1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 337 if (timeo == MAX_SCHEDULE_TIMEOUT) { 338 tv.tv_sec = 0; 339 tv.tv_usec = 0; 340 } else { 341 tv.tv_sec = timeo / HZ; 342 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 343 } 344 345 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 346 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 347 *(struct old_timeval32 *)optval = tv32; 348 return sizeof(tv32); 349 } 350 351 if (old_timeval) { 352 struct __kernel_old_timeval old_tv; 353 old_tv.tv_sec = tv.tv_sec; 354 old_tv.tv_usec = tv.tv_usec; 355 *(struct __kernel_old_timeval *)optval = old_tv; 356 return sizeof(old_tv); 357 } 358 359 *(struct __kernel_sock_timeval *)optval = tv; 360 return sizeof(tv); 361 } 362 363 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 364 { 365 struct __kernel_sock_timeval tv; 366 367 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 368 struct old_timeval32 tv32; 369 370 if (optlen < sizeof(tv32)) 371 return -EINVAL; 372 373 if (copy_from_user(&tv32, optval, sizeof(tv32))) 374 return -EFAULT; 375 tv.tv_sec = tv32.tv_sec; 376 tv.tv_usec = tv32.tv_usec; 377 } else if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 380 if (optlen < sizeof(old_tv)) 381 return -EINVAL; 382 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 383 return -EFAULT; 384 tv.tv_sec = old_tv.tv_sec; 385 tv.tv_usec = old_tv.tv_usec; 386 } else { 387 if (optlen < sizeof(tv)) 388 return -EINVAL; 389 if (copy_from_user(&tv, optval, sizeof(tv))) 390 return -EFAULT; 391 } 392 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 393 return -EDOM; 394 395 if (tv.tv_sec < 0) { 396 static int warned __read_mostly; 397 398 *timeo_p = 0; 399 if (warned < 10 && net_ratelimit()) { 400 warned++; 401 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 402 __func__, current->comm, task_pid_nr(current)); 403 } 404 return 0; 405 } 406 *timeo_p = MAX_SCHEDULE_TIMEOUT; 407 if (tv.tv_sec == 0 && tv.tv_usec == 0) 408 return 0; 409 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 410 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 411 return 0; 412 } 413 414 static void sock_warn_obsolete_bsdism(const char *name) 415 { 416 static int warned; 417 static char warncomm[TASK_COMM_LEN]; 418 if (strcmp(warncomm, current->comm) && warned < 5) { 419 strcpy(warncomm, current->comm); 420 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 421 warncomm, name); 422 warned++; 423 } 424 } 425 426 static bool sock_needs_netstamp(const struct sock *sk) 427 { 428 switch (sk->sk_family) { 429 case AF_UNSPEC: 430 case AF_UNIX: 431 return false; 432 default: 433 return true; 434 } 435 } 436 437 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 438 { 439 if (sk->sk_flags & flags) { 440 sk->sk_flags &= ~flags; 441 if (sock_needs_netstamp(sk) && 442 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 443 net_disable_timestamp(); 444 } 445 } 446 447 448 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 449 { 450 unsigned long flags; 451 struct sk_buff_head *list = &sk->sk_receive_queue; 452 453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 454 atomic_inc(&sk->sk_drops); 455 trace_sock_rcvqueue_full(sk, skb); 456 return -ENOMEM; 457 } 458 459 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 460 atomic_inc(&sk->sk_drops); 461 return -ENOBUFS; 462 } 463 464 skb->dev = NULL; 465 skb_set_owner_r(skb, sk); 466 467 /* we escape from rcu protected region, make sure we dont leak 468 * a norefcounted dst 469 */ 470 skb_dst_force(skb); 471 472 spin_lock_irqsave(&list->lock, flags); 473 sock_skb_set_dropcount(sk, skb); 474 __skb_queue_tail(list, skb); 475 spin_unlock_irqrestore(&list->lock, flags); 476 477 if (!sock_flag(sk, SOCK_DEAD)) 478 sk->sk_data_ready(sk); 479 return 0; 480 } 481 EXPORT_SYMBOL(__sock_queue_rcv_skb); 482 483 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 484 { 485 int err; 486 487 err = sk_filter(sk, skb); 488 if (err) 489 return err; 490 491 return __sock_queue_rcv_skb(sk, skb); 492 } 493 EXPORT_SYMBOL(sock_queue_rcv_skb); 494 495 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 496 const int nested, unsigned int trim_cap, bool refcounted) 497 { 498 int rc = NET_RX_SUCCESS; 499 500 if (sk_filter_trim_cap(sk, skb, trim_cap)) 501 goto discard_and_relse; 502 503 skb->dev = NULL; 504 505 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 506 atomic_inc(&sk->sk_drops); 507 goto discard_and_relse; 508 } 509 if (nested) 510 bh_lock_sock_nested(sk); 511 else 512 bh_lock_sock(sk); 513 if (!sock_owned_by_user(sk)) { 514 /* 515 * trylock + unlock semantics: 516 */ 517 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 518 519 rc = sk_backlog_rcv(sk, skb); 520 521 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 522 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 523 bh_unlock_sock(sk); 524 atomic_inc(&sk->sk_drops); 525 goto discard_and_relse; 526 } 527 528 bh_unlock_sock(sk); 529 out: 530 if (refcounted) 531 sock_put(sk); 532 return rc; 533 discard_and_relse: 534 kfree_skb(skb); 535 goto out; 536 } 537 EXPORT_SYMBOL(__sk_receive_skb); 538 539 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 540 { 541 struct dst_entry *dst = __sk_dst_get(sk); 542 543 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 544 sk_tx_queue_clear(sk); 545 sk->sk_dst_pending_confirm = 0; 546 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 547 dst_release(dst); 548 return NULL; 549 } 550 551 return dst; 552 } 553 EXPORT_SYMBOL(__sk_dst_check); 554 555 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 556 { 557 struct dst_entry *dst = sk_dst_get(sk); 558 559 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 560 sk_dst_reset(sk); 561 dst_release(dst); 562 return NULL; 563 } 564 565 return dst; 566 } 567 EXPORT_SYMBOL(sk_dst_check); 568 569 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 570 { 571 int ret = -ENOPROTOOPT; 572 #ifdef CONFIG_NETDEVICES 573 struct net *net = sock_net(sk); 574 575 /* Sorry... */ 576 ret = -EPERM; 577 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 578 goto out; 579 580 ret = -EINVAL; 581 if (ifindex < 0) 582 goto out; 583 584 sk->sk_bound_dev_if = ifindex; 585 if (sk->sk_prot->rehash) 586 sk->sk_prot->rehash(sk); 587 sk_dst_reset(sk); 588 589 ret = 0; 590 591 out: 592 #endif 593 594 return ret; 595 } 596 597 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 598 int optlen) 599 { 600 int ret = -ENOPROTOOPT; 601 #ifdef CONFIG_NETDEVICES 602 struct net *net = sock_net(sk); 603 char devname[IFNAMSIZ]; 604 int index; 605 606 ret = -EINVAL; 607 if (optlen < 0) 608 goto out; 609 610 /* Bind this socket to a particular device like "eth0", 611 * as specified in the passed interface name. If the 612 * name is "" or the option length is zero the socket 613 * is not bound. 614 */ 615 if (optlen > IFNAMSIZ - 1) 616 optlen = IFNAMSIZ - 1; 617 memset(devname, 0, sizeof(devname)); 618 619 ret = -EFAULT; 620 if (copy_from_user(devname, optval, optlen)) 621 goto out; 622 623 index = 0; 624 if (devname[0] != '\0') { 625 struct net_device *dev; 626 627 rcu_read_lock(); 628 dev = dev_get_by_name_rcu(net, devname); 629 if (dev) 630 index = dev->ifindex; 631 rcu_read_unlock(); 632 ret = -ENODEV; 633 if (!dev) 634 goto out; 635 } 636 637 lock_sock(sk); 638 ret = sock_setbindtodevice_locked(sk, index); 639 release_sock(sk); 640 641 out: 642 #endif 643 644 return ret; 645 } 646 647 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 648 int __user *optlen, int len) 649 { 650 int ret = -ENOPROTOOPT; 651 #ifdef CONFIG_NETDEVICES 652 struct net *net = sock_net(sk); 653 char devname[IFNAMSIZ]; 654 655 if (sk->sk_bound_dev_if == 0) { 656 len = 0; 657 goto zero; 658 } 659 660 ret = -EINVAL; 661 if (len < IFNAMSIZ) 662 goto out; 663 664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 665 if (ret) 666 goto out; 667 668 len = strlen(devname) + 1; 669 670 ret = -EFAULT; 671 if (copy_to_user(optval, devname, len)) 672 goto out; 673 674 zero: 675 ret = -EFAULT; 676 if (put_user(len, optlen)) 677 goto out; 678 679 ret = 0; 680 681 out: 682 #endif 683 684 return ret; 685 } 686 687 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 688 int valbool) 689 { 690 if (valbool) 691 sock_set_flag(sk, bit); 692 else 693 sock_reset_flag(sk, bit); 694 } 695 696 bool sk_mc_loop(struct sock *sk) 697 { 698 if (dev_recursion_level()) 699 return false; 700 if (!sk) 701 return true; 702 switch (sk->sk_family) { 703 case AF_INET: 704 return inet_sk(sk)->mc_loop; 705 #if IS_ENABLED(CONFIG_IPV6) 706 case AF_INET6: 707 return inet6_sk(sk)->mc_loop; 708 #endif 709 } 710 WARN_ON(1); 711 return true; 712 } 713 EXPORT_SYMBOL(sk_mc_loop); 714 715 /* 716 * This is meant for all protocols to use and covers goings on 717 * at the socket level. Everything here is generic. 718 */ 719 720 int sock_setsockopt(struct socket *sock, int level, int optname, 721 char __user *optval, unsigned int optlen) 722 { 723 struct sock_txtime sk_txtime; 724 struct sock *sk = sock->sk; 725 int val; 726 int valbool; 727 struct linger ling; 728 int ret = 0; 729 730 /* 731 * Options without arguments 732 */ 733 734 if (optname == SO_BINDTODEVICE) 735 return sock_setbindtodevice(sk, optval, optlen); 736 737 if (optlen < sizeof(int)) 738 return -EINVAL; 739 740 if (get_user(val, (int __user *)optval)) 741 return -EFAULT; 742 743 valbool = val ? 1 : 0; 744 745 lock_sock(sk); 746 747 switch (optname) { 748 case SO_DEBUG: 749 if (val && !capable(CAP_NET_ADMIN)) 750 ret = -EACCES; 751 else 752 sock_valbool_flag(sk, SOCK_DBG, valbool); 753 break; 754 case SO_REUSEADDR: 755 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 756 break; 757 case SO_REUSEPORT: 758 sk->sk_reuseport = valbool; 759 break; 760 case SO_TYPE: 761 case SO_PROTOCOL: 762 case SO_DOMAIN: 763 case SO_ERROR: 764 ret = -ENOPROTOOPT; 765 break; 766 case SO_DONTROUTE: 767 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 768 sk_dst_reset(sk); 769 break; 770 case SO_BROADCAST: 771 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 772 break; 773 case SO_SNDBUF: 774 /* Don't error on this BSD doesn't and if you think 775 * about it this is right. Otherwise apps have to 776 * play 'guess the biggest size' games. RCVBUF/SNDBUF 777 * are treated in BSD as hints 778 */ 779 val = min_t(u32, val, sysctl_wmem_max); 780 set_sndbuf: 781 /* Ensure val * 2 fits into an int, to prevent max_t() 782 * from treating it as a negative value. 783 */ 784 val = min_t(int, val, INT_MAX / 2); 785 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 786 WRITE_ONCE(sk->sk_sndbuf, 787 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 788 /* Wake up sending tasks if we upped the value. */ 789 sk->sk_write_space(sk); 790 break; 791 792 case SO_SNDBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 798 /* No negative values (to prevent underflow, as val will be 799 * multiplied by 2). 800 */ 801 if (val < 0) 802 val = 0; 803 goto set_sndbuf; 804 805 case SO_RCVBUF: 806 /* Don't error on this BSD doesn't and if you think 807 * about it this is right. Otherwise apps have to 808 * play 'guess the biggest size' games. RCVBUF/SNDBUF 809 * are treated in BSD as hints 810 */ 811 val = min_t(u32, val, sysctl_rmem_max); 812 set_rcvbuf: 813 /* Ensure val * 2 fits into an int, to prevent max_t() 814 * from treating it as a negative value. 815 */ 816 val = min_t(int, val, INT_MAX / 2); 817 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 818 /* 819 * We double it on the way in to account for 820 * "struct sk_buff" etc. overhead. Applications 821 * assume that the SO_RCVBUF setting they make will 822 * allow that much actual data to be received on that 823 * socket. 824 * 825 * Applications are unaware that "struct sk_buff" and 826 * other overheads allocate from the receive buffer 827 * during socket buffer allocation. 828 * 829 * And after considering the possible alternatives, 830 * returning the value we actually used in getsockopt 831 * is the most desirable behavior. 832 */ 833 WRITE_ONCE(sk->sk_rcvbuf, 834 max_t(int, val * 2, SOCK_MIN_RCVBUF)); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 WRITE_ONCE(sk->sk_incoming_cpu, val); 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = READ_ONCE(sk->sk_incoming_cpu); 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 const struct proto *prot = READ_ONCE(osk->sk_prot); 1576 #ifdef CONFIG_SECURITY_NETWORK 1577 void *sptr = nsk->sk_security; 1578 #endif 1579 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1580 1581 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1582 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1583 1584 #ifdef CONFIG_SECURITY_NETWORK 1585 nsk->sk_security = sptr; 1586 security_sk_clone(osk, nsk); 1587 #endif 1588 } 1589 1590 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1591 int family) 1592 { 1593 struct sock *sk; 1594 struct kmem_cache *slab; 1595 1596 slab = prot->slab; 1597 if (slab != NULL) { 1598 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1599 if (!sk) 1600 return sk; 1601 if (want_init_on_alloc(priority)) 1602 sk_prot_clear_nulls(sk, prot->obj_size); 1603 } else 1604 sk = kmalloc(prot->obj_size, priority); 1605 1606 if (sk != NULL) { 1607 if (security_sk_alloc(sk, family, priority)) 1608 goto out_free; 1609 1610 if (!try_module_get(prot->owner)) 1611 goto out_free_sec; 1612 sk_tx_queue_clear(sk); 1613 } 1614 1615 return sk; 1616 1617 out_free_sec: 1618 security_sk_free(sk); 1619 out_free: 1620 if (slab != NULL) 1621 kmem_cache_free(slab, sk); 1622 else 1623 kfree(sk); 1624 return NULL; 1625 } 1626 1627 static void sk_prot_free(struct proto *prot, struct sock *sk) 1628 { 1629 struct kmem_cache *slab; 1630 struct module *owner; 1631 1632 owner = prot->owner; 1633 slab = prot->slab; 1634 1635 cgroup_sk_free(&sk->sk_cgrp_data); 1636 mem_cgroup_sk_free(sk); 1637 security_sk_free(sk); 1638 if (slab != NULL) 1639 kmem_cache_free(slab, sk); 1640 else 1641 kfree(sk); 1642 module_put(owner); 1643 } 1644 1645 /** 1646 * sk_alloc - All socket objects are allocated here 1647 * @net: the applicable net namespace 1648 * @family: protocol family 1649 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1650 * @prot: struct proto associated with this new sock instance 1651 * @kern: is this to be a kernel socket? 1652 */ 1653 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1654 struct proto *prot, int kern) 1655 { 1656 struct sock *sk; 1657 1658 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1659 if (sk) { 1660 sk->sk_family = family; 1661 /* 1662 * See comment in struct sock definition to understand 1663 * why we need sk_prot_creator -acme 1664 */ 1665 sk->sk_prot = sk->sk_prot_creator = prot; 1666 sk->sk_kern_sock = kern; 1667 sock_lock_init(sk); 1668 sk->sk_net_refcnt = kern ? 0 : 1; 1669 if (likely(sk->sk_net_refcnt)) { 1670 get_net(net); 1671 sock_inuse_add(net, 1); 1672 } 1673 1674 sock_net_set(sk, net); 1675 refcount_set(&sk->sk_wmem_alloc, 1); 1676 1677 mem_cgroup_sk_alloc(sk); 1678 cgroup_sk_alloc(&sk->sk_cgrp_data); 1679 sock_update_classid(&sk->sk_cgrp_data); 1680 sock_update_netprioidx(&sk->sk_cgrp_data); 1681 } 1682 1683 return sk; 1684 } 1685 EXPORT_SYMBOL(sk_alloc); 1686 1687 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1688 * grace period. This is the case for UDP sockets and TCP listeners. 1689 */ 1690 static void __sk_destruct(struct rcu_head *head) 1691 { 1692 struct sock *sk = container_of(head, struct sock, sk_rcu); 1693 struct sk_filter *filter; 1694 1695 if (sk->sk_destruct) 1696 sk->sk_destruct(sk); 1697 1698 filter = rcu_dereference_check(sk->sk_filter, 1699 refcount_read(&sk->sk_wmem_alloc) == 0); 1700 if (filter) { 1701 sk_filter_uncharge(sk, filter); 1702 RCU_INIT_POINTER(sk->sk_filter, NULL); 1703 } 1704 1705 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1706 1707 #ifdef CONFIG_BPF_SYSCALL 1708 bpf_sk_storage_free(sk); 1709 #endif 1710 1711 if (atomic_read(&sk->sk_omem_alloc)) 1712 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1713 __func__, atomic_read(&sk->sk_omem_alloc)); 1714 1715 if (sk->sk_frag.page) { 1716 put_page(sk->sk_frag.page); 1717 sk->sk_frag.page = NULL; 1718 } 1719 1720 if (sk->sk_peer_cred) 1721 put_cred(sk->sk_peer_cred); 1722 put_pid(sk->sk_peer_pid); 1723 if (likely(sk->sk_net_refcnt)) 1724 put_net(sock_net(sk)); 1725 sk_prot_free(sk->sk_prot_creator, sk); 1726 } 1727 1728 void sk_destruct(struct sock *sk) 1729 { 1730 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1731 1732 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1733 reuseport_detach_sock(sk); 1734 use_call_rcu = true; 1735 } 1736 1737 if (use_call_rcu) 1738 call_rcu(&sk->sk_rcu, __sk_destruct); 1739 else 1740 __sk_destruct(&sk->sk_rcu); 1741 } 1742 1743 static void __sk_free(struct sock *sk) 1744 { 1745 if (likely(sk->sk_net_refcnt)) 1746 sock_inuse_add(sock_net(sk), -1); 1747 1748 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1749 sock_diag_broadcast_destroy(sk); 1750 else 1751 sk_destruct(sk); 1752 } 1753 1754 void sk_free(struct sock *sk) 1755 { 1756 /* 1757 * We subtract one from sk_wmem_alloc and can know if 1758 * some packets are still in some tx queue. 1759 * If not null, sock_wfree() will call __sk_free(sk) later 1760 */ 1761 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1762 __sk_free(sk); 1763 } 1764 EXPORT_SYMBOL(sk_free); 1765 1766 static void sk_init_common(struct sock *sk) 1767 { 1768 skb_queue_head_init(&sk->sk_receive_queue); 1769 skb_queue_head_init(&sk->sk_write_queue); 1770 skb_queue_head_init(&sk->sk_error_queue); 1771 1772 rwlock_init(&sk->sk_callback_lock); 1773 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1774 af_rlock_keys + sk->sk_family, 1775 af_family_rlock_key_strings[sk->sk_family]); 1776 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1777 af_wlock_keys + sk->sk_family, 1778 af_family_wlock_key_strings[sk->sk_family]); 1779 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1780 af_elock_keys + sk->sk_family, 1781 af_family_elock_key_strings[sk->sk_family]); 1782 lockdep_set_class_and_name(&sk->sk_callback_lock, 1783 af_callback_keys + sk->sk_family, 1784 af_family_clock_key_strings[sk->sk_family]); 1785 } 1786 1787 /** 1788 * sk_clone_lock - clone a socket, and lock its clone 1789 * @sk: the socket to clone 1790 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1791 * 1792 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1793 */ 1794 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1795 { 1796 struct proto *prot = READ_ONCE(sk->sk_prot); 1797 struct sock *newsk; 1798 bool is_charged = true; 1799 1800 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 1801 if (newsk != NULL) { 1802 struct sk_filter *filter; 1803 1804 sock_copy(newsk, sk); 1805 1806 newsk->sk_prot_creator = prot; 1807 1808 /* SANITY */ 1809 if (likely(newsk->sk_net_refcnt)) 1810 get_net(sock_net(newsk)); 1811 sk_node_init(&newsk->sk_node); 1812 sock_lock_init(newsk); 1813 bh_lock_sock(newsk); 1814 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1815 newsk->sk_backlog.len = 0; 1816 1817 atomic_set(&newsk->sk_rmem_alloc, 0); 1818 /* 1819 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1820 */ 1821 refcount_set(&newsk->sk_wmem_alloc, 1); 1822 atomic_set(&newsk->sk_omem_alloc, 0); 1823 sk_init_common(newsk); 1824 1825 newsk->sk_dst_cache = NULL; 1826 newsk->sk_dst_pending_confirm = 0; 1827 newsk->sk_wmem_queued = 0; 1828 newsk->sk_forward_alloc = 0; 1829 atomic_set(&newsk->sk_drops, 0); 1830 newsk->sk_send_head = NULL; 1831 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1832 atomic_set(&newsk->sk_zckey, 0); 1833 1834 sock_reset_flag(newsk, SOCK_DONE); 1835 1836 /* sk->sk_memcg will be populated at accept() time */ 1837 newsk->sk_memcg = NULL; 1838 1839 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1840 1841 rcu_read_lock(); 1842 filter = rcu_dereference(sk->sk_filter); 1843 if (filter != NULL) 1844 /* though it's an empty new sock, the charging may fail 1845 * if sysctl_optmem_max was changed between creation of 1846 * original socket and cloning 1847 */ 1848 is_charged = sk_filter_charge(newsk, filter); 1849 RCU_INIT_POINTER(newsk->sk_filter, filter); 1850 rcu_read_unlock(); 1851 1852 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1853 /* We need to make sure that we don't uncharge the new 1854 * socket if we couldn't charge it in the first place 1855 * as otherwise we uncharge the parent's filter. 1856 */ 1857 if (!is_charged) 1858 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1859 sk_free_unlock_clone(newsk); 1860 newsk = NULL; 1861 goto out; 1862 } 1863 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1864 1865 if (bpf_sk_storage_clone(sk, newsk)) { 1866 sk_free_unlock_clone(newsk); 1867 newsk = NULL; 1868 goto out; 1869 } 1870 1871 /* Clear sk_user_data if parent had the pointer tagged 1872 * as not suitable for copying when cloning. 1873 */ 1874 if (sk_user_data_is_nocopy(newsk)) 1875 RCU_INIT_POINTER(newsk->sk_user_data, NULL); 1876 1877 newsk->sk_err = 0; 1878 newsk->sk_err_soft = 0; 1879 newsk->sk_priority = 0; 1880 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1881 if (likely(newsk->sk_net_refcnt)) 1882 sock_inuse_add(sock_net(newsk), 1); 1883 1884 /* 1885 * Before updating sk_refcnt, we must commit prior changes to memory 1886 * (Documentation/RCU/rculist_nulls.txt for details) 1887 */ 1888 smp_wmb(); 1889 refcount_set(&newsk->sk_refcnt, 2); 1890 1891 /* 1892 * Increment the counter in the same struct proto as the master 1893 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1894 * is the same as sk->sk_prot->socks, as this field was copied 1895 * with memcpy). 1896 * 1897 * This _changes_ the previous behaviour, where 1898 * tcp_create_openreq_child always was incrementing the 1899 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1900 * to be taken into account in all callers. -acme 1901 */ 1902 sk_refcnt_debug_inc(newsk); 1903 sk_set_socket(newsk, NULL); 1904 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1905 1906 if (newsk->sk_prot->sockets_allocated) 1907 sk_sockets_allocated_inc(newsk); 1908 1909 if (sock_needs_netstamp(sk) && 1910 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1911 net_enable_timestamp(); 1912 } 1913 out: 1914 return newsk; 1915 } 1916 EXPORT_SYMBOL_GPL(sk_clone_lock); 1917 1918 void sk_free_unlock_clone(struct sock *sk) 1919 { 1920 /* It is still raw copy of parent, so invalidate 1921 * destructor and make plain sk_free() */ 1922 sk->sk_destruct = NULL; 1923 bh_unlock_sock(sk); 1924 sk_free(sk); 1925 } 1926 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1927 1928 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1929 { 1930 u32 max_segs = 1; 1931 1932 sk_dst_set(sk, dst); 1933 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1934 if (sk->sk_route_caps & NETIF_F_GSO) 1935 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1936 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1937 if (sk_can_gso(sk)) { 1938 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1939 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1940 } else { 1941 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1942 sk->sk_gso_max_size = dst->dev->gso_max_size; 1943 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1944 } 1945 } 1946 sk->sk_gso_max_segs = max_segs; 1947 } 1948 EXPORT_SYMBOL_GPL(sk_setup_caps); 1949 1950 /* 1951 * Simple resource managers for sockets. 1952 */ 1953 1954 1955 /* 1956 * Write buffer destructor automatically called from kfree_skb. 1957 */ 1958 void sock_wfree(struct sk_buff *skb) 1959 { 1960 struct sock *sk = skb->sk; 1961 unsigned int len = skb->truesize; 1962 1963 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1964 /* 1965 * Keep a reference on sk_wmem_alloc, this will be released 1966 * after sk_write_space() call 1967 */ 1968 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1969 sk->sk_write_space(sk); 1970 len = 1; 1971 } 1972 /* 1973 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1974 * could not do because of in-flight packets 1975 */ 1976 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1977 __sk_free(sk); 1978 } 1979 EXPORT_SYMBOL(sock_wfree); 1980 1981 /* This variant of sock_wfree() is used by TCP, 1982 * since it sets SOCK_USE_WRITE_QUEUE. 1983 */ 1984 void __sock_wfree(struct sk_buff *skb) 1985 { 1986 struct sock *sk = skb->sk; 1987 1988 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1989 __sk_free(sk); 1990 } 1991 1992 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1993 { 1994 skb_orphan(skb); 1995 skb->sk = sk; 1996 #ifdef CONFIG_INET 1997 if (unlikely(!sk_fullsock(sk))) { 1998 skb->destructor = sock_edemux; 1999 sock_hold(sk); 2000 return; 2001 } 2002 #endif 2003 skb->destructor = sock_wfree; 2004 skb_set_hash_from_sk(skb, sk); 2005 /* 2006 * We used to take a refcount on sk, but following operation 2007 * is enough to guarantee sk_free() wont free this sock until 2008 * all in-flight packets are completed 2009 */ 2010 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2011 } 2012 EXPORT_SYMBOL(skb_set_owner_w); 2013 2014 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2015 { 2016 #ifdef CONFIG_TLS_DEVICE 2017 /* Drivers depend on in-order delivery for crypto offload, 2018 * partial orphan breaks out-of-order-OK logic. 2019 */ 2020 if (skb->decrypted) 2021 return false; 2022 #endif 2023 return (skb->destructor == sock_wfree || 2024 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2025 } 2026 2027 /* This helper is used by netem, as it can hold packets in its 2028 * delay queue. We want to allow the owner socket to send more 2029 * packets, as if they were already TX completed by a typical driver. 2030 * But we also want to keep skb->sk set because some packet schedulers 2031 * rely on it (sch_fq for example). 2032 */ 2033 void skb_orphan_partial(struct sk_buff *skb) 2034 { 2035 if (skb_is_tcp_pure_ack(skb)) 2036 return; 2037 2038 if (can_skb_orphan_partial(skb)) { 2039 struct sock *sk = skb->sk; 2040 2041 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2042 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2043 skb->destructor = sock_efree; 2044 } 2045 } else { 2046 skb_orphan(skb); 2047 } 2048 } 2049 EXPORT_SYMBOL(skb_orphan_partial); 2050 2051 /* 2052 * Read buffer destructor automatically called from kfree_skb. 2053 */ 2054 void sock_rfree(struct sk_buff *skb) 2055 { 2056 struct sock *sk = skb->sk; 2057 unsigned int len = skb->truesize; 2058 2059 atomic_sub(len, &sk->sk_rmem_alloc); 2060 sk_mem_uncharge(sk, len); 2061 } 2062 EXPORT_SYMBOL(sock_rfree); 2063 2064 /* 2065 * Buffer destructor for skbs that are not used directly in read or write 2066 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2067 */ 2068 void sock_efree(struct sk_buff *skb) 2069 { 2070 sock_put(skb->sk); 2071 } 2072 EXPORT_SYMBOL(sock_efree); 2073 2074 kuid_t sock_i_uid(struct sock *sk) 2075 { 2076 kuid_t uid; 2077 2078 read_lock_bh(&sk->sk_callback_lock); 2079 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2080 read_unlock_bh(&sk->sk_callback_lock); 2081 return uid; 2082 } 2083 EXPORT_SYMBOL(sock_i_uid); 2084 2085 unsigned long sock_i_ino(struct sock *sk) 2086 { 2087 unsigned long ino; 2088 2089 read_lock_bh(&sk->sk_callback_lock); 2090 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2091 read_unlock_bh(&sk->sk_callback_lock); 2092 return ino; 2093 } 2094 EXPORT_SYMBOL(sock_i_ino); 2095 2096 /* 2097 * Allocate a skb from the socket's send buffer. 2098 */ 2099 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2100 gfp_t priority) 2101 { 2102 if (force || 2103 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2104 struct sk_buff *skb = alloc_skb(size, priority); 2105 2106 if (skb) { 2107 skb_set_owner_w(skb, sk); 2108 return skb; 2109 } 2110 } 2111 return NULL; 2112 } 2113 EXPORT_SYMBOL(sock_wmalloc); 2114 2115 static void sock_ofree(struct sk_buff *skb) 2116 { 2117 struct sock *sk = skb->sk; 2118 2119 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2120 } 2121 2122 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2123 gfp_t priority) 2124 { 2125 struct sk_buff *skb; 2126 2127 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2128 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2129 sysctl_optmem_max) 2130 return NULL; 2131 2132 skb = alloc_skb(size, priority); 2133 if (!skb) 2134 return NULL; 2135 2136 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2137 skb->sk = sk; 2138 skb->destructor = sock_ofree; 2139 return skb; 2140 } 2141 2142 /* 2143 * Allocate a memory block from the socket's option memory buffer. 2144 */ 2145 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2146 { 2147 if ((unsigned int)size <= sysctl_optmem_max && 2148 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2149 void *mem; 2150 /* First do the add, to avoid the race if kmalloc 2151 * might sleep. 2152 */ 2153 atomic_add(size, &sk->sk_omem_alloc); 2154 mem = kmalloc(size, priority); 2155 if (mem) 2156 return mem; 2157 atomic_sub(size, &sk->sk_omem_alloc); 2158 } 2159 return NULL; 2160 } 2161 EXPORT_SYMBOL(sock_kmalloc); 2162 2163 /* Free an option memory block. Note, we actually want the inline 2164 * here as this allows gcc to detect the nullify and fold away the 2165 * condition entirely. 2166 */ 2167 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2168 const bool nullify) 2169 { 2170 if (WARN_ON_ONCE(!mem)) 2171 return; 2172 if (nullify) 2173 kzfree(mem); 2174 else 2175 kfree(mem); 2176 atomic_sub(size, &sk->sk_omem_alloc); 2177 } 2178 2179 void sock_kfree_s(struct sock *sk, void *mem, int size) 2180 { 2181 __sock_kfree_s(sk, mem, size, false); 2182 } 2183 EXPORT_SYMBOL(sock_kfree_s); 2184 2185 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2186 { 2187 __sock_kfree_s(sk, mem, size, true); 2188 } 2189 EXPORT_SYMBOL(sock_kzfree_s); 2190 2191 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2192 I think, these locks should be removed for datagram sockets. 2193 */ 2194 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2195 { 2196 DEFINE_WAIT(wait); 2197 2198 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2199 for (;;) { 2200 if (!timeo) 2201 break; 2202 if (signal_pending(current)) 2203 break; 2204 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2205 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2206 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2207 break; 2208 if (sk->sk_shutdown & SEND_SHUTDOWN) 2209 break; 2210 if (sk->sk_err) 2211 break; 2212 timeo = schedule_timeout(timeo); 2213 } 2214 finish_wait(sk_sleep(sk), &wait); 2215 return timeo; 2216 } 2217 2218 2219 /* 2220 * Generic send/receive buffer handlers 2221 */ 2222 2223 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2224 unsigned long data_len, int noblock, 2225 int *errcode, int max_page_order) 2226 { 2227 struct sk_buff *skb; 2228 long timeo; 2229 int err; 2230 2231 timeo = sock_sndtimeo(sk, noblock); 2232 for (;;) { 2233 err = sock_error(sk); 2234 if (err != 0) 2235 goto failure; 2236 2237 err = -EPIPE; 2238 if (sk->sk_shutdown & SEND_SHUTDOWN) 2239 goto failure; 2240 2241 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2242 break; 2243 2244 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2245 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2246 err = -EAGAIN; 2247 if (!timeo) 2248 goto failure; 2249 if (signal_pending(current)) 2250 goto interrupted; 2251 timeo = sock_wait_for_wmem(sk, timeo); 2252 } 2253 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2254 errcode, sk->sk_allocation); 2255 if (skb) 2256 skb_set_owner_w(skb, sk); 2257 return skb; 2258 2259 interrupted: 2260 err = sock_intr_errno(timeo); 2261 failure: 2262 *errcode = err; 2263 return NULL; 2264 } 2265 EXPORT_SYMBOL(sock_alloc_send_pskb); 2266 2267 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2268 int noblock, int *errcode) 2269 { 2270 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2271 } 2272 EXPORT_SYMBOL(sock_alloc_send_skb); 2273 2274 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2275 struct sockcm_cookie *sockc) 2276 { 2277 u32 tsflags; 2278 2279 switch (cmsg->cmsg_type) { 2280 case SO_MARK: 2281 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2282 return -EPERM; 2283 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2284 return -EINVAL; 2285 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2286 break; 2287 case SO_TIMESTAMPING_OLD: 2288 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2289 return -EINVAL; 2290 2291 tsflags = *(u32 *)CMSG_DATA(cmsg); 2292 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2293 return -EINVAL; 2294 2295 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2296 sockc->tsflags |= tsflags; 2297 break; 2298 case SCM_TXTIME: 2299 if (!sock_flag(sk, SOCK_TXTIME)) 2300 return -EINVAL; 2301 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2302 return -EINVAL; 2303 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2304 break; 2305 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2306 case SCM_RIGHTS: 2307 case SCM_CREDENTIALS: 2308 break; 2309 default: 2310 return -EINVAL; 2311 } 2312 return 0; 2313 } 2314 EXPORT_SYMBOL(__sock_cmsg_send); 2315 2316 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2317 struct sockcm_cookie *sockc) 2318 { 2319 struct cmsghdr *cmsg; 2320 int ret; 2321 2322 for_each_cmsghdr(cmsg, msg) { 2323 if (!CMSG_OK(msg, cmsg)) 2324 return -EINVAL; 2325 if (cmsg->cmsg_level != SOL_SOCKET) 2326 continue; 2327 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2328 if (ret) 2329 return ret; 2330 } 2331 return 0; 2332 } 2333 EXPORT_SYMBOL(sock_cmsg_send); 2334 2335 static void sk_enter_memory_pressure(struct sock *sk) 2336 { 2337 if (!sk->sk_prot->enter_memory_pressure) 2338 return; 2339 2340 sk->sk_prot->enter_memory_pressure(sk); 2341 } 2342 2343 static void sk_leave_memory_pressure(struct sock *sk) 2344 { 2345 if (sk->sk_prot->leave_memory_pressure) { 2346 sk->sk_prot->leave_memory_pressure(sk); 2347 } else { 2348 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2349 2350 if (memory_pressure && READ_ONCE(*memory_pressure)) 2351 WRITE_ONCE(*memory_pressure, 0); 2352 } 2353 } 2354 2355 /* On 32bit arches, an skb frag is limited to 2^15 */ 2356 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2357 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2358 2359 /** 2360 * skb_page_frag_refill - check that a page_frag contains enough room 2361 * @sz: minimum size of the fragment we want to get 2362 * @pfrag: pointer to page_frag 2363 * @gfp: priority for memory allocation 2364 * 2365 * Note: While this allocator tries to use high order pages, there is 2366 * no guarantee that allocations succeed. Therefore, @sz MUST be 2367 * less or equal than PAGE_SIZE. 2368 */ 2369 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2370 { 2371 if (pfrag->page) { 2372 if (page_ref_count(pfrag->page) == 1) { 2373 pfrag->offset = 0; 2374 return true; 2375 } 2376 if (pfrag->offset + sz <= pfrag->size) 2377 return true; 2378 put_page(pfrag->page); 2379 } 2380 2381 pfrag->offset = 0; 2382 if (SKB_FRAG_PAGE_ORDER && 2383 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2384 /* Avoid direct reclaim but allow kswapd to wake */ 2385 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2386 __GFP_COMP | __GFP_NOWARN | 2387 __GFP_NORETRY, 2388 SKB_FRAG_PAGE_ORDER); 2389 if (likely(pfrag->page)) { 2390 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2391 return true; 2392 } 2393 } 2394 pfrag->page = alloc_page(gfp); 2395 if (likely(pfrag->page)) { 2396 pfrag->size = PAGE_SIZE; 2397 return true; 2398 } 2399 return false; 2400 } 2401 EXPORT_SYMBOL(skb_page_frag_refill); 2402 2403 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2404 { 2405 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2406 return true; 2407 2408 sk_enter_memory_pressure(sk); 2409 sk_stream_moderate_sndbuf(sk); 2410 return false; 2411 } 2412 EXPORT_SYMBOL(sk_page_frag_refill); 2413 2414 static void __lock_sock(struct sock *sk) 2415 __releases(&sk->sk_lock.slock) 2416 __acquires(&sk->sk_lock.slock) 2417 { 2418 DEFINE_WAIT(wait); 2419 2420 for (;;) { 2421 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2422 TASK_UNINTERRUPTIBLE); 2423 spin_unlock_bh(&sk->sk_lock.slock); 2424 schedule(); 2425 spin_lock_bh(&sk->sk_lock.slock); 2426 if (!sock_owned_by_user(sk)) 2427 break; 2428 } 2429 finish_wait(&sk->sk_lock.wq, &wait); 2430 } 2431 2432 void __release_sock(struct sock *sk) 2433 __releases(&sk->sk_lock.slock) 2434 __acquires(&sk->sk_lock.slock) 2435 { 2436 struct sk_buff *skb, *next; 2437 2438 while ((skb = sk->sk_backlog.head) != NULL) { 2439 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2440 2441 spin_unlock_bh(&sk->sk_lock.slock); 2442 2443 do { 2444 next = skb->next; 2445 prefetch(next); 2446 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2447 skb_mark_not_on_list(skb); 2448 sk_backlog_rcv(sk, skb); 2449 2450 cond_resched(); 2451 2452 skb = next; 2453 } while (skb != NULL); 2454 2455 spin_lock_bh(&sk->sk_lock.slock); 2456 } 2457 2458 /* 2459 * Doing the zeroing here guarantee we can not loop forever 2460 * while a wild producer attempts to flood us. 2461 */ 2462 sk->sk_backlog.len = 0; 2463 } 2464 2465 void __sk_flush_backlog(struct sock *sk) 2466 { 2467 spin_lock_bh(&sk->sk_lock.slock); 2468 __release_sock(sk); 2469 spin_unlock_bh(&sk->sk_lock.slock); 2470 } 2471 2472 /** 2473 * sk_wait_data - wait for data to arrive at sk_receive_queue 2474 * @sk: sock to wait on 2475 * @timeo: for how long 2476 * @skb: last skb seen on sk_receive_queue 2477 * 2478 * Now socket state including sk->sk_err is changed only under lock, 2479 * hence we may omit checks after joining wait queue. 2480 * We check receive queue before schedule() only as optimization; 2481 * it is very likely that release_sock() added new data. 2482 */ 2483 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2484 { 2485 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2486 int rc; 2487 2488 add_wait_queue(sk_sleep(sk), &wait); 2489 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2490 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2491 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2492 remove_wait_queue(sk_sleep(sk), &wait); 2493 return rc; 2494 } 2495 EXPORT_SYMBOL(sk_wait_data); 2496 2497 /** 2498 * __sk_mem_raise_allocated - increase memory_allocated 2499 * @sk: socket 2500 * @size: memory size to allocate 2501 * @amt: pages to allocate 2502 * @kind: allocation type 2503 * 2504 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2505 */ 2506 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2507 { 2508 struct proto *prot = sk->sk_prot; 2509 long allocated = sk_memory_allocated_add(sk, amt); 2510 bool charged = true; 2511 2512 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2513 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2514 goto suppress_allocation; 2515 2516 /* Under limit. */ 2517 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2518 sk_leave_memory_pressure(sk); 2519 return 1; 2520 } 2521 2522 /* Under pressure. */ 2523 if (allocated > sk_prot_mem_limits(sk, 1)) 2524 sk_enter_memory_pressure(sk); 2525 2526 /* Over hard limit. */ 2527 if (allocated > sk_prot_mem_limits(sk, 2)) 2528 goto suppress_allocation; 2529 2530 /* guarantee minimum buffer size under pressure */ 2531 if (kind == SK_MEM_RECV) { 2532 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2533 return 1; 2534 2535 } else { /* SK_MEM_SEND */ 2536 int wmem0 = sk_get_wmem0(sk, prot); 2537 2538 if (sk->sk_type == SOCK_STREAM) { 2539 if (sk->sk_wmem_queued < wmem0) 2540 return 1; 2541 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2542 return 1; 2543 } 2544 } 2545 2546 if (sk_has_memory_pressure(sk)) { 2547 u64 alloc; 2548 2549 if (!sk_under_memory_pressure(sk)) 2550 return 1; 2551 alloc = sk_sockets_allocated_read_positive(sk); 2552 if (sk_prot_mem_limits(sk, 2) > alloc * 2553 sk_mem_pages(sk->sk_wmem_queued + 2554 atomic_read(&sk->sk_rmem_alloc) + 2555 sk->sk_forward_alloc)) 2556 return 1; 2557 } 2558 2559 suppress_allocation: 2560 2561 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2562 sk_stream_moderate_sndbuf(sk); 2563 2564 /* Fail only if socket is _under_ its sndbuf. 2565 * In this case we cannot block, so that we have to fail. 2566 */ 2567 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2568 return 1; 2569 } 2570 2571 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2572 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2573 2574 sk_memory_allocated_sub(sk, amt); 2575 2576 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2577 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2578 2579 return 0; 2580 } 2581 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2582 2583 /** 2584 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2585 * @sk: socket 2586 * @size: memory size to allocate 2587 * @kind: allocation type 2588 * 2589 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2590 * rmem allocation. This function assumes that protocols which have 2591 * memory_pressure use sk_wmem_queued as write buffer accounting. 2592 */ 2593 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2594 { 2595 int ret, amt = sk_mem_pages(size); 2596 2597 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2598 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2599 if (!ret) 2600 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(__sk_mem_schedule); 2604 2605 /** 2606 * __sk_mem_reduce_allocated - reclaim memory_allocated 2607 * @sk: socket 2608 * @amount: number of quanta 2609 * 2610 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2611 */ 2612 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2613 { 2614 sk_memory_allocated_sub(sk, amount); 2615 2616 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2617 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2618 2619 if (sk_under_memory_pressure(sk) && 2620 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2621 sk_leave_memory_pressure(sk); 2622 } 2623 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2624 2625 /** 2626 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2627 * @sk: socket 2628 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2629 */ 2630 void __sk_mem_reclaim(struct sock *sk, int amount) 2631 { 2632 amount >>= SK_MEM_QUANTUM_SHIFT; 2633 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2634 __sk_mem_reduce_allocated(sk, amount); 2635 } 2636 EXPORT_SYMBOL(__sk_mem_reclaim); 2637 2638 int sk_set_peek_off(struct sock *sk, int val) 2639 { 2640 sk->sk_peek_off = val; 2641 return 0; 2642 } 2643 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2644 2645 /* 2646 * Set of default routines for initialising struct proto_ops when 2647 * the protocol does not support a particular function. In certain 2648 * cases where it makes no sense for a protocol to have a "do nothing" 2649 * function, some default processing is provided. 2650 */ 2651 2652 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2653 { 2654 return -EOPNOTSUPP; 2655 } 2656 EXPORT_SYMBOL(sock_no_bind); 2657 2658 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2659 int len, int flags) 2660 { 2661 return -EOPNOTSUPP; 2662 } 2663 EXPORT_SYMBOL(sock_no_connect); 2664 2665 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2666 { 2667 return -EOPNOTSUPP; 2668 } 2669 EXPORT_SYMBOL(sock_no_socketpair); 2670 2671 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2672 bool kern) 2673 { 2674 return -EOPNOTSUPP; 2675 } 2676 EXPORT_SYMBOL(sock_no_accept); 2677 2678 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2679 int peer) 2680 { 2681 return -EOPNOTSUPP; 2682 } 2683 EXPORT_SYMBOL(sock_no_getname); 2684 2685 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2686 { 2687 return -EOPNOTSUPP; 2688 } 2689 EXPORT_SYMBOL(sock_no_ioctl); 2690 2691 int sock_no_listen(struct socket *sock, int backlog) 2692 { 2693 return -EOPNOTSUPP; 2694 } 2695 EXPORT_SYMBOL(sock_no_listen); 2696 2697 int sock_no_shutdown(struct socket *sock, int how) 2698 { 2699 return -EOPNOTSUPP; 2700 } 2701 EXPORT_SYMBOL(sock_no_shutdown); 2702 2703 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2704 char __user *optval, unsigned int optlen) 2705 { 2706 return -EOPNOTSUPP; 2707 } 2708 EXPORT_SYMBOL(sock_no_setsockopt); 2709 2710 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2711 char __user *optval, int __user *optlen) 2712 { 2713 return -EOPNOTSUPP; 2714 } 2715 EXPORT_SYMBOL(sock_no_getsockopt); 2716 2717 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2718 { 2719 return -EOPNOTSUPP; 2720 } 2721 EXPORT_SYMBOL(sock_no_sendmsg); 2722 2723 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2724 { 2725 return -EOPNOTSUPP; 2726 } 2727 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2728 2729 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2730 int flags) 2731 { 2732 return -EOPNOTSUPP; 2733 } 2734 EXPORT_SYMBOL(sock_no_recvmsg); 2735 2736 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2737 { 2738 /* Mirror missing mmap method error code */ 2739 return -ENODEV; 2740 } 2741 EXPORT_SYMBOL(sock_no_mmap); 2742 2743 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2744 { 2745 ssize_t res; 2746 struct msghdr msg = {.msg_flags = flags}; 2747 struct kvec iov; 2748 char *kaddr = kmap(page); 2749 iov.iov_base = kaddr + offset; 2750 iov.iov_len = size; 2751 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2752 kunmap(page); 2753 return res; 2754 } 2755 EXPORT_SYMBOL(sock_no_sendpage); 2756 2757 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2758 int offset, size_t size, int flags) 2759 { 2760 ssize_t res; 2761 struct msghdr msg = {.msg_flags = flags}; 2762 struct kvec iov; 2763 char *kaddr = kmap(page); 2764 2765 iov.iov_base = kaddr + offset; 2766 iov.iov_len = size; 2767 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2768 kunmap(page); 2769 return res; 2770 } 2771 EXPORT_SYMBOL(sock_no_sendpage_locked); 2772 2773 /* 2774 * Default Socket Callbacks 2775 */ 2776 2777 static void sock_def_wakeup(struct sock *sk) 2778 { 2779 struct socket_wq *wq; 2780 2781 rcu_read_lock(); 2782 wq = rcu_dereference(sk->sk_wq); 2783 if (skwq_has_sleeper(wq)) 2784 wake_up_interruptible_all(&wq->wait); 2785 rcu_read_unlock(); 2786 } 2787 2788 static void sock_def_error_report(struct sock *sk) 2789 { 2790 struct socket_wq *wq; 2791 2792 rcu_read_lock(); 2793 wq = rcu_dereference(sk->sk_wq); 2794 if (skwq_has_sleeper(wq)) 2795 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2796 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2797 rcu_read_unlock(); 2798 } 2799 2800 void sock_def_readable(struct sock *sk) 2801 { 2802 struct socket_wq *wq; 2803 2804 rcu_read_lock(); 2805 wq = rcu_dereference(sk->sk_wq); 2806 if (skwq_has_sleeper(wq)) 2807 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2808 EPOLLRDNORM | EPOLLRDBAND); 2809 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2810 rcu_read_unlock(); 2811 } 2812 2813 static void sock_def_write_space(struct sock *sk) 2814 { 2815 struct socket_wq *wq; 2816 2817 rcu_read_lock(); 2818 2819 /* Do not wake up a writer until he can make "significant" 2820 * progress. --DaveM 2821 */ 2822 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2823 wq = rcu_dereference(sk->sk_wq); 2824 if (skwq_has_sleeper(wq)) 2825 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2826 EPOLLWRNORM | EPOLLWRBAND); 2827 2828 /* Should agree with poll, otherwise some programs break */ 2829 if (sock_writeable(sk)) 2830 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2831 } 2832 2833 rcu_read_unlock(); 2834 } 2835 2836 static void sock_def_destruct(struct sock *sk) 2837 { 2838 } 2839 2840 void sk_send_sigurg(struct sock *sk) 2841 { 2842 if (sk->sk_socket && sk->sk_socket->file) 2843 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2844 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2845 } 2846 EXPORT_SYMBOL(sk_send_sigurg); 2847 2848 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2849 unsigned long expires) 2850 { 2851 if (!mod_timer(timer, expires)) 2852 sock_hold(sk); 2853 } 2854 EXPORT_SYMBOL(sk_reset_timer); 2855 2856 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2857 { 2858 if (del_timer(timer)) 2859 __sock_put(sk); 2860 } 2861 EXPORT_SYMBOL(sk_stop_timer); 2862 2863 void sock_init_data(struct socket *sock, struct sock *sk) 2864 { 2865 sk_init_common(sk); 2866 sk->sk_send_head = NULL; 2867 2868 timer_setup(&sk->sk_timer, NULL, 0); 2869 2870 sk->sk_allocation = GFP_KERNEL; 2871 sk->sk_rcvbuf = sysctl_rmem_default; 2872 sk->sk_sndbuf = sysctl_wmem_default; 2873 sk->sk_state = TCP_CLOSE; 2874 sk_set_socket(sk, sock); 2875 2876 sock_set_flag(sk, SOCK_ZAPPED); 2877 2878 if (sock) { 2879 sk->sk_type = sock->type; 2880 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2881 sock->sk = sk; 2882 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2883 } else { 2884 RCU_INIT_POINTER(sk->sk_wq, NULL); 2885 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2886 } 2887 2888 rwlock_init(&sk->sk_callback_lock); 2889 if (sk->sk_kern_sock) 2890 lockdep_set_class_and_name( 2891 &sk->sk_callback_lock, 2892 af_kern_callback_keys + sk->sk_family, 2893 af_family_kern_clock_key_strings[sk->sk_family]); 2894 else 2895 lockdep_set_class_and_name( 2896 &sk->sk_callback_lock, 2897 af_callback_keys + sk->sk_family, 2898 af_family_clock_key_strings[sk->sk_family]); 2899 2900 sk->sk_state_change = sock_def_wakeup; 2901 sk->sk_data_ready = sock_def_readable; 2902 sk->sk_write_space = sock_def_write_space; 2903 sk->sk_error_report = sock_def_error_report; 2904 sk->sk_destruct = sock_def_destruct; 2905 2906 sk->sk_frag.page = NULL; 2907 sk->sk_frag.offset = 0; 2908 sk->sk_peek_off = -1; 2909 2910 sk->sk_peer_pid = NULL; 2911 sk->sk_peer_cred = NULL; 2912 sk->sk_write_pending = 0; 2913 sk->sk_rcvlowat = 1; 2914 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2915 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2916 2917 sk->sk_stamp = SK_DEFAULT_STAMP; 2918 #if BITS_PER_LONG==32 2919 seqlock_init(&sk->sk_stamp_seq); 2920 #endif 2921 atomic_set(&sk->sk_zckey, 0); 2922 2923 #ifdef CONFIG_NET_RX_BUSY_POLL 2924 sk->sk_napi_id = 0; 2925 sk->sk_ll_usec = sysctl_net_busy_read; 2926 #endif 2927 2928 sk->sk_max_pacing_rate = ~0UL; 2929 sk->sk_pacing_rate = ~0UL; 2930 WRITE_ONCE(sk->sk_pacing_shift, 10); 2931 sk->sk_incoming_cpu = -1; 2932 2933 sk_rx_queue_clear(sk); 2934 /* 2935 * Before updating sk_refcnt, we must commit prior changes to memory 2936 * (Documentation/RCU/rculist_nulls.txt for details) 2937 */ 2938 smp_wmb(); 2939 refcount_set(&sk->sk_refcnt, 1); 2940 atomic_set(&sk->sk_drops, 0); 2941 } 2942 EXPORT_SYMBOL(sock_init_data); 2943 2944 void lock_sock_nested(struct sock *sk, int subclass) 2945 { 2946 might_sleep(); 2947 spin_lock_bh(&sk->sk_lock.slock); 2948 if (sk->sk_lock.owned) 2949 __lock_sock(sk); 2950 sk->sk_lock.owned = 1; 2951 spin_unlock(&sk->sk_lock.slock); 2952 /* 2953 * The sk_lock has mutex_lock() semantics here: 2954 */ 2955 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2956 local_bh_enable(); 2957 } 2958 EXPORT_SYMBOL(lock_sock_nested); 2959 2960 void release_sock(struct sock *sk) 2961 { 2962 spin_lock_bh(&sk->sk_lock.slock); 2963 if (sk->sk_backlog.tail) 2964 __release_sock(sk); 2965 2966 /* Warning : release_cb() might need to release sk ownership, 2967 * ie call sock_release_ownership(sk) before us. 2968 */ 2969 if (sk->sk_prot->release_cb) 2970 sk->sk_prot->release_cb(sk); 2971 2972 sock_release_ownership(sk); 2973 if (waitqueue_active(&sk->sk_lock.wq)) 2974 wake_up(&sk->sk_lock.wq); 2975 spin_unlock_bh(&sk->sk_lock.slock); 2976 } 2977 EXPORT_SYMBOL(release_sock); 2978 2979 /** 2980 * lock_sock_fast - fast version of lock_sock 2981 * @sk: socket 2982 * 2983 * This version should be used for very small section, where process wont block 2984 * return false if fast path is taken: 2985 * 2986 * sk_lock.slock locked, owned = 0, BH disabled 2987 * 2988 * return true if slow path is taken: 2989 * 2990 * sk_lock.slock unlocked, owned = 1, BH enabled 2991 */ 2992 bool lock_sock_fast(struct sock *sk) 2993 { 2994 might_sleep(); 2995 spin_lock_bh(&sk->sk_lock.slock); 2996 2997 if (!sk->sk_lock.owned) 2998 /* 2999 * Note : We must disable BH 3000 */ 3001 return false; 3002 3003 __lock_sock(sk); 3004 sk->sk_lock.owned = 1; 3005 spin_unlock(&sk->sk_lock.slock); 3006 /* 3007 * The sk_lock has mutex_lock() semantics here: 3008 */ 3009 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3010 local_bh_enable(); 3011 return true; 3012 } 3013 EXPORT_SYMBOL(lock_sock_fast); 3014 3015 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3016 bool timeval, bool time32) 3017 { 3018 struct sock *sk = sock->sk; 3019 struct timespec64 ts; 3020 3021 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3022 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3023 if (ts.tv_sec == -1) 3024 return -ENOENT; 3025 if (ts.tv_sec == 0) { 3026 ktime_t kt = ktime_get_real(); 3027 sock_write_timestamp(sk, kt); 3028 ts = ktime_to_timespec64(kt); 3029 } 3030 3031 if (timeval) 3032 ts.tv_nsec /= 1000; 3033 3034 #ifdef CONFIG_COMPAT_32BIT_TIME 3035 if (time32) 3036 return put_old_timespec32(&ts, userstamp); 3037 #endif 3038 #ifdef CONFIG_SPARC64 3039 /* beware of padding in sparc64 timeval */ 3040 if (timeval && !in_compat_syscall()) { 3041 struct __kernel_old_timeval __user tv = { 3042 .tv_sec = ts.tv_sec, 3043 .tv_usec = ts.tv_nsec, 3044 }; 3045 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3046 return -EFAULT; 3047 return 0; 3048 } 3049 #endif 3050 return put_timespec64(&ts, userstamp); 3051 } 3052 EXPORT_SYMBOL(sock_gettstamp); 3053 3054 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3055 { 3056 if (!sock_flag(sk, flag)) { 3057 unsigned long previous_flags = sk->sk_flags; 3058 3059 sock_set_flag(sk, flag); 3060 /* 3061 * we just set one of the two flags which require net 3062 * time stamping, but time stamping might have been on 3063 * already because of the other one 3064 */ 3065 if (sock_needs_netstamp(sk) && 3066 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3067 net_enable_timestamp(); 3068 } 3069 } 3070 3071 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3072 int level, int type) 3073 { 3074 struct sock_exterr_skb *serr; 3075 struct sk_buff *skb; 3076 int copied, err; 3077 3078 err = -EAGAIN; 3079 skb = sock_dequeue_err_skb(sk); 3080 if (skb == NULL) 3081 goto out; 3082 3083 copied = skb->len; 3084 if (copied > len) { 3085 msg->msg_flags |= MSG_TRUNC; 3086 copied = len; 3087 } 3088 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3089 if (err) 3090 goto out_free_skb; 3091 3092 sock_recv_timestamp(msg, sk, skb); 3093 3094 serr = SKB_EXT_ERR(skb); 3095 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3096 3097 msg->msg_flags |= MSG_ERRQUEUE; 3098 err = copied; 3099 3100 out_free_skb: 3101 kfree_skb(skb); 3102 out: 3103 return err; 3104 } 3105 EXPORT_SYMBOL(sock_recv_errqueue); 3106 3107 /* 3108 * Get a socket option on an socket. 3109 * 3110 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3111 * asynchronous errors should be reported by getsockopt. We assume 3112 * this means if you specify SO_ERROR (otherwise whats the point of it). 3113 */ 3114 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3115 char __user *optval, int __user *optlen) 3116 { 3117 struct sock *sk = sock->sk; 3118 3119 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3120 } 3121 EXPORT_SYMBOL(sock_common_getsockopt); 3122 3123 #ifdef CONFIG_COMPAT 3124 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3125 char __user *optval, int __user *optlen) 3126 { 3127 struct sock *sk = sock->sk; 3128 3129 if (sk->sk_prot->compat_getsockopt != NULL) 3130 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3131 optval, optlen); 3132 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3133 } 3134 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3135 #endif 3136 3137 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3138 int flags) 3139 { 3140 struct sock *sk = sock->sk; 3141 int addr_len = 0; 3142 int err; 3143 3144 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3145 flags & ~MSG_DONTWAIT, &addr_len); 3146 if (err >= 0) 3147 msg->msg_namelen = addr_len; 3148 return err; 3149 } 3150 EXPORT_SYMBOL(sock_common_recvmsg); 3151 3152 /* 3153 * Set socket options on an inet socket. 3154 */ 3155 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3156 char __user *optval, unsigned int optlen) 3157 { 3158 struct sock *sk = sock->sk; 3159 3160 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3161 } 3162 EXPORT_SYMBOL(sock_common_setsockopt); 3163 3164 #ifdef CONFIG_COMPAT 3165 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3166 char __user *optval, unsigned int optlen) 3167 { 3168 struct sock *sk = sock->sk; 3169 3170 if (sk->sk_prot->compat_setsockopt != NULL) 3171 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3172 optval, optlen); 3173 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3174 } 3175 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3176 #endif 3177 3178 void sk_common_release(struct sock *sk) 3179 { 3180 if (sk->sk_prot->destroy) 3181 sk->sk_prot->destroy(sk); 3182 3183 /* 3184 * Observation: when sock_common_release is called, processes have 3185 * no access to socket. But net still has. 3186 * Step one, detach it from networking: 3187 * 3188 * A. Remove from hash tables. 3189 */ 3190 3191 sk->sk_prot->unhash(sk); 3192 3193 /* 3194 * In this point socket cannot receive new packets, but it is possible 3195 * that some packets are in flight because some CPU runs receiver and 3196 * did hash table lookup before we unhashed socket. They will achieve 3197 * receive queue and will be purged by socket destructor. 3198 * 3199 * Also we still have packets pending on receive queue and probably, 3200 * our own packets waiting in device queues. sock_destroy will drain 3201 * receive queue, but transmitted packets will delay socket destruction 3202 * until the last reference will be released. 3203 */ 3204 3205 sock_orphan(sk); 3206 3207 xfrm_sk_free_policy(sk); 3208 3209 sk_refcnt_debug_release(sk); 3210 3211 sock_put(sk); 3212 } 3213 EXPORT_SYMBOL(sk_common_release); 3214 3215 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3216 { 3217 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3218 3219 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3220 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3221 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3222 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3223 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3224 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3225 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3226 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3227 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3228 } 3229 3230 #ifdef CONFIG_PROC_FS 3231 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3232 struct prot_inuse { 3233 int val[PROTO_INUSE_NR]; 3234 }; 3235 3236 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3237 3238 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3239 { 3240 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3241 } 3242 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3243 3244 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3245 { 3246 int cpu, idx = prot->inuse_idx; 3247 int res = 0; 3248 3249 for_each_possible_cpu(cpu) 3250 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3251 3252 return res >= 0 ? res : 0; 3253 } 3254 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3255 3256 static void sock_inuse_add(struct net *net, int val) 3257 { 3258 this_cpu_add(*net->core.sock_inuse, val); 3259 } 3260 3261 int sock_inuse_get(struct net *net) 3262 { 3263 int cpu, res = 0; 3264 3265 for_each_possible_cpu(cpu) 3266 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3267 3268 return res; 3269 } 3270 3271 EXPORT_SYMBOL_GPL(sock_inuse_get); 3272 3273 static int __net_init sock_inuse_init_net(struct net *net) 3274 { 3275 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3276 if (net->core.prot_inuse == NULL) 3277 return -ENOMEM; 3278 3279 net->core.sock_inuse = alloc_percpu(int); 3280 if (net->core.sock_inuse == NULL) 3281 goto out; 3282 3283 return 0; 3284 3285 out: 3286 free_percpu(net->core.prot_inuse); 3287 return -ENOMEM; 3288 } 3289 3290 static void __net_exit sock_inuse_exit_net(struct net *net) 3291 { 3292 free_percpu(net->core.prot_inuse); 3293 free_percpu(net->core.sock_inuse); 3294 } 3295 3296 static struct pernet_operations net_inuse_ops = { 3297 .init = sock_inuse_init_net, 3298 .exit = sock_inuse_exit_net, 3299 }; 3300 3301 static __init int net_inuse_init(void) 3302 { 3303 if (register_pernet_subsys(&net_inuse_ops)) 3304 panic("Cannot initialize net inuse counters"); 3305 3306 return 0; 3307 } 3308 3309 core_initcall(net_inuse_init); 3310 3311 static int assign_proto_idx(struct proto *prot) 3312 { 3313 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3314 3315 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3316 pr_err("PROTO_INUSE_NR exhausted\n"); 3317 return -ENOSPC; 3318 } 3319 3320 set_bit(prot->inuse_idx, proto_inuse_idx); 3321 return 0; 3322 } 3323 3324 static void release_proto_idx(struct proto *prot) 3325 { 3326 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3327 clear_bit(prot->inuse_idx, proto_inuse_idx); 3328 } 3329 #else 3330 static inline int assign_proto_idx(struct proto *prot) 3331 { 3332 return 0; 3333 } 3334 3335 static inline void release_proto_idx(struct proto *prot) 3336 { 3337 } 3338 3339 static void sock_inuse_add(struct net *net, int val) 3340 { 3341 } 3342 #endif 3343 3344 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3345 { 3346 if (!rsk_prot) 3347 return; 3348 kfree(rsk_prot->slab_name); 3349 rsk_prot->slab_name = NULL; 3350 kmem_cache_destroy(rsk_prot->slab); 3351 rsk_prot->slab = NULL; 3352 } 3353 3354 static int req_prot_init(const struct proto *prot) 3355 { 3356 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3357 3358 if (!rsk_prot) 3359 return 0; 3360 3361 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3362 prot->name); 3363 if (!rsk_prot->slab_name) 3364 return -ENOMEM; 3365 3366 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3367 rsk_prot->obj_size, 0, 3368 SLAB_ACCOUNT | prot->slab_flags, 3369 NULL); 3370 3371 if (!rsk_prot->slab) { 3372 pr_crit("%s: Can't create request sock SLAB cache!\n", 3373 prot->name); 3374 return -ENOMEM; 3375 } 3376 return 0; 3377 } 3378 3379 int proto_register(struct proto *prot, int alloc_slab) 3380 { 3381 int ret = -ENOBUFS; 3382 3383 if (alloc_slab) { 3384 prot->slab = kmem_cache_create_usercopy(prot->name, 3385 prot->obj_size, 0, 3386 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3387 prot->slab_flags, 3388 prot->useroffset, prot->usersize, 3389 NULL); 3390 3391 if (prot->slab == NULL) { 3392 pr_crit("%s: Can't create sock SLAB cache!\n", 3393 prot->name); 3394 goto out; 3395 } 3396 3397 if (req_prot_init(prot)) 3398 goto out_free_request_sock_slab; 3399 3400 if (prot->twsk_prot != NULL) { 3401 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3402 3403 if (prot->twsk_prot->twsk_slab_name == NULL) 3404 goto out_free_request_sock_slab; 3405 3406 prot->twsk_prot->twsk_slab = 3407 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3408 prot->twsk_prot->twsk_obj_size, 3409 0, 3410 SLAB_ACCOUNT | 3411 prot->slab_flags, 3412 NULL); 3413 if (prot->twsk_prot->twsk_slab == NULL) 3414 goto out_free_timewait_sock_slab_name; 3415 } 3416 } 3417 3418 mutex_lock(&proto_list_mutex); 3419 ret = assign_proto_idx(prot); 3420 if (ret) { 3421 mutex_unlock(&proto_list_mutex); 3422 goto out_free_timewait_sock_slab_name; 3423 } 3424 list_add(&prot->node, &proto_list); 3425 mutex_unlock(&proto_list_mutex); 3426 return ret; 3427 3428 out_free_timewait_sock_slab_name: 3429 if (alloc_slab && prot->twsk_prot) 3430 kfree(prot->twsk_prot->twsk_slab_name); 3431 out_free_request_sock_slab: 3432 if (alloc_slab) { 3433 req_prot_cleanup(prot->rsk_prot); 3434 3435 kmem_cache_destroy(prot->slab); 3436 prot->slab = NULL; 3437 } 3438 out: 3439 return ret; 3440 } 3441 EXPORT_SYMBOL(proto_register); 3442 3443 void proto_unregister(struct proto *prot) 3444 { 3445 mutex_lock(&proto_list_mutex); 3446 release_proto_idx(prot); 3447 list_del(&prot->node); 3448 mutex_unlock(&proto_list_mutex); 3449 3450 kmem_cache_destroy(prot->slab); 3451 prot->slab = NULL; 3452 3453 req_prot_cleanup(prot->rsk_prot); 3454 3455 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3456 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3457 kfree(prot->twsk_prot->twsk_slab_name); 3458 prot->twsk_prot->twsk_slab = NULL; 3459 } 3460 } 3461 EXPORT_SYMBOL(proto_unregister); 3462 3463 int sock_load_diag_module(int family, int protocol) 3464 { 3465 if (!protocol) { 3466 if (!sock_is_registered(family)) 3467 return -ENOENT; 3468 3469 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3470 NETLINK_SOCK_DIAG, family); 3471 } 3472 3473 #ifdef CONFIG_INET 3474 if (family == AF_INET && 3475 protocol != IPPROTO_RAW && 3476 !rcu_access_pointer(inet_protos[protocol])) 3477 return -ENOENT; 3478 #endif 3479 3480 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3481 NETLINK_SOCK_DIAG, family, protocol); 3482 } 3483 EXPORT_SYMBOL(sock_load_diag_module); 3484 3485 #ifdef CONFIG_PROC_FS 3486 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3487 __acquires(proto_list_mutex) 3488 { 3489 mutex_lock(&proto_list_mutex); 3490 return seq_list_start_head(&proto_list, *pos); 3491 } 3492 3493 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3494 { 3495 return seq_list_next(v, &proto_list, pos); 3496 } 3497 3498 static void proto_seq_stop(struct seq_file *seq, void *v) 3499 __releases(proto_list_mutex) 3500 { 3501 mutex_unlock(&proto_list_mutex); 3502 } 3503 3504 static char proto_method_implemented(const void *method) 3505 { 3506 return method == NULL ? 'n' : 'y'; 3507 } 3508 static long sock_prot_memory_allocated(struct proto *proto) 3509 { 3510 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3511 } 3512 3513 static const char *sock_prot_memory_pressure(struct proto *proto) 3514 { 3515 return proto->memory_pressure != NULL ? 3516 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3517 } 3518 3519 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3520 { 3521 3522 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3523 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3524 proto->name, 3525 proto->obj_size, 3526 sock_prot_inuse_get(seq_file_net(seq), proto), 3527 sock_prot_memory_allocated(proto), 3528 sock_prot_memory_pressure(proto), 3529 proto->max_header, 3530 proto->slab == NULL ? "no" : "yes", 3531 module_name(proto->owner), 3532 proto_method_implemented(proto->close), 3533 proto_method_implemented(proto->connect), 3534 proto_method_implemented(proto->disconnect), 3535 proto_method_implemented(proto->accept), 3536 proto_method_implemented(proto->ioctl), 3537 proto_method_implemented(proto->init), 3538 proto_method_implemented(proto->destroy), 3539 proto_method_implemented(proto->shutdown), 3540 proto_method_implemented(proto->setsockopt), 3541 proto_method_implemented(proto->getsockopt), 3542 proto_method_implemented(proto->sendmsg), 3543 proto_method_implemented(proto->recvmsg), 3544 proto_method_implemented(proto->sendpage), 3545 proto_method_implemented(proto->bind), 3546 proto_method_implemented(proto->backlog_rcv), 3547 proto_method_implemented(proto->hash), 3548 proto_method_implemented(proto->unhash), 3549 proto_method_implemented(proto->get_port), 3550 proto_method_implemented(proto->enter_memory_pressure)); 3551 } 3552 3553 static int proto_seq_show(struct seq_file *seq, void *v) 3554 { 3555 if (v == &proto_list) 3556 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3557 "protocol", 3558 "size", 3559 "sockets", 3560 "memory", 3561 "press", 3562 "maxhdr", 3563 "slab", 3564 "module", 3565 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3566 else 3567 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3568 return 0; 3569 } 3570 3571 static const struct seq_operations proto_seq_ops = { 3572 .start = proto_seq_start, 3573 .next = proto_seq_next, 3574 .stop = proto_seq_stop, 3575 .show = proto_seq_show, 3576 }; 3577 3578 static __net_init int proto_init_net(struct net *net) 3579 { 3580 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3581 sizeof(struct seq_net_private))) 3582 return -ENOMEM; 3583 3584 return 0; 3585 } 3586 3587 static __net_exit void proto_exit_net(struct net *net) 3588 { 3589 remove_proc_entry("protocols", net->proc_net); 3590 } 3591 3592 3593 static __net_initdata struct pernet_operations proto_net_ops = { 3594 .init = proto_init_net, 3595 .exit = proto_exit_net, 3596 }; 3597 3598 static int __init proto_init(void) 3599 { 3600 return register_pernet_subsys(&proto_net_ops); 3601 } 3602 3603 subsys_initcall(proto_init); 3604 3605 #endif /* PROC_FS */ 3606 3607 #ifdef CONFIG_NET_RX_BUSY_POLL 3608 bool sk_busy_loop_end(void *p, unsigned long start_time) 3609 { 3610 struct sock *sk = p; 3611 3612 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3613 sk_busy_loop_timeout(sk, start_time); 3614 } 3615 EXPORT_SYMBOL(sk_busy_loop_end); 3616 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3617