK_LINGER);
589 		else {
590 #if (BITS_PER_LONG == 32)
591 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593 			else
594 #endif
595 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596 			sock_set_flag(sk, SOCK_LINGER);
597 		}
598 		break;
599 
600 	case SO_BSDCOMPAT:
601 		sock_warn_obsolete_bsdism("setsockopt");
602 		break;
603 
604 	case SO_PASSCRED:
605 		if (valbool)
606 			set_bit(SOCK_PASSCRED, &sock->flags);
607 		else
608 			clear_bit(SOCK_PASSCRED, &sock->flags);
609 		break;
610 
611 	case SO_TIMESTAMP:
612 	case SO_TIMESTAMPNS:
613 		if (valbool)  {
614 			if (optname == SO_TIMESTAMP)
615 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616 			else
617 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618 			sock_set_flag(sk, SOCK_RCVTSTAMP);
619 			sock_enable_timestamp(sk);
620 		} else {
621 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 		}
624 		break;
625 
626 	case SO_RCVLOWAT:
627 		if (val < 0)
628 			val = INT_MAX;
629 		sk->sk_rcvlowat = val ? : 1;
630 		break;
631 
632 	case SO_RCVTIMEO:
633 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634 		break;
635 
636 	case SO_SNDTIMEO:
637 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638 		break;
639 
640 	case SO_ATTACH_FILTER:
641 		ret = -EINVAL;
642 		if (optlen == sizeof(struct sock_fprog)) {
643 			struct sock_fprog fprog;
644 
645 			ret = -EFAULT;
646 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647 				break;
648 
649 			ret = sk_attach_filter(&fprog, sk);
650 		}
651 		break;
652 
653 	case SO_DETACH_FILTER:
654 		ret = sk_detach_filter(sk);
655 		break;
656 
657 	case SO_PASSSEC:
658 		if (valbool)
659 			set_bit(SOCK_PASSSEC, &sock->flags);
660 		else
661 			clear_bit(SOCK_PASSSEC, &sock->flags);
662 		break;
663 
664 		/* We implement the SO_SNDLOWAT etc to
665 		   not be settable (1003.1g 5.3) */
666 	default:
667 		ret = -ENOPROTOOPT;
668 		break;
669 	}
670 	release_sock(sk);
671 	return ret;
672 }
673 
674 
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676 		    char __user *optval, int __user *optlen)
677 {
678 	struct sock *sk = sock->sk;
679 
680 	union {
681 		int val;
682 		struct linger ling;
683 		struct timeval tm;
684 	} v;
685 
686 	unsigned int lv = sizeof(int);
687 	int len;
688 
689 	if (get_user(len, optlen))
690 		return -EFAULT;
691 	if (len < 0)
692 		return -EINVAL;
693 
694 	switch(optname) {
695 	case SO_DEBUG:
696 		v.val = sock_flag(sk, SOCK_DBG);
697 		break;
698 
699 	case SO_DONTROUTE:
700 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
701 		break;
702 
703 	case SO_BROADCAST:
704 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
705 		break;
706 
707 	case SO_SNDBUF:
708 		v.val = sk->sk_sndbuf;
709 		break;
710 
711 	case SO_RCVBUF:
712 		v.val = sk->sk_rcvbuf;
713 		break;
714 
715 	case SO_REUSEADDR:
716 		v.val = sk->sk_reuse;
717 		break;
718 
719 	case SO_KEEPALIVE:
720 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721 		break;
722 
723 	case SO_TYPE:
724 		v.val = sk->sk_type;
725 		break;
726 
727 	case SO_ERROR:
728 		v.val = -sock_error(sk);
729 		if (v.val==0)
730 			v.val = xchg(&sk->sk_err_soft, 0);
731 		break;
732 
733 	case SO_OOBINLINE:
734 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
735 		break;
736 
737 	case SO_NO_CHECK:
738 		v.val = sk->sk_no_check;
739 		break;
740 
741 	case SO_PRIORITY:
742 		v.val = sk->sk_priority;
743 		break;
744 
745 	case SO_LINGER:
746 		lv		= sizeof(v.ling);
747 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
748 		v.ling.l_linger	= sk->sk_lingertime / HZ;
749 		break;
750 
751 	case SO_BSDCOMPAT:
752 		sock_warn_obsolete_bsdism("getsockopt");
753 		break;
754 
755 	case SO_TIMESTAMP:
756 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
758 		break;
759 
760 	case SO_TIMESTAMPNS:
761 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762 		break;
763 
764 	case SO_RCVTIMEO:
765 		lv=sizeof(struct timeval);
766 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767 			v.tm.tv_sec = 0;
768 			v.tm.tv_usec = 0;
769 		} else {
770 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772 		}
773 		break;
774 
775 	case SO_SNDTIMEO:
776 		lv=sizeof(struct timeval);
777 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778 			v.tm.tv_sec = 0;
779 			v.tm.tv_usec = 0;
780 		} else {
781 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783 		}
784 		break;
785 
786 	case SO_RCVLOWAT:
787 		v.val = sk->sk_rcvlowat;
788 		break;
789 
790 	case SO_SNDLOWAT:
791 		v.val=1;
792 		break;
793 
794 	case SO_PASSCRED:
795 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796 		break;
797 
798 	case SO_PEERCRED:
799 		if (len > sizeof(sk->sk_peercred))
800 			len = sizeof(sk->sk_peercred);
801 		if (copy_to_user(optval, &sk->sk_peercred, len))
802 			return -EFAULT;
803 		goto lenout;
804 
805 	case SO_PEERNAME:
806 	{
807 		char address[128];
808 
809 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810 			return -ENOTCONN;
811 		if (lv < len)
812 			return -EINVAL;
813 		if (copy_to_user(optval, address, len))
814 			return -EFAULT;
815 		goto lenout;
816 	}
817 
818 	/* Dubious BSD thing... Probably nobody even uses it, but
819 	 * the UNIX standard wants it for whatever reason... -DaveM
820 	 */
821 	case SO_ACCEPTCONN:
822 		v.val = sk->sk_state == TCP_LISTEN;
823 		break;
824 
825 	case SO_PASSSEC:
826 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827 		break;
828 
829 	case SO_PEERSEC:
830 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
831 
832 	default:
833 		return -ENOPROTOOPT;
834 	}
835 
836 	if (len > lv)
837 		len = lv;
838 	if (copy_to_user(optval, &v, len))
839 		return -EFAULT;
840 lenout:
841 	if (put_user(len, optlen))
842 		return -EFAULT;
843 	return 0;
844 }
845 
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853 	sock_lock_init_class_and_name(sk,
854 			af_family_slock_key_strings[sk->sk_family],
855 			af_family_slock_keys + sk->sk_family,
856 			af_family_key_strings[sk->sk_family],
857 			af_family_keys + sk->sk_family);
858 }
859 
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863 	void *sptr = nsk->sk_security;
864 #endif
865 
866 	memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868 	nsk->sk_security = sptr;
869 	security_sk_clone(osk, nsk);
870 #endif
871 }
872 
873 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
874 		int family)
875 {
876 	struct sock *sk;
877 	struct kmem_cache *slab;
878 
879 	slab = prot->slab;
880 	if (slab != NULL)
881 		sk = kmem_cache_alloc(slab, priority);
882 	else
883 		sk = kmalloc(prot->obj_size, priority);
884 
885 	if (sk != NULL) {
886 		if (security_sk_alloc(sk, family, priority))
887 			goto out_free;
888 
889 		if (!try_module_get(prot->owner))
890 			goto out_free_sec;
891 	}
892 
893 	return sk;
894 
895 out_free_sec:
896 	security_sk_free(sk);
897 out_free:
898 	if (slab != NULL)
899 		kmem_cache_free(slab, sk);
900 	else
901 		kfree(sk);
902 	return NULL;
903 }
904 
905 static void sk_prot_free(struct proto *prot, struct sock *sk)
906 {
907 	struct kmem_cache *slab;
908 	struct module *owner;
909 
910 	owner = prot->owner;
911 	slab = prot->slab;
912 
913 	security_sk_free(sk);
914 	if (slab != NULL)
915 		kmem_cache_free(slab, sk);
916 	else
917 		kfree(sk);
918 	module_put(owner);
919 }
920 
921 /**
922  *	sk_alloc - All socket objects are allocated here
923  *	@net: the applicable net namespace
924  *	@family: protocol family
925  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
926  *	@prot: struct proto associated with this new sock instance
927  *	@zero_it: if we should zero the newly allocated sock
928  */
929 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
930 		      struct proto *prot)
931 {
932 	struct sock *sk;
933 
934 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
935 	if (sk) {
936 		sk->sk_family = family;
937 		/*
938 		 * See comment in struct sock definition to understand
939 		 * why we need sk_prot_creator -acme
940 		 */
941 		sk->sk_prot = sk->sk_prot_creator = prot;
942 		sock_lock_init(sk);
943 		sk->sk_net = get_net(net);
944 	}
945 
946 	return sk;
947 }
948 
949 void sk_free(struct sock *sk)
950 {
951 	struct sk_filter *filter;
952 
953 	if (sk->sk_destruct)
954 		sk->sk_destruct(sk);
955 
956 	filter = rcu_dereference(sk->sk_filter);
957 	if (filter) {
958 		sk_filter_uncharge(sk, filter);
959 		rcu_assign_pointer(sk->sk_filter, NULL);
960 	}
961 
962 	sock_disable_timestamp(sk);
963 
964 	if (atomic_read(&sk->sk_omem_alloc))
965 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
966 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
967 
968 	put_net(sk->sk_net);
969 	sk_prot_free(sk->sk_prot_creator, sk);
970 }
971 
972 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
973 {
974 	struct sock *newsk;
975 
976 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
977 	if (newsk != NULL) {
978 		struct sk_filter *filter;
979 
980 		sock_copy(newsk, sk);
981 
982 		/* SANITY */
983 		get_net(newsk->sk_net);
984 		sk_node_init(&newsk->sk_node);
985 		sock_lock_init(newsk);
986 		bh_lock_sock(newsk);
987 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
988 
989 		atomic_set(&newsk->sk_rmem_alloc, 0);
990 		atomic_set(&newsk->sk_wmem_alloc, 0);
991 		atomic_set(&newsk->sk_omem_alloc, 0);
992 		skb_queue_head_init(&newsk->sk_receive_queue);
993 		skb_queue_head_init(&newsk->sk_write_queue);
994 #ifdef CONFIG_NET_DMA
995 		skb_queue_head_init(&newsk->sk_async_wait_queue);
996 #endif
997 
998 		rwlock_init(&newsk->sk_dst_lock);
999 		rwlock_init(&newsk->sk_callback_lock);
1000 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1001 				af_callback_keys + newsk->sk_family,
1002 				af_family_clock_key_strings[newsk->sk_family]);
1003 
1004 		newsk->sk_dst_cache	= NULL;
1005 		newsk->sk_wmem_queued	= 0;
1006 		newsk->sk_forward_alloc = 0;
1007 		newsk->sk_send_head	= NULL;
1008 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1009 
1010 		sock_reset_flag(newsk, SOCK_DONE);
1011 		skb_queue_head_init(&newsk->sk_error_queue);
1012 
1013 		filter = newsk->sk_filter;
1014 		if (filter != NULL)
1015 			sk_filter_charge(newsk, filter);
1016 
1017 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1018 			/* It is still raw copy of parent, so invalidate
1019 			 * destructor and make plain sk_free() */
1020 			newsk->sk_destruct = NULL;
1021 			sk_free(newsk);
1022 			newsk = NULL;
1023 			goto out;
1024 		}
1025 
1026 		newsk->sk_err	   = 0;
1027 		newsk->sk_priority = 0;
1028 		atomic_set(&newsk->sk_refcnt, 2);
1029 
1030 		/*
1031 		 * Increment the counter in the same struct proto as the master
1032 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1033 		 * is the same as sk->sk_prot->socks, as this field was copied
1034 		 * with memcpy).
1035 		 *
1036 		 * This _changes_ the previous behaviour, where
1037 		 * tcp_create_openreq_child always was incrementing the
1038 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1039 		 * to be taken into account in all callers. -acme
1040 		 */
1041 		sk_refcnt_debug_inc(newsk);
1042 		newsk->sk_socket = NULL;
1043 		newsk->sk_sleep	 = NULL;
1044 
1045 		if (newsk->sk_prot->sockets_allocated)
1046 			atomic_inc(newsk->sk_prot->sockets_allocated);
1047 	}
1048 out:
1049 	return newsk;
1050 }
1051 
1052 EXPORT_SYMBOL_GPL(sk_clone);
1053 
1054 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1055 {
1056 	__sk_dst_set(sk, dst);
1057 	sk->sk_route_caps = dst->dev->features;
1058 	if (sk->sk_route_caps & NETIF_F_GSO)
1059 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1060 	if (sk_can_gso(sk)) {
1061 		if (dst->header_len)
1062 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1063 		else
1064 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1065 	}
1066 }
1067 EXPORT_SYMBOL_GPL(sk_setup_caps);
1068 
1069 void __init sk_init(void)
1070 {
1071 	if (num_physpages <= 4096) {
1072 		sysctl_wmem_max = 32767;
1073 		sysctl_rmem_max = 32767;
1074 		sysctl_wmem_default = 32767;
1075 		sysctl_rmem_default = 32767;
1076 	} else if (num_physpages >= 131072) {
1077 		sysctl_wmem_max = 131071;
1078 		sysctl_rmem_max = 131071;
1079 	}
1080 }
1081 
1082 /*
1083  *	Simple resource managers for sockets.
1084  */
1085 
1086 
1087 /*
1088  * Write buffer destructor automatically called from kfree_skb.
1089  */
1090 void sock_wfree(struct sk_buff *skb)
1091 {
1092 	struct sock *sk = skb->sk;
1093 
1094 	/* In case it might be waiting for more memory. */
1095 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1096 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1097 		sk->sk_write_space(sk);
1098 	sock_put(sk);
1099 }
1100 
1101 /*
1102  * Read buffer destructor automatically called from kfree_skb.
1103  */
1104 void sock_rfree(struct sk_buff *skb)
1105 {
1106 	struct sock *sk = skb->sk;
1107 
1108 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1109 }
1110 
1111 
1112 int sock_i_uid(struct sock *sk)
1113 {
1114 	int uid;
1115 
1116 	read_lock(&sk->sk_callback_lock);
1117 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1118 	read_unlock(&sk->sk_callback_lock);
1119 	return uid;
1120 }
1121 
1122 unsigned long sock_i_ino(struct sock *sk)
1123 {
1124 	unsigned long ino;
1125 
1126 	read_lock(&sk->sk_callback_lock);
1127 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1128 	read_unlock(&sk->sk_callback_lock);
1129 	return ino;
1130 }
1131 
1132 /*
1133  * Allocate a skb from the socket's send buffer.
1134  */
1135 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1136 			     gfp_t priority)
1137 {
1138 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1139 		struct sk_buff * skb = alloc_skb(size, priority);
1140 		if (skb) {
1141 			skb_set_owner_w(skb, sk);
1142 			return skb;
1143 		}
1144 	}
1145 	return NULL;
1146 }
1147 
1148 /*
1149  * Allocate a skb from the socket's receive buffer.
1150  */
1151 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1152 			     gfp_t priority)
1153 {
1154 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1155 		struct sk_buff *skb = alloc_skb(size, priority);
1156 		if (skb) {
1157 			skb_set_owner_r(skb, sk);
1158 			return skb;
1159 		}
1160 	}
1161 	return NULL;
1162 }
1163 
1164 /*
1165  * Allocate a memory block from the socket's option memory buffer.
1166  */
1167 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1168 {
1169 	if ((unsigned)size <= sysctl_optmem_max &&
1170 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1171 		void *mem;
1172 		/* First do the add, to avoid the race if kmalloc
1173 		 * might sleep.
1174 		 */
1175 		atomic_add(size, &sk->sk_omem_alloc);
1176 		mem = kmalloc(size, priority);
1177 		if (mem)
1178 			return mem;
1179 		atomic_sub(size, &sk->sk_omem_alloc);
1180 	}
1181 	return NULL;
1182 }
1183 
1184 /*
1185  * Free an option memory block.
1186  */
1187 void sock_kfree_s(struct sock *sk, void *mem, int size)
1188 {
1189 	kfree(mem);
1190 	atomic_sub(size, &sk->sk_omem_alloc);
1191 }
1192 
1193 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1194    I think, these locks should be removed for datagram sockets.
1195  */
1196 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1197 {
1198 	DEFINE_WAIT(wait);
1199 
1200 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1201 	for (;;) {
1202 		if (!timeo)
1203 			break;
1204 		if (signal_pending(current))
1205 			break;
1206 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1207 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1208 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1209 			break;
1210 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1211 			break;
1212 		if (sk->sk_err)
1213 			break;
1214 		timeo = schedule_timeout(timeo);
1215 	}
1216 	finish_wait(sk->sk_sleep, &wait);
1217 	return timeo;
1218 }
1219 
1220 
1221 /*
1222  *	Generic send/receive buffer handlers
1223  */
1224 
1225 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1226 					    unsigned long header_len,
1227 					    unsigned long data_len,
1228 					    int noblock, int *errcode)
1229 {
1230 	struct sk_buff *skb;
1231 	gfp_t gfp_mask;
1232 	long timeo;
1233 	int err;
1234 
1235 	gfp_mask = sk->sk_allocation;
1236 	if (gfp_mask & __GFP_WAIT)
1237 		gfp_mask |= __GFP_REPEAT;
1238 
1239 	timeo = sock_sndtimeo(sk, noblock);
1240 	while (1) {
1241 		err = sock_error(sk);
1242 		if (err != 0)
1243 			goto failure;
1244 
1245 		err = -EPIPE;
1246 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1247 			goto failure;
1248 
1249 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1250 			skb = alloc_skb(header_len, gfp_mask);
1251 			if (skb) {
1252 				int npages;
1253 				int i;
1254 
1255 				/* No pages, we're done... */
1256 				if (!data_len)
1257 					break;
1258 
1259 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1260 				skb->truesize += data_len;
1261 				skb_shinfo(skb)->nr_frags = npages;
1262 				for (i = 0; i < npages; i++) {
1263 					struct page *page;
1264 					skb_frag_t *frag;
1265 
1266 					page = alloc_pages(sk->sk_allocation, 0);
1267 					if (!page) {
1268 						err = -ENOBUFS;
1269 						skb_shinfo(skb)->nr_frags = i;
1270 						kfree_skb(skb);
1271 						goto failure;
1272 					}
1273 
1274 					frag = &skb_shinfo(skb)->frags[i];
1275 					frag->page = page;
1276 					frag->page_offset = 0;
1277 					frag->size = (data_len >= PAGE_SIZE ?
1278 						      PAGE_SIZE :
1279 						      data_len);
1280 					data_len -= PAGE_SIZE;
1281 				}
1282 
1283 				/* Full success... */
1284 				break;
1285 			}
1286 			err = -ENOBUFS;
1287 			goto failure;
1288 		}
1289 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1290 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1291 		err = -EAGAIN;
1292 		if (!timeo)
1293 			goto failure;
1294 		if (signal_pending(current))
1295 			goto interrupted;
1296 		timeo = sock_wait_for_wmem(sk, timeo);
1297 	}
1298 
1299 	skb_set_owner_w(skb, sk);
1300 	return skb;
1301 
1302 interrupted:
1303 	err = sock_intr_errno(timeo);
1304 failure:
1305 	*errcode = err;
1306 	return NULL;
1307 }
1308 
1309 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1310 				    int noblock, int *errcode)
1311 {
1312 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1313 }
1314 
1315 static void __lock_sock(struct sock *sk)
1316 {
1317 	DEFINE_WAIT(wait);
1318 
1319 	for (;;) {
1320 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1321 					TASK_UNINTERRUPTIBLE);
1322 		spin_unlock_bh(&sk->sk_lock.slock);
1323 		schedule();
1324 		spin_lock_bh(&sk->sk_lock.slock);
1325 		if (!sock_owned_by_user(sk))
1326 			break;
1327 	}
1328 	finish_wait(&sk->sk_lock.wq, &wait);
1329 }
1330 
1331 static void __release_sock(struct sock *sk)
1332 {
1333 	struct sk_buff *skb = sk->sk_backlog.head;
1334 
1335 	do {
1336 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1337 		bh_unlock_sock(sk);
1338 
1339 		do {
1340 			struct sk_buff *next = skb->next;
1341 
1342 			skb->next = NULL;
1343 			sk->sk_backlog_rcv(sk, skb);
1344 
1345 			/*
1346 			 * We are in process context here with softirqs
1347 			 * disabled, use cond_resched_softirq() to preempt.
1348 			 * This is safe to do because we've taken the backlog
1349 			 * queue private:
1350 			 */
1351 			cond_resched_softirq();
1352 
1353 			skb = next;
1354 		} while (skb != NULL);
1355 
1356 		bh_lock_sock(sk);
1357 	} while ((skb = sk->sk_backlog.head) != NULL);
1358 }
1359 
1360 /**
1361  * sk_wait_data - wait for data to arrive at sk_receive_queue
1362  * @sk:    sock to wait on
1363  * @timeo: for how long
1364  *
1365  * Now socket state including sk->sk_err is changed only under lock,
1366  * hence we may omit checks after joining wait queue.
1367  * We check receive queue before schedule() only as optimization;
1368  * it is very likely that release_sock() added new data.
1369  */
1370 int sk_wait_data(struct sock *sk, long *timeo)
1371 {
1372 	int rc;
1373 	DEFINE_WAIT(wait);
1374 
1375 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1376 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1377 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1378 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1379 	finish_wait(sk->sk_sleep, &wait);
1380 	return rc;
1381 }
1382 
1383 EXPORT_SYMBOL(sk_wait_data);
1384 
1385 /*
1386  * Set of default routines for initialising struct proto_ops when
1387  * the protocol does not support a particular function. In certain
1388  * cases where it makes no sense for a protocol to have a "do nothing"
1389  * function, some default processing is provided.
1390  */
1391 
1392 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1393 {
1394 	return -EOPNOTSUPP;
1395 }
1396 
1397 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1398 		    int len, int flags)
1399 {
1400 	return -EOPNOTSUPP;
1401 }
1402 
1403 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1404 {
1405 	return -EOPNOTSUPP;
1406 }
1407 
1408 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1409 {
1410 	return -EOPNOTSUPP;
1411 }
1412 
1413 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1414 		    int *len, int peer)
1415 {
1416 	return -EOPNOTSUPP;
1417 }
1418 
1419 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1420 {
1421 	return 0;
1422 }
1423 
1424 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1425 {
1426 	return -EOPNOTSUPP;
1427 }
1428 
1429 int sock_no_listen(struct socket *sock, int backlog)
1430 {
1431 	return -EOPNOTSUPP;
1432 }
1433 
1434 int sock_no_shutdown(struct socket *sock, int how)
1435 {
1436 	return -EOPNOTSUPP;
1437 }
1438 
1439 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1440 		    char __user *optval, int optlen)
1441 {
1442 	return -EOPNOTSUPP;
1443 }
1444 
1445 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1446 		    char __user *optval, int __user *optlen)
1447 {
1448 	return -EOPNOTSUPP;
1449 }
1450 
1451 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1452 		    size_t len)
1453 {
1454 	return -EOPNOTSUPP;
1455 }
1456 
1457 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1458 		    size_t len, int flags)
1459 {
1460 	return -EOPNOTSUPP;
1461 }
1462 
1463 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1464 {
1465 	/* Mirror missing mmap method error code */
1466 	return -ENODEV;
1467 }
1468 
1469 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1470 {
1471 	ssize_t res;
1472 	struct msghdr msg = {.msg_flags = flags};
1473 	struct kvec iov;
1474 	char *kaddr = kmap(page);
1475 	iov.iov_base = kaddr + offset;
1476 	iov.iov_len = size;
1477 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1478 	kunmap(page);
1479 	return res;
1480 }
1481 
1482 /*
1483  *	Default Socket Callbacks
1484  */
1485 
1486 static void sock_def_wakeup(struct sock *sk)
1487 {
1488 	read_lock(&sk->sk_callback_lock);
1489 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1490 		wake_up_interruptible_all(sk->sk_sleep);
1491 	read_unlock(&sk->sk_callback_lock);
1492 }
1493 
1494 static void sock_def_error_report(struct sock *sk)
1495 {
1496 	read_lock(&sk->sk_callback_lock);
1497 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1498 		wake_up_interruptible(sk->sk_sleep);
1499 	sk_wake_async(sk,0,POLL_ERR);
1500 	read_unlock(&sk->sk_callback_lock);
1501 }
1502 
1503 static void sock_def_readable(struct sock *sk, int len)
1504 {
1505 	read_lock(&sk->sk_callback_lock);
1506 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1507 		wake_up_interruptible(sk->sk_sleep);
1508 	sk_wake_async(sk,1,POLL_IN);
1509 	read_unlock(&sk->sk_callback_lock);
1510 }
1511 
1512 static void sock_def_write_space(struct sock *sk)
1513 {
1514 	read_lock(&sk->sk_callback_lock);
1515 
1516 	/* Do not wake up a writer until he can make "significant"
1517 	 * progress.  --DaveM
1518 	 */
1519 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1520 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1521 			wake_up_interruptible(sk->sk_sleep);
1522 
1523 		/* Should agree with poll, otherwise some programs break */
1524 		if (sock_writeable(sk))
1525 			sk_wake_async(sk, 2, POLL_OUT);
1526 	}
1527 
1528 	read_unlock(&sk->sk_callback_lock);
1529 }
1530 
1531 static void sock_def_destruct(struct sock *sk)
1532 {
1533 	kfree(sk->sk_protinfo);
1534 }
1535 
1536 void sk_send_sigurg(struct sock *sk)
1537 {
1538 	if (sk->sk_socket && sk->sk_socket->file)
1539 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1540 			sk_wake_async(sk, 3, POLL_PRI);
1541 }
1542 
1543 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1544 		    unsigned long expires)
1545 {
1546 	if (!mod_timer(timer, expires))
1547 		sock_hold(sk);
1548 }
1549 
1550 EXPORT_SYMBOL(sk_reset_timer);
1551 
1552 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1553 {
1554 	if (timer_pending(timer) && del_timer(timer))
1555 		__sock_put(sk);
1556 }
1557 
1558 EXPORT_SYMBOL(sk_stop_timer);
1559 
1560 void sock_init_data(struct socket *sock, struct sock *sk)
1561 {
1562 	skb_queue_head_init(&sk->sk_receive_queue);
1563 	skb_queue_head_init(&sk->sk_write_queue);
1564 	skb_queue_head_init(&sk->sk_error_queue);
1565 #ifdef CONFIG_NET_DMA
1566 	skb_queue_head_init(&sk->sk_async_wait_queue);
1567 #endif
1568 
1569 	sk->sk_send_head	=	NULL;
1570 
1571 	init_timer(&sk->sk_timer);
1572 
1573 	sk->sk_allocation	=	GFP_KERNEL;
1574 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1575 	sk->sk_sndbuf		=	sysctl_wmem_default;
1576 	sk->sk_state		=	TCP_CLOSE;
1577 	sk->sk_socket		=	sock;
1578 
1579 	sock_set_flag(sk, SOCK_ZAPPED);
1580 
1581 	if (sock) {
1582 		sk->sk_type	=	sock->type;
1583 		sk->sk_sleep	=	&sock->wait;
1584 		sock->sk	=	sk;
1585 	} else
1586 		sk->sk_sleep	=	NULL;
1587 
1588 	rwlock_init(&sk->sk_dst_lock);
1589 	rwlock_init(&sk->sk_callback_lock);
1590 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1591 			af_callback_keys + sk->sk_family,
1592 			af_family_clock_key_strings[sk->sk_family]);
1593 
1594 	sk->sk_state_change	=	sock_def_wakeup;
1595 	sk->sk_data_ready	=	sock_def_readable;
1596 	sk->sk_write_space	=	sock_def_write_space;
1597 	sk->sk_error_report	=	sock_def_error_report;
1598 	sk->sk_destruct		=	sock_def_destruct;
1599 
1600 	sk->sk_sndmsg_page	=	NULL;
1601 	sk->sk_sndmsg_off	=	0;
1602 
1603 	sk->sk_peercred.pid 	=	0;
1604 	sk->sk_peercred.uid	=	-1;
1605 	sk->sk_peercred.gid	=	-1;
1606 	sk->sk_write_pending	=	0;
1607 	sk->sk_rcvlowat		=	1;
1608 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1609 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1610 
1611 	sk->sk_stamp = ktime_set(-1L, -1L);
1612 
1613 	atomic_set(&sk->sk_refcnt, 1);
1614 }
1615 
1616 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1617 {
1618 	might_sleep();
1619 	spin_lock_bh(&sk->sk_lock.slock);
1620 	if (sk->sk_lock.owned)
1621 		__lock_sock(sk);
1622 	sk->sk_lock.owned = 1;
1623 	spin_unlock(&sk->sk_lock.slock);
1624 	/*
1625 	 * The sk_lock has mutex_lock() semantics here:
1626 	 */
1627 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1628 	local_bh_enable();
1629 }
1630 
1631 EXPORT_SYMBOL(lock_sock_nested);
1632 
1633 void fastcall release_sock(struct sock *sk)
1634 {
1635 	/*
1636 	 * The sk_lock has mutex_unlock() semantics:
1637 	 */
1638 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1639 
1640 	spin_lock_bh(&sk->sk_lock.slock);
1641 	if (sk->sk_backlog.tail)
1642 		__release_sock(sk);
1643 	sk->sk_lock.owned = 0;
1644 	if (waitqueue_active(&sk->sk_lock.wq))
1645 		wake_up(&sk->sk_lock.wq);
1646 	spin_unlock_bh(&sk->sk_lock.slock);
1647 }
1648 EXPORT_SYMBOL(release_sock);
1649 
1650 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1651 {
1652 	struct timeval tv;
1653 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1654 		sock_enable_timestamp(sk);
1655 	tv = ktime_to_timeval(sk->sk_stamp);
1656 	if (tv.tv_sec == -1)
1657 		return -ENOENT;
1658 	if (tv.tv_sec == 0) {
1659 		sk->sk_stamp = ktime_get_real();
1660 		tv = ktime_to_timeval(sk->sk_stamp);
1661 	}
1662 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1663 }
1664 EXPORT_SYMBOL(sock_get_timestamp);
1665 
1666 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1667 {
1668 	struct timespec ts;
1669 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1670 		sock_enable_timestamp(sk);
1671 	ts = ktime_to_timespec(sk->sk_stamp);
1672 	if (ts.tv_sec == -1)
1673 		return -ENOENT;
1674 	if (ts.tv_sec == 0) {
1675 		sk->sk_stamp = ktime_get_real();
1676 		ts = ktime_to_timespec(sk->sk_stamp);
1677 	}
1678 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1679 }
1680 EXPORT_SYMBOL(sock_get_timestampns);
1681 
1682 void sock_enable_timestamp(struct sock *sk)
1683 {
1684 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1685 		sock_set_flag(sk, SOCK_TIMESTAMP);
1686 		net_enable_timestamp();
1687 	}
1688 }
1689 
1690 /*
1691  *	Get a socket option on an socket.
1692  *
1693  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1694  *	asynchronous errors should be reported by getsockopt. We assume
1695  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1696  */
1697 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1698 			   char __user *optval, int __user *optlen)
1699 {
1700 	struct sock *sk = sock->sk;
1701 
1702 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1703 }
1704 
1705 EXPORT_SYMBOL(sock_common_getsockopt);
1706 
1707 #ifdef CONFIG_COMPAT
1708 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1709 				  char __user *optval, int __user *optlen)
1710 {
1711 	struct sock *sk = sock->sk;
1712 
1713 	if (sk->sk_prot->compat_getsockopt != NULL)
1714 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1715 						      optval, optlen);
1716 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1717 }
1718 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1719 #endif
1720 
1721 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1722 			struct msghdr *msg, size_t size, int flags)
1723 {
1724 	struct sock *sk = sock->sk;
1725 	int addr_len = 0;
1726 	int err;
1727 
1728 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1729 				   flags & ~MSG_DONTWAIT, &addr_len);
1730 	if (err >= 0)
1731 		msg->msg_namelen = addr_len;
1732 	return err;
1733 }
1734 
1735 EXPORT_SYMBOL(sock_common_recvmsg);
1736 
1737 /*
1738  *	Set socket options on an inet socket.
1739  */
1740 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741 			   char __user *optval, int optlen)
1742 {
1743 	struct sock *sk = sock->sk;
1744 
1745 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1746 }
1747 
1748 EXPORT_SYMBOL(sock_common_setsockopt);
1749 
1750 #ifdef CONFIG_COMPAT
1751 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1752 				  char __user *optval, int optlen)
1753 {
1754 	struct sock *sk = sock->sk;
1755 
1756 	if (sk->sk_prot->compat_setsockopt != NULL)
1757 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1758 						      optval, optlen);
1759 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1760 }
1761 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1762 #endif
1763 
1764 void sk_common_release(struct sock *sk)
1765 {
1766 	if (sk->sk_prot->destroy)
1767 		sk->sk_prot->destroy(sk);
1768 
1769 	/*
1770 	 * Observation: when sock_common_release is called, processes have
1771 	 * no access to socket. But net still has.
1772 	 * Step one, detach it from networking:
1773 	 *
1774 	 * A. Remove from hash tables.
1775 	 */
1776 
1777 	sk->sk_prot->unhash(sk);
1778 
1779 	/*
1780 	 * In this point socket cannot receive new packets, but it is possible
1781 	 * that some packets are in flight because some CPU runs receiver and
1782 	 * did hash table lookup before we unhashed socket. They will achieve
1783 	 * receive queue and will be purged by socket destructor.
1784 	 *
1785 	 * Also we still have packets pending on receive queue and probably,
1786 	 * our own packets waiting in device queues. sock_destroy will drain
1787 	 * receive queue, but transmitted packets will delay socket destruction
1788 	 * until the last reference will be released.
1789 	 */
1790 
1791 	sock_orphan(sk);
1792 
1793 	xfrm_sk_free_policy(sk);
1794 
1795 	sk_refcnt_debug_release(sk);
1796 	sock_put(sk);
1797 }
1798 
1799 EXPORT_SYMBOL(sk_common_release);
1800 
1801 static DEFINE_RWLOCK(proto_list_lock);
1802 static LIST_HEAD(proto_list);
1803 
1804 #ifdef CONFIG_SMP
1805 /*
1806  * Define default functions to keep track of inuse sockets per protocol
1807  * Note that often used protocols use dedicated functions to get a speed increase.
1808  * (see DEFINE_PROTO_INUSE/REF_PROTO_INUSE)
1809  */
1810 static void inuse_add(struct proto *prot, int inc)
1811 {
1812 	per_cpu_ptr(prot->inuse_ptr, smp_processor_id())[0] += inc;
1813 }
1814 
1815 static int inuse_get(const struct proto *prot)
1816 {
1817 	int res = 0, cpu;
1818 	for_each_possible_cpu(cpu)
1819 		res += per_cpu_ptr(prot->inuse_ptr, cpu)[0];
1820 	return res;
1821 }
1822 
1823 static int inuse_init(struct proto *prot)
1824 {
1825 	if (!prot->inuse_getval || !prot->inuse_add) {
1826 		prot->inuse_ptr = alloc_percpu(int);
1827 		if (prot->inuse_ptr == NULL)
1828 			return -ENOBUFS;
1829 
1830 		prot->inuse_getval = inuse_get;
1831 		prot->inuse_add = inuse_add;
1832 	}
1833 	return 0;
1834 }
1835 
1836 static void inuse_fini(struct proto *prot)
1837 {
1838 	if (prot->inuse_ptr != NULL) {
1839 		free_percpu(prot->inuse_ptr);
1840 		prot->inuse_ptr = NULL;
1841 		prot->inuse_getval = NULL;
1842 		prot->inuse_add = NULL;
1843 	}
1844 }
1845 #else
1846 static inline int inuse_init(struct proto *prot)
1847 {
1848 	return 0;
1849 }
1850 
1851 static inline void inuse_fini(struct proto *prot)
1852 {
1853 }
1854 #endif
1855 
1856 int proto_register(struct proto *prot, int alloc_slab)
1857 {
1858 	char *request_sock_slab_name = NULL;
1859 	char *timewait_sock_slab_name;
1860 
1861 	if (inuse_init(prot))
1862 		goto out;
1863 
1864 	if (alloc_slab) {
1865 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1866 					       SLAB_HWCACHE_ALIGN, NULL);
1867 
1868 		if (prot->slab == NULL) {
1869 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1870 			       prot->name);
1871 			goto out_free_inuse;
1872 		}
1873 
1874 		if (prot->rsk_prot != NULL) {
1875 			static const char mask[] = "request_sock_%s";
1876 
1877 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1878 			if (request_sock_slab_name == NULL)
1879 				goto out_free_sock_slab;
1880 
1881 			sprintf(request_sock_slab_name, mask, prot->name);
1882 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1883 								 prot->rsk_prot->obj_size, 0,
1884 								 SLAB_HWCACHE_ALIGN, NULL);
1885 
1886 			if (prot->rsk_prot->slab == NULL) {
1887 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1888 				       prot->name);
1889 				goto out_free_request_sock_slab_name;
1890 			}
1891 		}
1892 
1893 		if (prot->twsk_prot != NULL) {
1894 			static const char mask[] = "tw_sock_%s";
1895 
1896 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1897 
1898 			if (timewait_sock_slab_name == NULL)
1899 				goto out_free_request_sock_slab;
1900 
1901 			sprintf(timewait_sock_slab_name, mask, prot->name);
1902 			prot->twsk_prot->twsk_slab =
1903 				kmem_cache_create(timewait_sock_slab_name,
1904 						  prot->twsk_prot->twsk_obj_size,
1905 						  0, SLAB_HWCACHE_ALIGN,
1906 						  NULL);
1907 			if (prot->twsk_prot->twsk_slab == NULL)
1908 				goto out_free_timewait_sock_slab_name;
1909 		}
1910 	}
1911 
1912 	write_lock(&proto_list_lock);
1913 	list_add(&prot->node, &proto_list);
1914 	write_unlock(&proto_list_lock);
1915 	return 0;
1916 
1917 out_free_timewait_sock_slab_name:
1918 	kfree(timewait_sock_slab_name);
1919 out_free_request_sock_slab:
1920 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1921 		kmem_cache_destroy(prot->rsk_prot->slab);
1922 		prot->rsk_prot->slab = NULL;
1923 	}
1924 out_free_request_sock_slab_name:
1925 	kfree(request_sock_slab_name);
1926 out_free_sock_slab:
1927 	kmem_cache_destroy(prot->slab);
1928 	prot->slab = NULL;
1929 out_free_inuse:
1930 	inuse_fini(prot);
1931 out:
1932 	return -ENOBUFS;
1933 }
1934 
1935 EXPORT_SYMBOL(proto_register);
1936 
1937 void proto_unregister(struct proto *prot)
1938 {
1939 	write_lock(&proto_list_lock);
1940 	list_del(&prot->node);
1941 	write_unlock(&proto_list_lock);
1942 
1943 	inuse_fini(prot);
1944 	if (prot->slab != NULL) {
1945 		kmem_cache_destroy(prot->slab);
1946 		prot->slab = NULL;
1947 	}
1948 
1949 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1950 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1951 
1952 		kmem_cache_destroy(prot->rsk_prot->slab);
1953 		kfree(name);
1954 		prot->rsk_prot->slab = NULL;
1955 	}
1956 
1957 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1958 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1959 
1960 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1961 		kfree(name);
1962 		prot->twsk_prot->twsk_slab = NULL;
1963 	}
1964 }
1965 
1966 EXPORT_SYMBOL(proto_unregister);
1967 
1968 #ifdef CONFIG_PROC_FS
1969 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1970 {
1971 	read_lock(&proto_list_lock);
1972 	return seq_list_start_head(&proto_list, *pos);
1973 }
1974 
1975 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1976 {
1977 	return seq_list_next(v, &proto_list, pos);
1978 }
1979 
1980 static void proto_seq_stop(struct seq_file *seq, void *v)
1981 {
1982 	read_unlock(&proto_list_lock);
1983 }
1984 
1985 static char proto_method_implemented(const void *method)
1986 {
1987 	return method == NULL ? 'n' : 'y';
1988 }
1989 
1990 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1991 {
1992 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1993 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1994 		   proto->name,
1995 		   proto->obj_size,
1996 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1997 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1998 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1999 		   proto->max_header,
2000 		   proto->slab == NULL ? "no" : "yes",
2001 		   module_name(proto->owner),
2002 		   proto_method_implemented(proto->close),
2003 		   proto_method_implemented(proto->connect),
2004 		   proto_method_implemented(proto->disconnect),
2005 		   proto_method_implemented(proto->accept),
2006 		   proto_method_implemented(proto->ioctl),
2007 		   proto_method_implemented(proto->init),
2008 		   proto_method_implemented(proto->destroy),
2009 		   proto_method_implemented(proto->shutdown),
2010 		   proto_method_implemented(proto->setsockopt),
2011 		   proto_method_implemented(proto->getsockopt),
2012 		   proto_method_implemented(proto->sendmsg),
2013 		   proto_method_implemented(proto->recvmsg),
2014 		   proto_method_implemented(proto->sendpage),
2015 		   proto_method_implemented(proto->bind),
2016 		   proto_method_implemented(proto->backlog_rcv),
2017 		   proto_method_implemented(proto->hash),
2018 		   proto_method_implemented(proto->unhash),
2019 		   proto_method_implemented(proto->get_port),
2020 		   proto_method_implemented(proto->enter_memory_pressure));
2021 }
2022 
2023 static int proto_seq_show(struct seq_file *seq, void *v)
2024 {
2025 	if (v == &proto_list)
2026 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2027 			   "protocol",
2028 			   "size",
2029 			   "sockets",
2030 			   "memory",
2031 			   "press",
2032 			   "maxhdr",
2033 			   "slab",
2034 			   "module",
2035 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2036 	else
2037 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2038 	return 0;
2039 }
2040 
2041 static const struct seq_operations proto_seq_ops = {
2042 	.start  = proto_seq_start,
2043 	.next   = proto_seq_next,
2044 	.stop   = proto_seq_stop,
2045 	.show   = proto_seq_show,
2046 };
2047 
2048 static int proto_seq_open(struct inode *inode, struct file *file)
2049 {
2050 	return seq_open(file, &proto_seq_ops);
2051 }
2052 
2053 static const struct file_operations proto_seq_fops = {
2054 	.owner		= THIS_MODULE,
2055 	.open		= proto_seq_open,
2056 	.read		= seq_read,
2057 	.llseek		= seq_lseek,
2058 	.release	= seq_release,
2059 };
2060 
2061 static int __init proto_init(void)
2062 {
2063 	/* register /proc/net/protocols */
2064 	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2065 }
2066 
2067 subsys_initcall(proto_init);
2068 
2069 #endif /* PROC_FS */
2070 
2071 EXPORT_SYMBOL(sk_alloc);
2072 EXPORT_SYMBOL(sk_free);
2073 EXPORT_SYMBOL(sk_send_sigurg);
2074 EXPORT_SYMBOL(sock_alloc_send_skb);
2075 EXPORT_SYMBOL(sock_init_data);
2076 EXPORT_SYMBOL(sock_kfree_s);
2077 EXPORT_SYMBOL(sock_kmalloc);
2078 EXPORT_SYMBOL(sock_no_accept);
2079 EXPORT_SYMBOL(sock_no_bind);
2080 EXPORT_SYMBOL(sock_no_connect);
2081 EXPORT_SYMBOL(sock_no_getname);
2082 EXPORT_SYMBOL(sock_no_getsockopt);
2083 EXPORT_SYMBOL(sock_no_ioctl);
2084 EXPORT_SYMBOL(sock_no_listen);
2085 EXPORT_SYMBOL(sock_no_mmap);
2086 EXPORT_SYMBOL(sock_no_poll);
2087 EXPORT_SYMBOL(sock_no_recvmsg);
2088 EXPORT_SYMBOL(sock_no_sendmsg);
2089 EXPORT_SYMBOL(sock_no_sendpage);
2090 EXPORT_SYMBOL(sock_no_setsockopt);
2091 EXPORT_SYMBOL(sock_no_shutdown);
2092 EXPORT_SYMBOL(sock_no_socketpair);
2093 EXPORT_SYMBOL(sock_rfree);
2094 EXPORT_SYMBOL(sock_setsockopt);
2095 EXPORT_SYMBOL(sock_wfree);
2096 EXPORT_SYMBOL(sock_wmalloc);
2097 EXPORT_SYMBOL(sock_i_uid);
2098 EXPORT_SYMBOL(sock_i_ino);
2099 EXPORT_SYMBOL(sysctl_optmem_max);
2100