1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 sockopt_lock_sock(sk); 707 ret = sock_bindtoindex_locked(sk, index); 708 sockopt_release_sock(sk); 709 out: 710 #endif 711 712 return ret; 713 } 714 715 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 716 sockptr_t optlen, int len) 717 { 718 int ret = -ENOPROTOOPT; 719 #ifdef CONFIG_NETDEVICES 720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 721 struct net *net = sock_net(sk); 722 char devname[IFNAMSIZ]; 723 724 if (bound_dev_if == 0) { 725 len = 0; 726 goto zero; 727 } 728 729 ret = -EINVAL; 730 if (len < IFNAMSIZ) 731 goto out; 732 733 ret = netdev_get_name(net, devname, bound_dev_if); 734 if (ret) 735 goto out; 736 737 len = strlen(devname) + 1; 738 739 ret = -EFAULT; 740 if (copy_to_sockptr(optval, devname, len)) 741 goto out; 742 743 zero: 744 ret = -EFAULT; 745 if (copy_to_sockptr(optlen, &len, sizeof(int))) 746 goto out; 747 748 ret = 0; 749 750 out: 751 #endif 752 753 return ret; 754 } 755 756 bool sk_mc_loop(struct sock *sk) 757 { 758 if (dev_recursion_level()) 759 return false; 760 if (!sk) 761 return true; 762 switch (sk->sk_family) { 763 case AF_INET: 764 return inet_sk(sk)->mc_loop; 765 #if IS_ENABLED(CONFIG_IPV6) 766 case AF_INET6: 767 return inet6_sk(sk)->mc_loop; 768 #endif 769 } 770 WARN_ON_ONCE(1); 771 return true; 772 } 773 EXPORT_SYMBOL(sk_mc_loop); 774 775 void sock_set_reuseaddr(struct sock *sk) 776 { 777 lock_sock(sk); 778 sk->sk_reuse = SK_CAN_REUSE; 779 release_sock(sk); 780 } 781 EXPORT_SYMBOL(sock_set_reuseaddr); 782 783 void sock_set_reuseport(struct sock *sk) 784 { 785 lock_sock(sk); 786 sk->sk_reuseport = true; 787 release_sock(sk); 788 } 789 EXPORT_SYMBOL(sock_set_reuseport); 790 791 void sock_no_linger(struct sock *sk) 792 { 793 lock_sock(sk); 794 sk->sk_lingertime = 0; 795 sock_set_flag(sk, SOCK_LINGER); 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_no_linger); 799 800 void sock_set_priority(struct sock *sk, u32 priority) 801 { 802 lock_sock(sk); 803 sk->sk_priority = priority; 804 release_sock(sk); 805 } 806 EXPORT_SYMBOL(sock_set_priority); 807 808 void sock_set_sndtimeo(struct sock *sk, s64 secs) 809 { 810 lock_sock(sk); 811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 812 sk->sk_sndtimeo = secs * HZ; 813 else 814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 815 release_sock(sk); 816 } 817 EXPORT_SYMBOL(sock_set_sndtimeo); 818 819 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 820 { 821 if (val) { 822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 824 sock_set_flag(sk, SOCK_RCVTSTAMP); 825 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 826 } else { 827 sock_reset_flag(sk, SOCK_RCVTSTAMP); 828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 829 } 830 } 831 832 void sock_enable_timestamps(struct sock *sk) 833 { 834 lock_sock(sk); 835 __sock_set_timestamps(sk, true, false, true); 836 release_sock(sk); 837 } 838 EXPORT_SYMBOL(sock_enable_timestamps); 839 840 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 841 { 842 switch (optname) { 843 case SO_TIMESTAMP_OLD: 844 __sock_set_timestamps(sk, valbool, false, false); 845 break; 846 case SO_TIMESTAMP_NEW: 847 __sock_set_timestamps(sk, valbool, true, false); 848 break; 849 case SO_TIMESTAMPNS_OLD: 850 __sock_set_timestamps(sk, valbool, false, true); 851 break; 852 case SO_TIMESTAMPNS_NEW: 853 __sock_set_timestamps(sk, valbool, true, true); 854 break; 855 } 856 } 857 858 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 859 { 860 struct net *net = sock_net(sk); 861 struct net_device *dev = NULL; 862 bool match = false; 863 int *vclock_index; 864 int i, num; 865 866 if (sk->sk_bound_dev_if) 867 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 868 869 if (!dev) { 870 pr_err("%s: sock not bind to device\n", __func__); 871 return -EOPNOTSUPP; 872 } 873 874 num = ethtool_get_phc_vclocks(dev, &vclock_index); 875 dev_put(dev); 876 877 for (i = 0; i < num; i++) { 878 if (*(vclock_index + i) == phc_index) { 879 match = true; 880 break; 881 } 882 } 883 884 if (num > 0) 885 kfree(vclock_index); 886 887 if (!match) 888 return -EINVAL; 889 890 sk->sk_bind_phc = phc_index; 891 892 return 0; 893 } 894 895 int sock_set_timestamping(struct sock *sk, int optname, 896 struct so_timestamping timestamping) 897 { 898 int val = timestamping.flags; 899 int ret; 900 901 if (val & ~SOF_TIMESTAMPING_MASK) 902 return -EINVAL; 903 904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 905 !(val & SOF_TIMESTAMPING_OPT_ID)) 906 return -EINVAL; 907 908 if (val & SOF_TIMESTAMPING_OPT_ID && 909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 910 if (sk_is_tcp(sk)) { 911 if ((1 << sk->sk_state) & 912 (TCPF_CLOSE | TCPF_LISTEN)) 913 return -EINVAL; 914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 916 else 917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 918 } else { 919 atomic_set(&sk->sk_tskey, 0); 920 } 921 } 922 923 if (val & SOF_TIMESTAMPING_OPT_STATS && 924 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 925 return -EINVAL; 926 927 if (val & SOF_TIMESTAMPING_BIND_PHC) { 928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 929 if (ret) 930 return ret; 931 } 932 933 sk->sk_tsflags = val; 934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 935 936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 937 sock_enable_timestamp(sk, 938 SOCK_TIMESTAMPING_RX_SOFTWARE); 939 else 940 sock_disable_timestamp(sk, 941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 942 return 0; 943 } 944 945 void sock_set_keepalive(struct sock *sk) 946 { 947 lock_sock(sk); 948 if (sk->sk_prot->keepalive) 949 sk->sk_prot->keepalive(sk, true); 950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 951 release_sock(sk); 952 } 953 EXPORT_SYMBOL(sock_set_keepalive); 954 955 static void __sock_set_rcvbuf(struct sock *sk, int val) 956 { 957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 958 * as a negative value. 959 */ 960 val = min_t(int, val, INT_MAX / 2); 961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 962 963 /* We double it on the way in to account for "struct sk_buff" etc. 964 * overhead. Applications assume that the SO_RCVBUF setting they make 965 * will allow that much actual data to be received on that socket. 966 * 967 * Applications are unaware that "struct sk_buff" and other overheads 968 * allocate from the receive buffer during socket buffer allocation. 969 * 970 * And after considering the possible alternatives, returning the value 971 * we actually used in getsockopt is the most desirable behavior. 972 */ 973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 974 } 975 976 void sock_set_rcvbuf(struct sock *sk, int val) 977 { 978 lock_sock(sk); 979 __sock_set_rcvbuf(sk, val); 980 release_sock(sk); 981 } 982 EXPORT_SYMBOL(sock_set_rcvbuf); 983 984 static void __sock_set_mark(struct sock *sk, u32 val) 985 { 986 if (val != sk->sk_mark) { 987 sk->sk_mark = val; 988 sk_dst_reset(sk); 989 } 990 } 991 992 void sock_set_mark(struct sock *sk, u32 val) 993 { 994 lock_sock(sk); 995 __sock_set_mark(sk, val); 996 release_sock(sk); 997 } 998 EXPORT_SYMBOL(sock_set_mark); 999 1000 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1001 { 1002 /* Round down bytes to multiple of pages */ 1003 bytes = round_down(bytes, PAGE_SIZE); 1004 1005 WARN_ON(bytes > sk->sk_reserved_mem); 1006 sk->sk_reserved_mem -= bytes; 1007 sk_mem_reclaim(sk); 1008 } 1009 1010 static int sock_reserve_memory(struct sock *sk, int bytes) 1011 { 1012 long allocated; 1013 bool charged; 1014 int pages; 1015 1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1017 return -EOPNOTSUPP; 1018 1019 if (!bytes) 1020 return 0; 1021 1022 pages = sk_mem_pages(bytes); 1023 1024 /* pre-charge to memcg */ 1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1027 if (!charged) 1028 return -ENOMEM; 1029 1030 /* pre-charge to forward_alloc */ 1031 sk_memory_allocated_add(sk, pages); 1032 allocated = sk_memory_allocated(sk); 1033 /* If the system goes into memory pressure with this 1034 * precharge, give up and return error. 1035 */ 1036 if (allocated > sk_prot_mem_limits(sk, 1)) { 1037 sk_memory_allocated_sub(sk, pages); 1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1039 return -ENOMEM; 1040 } 1041 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1042 1043 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1044 1045 return 0; 1046 } 1047 1048 void sockopt_lock_sock(struct sock *sk) 1049 { 1050 /* When current->bpf_ctx is set, the setsockopt is called from 1051 * a bpf prog. bpf has ensured the sk lock has been 1052 * acquired before calling setsockopt(). 1053 */ 1054 if (has_current_bpf_ctx()) 1055 return; 1056 1057 lock_sock(sk); 1058 } 1059 EXPORT_SYMBOL(sockopt_lock_sock); 1060 1061 void sockopt_release_sock(struct sock *sk) 1062 { 1063 if (has_current_bpf_ctx()) 1064 return; 1065 1066 release_sock(sk); 1067 } 1068 EXPORT_SYMBOL(sockopt_release_sock); 1069 1070 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1071 { 1072 return has_current_bpf_ctx() || ns_capable(ns, cap); 1073 } 1074 EXPORT_SYMBOL(sockopt_ns_capable); 1075 1076 bool sockopt_capable(int cap) 1077 { 1078 return has_current_bpf_ctx() || capable(cap); 1079 } 1080 EXPORT_SYMBOL(sockopt_capable); 1081 1082 /* 1083 * This is meant for all protocols to use and covers goings on 1084 * at the socket level. Everything here is generic. 1085 */ 1086 1087 int sk_setsockopt(struct sock *sk, int level, int optname, 1088 sockptr_t optval, unsigned int optlen) 1089 { 1090 struct so_timestamping timestamping; 1091 struct socket *sock = sk->sk_socket; 1092 struct sock_txtime sk_txtime; 1093 int val; 1094 int valbool; 1095 struct linger ling; 1096 int ret = 0; 1097 1098 /* 1099 * Options without arguments 1100 */ 1101 1102 if (optname == SO_BINDTODEVICE) 1103 return sock_setbindtodevice(sk, optval, optlen); 1104 1105 if (optlen < sizeof(int)) 1106 return -EINVAL; 1107 1108 if (copy_from_sockptr(&val, optval, sizeof(val))) 1109 return -EFAULT; 1110 1111 valbool = val ? 1 : 0; 1112 1113 sockopt_lock_sock(sk); 1114 1115 switch (optname) { 1116 case SO_DEBUG: 1117 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1118 ret = -EACCES; 1119 else 1120 sock_valbool_flag(sk, SOCK_DBG, valbool); 1121 break; 1122 case SO_REUSEADDR: 1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1124 break; 1125 case SO_REUSEPORT: 1126 sk->sk_reuseport = valbool; 1127 break; 1128 case SO_TYPE: 1129 case SO_PROTOCOL: 1130 case SO_DOMAIN: 1131 case SO_ERROR: 1132 ret = -ENOPROTOOPT; 1133 break; 1134 case SO_DONTROUTE: 1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1136 sk_dst_reset(sk); 1137 break; 1138 case SO_BROADCAST: 1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1140 break; 1141 case SO_SNDBUF: 1142 /* Don't error on this BSD doesn't and if you think 1143 * about it this is right. Otherwise apps have to 1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1145 * are treated in BSD as hints 1146 */ 1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1148 set_sndbuf: 1149 /* Ensure val * 2 fits into an int, to prevent max_t() 1150 * from treating it as a negative value. 1151 */ 1152 val = min_t(int, val, INT_MAX / 2); 1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1154 WRITE_ONCE(sk->sk_sndbuf, 1155 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1156 /* Wake up sending tasks if we upped the value. */ 1157 sk->sk_write_space(sk); 1158 break; 1159 1160 case SO_SNDBUFFORCE: 1161 if (!sockopt_capable(CAP_NET_ADMIN)) { 1162 ret = -EPERM; 1163 break; 1164 } 1165 1166 /* No negative values (to prevent underflow, as val will be 1167 * multiplied by 2). 1168 */ 1169 if (val < 0) 1170 val = 0; 1171 goto set_sndbuf; 1172 1173 case SO_RCVBUF: 1174 /* Don't error on this BSD doesn't and if you think 1175 * about it this is right. Otherwise apps have to 1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1177 * are treated in BSD as hints 1178 */ 1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1180 break; 1181 1182 case SO_RCVBUFFORCE: 1183 if (!sockopt_capable(CAP_NET_ADMIN)) { 1184 ret = -EPERM; 1185 break; 1186 } 1187 1188 /* No negative values (to prevent underflow, as val will be 1189 * multiplied by 2). 1190 */ 1191 __sock_set_rcvbuf(sk, max(val, 0)); 1192 break; 1193 1194 case SO_KEEPALIVE: 1195 if (sk->sk_prot->keepalive) 1196 sk->sk_prot->keepalive(sk, valbool); 1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1198 break; 1199 1200 case SO_OOBINLINE: 1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1202 break; 1203 1204 case SO_NO_CHECK: 1205 sk->sk_no_check_tx = valbool; 1206 break; 1207 1208 case SO_PRIORITY: 1209 if ((val >= 0 && val <= 6) || 1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1212 sk->sk_priority = val; 1213 else 1214 ret = -EPERM; 1215 break; 1216 1217 case SO_LINGER: 1218 if (optlen < sizeof(ling)) { 1219 ret = -EINVAL; /* 1003.1g */ 1220 break; 1221 } 1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1223 ret = -EFAULT; 1224 break; 1225 } 1226 if (!ling.l_onoff) 1227 sock_reset_flag(sk, SOCK_LINGER); 1228 else { 1229 #if (BITS_PER_LONG == 32) 1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1232 else 1233 #endif 1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1235 sock_set_flag(sk, SOCK_LINGER); 1236 } 1237 break; 1238 1239 case SO_BSDCOMPAT: 1240 break; 1241 1242 case SO_PASSCRED: 1243 if (valbool) 1244 set_bit(SOCK_PASSCRED, &sock->flags); 1245 else 1246 clear_bit(SOCK_PASSCRED, &sock->flags); 1247 break; 1248 1249 case SO_TIMESTAMP_OLD: 1250 case SO_TIMESTAMP_NEW: 1251 case SO_TIMESTAMPNS_OLD: 1252 case SO_TIMESTAMPNS_NEW: 1253 sock_set_timestamp(sk, optname, valbool); 1254 break; 1255 1256 case SO_TIMESTAMPING_NEW: 1257 case SO_TIMESTAMPING_OLD: 1258 if (optlen == sizeof(timestamping)) { 1259 if (copy_from_sockptr(×tamping, optval, 1260 sizeof(timestamping))) { 1261 ret = -EFAULT; 1262 break; 1263 } 1264 } else { 1265 memset(×tamping, 0, sizeof(timestamping)); 1266 timestamping.flags = val; 1267 } 1268 ret = sock_set_timestamping(sk, optname, timestamping); 1269 break; 1270 1271 case SO_RCVLOWAT: 1272 if (val < 0) 1273 val = INT_MAX; 1274 if (sock && sock->ops->set_rcvlowat) 1275 ret = sock->ops->set_rcvlowat(sk, val); 1276 else 1277 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1278 break; 1279 1280 case SO_RCVTIMEO_OLD: 1281 case SO_RCVTIMEO_NEW: 1282 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1283 optlen, optname == SO_RCVTIMEO_OLD); 1284 break; 1285 1286 case SO_SNDTIMEO_OLD: 1287 case SO_SNDTIMEO_NEW: 1288 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1289 optlen, optname == SO_SNDTIMEO_OLD); 1290 break; 1291 1292 case SO_ATTACH_FILTER: { 1293 struct sock_fprog fprog; 1294 1295 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1296 if (!ret) 1297 ret = sk_attach_filter(&fprog, sk); 1298 break; 1299 } 1300 case SO_ATTACH_BPF: 1301 ret = -EINVAL; 1302 if (optlen == sizeof(u32)) { 1303 u32 ufd; 1304 1305 ret = -EFAULT; 1306 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1307 break; 1308 1309 ret = sk_attach_bpf(ufd, sk); 1310 } 1311 break; 1312 1313 case SO_ATTACH_REUSEPORT_CBPF: { 1314 struct sock_fprog fprog; 1315 1316 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1317 if (!ret) 1318 ret = sk_reuseport_attach_filter(&fprog, sk); 1319 break; 1320 } 1321 case SO_ATTACH_REUSEPORT_EBPF: 1322 ret = -EINVAL; 1323 if (optlen == sizeof(u32)) { 1324 u32 ufd; 1325 1326 ret = -EFAULT; 1327 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1328 break; 1329 1330 ret = sk_reuseport_attach_bpf(ufd, sk); 1331 } 1332 break; 1333 1334 case SO_DETACH_REUSEPORT_BPF: 1335 ret = reuseport_detach_prog(sk); 1336 break; 1337 1338 case SO_DETACH_FILTER: 1339 ret = sk_detach_filter(sk); 1340 break; 1341 1342 case SO_LOCK_FILTER: 1343 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1344 ret = -EPERM; 1345 else 1346 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1347 break; 1348 1349 case SO_PASSSEC: 1350 if (valbool) 1351 set_bit(SOCK_PASSSEC, &sock->flags); 1352 else 1353 clear_bit(SOCK_PASSSEC, &sock->flags); 1354 break; 1355 case SO_MARK: 1356 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1357 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1358 ret = -EPERM; 1359 break; 1360 } 1361 1362 __sock_set_mark(sk, val); 1363 break; 1364 case SO_RCVMARK: 1365 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1366 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1367 ret = -EPERM; 1368 break; 1369 } 1370 1371 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1372 break; 1373 1374 case SO_RXQ_OVFL: 1375 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1376 break; 1377 1378 case SO_WIFI_STATUS: 1379 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1380 break; 1381 1382 case SO_PEEK_OFF: 1383 if (sock->ops->set_peek_off) 1384 ret = sock->ops->set_peek_off(sk, val); 1385 else 1386 ret = -EOPNOTSUPP; 1387 break; 1388 1389 case SO_NOFCS: 1390 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1391 break; 1392 1393 case SO_SELECT_ERR_QUEUE: 1394 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1395 break; 1396 1397 #ifdef CONFIG_NET_RX_BUSY_POLL 1398 case SO_BUSY_POLL: 1399 /* allow unprivileged users to decrease the value */ 1400 if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN)) 1401 ret = -EPERM; 1402 else { 1403 if (val < 0) 1404 ret = -EINVAL; 1405 else 1406 WRITE_ONCE(sk->sk_ll_usec, val); 1407 } 1408 break; 1409 case SO_PREFER_BUSY_POLL: 1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1411 ret = -EPERM; 1412 else 1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1414 break; 1415 case SO_BUSY_POLL_BUDGET: 1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1417 ret = -EPERM; 1418 } else { 1419 if (val < 0 || val > U16_MAX) 1420 ret = -EINVAL; 1421 else 1422 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1423 } 1424 break; 1425 #endif 1426 1427 case SO_MAX_PACING_RATE: 1428 { 1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1430 1431 if (sizeof(ulval) != sizeof(val) && 1432 optlen >= sizeof(ulval) && 1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1434 ret = -EFAULT; 1435 break; 1436 } 1437 if (ulval != ~0UL) 1438 cmpxchg(&sk->sk_pacing_status, 1439 SK_PACING_NONE, 1440 SK_PACING_NEEDED); 1441 sk->sk_max_pacing_rate = ulval; 1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1443 break; 1444 } 1445 case SO_INCOMING_CPU: 1446 reuseport_update_incoming_cpu(sk, val); 1447 break; 1448 1449 case SO_CNX_ADVICE: 1450 if (val == 1) 1451 dst_negative_advice(sk); 1452 break; 1453 1454 case SO_ZEROCOPY: 1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1456 if (!(sk_is_tcp(sk) || 1457 (sk->sk_type == SOCK_DGRAM && 1458 sk->sk_protocol == IPPROTO_UDP))) 1459 ret = -EOPNOTSUPP; 1460 } else if (sk->sk_family != PF_RDS) { 1461 ret = -EOPNOTSUPP; 1462 } 1463 if (!ret) { 1464 if (val < 0 || val > 1) 1465 ret = -EINVAL; 1466 else 1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1468 } 1469 break; 1470 1471 case SO_TXTIME: 1472 if (optlen != sizeof(struct sock_txtime)) { 1473 ret = -EINVAL; 1474 break; 1475 } else if (copy_from_sockptr(&sk_txtime, optval, 1476 sizeof(struct sock_txtime))) { 1477 ret = -EFAULT; 1478 break; 1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1480 ret = -EINVAL; 1481 break; 1482 } 1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1484 * scheduler has enough safe guards. 1485 */ 1486 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1488 ret = -EPERM; 1489 break; 1490 } 1491 sock_valbool_flag(sk, SOCK_TXTIME, true); 1492 sk->sk_clockid = sk_txtime.clockid; 1493 sk->sk_txtime_deadline_mode = 1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1495 sk->sk_txtime_report_errors = 1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1497 break; 1498 1499 case SO_BINDTOIFINDEX: 1500 ret = sock_bindtoindex_locked(sk, val); 1501 break; 1502 1503 case SO_BUF_LOCK: 1504 if (val & ~SOCK_BUF_LOCK_MASK) { 1505 ret = -EINVAL; 1506 break; 1507 } 1508 sk->sk_userlocks = val | (sk->sk_userlocks & 1509 ~SOCK_BUF_LOCK_MASK); 1510 break; 1511 1512 case SO_RESERVE_MEM: 1513 { 1514 int delta; 1515 1516 if (val < 0) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 1521 delta = val - sk->sk_reserved_mem; 1522 if (delta < 0) 1523 sock_release_reserved_memory(sk, -delta); 1524 else 1525 ret = sock_reserve_memory(sk, delta); 1526 break; 1527 } 1528 1529 case SO_TXREHASH: 1530 if (val < -1 || val > 1) { 1531 ret = -EINVAL; 1532 break; 1533 } 1534 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1537 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1538 break; 1539 1540 default: 1541 ret = -ENOPROTOOPT; 1542 break; 1543 } 1544 sockopt_release_sock(sk); 1545 return ret; 1546 } 1547 1548 int sock_setsockopt(struct socket *sock, int level, int optname, 1549 sockptr_t optval, unsigned int optlen) 1550 { 1551 return sk_setsockopt(sock->sk, level, optname, 1552 optval, optlen); 1553 } 1554 EXPORT_SYMBOL(sock_setsockopt); 1555 1556 static const struct cred *sk_get_peer_cred(struct sock *sk) 1557 { 1558 const struct cred *cred; 1559 1560 spin_lock(&sk->sk_peer_lock); 1561 cred = get_cred(sk->sk_peer_cred); 1562 spin_unlock(&sk->sk_peer_lock); 1563 1564 return cred; 1565 } 1566 1567 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1568 struct ucred *ucred) 1569 { 1570 ucred->pid = pid_vnr(pid); 1571 ucred->uid = ucred->gid = -1; 1572 if (cred) { 1573 struct user_namespace *current_ns = current_user_ns(); 1574 1575 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1576 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1577 } 1578 } 1579 1580 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1581 { 1582 struct user_namespace *user_ns = current_user_ns(); 1583 int i; 1584 1585 for (i = 0; i < src->ngroups; i++) { 1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1587 1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1589 return -EFAULT; 1590 } 1591 1592 return 0; 1593 } 1594 1595 int sk_getsockopt(struct sock *sk, int level, int optname, 1596 sockptr_t optval, sockptr_t optlen) 1597 { 1598 struct socket *sock = sk->sk_socket; 1599 1600 union { 1601 int val; 1602 u64 val64; 1603 unsigned long ulval; 1604 struct linger ling; 1605 struct old_timeval32 tm32; 1606 struct __kernel_old_timeval tm; 1607 struct __kernel_sock_timeval stm; 1608 struct sock_txtime txtime; 1609 struct so_timestamping timestamping; 1610 } v; 1611 1612 int lv = sizeof(int); 1613 int len; 1614 1615 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1616 return -EFAULT; 1617 if (len < 0) 1618 return -EINVAL; 1619 1620 memset(&v, 0, sizeof(v)); 1621 1622 switch (optname) { 1623 case SO_DEBUG: 1624 v.val = sock_flag(sk, SOCK_DBG); 1625 break; 1626 1627 case SO_DONTROUTE: 1628 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1629 break; 1630 1631 case SO_BROADCAST: 1632 v.val = sock_flag(sk, SOCK_BROADCAST); 1633 break; 1634 1635 case SO_SNDBUF: 1636 v.val = sk->sk_sndbuf; 1637 break; 1638 1639 case SO_RCVBUF: 1640 v.val = sk->sk_rcvbuf; 1641 break; 1642 1643 case SO_REUSEADDR: 1644 v.val = sk->sk_reuse; 1645 break; 1646 1647 case SO_REUSEPORT: 1648 v.val = sk->sk_reuseport; 1649 break; 1650 1651 case SO_KEEPALIVE: 1652 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1653 break; 1654 1655 case SO_TYPE: 1656 v.val = sk->sk_type; 1657 break; 1658 1659 case SO_PROTOCOL: 1660 v.val = sk->sk_protocol; 1661 break; 1662 1663 case SO_DOMAIN: 1664 v.val = sk->sk_family; 1665 break; 1666 1667 case SO_ERROR: 1668 v.val = -sock_error(sk); 1669 if (v.val == 0) 1670 v.val = xchg(&sk->sk_err_soft, 0); 1671 break; 1672 1673 case SO_OOBINLINE: 1674 v.val = sock_flag(sk, SOCK_URGINLINE); 1675 break; 1676 1677 case SO_NO_CHECK: 1678 v.val = sk->sk_no_check_tx; 1679 break; 1680 1681 case SO_PRIORITY: 1682 v.val = sk->sk_priority; 1683 break; 1684 1685 case SO_LINGER: 1686 lv = sizeof(v.ling); 1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1688 v.ling.l_linger = sk->sk_lingertime / HZ; 1689 break; 1690 1691 case SO_BSDCOMPAT: 1692 break; 1693 1694 case SO_TIMESTAMP_OLD: 1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1696 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1697 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1698 break; 1699 1700 case SO_TIMESTAMPNS_OLD: 1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1702 break; 1703 1704 case SO_TIMESTAMP_NEW: 1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1706 break; 1707 1708 case SO_TIMESTAMPNS_NEW: 1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1710 break; 1711 1712 case SO_TIMESTAMPING_OLD: 1713 lv = sizeof(v.timestamping); 1714 v.timestamping.flags = sk->sk_tsflags; 1715 v.timestamping.bind_phc = sk->sk_bind_phc; 1716 break; 1717 1718 case SO_RCVTIMEO_OLD: 1719 case SO_RCVTIMEO_NEW: 1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1721 break; 1722 1723 case SO_SNDTIMEO_OLD: 1724 case SO_SNDTIMEO_NEW: 1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1726 break; 1727 1728 case SO_RCVLOWAT: 1729 v.val = sk->sk_rcvlowat; 1730 break; 1731 1732 case SO_SNDLOWAT: 1733 v.val = 1; 1734 break; 1735 1736 case SO_PASSCRED: 1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1738 break; 1739 1740 case SO_PEERCRED: 1741 { 1742 struct ucred peercred; 1743 if (len > sizeof(peercred)) 1744 len = sizeof(peercred); 1745 1746 spin_lock(&sk->sk_peer_lock); 1747 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1748 spin_unlock(&sk->sk_peer_lock); 1749 1750 if (copy_to_sockptr(optval, &peercred, len)) 1751 return -EFAULT; 1752 goto lenout; 1753 } 1754 1755 case SO_PEERGROUPS: 1756 { 1757 const struct cred *cred; 1758 int ret, n; 1759 1760 cred = sk_get_peer_cred(sk); 1761 if (!cred) 1762 return -ENODATA; 1763 1764 n = cred->group_info->ngroups; 1765 if (len < n * sizeof(gid_t)) { 1766 len = n * sizeof(gid_t); 1767 put_cred(cred); 1768 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1769 } 1770 len = n * sizeof(gid_t); 1771 1772 ret = groups_to_user(optval, cred->group_info); 1773 put_cred(cred); 1774 if (ret) 1775 return ret; 1776 goto lenout; 1777 } 1778 1779 case SO_PEERNAME: 1780 { 1781 char address[128]; 1782 1783 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1784 if (lv < 0) 1785 return -ENOTCONN; 1786 if (lv < len) 1787 return -EINVAL; 1788 if (copy_to_sockptr(optval, address, len)) 1789 return -EFAULT; 1790 goto lenout; 1791 } 1792 1793 /* Dubious BSD thing... Probably nobody even uses it, but 1794 * the UNIX standard wants it for whatever reason... -DaveM 1795 */ 1796 case SO_ACCEPTCONN: 1797 v.val = sk->sk_state == TCP_LISTEN; 1798 break; 1799 1800 case SO_PASSSEC: 1801 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1802 break; 1803 1804 case SO_PEERSEC: 1805 return security_socket_getpeersec_stream(sock, 1806 optval, optlen, len); 1807 1808 case SO_MARK: 1809 v.val = sk->sk_mark; 1810 break; 1811 1812 case SO_RCVMARK: 1813 v.val = sock_flag(sk, SOCK_RCVMARK); 1814 break; 1815 1816 case SO_RXQ_OVFL: 1817 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1818 break; 1819 1820 case SO_WIFI_STATUS: 1821 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1822 break; 1823 1824 case SO_PEEK_OFF: 1825 if (!sock->ops->set_peek_off) 1826 return -EOPNOTSUPP; 1827 1828 v.val = sk->sk_peek_off; 1829 break; 1830 case SO_NOFCS: 1831 v.val = sock_flag(sk, SOCK_NOFCS); 1832 break; 1833 1834 case SO_BINDTODEVICE: 1835 return sock_getbindtodevice(sk, optval, optlen, len); 1836 1837 case SO_GET_FILTER: 1838 len = sk_get_filter(sk, optval, len); 1839 if (len < 0) 1840 return len; 1841 1842 goto lenout; 1843 1844 case SO_LOCK_FILTER: 1845 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1846 break; 1847 1848 case SO_BPF_EXTENSIONS: 1849 v.val = bpf_tell_extensions(); 1850 break; 1851 1852 case SO_SELECT_ERR_QUEUE: 1853 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1854 break; 1855 1856 #ifdef CONFIG_NET_RX_BUSY_POLL 1857 case SO_BUSY_POLL: 1858 v.val = sk->sk_ll_usec; 1859 break; 1860 case SO_PREFER_BUSY_POLL: 1861 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1862 break; 1863 #endif 1864 1865 case SO_MAX_PACING_RATE: 1866 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1867 lv = sizeof(v.ulval); 1868 v.ulval = sk->sk_max_pacing_rate; 1869 } else { 1870 /* 32bit version */ 1871 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1872 } 1873 break; 1874 1875 case SO_INCOMING_CPU: 1876 v.val = READ_ONCE(sk->sk_incoming_cpu); 1877 break; 1878 1879 case SO_MEMINFO: 1880 { 1881 u32 meminfo[SK_MEMINFO_VARS]; 1882 1883 sk_get_meminfo(sk, meminfo); 1884 1885 len = min_t(unsigned int, len, sizeof(meminfo)); 1886 if (copy_to_sockptr(optval, &meminfo, len)) 1887 return -EFAULT; 1888 1889 goto lenout; 1890 } 1891 1892 #ifdef CONFIG_NET_RX_BUSY_POLL 1893 case SO_INCOMING_NAPI_ID: 1894 v.val = READ_ONCE(sk->sk_napi_id); 1895 1896 /* aggregate non-NAPI IDs down to 0 */ 1897 if (v.val < MIN_NAPI_ID) 1898 v.val = 0; 1899 1900 break; 1901 #endif 1902 1903 case SO_COOKIE: 1904 lv = sizeof(u64); 1905 if (len < lv) 1906 return -EINVAL; 1907 v.val64 = sock_gen_cookie(sk); 1908 break; 1909 1910 case SO_ZEROCOPY: 1911 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1912 break; 1913 1914 case SO_TXTIME: 1915 lv = sizeof(v.txtime); 1916 v.txtime.clockid = sk->sk_clockid; 1917 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1918 SOF_TXTIME_DEADLINE_MODE : 0; 1919 v.txtime.flags |= sk->sk_txtime_report_errors ? 1920 SOF_TXTIME_REPORT_ERRORS : 0; 1921 break; 1922 1923 case SO_BINDTOIFINDEX: 1924 v.val = READ_ONCE(sk->sk_bound_dev_if); 1925 break; 1926 1927 case SO_NETNS_COOKIE: 1928 lv = sizeof(u64); 1929 if (len != lv) 1930 return -EINVAL; 1931 v.val64 = sock_net(sk)->net_cookie; 1932 break; 1933 1934 case SO_BUF_LOCK: 1935 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1936 break; 1937 1938 case SO_RESERVE_MEM: 1939 v.val = sk->sk_reserved_mem; 1940 break; 1941 1942 case SO_TXREHASH: 1943 v.val = sk->sk_txrehash; 1944 break; 1945 1946 default: 1947 /* We implement the SO_SNDLOWAT etc to not be settable 1948 * (1003.1g 7). 1949 */ 1950 return -ENOPROTOOPT; 1951 } 1952 1953 if (len > lv) 1954 len = lv; 1955 if (copy_to_sockptr(optval, &v, len)) 1956 return -EFAULT; 1957 lenout: 1958 if (copy_to_sockptr(optlen, &len, sizeof(int))) 1959 return -EFAULT; 1960 return 0; 1961 } 1962 1963 int sock_getsockopt(struct socket *sock, int level, int optname, 1964 char __user *optval, int __user *optlen) 1965 { 1966 return sk_getsockopt(sock->sk, level, optname, 1967 USER_SOCKPTR(optval), 1968 USER_SOCKPTR(optlen)); 1969 } 1970 1971 /* 1972 * Initialize an sk_lock. 1973 * 1974 * (We also register the sk_lock with the lock validator.) 1975 */ 1976 static inline void sock_lock_init(struct sock *sk) 1977 { 1978 if (sk->sk_kern_sock) 1979 sock_lock_init_class_and_name( 1980 sk, 1981 af_family_kern_slock_key_strings[sk->sk_family], 1982 af_family_kern_slock_keys + sk->sk_family, 1983 af_family_kern_key_strings[sk->sk_family], 1984 af_family_kern_keys + sk->sk_family); 1985 else 1986 sock_lock_init_class_and_name( 1987 sk, 1988 af_family_slock_key_strings[sk->sk_family], 1989 af_family_slock_keys + sk->sk_family, 1990 af_family_key_strings[sk->sk_family], 1991 af_family_keys + sk->sk_family); 1992 } 1993 1994 /* 1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1996 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1998 */ 1999 static void sock_copy(struct sock *nsk, const struct sock *osk) 2000 { 2001 const struct proto *prot = READ_ONCE(osk->sk_prot); 2002 #ifdef CONFIG_SECURITY_NETWORK 2003 void *sptr = nsk->sk_security; 2004 #endif 2005 2006 /* If we move sk_tx_queue_mapping out of the private section, 2007 * we must check if sk_tx_queue_clear() is called after 2008 * sock_copy() in sk_clone_lock(). 2009 */ 2010 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2011 offsetof(struct sock, sk_dontcopy_begin) || 2012 offsetof(struct sock, sk_tx_queue_mapping) >= 2013 offsetof(struct sock, sk_dontcopy_end)); 2014 2015 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2016 2017 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2018 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2019 2020 #ifdef CONFIG_SECURITY_NETWORK 2021 nsk->sk_security = sptr; 2022 security_sk_clone(osk, nsk); 2023 #endif 2024 } 2025 2026 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2027 int family) 2028 { 2029 struct sock *sk; 2030 struct kmem_cache *slab; 2031 2032 slab = prot->slab; 2033 if (slab != NULL) { 2034 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2035 if (!sk) 2036 return sk; 2037 if (want_init_on_alloc(priority)) 2038 sk_prot_clear_nulls(sk, prot->obj_size); 2039 } else 2040 sk = kmalloc(prot->obj_size, priority); 2041 2042 if (sk != NULL) { 2043 if (security_sk_alloc(sk, family, priority)) 2044 goto out_free; 2045 2046 if (!try_module_get(prot->owner)) 2047 goto out_free_sec; 2048 } 2049 2050 return sk; 2051 2052 out_free_sec: 2053 security_sk_free(sk); 2054 out_free: 2055 if (slab != NULL) 2056 kmem_cache_free(slab, sk); 2057 else 2058 kfree(sk); 2059 return NULL; 2060 } 2061 2062 static void sk_prot_free(struct proto *prot, struct sock *sk) 2063 { 2064 struct kmem_cache *slab; 2065 struct module *owner; 2066 2067 owner = prot->owner; 2068 slab = prot->slab; 2069 2070 cgroup_sk_free(&sk->sk_cgrp_data); 2071 mem_cgroup_sk_free(sk); 2072 security_sk_free(sk); 2073 if (slab != NULL) 2074 kmem_cache_free(slab, sk); 2075 else 2076 kfree(sk); 2077 module_put(owner); 2078 } 2079 2080 /** 2081 * sk_alloc - All socket objects are allocated here 2082 * @net: the applicable net namespace 2083 * @family: protocol family 2084 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2085 * @prot: struct proto associated with this new sock instance 2086 * @kern: is this to be a kernel socket? 2087 */ 2088 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2089 struct proto *prot, int kern) 2090 { 2091 struct sock *sk; 2092 2093 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2094 if (sk) { 2095 sk->sk_family = family; 2096 /* 2097 * See comment in struct sock definition to understand 2098 * why we need sk_prot_creator -acme 2099 */ 2100 sk->sk_prot = sk->sk_prot_creator = prot; 2101 sk->sk_kern_sock = kern; 2102 sock_lock_init(sk); 2103 sk->sk_net_refcnt = kern ? 0 : 1; 2104 if (likely(sk->sk_net_refcnt)) { 2105 get_net_track(net, &sk->ns_tracker, priority); 2106 sock_inuse_add(net, 1); 2107 } else { 2108 __netns_tracker_alloc(net, &sk->ns_tracker, 2109 false, priority); 2110 } 2111 2112 sock_net_set(sk, net); 2113 refcount_set(&sk->sk_wmem_alloc, 1); 2114 2115 mem_cgroup_sk_alloc(sk); 2116 cgroup_sk_alloc(&sk->sk_cgrp_data); 2117 sock_update_classid(&sk->sk_cgrp_data); 2118 sock_update_netprioidx(&sk->sk_cgrp_data); 2119 sk_tx_queue_clear(sk); 2120 } 2121 2122 return sk; 2123 } 2124 EXPORT_SYMBOL(sk_alloc); 2125 2126 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2127 * grace period. This is the case for UDP sockets and TCP listeners. 2128 */ 2129 static void __sk_destruct(struct rcu_head *head) 2130 { 2131 struct sock *sk = container_of(head, struct sock, sk_rcu); 2132 struct sk_filter *filter; 2133 2134 if (sk->sk_destruct) 2135 sk->sk_destruct(sk); 2136 2137 filter = rcu_dereference_check(sk->sk_filter, 2138 refcount_read(&sk->sk_wmem_alloc) == 0); 2139 if (filter) { 2140 sk_filter_uncharge(sk, filter); 2141 RCU_INIT_POINTER(sk->sk_filter, NULL); 2142 } 2143 2144 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2145 2146 #ifdef CONFIG_BPF_SYSCALL 2147 bpf_sk_storage_free(sk); 2148 #endif 2149 2150 if (atomic_read(&sk->sk_omem_alloc)) 2151 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2152 __func__, atomic_read(&sk->sk_omem_alloc)); 2153 2154 if (sk->sk_frag.page) { 2155 put_page(sk->sk_frag.page); 2156 sk->sk_frag.page = NULL; 2157 } 2158 2159 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2160 put_cred(sk->sk_peer_cred); 2161 put_pid(sk->sk_peer_pid); 2162 2163 if (likely(sk->sk_net_refcnt)) 2164 put_net_track(sock_net(sk), &sk->ns_tracker); 2165 else 2166 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2167 2168 sk_prot_free(sk->sk_prot_creator, sk); 2169 } 2170 2171 void sk_destruct(struct sock *sk) 2172 { 2173 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2174 2175 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2176 reuseport_detach_sock(sk); 2177 use_call_rcu = true; 2178 } 2179 2180 if (use_call_rcu) 2181 call_rcu(&sk->sk_rcu, __sk_destruct); 2182 else 2183 __sk_destruct(&sk->sk_rcu); 2184 } 2185 2186 static void __sk_free(struct sock *sk) 2187 { 2188 if (likely(sk->sk_net_refcnt)) 2189 sock_inuse_add(sock_net(sk), -1); 2190 2191 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2192 sock_diag_broadcast_destroy(sk); 2193 else 2194 sk_destruct(sk); 2195 } 2196 2197 void sk_free(struct sock *sk) 2198 { 2199 /* 2200 * We subtract one from sk_wmem_alloc and can know if 2201 * some packets are still in some tx queue. 2202 * If not null, sock_wfree() will call __sk_free(sk) later 2203 */ 2204 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2205 __sk_free(sk); 2206 } 2207 EXPORT_SYMBOL(sk_free); 2208 2209 static void sk_init_common(struct sock *sk) 2210 { 2211 skb_queue_head_init(&sk->sk_receive_queue); 2212 skb_queue_head_init(&sk->sk_write_queue); 2213 skb_queue_head_init(&sk->sk_error_queue); 2214 2215 rwlock_init(&sk->sk_callback_lock); 2216 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2217 af_rlock_keys + sk->sk_family, 2218 af_family_rlock_key_strings[sk->sk_family]); 2219 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2220 af_wlock_keys + sk->sk_family, 2221 af_family_wlock_key_strings[sk->sk_family]); 2222 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2223 af_elock_keys + sk->sk_family, 2224 af_family_elock_key_strings[sk->sk_family]); 2225 lockdep_set_class_and_name(&sk->sk_callback_lock, 2226 af_callback_keys + sk->sk_family, 2227 af_family_clock_key_strings[sk->sk_family]); 2228 } 2229 2230 /** 2231 * sk_clone_lock - clone a socket, and lock its clone 2232 * @sk: the socket to clone 2233 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2234 * 2235 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2236 */ 2237 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2238 { 2239 struct proto *prot = READ_ONCE(sk->sk_prot); 2240 struct sk_filter *filter; 2241 bool is_charged = true; 2242 struct sock *newsk; 2243 2244 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2245 if (!newsk) 2246 goto out; 2247 2248 sock_copy(newsk, sk); 2249 2250 newsk->sk_prot_creator = prot; 2251 2252 /* SANITY */ 2253 if (likely(newsk->sk_net_refcnt)) { 2254 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2255 sock_inuse_add(sock_net(newsk), 1); 2256 } else { 2257 /* Kernel sockets are not elevating the struct net refcount. 2258 * Instead, use a tracker to more easily detect if a layer 2259 * is not properly dismantling its kernel sockets at netns 2260 * destroy time. 2261 */ 2262 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2263 false, priority); 2264 } 2265 sk_node_init(&newsk->sk_node); 2266 sock_lock_init(newsk); 2267 bh_lock_sock(newsk); 2268 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2269 newsk->sk_backlog.len = 0; 2270 2271 atomic_set(&newsk->sk_rmem_alloc, 0); 2272 2273 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2274 refcount_set(&newsk->sk_wmem_alloc, 1); 2275 2276 atomic_set(&newsk->sk_omem_alloc, 0); 2277 sk_init_common(newsk); 2278 2279 newsk->sk_dst_cache = NULL; 2280 newsk->sk_dst_pending_confirm = 0; 2281 newsk->sk_wmem_queued = 0; 2282 newsk->sk_forward_alloc = 0; 2283 newsk->sk_reserved_mem = 0; 2284 atomic_set(&newsk->sk_drops, 0); 2285 newsk->sk_send_head = NULL; 2286 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2287 atomic_set(&newsk->sk_zckey, 0); 2288 2289 sock_reset_flag(newsk, SOCK_DONE); 2290 2291 /* sk->sk_memcg will be populated at accept() time */ 2292 newsk->sk_memcg = NULL; 2293 2294 cgroup_sk_clone(&newsk->sk_cgrp_data); 2295 2296 rcu_read_lock(); 2297 filter = rcu_dereference(sk->sk_filter); 2298 if (filter != NULL) 2299 /* though it's an empty new sock, the charging may fail 2300 * if sysctl_optmem_max was changed between creation of 2301 * original socket and cloning 2302 */ 2303 is_charged = sk_filter_charge(newsk, filter); 2304 RCU_INIT_POINTER(newsk->sk_filter, filter); 2305 rcu_read_unlock(); 2306 2307 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2308 /* We need to make sure that we don't uncharge the new 2309 * socket if we couldn't charge it in the first place 2310 * as otherwise we uncharge the parent's filter. 2311 */ 2312 if (!is_charged) 2313 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2314 sk_free_unlock_clone(newsk); 2315 newsk = NULL; 2316 goto out; 2317 } 2318 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2319 2320 if (bpf_sk_storage_clone(sk, newsk)) { 2321 sk_free_unlock_clone(newsk); 2322 newsk = NULL; 2323 goto out; 2324 } 2325 2326 /* Clear sk_user_data if parent had the pointer tagged 2327 * as not suitable for copying when cloning. 2328 */ 2329 if (sk_user_data_is_nocopy(newsk)) 2330 newsk->sk_user_data = NULL; 2331 2332 newsk->sk_err = 0; 2333 newsk->sk_err_soft = 0; 2334 newsk->sk_priority = 0; 2335 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2336 2337 /* Before updating sk_refcnt, we must commit prior changes to memory 2338 * (Documentation/RCU/rculist_nulls.rst for details) 2339 */ 2340 smp_wmb(); 2341 refcount_set(&newsk->sk_refcnt, 2); 2342 2343 sk_set_socket(newsk, NULL); 2344 sk_tx_queue_clear(newsk); 2345 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2346 2347 if (newsk->sk_prot->sockets_allocated) 2348 sk_sockets_allocated_inc(newsk); 2349 2350 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2351 net_enable_timestamp(); 2352 out: 2353 return newsk; 2354 } 2355 EXPORT_SYMBOL_GPL(sk_clone_lock); 2356 2357 void sk_free_unlock_clone(struct sock *sk) 2358 { 2359 /* It is still raw copy of parent, so invalidate 2360 * destructor and make plain sk_free() */ 2361 sk->sk_destruct = NULL; 2362 bh_unlock_sock(sk); 2363 sk_free(sk); 2364 } 2365 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2366 2367 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2368 { 2369 bool is_ipv6 = false; 2370 u32 max_size; 2371 2372 #if IS_ENABLED(CONFIG_IPV6) 2373 is_ipv6 = (sk->sk_family == AF_INET6 && 2374 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2375 #endif 2376 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2377 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2378 READ_ONCE(dst->dev->gso_ipv4_max_size); 2379 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2380 max_size = GSO_LEGACY_MAX_SIZE; 2381 2382 return max_size - (MAX_TCP_HEADER + 1); 2383 } 2384 2385 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2386 { 2387 u32 max_segs = 1; 2388 2389 sk_dst_set(sk, dst); 2390 sk->sk_route_caps = dst->dev->features; 2391 if (sk_is_tcp(sk)) 2392 sk->sk_route_caps |= NETIF_F_GSO; 2393 if (sk->sk_route_caps & NETIF_F_GSO) 2394 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2395 if (unlikely(sk->sk_gso_disabled)) 2396 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2397 if (sk_can_gso(sk)) { 2398 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2399 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2400 } else { 2401 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2402 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2403 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2404 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2405 } 2406 } 2407 sk->sk_gso_max_segs = max_segs; 2408 } 2409 EXPORT_SYMBOL_GPL(sk_setup_caps); 2410 2411 /* 2412 * Simple resource managers for sockets. 2413 */ 2414 2415 2416 /* 2417 * Write buffer destructor automatically called from kfree_skb. 2418 */ 2419 void sock_wfree(struct sk_buff *skb) 2420 { 2421 struct sock *sk = skb->sk; 2422 unsigned int len = skb->truesize; 2423 bool free; 2424 2425 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2426 if (sock_flag(sk, SOCK_RCU_FREE) && 2427 sk->sk_write_space == sock_def_write_space) { 2428 rcu_read_lock(); 2429 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2430 sock_def_write_space_wfree(sk); 2431 rcu_read_unlock(); 2432 if (unlikely(free)) 2433 __sk_free(sk); 2434 return; 2435 } 2436 2437 /* 2438 * Keep a reference on sk_wmem_alloc, this will be released 2439 * after sk_write_space() call 2440 */ 2441 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2442 sk->sk_write_space(sk); 2443 len = 1; 2444 } 2445 /* 2446 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2447 * could not do because of in-flight packets 2448 */ 2449 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2450 __sk_free(sk); 2451 } 2452 EXPORT_SYMBOL(sock_wfree); 2453 2454 /* This variant of sock_wfree() is used by TCP, 2455 * since it sets SOCK_USE_WRITE_QUEUE. 2456 */ 2457 void __sock_wfree(struct sk_buff *skb) 2458 { 2459 struct sock *sk = skb->sk; 2460 2461 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2462 __sk_free(sk); 2463 } 2464 2465 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2466 { 2467 skb_orphan(skb); 2468 skb->sk = sk; 2469 #ifdef CONFIG_INET 2470 if (unlikely(!sk_fullsock(sk))) { 2471 skb->destructor = sock_edemux; 2472 sock_hold(sk); 2473 return; 2474 } 2475 #endif 2476 skb->destructor = sock_wfree; 2477 skb_set_hash_from_sk(skb, sk); 2478 /* 2479 * We used to take a refcount on sk, but following operation 2480 * is enough to guarantee sk_free() wont free this sock until 2481 * all in-flight packets are completed 2482 */ 2483 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2484 } 2485 EXPORT_SYMBOL(skb_set_owner_w); 2486 2487 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2488 { 2489 #ifdef CONFIG_TLS_DEVICE 2490 /* Drivers depend on in-order delivery for crypto offload, 2491 * partial orphan breaks out-of-order-OK logic. 2492 */ 2493 if (skb->decrypted) 2494 return false; 2495 #endif 2496 return (skb->destructor == sock_wfree || 2497 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2498 } 2499 2500 /* This helper is used by netem, as it can hold packets in its 2501 * delay queue. We want to allow the owner socket to send more 2502 * packets, as if they were already TX completed by a typical driver. 2503 * But we also want to keep skb->sk set because some packet schedulers 2504 * rely on it (sch_fq for example). 2505 */ 2506 void skb_orphan_partial(struct sk_buff *skb) 2507 { 2508 if (skb_is_tcp_pure_ack(skb)) 2509 return; 2510 2511 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2512 return; 2513 2514 skb_orphan(skb); 2515 } 2516 EXPORT_SYMBOL(skb_orphan_partial); 2517 2518 /* 2519 * Read buffer destructor automatically called from kfree_skb. 2520 */ 2521 void sock_rfree(struct sk_buff *skb) 2522 { 2523 struct sock *sk = skb->sk; 2524 unsigned int len = skb->truesize; 2525 2526 atomic_sub(len, &sk->sk_rmem_alloc); 2527 sk_mem_uncharge(sk, len); 2528 } 2529 EXPORT_SYMBOL(sock_rfree); 2530 2531 /* 2532 * Buffer destructor for skbs that are not used directly in read or write 2533 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2534 */ 2535 void sock_efree(struct sk_buff *skb) 2536 { 2537 sock_put(skb->sk); 2538 } 2539 EXPORT_SYMBOL(sock_efree); 2540 2541 /* Buffer destructor for prefetch/receive path where reference count may 2542 * not be held, e.g. for listen sockets. 2543 */ 2544 #ifdef CONFIG_INET 2545 void sock_pfree(struct sk_buff *skb) 2546 { 2547 if (sk_is_refcounted(skb->sk)) 2548 sock_gen_put(skb->sk); 2549 } 2550 EXPORT_SYMBOL(sock_pfree); 2551 #endif /* CONFIG_INET */ 2552 2553 kuid_t sock_i_uid(struct sock *sk) 2554 { 2555 kuid_t uid; 2556 2557 read_lock_bh(&sk->sk_callback_lock); 2558 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2559 read_unlock_bh(&sk->sk_callback_lock); 2560 return uid; 2561 } 2562 EXPORT_SYMBOL(sock_i_uid); 2563 2564 unsigned long sock_i_ino(struct sock *sk) 2565 { 2566 unsigned long ino; 2567 2568 read_lock_bh(&sk->sk_callback_lock); 2569 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2570 read_unlock_bh(&sk->sk_callback_lock); 2571 return ino; 2572 } 2573 EXPORT_SYMBOL(sock_i_ino); 2574 2575 /* 2576 * Allocate a skb from the socket's send buffer. 2577 */ 2578 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2579 gfp_t priority) 2580 { 2581 if (force || 2582 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2583 struct sk_buff *skb = alloc_skb(size, priority); 2584 2585 if (skb) { 2586 skb_set_owner_w(skb, sk); 2587 return skb; 2588 } 2589 } 2590 return NULL; 2591 } 2592 EXPORT_SYMBOL(sock_wmalloc); 2593 2594 static void sock_ofree(struct sk_buff *skb) 2595 { 2596 struct sock *sk = skb->sk; 2597 2598 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2599 } 2600 2601 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2602 gfp_t priority) 2603 { 2604 struct sk_buff *skb; 2605 2606 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2607 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2608 READ_ONCE(sysctl_optmem_max)) 2609 return NULL; 2610 2611 skb = alloc_skb(size, priority); 2612 if (!skb) 2613 return NULL; 2614 2615 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2616 skb->sk = sk; 2617 skb->destructor = sock_ofree; 2618 return skb; 2619 } 2620 2621 /* 2622 * Allocate a memory block from the socket's option memory buffer. 2623 */ 2624 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2625 { 2626 int optmem_max = READ_ONCE(sysctl_optmem_max); 2627 2628 if ((unsigned int)size <= optmem_max && 2629 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2630 void *mem; 2631 /* First do the add, to avoid the race if kmalloc 2632 * might sleep. 2633 */ 2634 atomic_add(size, &sk->sk_omem_alloc); 2635 mem = kmalloc(size, priority); 2636 if (mem) 2637 return mem; 2638 atomic_sub(size, &sk->sk_omem_alloc); 2639 } 2640 return NULL; 2641 } 2642 EXPORT_SYMBOL(sock_kmalloc); 2643 2644 /* Free an option memory block. Note, we actually want the inline 2645 * here as this allows gcc to detect the nullify and fold away the 2646 * condition entirely. 2647 */ 2648 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2649 const bool nullify) 2650 { 2651 if (WARN_ON_ONCE(!mem)) 2652 return; 2653 if (nullify) 2654 kfree_sensitive(mem); 2655 else 2656 kfree(mem); 2657 atomic_sub(size, &sk->sk_omem_alloc); 2658 } 2659 2660 void sock_kfree_s(struct sock *sk, void *mem, int size) 2661 { 2662 __sock_kfree_s(sk, mem, size, false); 2663 } 2664 EXPORT_SYMBOL(sock_kfree_s); 2665 2666 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2667 { 2668 __sock_kfree_s(sk, mem, size, true); 2669 } 2670 EXPORT_SYMBOL(sock_kzfree_s); 2671 2672 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2673 I think, these locks should be removed for datagram sockets. 2674 */ 2675 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2676 { 2677 DEFINE_WAIT(wait); 2678 2679 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2680 for (;;) { 2681 if (!timeo) 2682 break; 2683 if (signal_pending(current)) 2684 break; 2685 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2686 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2687 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2688 break; 2689 if (sk->sk_shutdown & SEND_SHUTDOWN) 2690 break; 2691 if (sk->sk_err) 2692 break; 2693 timeo = schedule_timeout(timeo); 2694 } 2695 finish_wait(sk_sleep(sk), &wait); 2696 return timeo; 2697 } 2698 2699 2700 /* 2701 * Generic send/receive buffer handlers 2702 */ 2703 2704 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2705 unsigned long data_len, int noblock, 2706 int *errcode, int max_page_order) 2707 { 2708 struct sk_buff *skb; 2709 long timeo; 2710 int err; 2711 2712 timeo = sock_sndtimeo(sk, noblock); 2713 for (;;) { 2714 err = sock_error(sk); 2715 if (err != 0) 2716 goto failure; 2717 2718 err = -EPIPE; 2719 if (sk->sk_shutdown & SEND_SHUTDOWN) 2720 goto failure; 2721 2722 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2723 break; 2724 2725 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2726 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2727 err = -EAGAIN; 2728 if (!timeo) 2729 goto failure; 2730 if (signal_pending(current)) 2731 goto interrupted; 2732 timeo = sock_wait_for_wmem(sk, timeo); 2733 } 2734 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2735 errcode, sk->sk_allocation); 2736 if (skb) 2737 skb_set_owner_w(skb, sk); 2738 return skb; 2739 2740 interrupted: 2741 err = sock_intr_errno(timeo); 2742 failure: 2743 *errcode = err; 2744 return NULL; 2745 } 2746 EXPORT_SYMBOL(sock_alloc_send_pskb); 2747 2748 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2749 struct sockcm_cookie *sockc) 2750 { 2751 u32 tsflags; 2752 2753 switch (cmsg->cmsg_type) { 2754 case SO_MARK: 2755 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2756 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2757 return -EPERM; 2758 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2759 return -EINVAL; 2760 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2761 break; 2762 case SO_TIMESTAMPING_OLD: 2763 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2764 return -EINVAL; 2765 2766 tsflags = *(u32 *)CMSG_DATA(cmsg); 2767 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2768 return -EINVAL; 2769 2770 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2771 sockc->tsflags |= tsflags; 2772 break; 2773 case SCM_TXTIME: 2774 if (!sock_flag(sk, SOCK_TXTIME)) 2775 return -EINVAL; 2776 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2777 return -EINVAL; 2778 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2779 break; 2780 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2781 case SCM_RIGHTS: 2782 case SCM_CREDENTIALS: 2783 break; 2784 default: 2785 return -EINVAL; 2786 } 2787 return 0; 2788 } 2789 EXPORT_SYMBOL(__sock_cmsg_send); 2790 2791 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2792 struct sockcm_cookie *sockc) 2793 { 2794 struct cmsghdr *cmsg; 2795 int ret; 2796 2797 for_each_cmsghdr(cmsg, msg) { 2798 if (!CMSG_OK(msg, cmsg)) 2799 return -EINVAL; 2800 if (cmsg->cmsg_level != SOL_SOCKET) 2801 continue; 2802 ret = __sock_cmsg_send(sk, cmsg, sockc); 2803 if (ret) 2804 return ret; 2805 } 2806 return 0; 2807 } 2808 EXPORT_SYMBOL(sock_cmsg_send); 2809 2810 static void sk_enter_memory_pressure(struct sock *sk) 2811 { 2812 if (!sk->sk_prot->enter_memory_pressure) 2813 return; 2814 2815 sk->sk_prot->enter_memory_pressure(sk); 2816 } 2817 2818 static void sk_leave_memory_pressure(struct sock *sk) 2819 { 2820 if (sk->sk_prot->leave_memory_pressure) { 2821 sk->sk_prot->leave_memory_pressure(sk); 2822 } else { 2823 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2824 2825 if (memory_pressure && READ_ONCE(*memory_pressure)) 2826 WRITE_ONCE(*memory_pressure, 0); 2827 } 2828 } 2829 2830 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2831 2832 /** 2833 * skb_page_frag_refill - check that a page_frag contains enough room 2834 * @sz: minimum size of the fragment we want to get 2835 * @pfrag: pointer to page_frag 2836 * @gfp: priority for memory allocation 2837 * 2838 * Note: While this allocator tries to use high order pages, there is 2839 * no guarantee that allocations succeed. Therefore, @sz MUST be 2840 * less or equal than PAGE_SIZE. 2841 */ 2842 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2843 { 2844 if (pfrag->page) { 2845 if (page_ref_count(pfrag->page) == 1) { 2846 pfrag->offset = 0; 2847 return true; 2848 } 2849 if (pfrag->offset + sz <= pfrag->size) 2850 return true; 2851 put_page(pfrag->page); 2852 } 2853 2854 pfrag->offset = 0; 2855 if (SKB_FRAG_PAGE_ORDER && 2856 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2857 /* Avoid direct reclaim but allow kswapd to wake */ 2858 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2859 __GFP_COMP | __GFP_NOWARN | 2860 __GFP_NORETRY, 2861 SKB_FRAG_PAGE_ORDER); 2862 if (likely(pfrag->page)) { 2863 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2864 return true; 2865 } 2866 } 2867 pfrag->page = alloc_page(gfp); 2868 if (likely(pfrag->page)) { 2869 pfrag->size = PAGE_SIZE; 2870 return true; 2871 } 2872 return false; 2873 } 2874 EXPORT_SYMBOL(skb_page_frag_refill); 2875 2876 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2877 { 2878 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2879 return true; 2880 2881 sk_enter_memory_pressure(sk); 2882 sk_stream_moderate_sndbuf(sk); 2883 return false; 2884 } 2885 EXPORT_SYMBOL(sk_page_frag_refill); 2886 2887 void __lock_sock(struct sock *sk) 2888 __releases(&sk->sk_lock.slock) 2889 __acquires(&sk->sk_lock.slock) 2890 { 2891 DEFINE_WAIT(wait); 2892 2893 for (;;) { 2894 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2895 TASK_UNINTERRUPTIBLE); 2896 spin_unlock_bh(&sk->sk_lock.slock); 2897 schedule(); 2898 spin_lock_bh(&sk->sk_lock.slock); 2899 if (!sock_owned_by_user(sk)) 2900 break; 2901 } 2902 finish_wait(&sk->sk_lock.wq, &wait); 2903 } 2904 2905 void __release_sock(struct sock *sk) 2906 __releases(&sk->sk_lock.slock) 2907 __acquires(&sk->sk_lock.slock) 2908 { 2909 struct sk_buff *skb, *next; 2910 2911 while ((skb = sk->sk_backlog.head) != NULL) { 2912 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2913 2914 spin_unlock_bh(&sk->sk_lock.slock); 2915 2916 do { 2917 next = skb->next; 2918 prefetch(next); 2919 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2920 skb_mark_not_on_list(skb); 2921 sk_backlog_rcv(sk, skb); 2922 2923 cond_resched(); 2924 2925 skb = next; 2926 } while (skb != NULL); 2927 2928 spin_lock_bh(&sk->sk_lock.slock); 2929 } 2930 2931 /* 2932 * Doing the zeroing here guarantee we can not loop forever 2933 * while a wild producer attempts to flood us. 2934 */ 2935 sk->sk_backlog.len = 0; 2936 } 2937 2938 void __sk_flush_backlog(struct sock *sk) 2939 { 2940 spin_lock_bh(&sk->sk_lock.slock); 2941 __release_sock(sk); 2942 spin_unlock_bh(&sk->sk_lock.slock); 2943 } 2944 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2945 2946 /** 2947 * sk_wait_data - wait for data to arrive at sk_receive_queue 2948 * @sk: sock to wait on 2949 * @timeo: for how long 2950 * @skb: last skb seen on sk_receive_queue 2951 * 2952 * Now socket state including sk->sk_err is changed only under lock, 2953 * hence we may omit checks after joining wait queue. 2954 * We check receive queue before schedule() only as optimization; 2955 * it is very likely that release_sock() added new data. 2956 */ 2957 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2958 { 2959 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2960 int rc; 2961 2962 add_wait_queue(sk_sleep(sk), &wait); 2963 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2964 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2965 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2966 remove_wait_queue(sk_sleep(sk), &wait); 2967 return rc; 2968 } 2969 EXPORT_SYMBOL(sk_wait_data); 2970 2971 /** 2972 * __sk_mem_raise_allocated - increase memory_allocated 2973 * @sk: socket 2974 * @size: memory size to allocate 2975 * @amt: pages to allocate 2976 * @kind: allocation type 2977 * 2978 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2979 */ 2980 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2981 { 2982 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2983 struct proto *prot = sk->sk_prot; 2984 bool charged = true; 2985 long allocated; 2986 2987 sk_memory_allocated_add(sk, amt); 2988 allocated = sk_memory_allocated(sk); 2989 if (memcg_charge && 2990 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2991 gfp_memcg_charge()))) 2992 goto suppress_allocation; 2993 2994 /* Under limit. */ 2995 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2996 sk_leave_memory_pressure(sk); 2997 return 1; 2998 } 2999 3000 /* Under pressure. */ 3001 if (allocated > sk_prot_mem_limits(sk, 1)) 3002 sk_enter_memory_pressure(sk); 3003 3004 /* Over hard limit. */ 3005 if (allocated > sk_prot_mem_limits(sk, 2)) 3006 goto suppress_allocation; 3007 3008 /* guarantee minimum buffer size under pressure */ 3009 if (kind == SK_MEM_RECV) { 3010 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3011 return 1; 3012 3013 } else { /* SK_MEM_SEND */ 3014 int wmem0 = sk_get_wmem0(sk, prot); 3015 3016 if (sk->sk_type == SOCK_STREAM) { 3017 if (sk->sk_wmem_queued < wmem0) 3018 return 1; 3019 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3020 return 1; 3021 } 3022 } 3023 3024 if (sk_has_memory_pressure(sk)) { 3025 u64 alloc; 3026 3027 if (!sk_under_memory_pressure(sk)) 3028 return 1; 3029 alloc = sk_sockets_allocated_read_positive(sk); 3030 if (sk_prot_mem_limits(sk, 2) > alloc * 3031 sk_mem_pages(sk->sk_wmem_queued + 3032 atomic_read(&sk->sk_rmem_alloc) + 3033 sk->sk_forward_alloc)) 3034 return 1; 3035 } 3036 3037 suppress_allocation: 3038 3039 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3040 sk_stream_moderate_sndbuf(sk); 3041 3042 /* Fail only if socket is _under_ its sndbuf. 3043 * In this case we cannot block, so that we have to fail. 3044 */ 3045 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3046 /* Force charge with __GFP_NOFAIL */ 3047 if (memcg_charge && !charged) { 3048 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3049 gfp_memcg_charge() | __GFP_NOFAIL); 3050 } 3051 return 1; 3052 } 3053 } 3054 3055 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3056 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3057 3058 sk_memory_allocated_sub(sk, amt); 3059 3060 if (memcg_charge && charged) 3061 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3068 * @sk: socket 3069 * @size: memory size to allocate 3070 * @kind: allocation type 3071 * 3072 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3073 * rmem allocation. This function assumes that protocols which have 3074 * memory_pressure use sk_wmem_queued as write buffer accounting. 3075 */ 3076 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3077 { 3078 int ret, amt = sk_mem_pages(size); 3079 3080 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3081 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3082 if (!ret) 3083 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3084 return ret; 3085 } 3086 EXPORT_SYMBOL(__sk_mem_schedule); 3087 3088 /** 3089 * __sk_mem_reduce_allocated - reclaim memory_allocated 3090 * @sk: socket 3091 * @amount: number of quanta 3092 * 3093 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3094 */ 3095 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3096 { 3097 sk_memory_allocated_sub(sk, amount); 3098 3099 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3100 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3101 3102 if (sk_under_memory_pressure(sk) && 3103 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3104 sk_leave_memory_pressure(sk); 3105 } 3106 3107 /** 3108 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3109 * @sk: socket 3110 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3111 */ 3112 void __sk_mem_reclaim(struct sock *sk, int amount) 3113 { 3114 amount >>= PAGE_SHIFT; 3115 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3116 __sk_mem_reduce_allocated(sk, amount); 3117 } 3118 EXPORT_SYMBOL(__sk_mem_reclaim); 3119 3120 int sk_set_peek_off(struct sock *sk, int val) 3121 { 3122 sk->sk_peek_off = val; 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3126 3127 /* 3128 * Set of default routines for initialising struct proto_ops when 3129 * the protocol does not support a particular function. In certain 3130 * cases where it makes no sense for a protocol to have a "do nothing" 3131 * function, some default processing is provided. 3132 */ 3133 3134 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3135 { 3136 return -EOPNOTSUPP; 3137 } 3138 EXPORT_SYMBOL(sock_no_bind); 3139 3140 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3141 int len, int flags) 3142 { 3143 return -EOPNOTSUPP; 3144 } 3145 EXPORT_SYMBOL(sock_no_connect); 3146 3147 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3148 { 3149 return -EOPNOTSUPP; 3150 } 3151 EXPORT_SYMBOL(sock_no_socketpair); 3152 3153 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3154 bool kern) 3155 { 3156 return -EOPNOTSUPP; 3157 } 3158 EXPORT_SYMBOL(sock_no_accept); 3159 3160 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3161 int peer) 3162 { 3163 return -EOPNOTSUPP; 3164 } 3165 EXPORT_SYMBOL(sock_no_getname); 3166 3167 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3168 { 3169 return -EOPNOTSUPP; 3170 } 3171 EXPORT_SYMBOL(sock_no_ioctl); 3172 3173 int sock_no_listen(struct socket *sock, int backlog) 3174 { 3175 return -EOPNOTSUPP; 3176 } 3177 EXPORT_SYMBOL(sock_no_listen); 3178 3179 int sock_no_shutdown(struct socket *sock, int how) 3180 { 3181 return -EOPNOTSUPP; 3182 } 3183 EXPORT_SYMBOL(sock_no_shutdown); 3184 3185 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3186 { 3187 return -EOPNOTSUPP; 3188 } 3189 EXPORT_SYMBOL(sock_no_sendmsg); 3190 3191 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3192 { 3193 return -EOPNOTSUPP; 3194 } 3195 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3196 3197 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3198 int flags) 3199 { 3200 return -EOPNOTSUPP; 3201 } 3202 EXPORT_SYMBOL(sock_no_recvmsg); 3203 3204 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3205 { 3206 /* Mirror missing mmap method error code */ 3207 return -ENODEV; 3208 } 3209 EXPORT_SYMBOL(sock_no_mmap); 3210 3211 /* 3212 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3213 * various sock-based usage counts. 3214 */ 3215 void __receive_sock(struct file *file) 3216 { 3217 struct socket *sock; 3218 3219 sock = sock_from_file(file); 3220 if (sock) { 3221 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3222 sock_update_classid(&sock->sk->sk_cgrp_data); 3223 } 3224 } 3225 3226 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3227 { 3228 ssize_t res; 3229 struct msghdr msg = {.msg_flags = flags}; 3230 struct kvec iov; 3231 char *kaddr = kmap(page); 3232 iov.iov_base = kaddr + offset; 3233 iov.iov_len = size; 3234 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3235 kunmap(page); 3236 return res; 3237 } 3238 EXPORT_SYMBOL(sock_no_sendpage); 3239 3240 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3241 int offset, size_t size, int flags) 3242 { 3243 ssize_t res; 3244 struct msghdr msg = {.msg_flags = flags}; 3245 struct kvec iov; 3246 char *kaddr = kmap(page); 3247 3248 iov.iov_base = kaddr + offset; 3249 iov.iov_len = size; 3250 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3251 kunmap(page); 3252 return res; 3253 } 3254 EXPORT_SYMBOL(sock_no_sendpage_locked); 3255 3256 /* 3257 * Default Socket Callbacks 3258 */ 3259 3260 static void sock_def_wakeup(struct sock *sk) 3261 { 3262 struct socket_wq *wq; 3263 3264 rcu_read_lock(); 3265 wq = rcu_dereference(sk->sk_wq); 3266 if (skwq_has_sleeper(wq)) 3267 wake_up_interruptible_all(&wq->wait); 3268 rcu_read_unlock(); 3269 } 3270 3271 static void sock_def_error_report(struct sock *sk) 3272 { 3273 struct socket_wq *wq; 3274 3275 rcu_read_lock(); 3276 wq = rcu_dereference(sk->sk_wq); 3277 if (skwq_has_sleeper(wq)) 3278 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3279 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3280 rcu_read_unlock(); 3281 } 3282 3283 void sock_def_readable(struct sock *sk) 3284 { 3285 struct socket_wq *wq; 3286 3287 trace_sk_data_ready(sk); 3288 3289 rcu_read_lock(); 3290 wq = rcu_dereference(sk->sk_wq); 3291 if (skwq_has_sleeper(wq)) 3292 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3293 EPOLLRDNORM | EPOLLRDBAND); 3294 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3295 rcu_read_unlock(); 3296 } 3297 3298 static void sock_def_write_space(struct sock *sk) 3299 { 3300 struct socket_wq *wq; 3301 3302 rcu_read_lock(); 3303 3304 /* Do not wake up a writer until he can make "significant" 3305 * progress. --DaveM 3306 */ 3307 if (sock_writeable(sk)) { 3308 wq = rcu_dereference(sk->sk_wq); 3309 if (skwq_has_sleeper(wq)) 3310 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3311 EPOLLWRNORM | EPOLLWRBAND); 3312 3313 /* Should agree with poll, otherwise some programs break */ 3314 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3315 } 3316 3317 rcu_read_unlock(); 3318 } 3319 3320 /* An optimised version of sock_def_write_space(), should only be called 3321 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3322 * ->sk_wmem_alloc. 3323 */ 3324 static void sock_def_write_space_wfree(struct sock *sk) 3325 { 3326 /* Do not wake up a writer until he can make "significant" 3327 * progress. --DaveM 3328 */ 3329 if (sock_writeable(sk)) { 3330 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3331 3332 /* rely on refcount_sub from sock_wfree() */ 3333 smp_mb__after_atomic(); 3334 if (wq && waitqueue_active(&wq->wait)) 3335 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3336 EPOLLWRNORM | EPOLLWRBAND); 3337 3338 /* Should agree with poll, otherwise some programs break */ 3339 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3340 } 3341 } 3342 3343 static void sock_def_destruct(struct sock *sk) 3344 { 3345 } 3346 3347 void sk_send_sigurg(struct sock *sk) 3348 { 3349 if (sk->sk_socket && sk->sk_socket->file) 3350 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3351 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3352 } 3353 EXPORT_SYMBOL(sk_send_sigurg); 3354 3355 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3356 unsigned long expires) 3357 { 3358 if (!mod_timer(timer, expires)) 3359 sock_hold(sk); 3360 } 3361 EXPORT_SYMBOL(sk_reset_timer); 3362 3363 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3364 { 3365 if (del_timer(timer)) 3366 __sock_put(sk); 3367 } 3368 EXPORT_SYMBOL(sk_stop_timer); 3369 3370 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3371 { 3372 if (del_timer_sync(timer)) 3373 __sock_put(sk); 3374 } 3375 EXPORT_SYMBOL(sk_stop_timer_sync); 3376 3377 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3378 { 3379 sk_init_common(sk); 3380 sk->sk_send_head = NULL; 3381 3382 timer_setup(&sk->sk_timer, NULL, 0); 3383 3384 sk->sk_allocation = GFP_KERNEL; 3385 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3386 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3387 sk->sk_state = TCP_CLOSE; 3388 sk->sk_use_task_frag = true; 3389 sk_set_socket(sk, sock); 3390 3391 sock_set_flag(sk, SOCK_ZAPPED); 3392 3393 if (sock) { 3394 sk->sk_type = sock->type; 3395 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3396 sock->sk = sk; 3397 } else { 3398 RCU_INIT_POINTER(sk->sk_wq, NULL); 3399 } 3400 sk->sk_uid = uid; 3401 3402 rwlock_init(&sk->sk_callback_lock); 3403 if (sk->sk_kern_sock) 3404 lockdep_set_class_and_name( 3405 &sk->sk_callback_lock, 3406 af_kern_callback_keys + sk->sk_family, 3407 af_family_kern_clock_key_strings[sk->sk_family]); 3408 else 3409 lockdep_set_class_and_name( 3410 &sk->sk_callback_lock, 3411 af_callback_keys + sk->sk_family, 3412 af_family_clock_key_strings[sk->sk_family]); 3413 3414 sk->sk_state_change = sock_def_wakeup; 3415 sk->sk_data_ready = sock_def_readable; 3416 sk->sk_write_space = sock_def_write_space; 3417 sk->sk_error_report = sock_def_error_report; 3418 sk->sk_destruct = sock_def_destruct; 3419 3420 sk->sk_frag.page = NULL; 3421 sk->sk_frag.offset = 0; 3422 sk->sk_peek_off = -1; 3423 3424 sk->sk_peer_pid = NULL; 3425 sk->sk_peer_cred = NULL; 3426 spin_lock_init(&sk->sk_peer_lock); 3427 3428 sk->sk_write_pending = 0; 3429 sk->sk_rcvlowat = 1; 3430 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3431 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3432 3433 sk->sk_stamp = SK_DEFAULT_STAMP; 3434 #if BITS_PER_LONG==32 3435 seqlock_init(&sk->sk_stamp_seq); 3436 #endif 3437 atomic_set(&sk->sk_zckey, 0); 3438 3439 #ifdef CONFIG_NET_RX_BUSY_POLL 3440 sk->sk_napi_id = 0; 3441 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3442 #endif 3443 3444 sk->sk_max_pacing_rate = ~0UL; 3445 sk->sk_pacing_rate = ~0UL; 3446 WRITE_ONCE(sk->sk_pacing_shift, 10); 3447 sk->sk_incoming_cpu = -1; 3448 3449 sk_rx_queue_clear(sk); 3450 /* 3451 * Before updating sk_refcnt, we must commit prior changes to memory 3452 * (Documentation/RCU/rculist_nulls.rst for details) 3453 */ 3454 smp_wmb(); 3455 refcount_set(&sk->sk_refcnt, 1); 3456 atomic_set(&sk->sk_drops, 0); 3457 } 3458 EXPORT_SYMBOL(sock_init_data_uid); 3459 3460 void sock_init_data(struct socket *sock, struct sock *sk) 3461 { 3462 kuid_t uid = sock ? 3463 SOCK_INODE(sock)->i_uid : 3464 make_kuid(sock_net(sk)->user_ns, 0); 3465 3466 sock_init_data_uid(sock, sk, uid); 3467 } 3468 EXPORT_SYMBOL(sock_init_data); 3469 3470 void lock_sock_nested(struct sock *sk, int subclass) 3471 { 3472 /* The sk_lock has mutex_lock() semantics here. */ 3473 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3474 3475 might_sleep(); 3476 spin_lock_bh(&sk->sk_lock.slock); 3477 if (sock_owned_by_user_nocheck(sk)) 3478 __lock_sock(sk); 3479 sk->sk_lock.owned = 1; 3480 spin_unlock_bh(&sk->sk_lock.slock); 3481 } 3482 EXPORT_SYMBOL(lock_sock_nested); 3483 3484 void release_sock(struct sock *sk) 3485 { 3486 spin_lock_bh(&sk->sk_lock.slock); 3487 if (sk->sk_backlog.tail) 3488 __release_sock(sk); 3489 3490 /* Warning : release_cb() might need to release sk ownership, 3491 * ie call sock_release_ownership(sk) before us. 3492 */ 3493 if (sk->sk_prot->release_cb) 3494 sk->sk_prot->release_cb(sk); 3495 3496 sock_release_ownership(sk); 3497 if (waitqueue_active(&sk->sk_lock.wq)) 3498 wake_up(&sk->sk_lock.wq); 3499 spin_unlock_bh(&sk->sk_lock.slock); 3500 } 3501 EXPORT_SYMBOL(release_sock); 3502 3503 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3504 { 3505 might_sleep(); 3506 spin_lock_bh(&sk->sk_lock.slock); 3507 3508 if (!sock_owned_by_user_nocheck(sk)) { 3509 /* 3510 * Fast path return with bottom halves disabled and 3511 * sock::sk_lock.slock held. 3512 * 3513 * The 'mutex' is not contended and holding 3514 * sock::sk_lock.slock prevents all other lockers to 3515 * proceed so the corresponding unlock_sock_fast() can 3516 * avoid the slow path of release_sock() completely and 3517 * just release slock. 3518 * 3519 * From a semantical POV this is equivalent to 'acquiring' 3520 * the 'mutex', hence the corresponding lockdep 3521 * mutex_release() has to happen in the fast path of 3522 * unlock_sock_fast(). 3523 */ 3524 return false; 3525 } 3526 3527 __lock_sock(sk); 3528 sk->sk_lock.owned = 1; 3529 __acquire(&sk->sk_lock.slock); 3530 spin_unlock_bh(&sk->sk_lock.slock); 3531 return true; 3532 } 3533 EXPORT_SYMBOL(__lock_sock_fast); 3534 3535 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3536 bool timeval, bool time32) 3537 { 3538 struct sock *sk = sock->sk; 3539 struct timespec64 ts; 3540 3541 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3542 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3543 if (ts.tv_sec == -1) 3544 return -ENOENT; 3545 if (ts.tv_sec == 0) { 3546 ktime_t kt = ktime_get_real(); 3547 sock_write_timestamp(sk, kt); 3548 ts = ktime_to_timespec64(kt); 3549 } 3550 3551 if (timeval) 3552 ts.tv_nsec /= 1000; 3553 3554 #ifdef CONFIG_COMPAT_32BIT_TIME 3555 if (time32) 3556 return put_old_timespec32(&ts, userstamp); 3557 #endif 3558 #ifdef CONFIG_SPARC64 3559 /* beware of padding in sparc64 timeval */ 3560 if (timeval && !in_compat_syscall()) { 3561 struct __kernel_old_timeval __user tv = { 3562 .tv_sec = ts.tv_sec, 3563 .tv_usec = ts.tv_nsec, 3564 }; 3565 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3566 return -EFAULT; 3567 return 0; 3568 } 3569 #endif 3570 return put_timespec64(&ts, userstamp); 3571 } 3572 EXPORT_SYMBOL(sock_gettstamp); 3573 3574 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3575 { 3576 if (!sock_flag(sk, flag)) { 3577 unsigned long previous_flags = sk->sk_flags; 3578 3579 sock_set_flag(sk, flag); 3580 /* 3581 * we just set one of the two flags which require net 3582 * time stamping, but time stamping might have been on 3583 * already because of the other one 3584 */ 3585 if (sock_needs_netstamp(sk) && 3586 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3587 net_enable_timestamp(); 3588 } 3589 } 3590 3591 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3592 int level, int type) 3593 { 3594 struct sock_exterr_skb *serr; 3595 struct sk_buff *skb; 3596 int copied, err; 3597 3598 err = -EAGAIN; 3599 skb = sock_dequeue_err_skb(sk); 3600 if (skb == NULL) 3601 goto out; 3602 3603 copied = skb->len; 3604 if (copied > len) { 3605 msg->msg_flags |= MSG_TRUNC; 3606 copied = len; 3607 } 3608 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3609 if (err) 3610 goto out_free_skb; 3611 3612 sock_recv_timestamp(msg, sk, skb); 3613 3614 serr = SKB_EXT_ERR(skb); 3615 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3616 3617 msg->msg_flags |= MSG_ERRQUEUE; 3618 err = copied; 3619 3620 out_free_skb: 3621 kfree_skb(skb); 3622 out: 3623 return err; 3624 } 3625 EXPORT_SYMBOL(sock_recv_errqueue); 3626 3627 /* 3628 * Get a socket option on an socket. 3629 * 3630 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3631 * asynchronous errors should be reported by getsockopt. We assume 3632 * this means if you specify SO_ERROR (otherwise whats the point of it). 3633 */ 3634 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3635 char __user *optval, int __user *optlen) 3636 { 3637 struct sock *sk = sock->sk; 3638 3639 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3640 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3641 } 3642 EXPORT_SYMBOL(sock_common_getsockopt); 3643 3644 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3645 int flags) 3646 { 3647 struct sock *sk = sock->sk; 3648 int addr_len = 0; 3649 int err; 3650 3651 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3652 if (err >= 0) 3653 msg->msg_namelen = addr_len; 3654 return err; 3655 } 3656 EXPORT_SYMBOL(sock_common_recvmsg); 3657 3658 /* 3659 * Set socket options on an inet socket. 3660 */ 3661 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3662 sockptr_t optval, unsigned int optlen) 3663 { 3664 struct sock *sk = sock->sk; 3665 3666 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3667 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3668 } 3669 EXPORT_SYMBOL(sock_common_setsockopt); 3670 3671 void sk_common_release(struct sock *sk) 3672 { 3673 if (sk->sk_prot->destroy) 3674 sk->sk_prot->destroy(sk); 3675 3676 /* 3677 * Observation: when sk_common_release is called, processes have 3678 * no access to socket. But net still has. 3679 * Step one, detach it from networking: 3680 * 3681 * A. Remove from hash tables. 3682 */ 3683 3684 sk->sk_prot->unhash(sk); 3685 3686 /* 3687 * In this point socket cannot receive new packets, but it is possible 3688 * that some packets are in flight because some CPU runs receiver and 3689 * did hash table lookup before we unhashed socket. They will achieve 3690 * receive queue and will be purged by socket destructor. 3691 * 3692 * Also we still have packets pending on receive queue and probably, 3693 * our own packets waiting in device queues. sock_destroy will drain 3694 * receive queue, but transmitted packets will delay socket destruction 3695 * until the last reference will be released. 3696 */ 3697 3698 sock_orphan(sk); 3699 3700 xfrm_sk_free_policy(sk); 3701 3702 sock_put(sk); 3703 } 3704 EXPORT_SYMBOL(sk_common_release); 3705 3706 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3707 { 3708 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3709 3710 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3711 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3712 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3713 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3714 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3715 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3716 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3717 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3718 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3719 } 3720 3721 #ifdef CONFIG_PROC_FS 3722 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3723 3724 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3725 { 3726 int cpu, idx = prot->inuse_idx; 3727 int res = 0; 3728 3729 for_each_possible_cpu(cpu) 3730 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3731 3732 return res >= 0 ? res : 0; 3733 } 3734 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3735 3736 int sock_inuse_get(struct net *net) 3737 { 3738 int cpu, res = 0; 3739 3740 for_each_possible_cpu(cpu) 3741 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3742 3743 return res; 3744 } 3745 3746 EXPORT_SYMBOL_GPL(sock_inuse_get); 3747 3748 static int __net_init sock_inuse_init_net(struct net *net) 3749 { 3750 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3751 if (net->core.prot_inuse == NULL) 3752 return -ENOMEM; 3753 return 0; 3754 } 3755 3756 static void __net_exit sock_inuse_exit_net(struct net *net) 3757 { 3758 free_percpu(net->core.prot_inuse); 3759 } 3760 3761 static struct pernet_operations net_inuse_ops = { 3762 .init = sock_inuse_init_net, 3763 .exit = sock_inuse_exit_net, 3764 }; 3765 3766 static __init int net_inuse_init(void) 3767 { 3768 if (register_pernet_subsys(&net_inuse_ops)) 3769 panic("Cannot initialize net inuse counters"); 3770 3771 return 0; 3772 } 3773 3774 core_initcall(net_inuse_init); 3775 3776 static int assign_proto_idx(struct proto *prot) 3777 { 3778 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3779 3780 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3781 pr_err("PROTO_INUSE_NR exhausted\n"); 3782 return -ENOSPC; 3783 } 3784 3785 set_bit(prot->inuse_idx, proto_inuse_idx); 3786 return 0; 3787 } 3788 3789 static void release_proto_idx(struct proto *prot) 3790 { 3791 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3792 clear_bit(prot->inuse_idx, proto_inuse_idx); 3793 } 3794 #else 3795 static inline int assign_proto_idx(struct proto *prot) 3796 { 3797 return 0; 3798 } 3799 3800 static inline void release_proto_idx(struct proto *prot) 3801 { 3802 } 3803 3804 #endif 3805 3806 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3807 { 3808 if (!twsk_prot) 3809 return; 3810 kfree(twsk_prot->twsk_slab_name); 3811 twsk_prot->twsk_slab_name = NULL; 3812 kmem_cache_destroy(twsk_prot->twsk_slab); 3813 twsk_prot->twsk_slab = NULL; 3814 } 3815 3816 static int tw_prot_init(const struct proto *prot) 3817 { 3818 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3819 3820 if (!twsk_prot) 3821 return 0; 3822 3823 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3824 prot->name); 3825 if (!twsk_prot->twsk_slab_name) 3826 return -ENOMEM; 3827 3828 twsk_prot->twsk_slab = 3829 kmem_cache_create(twsk_prot->twsk_slab_name, 3830 twsk_prot->twsk_obj_size, 0, 3831 SLAB_ACCOUNT | prot->slab_flags, 3832 NULL); 3833 if (!twsk_prot->twsk_slab) { 3834 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3835 prot->name); 3836 return -ENOMEM; 3837 } 3838 3839 return 0; 3840 } 3841 3842 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3843 { 3844 if (!rsk_prot) 3845 return; 3846 kfree(rsk_prot->slab_name); 3847 rsk_prot->slab_name = NULL; 3848 kmem_cache_destroy(rsk_prot->slab); 3849 rsk_prot->slab = NULL; 3850 } 3851 3852 static int req_prot_init(const struct proto *prot) 3853 { 3854 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3855 3856 if (!rsk_prot) 3857 return 0; 3858 3859 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3860 prot->name); 3861 if (!rsk_prot->slab_name) 3862 return -ENOMEM; 3863 3864 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3865 rsk_prot->obj_size, 0, 3866 SLAB_ACCOUNT | prot->slab_flags, 3867 NULL); 3868 3869 if (!rsk_prot->slab) { 3870 pr_crit("%s: Can't create request sock SLAB cache!\n", 3871 prot->name); 3872 return -ENOMEM; 3873 } 3874 return 0; 3875 } 3876 3877 int proto_register(struct proto *prot, int alloc_slab) 3878 { 3879 int ret = -ENOBUFS; 3880 3881 if (prot->memory_allocated && !prot->sysctl_mem) { 3882 pr_err("%s: missing sysctl_mem\n", prot->name); 3883 return -EINVAL; 3884 } 3885 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3886 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3887 return -EINVAL; 3888 } 3889 if (alloc_slab) { 3890 prot->slab = kmem_cache_create_usercopy(prot->name, 3891 prot->obj_size, 0, 3892 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3893 prot->slab_flags, 3894 prot->useroffset, prot->usersize, 3895 NULL); 3896 3897 if (prot->slab == NULL) { 3898 pr_crit("%s: Can't create sock SLAB cache!\n", 3899 prot->name); 3900 goto out; 3901 } 3902 3903 if (req_prot_init(prot)) 3904 goto out_free_request_sock_slab; 3905 3906 if (tw_prot_init(prot)) 3907 goto out_free_timewait_sock_slab; 3908 } 3909 3910 mutex_lock(&proto_list_mutex); 3911 ret = assign_proto_idx(prot); 3912 if (ret) { 3913 mutex_unlock(&proto_list_mutex); 3914 goto out_free_timewait_sock_slab; 3915 } 3916 list_add(&prot->node, &proto_list); 3917 mutex_unlock(&proto_list_mutex); 3918 return ret; 3919 3920 out_free_timewait_sock_slab: 3921 if (alloc_slab) 3922 tw_prot_cleanup(prot->twsk_prot); 3923 out_free_request_sock_slab: 3924 if (alloc_slab) { 3925 req_prot_cleanup(prot->rsk_prot); 3926 3927 kmem_cache_destroy(prot->slab); 3928 prot->slab = NULL; 3929 } 3930 out: 3931 return ret; 3932 } 3933 EXPORT_SYMBOL(proto_register); 3934 3935 void proto_unregister(struct proto *prot) 3936 { 3937 mutex_lock(&proto_list_mutex); 3938 release_proto_idx(prot); 3939 list_del(&prot->node); 3940 mutex_unlock(&proto_list_mutex); 3941 3942 kmem_cache_destroy(prot->slab); 3943 prot->slab = NULL; 3944 3945 req_prot_cleanup(prot->rsk_prot); 3946 tw_prot_cleanup(prot->twsk_prot); 3947 } 3948 EXPORT_SYMBOL(proto_unregister); 3949 3950 int sock_load_diag_module(int family, int protocol) 3951 { 3952 if (!protocol) { 3953 if (!sock_is_registered(family)) 3954 return -ENOENT; 3955 3956 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3957 NETLINK_SOCK_DIAG, family); 3958 } 3959 3960 #ifdef CONFIG_INET 3961 if (family == AF_INET && 3962 protocol != IPPROTO_RAW && 3963 protocol < MAX_INET_PROTOS && 3964 !rcu_access_pointer(inet_protos[protocol])) 3965 return -ENOENT; 3966 #endif 3967 3968 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3969 NETLINK_SOCK_DIAG, family, protocol); 3970 } 3971 EXPORT_SYMBOL(sock_load_diag_module); 3972 3973 #ifdef CONFIG_PROC_FS 3974 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3975 __acquires(proto_list_mutex) 3976 { 3977 mutex_lock(&proto_list_mutex); 3978 return seq_list_start_head(&proto_list, *pos); 3979 } 3980 3981 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3982 { 3983 return seq_list_next(v, &proto_list, pos); 3984 } 3985 3986 static void proto_seq_stop(struct seq_file *seq, void *v) 3987 __releases(proto_list_mutex) 3988 { 3989 mutex_unlock(&proto_list_mutex); 3990 } 3991 3992 static char proto_method_implemented(const void *method) 3993 { 3994 return method == NULL ? 'n' : 'y'; 3995 } 3996 static long sock_prot_memory_allocated(struct proto *proto) 3997 { 3998 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3999 } 4000 4001 static const char *sock_prot_memory_pressure(struct proto *proto) 4002 { 4003 return proto->memory_pressure != NULL ? 4004 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4005 } 4006 4007 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4008 { 4009 4010 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4011 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4012 proto->name, 4013 proto->obj_size, 4014 sock_prot_inuse_get(seq_file_net(seq), proto), 4015 sock_prot_memory_allocated(proto), 4016 sock_prot_memory_pressure(proto), 4017 proto->max_header, 4018 proto->slab == NULL ? "no" : "yes", 4019 module_name(proto->owner), 4020 proto_method_implemented(proto->close), 4021 proto_method_implemented(proto->connect), 4022 proto_method_implemented(proto->disconnect), 4023 proto_method_implemented(proto->accept), 4024 proto_method_implemented(proto->ioctl), 4025 proto_method_implemented(proto->init), 4026 proto_method_implemented(proto->destroy), 4027 proto_method_implemented(proto->shutdown), 4028 proto_method_implemented(proto->setsockopt), 4029 proto_method_implemented(proto->getsockopt), 4030 proto_method_implemented(proto->sendmsg), 4031 proto_method_implemented(proto->recvmsg), 4032 proto_method_implemented(proto->sendpage), 4033 proto_method_implemented(proto->bind), 4034 proto_method_implemented(proto->backlog_rcv), 4035 proto_method_implemented(proto->hash), 4036 proto_method_implemented(proto->unhash), 4037 proto_method_implemented(proto->get_port), 4038 proto_method_implemented(proto->enter_memory_pressure)); 4039 } 4040 4041 static int proto_seq_show(struct seq_file *seq, void *v) 4042 { 4043 if (v == &proto_list) 4044 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4045 "protocol", 4046 "size", 4047 "sockets", 4048 "memory", 4049 "press", 4050 "maxhdr", 4051 "slab", 4052 "module", 4053 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 4054 else 4055 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4056 return 0; 4057 } 4058 4059 static const struct seq_operations proto_seq_ops = { 4060 .start = proto_seq_start, 4061 .next = proto_seq_next, 4062 .stop = proto_seq_stop, 4063 .show = proto_seq_show, 4064 }; 4065 4066 static __net_init int proto_init_net(struct net *net) 4067 { 4068 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4069 sizeof(struct seq_net_private))) 4070 return -ENOMEM; 4071 4072 return 0; 4073 } 4074 4075 static __net_exit void proto_exit_net(struct net *net) 4076 { 4077 remove_proc_entry("protocols", net->proc_net); 4078 } 4079 4080 4081 static __net_initdata struct pernet_operations proto_net_ops = { 4082 .init = proto_init_net, 4083 .exit = proto_exit_net, 4084 }; 4085 4086 static int __init proto_init(void) 4087 { 4088 return register_pernet_subsys(&proto_net_ops); 4089 } 4090 4091 subsys_initcall(proto_init); 4092 4093 #endif /* PROC_FS */ 4094 4095 #ifdef CONFIG_NET_RX_BUSY_POLL 4096 bool sk_busy_loop_end(void *p, unsigned long start_time) 4097 { 4098 struct sock *sk = p; 4099 4100 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4101 sk_busy_loop_timeout(sk, start_time); 4102 } 4103 EXPORT_SYMBOL(sk_busy_loop_end); 4104 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4105 4106 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4107 { 4108 if (!sk->sk_prot->bind_add) 4109 return -EOPNOTSUPP; 4110 return sk->sk_prot->bind_add(sk, addr, addr_len); 4111 } 4112 EXPORT_SYMBOL(sock_bind_add); 4113