xref: /linux/net/core/sock.c (revision 6be8e297f9bcea666ea85ac7a6cd9d52d6deaf92)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131 
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135 
136 #include <trace/events/sock.h>
137 
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140 
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143 
144 static void sock_inuse_add(struct net *net, int val);
145 
146 /**
147  * sk_ns_capable - General socket capability test
148  * @sk: Socket to use a capability on or through
149  * @user_ns: The user namespace of the capability to use
150  * @cap: The capability to use
151  *
152  * Test to see if the opener of the socket had when the socket was
153  * created and the current process has the capability @cap in the user
154  * namespace @user_ns.
155  */
156 bool sk_ns_capable(const struct sock *sk,
157 		   struct user_namespace *user_ns, int cap)
158 {
159 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 		ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163 
164 /**
165  * sk_capable - Socket global capability test
166  * @sk: Socket to use a capability on or through
167  * @cap: The global capability to use
168  *
169  * Test to see if the opener of the socket had when the socket was
170  * created and the current process has the capability @cap in all user
171  * namespaces.
172  */
173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 	return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178 
179 /**
180  * sk_net_capable - Network namespace socket capability test
181  * @sk: Socket to use a capability on or through
182  * @cap: The capability to use
183  *
184  * Test to see if the opener of the socket had when the socket was created
185  * and the current process has the capability @cap over the network namespace
186  * the socket is a member of.
187  */
188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193 
194 /*
195  * Each address family might have different locking rules, so we have
196  * one slock key per address family and separate keys for internal and
197  * userspace sockets.
198  */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203 
204 /*
205  * Make lock validator output more readable. (we pre-construct these
206  * strings build-time, so that runtime initialization of socket
207  * locks is fast):
208  */
209 
210 #define _sock_locks(x)						  \
211   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226   x "AF_MAX"
227 
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 	_sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 	_sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 	_sock_locks("clock-")
236 };
237 
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 	_sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 	_sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 	_sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 	_sock_locks("elock-")
255 };
256 
257 /*
258  * sk_callback_lock and sk queues locking rules are per-address-family,
259  * so split the lock classes by using a per-AF key:
260  */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266 
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274 
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278 
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283 
284 /**
285  * sk_set_memalloc - sets %SOCK_MEMALLOC
286  * @sk: socket to set it on
287  *
288  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289  * It's the responsibility of the admin to adjust min_free_kbytes
290  * to meet the requirements
291  */
292 void sk_set_memalloc(struct sock *sk)
293 {
294 	sock_set_flag(sk, SOCK_MEMALLOC);
295 	sk->sk_allocation |= __GFP_MEMALLOC;
296 	static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299 
300 void sk_clear_memalloc(struct sock *sk)
301 {
302 	sock_reset_flag(sk, SOCK_MEMALLOC);
303 	sk->sk_allocation &= ~__GFP_MEMALLOC;
304 	static_branch_dec(&memalloc_socks_key);
305 
306 	/*
307 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 	 * it has rmem allocations due to the last swapfile being deactivated
310 	 * but there is a risk that the socket is unusable due to exceeding
311 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 	 */
313 	sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316 
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 	unsigned int noreclaim_flag;
321 
322 	/* these should have been dropped before queueing */
323 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324 
325 	noreclaim_flag = memalloc_noreclaim_save();
326 	ret = sk->sk_backlog_rcv(sk, skb);
327 	memalloc_noreclaim_restore(noreclaim_flag);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332 
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 	struct __kernel_sock_timeval tv;
336 	int size;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		size = sizeof(old_tv);
358 	} else {
359 		*(struct __kernel_sock_timeval *)optval = tv;
360 		size = sizeof(tv);
361 	}
362 
363 	return size;
364 }
365 
366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367 {
368 	struct __kernel_sock_timeval tv;
369 
370 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 		struct old_timeval32 tv32;
372 
373 		if (optlen < sizeof(tv32))
374 			return -EINVAL;
375 
376 		if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 			return -EFAULT;
378 		tv.tv_sec = tv32.tv_sec;
379 		tv.tv_usec = tv32.tv_usec;
380 	} else if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 
383 		if (optlen < sizeof(old_tv))
384 			return -EINVAL;
385 		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 			return -EFAULT;
387 		tv.tv_sec = old_tv.tv_sec;
388 		tv.tv_usec = old_tv.tv_usec;
389 	} else {
390 		if (optlen < sizeof(tv))
391 			return -EINVAL;
392 		if (copy_from_user(&tv, optval, sizeof(tv)))
393 			return -EFAULT;
394 	}
395 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 		return -EDOM;
397 
398 	if (tv.tv_sec < 0) {
399 		static int warned __read_mostly;
400 
401 		*timeo_p = 0;
402 		if (warned < 10 && net_ratelimit()) {
403 			warned++;
404 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 				__func__, current->comm, task_pid_nr(current));
406 		}
407 		return 0;
408 	}
409 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 		return 0;
412 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 	return 0;
415 }
416 
417 static void sock_warn_obsolete_bsdism(const char *name)
418 {
419 	static int warned;
420 	static char warncomm[TASK_COMM_LEN];
421 	if (strcmp(warncomm, current->comm) && warned < 5) {
422 		strcpy(warncomm,  current->comm);
423 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 			warncomm, name);
425 		warned++;
426 	}
427 }
428 
429 static bool sock_needs_netstamp(const struct sock *sk)
430 {
431 	switch (sk->sk_family) {
432 	case AF_UNSPEC:
433 	case AF_UNIX:
434 		return false;
435 	default:
436 		return true;
437 	}
438 }
439 
440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441 {
442 	if (sk->sk_flags & flags) {
443 		sk->sk_flags &= ~flags;
444 		if (sock_needs_netstamp(sk) &&
445 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 			net_disable_timestamp();
447 	}
448 }
449 
450 
451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452 {
453 	unsigned long flags;
454 	struct sk_buff_head *list = &sk->sk_receive_queue;
455 
456 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 		atomic_inc(&sk->sk_drops);
458 		trace_sock_rcvqueue_full(sk, skb);
459 		return -ENOMEM;
460 	}
461 
462 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 		atomic_inc(&sk->sk_drops);
464 		return -ENOBUFS;
465 	}
466 
467 	skb->dev = NULL;
468 	skb_set_owner_r(skb, sk);
469 
470 	/* we escape from rcu protected region, make sure we dont leak
471 	 * a norefcounted dst
472 	 */
473 	skb_dst_force(skb);
474 
475 	spin_lock_irqsave(&list->lock, flags);
476 	sock_skb_set_dropcount(sk, skb);
477 	__skb_queue_tail(list, skb);
478 	spin_unlock_irqrestore(&list->lock, flags);
479 
480 	if (!sock_flag(sk, SOCK_DEAD))
481 		sk->sk_data_ready(sk);
482 	return 0;
483 }
484 EXPORT_SYMBOL(__sock_queue_rcv_skb);
485 
486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 {
488 	int err;
489 
490 	err = sk_filter(sk, skb);
491 	if (err)
492 		return err;
493 
494 	return __sock_queue_rcv_skb(sk, skb);
495 }
496 EXPORT_SYMBOL(sock_queue_rcv_skb);
497 
498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 		     const int nested, unsigned int trim_cap, bool refcounted)
500 {
501 	int rc = NET_RX_SUCCESS;
502 
503 	if (sk_filter_trim_cap(sk, skb, trim_cap))
504 		goto discard_and_relse;
505 
506 	skb->dev = NULL;
507 
508 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 		atomic_inc(&sk->sk_drops);
510 		goto discard_and_relse;
511 	}
512 	if (nested)
513 		bh_lock_sock_nested(sk);
514 	else
515 		bh_lock_sock(sk);
516 	if (!sock_owned_by_user(sk)) {
517 		/*
518 		 * trylock + unlock semantics:
519 		 */
520 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521 
522 		rc = sk_backlog_rcv(sk, skb);
523 
524 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
526 		bh_unlock_sock(sk);
527 		atomic_inc(&sk->sk_drops);
528 		goto discard_and_relse;
529 	}
530 
531 	bh_unlock_sock(sk);
532 out:
533 	if (refcounted)
534 		sock_put(sk);
535 	return rc;
536 discard_and_relse:
537 	kfree_skb(skb);
538 	goto out;
539 }
540 EXPORT_SYMBOL(__sk_receive_skb);
541 
542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 	struct dst_entry *dst = __sk_dst_get(sk);
545 
546 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 		sk_tx_queue_clear(sk);
548 		sk->sk_dst_pending_confirm = 0;
549 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 		dst_release(dst);
551 		return NULL;
552 	}
553 
554 	return dst;
555 }
556 EXPORT_SYMBOL(__sk_dst_check);
557 
558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559 {
560 	struct dst_entry *dst = sk_dst_get(sk);
561 
562 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 		sk_dst_reset(sk);
564 		dst_release(dst);
565 		return NULL;
566 	}
567 
568 	return dst;
569 }
570 EXPORT_SYMBOL(sk_dst_check);
571 
572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573 {
574 	int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 	struct net *net = sock_net(sk);
577 
578 	/* Sorry... */
579 	ret = -EPERM;
580 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 		goto out;
582 
583 	ret = -EINVAL;
584 	if (ifindex < 0)
585 		goto out;
586 
587 	sk->sk_bound_dev_if = ifindex;
588 	if (sk->sk_prot->rehash)
589 		sk->sk_prot->rehash(sk);
590 	sk_dst_reset(sk);
591 
592 	ret = 0;
593 
594 out:
595 #endif
596 
597 	return ret;
598 }
599 
600 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 				int optlen)
602 {
603 	int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 	struct net *net = sock_net(sk);
606 	char devname[IFNAMSIZ];
607 	int index;
608 
609 	ret = -EINVAL;
610 	if (optlen < 0)
611 		goto out;
612 
613 	/* Bind this socket to a particular device like "eth0",
614 	 * as specified in the passed interface name. If the
615 	 * name is "" or the option length is zero the socket
616 	 * is not bound.
617 	 */
618 	if (optlen > IFNAMSIZ - 1)
619 		optlen = IFNAMSIZ - 1;
620 	memset(devname, 0, sizeof(devname));
621 
622 	ret = -EFAULT;
623 	if (copy_from_user(devname, optval, optlen))
624 		goto out;
625 
626 	index = 0;
627 	if (devname[0] != '\0') {
628 		struct net_device *dev;
629 
630 		rcu_read_lock();
631 		dev = dev_get_by_name_rcu(net, devname);
632 		if (dev)
633 			index = dev->ifindex;
634 		rcu_read_unlock();
635 		ret = -ENODEV;
636 		if (!dev)
637 			goto out;
638 	}
639 
640 	lock_sock(sk);
641 	ret = sock_setbindtodevice_locked(sk, index);
642 	release_sock(sk);
643 
644 out:
645 #endif
646 
647 	return ret;
648 }
649 
650 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 				int __user *optlen, int len)
652 {
653 	int ret = -ENOPROTOOPT;
654 #ifdef CONFIG_NETDEVICES
655 	struct net *net = sock_net(sk);
656 	char devname[IFNAMSIZ];
657 
658 	if (sk->sk_bound_dev_if == 0) {
659 		len = 0;
660 		goto zero;
661 	}
662 
663 	ret = -EINVAL;
664 	if (len < IFNAMSIZ)
665 		goto out;
666 
667 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 	if (ret)
669 		goto out;
670 
671 	len = strlen(devname) + 1;
672 
673 	ret = -EFAULT;
674 	if (copy_to_user(optval, devname, len))
675 		goto out;
676 
677 zero:
678 	ret = -EFAULT;
679 	if (put_user(len, optlen))
680 		goto out;
681 
682 	ret = 0;
683 
684 out:
685 #endif
686 
687 	return ret;
688 }
689 
690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691 {
692 	if (valbool)
693 		sock_set_flag(sk, bit);
694 	else
695 		sock_reset_flag(sk, bit);
696 }
697 
698 bool sk_mc_loop(struct sock *sk)
699 {
700 	if (dev_recursion_level())
701 		return false;
702 	if (!sk)
703 		return true;
704 	switch (sk->sk_family) {
705 	case AF_INET:
706 		return inet_sk(sk)->mc_loop;
707 #if IS_ENABLED(CONFIG_IPV6)
708 	case AF_INET6:
709 		return inet6_sk(sk)->mc_loop;
710 #endif
711 	}
712 	WARN_ON(1);
713 	return true;
714 }
715 EXPORT_SYMBOL(sk_mc_loop);
716 
717 /*
718  *	This is meant for all protocols to use and covers goings on
719  *	at the socket level. Everything here is generic.
720  */
721 
722 int sock_setsockopt(struct socket *sock, int level, int optname,
723 		    char __user *optval, unsigned int optlen)
724 {
725 	struct sock_txtime sk_txtime;
726 	struct sock *sk = sock->sk;
727 	int val;
728 	int valbool;
729 	struct linger ling;
730 	int ret = 0;
731 
732 	/*
733 	 *	Options without arguments
734 	 */
735 
736 	if (optname == SO_BINDTODEVICE)
737 		return sock_setbindtodevice(sk, optval, optlen);
738 
739 	if (optlen < sizeof(int))
740 		return -EINVAL;
741 
742 	if (get_user(val, (int __user *)optval))
743 		return -EFAULT;
744 
745 	valbool = val ? 1 : 0;
746 
747 	lock_sock(sk);
748 
749 	switch (optname) {
750 	case SO_DEBUG:
751 		if (val && !capable(CAP_NET_ADMIN))
752 			ret = -EACCES;
753 		else
754 			sock_valbool_flag(sk, SOCK_DBG, valbool);
755 		break;
756 	case SO_REUSEADDR:
757 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 		break;
759 	case SO_REUSEPORT:
760 		sk->sk_reuseport = valbool;
761 		break;
762 	case SO_TYPE:
763 	case SO_PROTOCOL:
764 	case SO_DOMAIN:
765 	case SO_ERROR:
766 		ret = -ENOPROTOOPT;
767 		break;
768 	case SO_DONTROUTE:
769 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 		sk_dst_reset(sk);
771 		break;
772 	case SO_BROADCAST:
773 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 		break;
775 	case SO_SNDBUF:
776 		/* Don't error on this BSD doesn't and if you think
777 		 * about it this is right. Otherwise apps have to
778 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 		 * are treated in BSD as hints
780 		 */
781 		val = min_t(u32, val, sysctl_wmem_max);
782 set_sndbuf:
783 		/* Ensure val * 2 fits into an int, to prevent max_t()
784 		 * from treating it as a negative value.
785 		 */
786 		val = min_t(int, val, INT_MAX / 2);
787 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
789 		/* Wake up sending tasks if we upped the value. */
790 		sk->sk_write_space(sk);
791 		break;
792 
793 	case SO_SNDBUFFORCE:
794 		if (!capable(CAP_NET_ADMIN)) {
795 			ret = -EPERM;
796 			break;
797 		}
798 
799 		/* No negative values (to prevent underflow, as val will be
800 		 * multiplied by 2).
801 		 */
802 		if (val < 0)
803 			val = 0;
804 		goto set_sndbuf;
805 
806 	case SO_RCVBUF:
807 		/* Don't error on this BSD doesn't and if you think
808 		 * about it this is right. Otherwise apps have to
809 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
810 		 * are treated in BSD as hints
811 		 */
812 		val = min_t(u32, val, sysctl_rmem_max);
813 set_rcvbuf:
814 		/* Ensure val * 2 fits into an int, to prevent max_t()
815 		 * from treating it as a negative value.
816 		 */
817 		val = min_t(int, val, INT_MAX / 2);
818 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
819 		/*
820 		 * We double it on the way in to account for
821 		 * "struct sk_buff" etc. overhead.   Applications
822 		 * assume that the SO_RCVBUF setting they make will
823 		 * allow that much actual data to be received on that
824 		 * socket.
825 		 *
826 		 * Applications are unaware that "struct sk_buff" and
827 		 * other overheads allocate from the receive buffer
828 		 * during socket buffer allocation.
829 		 *
830 		 * And after considering the possible alternatives,
831 		 * returning the value we actually used in getsockopt
832 		 * is the most desirable behavior.
833 		 */
834 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
835 		break;
836 
837 	case SO_RCVBUFFORCE:
838 		if (!capable(CAP_NET_ADMIN)) {
839 			ret = -EPERM;
840 			break;
841 		}
842 
843 		/* No negative values (to prevent underflow, as val will be
844 		 * multiplied by 2).
845 		 */
846 		if (val < 0)
847 			val = 0;
848 		goto set_rcvbuf;
849 
850 	case SO_KEEPALIVE:
851 		if (sk->sk_prot->keepalive)
852 			sk->sk_prot->keepalive(sk, valbool);
853 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
854 		break;
855 
856 	case SO_OOBINLINE:
857 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
858 		break;
859 
860 	case SO_NO_CHECK:
861 		sk->sk_no_check_tx = valbool;
862 		break;
863 
864 	case SO_PRIORITY:
865 		if ((val >= 0 && val <= 6) ||
866 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 			sk->sk_priority = val;
868 		else
869 			ret = -EPERM;
870 		break;
871 
872 	case SO_LINGER:
873 		if (optlen < sizeof(ling)) {
874 			ret = -EINVAL;	/* 1003.1g */
875 			break;
876 		}
877 		if (copy_from_user(&ling, optval, sizeof(ling))) {
878 			ret = -EFAULT;
879 			break;
880 		}
881 		if (!ling.l_onoff)
882 			sock_reset_flag(sk, SOCK_LINGER);
883 		else {
884 #if (BITS_PER_LONG == 32)
885 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
887 			else
888 #endif
889 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 			sock_set_flag(sk, SOCK_LINGER);
891 		}
892 		break;
893 
894 	case SO_BSDCOMPAT:
895 		sock_warn_obsolete_bsdism("setsockopt");
896 		break;
897 
898 	case SO_PASSCRED:
899 		if (valbool)
900 			set_bit(SOCK_PASSCRED, &sock->flags);
901 		else
902 			clear_bit(SOCK_PASSCRED, &sock->flags);
903 		break;
904 
905 	case SO_TIMESTAMP_OLD:
906 	case SO_TIMESTAMP_NEW:
907 	case SO_TIMESTAMPNS_OLD:
908 	case SO_TIMESTAMPNS_NEW:
909 		if (valbool)  {
910 			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 				sock_set_flag(sk, SOCK_TSTAMP_NEW);
912 			else
913 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
914 
915 			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
917 			else
918 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 			sock_set_flag(sk, SOCK_RCVTSTAMP);
920 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
921 		} else {
922 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
925 		}
926 		break;
927 
928 	case SO_TIMESTAMPING_NEW:
929 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
930 		/* fall through */
931 	case SO_TIMESTAMPING_OLD:
932 		if (val & ~SOF_TIMESTAMPING_MASK) {
933 			ret = -EINVAL;
934 			break;
935 		}
936 
937 		if (val & SOF_TIMESTAMPING_OPT_ID &&
938 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 			if (sk->sk_protocol == IPPROTO_TCP &&
940 			    sk->sk_type == SOCK_STREAM) {
941 				if ((1 << sk->sk_state) &
942 				    (TCPF_CLOSE | TCPF_LISTEN)) {
943 					ret = -EINVAL;
944 					break;
945 				}
946 				sk->sk_tskey = tcp_sk(sk)->snd_una;
947 			} else {
948 				sk->sk_tskey = 0;
949 			}
950 		}
951 
952 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
954 			ret = -EINVAL;
955 			break;
956 		}
957 
958 		sk->sk_tsflags = val;
959 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 			sock_enable_timestamp(sk,
961 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
962 		else {
963 			if (optname == SO_TIMESTAMPING_NEW)
964 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
965 
966 			sock_disable_timestamp(sk,
967 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
968 		}
969 		break;
970 
971 	case SO_RCVLOWAT:
972 		if (val < 0)
973 			val = INT_MAX;
974 		if (sock->ops->set_rcvlowat)
975 			ret = sock->ops->set_rcvlowat(sk, val);
976 		else
977 			sk->sk_rcvlowat = val ? : 1;
978 		break;
979 
980 	case SO_RCVTIMEO_OLD:
981 	case SO_RCVTIMEO_NEW:
982 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
983 		break;
984 
985 	case SO_SNDTIMEO_OLD:
986 	case SO_SNDTIMEO_NEW:
987 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
988 		break;
989 
990 	case SO_ATTACH_FILTER:
991 		ret = -EINVAL;
992 		if (optlen == sizeof(struct sock_fprog)) {
993 			struct sock_fprog fprog;
994 
995 			ret = -EFAULT;
996 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
997 				break;
998 
999 			ret = sk_attach_filter(&fprog, sk);
1000 		}
1001 		break;
1002 
1003 	case SO_ATTACH_BPF:
1004 		ret = -EINVAL;
1005 		if (optlen == sizeof(u32)) {
1006 			u32 ufd;
1007 
1008 			ret = -EFAULT;
1009 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1010 				break;
1011 
1012 			ret = sk_attach_bpf(ufd, sk);
1013 		}
1014 		break;
1015 
1016 	case SO_ATTACH_REUSEPORT_CBPF:
1017 		ret = -EINVAL;
1018 		if (optlen == sizeof(struct sock_fprog)) {
1019 			struct sock_fprog fprog;
1020 
1021 			ret = -EFAULT;
1022 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1023 				break;
1024 
1025 			ret = sk_reuseport_attach_filter(&fprog, sk);
1026 		}
1027 		break;
1028 
1029 	case SO_ATTACH_REUSEPORT_EBPF:
1030 		ret = -EINVAL;
1031 		if (optlen == sizeof(u32)) {
1032 			u32 ufd;
1033 
1034 			ret = -EFAULT;
1035 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1036 				break;
1037 
1038 			ret = sk_reuseport_attach_bpf(ufd, sk);
1039 		}
1040 		break;
1041 
1042 	case SO_DETACH_FILTER:
1043 		ret = sk_detach_filter(sk);
1044 		break;
1045 
1046 	case SO_LOCK_FILTER:
1047 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1048 			ret = -EPERM;
1049 		else
1050 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1051 		break;
1052 
1053 	case SO_PASSSEC:
1054 		if (valbool)
1055 			set_bit(SOCK_PASSSEC, &sock->flags);
1056 		else
1057 			clear_bit(SOCK_PASSSEC, &sock->flags);
1058 		break;
1059 	case SO_MARK:
1060 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1061 			ret = -EPERM;
1062 		} else if (val != sk->sk_mark) {
1063 			sk->sk_mark = val;
1064 			sk_dst_reset(sk);
1065 		}
1066 		break;
1067 
1068 	case SO_RXQ_OVFL:
1069 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1070 		break;
1071 
1072 	case SO_WIFI_STATUS:
1073 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1074 		break;
1075 
1076 	case SO_PEEK_OFF:
1077 		if (sock->ops->set_peek_off)
1078 			ret = sock->ops->set_peek_off(sk, val);
1079 		else
1080 			ret = -EOPNOTSUPP;
1081 		break;
1082 
1083 	case SO_NOFCS:
1084 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1085 		break;
1086 
1087 	case SO_SELECT_ERR_QUEUE:
1088 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1089 		break;
1090 
1091 #ifdef CONFIG_NET_RX_BUSY_POLL
1092 	case SO_BUSY_POLL:
1093 		/* allow unprivileged users to decrease the value */
1094 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1095 			ret = -EPERM;
1096 		else {
1097 			if (val < 0)
1098 				ret = -EINVAL;
1099 			else
1100 				sk->sk_ll_usec = val;
1101 		}
1102 		break;
1103 #endif
1104 
1105 	case SO_MAX_PACING_RATE:
1106 		{
1107 		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1108 
1109 		if (sizeof(ulval) != sizeof(val) &&
1110 		    optlen >= sizeof(ulval) &&
1111 		    get_user(ulval, (unsigned long __user *)optval)) {
1112 			ret = -EFAULT;
1113 			break;
1114 		}
1115 		if (ulval != ~0UL)
1116 			cmpxchg(&sk->sk_pacing_status,
1117 				SK_PACING_NONE,
1118 				SK_PACING_NEEDED);
1119 		sk->sk_max_pacing_rate = ulval;
1120 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1121 		break;
1122 		}
1123 	case SO_INCOMING_CPU:
1124 		sk->sk_incoming_cpu = val;
1125 		break;
1126 
1127 	case SO_CNX_ADVICE:
1128 		if (val == 1)
1129 			dst_negative_advice(sk);
1130 		break;
1131 
1132 	case SO_ZEROCOPY:
1133 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1134 			if (!((sk->sk_type == SOCK_STREAM &&
1135 			       sk->sk_protocol == IPPROTO_TCP) ||
1136 			      (sk->sk_type == SOCK_DGRAM &&
1137 			       sk->sk_protocol == IPPROTO_UDP)))
1138 				ret = -ENOTSUPP;
1139 		} else if (sk->sk_family != PF_RDS) {
1140 			ret = -ENOTSUPP;
1141 		}
1142 		if (!ret) {
1143 			if (val < 0 || val > 1)
1144 				ret = -EINVAL;
1145 			else
1146 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1147 		}
1148 		break;
1149 
1150 	case SO_TXTIME:
1151 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1152 			ret = -EPERM;
1153 		} else if (optlen != sizeof(struct sock_txtime)) {
1154 			ret = -EINVAL;
1155 		} else if (copy_from_user(&sk_txtime, optval,
1156 			   sizeof(struct sock_txtime))) {
1157 			ret = -EFAULT;
1158 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1159 			ret = -EINVAL;
1160 		} else {
1161 			sock_valbool_flag(sk, SOCK_TXTIME, true);
1162 			sk->sk_clockid = sk_txtime.clockid;
1163 			sk->sk_txtime_deadline_mode =
1164 				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1165 			sk->sk_txtime_report_errors =
1166 				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1167 		}
1168 		break;
1169 
1170 	case SO_BINDTOIFINDEX:
1171 		ret = sock_setbindtodevice_locked(sk, val);
1172 		break;
1173 
1174 	default:
1175 		ret = -ENOPROTOOPT;
1176 		break;
1177 	}
1178 	release_sock(sk);
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL(sock_setsockopt);
1182 
1183 
1184 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1185 			  struct ucred *ucred)
1186 {
1187 	ucred->pid = pid_vnr(pid);
1188 	ucred->uid = ucred->gid = -1;
1189 	if (cred) {
1190 		struct user_namespace *current_ns = current_user_ns();
1191 
1192 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1193 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1194 	}
1195 }
1196 
1197 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1198 {
1199 	struct user_namespace *user_ns = current_user_ns();
1200 	int i;
1201 
1202 	for (i = 0; i < src->ngroups; i++)
1203 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1204 			return -EFAULT;
1205 
1206 	return 0;
1207 }
1208 
1209 int sock_getsockopt(struct socket *sock, int level, int optname,
1210 		    char __user *optval, int __user *optlen)
1211 {
1212 	struct sock *sk = sock->sk;
1213 
1214 	union {
1215 		int val;
1216 		u64 val64;
1217 		unsigned long ulval;
1218 		struct linger ling;
1219 		struct old_timeval32 tm32;
1220 		struct __kernel_old_timeval tm;
1221 		struct  __kernel_sock_timeval stm;
1222 		struct sock_txtime txtime;
1223 	} v;
1224 
1225 	int lv = sizeof(int);
1226 	int len;
1227 
1228 	if (get_user(len, optlen))
1229 		return -EFAULT;
1230 	if (len < 0)
1231 		return -EINVAL;
1232 
1233 	memset(&v, 0, sizeof(v));
1234 
1235 	switch (optname) {
1236 	case SO_DEBUG:
1237 		v.val = sock_flag(sk, SOCK_DBG);
1238 		break;
1239 
1240 	case SO_DONTROUTE:
1241 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1242 		break;
1243 
1244 	case SO_BROADCAST:
1245 		v.val = sock_flag(sk, SOCK_BROADCAST);
1246 		break;
1247 
1248 	case SO_SNDBUF:
1249 		v.val = sk->sk_sndbuf;
1250 		break;
1251 
1252 	case SO_RCVBUF:
1253 		v.val = sk->sk_rcvbuf;
1254 		break;
1255 
1256 	case SO_REUSEADDR:
1257 		v.val = sk->sk_reuse;
1258 		break;
1259 
1260 	case SO_REUSEPORT:
1261 		v.val = sk->sk_reuseport;
1262 		break;
1263 
1264 	case SO_KEEPALIVE:
1265 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1266 		break;
1267 
1268 	case SO_TYPE:
1269 		v.val = sk->sk_type;
1270 		break;
1271 
1272 	case SO_PROTOCOL:
1273 		v.val = sk->sk_protocol;
1274 		break;
1275 
1276 	case SO_DOMAIN:
1277 		v.val = sk->sk_family;
1278 		break;
1279 
1280 	case SO_ERROR:
1281 		v.val = -sock_error(sk);
1282 		if (v.val == 0)
1283 			v.val = xchg(&sk->sk_err_soft, 0);
1284 		break;
1285 
1286 	case SO_OOBINLINE:
1287 		v.val = sock_flag(sk, SOCK_URGINLINE);
1288 		break;
1289 
1290 	case SO_NO_CHECK:
1291 		v.val = sk->sk_no_check_tx;
1292 		break;
1293 
1294 	case SO_PRIORITY:
1295 		v.val = sk->sk_priority;
1296 		break;
1297 
1298 	case SO_LINGER:
1299 		lv		= sizeof(v.ling);
1300 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1301 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1302 		break;
1303 
1304 	case SO_BSDCOMPAT:
1305 		sock_warn_obsolete_bsdism("getsockopt");
1306 		break;
1307 
1308 	case SO_TIMESTAMP_OLD:
1309 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1310 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1311 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1312 		break;
1313 
1314 	case SO_TIMESTAMPNS_OLD:
1315 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1316 		break;
1317 
1318 	case SO_TIMESTAMP_NEW:
1319 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1320 		break;
1321 
1322 	case SO_TIMESTAMPNS_NEW:
1323 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1324 		break;
1325 
1326 	case SO_TIMESTAMPING_OLD:
1327 		v.val = sk->sk_tsflags;
1328 		break;
1329 
1330 	case SO_RCVTIMEO_OLD:
1331 	case SO_RCVTIMEO_NEW:
1332 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1333 		break;
1334 
1335 	case SO_SNDTIMEO_OLD:
1336 	case SO_SNDTIMEO_NEW:
1337 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1338 		break;
1339 
1340 	case SO_RCVLOWAT:
1341 		v.val = sk->sk_rcvlowat;
1342 		break;
1343 
1344 	case SO_SNDLOWAT:
1345 		v.val = 1;
1346 		break;
1347 
1348 	case SO_PASSCRED:
1349 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1350 		break;
1351 
1352 	case SO_PEERCRED:
1353 	{
1354 		struct ucred peercred;
1355 		if (len > sizeof(peercred))
1356 			len = sizeof(peercred);
1357 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1358 		if (copy_to_user(optval, &peercred, len))
1359 			return -EFAULT;
1360 		goto lenout;
1361 	}
1362 
1363 	case SO_PEERGROUPS:
1364 	{
1365 		int ret, n;
1366 
1367 		if (!sk->sk_peer_cred)
1368 			return -ENODATA;
1369 
1370 		n = sk->sk_peer_cred->group_info->ngroups;
1371 		if (len < n * sizeof(gid_t)) {
1372 			len = n * sizeof(gid_t);
1373 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1374 		}
1375 		len = n * sizeof(gid_t);
1376 
1377 		ret = groups_to_user((gid_t __user *)optval,
1378 				     sk->sk_peer_cred->group_info);
1379 		if (ret)
1380 			return ret;
1381 		goto lenout;
1382 	}
1383 
1384 	case SO_PEERNAME:
1385 	{
1386 		char address[128];
1387 
1388 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1389 		if (lv < 0)
1390 			return -ENOTCONN;
1391 		if (lv < len)
1392 			return -EINVAL;
1393 		if (copy_to_user(optval, address, len))
1394 			return -EFAULT;
1395 		goto lenout;
1396 	}
1397 
1398 	/* Dubious BSD thing... Probably nobody even uses it, but
1399 	 * the UNIX standard wants it for whatever reason... -DaveM
1400 	 */
1401 	case SO_ACCEPTCONN:
1402 		v.val = sk->sk_state == TCP_LISTEN;
1403 		break;
1404 
1405 	case SO_PASSSEC:
1406 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1407 		break;
1408 
1409 	case SO_PEERSEC:
1410 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1411 
1412 	case SO_MARK:
1413 		v.val = sk->sk_mark;
1414 		break;
1415 
1416 	case SO_RXQ_OVFL:
1417 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1418 		break;
1419 
1420 	case SO_WIFI_STATUS:
1421 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1422 		break;
1423 
1424 	case SO_PEEK_OFF:
1425 		if (!sock->ops->set_peek_off)
1426 			return -EOPNOTSUPP;
1427 
1428 		v.val = sk->sk_peek_off;
1429 		break;
1430 	case SO_NOFCS:
1431 		v.val = sock_flag(sk, SOCK_NOFCS);
1432 		break;
1433 
1434 	case SO_BINDTODEVICE:
1435 		return sock_getbindtodevice(sk, optval, optlen, len);
1436 
1437 	case SO_GET_FILTER:
1438 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1439 		if (len < 0)
1440 			return len;
1441 
1442 		goto lenout;
1443 
1444 	case SO_LOCK_FILTER:
1445 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1446 		break;
1447 
1448 	case SO_BPF_EXTENSIONS:
1449 		v.val = bpf_tell_extensions();
1450 		break;
1451 
1452 	case SO_SELECT_ERR_QUEUE:
1453 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1454 		break;
1455 
1456 #ifdef CONFIG_NET_RX_BUSY_POLL
1457 	case SO_BUSY_POLL:
1458 		v.val = sk->sk_ll_usec;
1459 		break;
1460 #endif
1461 
1462 	case SO_MAX_PACING_RATE:
1463 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1464 			lv = sizeof(v.ulval);
1465 			v.ulval = sk->sk_max_pacing_rate;
1466 		} else {
1467 			/* 32bit version */
1468 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1469 		}
1470 		break;
1471 
1472 	case SO_INCOMING_CPU:
1473 		v.val = sk->sk_incoming_cpu;
1474 		break;
1475 
1476 	case SO_MEMINFO:
1477 	{
1478 		u32 meminfo[SK_MEMINFO_VARS];
1479 
1480 		if (get_user(len, optlen))
1481 			return -EFAULT;
1482 
1483 		sk_get_meminfo(sk, meminfo);
1484 
1485 		len = min_t(unsigned int, len, sizeof(meminfo));
1486 		if (copy_to_user(optval, &meminfo, len))
1487 			return -EFAULT;
1488 
1489 		goto lenout;
1490 	}
1491 
1492 #ifdef CONFIG_NET_RX_BUSY_POLL
1493 	case SO_INCOMING_NAPI_ID:
1494 		v.val = READ_ONCE(sk->sk_napi_id);
1495 
1496 		/* aggregate non-NAPI IDs down to 0 */
1497 		if (v.val < MIN_NAPI_ID)
1498 			v.val = 0;
1499 
1500 		break;
1501 #endif
1502 
1503 	case SO_COOKIE:
1504 		lv = sizeof(u64);
1505 		if (len < lv)
1506 			return -EINVAL;
1507 		v.val64 = sock_gen_cookie(sk);
1508 		break;
1509 
1510 	case SO_ZEROCOPY:
1511 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1512 		break;
1513 
1514 	case SO_TXTIME:
1515 		lv = sizeof(v.txtime);
1516 		v.txtime.clockid = sk->sk_clockid;
1517 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1518 				  SOF_TXTIME_DEADLINE_MODE : 0;
1519 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1520 				  SOF_TXTIME_REPORT_ERRORS : 0;
1521 		break;
1522 
1523 	case SO_BINDTOIFINDEX:
1524 		v.val = sk->sk_bound_dev_if;
1525 		break;
1526 
1527 	default:
1528 		/* We implement the SO_SNDLOWAT etc to not be settable
1529 		 * (1003.1g 7).
1530 		 */
1531 		return -ENOPROTOOPT;
1532 	}
1533 
1534 	if (len > lv)
1535 		len = lv;
1536 	if (copy_to_user(optval, &v, len))
1537 		return -EFAULT;
1538 lenout:
1539 	if (put_user(len, optlen))
1540 		return -EFAULT;
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Initialize an sk_lock.
1546  *
1547  * (We also register the sk_lock with the lock validator.)
1548  */
1549 static inline void sock_lock_init(struct sock *sk)
1550 {
1551 	if (sk->sk_kern_sock)
1552 		sock_lock_init_class_and_name(
1553 			sk,
1554 			af_family_kern_slock_key_strings[sk->sk_family],
1555 			af_family_kern_slock_keys + sk->sk_family,
1556 			af_family_kern_key_strings[sk->sk_family],
1557 			af_family_kern_keys + sk->sk_family);
1558 	else
1559 		sock_lock_init_class_and_name(
1560 			sk,
1561 			af_family_slock_key_strings[sk->sk_family],
1562 			af_family_slock_keys + sk->sk_family,
1563 			af_family_key_strings[sk->sk_family],
1564 			af_family_keys + sk->sk_family);
1565 }
1566 
1567 /*
1568  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1569  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1570  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1571  */
1572 static void sock_copy(struct sock *nsk, const struct sock *osk)
1573 {
1574 #ifdef CONFIG_SECURITY_NETWORK
1575 	void *sptr = nsk->sk_security;
1576 #endif
1577 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1578 
1579 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1580 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1581 
1582 #ifdef CONFIG_SECURITY_NETWORK
1583 	nsk->sk_security = sptr;
1584 	security_sk_clone(osk, nsk);
1585 #endif
1586 }
1587 
1588 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1589 		int family)
1590 {
1591 	struct sock *sk;
1592 	struct kmem_cache *slab;
1593 
1594 	slab = prot->slab;
1595 	if (slab != NULL) {
1596 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1597 		if (!sk)
1598 			return sk;
1599 		if (priority & __GFP_ZERO)
1600 			sk_prot_clear_nulls(sk, prot->obj_size);
1601 	} else
1602 		sk = kmalloc(prot->obj_size, priority);
1603 
1604 	if (sk != NULL) {
1605 		if (security_sk_alloc(sk, family, priority))
1606 			goto out_free;
1607 
1608 		if (!try_module_get(prot->owner))
1609 			goto out_free_sec;
1610 		sk_tx_queue_clear(sk);
1611 	}
1612 
1613 	return sk;
1614 
1615 out_free_sec:
1616 	security_sk_free(sk);
1617 out_free:
1618 	if (slab != NULL)
1619 		kmem_cache_free(slab, sk);
1620 	else
1621 		kfree(sk);
1622 	return NULL;
1623 }
1624 
1625 static void sk_prot_free(struct proto *prot, struct sock *sk)
1626 {
1627 	struct kmem_cache *slab;
1628 	struct module *owner;
1629 
1630 	owner = prot->owner;
1631 	slab = prot->slab;
1632 
1633 	cgroup_sk_free(&sk->sk_cgrp_data);
1634 	mem_cgroup_sk_free(sk);
1635 	security_sk_free(sk);
1636 	if (slab != NULL)
1637 		kmem_cache_free(slab, sk);
1638 	else
1639 		kfree(sk);
1640 	module_put(owner);
1641 }
1642 
1643 /**
1644  *	sk_alloc - All socket objects are allocated here
1645  *	@net: the applicable net namespace
1646  *	@family: protocol family
1647  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1648  *	@prot: struct proto associated with this new sock instance
1649  *	@kern: is this to be a kernel socket?
1650  */
1651 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1652 		      struct proto *prot, int kern)
1653 {
1654 	struct sock *sk;
1655 
1656 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1657 	if (sk) {
1658 		sk->sk_family = family;
1659 		/*
1660 		 * See comment in struct sock definition to understand
1661 		 * why we need sk_prot_creator -acme
1662 		 */
1663 		sk->sk_prot = sk->sk_prot_creator = prot;
1664 		sk->sk_kern_sock = kern;
1665 		sock_lock_init(sk);
1666 		sk->sk_net_refcnt = kern ? 0 : 1;
1667 		if (likely(sk->sk_net_refcnt)) {
1668 			get_net(net);
1669 			sock_inuse_add(net, 1);
1670 		}
1671 
1672 		sock_net_set(sk, net);
1673 		refcount_set(&sk->sk_wmem_alloc, 1);
1674 
1675 		mem_cgroup_sk_alloc(sk);
1676 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1677 		sock_update_classid(&sk->sk_cgrp_data);
1678 		sock_update_netprioidx(&sk->sk_cgrp_data);
1679 	}
1680 
1681 	return sk;
1682 }
1683 EXPORT_SYMBOL(sk_alloc);
1684 
1685 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1686  * grace period. This is the case for UDP sockets and TCP listeners.
1687  */
1688 static void __sk_destruct(struct rcu_head *head)
1689 {
1690 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1691 	struct sk_filter *filter;
1692 
1693 	if (sk->sk_destruct)
1694 		sk->sk_destruct(sk);
1695 
1696 	filter = rcu_dereference_check(sk->sk_filter,
1697 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1698 	if (filter) {
1699 		sk_filter_uncharge(sk, filter);
1700 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1701 	}
1702 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1703 		reuseport_detach_sock(sk);
1704 
1705 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1706 
1707 #ifdef CONFIG_BPF_SYSCALL
1708 	bpf_sk_storage_free(sk);
1709 #endif
1710 
1711 	if (atomic_read(&sk->sk_omem_alloc))
1712 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1713 			 __func__, atomic_read(&sk->sk_omem_alloc));
1714 
1715 	if (sk->sk_frag.page) {
1716 		put_page(sk->sk_frag.page);
1717 		sk->sk_frag.page = NULL;
1718 	}
1719 
1720 	if (sk->sk_peer_cred)
1721 		put_cred(sk->sk_peer_cred);
1722 	put_pid(sk->sk_peer_pid);
1723 	if (likely(sk->sk_net_refcnt))
1724 		put_net(sock_net(sk));
1725 	sk_prot_free(sk->sk_prot_creator, sk);
1726 }
1727 
1728 void sk_destruct(struct sock *sk)
1729 {
1730 	if (sock_flag(sk, SOCK_RCU_FREE))
1731 		call_rcu(&sk->sk_rcu, __sk_destruct);
1732 	else
1733 		__sk_destruct(&sk->sk_rcu);
1734 }
1735 
1736 static void __sk_free(struct sock *sk)
1737 {
1738 	if (likely(sk->sk_net_refcnt))
1739 		sock_inuse_add(sock_net(sk), -1);
1740 
1741 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1742 		sock_diag_broadcast_destroy(sk);
1743 	else
1744 		sk_destruct(sk);
1745 }
1746 
1747 void sk_free(struct sock *sk)
1748 {
1749 	/*
1750 	 * We subtract one from sk_wmem_alloc and can know if
1751 	 * some packets are still in some tx queue.
1752 	 * If not null, sock_wfree() will call __sk_free(sk) later
1753 	 */
1754 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1755 		__sk_free(sk);
1756 }
1757 EXPORT_SYMBOL(sk_free);
1758 
1759 static void sk_init_common(struct sock *sk)
1760 {
1761 	skb_queue_head_init(&sk->sk_receive_queue);
1762 	skb_queue_head_init(&sk->sk_write_queue);
1763 	skb_queue_head_init(&sk->sk_error_queue);
1764 
1765 	rwlock_init(&sk->sk_callback_lock);
1766 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1767 			af_rlock_keys + sk->sk_family,
1768 			af_family_rlock_key_strings[sk->sk_family]);
1769 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1770 			af_wlock_keys + sk->sk_family,
1771 			af_family_wlock_key_strings[sk->sk_family]);
1772 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1773 			af_elock_keys + sk->sk_family,
1774 			af_family_elock_key_strings[sk->sk_family]);
1775 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1776 			af_callback_keys + sk->sk_family,
1777 			af_family_clock_key_strings[sk->sk_family]);
1778 }
1779 
1780 /**
1781  *	sk_clone_lock - clone a socket, and lock its clone
1782  *	@sk: the socket to clone
1783  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1784  *
1785  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1786  */
1787 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1788 {
1789 	struct sock *newsk;
1790 	bool is_charged = true;
1791 
1792 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1793 	if (newsk != NULL) {
1794 		struct sk_filter *filter;
1795 
1796 		sock_copy(newsk, sk);
1797 
1798 		newsk->sk_prot_creator = sk->sk_prot;
1799 
1800 		/* SANITY */
1801 		if (likely(newsk->sk_net_refcnt))
1802 			get_net(sock_net(newsk));
1803 		sk_node_init(&newsk->sk_node);
1804 		sock_lock_init(newsk);
1805 		bh_lock_sock(newsk);
1806 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1807 		newsk->sk_backlog.len = 0;
1808 
1809 		atomic_set(&newsk->sk_rmem_alloc, 0);
1810 		/*
1811 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1812 		 */
1813 		refcount_set(&newsk->sk_wmem_alloc, 1);
1814 		atomic_set(&newsk->sk_omem_alloc, 0);
1815 		sk_init_common(newsk);
1816 
1817 		newsk->sk_dst_cache	= NULL;
1818 		newsk->sk_dst_pending_confirm = 0;
1819 		newsk->sk_wmem_queued	= 0;
1820 		newsk->sk_forward_alloc = 0;
1821 		atomic_set(&newsk->sk_drops, 0);
1822 		newsk->sk_send_head	= NULL;
1823 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1824 		atomic_set(&newsk->sk_zckey, 0);
1825 
1826 		sock_reset_flag(newsk, SOCK_DONE);
1827 		mem_cgroup_sk_alloc(newsk);
1828 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1829 
1830 		rcu_read_lock();
1831 		filter = rcu_dereference(sk->sk_filter);
1832 		if (filter != NULL)
1833 			/* though it's an empty new sock, the charging may fail
1834 			 * if sysctl_optmem_max was changed between creation of
1835 			 * original socket and cloning
1836 			 */
1837 			is_charged = sk_filter_charge(newsk, filter);
1838 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1839 		rcu_read_unlock();
1840 
1841 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1842 			/* We need to make sure that we don't uncharge the new
1843 			 * socket if we couldn't charge it in the first place
1844 			 * as otherwise we uncharge the parent's filter.
1845 			 */
1846 			if (!is_charged)
1847 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1848 			sk_free_unlock_clone(newsk);
1849 			newsk = NULL;
1850 			goto out;
1851 		}
1852 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1853 #ifdef CONFIG_BPF_SYSCALL
1854 		RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL);
1855 #endif
1856 
1857 		newsk->sk_err	   = 0;
1858 		newsk->sk_err_soft = 0;
1859 		newsk->sk_priority = 0;
1860 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1861 		if (likely(newsk->sk_net_refcnt))
1862 			sock_inuse_add(sock_net(newsk), 1);
1863 
1864 		/*
1865 		 * Before updating sk_refcnt, we must commit prior changes to memory
1866 		 * (Documentation/RCU/rculist_nulls.txt for details)
1867 		 */
1868 		smp_wmb();
1869 		refcount_set(&newsk->sk_refcnt, 2);
1870 
1871 		/*
1872 		 * Increment the counter in the same struct proto as the master
1873 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1874 		 * is the same as sk->sk_prot->socks, as this field was copied
1875 		 * with memcpy).
1876 		 *
1877 		 * This _changes_ the previous behaviour, where
1878 		 * tcp_create_openreq_child always was incrementing the
1879 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1880 		 * to be taken into account in all callers. -acme
1881 		 */
1882 		sk_refcnt_debug_inc(newsk);
1883 		sk_set_socket(newsk, NULL);
1884 		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1885 
1886 		if (newsk->sk_prot->sockets_allocated)
1887 			sk_sockets_allocated_inc(newsk);
1888 
1889 		if (sock_needs_netstamp(sk) &&
1890 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1891 			net_enable_timestamp();
1892 	}
1893 out:
1894 	return newsk;
1895 }
1896 EXPORT_SYMBOL_GPL(sk_clone_lock);
1897 
1898 void sk_free_unlock_clone(struct sock *sk)
1899 {
1900 	/* It is still raw copy of parent, so invalidate
1901 	 * destructor and make plain sk_free() */
1902 	sk->sk_destruct = NULL;
1903 	bh_unlock_sock(sk);
1904 	sk_free(sk);
1905 }
1906 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1907 
1908 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1909 {
1910 	u32 max_segs = 1;
1911 
1912 	sk_dst_set(sk, dst);
1913 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1914 	if (sk->sk_route_caps & NETIF_F_GSO)
1915 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1916 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1917 	if (sk_can_gso(sk)) {
1918 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1919 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1920 		} else {
1921 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1922 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1923 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1924 		}
1925 	}
1926 	sk->sk_gso_max_segs = max_segs;
1927 }
1928 EXPORT_SYMBOL_GPL(sk_setup_caps);
1929 
1930 /*
1931  *	Simple resource managers for sockets.
1932  */
1933 
1934 
1935 /*
1936  * Write buffer destructor automatically called from kfree_skb.
1937  */
1938 void sock_wfree(struct sk_buff *skb)
1939 {
1940 	struct sock *sk = skb->sk;
1941 	unsigned int len = skb->truesize;
1942 
1943 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1944 		/*
1945 		 * Keep a reference on sk_wmem_alloc, this will be released
1946 		 * after sk_write_space() call
1947 		 */
1948 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1949 		sk->sk_write_space(sk);
1950 		len = 1;
1951 	}
1952 	/*
1953 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1954 	 * could not do because of in-flight packets
1955 	 */
1956 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1957 		__sk_free(sk);
1958 }
1959 EXPORT_SYMBOL(sock_wfree);
1960 
1961 /* This variant of sock_wfree() is used by TCP,
1962  * since it sets SOCK_USE_WRITE_QUEUE.
1963  */
1964 void __sock_wfree(struct sk_buff *skb)
1965 {
1966 	struct sock *sk = skb->sk;
1967 
1968 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1969 		__sk_free(sk);
1970 }
1971 
1972 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1973 {
1974 	skb_orphan(skb);
1975 	skb->sk = sk;
1976 #ifdef CONFIG_INET
1977 	if (unlikely(!sk_fullsock(sk))) {
1978 		skb->destructor = sock_edemux;
1979 		sock_hold(sk);
1980 		return;
1981 	}
1982 #endif
1983 	skb->destructor = sock_wfree;
1984 	skb_set_hash_from_sk(skb, sk);
1985 	/*
1986 	 * We used to take a refcount on sk, but following operation
1987 	 * is enough to guarantee sk_free() wont free this sock until
1988 	 * all in-flight packets are completed
1989 	 */
1990 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1991 }
1992 EXPORT_SYMBOL(skb_set_owner_w);
1993 
1994 /* This helper is used by netem, as it can hold packets in its
1995  * delay queue. We want to allow the owner socket to send more
1996  * packets, as if they were already TX completed by a typical driver.
1997  * But we also want to keep skb->sk set because some packet schedulers
1998  * rely on it (sch_fq for example).
1999  */
2000 void skb_orphan_partial(struct sk_buff *skb)
2001 {
2002 	if (skb_is_tcp_pure_ack(skb))
2003 		return;
2004 
2005 	if (skb->destructor == sock_wfree
2006 #ifdef CONFIG_INET
2007 	    || skb->destructor == tcp_wfree
2008 #endif
2009 		) {
2010 		struct sock *sk = skb->sk;
2011 
2012 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2013 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2014 			skb->destructor = sock_efree;
2015 		}
2016 	} else {
2017 		skb_orphan(skb);
2018 	}
2019 }
2020 EXPORT_SYMBOL(skb_orphan_partial);
2021 
2022 /*
2023  * Read buffer destructor automatically called from kfree_skb.
2024  */
2025 void sock_rfree(struct sk_buff *skb)
2026 {
2027 	struct sock *sk = skb->sk;
2028 	unsigned int len = skb->truesize;
2029 
2030 	atomic_sub(len, &sk->sk_rmem_alloc);
2031 	sk_mem_uncharge(sk, len);
2032 }
2033 EXPORT_SYMBOL(sock_rfree);
2034 
2035 /*
2036  * Buffer destructor for skbs that are not used directly in read or write
2037  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2038  */
2039 void sock_efree(struct sk_buff *skb)
2040 {
2041 	sock_put(skb->sk);
2042 }
2043 EXPORT_SYMBOL(sock_efree);
2044 
2045 kuid_t sock_i_uid(struct sock *sk)
2046 {
2047 	kuid_t uid;
2048 
2049 	read_lock_bh(&sk->sk_callback_lock);
2050 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2051 	read_unlock_bh(&sk->sk_callback_lock);
2052 	return uid;
2053 }
2054 EXPORT_SYMBOL(sock_i_uid);
2055 
2056 unsigned long sock_i_ino(struct sock *sk)
2057 {
2058 	unsigned long ino;
2059 
2060 	read_lock_bh(&sk->sk_callback_lock);
2061 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2062 	read_unlock_bh(&sk->sk_callback_lock);
2063 	return ino;
2064 }
2065 EXPORT_SYMBOL(sock_i_ino);
2066 
2067 /*
2068  * Allocate a skb from the socket's send buffer.
2069  */
2070 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2071 			     gfp_t priority)
2072 {
2073 	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
2074 		struct sk_buff *skb = alloc_skb(size, priority);
2075 		if (skb) {
2076 			skb_set_owner_w(skb, sk);
2077 			return skb;
2078 		}
2079 	}
2080 	return NULL;
2081 }
2082 EXPORT_SYMBOL(sock_wmalloc);
2083 
2084 static void sock_ofree(struct sk_buff *skb)
2085 {
2086 	struct sock *sk = skb->sk;
2087 
2088 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2089 }
2090 
2091 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2092 			     gfp_t priority)
2093 {
2094 	struct sk_buff *skb;
2095 
2096 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2097 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2098 	    sysctl_optmem_max)
2099 		return NULL;
2100 
2101 	skb = alloc_skb(size, priority);
2102 	if (!skb)
2103 		return NULL;
2104 
2105 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2106 	skb->sk = sk;
2107 	skb->destructor = sock_ofree;
2108 	return skb;
2109 }
2110 
2111 /*
2112  * Allocate a memory block from the socket's option memory buffer.
2113  */
2114 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2115 {
2116 	if ((unsigned int)size <= sysctl_optmem_max &&
2117 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2118 		void *mem;
2119 		/* First do the add, to avoid the race if kmalloc
2120 		 * might sleep.
2121 		 */
2122 		atomic_add(size, &sk->sk_omem_alloc);
2123 		mem = kmalloc(size, priority);
2124 		if (mem)
2125 			return mem;
2126 		atomic_sub(size, &sk->sk_omem_alloc);
2127 	}
2128 	return NULL;
2129 }
2130 EXPORT_SYMBOL(sock_kmalloc);
2131 
2132 /* Free an option memory block. Note, we actually want the inline
2133  * here as this allows gcc to detect the nullify and fold away the
2134  * condition entirely.
2135  */
2136 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2137 				  const bool nullify)
2138 {
2139 	if (WARN_ON_ONCE(!mem))
2140 		return;
2141 	if (nullify)
2142 		kzfree(mem);
2143 	else
2144 		kfree(mem);
2145 	atomic_sub(size, &sk->sk_omem_alloc);
2146 }
2147 
2148 void sock_kfree_s(struct sock *sk, void *mem, int size)
2149 {
2150 	__sock_kfree_s(sk, mem, size, false);
2151 }
2152 EXPORT_SYMBOL(sock_kfree_s);
2153 
2154 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2155 {
2156 	__sock_kfree_s(sk, mem, size, true);
2157 }
2158 EXPORT_SYMBOL(sock_kzfree_s);
2159 
2160 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2161    I think, these locks should be removed for datagram sockets.
2162  */
2163 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2164 {
2165 	DEFINE_WAIT(wait);
2166 
2167 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2168 	for (;;) {
2169 		if (!timeo)
2170 			break;
2171 		if (signal_pending(current))
2172 			break;
2173 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2174 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2175 		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2176 			break;
2177 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2178 			break;
2179 		if (sk->sk_err)
2180 			break;
2181 		timeo = schedule_timeout(timeo);
2182 	}
2183 	finish_wait(sk_sleep(sk), &wait);
2184 	return timeo;
2185 }
2186 
2187 
2188 /*
2189  *	Generic send/receive buffer handlers
2190  */
2191 
2192 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2193 				     unsigned long data_len, int noblock,
2194 				     int *errcode, int max_page_order)
2195 {
2196 	struct sk_buff *skb;
2197 	long timeo;
2198 	int err;
2199 
2200 	timeo = sock_sndtimeo(sk, noblock);
2201 	for (;;) {
2202 		err = sock_error(sk);
2203 		if (err != 0)
2204 			goto failure;
2205 
2206 		err = -EPIPE;
2207 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2208 			goto failure;
2209 
2210 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2211 			break;
2212 
2213 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2214 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2215 		err = -EAGAIN;
2216 		if (!timeo)
2217 			goto failure;
2218 		if (signal_pending(current))
2219 			goto interrupted;
2220 		timeo = sock_wait_for_wmem(sk, timeo);
2221 	}
2222 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2223 				   errcode, sk->sk_allocation);
2224 	if (skb)
2225 		skb_set_owner_w(skb, sk);
2226 	return skb;
2227 
2228 interrupted:
2229 	err = sock_intr_errno(timeo);
2230 failure:
2231 	*errcode = err;
2232 	return NULL;
2233 }
2234 EXPORT_SYMBOL(sock_alloc_send_pskb);
2235 
2236 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2237 				    int noblock, int *errcode)
2238 {
2239 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2240 }
2241 EXPORT_SYMBOL(sock_alloc_send_skb);
2242 
2243 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2244 		     struct sockcm_cookie *sockc)
2245 {
2246 	u32 tsflags;
2247 
2248 	switch (cmsg->cmsg_type) {
2249 	case SO_MARK:
2250 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2251 			return -EPERM;
2252 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2253 			return -EINVAL;
2254 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2255 		break;
2256 	case SO_TIMESTAMPING_OLD:
2257 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2258 			return -EINVAL;
2259 
2260 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2261 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2262 			return -EINVAL;
2263 
2264 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2265 		sockc->tsflags |= tsflags;
2266 		break;
2267 	case SCM_TXTIME:
2268 		if (!sock_flag(sk, SOCK_TXTIME))
2269 			return -EINVAL;
2270 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2271 			return -EINVAL;
2272 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2273 		break;
2274 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2275 	case SCM_RIGHTS:
2276 	case SCM_CREDENTIALS:
2277 		break;
2278 	default:
2279 		return -EINVAL;
2280 	}
2281 	return 0;
2282 }
2283 EXPORT_SYMBOL(__sock_cmsg_send);
2284 
2285 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2286 		   struct sockcm_cookie *sockc)
2287 {
2288 	struct cmsghdr *cmsg;
2289 	int ret;
2290 
2291 	for_each_cmsghdr(cmsg, msg) {
2292 		if (!CMSG_OK(msg, cmsg))
2293 			return -EINVAL;
2294 		if (cmsg->cmsg_level != SOL_SOCKET)
2295 			continue;
2296 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2297 		if (ret)
2298 			return ret;
2299 	}
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL(sock_cmsg_send);
2303 
2304 static void sk_enter_memory_pressure(struct sock *sk)
2305 {
2306 	if (!sk->sk_prot->enter_memory_pressure)
2307 		return;
2308 
2309 	sk->sk_prot->enter_memory_pressure(sk);
2310 }
2311 
2312 static void sk_leave_memory_pressure(struct sock *sk)
2313 {
2314 	if (sk->sk_prot->leave_memory_pressure) {
2315 		sk->sk_prot->leave_memory_pressure(sk);
2316 	} else {
2317 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2318 
2319 		if (memory_pressure && *memory_pressure)
2320 			*memory_pressure = 0;
2321 	}
2322 }
2323 
2324 /* On 32bit arches, an skb frag is limited to 2^15 */
2325 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2326 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2327 
2328 /**
2329  * skb_page_frag_refill - check that a page_frag contains enough room
2330  * @sz: minimum size of the fragment we want to get
2331  * @pfrag: pointer to page_frag
2332  * @gfp: priority for memory allocation
2333  *
2334  * Note: While this allocator tries to use high order pages, there is
2335  * no guarantee that allocations succeed. Therefore, @sz MUST be
2336  * less or equal than PAGE_SIZE.
2337  */
2338 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2339 {
2340 	if (pfrag->page) {
2341 		if (page_ref_count(pfrag->page) == 1) {
2342 			pfrag->offset = 0;
2343 			return true;
2344 		}
2345 		if (pfrag->offset + sz <= pfrag->size)
2346 			return true;
2347 		put_page(pfrag->page);
2348 	}
2349 
2350 	pfrag->offset = 0;
2351 	if (SKB_FRAG_PAGE_ORDER &&
2352 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2353 		/* Avoid direct reclaim but allow kswapd to wake */
2354 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2355 					  __GFP_COMP | __GFP_NOWARN |
2356 					  __GFP_NORETRY,
2357 					  SKB_FRAG_PAGE_ORDER);
2358 		if (likely(pfrag->page)) {
2359 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2360 			return true;
2361 		}
2362 	}
2363 	pfrag->page = alloc_page(gfp);
2364 	if (likely(pfrag->page)) {
2365 		pfrag->size = PAGE_SIZE;
2366 		return true;
2367 	}
2368 	return false;
2369 }
2370 EXPORT_SYMBOL(skb_page_frag_refill);
2371 
2372 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2373 {
2374 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2375 		return true;
2376 
2377 	sk_enter_memory_pressure(sk);
2378 	sk_stream_moderate_sndbuf(sk);
2379 	return false;
2380 }
2381 EXPORT_SYMBOL(sk_page_frag_refill);
2382 
2383 static void __lock_sock(struct sock *sk)
2384 	__releases(&sk->sk_lock.slock)
2385 	__acquires(&sk->sk_lock.slock)
2386 {
2387 	DEFINE_WAIT(wait);
2388 
2389 	for (;;) {
2390 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2391 					TASK_UNINTERRUPTIBLE);
2392 		spin_unlock_bh(&sk->sk_lock.slock);
2393 		schedule();
2394 		spin_lock_bh(&sk->sk_lock.slock);
2395 		if (!sock_owned_by_user(sk))
2396 			break;
2397 	}
2398 	finish_wait(&sk->sk_lock.wq, &wait);
2399 }
2400 
2401 void __release_sock(struct sock *sk)
2402 	__releases(&sk->sk_lock.slock)
2403 	__acquires(&sk->sk_lock.slock)
2404 {
2405 	struct sk_buff *skb, *next;
2406 
2407 	while ((skb = sk->sk_backlog.head) != NULL) {
2408 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2409 
2410 		spin_unlock_bh(&sk->sk_lock.slock);
2411 
2412 		do {
2413 			next = skb->next;
2414 			prefetch(next);
2415 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2416 			skb_mark_not_on_list(skb);
2417 			sk_backlog_rcv(sk, skb);
2418 
2419 			cond_resched();
2420 
2421 			skb = next;
2422 		} while (skb != NULL);
2423 
2424 		spin_lock_bh(&sk->sk_lock.slock);
2425 	}
2426 
2427 	/*
2428 	 * Doing the zeroing here guarantee we can not loop forever
2429 	 * while a wild producer attempts to flood us.
2430 	 */
2431 	sk->sk_backlog.len = 0;
2432 }
2433 
2434 void __sk_flush_backlog(struct sock *sk)
2435 {
2436 	spin_lock_bh(&sk->sk_lock.slock);
2437 	__release_sock(sk);
2438 	spin_unlock_bh(&sk->sk_lock.slock);
2439 }
2440 
2441 /**
2442  * sk_wait_data - wait for data to arrive at sk_receive_queue
2443  * @sk:    sock to wait on
2444  * @timeo: for how long
2445  * @skb:   last skb seen on sk_receive_queue
2446  *
2447  * Now socket state including sk->sk_err is changed only under lock,
2448  * hence we may omit checks after joining wait queue.
2449  * We check receive queue before schedule() only as optimization;
2450  * it is very likely that release_sock() added new data.
2451  */
2452 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2453 {
2454 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2455 	int rc;
2456 
2457 	add_wait_queue(sk_sleep(sk), &wait);
2458 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2459 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2460 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2461 	remove_wait_queue(sk_sleep(sk), &wait);
2462 	return rc;
2463 }
2464 EXPORT_SYMBOL(sk_wait_data);
2465 
2466 /**
2467  *	__sk_mem_raise_allocated - increase memory_allocated
2468  *	@sk: socket
2469  *	@size: memory size to allocate
2470  *	@amt: pages to allocate
2471  *	@kind: allocation type
2472  *
2473  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2474  */
2475 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2476 {
2477 	struct proto *prot = sk->sk_prot;
2478 	long allocated = sk_memory_allocated_add(sk, amt);
2479 	bool charged = true;
2480 
2481 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2482 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2483 		goto suppress_allocation;
2484 
2485 	/* Under limit. */
2486 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2487 		sk_leave_memory_pressure(sk);
2488 		return 1;
2489 	}
2490 
2491 	/* Under pressure. */
2492 	if (allocated > sk_prot_mem_limits(sk, 1))
2493 		sk_enter_memory_pressure(sk);
2494 
2495 	/* Over hard limit. */
2496 	if (allocated > sk_prot_mem_limits(sk, 2))
2497 		goto suppress_allocation;
2498 
2499 	/* guarantee minimum buffer size under pressure */
2500 	if (kind == SK_MEM_RECV) {
2501 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2502 			return 1;
2503 
2504 	} else { /* SK_MEM_SEND */
2505 		int wmem0 = sk_get_wmem0(sk, prot);
2506 
2507 		if (sk->sk_type == SOCK_STREAM) {
2508 			if (sk->sk_wmem_queued < wmem0)
2509 				return 1;
2510 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2511 				return 1;
2512 		}
2513 	}
2514 
2515 	if (sk_has_memory_pressure(sk)) {
2516 		u64 alloc;
2517 
2518 		if (!sk_under_memory_pressure(sk))
2519 			return 1;
2520 		alloc = sk_sockets_allocated_read_positive(sk);
2521 		if (sk_prot_mem_limits(sk, 2) > alloc *
2522 		    sk_mem_pages(sk->sk_wmem_queued +
2523 				 atomic_read(&sk->sk_rmem_alloc) +
2524 				 sk->sk_forward_alloc))
2525 			return 1;
2526 	}
2527 
2528 suppress_allocation:
2529 
2530 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2531 		sk_stream_moderate_sndbuf(sk);
2532 
2533 		/* Fail only if socket is _under_ its sndbuf.
2534 		 * In this case we cannot block, so that we have to fail.
2535 		 */
2536 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2537 			return 1;
2538 	}
2539 
2540 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2541 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2542 
2543 	sk_memory_allocated_sub(sk, amt);
2544 
2545 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2546 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2547 
2548 	return 0;
2549 }
2550 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2551 
2552 /**
2553  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2554  *	@sk: socket
2555  *	@size: memory size to allocate
2556  *	@kind: allocation type
2557  *
2558  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2559  *	rmem allocation. This function assumes that protocols which have
2560  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2561  */
2562 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2563 {
2564 	int ret, amt = sk_mem_pages(size);
2565 
2566 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2567 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2568 	if (!ret)
2569 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2570 	return ret;
2571 }
2572 EXPORT_SYMBOL(__sk_mem_schedule);
2573 
2574 /**
2575  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2576  *	@sk: socket
2577  *	@amount: number of quanta
2578  *
2579  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2580  */
2581 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2582 {
2583 	sk_memory_allocated_sub(sk, amount);
2584 
2585 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2586 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2587 
2588 	if (sk_under_memory_pressure(sk) &&
2589 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2590 		sk_leave_memory_pressure(sk);
2591 }
2592 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2593 
2594 /**
2595  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2596  *	@sk: socket
2597  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2598  */
2599 void __sk_mem_reclaim(struct sock *sk, int amount)
2600 {
2601 	amount >>= SK_MEM_QUANTUM_SHIFT;
2602 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2603 	__sk_mem_reduce_allocated(sk, amount);
2604 }
2605 EXPORT_SYMBOL(__sk_mem_reclaim);
2606 
2607 int sk_set_peek_off(struct sock *sk, int val)
2608 {
2609 	sk->sk_peek_off = val;
2610 	return 0;
2611 }
2612 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2613 
2614 /*
2615  * Set of default routines for initialising struct proto_ops when
2616  * the protocol does not support a particular function. In certain
2617  * cases where it makes no sense for a protocol to have a "do nothing"
2618  * function, some default processing is provided.
2619  */
2620 
2621 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2622 {
2623 	return -EOPNOTSUPP;
2624 }
2625 EXPORT_SYMBOL(sock_no_bind);
2626 
2627 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2628 		    int len, int flags)
2629 {
2630 	return -EOPNOTSUPP;
2631 }
2632 EXPORT_SYMBOL(sock_no_connect);
2633 
2634 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2635 {
2636 	return -EOPNOTSUPP;
2637 }
2638 EXPORT_SYMBOL(sock_no_socketpair);
2639 
2640 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2641 		   bool kern)
2642 {
2643 	return -EOPNOTSUPP;
2644 }
2645 EXPORT_SYMBOL(sock_no_accept);
2646 
2647 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2648 		    int peer)
2649 {
2650 	return -EOPNOTSUPP;
2651 }
2652 EXPORT_SYMBOL(sock_no_getname);
2653 
2654 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2655 {
2656 	return -EOPNOTSUPP;
2657 }
2658 EXPORT_SYMBOL(sock_no_ioctl);
2659 
2660 int sock_no_listen(struct socket *sock, int backlog)
2661 {
2662 	return -EOPNOTSUPP;
2663 }
2664 EXPORT_SYMBOL(sock_no_listen);
2665 
2666 int sock_no_shutdown(struct socket *sock, int how)
2667 {
2668 	return -EOPNOTSUPP;
2669 }
2670 EXPORT_SYMBOL(sock_no_shutdown);
2671 
2672 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2673 		    char __user *optval, unsigned int optlen)
2674 {
2675 	return -EOPNOTSUPP;
2676 }
2677 EXPORT_SYMBOL(sock_no_setsockopt);
2678 
2679 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2680 		    char __user *optval, int __user *optlen)
2681 {
2682 	return -EOPNOTSUPP;
2683 }
2684 EXPORT_SYMBOL(sock_no_getsockopt);
2685 
2686 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2687 {
2688 	return -EOPNOTSUPP;
2689 }
2690 EXPORT_SYMBOL(sock_no_sendmsg);
2691 
2692 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2693 {
2694 	return -EOPNOTSUPP;
2695 }
2696 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2697 
2698 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2699 		    int flags)
2700 {
2701 	return -EOPNOTSUPP;
2702 }
2703 EXPORT_SYMBOL(sock_no_recvmsg);
2704 
2705 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2706 {
2707 	/* Mirror missing mmap method error code */
2708 	return -ENODEV;
2709 }
2710 EXPORT_SYMBOL(sock_no_mmap);
2711 
2712 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2713 {
2714 	ssize_t res;
2715 	struct msghdr msg = {.msg_flags = flags};
2716 	struct kvec iov;
2717 	char *kaddr = kmap(page);
2718 	iov.iov_base = kaddr + offset;
2719 	iov.iov_len = size;
2720 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2721 	kunmap(page);
2722 	return res;
2723 }
2724 EXPORT_SYMBOL(sock_no_sendpage);
2725 
2726 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2727 				int offset, size_t size, int flags)
2728 {
2729 	ssize_t res;
2730 	struct msghdr msg = {.msg_flags = flags};
2731 	struct kvec iov;
2732 	char *kaddr = kmap(page);
2733 
2734 	iov.iov_base = kaddr + offset;
2735 	iov.iov_len = size;
2736 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2737 	kunmap(page);
2738 	return res;
2739 }
2740 EXPORT_SYMBOL(sock_no_sendpage_locked);
2741 
2742 /*
2743  *	Default Socket Callbacks
2744  */
2745 
2746 static void sock_def_wakeup(struct sock *sk)
2747 {
2748 	struct socket_wq *wq;
2749 
2750 	rcu_read_lock();
2751 	wq = rcu_dereference(sk->sk_wq);
2752 	if (skwq_has_sleeper(wq))
2753 		wake_up_interruptible_all(&wq->wait);
2754 	rcu_read_unlock();
2755 }
2756 
2757 static void sock_def_error_report(struct sock *sk)
2758 {
2759 	struct socket_wq *wq;
2760 
2761 	rcu_read_lock();
2762 	wq = rcu_dereference(sk->sk_wq);
2763 	if (skwq_has_sleeper(wq))
2764 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2765 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2766 	rcu_read_unlock();
2767 }
2768 
2769 static void sock_def_readable(struct sock *sk)
2770 {
2771 	struct socket_wq *wq;
2772 
2773 	rcu_read_lock();
2774 	wq = rcu_dereference(sk->sk_wq);
2775 	if (skwq_has_sleeper(wq))
2776 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2777 						EPOLLRDNORM | EPOLLRDBAND);
2778 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2779 	rcu_read_unlock();
2780 }
2781 
2782 static void sock_def_write_space(struct sock *sk)
2783 {
2784 	struct socket_wq *wq;
2785 
2786 	rcu_read_lock();
2787 
2788 	/* Do not wake up a writer until he can make "significant"
2789 	 * progress.  --DaveM
2790 	 */
2791 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2792 		wq = rcu_dereference(sk->sk_wq);
2793 		if (skwq_has_sleeper(wq))
2794 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2795 						EPOLLWRNORM | EPOLLWRBAND);
2796 
2797 		/* Should agree with poll, otherwise some programs break */
2798 		if (sock_writeable(sk))
2799 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2800 	}
2801 
2802 	rcu_read_unlock();
2803 }
2804 
2805 static void sock_def_destruct(struct sock *sk)
2806 {
2807 }
2808 
2809 void sk_send_sigurg(struct sock *sk)
2810 {
2811 	if (sk->sk_socket && sk->sk_socket->file)
2812 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2813 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2814 }
2815 EXPORT_SYMBOL(sk_send_sigurg);
2816 
2817 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2818 		    unsigned long expires)
2819 {
2820 	if (!mod_timer(timer, expires))
2821 		sock_hold(sk);
2822 }
2823 EXPORT_SYMBOL(sk_reset_timer);
2824 
2825 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2826 {
2827 	if (del_timer(timer))
2828 		__sock_put(sk);
2829 }
2830 EXPORT_SYMBOL(sk_stop_timer);
2831 
2832 void sock_init_data(struct socket *sock, struct sock *sk)
2833 {
2834 	sk_init_common(sk);
2835 	sk->sk_send_head	=	NULL;
2836 
2837 	timer_setup(&sk->sk_timer, NULL, 0);
2838 
2839 	sk->sk_allocation	=	GFP_KERNEL;
2840 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2841 	sk->sk_sndbuf		=	sysctl_wmem_default;
2842 	sk->sk_state		=	TCP_CLOSE;
2843 	sk_set_socket(sk, sock);
2844 
2845 	sock_set_flag(sk, SOCK_ZAPPED);
2846 
2847 	if (sock) {
2848 		sk->sk_type	=	sock->type;
2849 		RCU_INIT_POINTER(sk->sk_wq, sock->wq);
2850 		sock->sk	=	sk;
2851 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2852 	} else {
2853 		RCU_INIT_POINTER(sk->sk_wq, NULL);
2854 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2855 	}
2856 
2857 	rwlock_init(&sk->sk_callback_lock);
2858 	if (sk->sk_kern_sock)
2859 		lockdep_set_class_and_name(
2860 			&sk->sk_callback_lock,
2861 			af_kern_callback_keys + sk->sk_family,
2862 			af_family_kern_clock_key_strings[sk->sk_family]);
2863 	else
2864 		lockdep_set_class_and_name(
2865 			&sk->sk_callback_lock,
2866 			af_callback_keys + sk->sk_family,
2867 			af_family_clock_key_strings[sk->sk_family]);
2868 
2869 	sk->sk_state_change	=	sock_def_wakeup;
2870 	sk->sk_data_ready	=	sock_def_readable;
2871 	sk->sk_write_space	=	sock_def_write_space;
2872 	sk->sk_error_report	=	sock_def_error_report;
2873 	sk->sk_destruct		=	sock_def_destruct;
2874 
2875 	sk->sk_frag.page	=	NULL;
2876 	sk->sk_frag.offset	=	0;
2877 	sk->sk_peek_off		=	-1;
2878 
2879 	sk->sk_peer_pid 	=	NULL;
2880 	sk->sk_peer_cred	=	NULL;
2881 	sk->sk_write_pending	=	0;
2882 	sk->sk_rcvlowat		=	1;
2883 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2884 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2885 
2886 	sk->sk_stamp = SK_DEFAULT_STAMP;
2887 #if BITS_PER_LONG==32
2888 	seqlock_init(&sk->sk_stamp_seq);
2889 #endif
2890 	atomic_set(&sk->sk_zckey, 0);
2891 
2892 #ifdef CONFIG_NET_RX_BUSY_POLL
2893 	sk->sk_napi_id		=	0;
2894 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2895 #endif
2896 
2897 	sk->sk_max_pacing_rate = ~0UL;
2898 	sk->sk_pacing_rate = ~0UL;
2899 	sk->sk_pacing_shift = 10;
2900 	sk->sk_incoming_cpu = -1;
2901 
2902 	sk_rx_queue_clear(sk);
2903 	/*
2904 	 * Before updating sk_refcnt, we must commit prior changes to memory
2905 	 * (Documentation/RCU/rculist_nulls.txt for details)
2906 	 */
2907 	smp_wmb();
2908 	refcount_set(&sk->sk_refcnt, 1);
2909 	atomic_set(&sk->sk_drops, 0);
2910 }
2911 EXPORT_SYMBOL(sock_init_data);
2912 
2913 void lock_sock_nested(struct sock *sk, int subclass)
2914 {
2915 	might_sleep();
2916 	spin_lock_bh(&sk->sk_lock.slock);
2917 	if (sk->sk_lock.owned)
2918 		__lock_sock(sk);
2919 	sk->sk_lock.owned = 1;
2920 	spin_unlock(&sk->sk_lock.slock);
2921 	/*
2922 	 * The sk_lock has mutex_lock() semantics here:
2923 	 */
2924 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2925 	local_bh_enable();
2926 }
2927 EXPORT_SYMBOL(lock_sock_nested);
2928 
2929 void release_sock(struct sock *sk)
2930 {
2931 	spin_lock_bh(&sk->sk_lock.slock);
2932 	if (sk->sk_backlog.tail)
2933 		__release_sock(sk);
2934 
2935 	/* Warning : release_cb() might need to release sk ownership,
2936 	 * ie call sock_release_ownership(sk) before us.
2937 	 */
2938 	if (sk->sk_prot->release_cb)
2939 		sk->sk_prot->release_cb(sk);
2940 
2941 	sock_release_ownership(sk);
2942 	if (waitqueue_active(&sk->sk_lock.wq))
2943 		wake_up(&sk->sk_lock.wq);
2944 	spin_unlock_bh(&sk->sk_lock.slock);
2945 }
2946 EXPORT_SYMBOL(release_sock);
2947 
2948 /**
2949  * lock_sock_fast - fast version of lock_sock
2950  * @sk: socket
2951  *
2952  * This version should be used for very small section, where process wont block
2953  * return false if fast path is taken:
2954  *
2955  *   sk_lock.slock locked, owned = 0, BH disabled
2956  *
2957  * return true if slow path is taken:
2958  *
2959  *   sk_lock.slock unlocked, owned = 1, BH enabled
2960  */
2961 bool lock_sock_fast(struct sock *sk)
2962 {
2963 	might_sleep();
2964 	spin_lock_bh(&sk->sk_lock.slock);
2965 
2966 	if (!sk->sk_lock.owned)
2967 		/*
2968 		 * Note : We must disable BH
2969 		 */
2970 		return false;
2971 
2972 	__lock_sock(sk);
2973 	sk->sk_lock.owned = 1;
2974 	spin_unlock(&sk->sk_lock.slock);
2975 	/*
2976 	 * The sk_lock has mutex_lock() semantics here:
2977 	 */
2978 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2979 	local_bh_enable();
2980 	return true;
2981 }
2982 EXPORT_SYMBOL(lock_sock_fast);
2983 
2984 int sock_gettstamp(struct socket *sock, void __user *userstamp,
2985 		   bool timeval, bool time32)
2986 {
2987 	struct sock *sk = sock->sk;
2988 	struct timespec64 ts;
2989 
2990 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2991 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
2992 	if (ts.tv_sec == -1)
2993 		return -ENOENT;
2994 	if (ts.tv_sec == 0) {
2995 		ktime_t kt = ktime_get_real();
2996 		sock_write_timestamp(sk, kt);;
2997 		ts = ktime_to_timespec64(kt);
2998 	}
2999 
3000 	if (timeval)
3001 		ts.tv_nsec /= 1000;
3002 
3003 #ifdef CONFIG_COMPAT_32BIT_TIME
3004 	if (time32)
3005 		return put_old_timespec32(&ts, userstamp);
3006 #endif
3007 #ifdef CONFIG_SPARC64
3008 	/* beware of padding in sparc64 timeval */
3009 	if (timeval && !in_compat_syscall()) {
3010 		struct __kernel_old_timeval __user tv = {
3011 			.tv_sec = ts.tv_sec,
3012 			.tv_usec = ts.tv_nsec,
3013 		};
3014 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3015 			return -EFAULT;
3016 		return 0;
3017 	}
3018 #endif
3019 	return put_timespec64(&ts, userstamp);
3020 }
3021 EXPORT_SYMBOL(sock_gettstamp);
3022 
3023 void sock_enable_timestamp(struct sock *sk, int flag)
3024 {
3025 	if (!sock_flag(sk, flag)) {
3026 		unsigned long previous_flags = sk->sk_flags;
3027 
3028 		sock_set_flag(sk, flag);
3029 		/*
3030 		 * we just set one of the two flags which require net
3031 		 * time stamping, but time stamping might have been on
3032 		 * already because of the other one
3033 		 */
3034 		if (sock_needs_netstamp(sk) &&
3035 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3036 			net_enable_timestamp();
3037 	}
3038 }
3039 
3040 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3041 		       int level, int type)
3042 {
3043 	struct sock_exterr_skb *serr;
3044 	struct sk_buff *skb;
3045 	int copied, err;
3046 
3047 	err = -EAGAIN;
3048 	skb = sock_dequeue_err_skb(sk);
3049 	if (skb == NULL)
3050 		goto out;
3051 
3052 	copied = skb->len;
3053 	if (copied > len) {
3054 		msg->msg_flags |= MSG_TRUNC;
3055 		copied = len;
3056 	}
3057 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3058 	if (err)
3059 		goto out_free_skb;
3060 
3061 	sock_recv_timestamp(msg, sk, skb);
3062 
3063 	serr = SKB_EXT_ERR(skb);
3064 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3065 
3066 	msg->msg_flags |= MSG_ERRQUEUE;
3067 	err = copied;
3068 
3069 out_free_skb:
3070 	kfree_skb(skb);
3071 out:
3072 	return err;
3073 }
3074 EXPORT_SYMBOL(sock_recv_errqueue);
3075 
3076 /*
3077  *	Get a socket option on an socket.
3078  *
3079  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3080  *	asynchronous errors should be reported by getsockopt. We assume
3081  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3082  */
3083 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3084 			   char __user *optval, int __user *optlen)
3085 {
3086 	struct sock *sk = sock->sk;
3087 
3088 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3089 }
3090 EXPORT_SYMBOL(sock_common_getsockopt);
3091 
3092 #ifdef CONFIG_COMPAT
3093 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3094 				  char __user *optval, int __user *optlen)
3095 {
3096 	struct sock *sk = sock->sk;
3097 
3098 	if (sk->sk_prot->compat_getsockopt != NULL)
3099 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3100 						      optval, optlen);
3101 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3102 }
3103 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3104 #endif
3105 
3106 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3107 			int flags)
3108 {
3109 	struct sock *sk = sock->sk;
3110 	int addr_len = 0;
3111 	int err;
3112 
3113 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3114 				   flags & ~MSG_DONTWAIT, &addr_len);
3115 	if (err >= 0)
3116 		msg->msg_namelen = addr_len;
3117 	return err;
3118 }
3119 EXPORT_SYMBOL(sock_common_recvmsg);
3120 
3121 /*
3122  *	Set socket options on an inet socket.
3123  */
3124 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3125 			   char __user *optval, unsigned int optlen)
3126 {
3127 	struct sock *sk = sock->sk;
3128 
3129 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3130 }
3131 EXPORT_SYMBOL(sock_common_setsockopt);
3132 
3133 #ifdef CONFIG_COMPAT
3134 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3135 				  char __user *optval, unsigned int optlen)
3136 {
3137 	struct sock *sk = sock->sk;
3138 
3139 	if (sk->sk_prot->compat_setsockopt != NULL)
3140 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3141 						      optval, optlen);
3142 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3143 }
3144 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3145 #endif
3146 
3147 void sk_common_release(struct sock *sk)
3148 {
3149 	if (sk->sk_prot->destroy)
3150 		sk->sk_prot->destroy(sk);
3151 
3152 	/*
3153 	 * Observation: when sock_common_release is called, processes have
3154 	 * no access to socket. But net still has.
3155 	 * Step one, detach it from networking:
3156 	 *
3157 	 * A. Remove from hash tables.
3158 	 */
3159 
3160 	sk->sk_prot->unhash(sk);
3161 
3162 	/*
3163 	 * In this point socket cannot receive new packets, but it is possible
3164 	 * that some packets are in flight because some CPU runs receiver and
3165 	 * did hash table lookup before we unhashed socket. They will achieve
3166 	 * receive queue and will be purged by socket destructor.
3167 	 *
3168 	 * Also we still have packets pending on receive queue and probably,
3169 	 * our own packets waiting in device queues. sock_destroy will drain
3170 	 * receive queue, but transmitted packets will delay socket destruction
3171 	 * until the last reference will be released.
3172 	 */
3173 
3174 	sock_orphan(sk);
3175 
3176 	xfrm_sk_free_policy(sk);
3177 
3178 	sk_refcnt_debug_release(sk);
3179 
3180 	sock_put(sk);
3181 }
3182 EXPORT_SYMBOL(sk_common_release);
3183 
3184 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3185 {
3186 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3187 
3188 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3189 	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3190 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3191 	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3192 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3193 	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3194 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3195 	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3196 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3197 }
3198 
3199 #ifdef CONFIG_PROC_FS
3200 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3201 struct prot_inuse {
3202 	int val[PROTO_INUSE_NR];
3203 };
3204 
3205 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3206 
3207 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3208 {
3209 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3210 }
3211 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3212 
3213 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3214 {
3215 	int cpu, idx = prot->inuse_idx;
3216 	int res = 0;
3217 
3218 	for_each_possible_cpu(cpu)
3219 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3220 
3221 	return res >= 0 ? res : 0;
3222 }
3223 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3224 
3225 static void sock_inuse_add(struct net *net, int val)
3226 {
3227 	this_cpu_add(*net->core.sock_inuse, val);
3228 }
3229 
3230 int sock_inuse_get(struct net *net)
3231 {
3232 	int cpu, res = 0;
3233 
3234 	for_each_possible_cpu(cpu)
3235 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3236 
3237 	return res;
3238 }
3239 
3240 EXPORT_SYMBOL_GPL(sock_inuse_get);
3241 
3242 static int __net_init sock_inuse_init_net(struct net *net)
3243 {
3244 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3245 	if (net->core.prot_inuse == NULL)
3246 		return -ENOMEM;
3247 
3248 	net->core.sock_inuse = alloc_percpu(int);
3249 	if (net->core.sock_inuse == NULL)
3250 		goto out;
3251 
3252 	return 0;
3253 
3254 out:
3255 	free_percpu(net->core.prot_inuse);
3256 	return -ENOMEM;
3257 }
3258 
3259 static void __net_exit sock_inuse_exit_net(struct net *net)
3260 {
3261 	free_percpu(net->core.prot_inuse);
3262 	free_percpu(net->core.sock_inuse);
3263 }
3264 
3265 static struct pernet_operations net_inuse_ops = {
3266 	.init = sock_inuse_init_net,
3267 	.exit = sock_inuse_exit_net,
3268 };
3269 
3270 static __init int net_inuse_init(void)
3271 {
3272 	if (register_pernet_subsys(&net_inuse_ops))
3273 		panic("Cannot initialize net inuse counters");
3274 
3275 	return 0;
3276 }
3277 
3278 core_initcall(net_inuse_init);
3279 
3280 static void assign_proto_idx(struct proto *prot)
3281 {
3282 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3283 
3284 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3285 		pr_err("PROTO_INUSE_NR exhausted\n");
3286 		return;
3287 	}
3288 
3289 	set_bit(prot->inuse_idx, proto_inuse_idx);
3290 }
3291 
3292 static void release_proto_idx(struct proto *prot)
3293 {
3294 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3295 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3296 }
3297 #else
3298 static inline void assign_proto_idx(struct proto *prot)
3299 {
3300 }
3301 
3302 static inline void release_proto_idx(struct proto *prot)
3303 {
3304 }
3305 
3306 static void sock_inuse_add(struct net *net, int val)
3307 {
3308 }
3309 #endif
3310 
3311 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3312 {
3313 	if (!rsk_prot)
3314 		return;
3315 	kfree(rsk_prot->slab_name);
3316 	rsk_prot->slab_name = NULL;
3317 	kmem_cache_destroy(rsk_prot->slab);
3318 	rsk_prot->slab = NULL;
3319 }
3320 
3321 static int req_prot_init(const struct proto *prot)
3322 {
3323 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3324 
3325 	if (!rsk_prot)
3326 		return 0;
3327 
3328 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3329 					prot->name);
3330 	if (!rsk_prot->slab_name)
3331 		return -ENOMEM;
3332 
3333 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3334 					   rsk_prot->obj_size, 0,
3335 					   SLAB_ACCOUNT | prot->slab_flags,
3336 					   NULL);
3337 
3338 	if (!rsk_prot->slab) {
3339 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3340 			prot->name);
3341 		return -ENOMEM;
3342 	}
3343 	return 0;
3344 }
3345 
3346 int proto_register(struct proto *prot, int alloc_slab)
3347 {
3348 	if (alloc_slab) {
3349 		prot->slab = kmem_cache_create_usercopy(prot->name,
3350 					prot->obj_size, 0,
3351 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3352 					prot->slab_flags,
3353 					prot->useroffset, prot->usersize,
3354 					NULL);
3355 
3356 		if (prot->slab == NULL) {
3357 			pr_crit("%s: Can't create sock SLAB cache!\n",
3358 				prot->name);
3359 			goto out;
3360 		}
3361 
3362 		if (req_prot_init(prot))
3363 			goto out_free_request_sock_slab;
3364 
3365 		if (prot->twsk_prot != NULL) {
3366 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3367 
3368 			if (prot->twsk_prot->twsk_slab_name == NULL)
3369 				goto out_free_request_sock_slab;
3370 
3371 			prot->twsk_prot->twsk_slab =
3372 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3373 						  prot->twsk_prot->twsk_obj_size,
3374 						  0,
3375 						  SLAB_ACCOUNT |
3376 						  prot->slab_flags,
3377 						  NULL);
3378 			if (prot->twsk_prot->twsk_slab == NULL)
3379 				goto out_free_timewait_sock_slab_name;
3380 		}
3381 	}
3382 
3383 	mutex_lock(&proto_list_mutex);
3384 	list_add(&prot->node, &proto_list);
3385 	assign_proto_idx(prot);
3386 	mutex_unlock(&proto_list_mutex);
3387 	return 0;
3388 
3389 out_free_timewait_sock_slab_name:
3390 	kfree(prot->twsk_prot->twsk_slab_name);
3391 out_free_request_sock_slab:
3392 	req_prot_cleanup(prot->rsk_prot);
3393 
3394 	kmem_cache_destroy(prot->slab);
3395 	prot->slab = NULL;
3396 out:
3397 	return -ENOBUFS;
3398 }
3399 EXPORT_SYMBOL(proto_register);
3400 
3401 void proto_unregister(struct proto *prot)
3402 {
3403 	mutex_lock(&proto_list_mutex);
3404 	release_proto_idx(prot);
3405 	list_del(&prot->node);
3406 	mutex_unlock(&proto_list_mutex);
3407 
3408 	kmem_cache_destroy(prot->slab);
3409 	prot->slab = NULL;
3410 
3411 	req_prot_cleanup(prot->rsk_prot);
3412 
3413 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3414 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3415 		kfree(prot->twsk_prot->twsk_slab_name);
3416 		prot->twsk_prot->twsk_slab = NULL;
3417 	}
3418 }
3419 EXPORT_SYMBOL(proto_unregister);
3420 
3421 int sock_load_diag_module(int family, int protocol)
3422 {
3423 	if (!protocol) {
3424 		if (!sock_is_registered(family))
3425 			return -ENOENT;
3426 
3427 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3428 				      NETLINK_SOCK_DIAG, family);
3429 	}
3430 
3431 #ifdef CONFIG_INET
3432 	if (family == AF_INET &&
3433 	    protocol != IPPROTO_RAW &&
3434 	    !rcu_access_pointer(inet_protos[protocol]))
3435 		return -ENOENT;
3436 #endif
3437 
3438 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3439 			      NETLINK_SOCK_DIAG, family, protocol);
3440 }
3441 EXPORT_SYMBOL(sock_load_diag_module);
3442 
3443 #ifdef CONFIG_PROC_FS
3444 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3445 	__acquires(proto_list_mutex)
3446 {
3447 	mutex_lock(&proto_list_mutex);
3448 	return seq_list_start_head(&proto_list, *pos);
3449 }
3450 
3451 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3452 {
3453 	return seq_list_next(v, &proto_list, pos);
3454 }
3455 
3456 static void proto_seq_stop(struct seq_file *seq, void *v)
3457 	__releases(proto_list_mutex)
3458 {
3459 	mutex_unlock(&proto_list_mutex);
3460 }
3461 
3462 static char proto_method_implemented(const void *method)
3463 {
3464 	return method == NULL ? 'n' : 'y';
3465 }
3466 static long sock_prot_memory_allocated(struct proto *proto)
3467 {
3468 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3469 }
3470 
3471 static char *sock_prot_memory_pressure(struct proto *proto)
3472 {
3473 	return proto->memory_pressure != NULL ?
3474 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3475 }
3476 
3477 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3478 {
3479 
3480 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3481 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3482 		   proto->name,
3483 		   proto->obj_size,
3484 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3485 		   sock_prot_memory_allocated(proto),
3486 		   sock_prot_memory_pressure(proto),
3487 		   proto->max_header,
3488 		   proto->slab == NULL ? "no" : "yes",
3489 		   module_name(proto->owner),
3490 		   proto_method_implemented(proto->close),
3491 		   proto_method_implemented(proto->connect),
3492 		   proto_method_implemented(proto->disconnect),
3493 		   proto_method_implemented(proto->accept),
3494 		   proto_method_implemented(proto->ioctl),
3495 		   proto_method_implemented(proto->init),
3496 		   proto_method_implemented(proto->destroy),
3497 		   proto_method_implemented(proto->shutdown),
3498 		   proto_method_implemented(proto->setsockopt),
3499 		   proto_method_implemented(proto->getsockopt),
3500 		   proto_method_implemented(proto->sendmsg),
3501 		   proto_method_implemented(proto->recvmsg),
3502 		   proto_method_implemented(proto->sendpage),
3503 		   proto_method_implemented(proto->bind),
3504 		   proto_method_implemented(proto->backlog_rcv),
3505 		   proto_method_implemented(proto->hash),
3506 		   proto_method_implemented(proto->unhash),
3507 		   proto_method_implemented(proto->get_port),
3508 		   proto_method_implemented(proto->enter_memory_pressure));
3509 }
3510 
3511 static int proto_seq_show(struct seq_file *seq, void *v)
3512 {
3513 	if (v == &proto_list)
3514 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3515 			   "protocol",
3516 			   "size",
3517 			   "sockets",
3518 			   "memory",
3519 			   "press",
3520 			   "maxhdr",
3521 			   "slab",
3522 			   "module",
3523 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3524 	else
3525 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3526 	return 0;
3527 }
3528 
3529 static const struct seq_operations proto_seq_ops = {
3530 	.start  = proto_seq_start,
3531 	.next   = proto_seq_next,
3532 	.stop   = proto_seq_stop,
3533 	.show   = proto_seq_show,
3534 };
3535 
3536 static __net_init int proto_init_net(struct net *net)
3537 {
3538 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3539 			sizeof(struct seq_net_private)))
3540 		return -ENOMEM;
3541 
3542 	return 0;
3543 }
3544 
3545 static __net_exit void proto_exit_net(struct net *net)
3546 {
3547 	remove_proc_entry("protocols", net->proc_net);
3548 }
3549 
3550 
3551 static __net_initdata struct pernet_operations proto_net_ops = {
3552 	.init = proto_init_net,
3553 	.exit = proto_exit_net,
3554 };
3555 
3556 static int __init proto_init(void)
3557 {
3558 	return register_pernet_subsys(&proto_net_ops);
3559 }
3560 
3561 subsys_initcall(proto_init);
3562 
3563 #endif /* PROC_FS */
3564 
3565 #ifdef CONFIG_NET_RX_BUSY_POLL
3566 bool sk_busy_loop_end(void *p, unsigned long start_time)
3567 {
3568 	struct sock *sk = p;
3569 
3570 	return !skb_queue_empty(&sk->sk_receive_queue) ||
3571 	       sk_busy_loop_timeout(sk, start_time);
3572 }
3573 EXPORT_SYMBOL(sk_busy_loop_end);
3574 #endif /* CONFIG_NET_RX_BUSY_POLL */
3575