xref: /linux/net/core/sock.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119 
120 #include <asm/uaccess.h>
121 
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133 
134 #include <linux/filter.h>
135 
136 #include <trace/events/sock.h>
137 
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 	struct proto *proto;
149 	int ret = 0;
150 
151 	mutex_lock(&proto_list_mutex);
152 	list_for_each_entry(proto, &proto_list, node) {
153 		if (proto->init_cgroup) {
154 			ret = proto->init_cgroup(memcg, ss);
155 			if (ret)
156 				goto out;
157 		}
158 	}
159 
160 	mutex_unlock(&proto_list_mutex);
161 	return ret;
162 out:
163 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 		if (proto->destroy_cgroup)
165 			proto->destroy_cgroup(memcg);
166 	mutex_unlock(&proto_list_mutex);
167 	return ret;
168 }
169 
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 	struct proto *proto;
173 
174 	mutex_lock(&proto_list_mutex);
175 	list_for_each_entry_reverse(proto, &proto_list, node)
176 		if (proto->destroy_cgroup)
177 			proto->destroy_cgroup(memcg);
178 	mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181 
182 /*
183  * Each address family might have different locking rules, so we have
184  * one slock key per address family:
185  */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188 
189 #if defined(CONFIG_MEMCG_KMEM)
190 struct static_key memcg_socket_limit_enabled;
191 EXPORT_SYMBOL(memcg_socket_limit_enabled);
192 #endif
193 
194 /*
195  * Make lock validator output more readable. (we pre-construct these
196  * strings build-time, so that runtime initialization of socket
197  * locks is fast):
198  */
199 static const char *const af_family_key_strings[AF_MAX+1] = {
200   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
201   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
202   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
203   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
204   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
205   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
206   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
207   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
208   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
209   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
210   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
211   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
212   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
213   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
214 };
215 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
217   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
218   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
219   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
220   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
221   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
222   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
223   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
224   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
225   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
226   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
227   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
228   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
229   "slock-AF_NFC"   , "slock-AF_MAX"
230 };
231 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
233   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
234   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
235   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
236   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
237   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
238   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
239   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
240   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
241   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
242   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
243   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
244   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
245   "clock-AF_NFC"   , "clock-AF_MAX"
246 };
247 
248 /*
249  * sk_callback_lock locking rules are per-address-family,
250  * so split the lock classes by using a per-AF key:
251  */
252 static struct lock_class_key af_callback_keys[AF_MAX];
253 
254 /* Take into consideration the size of the struct sk_buff overhead in the
255  * determination of these values, since that is non-constant across
256  * platforms.  This makes socket queueing behavior and performance
257  * not depend upon such differences.
258  */
259 #define _SK_MEM_PACKETS		256
260 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
261 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
263 
264 /* Run time adjustable parameters. */
265 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266 EXPORT_SYMBOL(sysctl_wmem_max);
267 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268 EXPORT_SYMBOL(sysctl_rmem_max);
269 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
271 
272 /* Maximal space eaten by iovec or ancillary data plus some space */
273 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274 EXPORT_SYMBOL(sysctl_optmem_max);
275 
276 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277 EXPORT_SYMBOL_GPL(memalloc_socks);
278 
279 /**
280  * sk_set_memalloc - sets %SOCK_MEMALLOC
281  * @sk: socket to set it on
282  *
283  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284  * It's the responsibility of the admin to adjust min_free_kbytes
285  * to meet the requirements
286  */
287 void sk_set_memalloc(struct sock *sk)
288 {
289 	sock_set_flag(sk, SOCK_MEMALLOC);
290 	sk->sk_allocation |= __GFP_MEMALLOC;
291 	static_key_slow_inc(&memalloc_socks);
292 }
293 EXPORT_SYMBOL_GPL(sk_set_memalloc);
294 
295 void sk_clear_memalloc(struct sock *sk)
296 {
297 	sock_reset_flag(sk, SOCK_MEMALLOC);
298 	sk->sk_allocation &= ~__GFP_MEMALLOC;
299 	static_key_slow_dec(&memalloc_socks);
300 
301 	/*
302 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304 	 * it has rmem allocations there is a risk that the user of the
305 	 * socket cannot make forward progress due to exceeding the rmem
306 	 * limits. By rights, sk_clear_memalloc() should only be called
307 	 * on sockets being torn down but warn and reset the accounting if
308 	 * that assumption breaks.
309 	 */
310 	if (WARN_ON(sk->sk_forward_alloc))
311 		sk_mem_reclaim(sk);
312 }
313 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
314 
315 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317 	int ret;
318 	unsigned long pflags = current->flags;
319 
320 	/* these should have been dropped before queueing */
321 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
322 
323 	current->flags |= PF_MEMALLOC;
324 	ret = sk->sk_backlog_rcv(sk, skb);
325 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
326 
327 	return ret;
328 }
329 EXPORT_SYMBOL(__sk_backlog_rcv);
330 
331 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
332 {
333 	struct timeval tv;
334 
335 	if (optlen < sizeof(tv))
336 		return -EINVAL;
337 	if (copy_from_user(&tv, optval, sizeof(tv)))
338 		return -EFAULT;
339 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
340 		return -EDOM;
341 
342 	if (tv.tv_sec < 0) {
343 		static int warned __read_mostly;
344 
345 		*timeo_p = 0;
346 		if (warned < 10 && net_ratelimit()) {
347 			warned++;
348 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349 				__func__, current->comm, task_pid_nr(current));
350 		}
351 		return 0;
352 	}
353 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
354 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
355 		return 0;
356 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
358 	return 0;
359 }
360 
361 static void sock_warn_obsolete_bsdism(const char *name)
362 {
363 	static int warned;
364 	static char warncomm[TASK_COMM_LEN];
365 	if (strcmp(warncomm, current->comm) && warned < 5) {
366 		strcpy(warncomm,  current->comm);
367 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
368 			warncomm, name);
369 		warned++;
370 	}
371 }
372 
373 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
374 
375 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
376 {
377 	if (sk->sk_flags & flags) {
378 		sk->sk_flags &= ~flags;
379 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380 			net_disable_timestamp();
381 	}
382 }
383 
384 
385 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
386 {
387 	int err;
388 	int skb_len;
389 	unsigned long flags;
390 	struct sk_buff_head *list = &sk->sk_receive_queue;
391 
392 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393 		atomic_inc(&sk->sk_drops);
394 		trace_sock_rcvqueue_full(sk, skb);
395 		return -ENOMEM;
396 	}
397 
398 	err = sk_filter(sk, skb);
399 	if (err)
400 		return err;
401 
402 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403 		atomic_inc(&sk->sk_drops);
404 		return -ENOBUFS;
405 	}
406 
407 	skb->dev = NULL;
408 	skb_set_owner_r(skb, sk);
409 
410 	/* Cache the SKB length before we tack it onto the receive
411 	 * queue.  Once it is added it no longer belongs to us and
412 	 * may be freed by other threads of control pulling packets
413 	 * from the queue.
414 	 */
415 	skb_len = skb->len;
416 
417 	/* we escape from rcu protected region, make sure we dont leak
418 	 * a norefcounted dst
419 	 */
420 	skb_dst_force(skb);
421 
422 	spin_lock_irqsave(&list->lock, flags);
423 	skb->dropcount = atomic_read(&sk->sk_drops);
424 	__skb_queue_tail(list, skb);
425 	spin_unlock_irqrestore(&list->lock, flags);
426 
427 	if (!sock_flag(sk, SOCK_DEAD))
428 		sk->sk_data_ready(sk, skb_len);
429 	return 0;
430 }
431 EXPORT_SYMBOL(sock_queue_rcv_skb);
432 
433 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
434 {
435 	int rc = NET_RX_SUCCESS;
436 
437 	if (sk_filter(sk, skb))
438 		goto discard_and_relse;
439 
440 	skb->dev = NULL;
441 
442 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443 		atomic_inc(&sk->sk_drops);
444 		goto discard_and_relse;
445 	}
446 	if (nested)
447 		bh_lock_sock_nested(sk);
448 	else
449 		bh_lock_sock(sk);
450 	if (!sock_owned_by_user(sk)) {
451 		/*
452 		 * trylock + unlock semantics:
453 		 */
454 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
455 
456 		rc = sk_backlog_rcv(sk, skb);
457 
458 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
460 		bh_unlock_sock(sk);
461 		atomic_inc(&sk->sk_drops);
462 		goto discard_and_relse;
463 	}
464 
465 	bh_unlock_sock(sk);
466 out:
467 	sock_put(sk);
468 	return rc;
469 discard_and_relse:
470 	kfree_skb(skb);
471 	goto out;
472 }
473 EXPORT_SYMBOL(sk_receive_skb);
474 
475 void sk_reset_txq(struct sock *sk)
476 {
477 	sk_tx_queue_clear(sk);
478 }
479 EXPORT_SYMBOL(sk_reset_txq);
480 
481 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
482 {
483 	struct dst_entry *dst = __sk_dst_get(sk);
484 
485 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486 		sk_tx_queue_clear(sk);
487 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
488 		dst_release(dst);
489 		return NULL;
490 	}
491 
492 	return dst;
493 }
494 EXPORT_SYMBOL(__sk_dst_check);
495 
496 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
497 {
498 	struct dst_entry *dst = sk_dst_get(sk);
499 
500 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
501 		sk_dst_reset(sk);
502 		dst_release(dst);
503 		return NULL;
504 	}
505 
506 	return dst;
507 }
508 EXPORT_SYMBOL(sk_dst_check);
509 
510 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511 				int optlen)
512 {
513 	int ret = -ENOPROTOOPT;
514 #ifdef CONFIG_NETDEVICES
515 	struct net *net = sock_net(sk);
516 	char devname[IFNAMSIZ];
517 	int index;
518 
519 	/* Sorry... */
520 	ret = -EPERM;
521 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
522 		goto out;
523 
524 	ret = -EINVAL;
525 	if (optlen < 0)
526 		goto out;
527 
528 	/* Bind this socket to a particular device like "eth0",
529 	 * as specified in the passed interface name. If the
530 	 * name is "" or the option length is zero the socket
531 	 * is not bound.
532 	 */
533 	if (optlen > IFNAMSIZ - 1)
534 		optlen = IFNAMSIZ - 1;
535 	memset(devname, 0, sizeof(devname));
536 
537 	ret = -EFAULT;
538 	if (copy_from_user(devname, optval, optlen))
539 		goto out;
540 
541 	index = 0;
542 	if (devname[0] != '\0') {
543 		struct net_device *dev;
544 
545 		rcu_read_lock();
546 		dev = dev_get_by_name_rcu(net, devname);
547 		if (dev)
548 			index = dev->ifindex;
549 		rcu_read_unlock();
550 		ret = -ENODEV;
551 		if (!dev)
552 			goto out;
553 	}
554 
555 	lock_sock(sk);
556 	sk->sk_bound_dev_if = index;
557 	sk_dst_reset(sk);
558 	release_sock(sk);
559 
560 	ret = 0;
561 
562 out:
563 #endif
564 
565 	return ret;
566 }
567 
568 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569 				int __user *optlen, int len)
570 {
571 	int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 	struct net *net = sock_net(sk);
574 	struct net_device *dev;
575 	char devname[IFNAMSIZ];
576 	unsigned seq;
577 
578 	if (sk->sk_bound_dev_if == 0) {
579 		len = 0;
580 		goto zero;
581 	}
582 
583 	ret = -EINVAL;
584 	if (len < IFNAMSIZ)
585 		goto out;
586 
587 retry:
588 	seq = read_seqcount_begin(&devnet_rename_seq);
589 	rcu_read_lock();
590 	dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
591 	ret = -ENODEV;
592 	if (!dev) {
593 		rcu_read_unlock();
594 		goto out;
595 	}
596 
597 	strcpy(devname, dev->name);
598 	rcu_read_unlock();
599 	if (read_seqcount_retry(&devnet_rename_seq, seq))
600 		goto retry;
601 
602 	len = strlen(devname) + 1;
603 
604 	ret = -EFAULT;
605 	if (copy_to_user(optval, devname, len))
606 		goto out;
607 
608 zero:
609 	ret = -EFAULT;
610 	if (put_user(len, optlen))
611 		goto out;
612 
613 	ret = 0;
614 
615 out:
616 #endif
617 
618 	return ret;
619 }
620 
621 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622 {
623 	if (valbool)
624 		sock_set_flag(sk, bit);
625 	else
626 		sock_reset_flag(sk, bit);
627 }
628 
629 /*
630  *	This is meant for all protocols to use and covers goings on
631  *	at the socket level. Everything here is generic.
632  */
633 
634 int sock_setsockopt(struct socket *sock, int level, int optname,
635 		    char __user *optval, unsigned int optlen)
636 {
637 	struct sock *sk = sock->sk;
638 	int val;
639 	int valbool;
640 	struct linger ling;
641 	int ret = 0;
642 
643 	/*
644 	 *	Options without arguments
645 	 */
646 
647 	if (optname == SO_BINDTODEVICE)
648 		return sock_setbindtodevice(sk, optval, optlen);
649 
650 	if (optlen < sizeof(int))
651 		return -EINVAL;
652 
653 	if (get_user(val, (int __user *)optval))
654 		return -EFAULT;
655 
656 	valbool = val ? 1 : 0;
657 
658 	lock_sock(sk);
659 
660 	switch (optname) {
661 	case SO_DEBUG:
662 		if (val && !capable(CAP_NET_ADMIN))
663 			ret = -EACCES;
664 		else
665 			sock_valbool_flag(sk, SOCK_DBG, valbool);
666 		break;
667 	case SO_REUSEADDR:
668 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
669 		break;
670 	case SO_REUSEPORT:
671 		sk->sk_reuseport = valbool;
672 		break;
673 	case SO_TYPE:
674 	case SO_PROTOCOL:
675 	case SO_DOMAIN:
676 	case SO_ERROR:
677 		ret = -ENOPROTOOPT;
678 		break;
679 	case SO_DONTROUTE:
680 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
681 		break;
682 	case SO_BROADCAST:
683 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
684 		break;
685 	case SO_SNDBUF:
686 		/* Don't error on this BSD doesn't and if you think
687 		 * about it this is right. Otherwise apps have to
688 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689 		 * are treated in BSD as hints
690 		 */
691 		val = min_t(u32, val, sysctl_wmem_max);
692 set_sndbuf:
693 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
694 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
695 		/* Wake up sending tasks if we upped the value. */
696 		sk->sk_write_space(sk);
697 		break;
698 
699 	case SO_SNDBUFFORCE:
700 		if (!capable(CAP_NET_ADMIN)) {
701 			ret = -EPERM;
702 			break;
703 		}
704 		goto set_sndbuf;
705 
706 	case SO_RCVBUF:
707 		/* Don't error on this BSD doesn't and if you think
708 		 * about it this is right. Otherwise apps have to
709 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 		 * are treated in BSD as hints
711 		 */
712 		val = min_t(u32, val, sysctl_rmem_max);
713 set_rcvbuf:
714 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
715 		/*
716 		 * We double it on the way in to account for
717 		 * "struct sk_buff" etc. overhead.   Applications
718 		 * assume that the SO_RCVBUF setting they make will
719 		 * allow that much actual data to be received on that
720 		 * socket.
721 		 *
722 		 * Applications are unaware that "struct sk_buff" and
723 		 * other overheads allocate from the receive buffer
724 		 * during socket buffer allocation.
725 		 *
726 		 * And after considering the possible alternatives,
727 		 * returning the value we actually used in getsockopt
728 		 * is the most desirable behavior.
729 		 */
730 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
731 		break;
732 
733 	case SO_RCVBUFFORCE:
734 		if (!capable(CAP_NET_ADMIN)) {
735 			ret = -EPERM;
736 			break;
737 		}
738 		goto set_rcvbuf;
739 
740 	case SO_KEEPALIVE:
741 #ifdef CONFIG_INET
742 		if (sk->sk_protocol == IPPROTO_TCP &&
743 		    sk->sk_type == SOCK_STREAM)
744 			tcp_set_keepalive(sk, valbool);
745 #endif
746 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
747 		break;
748 
749 	case SO_OOBINLINE:
750 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
751 		break;
752 
753 	case SO_NO_CHECK:
754 		sk->sk_no_check = valbool;
755 		break;
756 
757 	case SO_PRIORITY:
758 		if ((val >= 0 && val <= 6) ||
759 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
760 			sk->sk_priority = val;
761 		else
762 			ret = -EPERM;
763 		break;
764 
765 	case SO_LINGER:
766 		if (optlen < sizeof(ling)) {
767 			ret = -EINVAL;	/* 1003.1g */
768 			break;
769 		}
770 		if (copy_from_user(&ling, optval, sizeof(ling))) {
771 			ret = -EFAULT;
772 			break;
773 		}
774 		if (!ling.l_onoff)
775 			sock_reset_flag(sk, SOCK_LINGER);
776 		else {
777 #if (BITS_PER_LONG == 32)
778 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
779 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
780 			else
781 #endif
782 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
783 			sock_set_flag(sk, SOCK_LINGER);
784 		}
785 		break;
786 
787 	case SO_BSDCOMPAT:
788 		sock_warn_obsolete_bsdism("setsockopt");
789 		break;
790 
791 	case SO_PASSCRED:
792 		if (valbool)
793 			set_bit(SOCK_PASSCRED, &sock->flags);
794 		else
795 			clear_bit(SOCK_PASSCRED, &sock->flags);
796 		break;
797 
798 	case SO_TIMESTAMP:
799 	case SO_TIMESTAMPNS:
800 		if (valbool)  {
801 			if (optname == SO_TIMESTAMP)
802 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
803 			else
804 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
805 			sock_set_flag(sk, SOCK_RCVTSTAMP);
806 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
807 		} else {
808 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
809 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
810 		}
811 		break;
812 
813 	case SO_TIMESTAMPING:
814 		if (val & ~SOF_TIMESTAMPING_MASK) {
815 			ret = -EINVAL;
816 			break;
817 		}
818 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
819 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
820 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
821 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
822 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
823 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
824 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
825 			sock_enable_timestamp(sk,
826 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
827 		else
828 			sock_disable_timestamp(sk,
829 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
830 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
831 				  val & SOF_TIMESTAMPING_SOFTWARE);
832 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
833 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
834 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
835 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
836 		break;
837 
838 	case SO_RCVLOWAT:
839 		if (val < 0)
840 			val = INT_MAX;
841 		sk->sk_rcvlowat = val ? : 1;
842 		break;
843 
844 	case SO_RCVTIMEO:
845 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
846 		break;
847 
848 	case SO_SNDTIMEO:
849 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
850 		break;
851 
852 	case SO_ATTACH_FILTER:
853 		ret = -EINVAL;
854 		if (optlen == sizeof(struct sock_fprog)) {
855 			struct sock_fprog fprog;
856 
857 			ret = -EFAULT;
858 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
859 				break;
860 
861 			ret = sk_attach_filter(&fprog, sk);
862 		}
863 		break;
864 
865 	case SO_DETACH_FILTER:
866 		ret = sk_detach_filter(sk);
867 		break;
868 
869 	case SO_LOCK_FILTER:
870 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
871 			ret = -EPERM;
872 		else
873 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
874 		break;
875 
876 	case SO_PASSSEC:
877 		if (valbool)
878 			set_bit(SOCK_PASSSEC, &sock->flags);
879 		else
880 			clear_bit(SOCK_PASSSEC, &sock->flags);
881 		break;
882 	case SO_MARK:
883 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
884 			ret = -EPERM;
885 		else
886 			sk->sk_mark = val;
887 		break;
888 
889 		/* We implement the SO_SNDLOWAT etc to
890 		   not be settable (1003.1g 5.3) */
891 	case SO_RXQ_OVFL:
892 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
893 		break;
894 
895 	case SO_WIFI_STATUS:
896 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
897 		break;
898 
899 	case SO_PEEK_OFF:
900 		if (sock->ops->set_peek_off)
901 			sock->ops->set_peek_off(sk, val);
902 		else
903 			ret = -EOPNOTSUPP;
904 		break;
905 
906 	case SO_NOFCS:
907 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
908 		break;
909 
910 	case SO_SELECT_ERR_QUEUE:
911 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
912 		break;
913 
914 	default:
915 		ret = -ENOPROTOOPT;
916 		break;
917 	}
918 	release_sock(sk);
919 	return ret;
920 }
921 EXPORT_SYMBOL(sock_setsockopt);
922 
923 
924 void cred_to_ucred(struct pid *pid, const struct cred *cred,
925 		   struct ucred *ucred)
926 {
927 	ucred->pid = pid_vnr(pid);
928 	ucred->uid = ucred->gid = -1;
929 	if (cred) {
930 		struct user_namespace *current_ns = current_user_ns();
931 
932 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
933 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
934 	}
935 }
936 EXPORT_SYMBOL_GPL(cred_to_ucred);
937 
938 int sock_getsockopt(struct socket *sock, int level, int optname,
939 		    char __user *optval, int __user *optlen)
940 {
941 	struct sock *sk = sock->sk;
942 
943 	union {
944 		int val;
945 		struct linger ling;
946 		struct timeval tm;
947 	} v;
948 
949 	int lv = sizeof(int);
950 	int len;
951 
952 	if (get_user(len, optlen))
953 		return -EFAULT;
954 	if (len < 0)
955 		return -EINVAL;
956 
957 	memset(&v, 0, sizeof(v));
958 
959 	switch (optname) {
960 	case SO_DEBUG:
961 		v.val = sock_flag(sk, SOCK_DBG);
962 		break;
963 
964 	case SO_DONTROUTE:
965 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
966 		break;
967 
968 	case SO_BROADCAST:
969 		v.val = sock_flag(sk, SOCK_BROADCAST);
970 		break;
971 
972 	case SO_SNDBUF:
973 		v.val = sk->sk_sndbuf;
974 		break;
975 
976 	case SO_RCVBUF:
977 		v.val = sk->sk_rcvbuf;
978 		break;
979 
980 	case SO_REUSEADDR:
981 		v.val = sk->sk_reuse;
982 		break;
983 
984 	case SO_REUSEPORT:
985 		v.val = sk->sk_reuseport;
986 		break;
987 
988 	case SO_KEEPALIVE:
989 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
990 		break;
991 
992 	case SO_TYPE:
993 		v.val = sk->sk_type;
994 		break;
995 
996 	case SO_PROTOCOL:
997 		v.val = sk->sk_protocol;
998 		break;
999 
1000 	case SO_DOMAIN:
1001 		v.val = sk->sk_family;
1002 		break;
1003 
1004 	case SO_ERROR:
1005 		v.val = -sock_error(sk);
1006 		if (v.val == 0)
1007 			v.val = xchg(&sk->sk_err_soft, 0);
1008 		break;
1009 
1010 	case SO_OOBINLINE:
1011 		v.val = sock_flag(sk, SOCK_URGINLINE);
1012 		break;
1013 
1014 	case SO_NO_CHECK:
1015 		v.val = sk->sk_no_check;
1016 		break;
1017 
1018 	case SO_PRIORITY:
1019 		v.val = sk->sk_priority;
1020 		break;
1021 
1022 	case SO_LINGER:
1023 		lv		= sizeof(v.ling);
1024 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1025 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1026 		break;
1027 
1028 	case SO_BSDCOMPAT:
1029 		sock_warn_obsolete_bsdism("getsockopt");
1030 		break;
1031 
1032 	case SO_TIMESTAMP:
1033 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1034 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1035 		break;
1036 
1037 	case SO_TIMESTAMPNS:
1038 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1039 		break;
1040 
1041 	case SO_TIMESTAMPING:
1042 		v.val = 0;
1043 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1044 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1045 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1046 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1047 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1048 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1049 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1050 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1051 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1052 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1053 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1054 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1055 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1056 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1057 		break;
1058 
1059 	case SO_RCVTIMEO:
1060 		lv = sizeof(struct timeval);
1061 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1062 			v.tm.tv_sec = 0;
1063 			v.tm.tv_usec = 0;
1064 		} else {
1065 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1066 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1067 		}
1068 		break;
1069 
1070 	case SO_SNDTIMEO:
1071 		lv = sizeof(struct timeval);
1072 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1073 			v.tm.tv_sec = 0;
1074 			v.tm.tv_usec = 0;
1075 		} else {
1076 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1077 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1078 		}
1079 		break;
1080 
1081 	case SO_RCVLOWAT:
1082 		v.val = sk->sk_rcvlowat;
1083 		break;
1084 
1085 	case SO_SNDLOWAT:
1086 		v.val = 1;
1087 		break;
1088 
1089 	case SO_PASSCRED:
1090 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1091 		break;
1092 
1093 	case SO_PEERCRED:
1094 	{
1095 		struct ucred peercred;
1096 		if (len > sizeof(peercred))
1097 			len = sizeof(peercred);
1098 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1099 		if (copy_to_user(optval, &peercred, len))
1100 			return -EFAULT;
1101 		goto lenout;
1102 	}
1103 
1104 	case SO_PEERNAME:
1105 	{
1106 		char address[128];
1107 
1108 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1109 			return -ENOTCONN;
1110 		if (lv < len)
1111 			return -EINVAL;
1112 		if (copy_to_user(optval, address, len))
1113 			return -EFAULT;
1114 		goto lenout;
1115 	}
1116 
1117 	/* Dubious BSD thing... Probably nobody even uses it, but
1118 	 * the UNIX standard wants it for whatever reason... -DaveM
1119 	 */
1120 	case SO_ACCEPTCONN:
1121 		v.val = sk->sk_state == TCP_LISTEN;
1122 		break;
1123 
1124 	case SO_PASSSEC:
1125 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1126 		break;
1127 
1128 	case SO_PEERSEC:
1129 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1130 
1131 	case SO_MARK:
1132 		v.val = sk->sk_mark;
1133 		break;
1134 
1135 	case SO_RXQ_OVFL:
1136 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1137 		break;
1138 
1139 	case SO_WIFI_STATUS:
1140 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1141 		break;
1142 
1143 	case SO_PEEK_OFF:
1144 		if (!sock->ops->set_peek_off)
1145 			return -EOPNOTSUPP;
1146 
1147 		v.val = sk->sk_peek_off;
1148 		break;
1149 	case SO_NOFCS:
1150 		v.val = sock_flag(sk, SOCK_NOFCS);
1151 		break;
1152 
1153 	case SO_BINDTODEVICE:
1154 		return sock_getbindtodevice(sk, optval, optlen, len);
1155 
1156 	case SO_GET_FILTER:
1157 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1158 		if (len < 0)
1159 			return len;
1160 
1161 		goto lenout;
1162 
1163 	case SO_LOCK_FILTER:
1164 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1165 		break;
1166 
1167 	case SO_SELECT_ERR_QUEUE:
1168 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1169 		break;
1170 
1171 	default:
1172 		return -ENOPROTOOPT;
1173 	}
1174 
1175 	if (len > lv)
1176 		len = lv;
1177 	if (copy_to_user(optval, &v, len))
1178 		return -EFAULT;
1179 lenout:
1180 	if (put_user(len, optlen))
1181 		return -EFAULT;
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Initialize an sk_lock.
1187  *
1188  * (We also register the sk_lock with the lock validator.)
1189  */
1190 static inline void sock_lock_init(struct sock *sk)
1191 {
1192 	sock_lock_init_class_and_name(sk,
1193 			af_family_slock_key_strings[sk->sk_family],
1194 			af_family_slock_keys + sk->sk_family,
1195 			af_family_key_strings[sk->sk_family],
1196 			af_family_keys + sk->sk_family);
1197 }
1198 
1199 /*
1200  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1201  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1202  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1203  */
1204 static void sock_copy(struct sock *nsk, const struct sock *osk)
1205 {
1206 #ifdef CONFIG_SECURITY_NETWORK
1207 	void *sptr = nsk->sk_security;
1208 #endif
1209 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1210 
1211 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1212 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1213 
1214 #ifdef CONFIG_SECURITY_NETWORK
1215 	nsk->sk_security = sptr;
1216 	security_sk_clone(osk, nsk);
1217 #endif
1218 }
1219 
1220 /*
1221  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1222  * un-modified. Special care is taken when initializing object to zero.
1223  */
1224 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1225 {
1226 	if (offsetof(struct sock, sk_node.next) != 0)
1227 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1228 	memset(&sk->sk_node.pprev, 0,
1229 	       size - offsetof(struct sock, sk_node.pprev));
1230 }
1231 
1232 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1233 {
1234 	unsigned long nulls1, nulls2;
1235 
1236 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1237 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1238 	if (nulls1 > nulls2)
1239 		swap(nulls1, nulls2);
1240 
1241 	if (nulls1 != 0)
1242 		memset((char *)sk, 0, nulls1);
1243 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1244 	       nulls2 - nulls1 - sizeof(void *));
1245 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1246 	       size - nulls2 - sizeof(void *));
1247 }
1248 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1249 
1250 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1251 		int family)
1252 {
1253 	struct sock *sk;
1254 	struct kmem_cache *slab;
1255 
1256 	slab = prot->slab;
1257 	if (slab != NULL) {
1258 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1259 		if (!sk)
1260 			return sk;
1261 		if (priority & __GFP_ZERO) {
1262 			if (prot->clear_sk)
1263 				prot->clear_sk(sk, prot->obj_size);
1264 			else
1265 				sk_prot_clear_nulls(sk, prot->obj_size);
1266 		}
1267 	} else
1268 		sk = kmalloc(prot->obj_size, priority);
1269 
1270 	if (sk != NULL) {
1271 		kmemcheck_annotate_bitfield(sk, flags);
1272 
1273 		if (security_sk_alloc(sk, family, priority))
1274 			goto out_free;
1275 
1276 		if (!try_module_get(prot->owner))
1277 			goto out_free_sec;
1278 		sk_tx_queue_clear(sk);
1279 	}
1280 
1281 	return sk;
1282 
1283 out_free_sec:
1284 	security_sk_free(sk);
1285 out_free:
1286 	if (slab != NULL)
1287 		kmem_cache_free(slab, sk);
1288 	else
1289 		kfree(sk);
1290 	return NULL;
1291 }
1292 
1293 static void sk_prot_free(struct proto *prot, struct sock *sk)
1294 {
1295 	struct kmem_cache *slab;
1296 	struct module *owner;
1297 
1298 	owner = prot->owner;
1299 	slab = prot->slab;
1300 
1301 	security_sk_free(sk);
1302 	if (slab != NULL)
1303 		kmem_cache_free(slab, sk);
1304 	else
1305 		kfree(sk);
1306 	module_put(owner);
1307 }
1308 
1309 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1310 void sock_update_classid(struct sock *sk)
1311 {
1312 	u32 classid;
1313 
1314 	classid = task_cls_classid(current);
1315 	if (classid != sk->sk_classid)
1316 		sk->sk_classid = classid;
1317 }
1318 EXPORT_SYMBOL(sock_update_classid);
1319 #endif
1320 
1321 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1322 void sock_update_netprioidx(struct sock *sk)
1323 {
1324 	if (in_interrupt())
1325 		return;
1326 
1327 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1328 }
1329 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1330 #endif
1331 
1332 /**
1333  *	sk_alloc - All socket objects are allocated here
1334  *	@net: the applicable net namespace
1335  *	@family: protocol family
1336  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1337  *	@prot: struct proto associated with this new sock instance
1338  */
1339 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1340 		      struct proto *prot)
1341 {
1342 	struct sock *sk;
1343 
1344 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1345 	if (sk) {
1346 		sk->sk_family = family;
1347 		/*
1348 		 * See comment in struct sock definition to understand
1349 		 * why we need sk_prot_creator -acme
1350 		 */
1351 		sk->sk_prot = sk->sk_prot_creator = prot;
1352 		sock_lock_init(sk);
1353 		sock_net_set(sk, get_net(net));
1354 		atomic_set(&sk->sk_wmem_alloc, 1);
1355 
1356 		sock_update_classid(sk);
1357 		sock_update_netprioidx(sk);
1358 	}
1359 
1360 	return sk;
1361 }
1362 EXPORT_SYMBOL(sk_alloc);
1363 
1364 static void __sk_free(struct sock *sk)
1365 {
1366 	struct sk_filter *filter;
1367 
1368 	if (sk->sk_destruct)
1369 		sk->sk_destruct(sk);
1370 
1371 	filter = rcu_dereference_check(sk->sk_filter,
1372 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1373 	if (filter) {
1374 		sk_filter_uncharge(sk, filter);
1375 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1376 	}
1377 
1378 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1379 
1380 	if (atomic_read(&sk->sk_omem_alloc))
1381 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1382 			 __func__, atomic_read(&sk->sk_omem_alloc));
1383 
1384 	if (sk->sk_peer_cred)
1385 		put_cred(sk->sk_peer_cred);
1386 	put_pid(sk->sk_peer_pid);
1387 	put_net(sock_net(sk));
1388 	sk_prot_free(sk->sk_prot_creator, sk);
1389 }
1390 
1391 void sk_free(struct sock *sk)
1392 {
1393 	/*
1394 	 * We subtract one from sk_wmem_alloc and can know if
1395 	 * some packets are still in some tx queue.
1396 	 * If not null, sock_wfree() will call __sk_free(sk) later
1397 	 */
1398 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1399 		__sk_free(sk);
1400 }
1401 EXPORT_SYMBOL(sk_free);
1402 
1403 /*
1404  * Last sock_put should drop reference to sk->sk_net. It has already
1405  * been dropped in sk_change_net. Taking reference to stopping namespace
1406  * is not an option.
1407  * Take reference to a socket to remove it from hash _alive_ and after that
1408  * destroy it in the context of init_net.
1409  */
1410 void sk_release_kernel(struct sock *sk)
1411 {
1412 	if (sk == NULL || sk->sk_socket == NULL)
1413 		return;
1414 
1415 	sock_hold(sk);
1416 	sock_release(sk->sk_socket);
1417 	release_net(sock_net(sk));
1418 	sock_net_set(sk, get_net(&init_net));
1419 	sock_put(sk);
1420 }
1421 EXPORT_SYMBOL(sk_release_kernel);
1422 
1423 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1424 {
1425 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1426 		sock_update_memcg(newsk);
1427 }
1428 
1429 /**
1430  *	sk_clone_lock - clone a socket, and lock its clone
1431  *	@sk: the socket to clone
1432  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1433  *
1434  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1435  */
1436 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1437 {
1438 	struct sock *newsk;
1439 
1440 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1441 	if (newsk != NULL) {
1442 		struct sk_filter *filter;
1443 
1444 		sock_copy(newsk, sk);
1445 
1446 		/* SANITY */
1447 		get_net(sock_net(newsk));
1448 		sk_node_init(&newsk->sk_node);
1449 		sock_lock_init(newsk);
1450 		bh_lock_sock(newsk);
1451 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1452 		newsk->sk_backlog.len = 0;
1453 
1454 		atomic_set(&newsk->sk_rmem_alloc, 0);
1455 		/*
1456 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1457 		 */
1458 		atomic_set(&newsk->sk_wmem_alloc, 1);
1459 		atomic_set(&newsk->sk_omem_alloc, 0);
1460 		skb_queue_head_init(&newsk->sk_receive_queue);
1461 		skb_queue_head_init(&newsk->sk_write_queue);
1462 #ifdef CONFIG_NET_DMA
1463 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1464 #endif
1465 
1466 		spin_lock_init(&newsk->sk_dst_lock);
1467 		rwlock_init(&newsk->sk_callback_lock);
1468 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1469 				af_callback_keys + newsk->sk_family,
1470 				af_family_clock_key_strings[newsk->sk_family]);
1471 
1472 		newsk->sk_dst_cache	= NULL;
1473 		newsk->sk_wmem_queued	= 0;
1474 		newsk->sk_forward_alloc = 0;
1475 		newsk->sk_send_head	= NULL;
1476 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1477 
1478 		sock_reset_flag(newsk, SOCK_DONE);
1479 		skb_queue_head_init(&newsk->sk_error_queue);
1480 
1481 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1482 		if (filter != NULL)
1483 			sk_filter_charge(newsk, filter);
1484 
1485 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1486 			/* It is still raw copy of parent, so invalidate
1487 			 * destructor and make plain sk_free() */
1488 			newsk->sk_destruct = NULL;
1489 			bh_unlock_sock(newsk);
1490 			sk_free(newsk);
1491 			newsk = NULL;
1492 			goto out;
1493 		}
1494 
1495 		newsk->sk_err	   = 0;
1496 		newsk->sk_priority = 0;
1497 		/*
1498 		 * Before updating sk_refcnt, we must commit prior changes to memory
1499 		 * (Documentation/RCU/rculist_nulls.txt for details)
1500 		 */
1501 		smp_wmb();
1502 		atomic_set(&newsk->sk_refcnt, 2);
1503 
1504 		/*
1505 		 * Increment the counter in the same struct proto as the master
1506 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1507 		 * is the same as sk->sk_prot->socks, as this field was copied
1508 		 * with memcpy).
1509 		 *
1510 		 * This _changes_ the previous behaviour, where
1511 		 * tcp_create_openreq_child always was incrementing the
1512 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1513 		 * to be taken into account in all callers. -acme
1514 		 */
1515 		sk_refcnt_debug_inc(newsk);
1516 		sk_set_socket(newsk, NULL);
1517 		newsk->sk_wq = NULL;
1518 
1519 		sk_update_clone(sk, newsk);
1520 
1521 		if (newsk->sk_prot->sockets_allocated)
1522 			sk_sockets_allocated_inc(newsk);
1523 
1524 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1525 			net_enable_timestamp();
1526 	}
1527 out:
1528 	return newsk;
1529 }
1530 EXPORT_SYMBOL_GPL(sk_clone_lock);
1531 
1532 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1533 {
1534 	__sk_dst_set(sk, dst);
1535 	sk->sk_route_caps = dst->dev->features;
1536 	if (sk->sk_route_caps & NETIF_F_GSO)
1537 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1538 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1539 	if (sk_can_gso(sk)) {
1540 		if (dst->header_len) {
1541 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1542 		} else {
1543 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1544 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1545 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1546 		}
1547 	}
1548 }
1549 EXPORT_SYMBOL_GPL(sk_setup_caps);
1550 
1551 /*
1552  *	Simple resource managers for sockets.
1553  */
1554 
1555 
1556 /*
1557  * Write buffer destructor automatically called from kfree_skb.
1558  */
1559 void sock_wfree(struct sk_buff *skb)
1560 {
1561 	struct sock *sk = skb->sk;
1562 	unsigned int len = skb->truesize;
1563 
1564 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1565 		/*
1566 		 * Keep a reference on sk_wmem_alloc, this will be released
1567 		 * after sk_write_space() call
1568 		 */
1569 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1570 		sk->sk_write_space(sk);
1571 		len = 1;
1572 	}
1573 	/*
1574 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1575 	 * could not do because of in-flight packets
1576 	 */
1577 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1578 		__sk_free(sk);
1579 }
1580 EXPORT_SYMBOL(sock_wfree);
1581 
1582 /*
1583  * Read buffer destructor automatically called from kfree_skb.
1584  */
1585 void sock_rfree(struct sk_buff *skb)
1586 {
1587 	struct sock *sk = skb->sk;
1588 	unsigned int len = skb->truesize;
1589 
1590 	atomic_sub(len, &sk->sk_rmem_alloc);
1591 	sk_mem_uncharge(sk, len);
1592 }
1593 EXPORT_SYMBOL(sock_rfree);
1594 
1595 void sock_edemux(struct sk_buff *skb)
1596 {
1597 	struct sock *sk = skb->sk;
1598 
1599 #ifdef CONFIG_INET
1600 	if (sk->sk_state == TCP_TIME_WAIT)
1601 		inet_twsk_put(inet_twsk(sk));
1602 	else
1603 #endif
1604 		sock_put(sk);
1605 }
1606 EXPORT_SYMBOL(sock_edemux);
1607 
1608 kuid_t sock_i_uid(struct sock *sk)
1609 {
1610 	kuid_t uid;
1611 
1612 	read_lock_bh(&sk->sk_callback_lock);
1613 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1614 	read_unlock_bh(&sk->sk_callback_lock);
1615 	return uid;
1616 }
1617 EXPORT_SYMBOL(sock_i_uid);
1618 
1619 unsigned long sock_i_ino(struct sock *sk)
1620 {
1621 	unsigned long ino;
1622 
1623 	read_lock_bh(&sk->sk_callback_lock);
1624 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1625 	read_unlock_bh(&sk->sk_callback_lock);
1626 	return ino;
1627 }
1628 EXPORT_SYMBOL(sock_i_ino);
1629 
1630 /*
1631  * Allocate a skb from the socket's send buffer.
1632  */
1633 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1634 			     gfp_t priority)
1635 {
1636 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1637 		struct sk_buff *skb = alloc_skb(size, priority);
1638 		if (skb) {
1639 			skb_set_owner_w(skb, sk);
1640 			return skb;
1641 		}
1642 	}
1643 	return NULL;
1644 }
1645 EXPORT_SYMBOL(sock_wmalloc);
1646 
1647 /*
1648  * Allocate a skb from the socket's receive buffer.
1649  */
1650 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1651 			     gfp_t priority)
1652 {
1653 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1654 		struct sk_buff *skb = alloc_skb(size, priority);
1655 		if (skb) {
1656 			skb_set_owner_r(skb, sk);
1657 			return skb;
1658 		}
1659 	}
1660 	return NULL;
1661 }
1662 
1663 /*
1664  * Allocate a memory block from the socket's option memory buffer.
1665  */
1666 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1667 {
1668 	if ((unsigned int)size <= sysctl_optmem_max &&
1669 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1670 		void *mem;
1671 		/* First do the add, to avoid the race if kmalloc
1672 		 * might sleep.
1673 		 */
1674 		atomic_add(size, &sk->sk_omem_alloc);
1675 		mem = kmalloc(size, priority);
1676 		if (mem)
1677 			return mem;
1678 		atomic_sub(size, &sk->sk_omem_alloc);
1679 	}
1680 	return NULL;
1681 }
1682 EXPORT_SYMBOL(sock_kmalloc);
1683 
1684 /*
1685  * Free an option memory block.
1686  */
1687 void sock_kfree_s(struct sock *sk, void *mem, int size)
1688 {
1689 	kfree(mem);
1690 	atomic_sub(size, &sk->sk_omem_alloc);
1691 }
1692 EXPORT_SYMBOL(sock_kfree_s);
1693 
1694 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1695    I think, these locks should be removed for datagram sockets.
1696  */
1697 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1698 {
1699 	DEFINE_WAIT(wait);
1700 
1701 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1702 	for (;;) {
1703 		if (!timeo)
1704 			break;
1705 		if (signal_pending(current))
1706 			break;
1707 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1708 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1709 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1710 			break;
1711 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1712 			break;
1713 		if (sk->sk_err)
1714 			break;
1715 		timeo = schedule_timeout(timeo);
1716 	}
1717 	finish_wait(sk_sleep(sk), &wait);
1718 	return timeo;
1719 }
1720 
1721 
1722 /*
1723  *	Generic send/receive buffer handlers
1724  */
1725 
1726 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1727 				     unsigned long data_len, int noblock,
1728 				     int *errcode)
1729 {
1730 	struct sk_buff *skb;
1731 	gfp_t gfp_mask;
1732 	long timeo;
1733 	int err;
1734 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1735 
1736 	err = -EMSGSIZE;
1737 	if (npages > MAX_SKB_FRAGS)
1738 		goto failure;
1739 
1740 	gfp_mask = sk->sk_allocation;
1741 	if (gfp_mask & __GFP_WAIT)
1742 		gfp_mask |= __GFP_REPEAT;
1743 
1744 	timeo = sock_sndtimeo(sk, noblock);
1745 	while (1) {
1746 		err = sock_error(sk);
1747 		if (err != 0)
1748 			goto failure;
1749 
1750 		err = -EPIPE;
1751 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1752 			goto failure;
1753 
1754 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1755 			skb = alloc_skb(header_len, gfp_mask);
1756 			if (skb) {
1757 				int i;
1758 
1759 				/* No pages, we're done... */
1760 				if (!data_len)
1761 					break;
1762 
1763 				skb->truesize += data_len;
1764 				skb_shinfo(skb)->nr_frags = npages;
1765 				for (i = 0; i < npages; i++) {
1766 					struct page *page;
1767 
1768 					page = alloc_pages(sk->sk_allocation, 0);
1769 					if (!page) {
1770 						err = -ENOBUFS;
1771 						skb_shinfo(skb)->nr_frags = i;
1772 						kfree_skb(skb);
1773 						goto failure;
1774 					}
1775 
1776 					__skb_fill_page_desc(skb, i,
1777 							page, 0,
1778 							(data_len >= PAGE_SIZE ?
1779 							 PAGE_SIZE :
1780 							 data_len));
1781 					data_len -= PAGE_SIZE;
1782 				}
1783 
1784 				/* Full success... */
1785 				break;
1786 			}
1787 			err = -ENOBUFS;
1788 			goto failure;
1789 		}
1790 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1791 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1792 		err = -EAGAIN;
1793 		if (!timeo)
1794 			goto failure;
1795 		if (signal_pending(current))
1796 			goto interrupted;
1797 		timeo = sock_wait_for_wmem(sk, timeo);
1798 	}
1799 
1800 	skb_set_owner_w(skb, sk);
1801 	return skb;
1802 
1803 interrupted:
1804 	err = sock_intr_errno(timeo);
1805 failure:
1806 	*errcode = err;
1807 	return NULL;
1808 }
1809 EXPORT_SYMBOL(sock_alloc_send_pskb);
1810 
1811 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1812 				    int noblock, int *errcode)
1813 {
1814 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1815 }
1816 EXPORT_SYMBOL(sock_alloc_send_skb);
1817 
1818 /* On 32bit arches, an skb frag is limited to 2^15 */
1819 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1820 
1821 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1822 {
1823 	int order;
1824 
1825 	if (pfrag->page) {
1826 		if (atomic_read(&pfrag->page->_count) == 1) {
1827 			pfrag->offset = 0;
1828 			return true;
1829 		}
1830 		if (pfrag->offset < pfrag->size)
1831 			return true;
1832 		put_page(pfrag->page);
1833 	}
1834 
1835 	/* We restrict high order allocations to users that can afford to wait */
1836 	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1837 
1838 	do {
1839 		gfp_t gfp = sk->sk_allocation;
1840 
1841 		if (order)
1842 			gfp |= __GFP_COMP | __GFP_NOWARN;
1843 		pfrag->page = alloc_pages(gfp, order);
1844 		if (likely(pfrag->page)) {
1845 			pfrag->offset = 0;
1846 			pfrag->size = PAGE_SIZE << order;
1847 			return true;
1848 		}
1849 	} while (--order >= 0);
1850 
1851 	sk_enter_memory_pressure(sk);
1852 	sk_stream_moderate_sndbuf(sk);
1853 	return false;
1854 }
1855 EXPORT_SYMBOL(sk_page_frag_refill);
1856 
1857 static void __lock_sock(struct sock *sk)
1858 	__releases(&sk->sk_lock.slock)
1859 	__acquires(&sk->sk_lock.slock)
1860 {
1861 	DEFINE_WAIT(wait);
1862 
1863 	for (;;) {
1864 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1865 					TASK_UNINTERRUPTIBLE);
1866 		spin_unlock_bh(&sk->sk_lock.slock);
1867 		schedule();
1868 		spin_lock_bh(&sk->sk_lock.slock);
1869 		if (!sock_owned_by_user(sk))
1870 			break;
1871 	}
1872 	finish_wait(&sk->sk_lock.wq, &wait);
1873 }
1874 
1875 static void __release_sock(struct sock *sk)
1876 	__releases(&sk->sk_lock.slock)
1877 	__acquires(&sk->sk_lock.slock)
1878 {
1879 	struct sk_buff *skb = sk->sk_backlog.head;
1880 
1881 	do {
1882 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1883 		bh_unlock_sock(sk);
1884 
1885 		do {
1886 			struct sk_buff *next = skb->next;
1887 
1888 			prefetch(next);
1889 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1890 			skb->next = NULL;
1891 			sk_backlog_rcv(sk, skb);
1892 
1893 			/*
1894 			 * We are in process context here with softirqs
1895 			 * disabled, use cond_resched_softirq() to preempt.
1896 			 * This is safe to do because we've taken the backlog
1897 			 * queue private:
1898 			 */
1899 			cond_resched_softirq();
1900 
1901 			skb = next;
1902 		} while (skb != NULL);
1903 
1904 		bh_lock_sock(sk);
1905 	} while ((skb = sk->sk_backlog.head) != NULL);
1906 
1907 	/*
1908 	 * Doing the zeroing here guarantee we can not loop forever
1909 	 * while a wild producer attempts to flood us.
1910 	 */
1911 	sk->sk_backlog.len = 0;
1912 }
1913 
1914 /**
1915  * sk_wait_data - wait for data to arrive at sk_receive_queue
1916  * @sk:    sock to wait on
1917  * @timeo: for how long
1918  *
1919  * Now socket state including sk->sk_err is changed only under lock,
1920  * hence we may omit checks after joining wait queue.
1921  * We check receive queue before schedule() only as optimization;
1922  * it is very likely that release_sock() added new data.
1923  */
1924 int sk_wait_data(struct sock *sk, long *timeo)
1925 {
1926 	int rc;
1927 	DEFINE_WAIT(wait);
1928 
1929 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1930 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1931 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1932 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1933 	finish_wait(sk_sleep(sk), &wait);
1934 	return rc;
1935 }
1936 EXPORT_SYMBOL(sk_wait_data);
1937 
1938 /**
1939  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1940  *	@sk: socket
1941  *	@size: memory size to allocate
1942  *	@kind: allocation type
1943  *
1944  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1945  *	rmem allocation. This function assumes that protocols which have
1946  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1947  */
1948 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1949 {
1950 	struct proto *prot = sk->sk_prot;
1951 	int amt = sk_mem_pages(size);
1952 	long allocated;
1953 	int parent_status = UNDER_LIMIT;
1954 
1955 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1956 
1957 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1958 
1959 	/* Under limit. */
1960 	if (parent_status == UNDER_LIMIT &&
1961 			allocated <= sk_prot_mem_limits(sk, 0)) {
1962 		sk_leave_memory_pressure(sk);
1963 		return 1;
1964 	}
1965 
1966 	/* Under pressure. (we or our parents) */
1967 	if ((parent_status > SOFT_LIMIT) ||
1968 			allocated > sk_prot_mem_limits(sk, 1))
1969 		sk_enter_memory_pressure(sk);
1970 
1971 	/* Over hard limit (we or our parents) */
1972 	if ((parent_status == OVER_LIMIT) ||
1973 			(allocated > sk_prot_mem_limits(sk, 2)))
1974 		goto suppress_allocation;
1975 
1976 	/* guarantee minimum buffer size under pressure */
1977 	if (kind == SK_MEM_RECV) {
1978 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1979 			return 1;
1980 
1981 	} else { /* SK_MEM_SEND */
1982 		if (sk->sk_type == SOCK_STREAM) {
1983 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1984 				return 1;
1985 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1986 			   prot->sysctl_wmem[0])
1987 				return 1;
1988 	}
1989 
1990 	if (sk_has_memory_pressure(sk)) {
1991 		int alloc;
1992 
1993 		if (!sk_under_memory_pressure(sk))
1994 			return 1;
1995 		alloc = sk_sockets_allocated_read_positive(sk);
1996 		if (sk_prot_mem_limits(sk, 2) > alloc *
1997 		    sk_mem_pages(sk->sk_wmem_queued +
1998 				 atomic_read(&sk->sk_rmem_alloc) +
1999 				 sk->sk_forward_alloc))
2000 			return 1;
2001 	}
2002 
2003 suppress_allocation:
2004 
2005 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2006 		sk_stream_moderate_sndbuf(sk);
2007 
2008 		/* Fail only if socket is _under_ its sndbuf.
2009 		 * In this case we cannot block, so that we have to fail.
2010 		 */
2011 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2012 			return 1;
2013 	}
2014 
2015 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2016 
2017 	/* Alas. Undo changes. */
2018 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2019 
2020 	sk_memory_allocated_sub(sk, amt);
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL(__sk_mem_schedule);
2025 
2026 /**
2027  *	__sk_reclaim - reclaim memory_allocated
2028  *	@sk: socket
2029  */
2030 void __sk_mem_reclaim(struct sock *sk)
2031 {
2032 	sk_memory_allocated_sub(sk,
2033 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2034 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2035 
2036 	if (sk_under_memory_pressure(sk) &&
2037 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2038 		sk_leave_memory_pressure(sk);
2039 }
2040 EXPORT_SYMBOL(__sk_mem_reclaim);
2041 
2042 
2043 /*
2044  * Set of default routines for initialising struct proto_ops when
2045  * the protocol does not support a particular function. In certain
2046  * cases where it makes no sense for a protocol to have a "do nothing"
2047  * function, some default processing is provided.
2048  */
2049 
2050 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2051 {
2052 	return -EOPNOTSUPP;
2053 }
2054 EXPORT_SYMBOL(sock_no_bind);
2055 
2056 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2057 		    int len, int flags)
2058 {
2059 	return -EOPNOTSUPP;
2060 }
2061 EXPORT_SYMBOL(sock_no_connect);
2062 
2063 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2064 {
2065 	return -EOPNOTSUPP;
2066 }
2067 EXPORT_SYMBOL(sock_no_socketpair);
2068 
2069 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2070 {
2071 	return -EOPNOTSUPP;
2072 }
2073 EXPORT_SYMBOL(sock_no_accept);
2074 
2075 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2076 		    int *len, int peer)
2077 {
2078 	return -EOPNOTSUPP;
2079 }
2080 EXPORT_SYMBOL(sock_no_getname);
2081 
2082 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2083 {
2084 	return 0;
2085 }
2086 EXPORT_SYMBOL(sock_no_poll);
2087 
2088 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2089 {
2090 	return -EOPNOTSUPP;
2091 }
2092 EXPORT_SYMBOL(sock_no_ioctl);
2093 
2094 int sock_no_listen(struct socket *sock, int backlog)
2095 {
2096 	return -EOPNOTSUPP;
2097 }
2098 EXPORT_SYMBOL(sock_no_listen);
2099 
2100 int sock_no_shutdown(struct socket *sock, int how)
2101 {
2102 	return -EOPNOTSUPP;
2103 }
2104 EXPORT_SYMBOL(sock_no_shutdown);
2105 
2106 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2107 		    char __user *optval, unsigned int optlen)
2108 {
2109 	return -EOPNOTSUPP;
2110 }
2111 EXPORT_SYMBOL(sock_no_setsockopt);
2112 
2113 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2114 		    char __user *optval, int __user *optlen)
2115 {
2116 	return -EOPNOTSUPP;
2117 }
2118 EXPORT_SYMBOL(sock_no_getsockopt);
2119 
2120 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2121 		    size_t len)
2122 {
2123 	return -EOPNOTSUPP;
2124 }
2125 EXPORT_SYMBOL(sock_no_sendmsg);
2126 
2127 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2128 		    size_t len, int flags)
2129 {
2130 	return -EOPNOTSUPP;
2131 }
2132 EXPORT_SYMBOL(sock_no_recvmsg);
2133 
2134 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2135 {
2136 	/* Mirror missing mmap method error code */
2137 	return -ENODEV;
2138 }
2139 EXPORT_SYMBOL(sock_no_mmap);
2140 
2141 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2142 {
2143 	ssize_t res;
2144 	struct msghdr msg = {.msg_flags = flags};
2145 	struct kvec iov;
2146 	char *kaddr = kmap(page);
2147 	iov.iov_base = kaddr + offset;
2148 	iov.iov_len = size;
2149 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2150 	kunmap(page);
2151 	return res;
2152 }
2153 EXPORT_SYMBOL(sock_no_sendpage);
2154 
2155 /*
2156  *	Default Socket Callbacks
2157  */
2158 
2159 static void sock_def_wakeup(struct sock *sk)
2160 {
2161 	struct socket_wq *wq;
2162 
2163 	rcu_read_lock();
2164 	wq = rcu_dereference(sk->sk_wq);
2165 	if (wq_has_sleeper(wq))
2166 		wake_up_interruptible_all(&wq->wait);
2167 	rcu_read_unlock();
2168 }
2169 
2170 static void sock_def_error_report(struct sock *sk)
2171 {
2172 	struct socket_wq *wq;
2173 
2174 	rcu_read_lock();
2175 	wq = rcu_dereference(sk->sk_wq);
2176 	if (wq_has_sleeper(wq))
2177 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2178 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2179 	rcu_read_unlock();
2180 }
2181 
2182 static void sock_def_readable(struct sock *sk, int len)
2183 {
2184 	struct socket_wq *wq;
2185 
2186 	rcu_read_lock();
2187 	wq = rcu_dereference(sk->sk_wq);
2188 	if (wq_has_sleeper(wq))
2189 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2190 						POLLRDNORM | POLLRDBAND);
2191 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2192 	rcu_read_unlock();
2193 }
2194 
2195 static void sock_def_write_space(struct sock *sk)
2196 {
2197 	struct socket_wq *wq;
2198 
2199 	rcu_read_lock();
2200 
2201 	/* Do not wake up a writer until he can make "significant"
2202 	 * progress.  --DaveM
2203 	 */
2204 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2205 		wq = rcu_dereference(sk->sk_wq);
2206 		if (wq_has_sleeper(wq))
2207 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2208 						POLLWRNORM | POLLWRBAND);
2209 
2210 		/* Should agree with poll, otherwise some programs break */
2211 		if (sock_writeable(sk))
2212 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2213 	}
2214 
2215 	rcu_read_unlock();
2216 }
2217 
2218 static void sock_def_destruct(struct sock *sk)
2219 {
2220 	kfree(sk->sk_protinfo);
2221 }
2222 
2223 void sk_send_sigurg(struct sock *sk)
2224 {
2225 	if (sk->sk_socket && sk->sk_socket->file)
2226 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2227 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2228 }
2229 EXPORT_SYMBOL(sk_send_sigurg);
2230 
2231 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2232 		    unsigned long expires)
2233 {
2234 	if (!mod_timer(timer, expires))
2235 		sock_hold(sk);
2236 }
2237 EXPORT_SYMBOL(sk_reset_timer);
2238 
2239 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2240 {
2241 	if (del_timer(timer))
2242 		__sock_put(sk);
2243 }
2244 EXPORT_SYMBOL(sk_stop_timer);
2245 
2246 void sock_init_data(struct socket *sock, struct sock *sk)
2247 {
2248 	skb_queue_head_init(&sk->sk_receive_queue);
2249 	skb_queue_head_init(&sk->sk_write_queue);
2250 	skb_queue_head_init(&sk->sk_error_queue);
2251 #ifdef CONFIG_NET_DMA
2252 	skb_queue_head_init(&sk->sk_async_wait_queue);
2253 #endif
2254 
2255 	sk->sk_send_head	=	NULL;
2256 
2257 	init_timer(&sk->sk_timer);
2258 
2259 	sk->sk_allocation	=	GFP_KERNEL;
2260 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2261 	sk->sk_sndbuf		=	sysctl_wmem_default;
2262 	sk->sk_state		=	TCP_CLOSE;
2263 	sk_set_socket(sk, sock);
2264 
2265 	sock_set_flag(sk, SOCK_ZAPPED);
2266 
2267 	if (sock) {
2268 		sk->sk_type	=	sock->type;
2269 		sk->sk_wq	=	sock->wq;
2270 		sock->sk	=	sk;
2271 	} else
2272 		sk->sk_wq	=	NULL;
2273 
2274 	spin_lock_init(&sk->sk_dst_lock);
2275 	rwlock_init(&sk->sk_callback_lock);
2276 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2277 			af_callback_keys + sk->sk_family,
2278 			af_family_clock_key_strings[sk->sk_family]);
2279 
2280 	sk->sk_state_change	=	sock_def_wakeup;
2281 	sk->sk_data_ready	=	sock_def_readable;
2282 	sk->sk_write_space	=	sock_def_write_space;
2283 	sk->sk_error_report	=	sock_def_error_report;
2284 	sk->sk_destruct		=	sock_def_destruct;
2285 
2286 	sk->sk_frag.page	=	NULL;
2287 	sk->sk_frag.offset	=	0;
2288 	sk->sk_peek_off		=	-1;
2289 
2290 	sk->sk_peer_pid 	=	NULL;
2291 	sk->sk_peer_cred	=	NULL;
2292 	sk->sk_write_pending	=	0;
2293 	sk->sk_rcvlowat		=	1;
2294 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2295 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2296 
2297 	sk->sk_stamp = ktime_set(-1L, 0);
2298 
2299 	/*
2300 	 * Before updating sk_refcnt, we must commit prior changes to memory
2301 	 * (Documentation/RCU/rculist_nulls.txt for details)
2302 	 */
2303 	smp_wmb();
2304 	atomic_set(&sk->sk_refcnt, 1);
2305 	atomic_set(&sk->sk_drops, 0);
2306 }
2307 EXPORT_SYMBOL(sock_init_data);
2308 
2309 void lock_sock_nested(struct sock *sk, int subclass)
2310 {
2311 	might_sleep();
2312 	spin_lock_bh(&sk->sk_lock.slock);
2313 	if (sk->sk_lock.owned)
2314 		__lock_sock(sk);
2315 	sk->sk_lock.owned = 1;
2316 	spin_unlock(&sk->sk_lock.slock);
2317 	/*
2318 	 * The sk_lock has mutex_lock() semantics here:
2319 	 */
2320 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2321 	local_bh_enable();
2322 }
2323 EXPORT_SYMBOL(lock_sock_nested);
2324 
2325 void release_sock(struct sock *sk)
2326 {
2327 	/*
2328 	 * The sk_lock has mutex_unlock() semantics:
2329 	 */
2330 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2331 
2332 	spin_lock_bh(&sk->sk_lock.slock);
2333 	if (sk->sk_backlog.tail)
2334 		__release_sock(sk);
2335 
2336 	if (sk->sk_prot->release_cb)
2337 		sk->sk_prot->release_cb(sk);
2338 
2339 	sk->sk_lock.owned = 0;
2340 	if (waitqueue_active(&sk->sk_lock.wq))
2341 		wake_up(&sk->sk_lock.wq);
2342 	spin_unlock_bh(&sk->sk_lock.slock);
2343 }
2344 EXPORT_SYMBOL(release_sock);
2345 
2346 /**
2347  * lock_sock_fast - fast version of lock_sock
2348  * @sk: socket
2349  *
2350  * This version should be used for very small section, where process wont block
2351  * return false if fast path is taken
2352  *   sk_lock.slock locked, owned = 0, BH disabled
2353  * return true if slow path is taken
2354  *   sk_lock.slock unlocked, owned = 1, BH enabled
2355  */
2356 bool lock_sock_fast(struct sock *sk)
2357 {
2358 	might_sleep();
2359 	spin_lock_bh(&sk->sk_lock.slock);
2360 
2361 	if (!sk->sk_lock.owned)
2362 		/*
2363 		 * Note : We must disable BH
2364 		 */
2365 		return false;
2366 
2367 	__lock_sock(sk);
2368 	sk->sk_lock.owned = 1;
2369 	spin_unlock(&sk->sk_lock.slock);
2370 	/*
2371 	 * The sk_lock has mutex_lock() semantics here:
2372 	 */
2373 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2374 	local_bh_enable();
2375 	return true;
2376 }
2377 EXPORT_SYMBOL(lock_sock_fast);
2378 
2379 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2380 {
2381 	struct timeval tv;
2382 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2383 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2384 	tv = ktime_to_timeval(sk->sk_stamp);
2385 	if (tv.tv_sec == -1)
2386 		return -ENOENT;
2387 	if (tv.tv_sec == 0) {
2388 		sk->sk_stamp = ktime_get_real();
2389 		tv = ktime_to_timeval(sk->sk_stamp);
2390 	}
2391 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2392 }
2393 EXPORT_SYMBOL(sock_get_timestamp);
2394 
2395 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2396 {
2397 	struct timespec ts;
2398 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2399 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2400 	ts = ktime_to_timespec(sk->sk_stamp);
2401 	if (ts.tv_sec == -1)
2402 		return -ENOENT;
2403 	if (ts.tv_sec == 0) {
2404 		sk->sk_stamp = ktime_get_real();
2405 		ts = ktime_to_timespec(sk->sk_stamp);
2406 	}
2407 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2408 }
2409 EXPORT_SYMBOL(sock_get_timestampns);
2410 
2411 void sock_enable_timestamp(struct sock *sk, int flag)
2412 {
2413 	if (!sock_flag(sk, flag)) {
2414 		unsigned long previous_flags = sk->sk_flags;
2415 
2416 		sock_set_flag(sk, flag);
2417 		/*
2418 		 * we just set one of the two flags which require net
2419 		 * time stamping, but time stamping might have been on
2420 		 * already because of the other one
2421 		 */
2422 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2423 			net_enable_timestamp();
2424 	}
2425 }
2426 
2427 /*
2428  *	Get a socket option on an socket.
2429  *
2430  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2431  *	asynchronous errors should be reported by getsockopt. We assume
2432  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2433  */
2434 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2435 			   char __user *optval, int __user *optlen)
2436 {
2437 	struct sock *sk = sock->sk;
2438 
2439 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2440 }
2441 EXPORT_SYMBOL(sock_common_getsockopt);
2442 
2443 #ifdef CONFIG_COMPAT
2444 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2445 				  char __user *optval, int __user *optlen)
2446 {
2447 	struct sock *sk = sock->sk;
2448 
2449 	if (sk->sk_prot->compat_getsockopt != NULL)
2450 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2451 						      optval, optlen);
2452 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2453 }
2454 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2455 #endif
2456 
2457 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2458 			struct msghdr *msg, size_t size, int flags)
2459 {
2460 	struct sock *sk = sock->sk;
2461 	int addr_len = 0;
2462 	int err;
2463 
2464 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2465 				   flags & ~MSG_DONTWAIT, &addr_len);
2466 	if (err >= 0)
2467 		msg->msg_namelen = addr_len;
2468 	return err;
2469 }
2470 EXPORT_SYMBOL(sock_common_recvmsg);
2471 
2472 /*
2473  *	Set socket options on an inet socket.
2474  */
2475 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2476 			   char __user *optval, unsigned int optlen)
2477 {
2478 	struct sock *sk = sock->sk;
2479 
2480 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2481 }
2482 EXPORT_SYMBOL(sock_common_setsockopt);
2483 
2484 #ifdef CONFIG_COMPAT
2485 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2486 				  char __user *optval, unsigned int optlen)
2487 {
2488 	struct sock *sk = sock->sk;
2489 
2490 	if (sk->sk_prot->compat_setsockopt != NULL)
2491 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2492 						      optval, optlen);
2493 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2494 }
2495 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2496 #endif
2497 
2498 void sk_common_release(struct sock *sk)
2499 {
2500 	if (sk->sk_prot->destroy)
2501 		sk->sk_prot->destroy(sk);
2502 
2503 	/*
2504 	 * Observation: when sock_common_release is called, processes have
2505 	 * no access to socket. But net still has.
2506 	 * Step one, detach it from networking:
2507 	 *
2508 	 * A. Remove from hash tables.
2509 	 */
2510 
2511 	sk->sk_prot->unhash(sk);
2512 
2513 	/*
2514 	 * In this point socket cannot receive new packets, but it is possible
2515 	 * that some packets are in flight because some CPU runs receiver and
2516 	 * did hash table lookup before we unhashed socket. They will achieve
2517 	 * receive queue and will be purged by socket destructor.
2518 	 *
2519 	 * Also we still have packets pending on receive queue and probably,
2520 	 * our own packets waiting in device queues. sock_destroy will drain
2521 	 * receive queue, but transmitted packets will delay socket destruction
2522 	 * until the last reference will be released.
2523 	 */
2524 
2525 	sock_orphan(sk);
2526 
2527 	xfrm_sk_free_policy(sk);
2528 
2529 	sk_refcnt_debug_release(sk);
2530 
2531 	if (sk->sk_frag.page) {
2532 		put_page(sk->sk_frag.page);
2533 		sk->sk_frag.page = NULL;
2534 	}
2535 
2536 	sock_put(sk);
2537 }
2538 EXPORT_SYMBOL(sk_common_release);
2539 
2540 #ifdef CONFIG_PROC_FS
2541 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2542 struct prot_inuse {
2543 	int val[PROTO_INUSE_NR];
2544 };
2545 
2546 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2547 
2548 #ifdef CONFIG_NET_NS
2549 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2550 {
2551 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2552 }
2553 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2554 
2555 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2556 {
2557 	int cpu, idx = prot->inuse_idx;
2558 	int res = 0;
2559 
2560 	for_each_possible_cpu(cpu)
2561 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2562 
2563 	return res >= 0 ? res : 0;
2564 }
2565 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2566 
2567 static int __net_init sock_inuse_init_net(struct net *net)
2568 {
2569 	net->core.inuse = alloc_percpu(struct prot_inuse);
2570 	return net->core.inuse ? 0 : -ENOMEM;
2571 }
2572 
2573 static void __net_exit sock_inuse_exit_net(struct net *net)
2574 {
2575 	free_percpu(net->core.inuse);
2576 }
2577 
2578 static struct pernet_operations net_inuse_ops = {
2579 	.init = sock_inuse_init_net,
2580 	.exit = sock_inuse_exit_net,
2581 };
2582 
2583 static __init int net_inuse_init(void)
2584 {
2585 	if (register_pernet_subsys(&net_inuse_ops))
2586 		panic("Cannot initialize net inuse counters");
2587 
2588 	return 0;
2589 }
2590 
2591 core_initcall(net_inuse_init);
2592 #else
2593 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2594 
2595 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2596 {
2597 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2598 }
2599 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2600 
2601 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2602 {
2603 	int cpu, idx = prot->inuse_idx;
2604 	int res = 0;
2605 
2606 	for_each_possible_cpu(cpu)
2607 		res += per_cpu(prot_inuse, cpu).val[idx];
2608 
2609 	return res >= 0 ? res : 0;
2610 }
2611 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2612 #endif
2613 
2614 static void assign_proto_idx(struct proto *prot)
2615 {
2616 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2617 
2618 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2619 		pr_err("PROTO_INUSE_NR exhausted\n");
2620 		return;
2621 	}
2622 
2623 	set_bit(prot->inuse_idx, proto_inuse_idx);
2624 }
2625 
2626 static void release_proto_idx(struct proto *prot)
2627 {
2628 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2629 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2630 }
2631 #else
2632 static inline void assign_proto_idx(struct proto *prot)
2633 {
2634 }
2635 
2636 static inline void release_proto_idx(struct proto *prot)
2637 {
2638 }
2639 #endif
2640 
2641 int proto_register(struct proto *prot, int alloc_slab)
2642 {
2643 	if (alloc_slab) {
2644 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2645 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2646 					NULL);
2647 
2648 		if (prot->slab == NULL) {
2649 			pr_crit("%s: Can't create sock SLAB cache!\n",
2650 				prot->name);
2651 			goto out;
2652 		}
2653 
2654 		if (prot->rsk_prot != NULL) {
2655 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2656 			if (prot->rsk_prot->slab_name == NULL)
2657 				goto out_free_sock_slab;
2658 
2659 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2660 								 prot->rsk_prot->obj_size, 0,
2661 								 SLAB_HWCACHE_ALIGN, NULL);
2662 
2663 			if (prot->rsk_prot->slab == NULL) {
2664 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2665 					prot->name);
2666 				goto out_free_request_sock_slab_name;
2667 			}
2668 		}
2669 
2670 		if (prot->twsk_prot != NULL) {
2671 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2672 
2673 			if (prot->twsk_prot->twsk_slab_name == NULL)
2674 				goto out_free_request_sock_slab;
2675 
2676 			prot->twsk_prot->twsk_slab =
2677 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2678 						  prot->twsk_prot->twsk_obj_size,
2679 						  0,
2680 						  SLAB_HWCACHE_ALIGN |
2681 							prot->slab_flags,
2682 						  NULL);
2683 			if (prot->twsk_prot->twsk_slab == NULL)
2684 				goto out_free_timewait_sock_slab_name;
2685 		}
2686 	}
2687 
2688 	mutex_lock(&proto_list_mutex);
2689 	list_add(&prot->node, &proto_list);
2690 	assign_proto_idx(prot);
2691 	mutex_unlock(&proto_list_mutex);
2692 	return 0;
2693 
2694 out_free_timewait_sock_slab_name:
2695 	kfree(prot->twsk_prot->twsk_slab_name);
2696 out_free_request_sock_slab:
2697 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2698 		kmem_cache_destroy(prot->rsk_prot->slab);
2699 		prot->rsk_prot->slab = NULL;
2700 	}
2701 out_free_request_sock_slab_name:
2702 	if (prot->rsk_prot)
2703 		kfree(prot->rsk_prot->slab_name);
2704 out_free_sock_slab:
2705 	kmem_cache_destroy(prot->slab);
2706 	prot->slab = NULL;
2707 out:
2708 	return -ENOBUFS;
2709 }
2710 EXPORT_SYMBOL(proto_register);
2711 
2712 void proto_unregister(struct proto *prot)
2713 {
2714 	mutex_lock(&proto_list_mutex);
2715 	release_proto_idx(prot);
2716 	list_del(&prot->node);
2717 	mutex_unlock(&proto_list_mutex);
2718 
2719 	if (prot->slab != NULL) {
2720 		kmem_cache_destroy(prot->slab);
2721 		prot->slab = NULL;
2722 	}
2723 
2724 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2725 		kmem_cache_destroy(prot->rsk_prot->slab);
2726 		kfree(prot->rsk_prot->slab_name);
2727 		prot->rsk_prot->slab = NULL;
2728 	}
2729 
2730 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2731 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2732 		kfree(prot->twsk_prot->twsk_slab_name);
2733 		prot->twsk_prot->twsk_slab = NULL;
2734 	}
2735 }
2736 EXPORT_SYMBOL(proto_unregister);
2737 
2738 #ifdef CONFIG_PROC_FS
2739 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2740 	__acquires(proto_list_mutex)
2741 {
2742 	mutex_lock(&proto_list_mutex);
2743 	return seq_list_start_head(&proto_list, *pos);
2744 }
2745 
2746 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2747 {
2748 	return seq_list_next(v, &proto_list, pos);
2749 }
2750 
2751 static void proto_seq_stop(struct seq_file *seq, void *v)
2752 	__releases(proto_list_mutex)
2753 {
2754 	mutex_unlock(&proto_list_mutex);
2755 }
2756 
2757 static char proto_method_implemented(const void *method)
2758 {
2759 	return method == NULL ? 'n' : 'y';
2760 }
2761 static long sock_prot_memory_allocated(struct proto *proto)
2762 {
2763 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2764 }
2765 
2766 static char *sock_prot_memory_pressure(struct proto *proto)
2767 {
2768 	return proto->memory_pressure != NULL ?
2769 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2770 }
2771 
2772 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2773 {
2774 
2775 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2776 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2777 		   proto->name,
2778 		   proto->obj_size,
2779 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2780 		   sock_prot_memory_allocated(proto),
2781 		   sock_prot_memory_pressure(proto),
2782 		   proto->max_header,
2783 		   proto->slab == NULL ? "no" : "yes",
2784 		   module_name(proto->owner),
2785 		   proto_method_implemented(proto->close),
2786 		   proto_method_implemented(proto->connect),
2787 		   proto_method_implemented(proto->disconnect),
2788 		   proto_method_implemented(proto->accept),
2789 		   proto_method_implemented(proto->ioctl),
2790 		   proto_method_implemented(proto->init),
2791 		   proto_method_implemented(proto->destroy),
2792 		   proto_method_implemented(proto->shutdown),
2793 		   proto_method_implemented(proto->setsockopt),
2794 		   proto_method_implemented(proto->getsockopt),
2795 		   proto_method_implemented(proto->sendmsg),
2796 		   proto_method_implemented(proto->recvmsg),
2797 		   proto_method_implemented(proto->sendpage),
2798 		   proto_method_implemented(proto->bind),
2799 		   proto_method_implemented(proto->backlog_rcv),
2800 		   proto_method_implemented(proto->hash),
2801 		   proto_method_implemented(proto->unhash),
2802 		   proto_method_implemented(proto->get_port),
2803 		   proto_method_implemented(proto->enter_memory_pressure));
2804 }
2805 
2806 static int proto_seq_show(struct seq_file *seq, void *v)
2807 {
2808 	if (v == &proto_list)
2809 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2810 			   "protocol",
2811 			   "size",
2812 			   "sockets",
2813 			   "memory",
2814 			   "press",
2815 			   "maxhdr",
2816 			   "slab",
2817 			   "module",
2818 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2819 	else
2820 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2821 	return 0;
2822 }
2823 
2824 static const struct seq_operations proto_seq_ops = {
2825 	.start  = proto_seq_start,
2826 	.next   = proto_seq_next,
2827 	.stop   = proto_seq_stop,
2828 	.show   = proto_seq_show,
2829 };
2830 
2831 static int proto_seq_open(struct inode *inode, struct file *file)
2832 {
2833 	return seq_open_net(inode, file, &proto_seq_ops,
2834 			    sizeof(struct seq_net_private));
2835 }
2836 
2837 static const struct file_operations proto_seq_fops = {
2838 	.owner		= THIS_MODULE,
2839 	.open		= proto_seq_open,
2840 	.read		= seq_read,
2841 	.llseek		= seq_lseek,
2842 	.release	= seq_release_net,
2843 };
2844 
2845 static __net_init int proto_init_net(struct net *net)
2846 {
2847 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2848 		return -ENOMEM;
2849 
2850 	return 0;
2851 }
2852 
2853 static __net_exit void proto_exit_net(struct net *net)
2854 {
2855 	remove_proc_entry("protocols", net->proc_net);
2856 }
2857 
2858 
2859 static __net_initdata struct pernet_operations proto_net_ops = {
2860 	.init = proto_init_net,
2861 	.exit = proto_exit_net,
2862 };
2863 
2864 static int __init proto_init(void)
2865 {
2866 	return register_pernet_subsys(&proto_net_ops);
2867 }
2868 
2869 subsys_initcall(proto_init);
2870 
2871 #endif /* PROC_FS */
2872