1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/sched/mm.h> 106 #include <linux/timer.h> 107 #include <linux/string.h> 108 #include <linux/sockios.h> 109 #include <linux/net.h> 110 #include <linux/mm.h> 111 #include <linux/slab.h> 112 #include <linux/interrupt.h> 113 #include <linux/poll.h> 114 #include <linux/tcp.h> 115 #include <linux/init.h> 116 #include <linux/highmem.h> 117 #include <linux/user_namespace.h> 118 #include <linux/static_key.h> 119 #include <linux/memcontrol.h> 120 #include <linux/prefetch.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 145 static DEFINE_MUTEX(proto_list_mutex); 146 static LIST_HEAD(proto_list); 147 148 /** 149 * sk_ns_capable - General socket capability test 150 * @sk: Socket to use a capability on or through 151 * @user_ns: The user namespace of the capability to use 152 * @cap: The capability to use 153 * 154 * Test to see if the opener of the socket had when the socket was 155 * created and the current process has the capability @cap in the user 156 * namespace @user_ns. 157 */ 158 bool sk_ns_capable(const struct sock *sk, 159 struct user_namespace *user_ns, int cap) 160 { 161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 162 ns_capable(user_ns, cap); 163 } 164 EXPORT_SYMBOL(sk_ns_capable); 165 166 /** 167 * sk_capable - Socket global capability test 168 * @sk: Socket to use a capability on or through 169 * @cap: The global capability to use 170 * 171 * Test to see if the opener of the socket had when the socket was 172 * created and the current process has the capability @cap in all user 173 * namespaces. 174 */ 175 bool sk_capable(const struct sock *sk, int cap) 176 { 177 return sk_ns_capable(sk, &init_user_ns, cap); 178 } 179 EXPORT_SYMBOL(sk_capable); 180 181 /** 182 * sk_net_capable - Network namespace socket capability test 183 * @sk: Socket to use a capability on or through 184 * @cap: The capability to use 185 * 186 * Test to see if the opener of the socket had when the socket was created 187 * and the current process has the capability @cap over the network namespace 188 * the socket is a member of. 189 */ 190 bool sk_net_capable(const struct sock *sk, int cap) 191 { 192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 193 } 194 EXPORT_SYMBOL(sk_net_capable); 195 196 /* 197 * Each address family might have different locking rules, so we have 198 * one slock key per address family and separate keys for internal and 199 * userspace sockets. 200 */ 201 static struct lock_class_key af_family_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_keys[AF_MAX]; 203 static struct lock_class_key af_family_slock_keys[AF_MAX]; 204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 205 206 /* 207 * Make lock validator output more readable. (we pre-construct these 208 * strings build-time, so that runtime initialization of socket 209 * locks is fast): 210 */ 211 212 #define _sock_locks(x) \ 213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 222 x "27" , x "28" , x "AF_CAN" , \ 223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" 228 229 static const char *const af_family_key_strings[AF_MAX+1] = { 230 _sock_locks("sk_lock-") 231 }; 232 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 233 _sock_locks("slock-") 234 }; 235 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 236 _sock_locks("clock-") 237 }; 238 239 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 240 _sock_locks("k-sk_lock-") 241 }; 242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("k-slock-") 244 }; 245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-clock-") 247 }; 248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 249 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , 250 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", 251 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , 252 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , 253 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , 254 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , 255 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , 256 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , 257 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , 258 "rlock-27" , "rlock-28" , "rlock-AF_CAN" , 259 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , 260 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , 261 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , 262 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , 263 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" 264 }; 265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 266 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , 267 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", 268 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , 269 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , 270 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , 271 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , 272 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , 273 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , 274 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , 275 "wlock-27" , "wlock-28" , "wlock-AF_CAN" , 276 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , 277 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , 278 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , 279 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , 280 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" 281 }; 282 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 283 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , 284 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", 285 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , 286 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , 287 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , 288 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , 289 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , 290 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , 291 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , 292 "elock-27" , "elock-28" , "elock-AF_CAN" , 293 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , 294 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , 295 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , 296 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , 297 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" 298 }; 299 300 /* 301 * sk_callback_lock and sk queues locking rules are per-address-family, 302 * so split the lock classes by using a per-AF key: 303 */ 304 static struct lock_class_key af_callback_keys[AF_MAX]; 305 static struct lock_class_key af_rlock_keys[AF_MAX]; 306 static struct lock_class_key af_wlock_keys[AF_MAX]; 307 static struct lock_class_key af_elock_keys[AF_MAX]; 308 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 309 310 /* Run time adjustable parameters. */ 311 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 312 EXPORT_SYMBOL(sysctl_wmem_max); 313 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 314 EXPORT_SYMBOL(sysctl_rmem_max); 315 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 316 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 317 318 /* Maximal space eaten by iovec or ancillary data plus some space */ 319 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 320 EXPORT_SYMBOL(sysctl_optmem_max); 321 322 int sysctl_tstamp_allow_data __read_mostly = 1; 323 324 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 325 EXPORT_SYMBOL_GPL(memalloc_socks); 326 327 /** 328 * sk_set_memalloc - sets %SOCK_MEMALLOC 329 * @sk: socket to set it on 330 * 331 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 332 * It's the responsibility of the admin to adjust min_free_kbytes 333 * to meet the requirements 334 */ 335 void sk_set_memalloc(struct sock *sk) 336 { 337 sock_set_flag(sk, SOCK_MEMALLOC); 338 sk->sk_allocation |= __GFP_MEMALLOC; 339 static_key_slow_inc(&memalloc_socks); 340 } 341 EXPORT_SYMBOL_GPL(sk_set_memalloc); 342 343 void sk_clear_memalloc(struct sock *sk) 344 { 345 sock_reset_flag(sk, SOCK_MEMALLOC); 346 sk->sk_allocation &= ~__GFP_MEMALLOC; 347 static_key_slow_dec(&memalloc_socks); 348 349 /* 350 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 351 * progress of swapping. SOCK_MEMALLOC may be cleared while 352 * it has rmem allocations due to the last swapfile being deactivated 353 * but there is a risk that the socket is unusable due to exceeding 354 * the rmem limits. Reclaim the reserves and obey rmem limits again. 355 */ 356 sk_mem_reclaim(sk); 357 } 358 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 359 360 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 361 { 362 int ret; 363 unsigned int noreclaim_flag; 364 365 /* these should have been dropped before queueing */ 366 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 367 368 noreclaim_flag = memalloc_noreclaim_save(); 369 ret = sk->sk_backlog_rcv(sk, skb); 370 memalloc_noreclaim_restore(noreclaim_flag); 371 372 return ret; 373 } 374 EXPORT_SYMBOL(__sk_backlog_rcv); 375 376 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 377 { 378 struct timeval tv; 379 380 if (optlen < sizeof(tv)) 381 return -EINVAL; 382 if (copy_from_user(&tv, optval, sizeof(tv))) 383 return -EFAULT; 384 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 385 return -EDOM; 386 387 if (tv.tv_sec < 0) { 388 static int warned __read_mostly; 389 390 *timeo_p = 0; 391 if (warned < 10 && net_ratelimit()) { 392 warned++; 393 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 394 __func__, current->comm, task_pid_nr(current)); 395 } 396 return 0; 397 } 398 *timeo_p = MAX_SCHEDULE_TIMEOUT; 399 if (tv.tv_sec == 0 && tv.tv_usec == 0) 400 return 0; 401 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 402 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); 403 return 0; 404 } 405 406 static void sock_warn_obsolete_bsdism(const char *name) 407 { 408 static int warned; 409 static char warncomm[TASK_COMM_LEN]; 410 if (strcmp(warncomm, current->comm) && warned < 5) { 411 strcpy(warncomm, current->comm); 412 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 413 warncomm, name); 414 warned++; 415 } 416 } 417 418 static bool sock_needs_netstamp(const struct sock *sk) 419 { 420 switch (sk->sk_family) { 421 case AF_UNSPEC: 422 case AF_UNIX: 423 return false; 424 default: 425 return true; 426 } 427 } 428 429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 430 { 431 if (sk->sk_flags & flags) { 432 sk->sk_flags &= ~flags; 433 if (sock_needs_netstamp(sk) && 434 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 435 net_disable_timestamp(); 436 } 437 } 438 439 440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 441 { 442 unsigned long flags; 443 struct sk_buff_head *list = &sk->sk_receive_queue; 444 445 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 446 atomic_inc(&sk->sk_drops); 447 trace_sock_rcvqueue_full(sk, skb); 448 return -ENOMEM; 449 } 450 451 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 452 atomic_inc(&sk->sk_drops); 453 return -ENOBUFS; 454 } 455 456 skb->dev = NULL; 457 skb_set_owner_r(skb, sk); 458 459 /* we escape from rcu protected region, make sure we dont leak 460 * a norefcounted dst 461 */ 462 skb_dst_force(skb); 463 464 spin_lock_irqsave(&list->lock, flags); 465 sock_skb_set_dropcount(sk, skb); 466 __skb_queue_tail(list, skb); 467 spin_unlock_irqrestore(&list->lock, flags); 468 469 if (!sock_flag(sk, SOCK_DEAD)) 470 sk->sk_data_ready(sk); 471 return 0; 472 } 473 EXPORT_SYMBOL(__sock_queue_rcv_skb); 474 475 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 476 { 477 int err; 478 479 err = sk_filter(sk, skb); 480 if (err) 481 return err; 482 483 return __sock_queue_rcv_skb(sk, skb); 484 } 485 EXPORT_SYMBOL(sock_queue_rcv_skb); 486 487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 488 const int nested, unsigned int trim_cap, bool refcounted) 489 { 490 int rc = NET_RX_SUCCESS; 491 492 if (sk_filter_trim_cap(sk, skb, trim_cap)) 493 goto discard_and_relse; 494 495 skb->dev = NULL; 496 497 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 498 atomic_inc(&sk->sk_drops); 499 goto discard_and_relse; 500 } 501 if (nested) 502 bh_lock_sock_nested(sk); 503 else 504 bh_lock_sock(sk); 505 if (!sock_owned_by_user(sk)) { 506 /* 507 * trylock + unlock semantics: 508 */ 509 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 510 511 rc = sk_backlog_rcv(sk, skb); 512 513 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 514 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 515 bh_unlock_sock(sk); 516 atomic_inc(&sk->sk_drops); 517 goto discard_and_relse; 518 } 519 520 bh_unlock_sock(sk); 521 out: 522 if (refcounted) 523 sock_put(sk); 524 return rc; 525 discard_and_relse: 526 kfree_skb(skb); 527 goto out; 528 } 529 EXPORT_SYMBOL(__sk_receive_skb); 530 531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 532 { 533 struct dst_entry *dst = __sk_dst_get(sk); 534 535 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 536 sk_tx_queue_clear(sk); 537 sk->sk_dst_pending_confirm = 0; 538 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 539 dst_release(dst); 540 return NULL; 541 } 542 543 return dst; 544 } 545 EXPORT_SYMBOL(__sk_dst_check); 546 547 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 548 { 549 struct dst_entry *dst = sk_dst_get(sk); 550 551 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 552 sk_dst_reset(sk); 553 dst_release(dst); 554 return NULL; 555 } 556 557 return dst; 558 } 559 EXPORT_SYMBOL(sk_dst_check); 560 561 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 562 int optlen) 563 { 564 int ret = -ENOPROTOOPT; 565 #ifdef CONFIG_NETDEVICES 566 struct net *net = sock_net(sk); 567 char devname[IFNAMSIZ]; 568 int index; 569 570 /* Sorry... */ 571 ret = -EPERM; 572 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 573 goto out; 574 575 ret = -EINVAL; 576 if (optlen < 0) 577 goto out; 578 579 /* Bind this socket to a particular device like "eth0", 580 * as specified in the passed interface name. If the 581 * name is "" or the option length is zero the socket 582 * is not bound. 583 */ 584 if (optlen > IFNAMSIZ - 1) 585 optlen = IFNAMSIZ - 1; 586 memset(devname, 0, sizeof(devname)); 587 588 ret = -EFAULT; 589 if (copy_from_user(devname, optval, optlen)) 590 goto out; 591 592 index = 0; 593 if (devname[0] != '\0') { 594 struct net_device *dev; 595 596 rcu_read_lock(); 597 dev = dev_get_by_name_rcu(net, devname); 598 if (dev) 599 index = dev->ifindex; 600 rcu_read_unlock(); 601 ret = -ENODEV; 602 if (!dev) 603 goto out; 604 } 605 606 lock_sock(sk); 607 sk->sk_bound_dev_if = index; 608 sk_dst_reset(sk); 609 release_sock(sk); 610 611 ret = 0; 612 613 out: 614 #endif 615 616 return ret; 617 } 618 619 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 620 int __user *optlen, int len) 621 { 622 int ret = -ENOPROTOOPT; 623 #ifdef CONFIG_NETDEVICES 624 struct net *net = sock_net(sk); 625 char devname[IFNAMSIZ]; 626 627 if (sk->sk_bound_dev_if == 0) { 628 len = 0; 629 goto zero; 630 } 631 632 ret = -EINVAL; 633 if (len < IFNAMSIZ) 634 goto out; 635 636 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 637 if (ret) 638 goto out; 639 640 len = strlen(devname) + 1; 641 642 ret = -EFAULT; 643 if (copy_to_user(optval, devname, len)) 644 goto out; 645 646 zero: 647 ret = -EFAULT; 648 if (put_user(len, optlen)) 649 goto out; 650 651 ret = 0; 652 653 out: 654 #endif 655 656 return ret; 657 } 658 659 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 660 { 661 if (valbool) 662 sock_set_flag(sk, bit); 663 else 664 sock_reset_flag(sk, bit); 665 } 666 667 bool sk_mc_loop(struct sock *sk) 668 { 669 if (dev_recursion_level()) 670 return false; 671 if (!sk) 672 return true; 673 switch (sk->sk_family) { 674 case AF_INET: 675 return inet_sk(sk)->mc_loop; 676 #if IS_ENABLED(CONFIG_IPV6) 677 case AF_INET6: 678 return inet6_sk(sk)->mc_loop; 679 #endif 680 } 681 WARN_ON(1); 682 return true; 683 } 684 EXPORT_SYMBOL(sk_mc_loop); 685 686 /* 687 * This is meant for all protocols to use and covers goings on 688 * at the socket level. Everything here is generic. 689 */ 690 691 int sock_setsockopt(struct socket *sock, int level, int optname, 692 char __user *optval, unsigned int optlen) 693 { 694 struct sock *sk = sock->sk; 695 int val; 696 int valbool; 697 struct linger ling; 698 int ret = 0; 699 700 /* 701 * Options without arguments 702 */ 703 704 if (optname == SO_BINDTODEVICE) 705 return sock_setbindtodevice(sk, optval, optlen); 706 707 if (optlen < sizeof(int)) 708 return -EINVAL; 709 710 if (get_user(val, (int __user *)optval)) 711 return -EFAULT; 712 713 valbool = val ? 1 : 0; 714 715 lock_sock(sk); 716 717 switch (optname) { 718 case SO_DEBUG: 719 if (val && !capable(CAP_NET_ADMIN)) 720 ret = -EACCES; 721 else 722 sock_valbool_flag(sk, SOCK_DBG, valbool); 723 break; 724 case SO_REUSEADDR: 725 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 726 break; 727 case SO_REUSEPORT: 728 sk->sk_reuseport = valbool; 729 break; 730 case SO_TYPE: 731 case SO_PROTOCOL: 732 case SO_DOMAIN: 733 case SO_ERROR: 734 ret = -ENOPROTOOPT; 735 break; 736 case SO_DONTROUTE: 737 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 738 break; 739 case SO_BROADCAST: 740 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 741 break; 742 case SO_SNDBUF: 743 /* Don't error on this BSD doesn't and if you think 744 * about it this is right. Otherwise apps have to 745 * play 'guess the biggest size' games. RCVBUF/SNDBUF 746 * are treated in BSD as hints 747 */ 748 val = min_t(u32, val, sysctl_wmem_max); 749 set_sndbuf: 750 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 751 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 752 /* Wake up sending tasks if we upped the value. */ 753 sk->sk_write_space(sk); 754 break; 755 756 case SO_SNDBUFFORCE: 757 if (!capable(CAP_NET_ADMIN)) { 758 ret = -EPERM; 759 break; 760 } 761 goto set_sndbuf; 762 763 case SO_RCVBUF: 764 /* Don't error on this BSD doesn't and if you think 765 * about it this is right. Otherwise apps have to 766 * play 'guess the biggest size' games. RCVBUF/SNDBUF 767 * are treated in BSD as hints 768 */ 769 val = min_t(u32, val, sysctl_rmem_max); 770 set_rcvbuf: 771 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 772 /* 773 * We double it on the way in to account for 774 * "struct sk_buff" etc. overhead. Applications 775 * assume that the SO_RCVBUF setting they make will 776 * allow that much actual data to be received on that 777 * socket. 778 * 779 * Applications are unaware that "struct sk_buff" and 780 * other overheads allocate from the receive buffer 781 * during socket buffer allocation. 782 * 783 * And after considering the possible alternatives, 784 * returning the value we actually used in getsockopt 785 * is the most desirable behavior. 786 */ 787 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 788 break; 789 790 case SO_RCVBUFFORCE: 791 if (!capable(CAP_NET_ADMIN)) { 792 ret = -EPERM; 793 break; 794 } 795 goto set_rcvbuf; 796 797 case SO_KEEPALIVE: 798 if (sk->sk_prot->keepalive) 799 sk->sk_prot->keepalive(sk, valbool); 800 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 801 break; 802 803 case SO_OOBINLINE: 804 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 805 break; 806 807 case SO_NO_CHECK: 808 sk->sk_no_check_tx = valbool; 809 break; 810 811 case SO_PRIORITY: 812 if ((val >= 0 && val <= 6) || 813 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 814 sk->sk_priority = val; 815 else 816 ret = -EPERM; 817 break; 818 819 case SO_LINGER: 820 if (optlen < sizeof(ling)) { 821 ret = -EINVAL; /* 1003.1g */ 822 break; 823 } 824 if (copy_from_user(&ling, optval, sizeof(ling))) { 825 ret = -EFAULT; 826 break; 827 } 828 if (!ling.l_onoff) 829 sock_reset_flag(sk, SOCK_LINGER); 830 else { 831 #if (BITS_PER_LONG == 32) 832 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 833 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 834 else 835 #endif 836 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 837 sock_set_flag(sk, SOCK_LINGER); 838 } 839 break; 840 841 case SO_BSDCOMPAT: 842 sock_warn_obsolete_bsdism("setsockopt"); 843 break; 844 845 case SO_PASSCRED: 846 if (valbool) 847 set_bit(SOCK_PASSCRED, &sock->flags); 848 else 849 clear_bit(SOCK_PASSCRED, &sock->flags); 850 break; 851 852 case SO_TIMESTAMP: 853 case SO_TIMESTAMPNS: 854 if (valbool) { 855 if (optname == SO_TIMESTAMP) 856 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 857 else 858 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 859 sock_set_flag(sk, SOCK_RCVTSTAMP); 860 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 861 } else { 862 sock_reset_flag(sk, SOCK_RCVTSTAMP); 863 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 864 } 865 break; 866 867 case SO_TIMESTAMPING: 868 if (val & ~SOF_TIMESTAMPING_MASK) { 869 ret = -EINVAL; 870 break; 871 } 872 873 if (val & SOF_TIMESTAMPING_OPT_ID && 874 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 875 if (sk->sk_protocol == IPPROTO_TCP && 876 sk->sk_type == SOCK_STREAM) { 877 if ((1 << sk->sk_state) & 878 (TCPF_CLOSE | TCPF_LISTEN)) { 879 ret = -EINVAL; 880 break; 881 } 882 sk->sk_tskey = tcp_sk(sk)->snd_una; 883 } else { 884 sk->sk_tskey = 0; 885 } 886 } 887 888 if (val & SOF_TIMESTAMPING_OPT_STATS && 889 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 890 ret = -EINVAL; 891 break; 892 } 893 894 sk->sk_tsflags = val; 895 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 896 sock_enable_timestamp(sk, 897 SOCK_TIMESTAMPING_RX_SOFTWARE); 898 else 899 sock_disable_timestamp(sk, 900 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 901 break; 902 903 case SO_RCVLOWAT: 904 if (val < 0) 905 val = INT_MAX; 906 sk->sk_rcvlowat = val ? : 1; 907 break; 908 909 case SO_RCVTIMEO: 910 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 911 break; 912 913 case SO_SNDTIMEO: 914 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 915 break; 916 917 case SO_ATTACH_FILTER: 918 ret = -EINVAL; 919 if (optlen == sizeof(struct sock_fprog)) { 920 struct sock_fprog fprog; 921 922 ret = -EFAULT; 923 if (copy_from_user(&fprog, optval, sizeof(fprog))) 924 break; 925 926 ret = sk_attach_filter(&fprog, sk); 927 } 928 break; 929 930 case SO_ATTACH_BPF: 931 ret = -EINVAL; 932 if (optlen == sizeof(u32)) { 933 u32 ufd; 934 935 ret = -EFAULT; 936 if (copy_from_user(&ufd, optval, sizeof(ufd))) 937 break; 938 939 ret = sk_attach_bpf(ufd, sk); 940 } 941 break; 942 943 case SO_ATTACH_REUSEPORT_CBPF: 944 ret = -EINVAL; 945 if (optlen == sizeof(struct sock_fprog)) { 946 struct sock_fprog fprog; 947 948 ret = -EFAULT; 949 if (copy_from_user(&fprog, optval, sizeof(fprog))) 950 break; 951 952 ret = sk_reuseport_attach_filter(&fprog, sk); 953 } 954 break; 955 956 case SO_ATTACH_REUSEPORT_EBPF: 957 ret = -EINVAL; 958 if (optlen == sizeof(u32)) { 959 u32 ufd; 960 961 ret = -EFAULT; 962 if (copy_from_user(&ufd, optval, sizeof(ufd))) 963 break; 964 965 ret = sk_reuseport_attach_bpf(ufd, sk); 966 } 967 break; 968 969 case SO_DETACH_FILTER: 970 ret = sk_detach_filter(sk); 971 break; 972 973 case SO_LOCK_FILTER: 974 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 975 ret = -EPERM; 976 else 977 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 978 break; 979 980 case SO_PASSSEC: 981 if (valbool) 982 set_bit(SOCK_PASSSEC, &sock->flags); 983 else 984 clear_bit(SOCK_PASSSEC, &sock->flags); 985 break; 986 case SO_MARK: 987 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 988 ret = -EPERM; 989 else 990 sk->sk_mark = val; 991 break; 992 993 case SO_RXQ_OVFL: 994 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 995 break; 996 997 case SO_WIFI_STATUS: 998 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 999 break; 1000 1001 case SO_PEEK_OFF: 1002 if (sock->ops->set_peek_off) 1003 ret = sock->ops->set_peek_off(sk, val); 1004 else 1005 ret = -EOPNOTSUPP; 1006 break; 1007 1008 case SO_NOFCS: 1009 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1010 break; 1011 1012 case SO_SELECT_ERR_QUEUE: 1013 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1014 break; 1015 1016 #ifdef CONFIG_NET_RX_BUSY_POLL 1017 case SO_BUSY_POLL: 1018 /* allow unprivileged users to decrease the value */ 1019 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1020 ret = -EPERM; 1021 else { 1022 if (val < 0) 1023 ret = -EINVAL; 1024 else 1025 sk->sk_ll_usec = val; 1026 } 1027 break; 1028 #endif 1029 1030 case SO_MAX_PACING_RATE: 1031 if (val != ~0U) 1032 cmpxchg(&sk->sk_pacing_status, 1033 SK_PACING_NONE, 1034 SK_PACING_NEEDED); 1035 sk->sk_max_pacing_rate = val; 1036 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1037 sk->sk_max_pacing_rate); 1038 break; 1039 1040 case SO_INCOMING_CPU: 1041 sk->sk_incoming_cpu = val; 1042 break; 1043 1044 case SO_CNX_ADVICE: 1045 if (val == 1) 1046 dst_negative_advice(sk); 1047 break; 1048 1049 case SO_ZEROCOPY: 1050 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6) 1051 ret = -ENOTSUPP; 1052 else if (sk->sk_protocol != IPPROTO_TCP) 1053 ret = -ENOTSUPP; 1054 else if (sk->sk_state != TCP_CLOSE) 1055 ret = -EBUSY; 1056 else if (val < 0 || val > 1) 1057 ret = -EINVAL; 1058 else 1059 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1060 break; 1061 1062 default: 1063 ret = -ENOPROTOOPT; 1064 break; 1065 } 1066 release_sock(sk); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(sock_setsockopt); 1070 1071 1072 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1073 struct ucred *ucred) 1074 { 1075 ucred->pid = pid_vnr(pid); 1076 ucred->uid = ucred->gid = -1; 1077 if (cred) { 1078 struct user_namespace *current_ns = current_user_ns(); 1079 1080 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1081 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1082 } 1083 } 1084 1085 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1086 { 1087 struct user_namespace *user_ns = current_user_ns(); 1088 int i; 1089 1090 for (i = 0; i < src->ngroups; i++) 1091 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1092 return -EFAULT; 1093 1094 return 0; 1095 } 1096 1097 int sock_getsockopt(struct socket *sock, int level, int optname, 1098 char __user *optval, int __user *optlen) 1099 { 1100 struct sock *sk = sock->sk; 1101 1102 union { 1103 int val; 1104 u64 val64; 1105 struct linger ling; 1106 struct timeval tm; 1107 } v; 1108 1109 int lv = sizeof(int); 1110 int len; 1111 1112 if (get_user(len, optlen)) 1113 return -EFAULT; 1114 if (len < 0) 1115 return -EINVAL; 1116 1117 memset(&v, 0, sizeof(v)); 1118 1119 switch (optname) { 1120 case SO_DEBUG: 1121 v.val = sock_flag(sk, SOCK_DBG); 1122 break; 1123 1124 case SO_DONTROUTE: 1125 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1126 break; 1127 1128 case SO_BROADCAST: 1129 v.val = sock_flag(sk, SOCK_BROADCAST); 1130 break; 1131 1132 case SO_SNDBUF: 1133 v.val = sk->sk_sndbuf; 1134 break; 1135 1136 case SO_RCVBUF: 1137 v.val = sk->sk_rcvbuf; 1138 break; 1139 1140 case SO_REUSEADDR: 1141 v.val = sk->sk_reuse; 1142 break; 1143 1144 case SO_REUSEPORT: 1145 v.val = sk->sk_reuseport; 1146 break; 1147 1148 case SO_KEEPALIVE: 1149 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1150 break; 1151 1152 case SO_TYPE: 1153 v.val = sk->sk_type; 1154 break; 1155 1156 case SO_PROTOCOL: 1157 v.val = sk->sk_protocol; 1158 break; 1159 1160 case SO_DOMAIN: 1161 v.val = sk->sk_family; 1162 break; 1163 1164 case SO_ERROR: 1165 v.val = -sock_error(sk); 1166 if (v.val == 0) 1167 v.val = xchg(&sk->sk_err_soft, 0); 1168 break; 1169 1170 case SO_OOBINLINE: 1171 v.val = sock_flag(sk, SOCK_URGINLINE); 1172 break; 1173 1174 case SO_NO_CHECK: 1175 v.val = sk->sk_no_check_tx; 1176 break; 1177 1178 case SO_PRIORITY: 1179 v.val = sk->sk_priority; 1180 break; 1181 1182 case SO_LINGER: 1183 lv = sizeof(v.ling); 1184 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1185 v.ling.l_linger = sk->sk_lingertime / HZ; 1186 break; 1187 1188 case SO_BSDCOMPAT: 1189 sock_warn_obsolete_bsdism("getsockopt"); 1190 break; 1191 1192 case SO_TIMESTAMP: 1193 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1194 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1195 break; 1196 1197 case SO_TIMESTAMPNS: 1198 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1199 break; 1200 1201 case SO_TIMESTAMPING: 1202 v.val = sk->sk_tsflags; 1203 break; 1204 1205 case SO_RCVTIMEO: 1206 lv = sizeof(struct timeval); 1207 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1208 v.tm.tv_sec = 0; 1209 v.tm.tv_usec = 0; 1210 } else { 1211 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1212 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; 1213 } 1214 break; 1215 1216 case SO_SNDTIMEO: 1217 lv = sizeof(struct timeval); 1218 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1219 v.tm.tv_sec = 0; 1220 v.tm.tv_usec = 0; 1221 } else { 1222 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1223 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; 1224 } 1225 break; 1226 1227 case SO_RCVLOWAT: 1228 v.val = sk->sk_rcvlowat; 1229 break; 1230 1231 case SO_SNDLOWAT: 1232 v.val = 1; 1233 break; 1234 1235 case SO_PASSCRED: 1236 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1237 break; 1238 1239 case SO_PEERCRED: 1240 { 1241 struct ucred peercred; 1242 if (len > sizeof(peercred)) 1243 len = sizeof(peercred); 1244 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1245 if (copy_to_user(optval, &peercred, len)) 1246 return -EFAULT; 1247 goto lenout; 1248 } 1249 1250 case SO_PEERGROUPS: 1251 { 1252 int ret, n; 1253 1254 if (!sk->sk_peer_cred) 1255 return -ENODATA; 1256 1257 n = sk->sk_peer_cred->group_info->ngroups; 1258 if (len < n * sizeof(gid_t)) { 1259 len = n * sizeof(gid_t); 1260 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1261 } 1262 len = n * sizeof(gid_t); 1263 1264 ret = groups_to_user((gid_t __user *)optval, 1265 sk->sk_peer_cred->group_info); 1266 if (ret) 1267 return ret; 1268 goto lenout; 1269 } 1270 1271 case SO_PEERNAME: 1272 { 1273 char address[128]; 1274 1275 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1276 return -ENOTCONN; 1277 if (lv < len) 1278 return -EINVAL; 1279 if (copy_to_user(optval, address, len)) 1280 return -EFAULT; 1281 goto lenout; 1282 } 1283 1284 /* Dubious BSD thing... Probably nobody even uses it, but 1285 * the UNIX standard wants it for whatever reason... -DaveM 1286 */ 1287 case SO_ACCEPTCONN: 1288 v.val = sk->sk_state == TCP_LISTEN; 1289 break; 1290 1291 case SO_PASSSEC: 1292 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1293 break; 1294 1295 case SO_PEERSEC: 1296 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1297 1298 case SO_MARK: 1299 v.val = sk->sk_mark; 1300 break; 1301 1302 case SO_RXQ_OVFL: 1303 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1304 break; 1305 1306 case SO_WIFI_STATUS: 1307 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1308 break; 1309 1310 case SO_PEEK_OFF: 1311 if (!sock->ops->set_peek_off) 1312 return -EOPNOTSUPP; 1313 1314 v.val = sk->sk_peek_off; 1315 break; 1316 case SO_NOFCS: 1317 v.val = sock_flag(sk, SOCK_NOFCS); 1318 break; 1319 1320 case SO_BINDTODEVICE: 1321 return sock_getbindtodevice(sk, optval, optlen, len); 1322 1323 case SO_GET_FILTER: 1324 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1325 if (len < 0) 1326 return len; 1327 1328 goto lenout; 1329 1330 case SO_LOCK_FILTER: 1331 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1332 break; 1333 1334 case SO_BPF_EXTENSIONS: 1335 v.val = bpf_tell_extensions(); 1336 break; 1337 1338 case SO_SELECT_ERR_QUEUE: 1339 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1340 break; 1341 1342 #ifdef CONFIG_NET_RX_BUSY_POLL 1343 case SO_BUSY_POLL: 1344 v.val = sk->sk_ll_usec; 1345 break; 1346 #endif 1347 1348 case SO_MAX_PACING_RATE: 1349 v.val = sk->sk_max_pacing_rate; 1350 break; 1351 1352 case SO_INCOMING_CPU: 1353 v.val = sk->sk_incoming_cpu; 1354 break; 1355 1356 case SO_MEMINFO: 1357 { 1358 u32 meminfo[SK_MEMINFO_VARS]; 1359 1360 if (get_user(len, optlen)) 1361 return -EFAULT; 1362 1363 sk_get_meminfo(sk, meminfo); 1364 1365 len = min_t(unsigned int, len, sizeof(meminfo)); 1366 if (copy_to_user(optval, &meminfo, len)) 1367 return -EFAULT; 1368 1369 goto lenout; 1370 } 1371 1372 #ifdef CONFIG_NET_RX_BUSY_POLL 1373 case SO_INCOMING_NAPI_ID: 1374 v.val = READ_ONCE(sk->sk_napi_id); 1375 1376 /* aggregate non-NAPI IDs down to 0 */ 1377 if (v.val < MIN_NAPI_ID) 1378 v.val = 0; 1379 1380 break; 1381 #endif 1382 1383 case SO_COOKIE: 1384 lv = sizeof(u64); 1385 if (len < lv) 1386 return -EINVAL; 1387 v.val64 = sock_gen_cookie(sk); 1388 break; 1389 1390 case SO_ZEROCOPY: 1391 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1392 break; 1393 1394 default: 1395 /* We implement the SO_SNDLOWAT etc to not be settable 1396 * (1003.1g 7). 1397 */ 1398 return -ENOPROTOOPT; 1399 } 1400 1401 if (len > lv) 1402 len = lv; 1403 if (copy_to_user(optval, &v, len)) 1404 return -EFAULT; 1405 lenout: 1406 if (put_user(len, optlen)) 1407 return -EFAULT; 1408 return 0; 1409 } 1410 1411 /* 1412 * Initialize an sk_lock. 1413 * 1414 * (We also register the sk_lock with the lock validator.) 1415 */ 1416 static inline void sock_lock_init(struct sock *sk) 1417 { 1418 if (sk->sk_kern_sock) 1419 sock_lock_init_class_and_name( 1420 sk, 1421 af_family_kern_slock_key_strings[sk->sk_family], 1422 af_family_kern_slock_keys + sk->sk_family, 1423 af_family_kern_key_strings[sk->sk_family], 1424 af_family_kern_keys + sk->sk_family); 1425 else 1426 sock_lock_init_class_and_name( 1427 sk, 1428 af_family_slock_key_strings[sk->sk_family], 1429 af_family_slock_keys + sk->sk_family, 1430 af_family_key_strings[sk->sk_family], 1431 af_family_keys + sk->sk_family); 1432 } 1433 1434 /* 1435 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1436 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1437 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1438 */ 1439 static void sock_copy(struct sock *nsk, const struct sock *osk) 1440 { 1441 #ifdef CONFIG_SECURITY_NETWORK 1442 void *sptr = nsk->sk_security; 1443 #endif 1444 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1445 1446 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1447 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1448 1449 #ifdef CONFIG_SECURITY_NETWORK 1450 nsk->sk_security = sptr; 1451 security_sk_clone(osk, nsk); 1452 #endif 1453 } 1454 1455 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1456 int family) 1457 { 1458 struct sock *sk; 1459 struct kmem_cache *slab; 1460 1461 slab = prot->slab; 1462 if (slab != NULL) { 1463 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1464 if (!sk) 1465 return sk; 1466 if (priority & __GFP_ZERO) 1467 sk_prot_clear_nulls(sk, prot->obj_size); 1468 } else 1469 sk = kmalloc(prot->obj_size, priority); 1470 1471 if (sk != NULL) { 1472 kmemcheck_annotate_bitfield(sk, flags); 1473 1474 if (security_sk_alloc(sk, family, priority)) 1475 goto out_free; 1476 1477 if (!try_module_get(prot->owner)) 1478 goto out_free_sec; 1479 sk_tx_queue_clear(sk); 1480 } 1481 1482 return sk; 1483 1484 out_free_sec: 1485 security_sk_free(sk); 1486 out_free: 1487 if (slab != NULL) 1488 kmem_cache_free(slab, sk); 1489 else 1490 kfree(sk); 1491 return NULL; 1492 } 1493 1494 static void sk_prot_free(struct proto *prot, struct sock *sk) 1495 { 1496 struct kmem_cache *slab; 1497 struct module *owner; 1498 1499 owner = prot->owner; 1500 slab = prot->slab; 1501 1502 cgroup_sk_free(&sk->sk_cgrp_data); 1503 mem_cgroup_sk_free(sk); 1504 security_sk_free(sk); 1505 if (slab != NULL) 1506 kmem_cache_free(slab, sk); 1507 else 1508 kfree(sk); 1509 module_put(owner); 1510 } 1511 1512 /** 1513 * sk_alloc - All socket objects are allocated here 1514 * @net: the applicable net namespace 1515 * @family: protocol family 1516 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1517 * @prot: struct proto associated with this new sock instance 1518 * @kern: is this to be a kernel socket? 1519 */ 1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1521 struct proto *prot, int kern) 1522 { 1523 struct sock *sk; 1524 1525 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1526 if (sk) { 1527 sk->sk_family = family; 1528 /* 1529 * See comment in struct sock definition to understand 1530 * why we need sk_prot_creator -acme 1531 */ 1532 sk->sk_prot = sk->sk_prot_creator = prot; 1533 sk->sk_kern_sock = kern; 1534 sock_lock_init(sk); 1535 sk->sk_net_refcnt = kern ? 0 : 1; 1536 if (likely(sk->sk_net_refcnt)) 1537 get_net(net); 1538 sock_net_set(sk, net); 1539 refcount_set(&sk->sk_wmem_alloc, 1); 1540 1541 mem_cgroup_sk_alloc(sk); 1542 cgroup_sk_alloc(&sk->sk_cgrp_data); 1543 sock_update_classid(&sk->sk_cgrp_data); 1544 sock_update_netprioidx(&sk->sk_cgrp_data); 1545 } 1546 1547 return sk; 1548 } 1549 EXPORT_SYMBOL(sk_alloc); 1550 1551 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1552 * grace period. This is the case for UDP sockets and TCP listeners. 1553 */ 1554 static void __sk_destruct(struct rcu_head *head) 1555 { 1556 struct sock *sk = container_of(head, struct sock, sk_rcu); 1557 struct sk_filter *filter; 1558 1559 if (sk->sk_destruct) 1560 sk->sk_destruct(sk); 1561 1562 filter = rcu_dereference_check(sk->sk_filter, 1563 refcount_read(&sk->sk_wmem_alloc) == 0); 1564 if (filter) { 1565 sk_filter_uncharge(sk, filter); 1566 RCU_INIT_POINTER(sk->sk_filter, NULL); 1567 } 1568 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1569 reuseport_detach_sock(sk); 1570 1571 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1572 1573 if (atomic_read(&sk->sk_omem_alloc)) 1574 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1575 __func__, atomic_read(&sk->sk_omem_alloc)); 1576 1577 if (sk->sk_frag.page) { 1578 put_page(sk->sk_frag.page); 1579 sk->sk_frag.page = NULL; 1580 } 1581 1582 if (sk->sk_peer_cred) 1583 put_cred(sk->sk_peer_cred); 1584 put_pid(sk->sk_peer_pid); 1585 if (likely(sk->sk_net_refcnt)) 1586 put_net(sock_net(sk)); 1587 sk_prot_free(sk->sk_prot_creator, sk); 1588 } 1589 1590 void sk_destruct(struct sock *sk) 1591 { 1592 if (sock_flag(sk, SOCK_RCU_FREE)) 1593 call_rcu(&sk->sk_rcu, __sk_destruct); 1594 else 1595 __sk_destruct(&sk->sk_rcu); 1596 } 1597 1598 static void __sk_free(struct sock *sk) 1599 { 1600 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1601 sock_diag_broadcast_destroy(sk); 1602 else 1603 sk_destruct(sk); 1604 } 1605 1606 void sk_free(struct sock *sk) 1607 { 1608 /* 1609 * We subtract one from sk_wmem_alloc and can know if 1610 * some packets are still in some tx queue. 1611 * If not null, sock_wfree() will call __sk_free(sk) later 1612 */ 1613 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1614 __sk_free(sk); 1615 } 1616 EXPORT_SYMBOL(sk_free); 1617 1618 static void sk_init_common(struct sock *sk) 1619 { 1620 skb_queue_head_init(&sk->sk_receive_queue); 1621 skb_queue_head_init(&sk->sk_write_queue); 1622 skb_queue_head_init(&sk->sk_error_queue); 1623 1624 rwlock_init(&sk->sk_callback_lock); 1625 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1626 af_rlock_keys + sk->sk_family, 1627 af_family_rlock_key_strings[sk->sk_family]); 1628 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1629 af_wlock_keys + sk->sk_family, 1630 af_family_wlock_key_strings[sk->sk_family]); 1631 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1632 af_elock_keys + sk->sk_family, 1633 af_family_elock_key_strings[sk->sk_family]); 1634 lockdep_set_class_and_name(&sk->sk_callback_lock, 1635 af_callback_keys + sk->sk_family, 1636 af_family_clock_key_strings[sk->sk_family]); 1637 } 1638 1639 /** 1640 * sk_clone_lock - clone a socket, and lock its clone 1641 * @sk: the socket to clone 1642 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1643 * 1644 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1645 */ 1646 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1647 { 1648 struct sock *newsk; 1649 bool is_charged = true; 1650 1651 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1652 if (newsk != NULL) { 1653 struct sk_filter *filter; 1654 1655 sock_copy(newsk, sk); 1656 1657 /* SANITY */ 1658 if (likely(newsk->sk_net_refcnt)) 1659 get_net(sock_net(newsk)); 1660 sk_node_init(&newsk->sk_node); 1661 sock_lock_init(newsk); 1662 bh_lock_sock(newsk); 1663 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1664 newsk->sk_backlog.len = 0; 1665 1666 atomic_set(&newsk->sk_rmem_alloc, 0); 1667 /* 1668 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1669 */ 1670 refcount_set(&newsk->sk_wmem_alloc, 1); 1671 atomic_set(&newsk->sk_omem_alloc, 0); 1672 sk_init_common(newsk); 1673 1674 newsk->sk_dst_cache = NULL; 1675 newsk->sk_dst_pending_confirm = 0; 1676 newsk->sk_wmem_queued = 0; 1677 newsk->sk_forward_alloc = 0; 1678 atomic_set(&newsk->sk_drops, 0); 1679 newsk->sk_send_head = NULL; 1680 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1681 atomic_set(&newsk->sk_zckey, 0); 1682 1683 sock_reset_flag(newsk, SOCK_DONE); 1684 1685 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1686 if (filter != NULL) 1687 /* though it's an empty new sock, the charging may fail 1688 * if sysctl_optmem_max was changed between creation of 1689 * original socket and cloning 1690 */ 1691 is_charged = sk_filter_charge(newsk, filter); 1692 1693 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1694 /* We need to make sure that we don't uncharge the new 1695 * socket if we couldn't charge it in the first place 1696 * as otherwise we uncharge the parent's filter. 1697 */ 1698 if (!is_charged) 1699 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1700 sk_free_unlock_clone(newsk); 1701 newsk = NULL; 1702 goto out; 1703 } 1704 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1705 1706 newsk->sk_err = 0; 1707 newsk->sk_err_soft = 0; 1708 newsk->sk_priority = 0; 1709 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1710 atomic64_set(&newsk->sk_cookie, 0); 1711 1712 mem_cgroup_sk_alloc(newsk); 1713 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1714 1715 /* 1716 * Before updating sk_refcnt, we must commit prior changes to memory 1717 * (Documentation/RCU/rculist_nulls.txt for details) 1718 */ 1719 smp_wmb(); 1720 refcount_set(&newsk->sk_refcnt, 2); 1721 1722 /* 1723 * Increment the counter in the same struct proto as the master 1724 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1725 * is the same as sk->sk_prot->socks, as this field was copied 1726 * with memcpy). 1727 * 1728 * This _changes_ the previous behaviour, where 1729 * tcp_create_openreq_child always was incrementing the 1730 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1731 * to be taken into account in all callers. -acme 1732 */ 1733 sk_refcnt_debug_inc(newsk); 1734 sk_set_socket(newsk, NULL); 1735 newsk->sk_wq = NULL; 1736 1737 if (newsk->sk_prot->sockets_allocated) 1738 sk_sockets_allocated_inc(newsk); 1739 1740 if (sock_needs_netstamp(sk) && 1741 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1742 net_enable_timestamp(); 1743 } 1744 out: 1745 return newsk; 1746 } 1747 EXPORT_SYMBOL_GPL(sk_clone_lock); 1748 1749 void sk_free_unlock_clone(struct sock *sk) 1750 { 1751 /* It is still raw copy of parent, so invalidate 1752 * destructor and make plain sk_free() */ 1753 sk->sk_destruct = NULL; 1754 bh_unlock_sock(sk); 1755 sk_free(sk); 1756 } 1757 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1758 1759 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1760 { 1761 u32 max_segs = 1; 1762 1763 sk_dst_set(sk, dst); 1764 sk->sk_route_caps = dst->dev->features; 1765 if (sk->sk_route_caps & NETIF_F_GSO) 1766 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1767 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1768 if (sk_can_gso(sk)) { 1769 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1770 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1771 } else { 1772 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1773 sk->sk_gso_max_size = dst->dev->gso_max_size; 1774 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1775 } 1776 } 1777 sk->sk_gso_max_segs = max_segs; 1778 } 1779 EXPORT_SYMBOL_GPL(sk_setup_caps); 1780 1781 /* 1782 * Simple resource managers for sockets. 1783 */ 1784 1785 1786 /* 1787 * Write buffer destructor automatically called from kfree_skb. 1788 */ 1789 void sock_wfree(struct sk_buff *skb) 1790 { 1791 struct sock *sk = skb->sk; 1792 unsigned int len = skb->truesize; 1793 1794 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1795 /* 1796 * Keep a reference on sk_wmem_alloc, this will be released 1797 * after sk_write_space() call 1798 */ 1799 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1800 sk->sk_write_space(sk); 1801 len = 1; 1802 } 1803 /* 1804 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1805 * could not do because of in-flight packets 1806 */ 1807 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1808 __sk_free(sk); 1809 } 1810 EXPORT_SYMBOL(sock_wfree); 1811 1812 /* This variant of sock_wfree() is used by TCP, 1813 * since it sets SOCK_USE_WRITE_QUEUE. 1814 */ 1815 void __sock_wfree(struct sk_buff *skb) 1816 { 1817 struct sock *sk = skb->sk; 1818 1819 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1820 __sk_free(sk); 1821 } 1822 1823 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1824 { 1825 skb_orphan(skb); 1826 skb->sk = sk; 1827 #ifdef CONFIG_INET 1828 if (unlikely(!sk_fullsock(sk))) { 1829 skb->destructor = sock_edemux; 1830 sock_hold(sk); 1831 return; 1832 } 1833 #endif 1834 skb->destructor = sock_wfree; 1835 skb_set_hash_from_sk(skb, sk); 1836 /* 1837 * We used to take a refcount on sk, but following operation 1838 * is enough to guarantee sk_free() wont free this sock until 1839 * all in-flight packets are completed 1840 */ 1841 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1842 } 1843 EXPORT_SYMBOL(skb_set_owner_w); 1844 1845 /* This helper is used by netem, as it can hold packets in its 1846 * delay queue. We want to allow the owner socket to send more 1847 * packets, as if they were already TX completed by a typical driver. 1848 * But we also want to keep skb->sk set because some packet schedulers 1849 * rely on it (sch_fq for example). 1850 */ 1851 void skb_orphan_partial(struct sk_buff *skb) 1852 { 1853 if (skb_is_tcp_pure_ack(skb)) 1854 return; 1855 1856 if (skb->destructor == sock_wfree 1857 #ifdef CONFIG_INET 1858 || skb->destructor == tcp_wfree 1859 #endif 1860 ) { 1861 struct sock *sk = skb->sk; 1862 1863 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1864 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 1865 skb->destructor = sock_efree; 1866 } 1867 } else { 1868 skb_orphan(skb); 1869 } 1870 } 1871 EXPORT_SYMBOL(skb_orphan_partial); 1872 1873 /* 1874 * Read buffer destructor automatically called from kfree_skb. 1875 */ 1876 void sock_rfree(struct sk_buff *skb) 1877 { 1878 struct sock *sk = skb->sk; 1879 unsigned int len = skb->truesize; 1880 1881 atomic_sub(len, &sk->sk_rmem_alloc); 1882 sk_mem_uncharge(sk, len); 1883 } 1884 EXPORT_SYMBOL(sock_rfree); 1885 1886 /* 1887 * Buffer destructor for skbs that are not used directly in read or write 1888 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1889 */ 1890 void sock_efree(struct sk_buff *skb) 1891 { 1892 sock_put(skb->sk); 1893 } 1894 EXPORT_SYMBOL(sock_efree); 1895 1896 kuid_t sock_i_uid(struct sock *sk) 1897 { 1898 kuid_t uid; 1899 1900 read_lock_bh(&sk->sk_callback_lock); 1901 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1902 read_unlock_bh(&sk->sk_callback_lock); 1903 return uid; 1904 } 1905 EXPORT_SYMBOL(sock_i_uid); 1906 1907 unsigned long sock_i_ino(struct sock *sk) 1908 { 1909 unsigned long ino; 1910 1911 read_lock_bh(&sk->sk_callback_lock); 1912 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1913 read_unlock_bh(&sk->sk_callback_lock); 1914 return ino; 1915 } 1916 EXPORT_SYMBOL(sock_i_ino); 1917 1918 /* 1919 * Allocate a skb from the socket's send buffer. 1920 */ 1921 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1922 gfp_t priority) 1923 { 1924 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1925 struct sk_buff *skb = alloc_skb(size, priority); 1926 if (skb) { 1927 skb_set_owner_w(skb, sk); 1928 return skb; 1929 } 1930 } 1931 return NULL; 1932 } 1933 EXPORT_SYMBOL(sock_wmalloc); 1934 1935 static void sock_ofree(struct sk_buff *skb) 1936 { 1937 struct sock *sk = skb->sk; 1938 1939 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 1940 } 1941 1942 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1943 gfp_t priority) 1944 { 1945 struct sk_buff *skb; 1946 1947 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 1948 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 1949 sysctl_optmem_max) 1950 return NULL; 1951 1952 skb = alloc_skb(size, priority); 1953 if (!skb) 1954 return NULL; 1955 1956 atomic_add(skb->truesize, &sk->sk_omem_alloc); 1957 skb->sk = sk; 1958 skb->destructor = sock_ofree; 1959 return skb; 1960 } 1961 1962 /* 1963 * Allocate a memory block from the socket's option memory buffer. 1964 */ 1965 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1966 { 1967 if ((unsigned int)size <= sysctl_optmem_max && 1968 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1969 void *mem; 1970 /* First do the add, to avoid the race if kmalloc 1971 * might sleep. 1972 */ 1973 atomic_add(size, &sk->sk_omem_alloc); 1974 mem = kmalloc(size, priority); 1975 if (mem) 1976 return mem; 1977 atomic_sub(size, &sk->sk_omem_alloc); 1978 } 1979 return NULL; 1980 } 1981 EXPORT_SYMBOL(sock_kmalloc); 1982 1983 /* Free an option memory block. Note, we actually want the inline 1984 * here as this allows gcc to detect the nullify and fold away the 1985 * condition entirely. 1986 */ 1987 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1988 const bool nullify) 1989 { 1990 if (WARN_ON_ONCE(!mem)) 1991 return; 1992 if (nullify) 1993 kzfree(mem); 1994 else 1995 kfree(mem); 1996 atomic_sub(size, &sk->sk_omem_alloc); 1997 } 1998 1999 void sock_kfree_s(struct sock *sk, void *mem, int size) 2000 { 2001 __sock_kfree_s(sk, mem, size, false); 2002 } 2003 EXPORT_SYMBOL(sock_kfree_s); 2004 2005 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2006 { 2007 __sock_kfree_s(sk, mem, size, true); 2008 } 2009 EXPORT_SYMBOL(sock_kzfree_s); 2010 2011 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2012 I think, these locks should be removed for datagram sockets. 2013 */ 2014 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2015 { 2016 DEFINE_WAIT(wait); 2017 2018 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2019 for (;;) { 2020 if (!timeo) 2021 break; 2022 if (signal_pending(current)) 2023 break; 2024 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2025 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2026 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2027 break; 2028 if (sk->sk_shutdown & SEND_SHUTDOWN) 2029 break; 2030 if (sk->sk_err) 2031 break; 2032 timeo = schedule_timeout(timeo); 2033 } 2034 finish_wait(sk_sleep(sk), &wait); 2035 return timeo; 2036 } 2037 2038 2039 /* 2040 * Generic send/receive buffer handlers 2041 */ 2042 2043 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2044 unsigned long data_len, int noblock, 2045 int *errcode, int max_page_order) 2046 { 2047 struct sk_buff *skb; 2048 long timeo; 2049 int err; 2050 2051 timeo = sock_sndtimeo(sk, noblock); 2052 for (;;) { 2053 err = sock_error(sk); 2054 if (err != 0) 2055 goto failure; 2056 2057 err = -EPIPE; 2058 if (sk->sk_shutdown & SEND_SHUTDOWN) 2059 goto failure; 2060 2061 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2062 break; 2063 2064 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2065 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2066 err = -EAGAIN; 2067 if (!timeo) 2068 goto failure; 2069 if (signal_pending(current)) 2070 goto interrupted; 2071 timeo = sock_wait_for_wmem(sk, timeo); 2072 } 2073 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2074 errcode, sk->sk_allocation); 2075 if (skb) 2076 skb_set_owner_w(skb, sk); 2077 return skb; 2078 2079 interrupted: 2080 err = sock_intr_errno(timeo); 2081 failure: 2082 *errcode = err; 2083 return NULL; 2084 } 2085 EXPORT_SYMBOL(sock_alloc_send_pskb); 2086 2087 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2088 int noblock, int *errcode) 2089 { 2090 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2091 } 2092 EXPORT_SYMBOL(sock_alloc_send_skb); 2093 2094 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2095 struct sockcm_cookie *sockc) 2096 { 2097 u32 tsflags; 2098 2099 switch (cmsg->cmsg_type) { 2100 case SO_MARK: 2101 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2102 return -EPERM; 2103 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2104 return -EINVAL; 2105 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2106 break; 2107 case SO_TIMESTAMPING: 2108 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2109 return -EINVAL; 2110 2111 tsflags = *(u32 *)CMSG_DATA(cmsg); 2112 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2113 return -EINVAL; 2114 2115 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2116 sockc->tsflags |= tsflags; 2117 break; 2118 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2119 case SCM_RIGHTS: 2120 case SCM_CREDENTIALS: 2121 break; 2122 default: 2123 return -EINVAL; 2124 } 2125 return 0; 2126 } 2127 EXPORT_SYMBOL(__sock_cmsg_send); 2128 2129 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2130 struct sockcm_cookie *sockc) 2131 { 2132 struct cmsghdr *cmsg; 2133 int ret; 2134 2135 for_each_cmsghdr(cmsg, msg) { 2136 if (!CMSG_OK(msg, cmsg)) 2137 return -EINVAL; 2138 if (cmsg->cmsg_level != SOL_SOCKET) 2139 continue; 2140 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2141 if (ret) 2142 return ret; 2143 } 2144 return 0; 2145 } 2146 EXPORT_SYMBOL(sock_cmsg_send); 2147 2148 static void sk_enter_memory_pressure(struct sock *sk) 2149 { 2150 if (!sk->sk_prot->enter_memory_pressure) 2151 return; 2152 2153 sk->sk_prot->enter_memory_pressure(sk); 2154 } 2155 2156 static void sk_leave_memory_pressure(struct sock *sk) 2157 { 2158 if (sk->sk_prot->leave_memory_pressure) { 2159 sk->sk_prot->leave_memory_pressure(sk); 2160 } else { 2161 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2162 2163 if (memory_pressure && *memory_pressure) 2164 *memory_pressure = 0; 2165 } 2166 } 2167 2168 /* On 32bit arches, an skb frag is limited to 2^15 */ 2169 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2170 2171 /** 2172 * skb_page_frag_refill - check that a page_frag contains enough room 2173 * @sz: minimum size of the fragment we want to get 2174 * @pfrag: pointer to page_frag 2175 * @gfp: priority for memory allocation 2176 * 2177 * Note: While this allocator tries to use high order pages, there is 2178 * no guarantee that allocations succeed. Therefore, @sz MUST be 2179 * less or equal than PAGE_SIZE. 2180 */ 2181 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2182 { 2183 if (pfrag->page) { 2184 if (page_ref_count(pfrag->page) == 1) { 2185 pfrag->offset = 0; 2186 return true; 2187 } 2188 if (pfrag->offset + sz <= pfrag->size) 2189 return true; 2190 put_page(pfrag->page); 2191 } 2192 2193 pfrag->offset = 0; 2194 if (SKB_FRAG_PAGE_ORDER) { 2195 /* Avoid direct reclaim but allow kswapd to wake */ 2196 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2197 __GFP_COMP | __GFP_NOWARN | 2198 __GFP_NORETRY, 2199 SKB_FRAG_PAGE_ORDER); 2200 if (likely(pfrag->page)) { 2201 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2202 return true; 2203 } 2204 } 2205 pfrag->page = alloc_page(gfp); 2206 if (likely(pfrag->page)) { 2207 pfrag->size = PAGE_SIZE; 2208 return true; 2209 } 2210 return false; 2211 } 2212 EXPORT_SYMBOL(skb_page_frag_refill); 2213 2214 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2215 { 2216 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2217 return true; 2218 2219 sk_enter_memory_pressure(sk); 2220 sk_stream_moderate_sndbuf(sk); 2221 return false; 2222 } 2223 EXPORT_SYMBOL(sk_page_frag_refill); 2224 2225 static void __lock_sock(struct sock *sk) 2226 __releases(&sk->sk_lock.slock) 2227 __acquires(&sk->sk_lock.slock) 2228 { 2229 DEFINE_WAIT(wait); 2230 2231 for (;;) { 2232 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2233 TASK_UNINTERRUPTIBLE); 2234 spin_unlock_bh(&sk->sk_lock.slock); 2235 schedule(); 2236 spin_lock_bh(&sk->sk_lock.slock); 2237 if (!sock_owned_by_user(sk)) 2238 break; 2239 } 2240 finish_wait(&sk->sk_lock.wq, &wait); 2241 } 2242 2243 static void __release_sock(struct sock *sk) 2244 __releases(&sk->sk_lock.slock) 2245 __acquires(&sk->sk_lock.slock) 2246 { 2247 struct sk_buff *skb, *next; 2248 2249 while ((skb = sk->sk_backlog.head) != NULL) { 2250 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2251 2252 spin_unlock_bh(&sk->sk_lock.slock); 2253 2254 do { 2255 next = skb->next; 2256 prefetch(next); 2257 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2258 skb->next = NULL; 2259 sk_backlog_rcv(sk, skb); 2260 2261 cond_resched(); 2262 2263 skb = next; 2264 } while (skb != NULL); 2265 2266 spin_lock_bh(&sk->sk_lock.slock); 2267 } 2268 2269 /* 2270 * Doing the zeroing here guarantee we can not loop forever 2271 * while a wild producer attempts to flood us. 2272 */ 2273 sk->sk_backlog.len = 0; 2274 } 2275 2276 void __sk_flush_backlog(struct sock *sk) 2277 { 2278 spin_lock_bh(&sk->sk_lock.slock); 2279 __release_sock(sk); 2280 spin_unlock_bh(&sk->sk_lock.slock); 2281 } 2282 2283 /** 2284 * sk_wait_data - wait for data to arrive at sk_receive_queue 2285 * @sk: sock to wait on 2286 * @timeo: for how long 2287 * @skb: last skb seen on sk_receive_queue 2288 * 2289 * Now socket state including sk->sk_err is changed only under lock, 2290 * hence we may omit checks after joining wait queue. 2291 * We check receive queue before schedule() only as optimization; 2292 * it is very likely that release_sock() added new data. 2293 */ 2294 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2295 { 2296 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2297 int rc; 2298 2299 add_wait_queue(sk_sleep(sk), &wait); 2300 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2301 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2302 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2303 remove_wait_queue(sk_sleep(sk), &wait); 2304 return rc; 2305 } 2306 EXPORT_SYMBOL(sk_wait_data); 2307 2308 /** 2309 * __sk_mem_raise_allocated - increase memory_allocated 2310 * @sk: socket 2311 * @size: memory size to allocate 2312 * @amt: pages to allocate 2313 * @kind: allocation type 2314 * 2315 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2316 */ 2317 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2318 { 2319 struct proto *prot = sk->sk_prot; 2320 long allocated = sk_memory_allocated_add(sk, amt); 2321 2322 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2323 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2324 goto suppress_allocation; 2325 2326 /* Under limit. */ 2327 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2328 sk_leave_memory_pressure(sk); 2329 return 1; 2330 } 2331 2332 /* Under pressure. */ 2333 if (allocated > sk_prot_mem_limits(sk, 1)) 2334 sk_enter_memory_pressure(sk); 2335 2336 /* Over hard limit. */ 2337 if (allocated > sk_prot_mem_limits(sk, 2)) 2338 goto suppress_allocation; 2339 2340 /* guarantee minimum buffer size under pressure */ 2341 if (kind == SK_MEM_RECV) { 2342 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2343 return 1; 2344 2345 } else { /* SK_MEM_SEND */ 2346 if (sk->sk_type == SOCK_STREAM) { 2347 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2348 return 1; 2349 } else if (refcount_read(&sk->sk_wmem_alloc) < 2350 prot->sysctl_wmem[0]) 2351 return 1; 2352 } 2353 2354 if (sk_has_memory_pressure(sk)) { 2355 int alloc; 2356 2357 if (!sk_under_memory_pressure(sk)) 2358 return 1; 2359 alloc = sk_sockets_allocated_read_positive(sk); 2360 if (sk_prot_mem_limits(sk, 2) > alloc * 2361 sk_mem_pages(sk->sk_wmem_queued + 2362 atomic_read(&sk->sk_rmem_alloc) + 2363 sk->sk_forward_alloc)) 2364 return 1; 2365 } 2366 2367 suppress_allocation: 2368 2369 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2370 sk_stream_moderate_sndbuf(sk); 2371 2372 /* Fail only if socket is _under_ its sndbuf. 2373 * In this case we cannot block, so that we have to fail. 2374 */ 2375 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2376 return 1; 2377 } 2378 2379 trace_sock_exceed_buf_limit(sk, prot, allocated); 2380 2381 sk_memory_allocated_sub(sk, amt); 2382 2383 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2384 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2385 2386 return 0; 2387 } 2388 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2389 2390 /** 2391 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2392 * @sk: socket 2393 * @size: memory size to allocate 2394 * @kind: allocation type 2395 * 2396 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2397 * rmem allocation. This function assumes that protocols which have 2398 * memory_pressure use sk_wmem_queued as write buffer accounting. 2399 */ 2400 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2401 { 2402 int ret, amt = sk_mem_pages(size); 2403 2404 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2405 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2406 if (!ret) 2407 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2408 return ret; 2409 } 2410 EXPORT_SYMBOL(__sk_mem_schedule); 2411 2412 /** 2413 * __sk_mem_reduce_allocated - reclaim memory_allocated 2414 * @sk: socket 2415 * @amount: number of quanta 2416 * 2417 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2418 */ 2419 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2420 { 2421 sk_memory_allocated_sub(sk, amount); 2422 2423 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2424 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2425 2426 if (sk_under_memory_pressure(sk) && 2427 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2428 sk_leave_memory_pressure(sk); 2429 } 2430 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2431 2432 /** 2433 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2434 * @sk: socket 2435 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2436 */ 2437 void __sk_mem_reclaim(struct sock *sk, int amount) 2438 { 2439 amount >>= SK_MEM_QUANTUM_SHIFT; 2440 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2441 __sk_mem_reduce_allocated(sk, amount); 2442 } 2443 EXPORT_SYMBOL(__sk_mem_reclaim); 2444 2445 int sk_set_peek_off(struct sock *sk, int val) 2446 { 2447 sk->sk_peek_off = val; 2448 return 0; 2449 } 2450 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2451 2452 /* 2453 * Set of default routines for initialising struct proto_ops when 2454 * the protocol does not support a particular function. In certain 2455 * cases where it makes no sense for a protocol to have a "do nothing" 2456 * function, some default processing is provided. 2457 */ 2458 2459 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2460 { 2461 return -EOPNOTSUPP; 2462 } 2463 EXPORT_SYMBOL(sock_no_bind); 2464 2465 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2466 int len, int flags) 2467 { 2468 return -EOPNOTSUPP; 2469 } 2470 EXPORT_SYMBOL(sock_no_connect); 2471 2472 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2473 { 2474 return -EOPNOTSUPP; 2475 } 2476 EXPORT_SYMBOL(sock_no_socketpair); 2477 2478 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2479 bool kern) 2480 { 2481 return -EOPNOTSUPP; 2482 } 2483 EXPORT_SYMBOL(sock_no_accept); 2484 2485 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2486 int *len, int peer) 2487 { 2488 return -EOPNOTSUPP; 2489 } 2490 EXPORT_SYMBOL(sock_no_getname); 2491 2492 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2493 { 2494 return 0; 2495 } 2496 EXPORT_SYMBOL(sock_no_poll); 2497 2498 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2499 { 2500 return -EOPNOTSUPP; 2501 } 2502 EXPORT_SYMBOL(sock_no_ioctl); 2503 2504 int sock_no_listen(struct socket *sock, int backlog) 2505 { 2506 return -EOPNOTSUPP; 2507 } 2508 EXPORT_SYMBOL(sock_no_listen); 2509 2510 int sock_no_shutdown(struct socket *sock, int how) 2511 { 2512 return -EOPNOTSUPP; 2513 } 2514 EXPORT_SYMBOL(sock_no_shutdown); 2515 2516 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2517 char __user *optval, unsigned int optlen) 2518 { 2519 return -EOPNOTSUPP; 2520 } 2521 EXPORT_SYMBOL(sock_no_setsockopt); 2522 2523 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2524 char __user *optval, int __user *optlen) 2525 { 2526 return -EOPNOTSUPP; 2527 } 2528 EXPORT_SYMBOL(sock_no_getsockopt); 2529 2530 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2531 { 2532 return -EOPNOTSUPP; 2533 } 2534 EXPORT_SYMBOL(sock_no_sendmsg); 2535 2536 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2537 { 2538 return -EOPNOTSUPP; 2539 } 2540 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2541 2542 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2543 int flags) 2544 { 2545 return -EOPNOTSUPP; 2546 } 2547 EXPORT_SYMBOL(sock_no_recvmsg); 2548 2549 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2550 { 2551 /* Mirror missing mmap method error code */ 2552 return -ENODEV; 2553 } 2554 EXPORT_SYMBOL(sock_no_mmap); 2555 2556 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2557 { 2558 ssize_t res; 2559 struct msghdr msg = {.msg_flags = flags}; 2560 struct kvec iov; 2561 char *kaddr = kmap(page); 2562 iov.iov_base = kaddr + offset; 2563 iov.iov_len = size; 2564 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2565 kunmap(page); 2566 return res; 2567 } 2568 EXPORT_SYMBOL(sock_no_sendpage); 2569 2570 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2571 int offset, size_t size, int flags) 2572 { 2573 ssize_t res; 2574 struct msghdr msg = {.msg_flags = flags}; 2575 struct kvec iov; 2576 char *kaddr = kmap(page); 2577 2578 iov.iov_base = kaddr + offset; 2579 iov.iov_len = size; 2580 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2581 kunmap(page); 2582 return res; 2583 } 2584 EXPORT_SYMBOL(sock_no_sendpage_locked); 2585 2586 /* 2587 * Default Socket Callbacks 2588 */ 2589 2590 static void sock_def_wakeup(struct sock *sk) 2591 { 2592 struct socket_wq *wq; 2593 2594 rcu_read_lock(); 2595 wq = rcu_dereference(sk->sk_wq); 2596 if (skwq_has_sleeper(wq)) 2597 wake_up_interruptible_all(&wq->wait); 2598 rcu_read_unlock(); 2599 } 2600 2601 static void sock_def_error_report(struct sock *sk) 2602 { 2603 struct socket_wq *wq; 2604 2605 rcu_read_lock(); 2606 wq = rcu_dereference(sk->sk_wq); 2607 if (skwq_has_sleeper(wq)) 2608 wake_up_interruptible_poll(&wq->wait, POLLERR); 2609 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2610 rcu_read_unlock(); 2611 } 2612 2613 static void sock_def_readable(struct sock *sk) 2614 { 2615 struct socket_wq *wq; 2616 2617 rcu_read_lock(); 2618 wq = rcu_dereference(sk->sk_wq); 2619 if (skwq_has_sleeper(wq)) 2620 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2621 POLLRDNORM | POLLRDBAND); 2622 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2623 rcu_read_unlock(); 2624 } 2625 2626 static void sock_def_write_space(struct sock *sk) 2627 { 2628 struct socket_wq *wq; 2629 2630 rcu_read_lock(); 2631 2632 /* Do not wake up a writer until he can make "significant" 2633 * progress. --DaveM 2634 */ 2635 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2636 wq = rcu_dereference(sk->sk_wq); 2637 if (skwq_has_sleeper(wq)) 2638 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2639 POLLWRNORM | POLLWRBAND); 2640 2641 /* Should agree with poll, otherwise some programs break */ 2642 if (sock_writeable(sk)) 2643 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2644 } 2645 2646 rcu_read_unlock(); 2647 } 2648 2649 static void sock_def_destruct(struct sock *sk) 2650 { 2651 } 2652 2653 void sk_send_sigurg(struct sock *sk) 2654 { 2655 if (sk->sk_socket && sk->sk_socket->file) 2656 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2657 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2658 } 2659 EXPORT_SYMBOL(sk_send_sigurg); 2660 2661 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2662 unsigned long expires) 2663 { 2664 if (!mod_timer(timer, expires)) 2665 sock_hold(sk); 2666 } 2667 EXPORT_SYMBOL(sk_reset_timer); 2668 2669 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2670 { 2671 if (del_timer(timer)) 2672 __sock_put(sk); 2673 } 2674 EXPORT_SYMBOL(sk_stop_timer); 2675 2676 void sock_init_data(struct socket *sock, struct sock *sk) 2677 { 2678 sk_init_common(sk); 2679 sk->sk_send_head = NULL; 2680 2681 init_timer(&sk->sk_timer); 2682 2683 sk->sk_allocation = GFP_KERNEL; 2684 sk->sk_rcvbuf = sysctl_rmem_default; 2685 sk->sk_sndbuf = sysctl_wmem_default; 2686 sk->sk_state = TCP_CLOSE; 2687 sk_set_socket(sk, sock); 2688 2689 sock_set_flag(sk, SOCK_ZAPPED); 2690 2691 if (sock) { 2692 sk->sk_type = sock->type; 2693 sk->sk_wq = sock->wq; 2694 sock->sk = sk; 2695 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2696 } else { 2697 sk->sk_wq = NULL; 2698 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2699 } 2700 2701 rwlock_init(&sk->sk_callback_lock); 2702 if (sk->sk_kern_sock) 2703 lockdep_set_class_and_name( 2704 &sk->sk_callback_lock, 2705 af_kern_callback_keys + sk->sk_family, 2706 af_family_kern_clock_key_strings[sk->sk_family]); 2707 else 2708 lockdep_set_class_and_name( 2709 &sk->sk_callback_lock, 2710 af_callback_keys + sk->sk_family, 2711 af_family_clock_key_strings[sk->sk_family]); 2712 2713 sk->sk_state_change = sock_def_wakeup; 2714 sk->sk_data_ready = sock_def_readable; 2715 sk->sk_write_space = sock_def_write_space; 2716 sk->sk_error_report = sock_def_error_report; 2717 sk->sk_destruct = sock_def_destruct; 2718 2719 sk->sk_frag.page = NULL; 2720 sk->sk_frag.offset = 0; 2721 sk->sk_peek_off = -1; 2722 2723 sk->sk_peer_pid = NULL; 2724 sk->sk_peer_cred = NULL; 2725 sk->sk_write_pending = 0; 2726 sk->sk_rcvlowat = 1; 2727 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2728 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2729 2730 sk->sk_stamp = SK_DEFAULT_STAMP; 2731 atomic_set(&sk->sk_zckey, 0); 2732 2733 #ifdef CONFIG_NET_RX_BUSY_POLL 2734 sk->sk_napi_id = 0; 2735 sk->sk_ll_usec = sysctl_net_busy_read; 2736 #endif 2737 2738 sk->sk_max_pacing_rate = ~0U; 2739 sk->sk_pacing_rate = ~0U; 2740 sk->sk_incoming_cpu = -1; 2741 /* 2742 * Before updating sk_refcnt, we must commit prior changes to memory 2743 * (Documentation/RCU/rculist_nulls.txt for details) 2744 */ 2745 smp_wmb(); 2746 refcount_set(&sk->sk_refcnt, 1); 2747 atomic_set(&sk->sk_drops, 0); 2748 } 2749 EXPORT_SYMBOL(sock_init_data); 2750 2751 void lock_sock_nested(struct sock *sk, int subclass) 2752 { 2753 might_sleep(); 2754 spin_lock_bh(&sk->sk_lock.slock); 2755 if (sk->sk_lock.owned) 2756 __lock_sock(sk); 2757 sk->sk_lock.owned = 1; 2758 spin_unlock(&sk->sk_lock.slock); 2759 /* 2760 * The sk_lock has mutex_lock() semantics here: 2761 */ 2762 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2763 local_bh_enable(); 2764 } 2765 EXPORT_SYMBOL(lock_sock_nested); 2766 2767 void release_sock(struct sock *sk) 2768 { 2769 spin_lock_bh(&sk->sk_lock.slock); 2770 if (sk->sk_backlog.tail) 2771 __release_sock(sk); 2772 2773 /* Warning : release_cb() might need to release sk ownership, 2774 * ie call sock_release_ownership(sk) before us. 2775 */ 2776 if (sk->sk_prot->release_cb) 2777 sk->sk_prot->release_cb(sk); 2778 2779 sock_release_ownership(sk); 2780 if (waitqueue_active(&sk->sk_lock.wq)) 2781 wake_up(&sk->sk_lock.wq); 2782 spin_unlock_bh(&sk->sk_lock.slock); 2783 } 2784 EXPORT_SYMBOL(release_sock); 2785 2786 /** 2787 * lock_sock_fast - fast version of lock_sock 2788 * @sk: socket 2789 * 2790 * This version should be used for very small section, where process wont block 2791 * return false if fast path is taken: 2792 * 2793 * sk_lock.slock locked, owned = 0, BH disabled 2794 * 2795 * return true if slow path is taken: 2796 * 2797 * sk_lock.slock unlocked, owned = 1, BH enabled 2798 */ 2799 bool lock_sock_fast(struct sock *sk) 2800 { 2801 might_sleep(); 2802 spin_lock_bh(&sk->sk_lock.slock); 2803 2804 if (!sk->sk_lock.owned) 2805 /* 2806 * Note : We must disable BH 2807 */ 2808 return false; 2809 2810 __lock_sock(sk); 2811 sk->sk_lock.owned = 1; 2812 spin_unlock(&sk->sk_lock.slock); 2813 /* 2814 * The sk_lock has mutex_lock() semantics here: 2815 */ 2816 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2817 local_bh_enable(); 2818 return true; 2819 } 2820 EXPORT_SYMBOL(lock_sock_fast); 2821 2822 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2823 { 2824 struct timeval tv; 2825 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2826 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2827 tv = ktime_to_timeval(sk->sk_stamp); 2828 if (tv.tv_sec == -1) 2829 return -ENOENT; 2830 if (tv.tv_sec == 0) { 2831 sk->sk_stamp = ktime_get_real(); 2832 tv = ktime_to_timeval(sk->sk_stamp); 2833 } 2834 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2835 } 2836 EXPORT_SYMBOL(sock_get_timestamp); 2837 2838 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2839 { 2840 struct timespec ts; 2841 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2842 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2843 ts = ktime_to_timespec(sk->sk_stamp); 2844 if (ts.tv_sec == -1) 2845 return -ENOENT; 2846 if (ts.tv_sec == 0) { 2847 sk->sk_stamp = ktime_get_real(); 2848 ts = ktime_to_timespec(sk->sk_stamp); 2849 } 2850 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2851 } 2852 EXPORT_SYMBOL(sock_get_timestampns); 2853 2854 void sock_enable_timestamp(struct sock *sk, int flag) 2855 { 2856 if (!sock_flag(sk, flag)) { 2857 unsigned long previous_flags = sk->sk_flags; 2858 2859 sock_set_flag(sk, flag); 2860 /* 2861 * we just set one of the two flags which require net 2862 * time stamping, but time stamping might have been on 2863 * already because of the other one 2864 */ 2865 if (sock_needs_netstamp(sk) && 2866 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2867 net_enable_timestamp(); 2868 } 2869 } 2870 2871 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2872 int level, int type) 2873 { 2874 struct sock_exterr_skb *serr; 2875 struct sk_buff *skb; 2876 int copied, err; 2877 2878 err = -EAGAIN; 2879 skb = sock_dequeue_err_skb(sk); 2880 if (skb == NULL) 2881 goto out; 2882 2883 copied = skb->len; 2884 if (copied > len) { 2885 msg->msg_flags |= MSG_TRUNC; 2886 copied = len; 2887 } 2888 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2889 if (err) 2890 goto out_free_skb; 2891 2892 sock_recv_timestamp(msg, sk, skb); 2893 2894 serr = SKB_EXT_ERR(skb); 2895 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2896 2897 msg->msg_flags |= MSG_ERRQUEUE; 2898 err = copied; 2899 2900 out_free_skb: 2901 kfree_skb(skb); 2902 out: 2903 return err; 2904 } 2905 EXPORT_SYMBOL(sock_recv_errqueue); 2906 2907 /* 2908 * Get a socket option on an socket. 2909 * 2910 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2911 * asynchronous errors should be reported by getsockopt. We assume 2912 * this means if you specify SO_ERROR (otherwise whats the point of it). 2913 */ 2914 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2915 char __user *optval, int __user *optlen) 2916 { 2917 struct sock *sk = sock->sk; 2918 2919 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2920 } 2921 EXPORT_SYMBOL(sock_common_getsockopt); 2922 2923 #ifdef CONFIG_COMPAT 2924 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2925 char __user *optval, int __user *optlen) 2926 { 2927 struct sock *sk = sock->sk; 2928 2929 if (sk->sk_prot->compat_getsockopt != NULL) 2930 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2931 optval, optlen); 2932 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2933 } 2934 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2935 #endif 2936 2937 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2938 int flags) 2939 { 2940 struct sock *sk = sock->sk; 2941 int addr_len = 0; 2942 int err; 2943 2944 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2945 flags & ~MSG_DONTWAIT, &addr_len); 2946 if (err >= 0) 2947 msg->msg_namelen = addr_len; 2948 return err; 2949 } 2950 EXPORT_SYMBOL(sock_common_recvmsg); 2951 2952 /* 2953 * Set socket options on an inet socket. 2954 */ 2955 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2956 char __user *optval, unsigned int optlen) 2957 { 2958 struct sock *sk = sock->sk; 2959 2960 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2961 } 2962 EXPORT_SYMBOL(sock_common_setsockopt); 2963 2964 #ifdef CONFIG_COMPAT 2965 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2966 char __user *optval, unsigned int optlen) 2967 { 2968 struct sock *sk = sock->sk; 2969 2970 if (sk->sk_prot->compat_setsockopt != NULL) 2971 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2972 optval, optlen); 2973 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2974 } 2975 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2976 #endif 2977 2978 void sk_common_release(struct sock *sk) 2979 { 2980 if (sk->sk_prot->destroy) 2981 sk->sk_prot->destroy(sk); 2982 2983 /* 2984 * Observation: when sock_common_release is called, processes have 2985 * no access to socket. But net still has. 2986 * Step one, detach it from networking: 2987 * 2988 * A. Remove from hash tables. 2989 */ 2990 2991 sk->sk_prot->unhash(sk); 2992 2993 /* 2994 * In this point socket cannot receive new packets, but it is possible 2995 * that some packets are in flight because some CPU runs receiver and 2996 * did hash table lookup before we unhashed socket. They will achieve 2997 * receive queue and will be purged by socket destructor. 2998 * 2999 * Also we still have packets pending on receive queue and probably, 3000 * our own packets waiting in device queues. sock_destroy will drain 3001 * receive queue, but transmitted packets will delay socket destruction 3002 * until the last reference will be released. 3003 */ 3004 3005 sock_orphan(sk); 3006 3007 xfrm_sk_free_policy(sk); 3008 3009 sk_refcnt_debug_release(sk); 3010 3011 sock_put(sk); 3012 } 3013 EXPORT_SYMBOL(sk_common_release); 3014 3015 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3016 { 3017 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3018 3019 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3020 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3021 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3022 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3023 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3024 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3025 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3026 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3027 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3028 } 3029 3030 #ifdef CONFIG_PROC_FS 3031 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3032 struct prot_inuse { 3033 int val[PROTO_INUSE_NR]; 3034 }; 3035 3036 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3037 3038 #ifdef CONFIG_NET_NS 3039 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3040 { 3041 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 3042 } 3043 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3044 3045 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3046 { 3047 int cpu, idx = prot->inuse_idx; 3048 int res = 0; 3049 3050 for_each_possible_cpu(cpu) 3051 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 3052 3053 return res >= 0 ? res : 0; 3054 } 3055 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3056 3057 static int __net_init sock_inuse_init_net(struct net *net) 3058 { 3059 net->core.inuse = alloc_percpu(struct prot_inuse); 3060 return net->core.inuse ? 0 : -ENOMEM; 3061 } 3062 3063 static void __net_exit sock_inuse_exit_net(struct net *net) 3064 { 3065 free_percpu(net->core.inuse); 3066 } 3067 3068 static struct pernet_operations net_inuse_ops = { 3069 .init = sock_inuse_init_net, 3070 .exit = sock_inuse_exit_net, 3071 }; 3072 3073 static __init int net_inuse_init(void) 3074 { 3075 if (register_pernet_subsys(&net_inuse_ops)) 3076 panic("Cannot initialize net inuse counters"); 3077 3078 return 0; 3079 } 3080 3081 core_initcall(net_inuse_init); 3082 #else 3083 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 3084 3085 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3086 { 3087 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 3088 } 3089 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3090 3091 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3092 { 3093 int cpu, idx = prot->inuse_idx; 3094 int res = 0; 3095 3096 for_each_possible_cpu(cpu) 3097 res += per_cpu(prot_inuse, cpu).val[idx]; 3098 3099 return res >= 0 ? res : 0; 3100 } 3101 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3102 #endif 3103 3104 static void assign_proto_idx(struct proto *prot) 3105 { 3106 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3107 3108 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3109 pr_err("PROTO_INUSE_NR exhausted\n"); 3110 return; 3111 } 3112 3113 set_bit(prot->inuse_idx, proto_inuse_idx); 3114 } 3115 3116 static void release_proto_idx(struct proto *prot) 3117 { 3118 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3119 clear_bit(prot->inuse_idx, proto_inuse_idx); 3120 } 3121 #else 3122 static inline void assign_proto_idx(struct proto *prot) 3123 { 3124 } 3125 3126 static inline void release_proto_idx(struct proto *prot) 3127 { 3128 } 3129 #endif 3130 3131 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3132 { 3133 if (!rsk_prot) 3134 return; 3135 kfree(rsk_prot->slab_name); 3136 rsk_prot->slab_name = NULL; 3137 kmem_cache_destroy(rsk_prot->slab); 3138 rsk_prot->slab = NULL; 3139 } 3140 3141 static int req_prot_init(const struct proto *prot) 3142 { 3143 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3144 3145 if (!rsk_prot) 3146 return 0; 3147 3148 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3149 prot->name); 3150 if (!rsk_prot->slab_name) 3151 return -ENOMEM; 3152 3153 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3154 rsk_prot->obj_size, 0, 3155 prot->slab_flags, NULL); 3156 3157 if (!rsk_prot->slab) { 3158 pr_crit("%s: Can't create request sock SLAB cache!\n", 3159 prot->name); 3160 return -ENOMEM; 3161 } 3162 return 0; 3163 } 3164 3165 int proto_register(struct proto *prot, int alloc_slab) 3166 { 3167 if (alloc_slab) { 3168 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 3169 SLAB_HWCACHE_ALIGN | prot->slab_flags, 3170 NULL); 3171 3172 if (prot->slab == NULL) { 3173 pr_crit("%s: Can't create sock SLAB cache!\n", 3174 prot->name); 3175 goto out; 3176 } 3177 3178 if (req_prot_init(prot)) 3179 goto out_free_request_sock_slab; 3180 3181 if (prot->twsk_prot != NULL) { 3182 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3183 3184 if (prot->twsk_prot->twsk_slab_name == NULL) 3185 goto out_free_request_sock_slab; 3186 3187 prot->twsk_prot->twsk_slab = 3188 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3189 prot->twsk_prot->twsk_obj_size, 3190 0, 3191 prot->slab_flags, 3192 NULL); 3193 if (prot->twsk_prot->twsk_slab == NULL) 3194 goto out_free_timewait_sock_slab_name; 3195 } 3196 } 3197 3198 mutex_lock(&proto_list_mutex); 3199 list_add(&prot->node, &proto_list); 3200 assign_proto_idx(prot); 3201 mutex_unlock(&proto_list_mutex); 3202 return 0; 3203 3204 out_free_timewait_sock_slab_name: 3205 kfree(prot->twsk_prot->twsk_slab_name); 3206 out_free_request_sock_slab: 3207 req_prot_cleanup(prot->rsk_prot); 3208 3209 kmem_cache_destroy(prot->slab); 3210 prot->slab = NULL; 3211 out: 3212 return -ENOBUFS; 3213 } 3214 EXPORT_SYMBOL(proto_register); 3215 3216 void proto_unregister(struct proto *prot) 3217 { 3218 mutex_lock(&proto_list_mutex); 3219 release_proto_idx(prot); 3220 list_del(&prot->node); 3221 mutex_unlock(&proto_list_mutex); 3222 3223 kmem_cache_destroy(prot->slab); 3224 prot->slab = NULL; 3225 3226 req_prot_cleanup(prot->rsk_prot); 3227 3228 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3229 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3230 kfree(prot->twsk_prot->twsk_slab_name); 3231 prot->twsk_prot->twsk_slab = NULL; 3232 } 3233 } 3234 EXPORT_SYMBOL(proto_unregister); 3235 3236 #ifdef CONFIG_PROC_FS 3237 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3238 __acquires(proto_list_mutex) 3239 { 3240 mutex_lock(&proto_list_mutex); 3241 return seq_list_start_head(&proto_list, *pos); 3242 } 3243 3244 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3245 { 3246 return seq_list_next(v, &proto_list, pos); 3247 } 3248 3249 static void proto_seq_stop(struct seq_file *seq, void *v) 3250 __releases(proto_list_mutex) 3251 { 3252 mutex_unlock(&proto_list_mutex); 3253 } 3254 3255 static char proto_method_implemented(const void *method) 3256 { 3257 return method == NULL ? 'n' : 'y'; 3258 } 3259 static long sock_prot_memory_allocated(struct proto *proto) 3260 { 3261 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3262 } 3263 3264 static char *sock_prot_memory_pressure(struct proto *proto) 3265 { 3266 return proto->memory_pressure != NULL ? 3267 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3268 } 3269 3270 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3271 { 3272 3273 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3274 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3275 proto->name, 3276 proto->obj_size, 3277 sock_prot_inuse_get(seq_file_net(seq), proto), 3278 sock_prot_memory_allocated(proto), 3279 sock_prot_memory_pressure(proto), 3280 proto->max_header, 3281 proto->slab == NULL ? "no" : "yes", 3282 module_name(proto->owner), 3283 proto_method_implemented(proto->close), 3284 proto_method_implemented(proto->connect), 3285 proto_method_implemented(proto->disconnect), 3286 proto_method_implemented(proto->accept), 3287 proto_method_implemented(proto->ioctl), 3288 proto_method_implemented(proto->init), 3289 proto_method_implemented(proto->destroy), 3290 proto_method_implemented(proto->shutdown), 3291 proto_method_implemented(proto->setsockopt), 3292 proto_method_implemented(proto->getsockopt), 3293 proto_method_implemented(proto->sendmsg), 3294 proto_method_implemented(proto->recvmsg), 3295 proto_method_implemented(proto->sendpage), 3296 proto_method_implemented(proto->bind), 3297 proto_method_implemented(proto->backlog_rcv), 3298 proto_method_implemented(proto->hash), 3299 proto_method_implemented(proto->unhash), 3300 proto_method_implemented(proto->get_port), 3301 proto_method_implemented(proto->enter_memory_pressure)); 3302 } 3303 3304 static int proto_seq_show(struct seq_file *seq, void *v) 3305 { 3306 if (v == &proto_list) 3307 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3308 "protocol", 3309 "size", 3310 "sockets", 3311 "memory", 3312 "press", 3313 "maxhdr", 3314 "slab", 3315 "module", 3316 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3317 else 3318 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3319 return 0; 3320 } 3321 3322 static const struct seq_operations proto_seq_ops = { 3323 .start = proto_seq_start, 3324 .next = proto_seq_next, 3325 .stop = proto_seq_stop, 3326 .show = proto_seq_show, 3327 }; 3328 3329 static int proto_seq_open(struct inode *inode, struct file *file) 3330 { 3331 return seq_open_net(inode, file, &proto_seq_ops, 3332 sizeof(struct seq_net_private)); 3333 } 3334 3335 static const struct file_operations proto_seq_fops = { 3336 .owner = THIS_MODULE, 3337 .open = proto_seq_open, 3338 .read = seq_read, 3339 .llseek = seq_lseek, 3340 .release = seq_release_net, 3341 }; 3342 3343 static __net_init int proto_init_net(struct net *net) 3344 { 3345 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3346 return -ENOMEM; 3347 3348 return 0; 3349 } 3350 3351 static __net_exit void proto_exit_net(struct net *net) 3352 { 3353 remove_proc_entry("protocols", net->proc_net); 3354 } 3355 3356 3357 static __net_initdata struct pernet_operations proto_net_ops = { 3358 .init = proto_init_net, 3359 .exit = proto_exit_net, 3360 }; 3361 3362 static int __init proto_init(void) 3363 { 3364 return register_pernet_subsys(&proto_net_ops); 3365 } 3366 3367 subsys_initcall(proto_init); 3368 3369 #endif /* PROC_FS */ 3370 3371 #ifdef CONFIG_NET_RX_BUSY_POLL 3372 bool sk_busy_loop_end(void *p, unsigned long start_time) 3373 { 3374 struct sock *sk = p; 3375 3376 return !skb_queue_empty(&sk->sk_receive_queue) || 3377 sk_busy_loop_timeout(sk, start_time); 3378 } 3379 EXPORT_SYMBOL(sk_busy_loop_end); 3380 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3381