1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <linux/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <linux/skbuff_ref.h> 128 #include <net/net_namespace.h> 129 #include <net/request_sock.h> 130 #include <net/sock.h> 131 #include <net/proto_memory.h> 132 #include <linux/net_tstamp.h> 133 #include <net/xfrm.h> 134 #include <linux/ipsec.h> 135 #include <net/cls_cgroup.h> 136 #include <net/netprio_cgroup.h> 137 #include <linux/sock_diag.h> 138 139 #include <linux/filter.h> 140 #include <net/sock_reuseport.h> 141 #include <net/bpf_sk_storage.h> 142 143 #include <trace/events/sock.h> 144 145 #include <net/tcp.h> 146 #include <net/busy_poll.h> 147 #include <net/phonet/phonet.h> 148 149 #include <linux/ethtool.h> 150 151 #include "dev.h" 152 153 static DEFINE_MUTEX(proto_list_mutex); 154 static LIST_HEAD(proto_list); 155 156 static void sock_def_write_space_wfree(struct sock *sk); 157 static void sock_def_write_space(struct sock *sk); 158 159 /** 160 * sk_ns_capable - General socket capability test 161 * @sk: Socket to use a capability on or through 162 * @user_ns: The user namespace of the capability to use 163 * @cap: The capability to use 164 * 165 * Test to see if the opener of the socket had when the socket was 166 * created and the current process has the capability @cap in the user 167 * namespace @user_ns. 168 */ 169 bool sk_ns_capable(const struct sock *sk, 170 struct user_namespace *user_ns, int cap) 171 { 172 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 173 ns_capable(user_ns, cap); 174 } 175 EXPORT_SYMBOL(sk_ns_capable); 176 177 /** 178 * sk_capable - Socket global capability test 179 * @sk: Socket to use a capability on or through 180 * @cap: The global capability to use 181 * 182 * Test to see if the opener of the socket had when the socket was 183 * created and the current process has the capability @cap in all user 184 * namespaces. 185 */ 186 bool sk_capable(const struct sock *sk, int cap) 187 { 188 return sk_ns_capable(sk, &init_user_ns, cap); 189 } 190 EXPORT_SYMBOL(sk_capable); 191 192 /** 193 * sk_net_capable - Network namespace socket capability test 194 * @sk: Socket to use a capability on or through 195 * @cap: The capability to use 196 * 197 * Test to see if the opener of the socket had when the socket was created 198 * and the current process has the capability @cap over the network namespace 199 * the socket is a member of. 200 */ 201 bool sk_net_capable(const struct sock *sk, int cap) 202 { 203 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 204 } 205 EXPORT_SYMBOL(sk_net_capable); 206 207 /* 208 * Each address family might have different locking rules, so we have 209 * one slock key per address family and separate keys for internal and 210 * userspace sockets. 211 */ 212 static struct lock_class_key af_family_keys[AF_MAX]; 213 static struct lock_class_key af_family_kern_keys[AF_MAX]; 214 static struct lock_class_key af_family_slock_keys[AF_MAX]; 215 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 216 217 /* 218 * Make lock validator output more readable. (we pre-construct these 219 * strings build-time, so that runtime initialization of socket 220 * locks is fast): 221 */ 222 223 #define _sock_locks(x) \ 224 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 225 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 226 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 227 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 228 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 229 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 230 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 231 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 232 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 233 x "27" , x "28" , x "AF_CAN" , \ 234 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 235 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 236 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 237 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 238 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 239 x "AF_MCTP" , \ 240 x "AF_MAX" 241 242 static const char *const af_family_key_strings[AF_MAX+1] = { 243 _sock_locks("sk_lock-") 244 }; 245 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("slock-") 247 }; 248 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("clock-") 250 }; 251 252 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 253 _sock_locks("k-sk_lock-") 254 }; 255 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-slock-") 257 }; 258 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 259 _sock_locks("k-clock-") 260 }; 261 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 262 _sock_locks("rlock-") 263 }; 264 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 265 _sock_locks("wlock-") 266 }; 267 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 268 _sock_locks("elock-") 269 }; 270 271 /* 272 * sk_callback_lock and sk queues locking rules are per-address-family, 273 * so split the lock classes by using a per-AF key: 274 */ 275 static struct lock_class_key af_callback_keys[AF_MAX]; 276 static struct lock_class_key af_rlock_keys[AF_MAX]; 277 static struct lock_class_key af_wlock_keys[AF_MAX]; 278 static struct lock_class_key af_elock_keys[AF_MAX]; 279 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 280 281 /* Run time adjustable parameters. */ 282 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 283 EXPORT_SYMBOL(sysctl_wmem_max); 284 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 285 EXPORT_SYMBOL(sysctl_rmem_max); 286 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 287 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 288 289 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 290 EXPORT_SYMBOL_GPL(memalloc_socks_key); 291 292 /** 293 * sk_set_memalloc - sets %SOCK_MEMALLOC 294 * @sk: socket to set it on 295 * 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 297 * It's the responsibility of the admin to adjust min_free_kbytes 298 * to meet the requirements 299 */ 300 void sk_set_memalloc(struct sock *sk) 301 { 302 sock_set_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation |= __GFP_MEMALLOC; 304 static_branch_inc(&memalloc_socks_key); 305 } 306 EXPORT_SYMBOL_GPL(sk_set_memalloc); 307 308 void sk_clear_memalloc(struct sock *sk) 309 { 310 sock_reset_flag(sk, SOCK_MEMALLOC); 311 sk->sk_allocation &= ~__GFP_MEMALLOC; 312 static_branch_dec(&memalloc_socks_key); 313 314 /* 315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 316 * progress of swapping. SOCK_MEMALLOC may be cleared while 317 * it has rmem allocations due to the last swapfile being deactivated 318 * but there is a risk that the socket is unusable due to exceeding 319 * the rmem limits. Reclaim the reserves and obey rmem limits again. 320 */ 321 sk_mem_reclaim(sk); 322 } 323 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 324 325 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 326 { 327 int ret; 328 unsigned int noreclaim_flag; 329 330 /* these should have been dropped before queueing */ 331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 332 333 noreclaim_flag = memalloc_noreclaim_save(); 334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 335 tcp_v6_do_rcv, 336 tcp_v4_do_rcv, 337 sk, skb); 338 memalloc_noreclaim_restore(noreclaim_flag); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 void sk_error_report(struct sock *sk) 345 { 346 sk->sk_error_report(sk); 347 348 switch (sk->sk_family) { 349 case AF_INET: 350 fallthrough; 351 case AF_INET6: 352 trace_inet_sk_error_report(sk); 353 break; 354 default: 355 break; 356 } 357 } 358 EXPORT_SYMBOL(sk_error_report); 359 360 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 361 { 362 struct __kernel_sock_timeval tv; 363 364 if (timeo == MAX_SCHEDULE_TIMEOUT) { 365 tv.tv_sec = 0; 366 tv.tv_usec = 0; 367 } else { 368 tv.tv_sec = timeo / HZ; 369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 370 } 371 372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 374 *(struct old_timeval32 *)optval = tv32; 375 return sizeof(tv32); 376 } 377 378 if (old_timeval) { 379 struct __kernel_old_timeval old_tv; 380 old_tv.tv_sec = tv.tv_sec; 381 old_tv.tv_usec = tv.tv_usec; 382 *(struct __kernel_old_timeval *)optval = old_tv; 383 return sizeof(old_tv); 384 } 385 386 *(struct __kernel_sock_timeval *)optval = tv; 387 return sizeof(tv); 388 } 389 EXPORT_SYMBOL(sock_get_timeout); 390 391 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 392 sockptr_t optval, int optlen, bool old_timeval) 393 { 394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 395 struct old_timeval32 tv32; 396 397 if (optlen < sizeof(tv32)) 398 return -EINVAL; 399 400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 401 return -EFAULT; 402 tv->tv_sec = tv32.tv_sec; 403 tv->tv_usec = tv32.tv_usec; 404 } else if (old_timeval) { 405 struct __kernel_old_timeval old_tv; 406 407 if (optlen < sizeof(old_tv)) 408 return -EINVAL; 409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 410 return -EFAULT; 411 tv->tv_sec = old_tv.tv_sec; 412 tv->tv_usec = old_tv.tv_usec; 413 } else { 414 if (optlen < sizeof(*tv)) 415 return -EINVAL; 416 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 417 return -EFAULT; 418 } 419 420 return 0; 421 } 422 EXPORT_SYMBOL(sock_copy_user_timeval); 423 424 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 425 bool old_timeval) 426 { 427 struct __kernel_sock_timeval tv; 428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 429 long val; 430 431 if (err) 432 return err; 433 434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 435 return -EDOM; 436 437 if (tv.tv_sec < 0) { 438 static int warned __read_mostly; 439 440 WRITE_ONCE(*timeo_p, 0); 441 if (warned < 10 && net_ratelimit()) { 442 warned++; 443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 444 __func__, current->comm, task_pid_nr(current)); 445 } 446 return 0; 447 } 448 val = MAX_SCHEDULE_TIMEOUT; 449 if ((tv.tv_sec || tv.tv_usec) && 450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 452 USEC_PER_SEC / HZ); 453 WRITE_ONCE(*timeo_p, val); 454 return 0; 455 } 456 457 static bool sock_needs_netstamp(const struct sock *sk) 458 { 459 switch (sk->sk_family) { 460 case AF_UNSPEC: 461 case AF_UNIX: 462 return false; 463 default: 464 return true; 465 } 466 } 467 468 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 469 { 470 if (sk->sk_flags & flags) { 471 sk->sk_flags &= ~flags; 472 if (sock_needs_netstamp(sk) && 473 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 474 net_disable_timestamp(); 475 } 476 } 477 478 479 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 480 { 481 unsigned long flags; 482 struct sk_buff_head *list = &sk->sk_receive_queue; 483 484 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { 485 atomic_inc(&sk->sk_drops); 486 trace_sock_rcvqueue_full(sk, skb); 487 return -ENOMEM; 488 } 489 490 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 491 atomic_inc(&sk->sk_drops); 492 return -ENOBUFS; 493 } 494 495 skb->dev = NULL; 496 skb_set_owner_r(skb, sk); 497 498 /* we escape from rcu protected region, make sure we dont leak 499 * a norefcounted dst 500 */ 501 skb_dst_force(skb); 502 503 spin_lock_irqsave(&list->lock, flags); 504 sock_skb_set_dropcount(sk, skb); 505 __skb_queue_tail(list, skb); 506 spin_unlock_irqrestore(&list->lock, flags); 507 508 if (!sock_flag(sk, SOCK_DEAD)) 509 sk->sk_data_ready(sk); 510 return 0; 511 } 512 EXPORT_SYMBOL(__sock_queue_rcv_skb); 513 514 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 515 enum skb_drop_reason *reason) 516 { 517 enum skb_drop_reason drop_reason; 518 int err; 519 520 err = sk_filter(sk, skb); 521 if (err) { 522 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 523 goto out; 524 } 525 err = __sock_queue_rcv_skb(sk, skb); 526 switch (err) { 527 case -ENOMEM: 528 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 529 break; 530 case -ENOBUFS: 531 drop_reason = SKB_DROP_REASON_PROTO_MEM; 532 break; 533 default: 534 drop_reason = SKB_NOT_DROPPED_YET; 535 break; 536 } 537 out: 538 if (reason) 539 *reason = drop_reason; 540 return err; 541 } 542 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 543 544 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 545 const int nested, unsigned int trim_cap, bool refcounted) 546 { 547 int rc = NET_RX_SUCCESS; 548 549 if (sk_filter_trim_cap(sk, skb, trim_cap)) 550 goto discard_and_relse; 551 552 skb->dev = NULL; 553 554 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { 555 atomic_inc(&sk->sk_drops); 556 goto discard_and_relse; 557 } 558 if (nested) 559 bh_lock_sock_nested(sk); 560 else 561 bh_lock_sock(sk); 562 if (!sock_owned_by_user(sk)) { 563 /* 564 * trylock + unlock semantics: 565 */ 566 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 567 568 rc = sk_backlog_rcv(sk, skb); 569 570 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 571 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 572 bh_unlock_sock(sk); 573 atomic_inc(&sk->sk_drops); 574 goto discard_and_relse; 575 } 576 577 bh_unlock_sock(sk); 578 out: 579 if (refcounted) 580 sock_put(sk); 581 return rc; 582 discard_and_relse: 583 kfree_skb(skb); 584 goto out; 585 } 586 EXPORT_SYMBOL(__sk_receive_skb); 587 588 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 589 u32)); 590 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 591 u32)); 592 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 593 { 594 struct dst_entry *dst = __sk_dst_get(sk); 595 596 if (dst && dst->obsolete && 597 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 598 dst, cookie) == NULL) { 599 sk_tx_queue_clear(sk); 600 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 601 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 602 dst_release(dst); 603 return NULL; 604 } 605 606 return dst; 607 } 608 EXPORT_SYMBOL(__sk_dst_check); 609 610 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 611 { 612 struct dst_entry *dst = sk_dst_get(sk); 613 614 if (dst && dst->obsolete && 615 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 616 dst, cookie) == NULL) { 617 sk_dst_reset(sk); 618 dst_release(dst); 619 return NULL; 620 } 621 622 return dst; 623 } 624 EXPORT_SYMBOL(sk_dst_check); 625 626 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 627 { 628 int ret = -ENOPROTOOPT; 629 #ifdef CONFIG_NETDEVICES 630 struct net *net = sock_net(sk); 631 632 /* Sorry... */ 633 ret = -EPERM; 634 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 635 goto out; 636 637 ret = -EINVAL; 638 if (ifindex < 0) 639 goto out; 640 641 /* Paired with all READ_ONCE() done locklessly. */ 642 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 643 644 if (sk->sk_prot->rehash) 645 sk->sk_prot->rehash(sk); 646 sk_dst_reset(sk); 647 648 ret = 0; 649 650 out: 651 #endif 652 653 return ret; 654 } 655 656 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 657 { 658 int ret; 659 660 if (lock_sk) 661 lock_sock(sk); 662 ret = sock_bindtoindex_locked(sk, ifindex); 663 if (lock_sk) 664 release_sock(sk); 665 666 return ret; 667 } 668 EXPORT_SYMBOL(sock_bindtoindex); 669 670 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 671 { 672 int ret = -ENOPROTOOPT; 673 #ifdef CONFIG_NETDEVICES 674 struct net *net = sock_net(sk); 675 char devname[IFNAMSIZ]; 676 int index; 677 678 ret = -EINVAL; 679 if (optlen < 0) 680 goto out; 681 682 /* Bind this socket to a particular device like "eth0", 683 * as specified in the passed interface name. If the 684 * name is "" or the option length is zero the socket 685 * is not bound. 686 */ 687 if (optlen > IFNAMSIZ - 1) 688 optlen = IFNAMSIZ - 1; 689 memset(devname, 0, sizeof(devname)); 690 691 ret = -EFAULT; 692 if (copy_from_sockptr(devname, optval, optlen)) 693 goto out; 694 695 index = 0; 696 if (devname[0] != '\0') { 697 struct net_device *dev; 698 699 rcu_read_lock(); 700 dev = dev_get_by_name_rcu(net, devname); 701 if (dev) 702 index = dev->ifindex; 703 rcu_read_unlock(); 704 ret = -ENODEV; 705 if (!dev) 706 goto out; 707 } 708 709 sockopt_lock_sock(sk); 710 ret = sock_bindtoindex_locked(sk, index); 711 sockopt_release_sock(sk); 712 out: 713 #endif 714 715 return ret; 716 } 717 718 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 719 sockptr_t optlen, int len) 720 { 721 int ret = -ENOPROTOOPT; 722 #ifdef CONFIG_NETDEVICES 723 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 724 struct net *net = sock_net(sk); 725 char devname[IFNAMSIZ]; 726 727 if (bound_dev_if == 0) { 728 len = 0; 729 goto zero; 730 } 731 732 ret = -EINVAL; 733 if (len < IFNAMSIZ) 734 goto out; 735 736 ret = netdev_get_name(net, devname, bound_dev_if); 737 if (ret) 738 goto out; 739 740 len = strlen(devname) + 1; 741 742 ret = -EFAULT; 743 if (copy_to_sockptr(optval, devname, len)) 744 goto out; 745 746 zero: 747 ret = -EFAULT; 748 if (copy_to_sockptr(optlen, &len, sizeof(int))) 749 goto out; 750 751 ret = 0; 752 753 out: 754 #endif 755 756 return ret; 757 } 758 759 bool sk_mc_loop(const struct sock *sk) 760 { 761 if (dev_recursion_level()) 762 return false; 763 if (!sk) 764 return true; 765 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 766 switch (READ_ONCE(sk->sk_family)) { 767 case AF_INET: 768 return inet_test_bit(MC_LOOP, sk); 769 #if IS_ENABLED(CONFIG_IPV6) 770 case AF_INET6: 771 return inet6_test_bit(MC6_LOOP, sk); 772 #endif 773 } 774 WARN_ON_ONCE(1); 775 return true; 776 } 777 EXPORT_SYMBOL(sk_mc_loop); 778 779 void sock_set_reuseaddr(struct sock *sk) 780 { 781 lock_sock(sk); 782 sk->sk_reuse = SK_CAN_REUSE; 783 release_sock(sk); 784 } 785 EXPORT_SYMBOL(sock_set_reuseaddr); 786 787 void sock_set_reuseport(struct sock *sk) 788 { 789 lock_sock(sk); 790 sk->sk_reuseport = true; 791 release_sock(sk); 792 } 793 EXPORT_SYMBOL(sock_set_reuseport); 794 795 void sock_no_linger(struct sock *sk) 796 { 797 lock_sock(sk); 798 WRITE_ONCE(sk->sk_lingertime, 0); 799 sock_set_flag(sk, SOCK_LINGER); 800 release_sock(sk); 801 } 802 EXPORT_SYMBOL(sock_no_linger); 803 804 void sock_set_priority(struct sock *sk, u32 priority) 805 { 806 WRITE_ONCE(sk->sk_priority, priority); 807 } 808 EXPORT_SYMBOL(sock_set_priority); 809 810 void sock_set_sndtimeo(struct sock *sk, s64 secs) 811 { 812 lock_sock(sk); 813 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 814 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 815 else 816 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 817 release_sock(sk); 818 } 819 EXPORT_SYMBOL(sock_set_sndtimeo); 820 821 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 822 { 823 if (val) { 824 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 825 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 826 sock_set_flag(sk, SOCK_RCVTSTAMP); 827 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 828 } else { 829 sock_reset_flag(sk, SOCK_RCVTSTAMP); 830 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 831 } 832 } 833 834 void sock_enable_timestamps(struct sock *sk) 835 { 836 lock_sock(sk); 837 __sock_set_timestamps(sk, true, false, true); 838 release_sock(sk); 839 } 840 EXPORT_SYMBOL(sock_enable_timestamps); 841 842 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 843 { 844 switch (optname) { 845 case SO_TIMESTAMP_OLD: 846 __sock_set_timestamps(sk, valbool, false, false); 847 break; 848 case SO_TIMESTAMP_NEW: 849 __sock_set_timestamps(sk, valbool, true, false); 850 break; 851 case SO_TIMESTAMPNS_OLD: 852 __sock_set_timestamps(sk, valbool, false, true); 853 break; 854 case SO_TIMESTAMPNS_NEW: 855 __sock_set_timestamps(sk, valbool, true, true); 856 break; 857 } 858 } 859 860 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 861 { 862 struct net *net = sock_net(sk); 863 struct net_device *dev = NULL; 864 bool match = false; 865 int *vclock_index; 866 int i, num; 867 868 if (sk->sk_bound_dev_if) 869 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 870 871 if (!dev) { 872 pr_err("%s: sock not bind to device\n", __func__); 873 return -EOPNOTSUPP; 874 } 875 876 num = ethtool_get_phc_vclocks(dev, &vclock_index); 877 dev_put(dev); 878 879 for (i = 0; i < num; i++) { 880 if (*(vclock_index + i) == phc_index) { 881 match = true; 882 break; 883 } 884 } 885 886 if (num > 0) 887 kfree(vclock_index); 888 889 if (!match) 890 return -EINVAL; 891 892 WRITE_ONCE(sk->sk_bind_phc, phc_index); 893 894 return 0; 895 } 896 897 int sock_set_timestamping(struct sock *sk, int optname, 898 struct so_timestamping timestamping) 899 { 900 int val = timestamping.flags; 901 int ret; 902 903 if (val & ~SOF_TIMESTAMPING_MASK) 904 return -EINVAL; 905 906 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 907 !(val & SOF_TIMESTAMPING_OPT_ID)) 908 return -EINVAL; 909 910 if (val & SOF_TIMESTAMPING_OPT_ID && 911 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 912 if (sk_is_tcp(sk)) { 913 if ((1 << sk->sk_state) & 914 (TCPF_CLOSE | TCPF_LISTEN)) 915 return -EINVAL; 916 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 918 else 919 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 920 } else { 921 atomic_set(&sk->sk_tskey, 0); 922 } 923 } 924 925 if (val & SOF_TIMESTAMPING_OPT_STATS && 926 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 927 return -EINVAL; 928 929 if (val & SOF_TIMESTAMPING_BIND_PHC) { 930 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 931 if (ret) 932 return ret; 933 } 934 935 WRITE_ONCE(sk->sk_tsflags, val); 936 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 937 938 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 939 sock_enable_timestamp(sk, 940 SOCK_TIMESTAMPING_RX_SOFTWARE); 941 else 942 sock_disable_timestamp(sk, 943 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 944 return 0; 945 } 946 947 void sock_set_keepalive(struct sock *sk) 948 { 949 lock_sock(sk); 950 if (sk->sk_prot->keepalive) 951 sk->sk_prot->keepalive(sk, true); 952 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 953 release_sock(sk); 954 } 955 EXPORT_SYMBOL(sock_set_keepalive); 956 957 static void __sock_set_rcvbuf(struct sock *sk, int val) 958 { 959 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 960 * as a negative value. 961 */ 962 val = min_t(int, val, INT_MAX / 2); 963 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 964 965 /* We double it on the way in to account for "struct sk_buff" etc. 966 * overhead. Applications assume that the SO_RCVBUF setting they make 967 * will allow that much actual data to be received on that socket. 968 * 969 * Applications are unaware that "struct sk_buff" and other overheads 970 * allocate from the receive buffer during socket buffer allocation. 971 * 972 * And after considering the possible alternatives, returning the value 973 * we actually used in getsockopt is the most desirable behavior. 974 */ 975 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 976 } 977 978 void sock_set_rcvbuf(struct sock *sk, int val) 979 { 980 lock_sock(sk); 981 __sock_set_rcvbuf(sk, val); 982 release_sock(sk); 983 } 984 EXPORT_SYMBOL(sock_set_rcvbuf); 985 986 static void __sock_set_mark(struct sock *sk, u32 val) 987 { 988 if (val != sk->sk_mark) { 989 WRITE_ONCE(sk->sk_mark, val); 990 sk_dst_reset(sk); 991 } 992 } 993 994 void sock_set_mark(struct sock *sk, u32 val) 995 { 996 lock_sock(sk); 997 __sock_set_mark(sk, val); 998 release_sock(sk); 999 } 1000 EXPORT_SYMBOL(sock_set_mark); 1001 1002 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1003 { 1004 /* Round down bytes to multiple of pages */ 1005 bytes = round_down(bytes, PAGE_SIZE); 1006 1007 WARN_ON(bytes > sk->sk_reserved_mem); 1008 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1009 sk_mem_reclaim(sk); 1010 } 1011 1012 static int sock_reserve_memory(struct sock *sk, int bytes) 1013 { 1014 long allocated; 1015 bool charged; 1016 int pages; 1017 1018 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1019 return -EOPNOTSUPP; 1020 1021 if (!bytes) 1022 return 0; 1023 1024 pages = sk_mem_pages(bytes); 1025 1026 /* pre-charge to memcg */ 1027 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1028 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1029 if (!charged) 1030 return -ENOMEM; 1031 1032 /* pre-charge to forward_alloc */ 1033 sk_memory_allocated_add(sk, pages); 1034 allocated = sk_memory_allocated(sk); 1035 /* If the system goes into memory pressure with this 1036 * precharge, give up and return error. 1037 */ 1038 if (allocated > sk_prot_mem_limits(sk, 1)) { 1039 sk_memory_allocated_sub(sk, pages); 1040 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1041 return -ENOMEM; 1042 } 1043 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1044 1045 WRITE_ONCE(sk->sk_reserved_mem, 1046 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1047 1048 return 0; 1049 } 1050 1051 #ifdef CONFIG_PAGE_POOL 1052 1053 /* This is the number of tokens that the user can SO_DEVMEM_DONTNEED in 1054 * 1 syscall. The limit exists to limit the amount of memory the kernel 1055 * allocates to copy these tokens. 1056 */ 1057 #define MAX_DONTNEED_TOKENS 128 1058 1059 static noinline_for_stack int 1060 sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) 1061 { 1062 unsigned int num_tokens, i, j, k, netmem_num = 0; 1063 struct dmabuf_token *tokens; 1064 netmem_ref netmems[16]; 1065 int ret = 0; 1066 1067 if (!sk_is_tcp(sk)) 1068 return -EBADF; 1069 1070 if (optlen % sizeof(struct dmabuf_token) || 1071 optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) 1072 return -EINVAL; 1073 1074 tokens = kvmalloc_array(optlen, sizeof(*tokens), GFP_KERNEL); 1075 if (!tokens) 1076 return -ENOMEM; 1077 1078 num_tokens = optlen / sizeof(struct dmabuf_token); 1079 if (copy_from_sockptr(tokens, optval, optlen)) { 1080 kvfree(tokens); 1081 return -EFAULT; 1082 } 1083 1084 xa_lock_bh(&sk->sk_user_frags); 1085 for (i = 0; i < num_tokens; i++) { 1086 for (j = 0; j < tokens[i].token_count; j++) { 1087 netmem_ref netmem = (__force netmem_ref)__xa_erase( 1088 &sk->sk_user_frags, tokens[i].token_start + j); 1089 1090 if (netmem && 1091 !WARN_ON_ONCE(!netmem_is_net_iov(netmem))) { 1092 netmems[netmem_num++] = netmem; 1093 if (netmem_num == ARRAY_SIZE(netmems)) { 1094 xa_unlock_bh(&sk->sk_user_frags); 1095 for (k = 0; k < netmem_num; k++) 1096 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1097 netmem_num = 0; 1098 xa_lock_bh(&sk->sk_user_frags); 1099 } 1100 ret++; 1101 } 1102 } 1103 } 1104 1105 xa_unlock_bh(&sk->sk_user_frags); 1106 for (k = 0; k < netmem_num; k++) 1107 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1108 1109 kvfree(tokens); 1110 return ret; 1111 } 1112 #endif 1113 1114 void sockopt_lock_sock(struct sock *sk) 1115 { 1116 /* When current->bpf_ctx is set, the setsockopt is called from 1117 * a bpf prog. bpf has ensured the sk lock has been 1118 * acquired before calling setsockopt(). 1119 */ 1120 if (has_current_bpf_ctx()) 1121 return; 1122 1123 lock_sock(sk); 1124 } 1125 EXPORT_SYMBOL(sockopt_lock_sock); 1126 1127 void sockopt_release_sock(struct sock *sk) 1128 { 1129 if (has_current_bpf_ctx()) 1130 return; 1131 1132 release_sock(sk); 1133 } 1134 EXPORT_SYMBOL(sockopt_release_sock); 1135 1136 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1137 { 1138 return has_current_bpf_ctx() || ns_capable(ns, cap); 1139 } 1140 EXPORT_SYMBOL(sockopt_ns_capable); 1141 1142 bool sockopt_capable(int cap) 1143 { 1144 return has_current_bpf_ctx() || capable(cap); 1145 } 1146 EXPORT_SYMBOL(sockopt_capable); 1147 1148 static int sockopt_validate_clockid(__kernel_clockid_t value) 1149 { 1150 switch (value) { 1151 case CLOCK_REALTIME: 1152 case CLOCK_MONOTONIC: 1153 case CLOCK_TAI: 1154 return 0; 1155 } 1156 return -EINVAL; 1157 } 1158 1159 /* 1160 * This is meant for all protocols to use and covers goings on 1161 * at the socket level. Everything here is generic. 1162 */ 1163 1164 int sk_setsockopt(struct sock *sk, int level, int optname, 1165 sockptr_t optval, unsigned int optlen) 1166 { 1167 struct so_timestamping timestamping; 1168 struct socket *sock = sk->sk_socket; 1169 struct sock_txtime sk_txtime; 1170 int val; 1171 int valbool; 1172 struct linger ling; 1173 int ret = 0; 1174 1175 /* 1176 * Options without arguments 1177 */ 1178 1179 if (optname == SO_BINDTODEVICE) 1180 return sock_setbindtodevice(sk, optval, optlen); 1181 1182 if (optlen < sizeof(int)) 1183 return -EINVAL; 1184 1185 if (copy_from_sockptr(&val, optval, sizeof(val))) 1186 return -EFAULT; 1187 1188 valbool = val ? 1 : 0; 1189 1190 /* handle options which do not require locking the socket. */ 1191 switch (optname) { 1192 case SO_PRIORITY: 1193 if ((val >= 0 && val <= 6) || 1194 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1195 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1196 sock_set_priority(sk, val); 1197 return 0; 1198 } 1199 return -EPERM; 1200 case SO_PASSSEC: 1201 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1202 return 0; 1203 case SO_PASSCRED: 1204 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1205 return 0; 1206 case SO_PASSPIDFD: 1207 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1208 return 0; 1209 case SO_TYPE: 1210 case SO_PROTOCOL: 1211 case SO_DOMAIN: 1212 case SO_ERROR: 1213 return -ENOPROTOOPT; 1214 #ifdef CONFIG_NET_RX_BUSY_POLL 1215 case SO_BUSY_POLL: 1216 if (val < 0) 1217 return -EINVAL; 1218 WRITE_ONCE(sk->sk_ll_usec, val); 1219 return 0; 1220 case SO_PREFER_BUSY_POLL: 1221 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1222 return -EPERM; 1223 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1224 return 0; 1225 case SO_BUSY_POLL_BUDGET: 1226 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1227 !sockopt_capable(CAP_NET_ADMIN)) 1228 return -EPERM; 1229 if (val < 0 || val > U16_MAX) 1230 return -EINVAL; 1231 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1232 return 0; 1233 #endif 1234 case SO_MAX_PACING_RATE: 1235 { 1236 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1237 unsigned long pacing_rate; 1238 1239 if (sizeof(ulval) != sizeof(val) && 1240 optlen >= sizeof(ulval) && 1241 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1242 return -EFAULT; 1243 } 1244 if (ulval != ~0UL) 1245 cmpxchg(&sk->sk_pacing_status, 1246 SK_PACING_NONE, 1247 SK_PACING_NEEDED); 1248 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1249 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1250 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1251 if (ulval < pacing_rate) 1252 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1253 return 0; 1254 } 1255 case SO_TXREHASH: 1256 if (val < -1 || val > 1) 1257 return -EINVAL; 1258 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1259 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1260 /* Paired with READ_ONCE() in tcp_rtx_synack() 1261 * and sk_getsockopt(). 1262 */ 1263 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1264 return 0; 1265 case SO_PEEK_OFF: 1266 { 1267 int (*set_peek_off)(struct sock *sk, int val); 1268 1269 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1270 if (set_peek_off) 1271 ret = set_peek_off(sk, val); 1272 else 1273 ret = -EOPNOTSUPP; 1274 return ret; 1275 } 1276 #ifdef CONFIG_PAGE_POOL 1277 case SO_DEVMEM_DONTNEED: 1278 return sock_devmem_dontneed(sk, optval, optlen); 1279 #endif 1280 } 1281 1282 sockopt_lock_sock(sk); 1283 1284 switch (optname) { 1285 case SO_DEBUG: 1286 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1287 ret = -EACCES; 1288 else 1289 sock_valbool_flag(sk, SOCK_DBG, valbool); 1290 break; 1291 case SO_REUSEADDR: 1292 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1293 break; 1294 case SO_REUSEPORT: 1295 sk->sk_reuseport = valbool; 1296 break; 1297 case SO_DONTROUTE: 1298 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1299 sk_dst_reset(sk); 1300 break; 1301 case SO_BROADCAST: 1302 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1303 break; 1304 case SO_SNDBUF: 1305 /* Don't error on this BSD doesn't and if you think 1306 * about it this is right. Otherwise apps have to 1307 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1308 * are treated in BSD as hints 1309 */ 1310 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1311 set_sndbuf: 1312 /* Ensure val * 2 fits into an int, to prevent max_t() 1313 * from treating it as a negative value. 1314 */ 1315 val = min_t(int, val, INT_MAX / 2); 1316 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1317 WRITE_ONCE(sk->sk_sndbuf, 1318 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1319 /* Wake up sending tasks if we upped the value. */ 1320 sk->sk_write_space(sk); 1321 break; 1322 1323 case SO_SNDBUFFORCE: 1324 if (!sockopt_capable(CAP_NET_ADMIN)) { 1325 ret = -EPERM; 1326 break; 1327 } 1328 1329 /* No negative values (to prevent underflow, as val will be 1330 * multiplied by 2). 1331 */ 1332 if (val < 0) 1333 val = 0; 1334 goto set_sndbuf; 1335 1336 case SO_RCVBUF: 1337 /* Don't error on this BSD doesn't and if you think 1338 * about it this is right. Otherwise apps have to 1339 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1340 * are treated in BSD as hints 1341 */ 1342 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1343 break; 1344 1345 case SO_RCVBUFFORCE: 1346 if (!sockopt_capable(CAP_NET_ADMIN)) { 1347 ret = -EPERM; 1348 break; 1349 } 1350 1351 /* No negative values (to prevent underflow, as val will be 1352 * multiplied by 2). 1353 */ 1354 __sock_set_rcvbuf(sk, max(val, 0)); 1355 break; 1356 1357 case SO_KEEPALIVE: 1358 if (sk->sk_prot->keepalive) 1359 sk->sk_prot->keepalive(sk, valbool); 1360 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1361 break; 1362 1363 case SO_OOBINLINE: 1364 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1365 break; 1366 1367 case SO_NO_CHECK: 1368 sk->sk_no_check_tx = valbool; 1369 break; 1370 1371 case SO_LINGER: 1372 if (optlen < sizeof(ling)) { 1373 ret = -EINVAL; /* 1003.1g */ 1374 break; 1375 } 1376 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1377 ret = -EFAULT; 1378 break; 1379 } 1380 if (!ling.l_onoff) { 1381 sock_reset_flag(sk, SOCK_LINGER); 1382 } else { 1383 unsigned long t_sec = ling.l_linger; 1384 1385 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1386 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1387 else 1388 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1389 sock_set_flag(sk, SOCK_LINGER); 1390 } 1391 break; 1392 1393 case SO_BSDCOMPAT: 1394 break; 1395 1396 case SO_TIMESTAMP_OLD: 1397 case SO_TIMESTAMP_NEW: 1398 case SO_TIMESTAMPNS_OLD: 1399 case SO_TIMESTAMPNS_NEW: 1400 sock_set_timestamp(sk, optname, valbool); 1401 break; 1402 1403 case SO_TIMESTAMPING_NEW: 1404 case SO_TIMESTAMPING_OLD: 1405 if (optlen == sizeof(timestamping)) { 1406 if (copy_from_sockptr(×tamping, optval, 1407 sizeof(timestamping))) { 1408 ret = -EFAULT; 1409 break; 1410 } 1411 } else { 1412 memset(×tamping, 0, sizeof(timestamping)); 1413 timestamping.flags = val; 1414 } 1415 ret = sock_set_timestamping(sk, optname, timestamping); 1416 break; 1417 1418 case SO_RCVLOWAT: 1419 { 1420 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1421 1422 if (val < 0) 1423 val = INT_MAX; 1424 if (sock) 1425 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1426 if (set_rcvlowat) 1427 ret = set_rcvlowat(sk, val); 1428 else 1429 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1430 break; 1431 } 1432 case SO_RCVTIMEO_OLD: 1433 case SO_RCVTIMEO_NEW: 1434 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1435 optlen, optname == SO_RCVTIMEO_OLD); 1436 break; 1437 1438 case SO_SNDTIMEO_OLD: 1439 case SO_SNDTIMEO_NEW: 1440 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1441 optlen, optname == SO_SNDTIMEO_OLD); 1442 break; 1443 1444 case SO_ATTACH_FILTER: { 1445 struct sock_fprog fprog; 1446 1447 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1448 if (!ret) 1449 ret = sk_attach_filter(&fprog, sk); 1450 break; 1451 } 1452 case SO_ATTACH_BPF: 1453 ret = -EINVAL; 1454 if (optlen == sizeof(u32)) { 1455 u32 ufd; 1456 1457 ret = -EFAULT; 1458 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1459 break; 1460 1461 ret = sk_attach_bpf(ufd, sk); 1462 } 1463 break; 1464 1465 case SO_ATTACH_REUSEPORT_CBPF: { 1466 struct sock_fprog fprog; 1467 1468 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1469 if (!ret) 1470 ret = sk_reuseport_attach_filter(&fprog, sk); 1471 break; 1472 } 1473 case SO_ATTACH_REUSEPORT_EBPF: 1474 ret = -EINVAL; 1475 if (optlen == sizeof(u32)) { 1476 u32 ufd; 1477 1478 ret = -EFAULT; 1479 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1480 break; 1481 1482 ret = sk_reuseport_attach_bpf(ufd, sk); 1483 } 1484 break; 1485 1486 case SO_DETACH_REUSEPORT_BPF: 1487 ret = reuseport_detach_prog(sk); 1488 break; 1489 1490 case SO_DETACH_FILTER: 1491 ret = sk_detach_filter(sk); 1492 break; 1493 1494 case SO_LOCK_FILTER: 1495 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1496 ret = -EPERM; 1497 else 1498 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1499 break; 1500 1501 case SO_MARK: 1502 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1503 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1504 ret = -EPERM; 1505 break; 1506 } 1507 1508 __sock_set_mark(sk, val); 1509 break; 1510 case SO_RCVMARK: 1511 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1512 break; 1513 1514 case SO_RXQ_OVFL: 1515 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1516 break; 1517 1518 case SO_WIFI_STATUS: 1519 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1520 break; 1521 1522 case SO_NOFCS: 1523 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1524 break; 1525 1526 case SO_SELECT_ERR_QUEUE: 1527 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1528 break; 1529 1530 1531 case SO_INCOMING_CPU: 1532 reuseport_update_incoming_cpu(sk, val); 1533 break; 1534 1535 case SO_CNX_ADVICE: 1536 if (val == 1) 1537 dst_negative_advice(sk); 1538 break; 1539 1540 case SO_ZEROCOPY: 1541 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1542 if (!(sk_is_tcp(sk) || 1543 (sk->sk_type == SOCK_DGRAM && 1544 sk->sk_protocol == IPPROTO_UDP))) 1545 ret = -EOPNOTSUPP; 1546 } else if (sk->sk_family != PF_RDS) { 1547 ret = -EOPNOTSUPP; 1548 } 1549 if (!ret) { 1550 if (val < 0 || val > 1) 1551 ret = -EINVAL; 1552 else 1553 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1554 } 1555 break; 1556 1557 case SO_TXTIME: 1558 if (optlen != sizeof(struct sock_txtime)) { 1559 ret = -EINVAL; 1560 break; 1561 } else if (copy_from_sockptr(&sk_txtime, optval, 1562 sizeof(struct sock_txtime))) { 1563 ret = -EFAULT; 1564 break; 1565 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1566 ret = -EINVAL; 1567 break; 1568 } 1569 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1570 * scheduler has enough safe guards. 1571 */ 1572 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1573 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1574 ret = -EPERM; 1575 break; 1576 } 1577 1578 ret = sockopt_validate_clockid(sk_txtime.clockid); 1579 if (ret) 1580 break; 1581 1582 sock_valbool_flag(sk, SOCK_TXTIME, true); 1583 sk->sk_clockid = sk_txtime.clockid; 1584 sk->sk_txtime_deadline_mode = 1585 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1586 sk->sk_txtime_report_errors = 1587 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1588 break; 1589 1590 case SO_BINDTOIFINDEX: 1591 ret = sock_bindtoindex_locked(sk, val); 1592 break; 1593 1594 case SO_BUF_LOCK: 1595 if (val & ~SOCK_BUF_LOCK_MASK) { 1596 ret = -EINVAL; 1597 break; 1598 } 1599 sk->sk_userlocks = val | (sk->sk_userlocks & 1600 ~SOCK_BUF_LOCK_MASK); 1601 break; 1602 1603 case SO_RESERVE_MEM: 1604 { 1605 int delta; 1606 1607 if (val < 0) { 1608 ret = -EINVAL; 1609 break; 1610 } 1611 1612 delta = val - sk->sk_reserved_mem; 1613 if (delta < 0) 1614 sock_release_reserved_memory(sk, -delta); 1615 else 1616 ret = sock_reserve_memory(sk, delta); 1617 break; 1618 } 1619 1620 default: 1621 ret = -ENOPROTOOPT; 1622 break; 1623 } 1624 sockopt_release_sock(sk); 1625 return ret; 1626 } 1627 1628 int sock_setsockopt(struct socket *sock, int level, int optname, 1629 sockptr_t optval, unsigned int optlen) 1630 { 1631 return sk_setsockopt(sock->sk, level, optname, 1632 optval, optlen); 1633 } 1634 EXPORT_SYMBOL(sock_setsockopt); 1635 1636 static const struct cred *sk_get_peer_cred(struct sock *sk) 1637 { 1638 const struct cred *cred; 1639 1640 spin_lock(&sk->sk_peer_lock); 1641 cred = get_cred(sk->sk_peer_cred); 1642 spin_unlock(&sk->sk_peer_lock); 1643 1644 return cred; 1645 } 1646 1647 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1648 struct ucred *ucred) 1649 { 1650 ucred->pid = pid_vnr(pid); 1651 ucred->uid = ucred->gid = -1; 1652 if (cred) { 1653 struct user_namespace *current_ns = current_user_ns(); 1654 1655 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1656 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1657 } 1658 } 1659 1660 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1661 { 1662 struct user_namespace *user_ns = current_user_ns(); 1663 int i; 1664 1665 for (i = 0; i < src->ngroups; i++) { 1666 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1667 1668 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1669 return -EFAULT; 1670 } 1671 1672 return 0; 1673 } 1674 1675 int sk_getsockopt(struct sock *sk, int level, int optname, 1676 sockptr_t optval, sockptr_t optlen) 1677 { 1678 struct socket *sock = sk->sk_socket; 1679 1680 union { 1681 int val; 1682 u64 val64; 1683 unsigned long ulval; 1684 struct linger ling; 1685 struct old_timeval32 tm32; 1686 struct __kernel_old_timeval tm; 1687 struct __kernel_sock_timeval stm; 1688 struct sock_txtime txtime; 1689 struct so_timestamping timestamping; 1690 } v; 1691 1692 int lv = sizeof(int); 1693 int len; 1694 1695 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1696 return -EFAULT; 1697 if (len < 0) 1698 return -EINVAL; 1699 1700 memset(&v, 0, sizeof(v)); 1701 1702 switch (optname) { 1703 case SO_DEBUG: 1704 v.val = sock_flag(sk, SOCK_DBG); 1705 break; 1706 1707 case SO_DONTROUTE: 1708 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1709 break; 1710 1711 case SO_BROADCAST: 1712 v.val = sock_flag(sk, SOCK_BROADCAST); 1713 break; 1714 1715 case SO_SNDBUF: 1716 v.val = READ_ONCE(sk->sk_sndbuf); 1717 break; 1718 1719 case SO_RCVBUF: 1720 v.val = READ_ONCE(sk->sk_rcvbuf); 1721 break; 1722 1723 case SO_REUSEADDR: 1724 v.val = sk->sk_reuse; 1725 break; 1726 1727 case SO_REUSEPORT: 1728 v.val = sk->sk_reuseport; 1729 break; 1730 1731 case SO_KEEPALIVE: 1732 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1733 break; 1734 1735 case SO_TYPE: 1736 v.val = sk->sk_type; 1737 break; 1738 1739 case SO_PROTOCOL: 1740 v.val = sk->sk_protocol; 1741 break; 1742 1743 case SO_DOMAIN: 1744 v.val = sk->sk_family; 1745 break; 1746 1747 case SO_ERROR: 1748 v.val = -sock_error(sk); 1749 if (v.val == 0) 1750 v.val = xchg(&sk->sk_err_soft, 0); 1751 break; 1752 1753 case SO_OOBINLINE: 1754 v.val = sock_flag(sk, SOCK_URGINLINE); 1755 break; 1756 1757 case SO_NO_CHECK: 1758 v.val = sk->sk_no_check_tx; 1759 break; 1760 1761 case SO_PRIORITY: 1762 v.val = READ_ONCE(sk->sk_priority); 1763 break; 1764 1765 case SO_LINGER: 1766 lv = sizeof(v.ling); 1767 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1768 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1769 break; 1770 1771 case SO_BSDCOMPAT: 1772 break; 1773 1774 case SO_TIMESTAMP_OLD: 1775 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1776 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1777 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1778 break; 1779 1780 case SO_TIMESTAMPNS_OLD: 1781 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1782 break; 1783 1784 case SO_TIMESTAMP_NEW: 1785 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1786 break; 1787 1788 case SO_TIMESTAMPNS_NEW: 1789 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1790 break; 1791 1792 case SO_TIMESTAMPING_OLD: 1793 case SO_TIMESTAMPING_NEW: 1794 lv = sizeof(v.timestamping); 1795 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1796 * returning the flags when they were set through the same option. 1797 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1798 */ 1799 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1800 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1801 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1802 } 1803 break; 1804 1805 case SO_RCVTIMEO_OLD: 1806 case SO_RCVTIMEO_NEW: 1807 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1808 SO_RCVTIMEO_OLD == optname); 1809 break; 1810 1811 case SO_SNDTIMEO_OLD: 1812 case SO_SNDTIMEO_NEW: 1813 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1814 SO_SNDTIMEO_OLD == optname); 1815 break; 1816 1817 case SO_RCVLOWAT: 1818 v.val = READ_ONCE(sk->sk_rcvlowat); 1819 break; 1820 1821 case SO_SNDLOWAT: 1822 v.val = 1; 1823 break; 1824 1825 case SO_PASSCRED: 1826 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1827 break; 1828 1829 case SO_PASSPIDFD: 1830 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1831 break; 1832 1833 case SO_PEERCRED: 1834 { 1835 struct ucred peercred; 1836 if (len > sizeof(peercred)) 1837 len = sizeof(peercred); 1838 1839 spin_lock(&sk->sk_peer_lock); 1840 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1841 spin_unlock(&sk->sk_peer_lock); 1842 1843 if (copy_to_sockptr(optval, &peercred, len)) 1844 return -EFAULT; 1845 goto lenout; 1846 } 1847 1848 case SO_PEERPIDFD: 1849 { 1850 struct pid *peer_pid; 1851 struct file *pidfd_file = NULL; 1852 int pidfd; 1853 1854 if (len > sizeof(pidfd)) 1855 len = sizeof(pidfd); 1856 1857 spin_lock(&sk->sk_peer_lock); 1858 peer_pid = get_pid(sk->sk_peer_pid); 1859 spin_unlock(&sk->sk_peer_lock); 1860 1861 if (!peer_pid) 1862 return -ENODATA; 1863 1864 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1865 put_pid(peer_pid); 1866 if (pidfd < 0) 1867 return pidfd; 1868 1869 if (copy_to_sockptr(optval, &pidfd, len) || 1870 copy_to_sockptr(optlen, &len, sizeof(int))) { 1871 put_unused_fd(pidfd); 1872 fput(pidfd_file); 1873 1874 return -EFAULT; 1875 } 1876 1877 fd_install(pidfd, pidfd_file); 1878 return 0; 1879 } 1880 1881 case SO_PEERGROUPS: 1882 { 1883 const struct cred *cred; 1884 int ret, n; 1885 1886 cred = sk_get_peer_cred(sk); 1887 if (!cred) 1888 return -ENODATA; 1889 1890 n = cred->group_info->ngroups; 1891 if (len < n * sizeof(gid_t)) { 1892 len = n * sizeof(gid_t); 1893 put_cred(cred); 1894 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1895 } 1896 len = n * sizeof(gid_t); 1897 1898 ret = groups_to_user(optval, cred->group_info); 1899 put_cred(cred); 1900 if (ret) 1901 return ret; 1902 goto lenout; 1903 } 1904 1905 case SO_PEERNAME: 1906 { 1907 struct sockaddr_storage address; 1908 1909 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1910 if (lv < 0) 1911 return -ENOTCONN; 1912 if (lv < len) 1913 return -EINVAL; 1914 if (copy_to_sockptr(optval, &address, len)) 1915 return -EFAULT; 1916 goto lenout; 1917 } 1918 1919 /* Dubious BSD thing... Probably nobody even uses it, but 1920 * the UNIX standard wants it for whatever reason... -DaveM 1921 */ 1922 case SO_ACCEPTCONN: 1923 v.val = sk->sk_state == TCP_LISTEN; 1924 break; 1925 1926 case SO_PASSSEC: 1927 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1928 break; 1929 1930 case SO_PEERSEC: 1931 return security_socket_getpeersec_stream(sock, 1932 optval, optlen, len); 1933 1934 case SO_MARK: 1935 v.val = READ_ONCE(sk->sk_mark); 1936 break; 1937 1938 case SO_RCVMARK: 1939 v.val = sock_flag(sk, SOCK_RCVMARK); 1940 break; 1941 1942 case SO_RXQ_OVFL: 1943 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1944 break; 1945 1946 case SO_WIFI_STATUS: 1947 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1948 break; 1949 1950 case SO_PEEK_OFF: 1951 if (!READ_ONCE(sock->ops)->set_peek_off) 1952 return -EOPNOTSUPP; 1953 1954 v.val = READ_ONCE(sk->sk_peek_off); 1955 break; 1956 case SO_NOFCS: 1957 v.val = sock_flag(sk, SOCK_NOFCS); 1958 break; 1959 1960 case SO_BINDTODEVICE: 1961 return sock_getbindtodevice(sk, optval, optlen, len); 1962 1963 case SO_GET_FILTER: 1964 len = sk_get_filter(sk, optval, len); 1965 if (len < 0) 1966 return len; 1967 1968 goto lenout; 1969 1970 case SO_LOCK_FILTER: 1971 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1972 break; 1973 1974 case SO_BPF_EXTENSIONS: 1975 v.val = bpf_tell_extensions(); 1976 break; 1977 1978 case SO_SELECT_ERR_QUEUE: 1979 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1980 break; 1981 1982 #ifdef CONFIG_NET_RX_BUSY_POLL 1983 case SO_BUSY_POLL: 1984 v.val = READ_ONCE(sk->sk_ll_usec); 1985 break; 1986 case SO_PREFER_BUSY_POLL: 1987 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1988 break; 1989 #endif 1990 1991 case SO_MAX_PACING_RATE: 1992 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1993 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1994 lv = sizeof(v.ulval); 1995 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1996 } else { 1997 /* 32bit version */ 1998 v.val = min_t(unsigned long, ~0U, 1999 READ_ONCE(sk->sk_max_pacing_rate)); 2000 } 2001 break; 2002 2003 case SO_INCOMING_CPU: 2004 v.val = READ_ONCE(sk->sk_incoming_cpu); 2005 break; 2006 2007 case SO_MEMINFO: 2008 { 2009 u32 meminfo[SK_MEMINFO_VARS]; 2010 2011 sk_get_meminfo(sk, meminfo); 2012 2013 len = min_t(unsigned int, len, sizeof(meminfo)); 2014 if (copy_to_sockptr(optval, &meminfo, len)) 2015 return -EFAULT; 2016 2017 goto lenout; 2018 } 2019 2020 #ifdef CONFIG_NET_RX_BUSY_POLL 2021 case SO_INCOMING_NAPI_ID: 2022 v.val = READ_ONCE(sk->sk_napi_id); 2023 2024 /* aggregate non-NAPI IDs down to 0 */ 2025 if (v.val < MIN_NAPI_ID) 2026 v.val = 0; 2027 2028 break; 2029 #endif 2030 2031 case SO_COOKIE: 2032 lv = sizeof(u64); 2033 if (len < lv) 2034 return -EINVAL; 2035 v.val64 = sock_gen_cookie(sk); 2036 break; 2037 2038 case SO_ZEROCOPY: 2039 v.val = sock_flag(sk, SOCK_ZEROCOPY); 2040 break; 2041 2042 case SO_TXTIME: 2043 lv = sizeof(v.txtime); 2044 v.txtime.clockid = sk->sk_clockid; 2045 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 2046 SOF_TXTIME_DEADLINE_MODE : 0; 2047 v.txtime.flags |= sk->sk_txtime_report_errors ? 2048 SOF_TXTIME_REPORT_ERRORS : 0; 2049 break; 2050 2051 case SO_BINDTOIFINDEX: 2052 v.val = READ_ONCE(sk->sk_bound_dev_if); 2053 break; 2054 2055 case SO_NETNS_COOKIE: 2056 lv = sizeof(u64); 2057 if (len != lv) 2058 return -EINVAL; 2059 v.val64 = sock_net(sk)->net_cookie; 2060 break; 2061 2062 case SO_BUF_LOCK: 2063 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 2064 break; 2065 2066 case SO_RESERVE_MEM: 2067 v.val = READ_ONCE(sk->sk_reserved_mem); 2068 break; 2069 2070 case SO_TXREHASH: 2071 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 2072 v.val = READ_ONCE(sk->sk_txrehash); 2073 break; 2074 2075 default: 2076 /* We implement the SO_SNDLOWAT etc to not be settable 2077 * (1003.1g 7). 2078 */ 2079 return -ENOPROTOOPT; 2080 } 2081 2082 if (len > lv) 2083 len = lv; 2084 if (copy_to_sockptr(optval, &v, len)) 2085 return -EFAULT; 2086 lenout: 2087 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2088 return -EFAULT; 2089 return 0; 2090 } 2091 2092 /* 2093 * Initialize an sk_lock. 2094 * 2095 * (We also register the sk_lock with the lock validator.) 2096 */ 2097 static inline void sock_lock_init(struct sock *sk) 2098 { 2099 if (sk->sk_kern_sock) 2100 sock_lock_init_class_and_name( 2101 sk, 2102 af_family_kern_slock_key_strings[sk->sk_family], 2103 af_family_kern_slock_keys + sk->sk_family, 2104 af_family_kern_key_strings[sk->sk_family], 2105 af_family_kern_keys + sk->sk_family); 2106 else 2107 sock_lock_init_class_and_name( 2108 sk, 2109 af_family_slock_key_strings[sk->sk_family], 2110 af_family_slock_keys + sk->sk_family, 2111 af_family_key_strings[sk->sk_family], 2112 af_family_keys + sk->sk_family); 2113 } 2114 2115 /* 2116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2117 * even temporarily, because of RCU lookups. sk_node should also be left as is. 2118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2119 */ 2120 static void sock_copy(struct sock *nsk, const struct sock *osk) 2121 { 2122 const struct proto *prot = READ_ONCE(osk->sk_prot); 2123 #ifdef CONFIG_SECURITY_NETWORK 2124 void *sptr = nsk->sk_security; 2125 #endif 2126 2127 /* If we move sk_tx_queue_mapping out of the private section, 2128 * we must check if sk_tx_queue_clear() is called after 2129 * sock_copy() in sk_clone_lock(). 2130 */ 2131 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2132 offsetof(struct sock, sk_dontcopy_begin) || 2133 offsetof(struct sock, sk_tx_queue_mapping) >= 2134 offsetof(struct sock, sk_dontcopy_end)); 2135 2136 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2137 2138 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2139 prot->obj_size - offsetof(struct sock, sk_dontcopy_end), 2140 /* alloc is larger than struct, see sk_prot_alloc() */); 2141 2142 #ifdef CONFIG_SECURITY_NETWORK 2143 nsk->sk_security = sptr; 2144 security_sk_clone(osk, nsk); 2145 #endif 2146 } 2147 2148 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2149 int family) 2150 { 2151 struct sock *sk; 2152 struct kmem_cache *slab; 2153 2154 slab = prot->slab; 2155 if (slab != NULL) { 2156 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2157 if (!sk) 2158 return sk; 2159 if (want_init_on_alloc(priority)) 2160 sk_prot_clear_nulls(sk, prot->obj_size); 2161 } else 2162 sk = kmalloc(prot->obj_size, priority); 2163 2164 if (sk != NULL) { 2165 if (security_sk_alloc(sk, family, priority)) 2166 goto out_free; 2167 2168 if (!try_module_get(prot->owner)) 2169 goto out_free_sec; 2170 } 2171 2172 return sk; 2173 2174 out_free_sec: 2175 security_sk_free(sk); 2176 out_free: 2177 if (slab != NULL) 2178 kmem_cache_free(slab, sk); 2179 else 2180 kfree(sk); 2181 return NULL; 2182 } 2183 2184 static void sk_prot_free(struct proto *prot, struct sock *sk) 2185 { 2186 struct kmem_cache *slab; 2187 struct module *owner; 2188 2189 owner = prot->owner; 2190 slab = prot->slab; 2191 2192 cgroup_sk_free(&sk->sk_cgrp_data); 2193 mem_cgroup_sk_free(sk); 2194 security_sk_free(sk); 2195 if (slab != NULL) 2196 kmem_cache_free(slab, sk); 2197 else 2198 kfree(sk); 2199 module_put(owner); 2200 } 2201 2202 /** 2203 * sk_alloc - All socket objects are allocated here 2204 * @net: the applicable net namespace 2205 * @family: protocol family 2206 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2207 * @prot: struct proto associated with this new sock instance 2208 * @kern: is this to be a kernel socket? 2209 */ 2210 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2211 struct proto *prot, int kern) 2212 { 2213 struct sock *sk; 2214 2215 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2216 if (sk) { 2217 sk->sk_family = family; 2218 /* 2219 * See comment in struct sock definition to understand 2220 * why we need sk_prot_creator -acme 2221 */ 2222 sk->sk_prot = sk->sk_prot_creator = prot; 2223 sk->sk_kern_sock = kern; 2224 sock_lock_init(sk); 2225 sk->sk_net_refcnt = kern ? 0 : 1; 2226 if (likely(sk->sk_net_refcnt)) { 2227 get_net_track(net, &sk->ns_tracker, priority); 2228 sock_inuse_add(net, 1); 2229 } else { 2230 __netns_tracker_alloc(net, &sk->ns_tracker, 2231 false, priority); 2232 } 2233 2234 sock_net_set(sk, net); 2235 refcount_set(&sk->sk_wmem_alloc, 1); 2236 2237 mem_cgroup_sk_alloc(sk); 2238 cgroup_sk_alloc(&sk->sk_cgrp_data); 2239 sock_update_classid(&sk->sk_cgrp_data); 2240 sock_update_netprioidx(&sk->sk_cgrp_data); 2241 sk_tx_queue_clear(sk); 2242 } 2243 2244 return sk; 2245 } 2246 EXPORT_SYMBOL(sk_alloc); 2247 2248 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2249 * grace period. This is the case for UDP sockets and TCP listeners. 2250 */ 2251 static void __sk_destruct(struct rcu_head *head) 2252 { 2253 struct sock *sk = container_of(head, struct sock, sk_rcu); 2254 struct sk_filter *filter; 2255 2256 if (sk->sk_destruct) 2257 sk->sk_destruct(sk); 2258 2259 filter = rcu_dereference_check(sk->sk_filter, 2260 refcount_read(&sk->sk_wmem_alloc) == 0); 2261 if (filter) { 2262 sk_filter_uncharge(sk, filter); 2263 RCU_INIT_POINTER(sk->sk_filter, NULL); 2264 } 2265 2266 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2267 2268 #ifdef CONFIG_BPF_SYSCALL 2269 bpf_sk_storage_free(sk); 2270 #endif 2271 2272 if (atomic_read(&sk->sk_omem_alloc)) 2273 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2274 __func__, atomic_read(&sk->sk_omem_alloc)); 2275 2276 if (sk->sk_frag.page) { 2277 put_page(sk->sk_frag.page); 2278 sk->sk_frag.page = NULL; 2279 } 2280 2281 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2282 put_cred(sk->sk_peer_cred); 2283 put_pid(sk->sk_peer_pid); 2284 2285 if (likely(sk->sk_net_refcnt)) 2286 put_net_track(sock_net(sk), &sk->ns_tracker); 2287 else 2288 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2289 2290 sk_prot_free(sk->sk_prot_creator, sk); 2291 } 2292 2293 void sk_destruct(struct sock *sk) 2294 { 2295 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2296 2297 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2298 reuseport_detach_sock(sk); 2299 use_call_rcu = true; 2300 } 2301 2302 if (use_call_rcu) 2303 call_rcu(&sk->sk_rcu, __sk_destruct); 2304 else 2305 __sk_destruct(&sk->sk_rcu); 2306 } 2307 2308 static void __sk_free(struct sock *sk) 2309 { 2310 if (likely(sk->sk_net_refcnt)) 2311 sock_inuse_add(sock_net(sk), -1); 2312 2313 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2314 sock_diag_broadcast_destroy(sk); 2315 else 2316 sk_destruct(sk); 2317 } 2318 2319 void sk_free(struct sock *sk) 2320 { 2321 /* 2322 * We subtract one from sk_wmem_alloc and can know if 2323 * some packets are still in some tx queue. 2324 * If not null, sock_wfree() will call __sk_free(sk) later 2325 */ 2326 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2327 __sk_free(sk); 2328 } 2329 EXPORT_SYMBOL(sk_free); 2330 2331 static void sk_init_common(struct sock *sk) 2332 { 2333 skb_queue_head_init(&sk->sk_receive_queue); 2334 skb_queue_head_init(&sk->sk_write_queue); 2335 skb_queue_head_init(&sk->sk_error_queue); 2336 2337 rwlock_init(&sk->sk_callback_lock); 2338 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2339 af_rlock_keys + sk->sk_family, 2340 af_family_rlock_key_strings[sk->sk_family]); 2341 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2342 af_wlock_keys + sk->sk_family, 2343 af_family_wlock_key_strings[sk->sk_family]); 2344 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2345 af_elock_keys + sk->sk_family, 2346 af_family_elock_key_strings[sk->sk_family]); 2347 if (sk->sk_kern_sock) 2348 lockdep_set_class_and_name(&sk->sk_callback_lock, 2349 af_kern_callback_keys + sk->sk_family, 2350 af_family_kern_clock_key_strings[sk->sk_family]); 2351 else 2352 lockdep_set_class_and_name(&sk->sk_callback_lock, 2353 af_callback_keys + sk->sk_family, 2354 af_family_clock_key_strings[sk->sk_family]); 2355 } 2356 2357 /** 2358 * sk_clone_lock - clone a socket, and lock its clone 2359 * @sk: the socket to clone 2360 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2361 * 2362 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2363 */ 2364 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2365 { 2366 struct proto *prot = READ_ONCE(sk->sk_prot); 2367 struct sk_filter *filter; 2368 bool is_charged = true; 2369 struct sock *newsk; 2370 2371 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2372 if (!newsk) 2373 goto out; 2374 2375 sock_copy(newsk, sk); 2376 2377 newsk->sk_prot_creator = prot; 2378 2379 /* SANITY */ 2380 if (likely(newsk->sk_net_refcnt)) { 2381 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2382 sock_inuse_add(sock_net(newsk), 1); 2383 } else { 2384 /* Kernel sockets are not elevating the struct net refcount. 2385 * Instead, use a tracker to more easily detect if a layer 2386 * is not properly dismantling its kernel sockets at netns 2387 * destroy time. 2388 */ 2389 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2390 false, priority); 2391 } 2392 sk_node_init(&newsk->sk_node); 2393 sock_lock_init(newsk); 2394 bh_lock_sock(newsk); 2395 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2396 newsk->sk_backlog.len = 0; 2397 2398 atomic_set(&newsk->sk_rmem_alloc, 0); 2399 2400 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2401 refcount_set(&newsk->sk_wmem_alloc, 1); 2402 2403 atomic_set(&newsk->sk_omem_alloc, 0); 2404 sk_init_common(newsk); 2405 2406 newsk->sk_dst_cache = NULL; 2407 newsk->sk_dst_pending_confirm = 0; 2408 newsk->sk_wmem_queued = 0; 2409 newsk->sk_forward_alloc = 0; 2410 newsk->sk_reserved_mem = 0; 2411 atomic_set(&newsk->sk_drops, 0); 2412 newsk->sk_send_head = NULL; 2413 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2414 atomic_set(&newsk->sk_zckey, 0); 2415 2416 sock_reset_flag(newsk, SOCK_DONE); 2417 2418 /* sk->sk_memcg will be populated at accept() time */ 2419 newsk->sk_memcg = NULL; 2420 2421 cgroup_sk_clone(&newsk->sk_cgrp_data); 2422 2423 rcu_read_lock(); 2424 filter = rcu_dereference(sk->sk_filter); 2425 if (filter != NULL) 2426 /* though it's an empty new sock, the charging may fail 2427 * if sysctl_optmem_max was changed between creation of 2428 * original socket and cloning 2429 */ 2430 is_charged = sk_filter_charge(newsk, filter); 2431 RCU_INIT_POINTER(newsk->sk_filter, filter); 2432 rcu_read_unlock(); 2433 2434 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2435 /* We need to make sure that we don't uncharge the new 2436 * socket if we couldn't charge it in the first place 2437 * as otherwise we uncharge the parent's filter. 2438 */ 2439 if (!is_charged) 2440 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2441 sk_free_unlock_clone(newsk); 2442 newsk = NULL; 2443 goto out; 2444 } 2445 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2446 2447 if (bpf_sk_storage_clone(sk, newsk)) { 2448 sk_free_unlock_clone(newsk); 2449 newsk = NULL; 2450 goto out; 2451 } 2452 2453 /* Clear sk_user_data if parent had the pointer tagged 2454 * as not suitable for copying when cloning. 2455 */ 2456 if (sk_user_data_is_nocopy(newsk)) 2457 newsk->sk_user_data = NULL; 2458 2459 newsk->sk_err = 0; 2460 newsk->sk_err_soft = 0; 2461 newsk->sk_priority = 0; 2462 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2463 2464 /* Before updating sk_refcnt, we must commit prior changes to memory 2465 * (Documentation/RCU/rculist_nulls.rst for details) 2466 */ 2467 smp_wmb(); 2468 refcount_set(&newsk->sk_refcnt, 2); 2469 2470 sk_set_socket(newsk, NULL); 2471 sk_tx_queue_clear(newsk); 2472 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2473 2474 if (newsk->sk_prot->sockets_allocated) 2475 sk_sockets_allocated_inc(newsk); 2476 2477 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2478 net_enable_timestamp(); 2479 out: 2480 return newsk; 2481 } 2482 EXPORT_SYMBOL_GPL(sk_clone_lock); 2483 2484 void sk_free_unlock_clone(struct sock *sk) 2485 { 2486 /* It is still raw copy of parent, so invalidate 2487 * destructor and make plain sk_free() */ 2488 sk->sk_destruct = NULL; 2489 bh_unlock_sock(sk); 2490 sk_free(sk); 2491 } 2492 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2493 2494 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2495 { 2496 bool is_ipv6 = false; 2497 u32 max_size; 2498 2499 #if IS_ENABLED(CONFIG_IPV6) 2500 is_ipv6 = (sk->sk_family == AF_INET6 && 2501 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2502 #endif 2503 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2504 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2505 READ_ONCE(dst->dev->gso_ipv4_max_size); 2506 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2507 max_size = GSO_LEGACY_MAX_SIZE; 2508 2509 return max_size - (MAX_TCP_HEADER + 1); 2510 } 2511 2512 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2513 { 2514 u32 max_segs = 1; 2515 2516 sk->sk_route_caps = dst->dev->features; 2517 if (sk_is_tcp(sk)) 2518 sk->sk_route_caps |= NETIF_F_GSO; 2519 if (sk->sk_route_caps & NETIF_F_GSO) 2520 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2521 if (unlikely(sk->sk_gso_disabled)) 2522 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2523 if (sk_can_gso(sk)) { 2524 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2525 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2526 } else { 2527 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2528 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2529 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2530 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2531 } 2532 } 2533 sk->sk_gso_max_segs = max_segs; 2534 sk_dst_set(sk, dst); 2535 } 2536 EXPORT_SYMBOL_GPL(sk_setup_caps); 2537 2538 /* 2539 * Simple resource managers for sockets. 2540 */ 2541 2542 2543 /* 2544 * Write buffer destructor automatically called from kfree_skb. 2545 */ 2546 void sock_wfree(struct sk_buff *skb) 2547 { 2548 struct sock *sk = skb->sk; 2549 unsigned int len = skb->truesize; 2550 bool free; 2551 2552 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2553 if (sock_flag(sk, SOCK_RCU_FREE) && 2554 sk->sk_write_space == sock_def_write_space) { 2555 rcu_read_lock(); 2556 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2557 sock_def_write_space_wfree(sk); 2558 rcu_read_unlock(); 2559 if (unlikely(free)) 2560 __sk_free(sk); 2561 return; 2562 } 2563 2564 /* 2565 * Keep a reference on sk_wmem_alloc, this will be released 2566 * after sk_write_space() call 2567 */ 2568 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2569 sk->sk_write_space(sk); 2570 len = 1; 2571 } 2572 /* 2573 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2574 * could not do because of in-flight packets 2575 */ 2576 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2577 __sk_free(sk); 2578 } 2579 EXPORT_SYMBOL(sock_wfree); 2580 2581 /* This variant of sock_wfree() is used by TCP, 2582 * since it sets SOCK_USE_WRITE_QUEUE. 2583 */ 2584 void __sock_wfree(struct sk_buff *skb) 2585 { 2586 struct sock *sk = skb->sk; 2587 2588 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2589 __sk_free(sk); 2590 } 2591 2592 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2593 { 2594 skb_orphan(skb); 2595 skb->sk = sk; 2596 #ifdef CONFIG_INET 2597 if (unlikely(!sk_fullsock(sk))) { 2598 skb->destructor = sock_edemux; 2599 sock_hold(sk); 2600 return; 2601 } 2602 #endif 2603 skb->destructor = sock_wfree; 2604 skb_set_hash_from_sk(skb, sk); 2605 /* 2606 * We used to take a refcount on sk, but following operation 2607 * is enough to guarantee sk_free() won't free this sock until 2608 * all in-flight packets are completed 2609 */ 2610 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2611 } 2612 EXPORT_SYMBOL(skb_set_owner_w); 2613 2614 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2615 { 2616 /* Drivers depend on in-order delivery for crypto offload, 2617 * partial orphan breaks out-of-order-OK logic. 2618 */ 2619 if (skb_is_decrypted(skb)) 2620 return false; 2621 2622 return (skb->destructor == sock_wfree || 2623 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2624 } 2625 2626 /* This helper is used by netem, as it can hold packets in its 2627 * delay queue. We want to allow the owner socket to send more 2628 * packets, as if they were already TX completed by a typical driver. 2629 * But we also want to keep skb->sk set because some packet schedulers 2630 * rely on it (sch_fq for example). 2631 */ 2632 void skb_orphan_partial(struct sk_buff *skb) 2633 { 2634 if (skb_is_tcp_pure_ack(skb)) 2635 return; 2636 2637 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2638 return; 2639 2640 skb_orphan(skb); 2641 } 2642 EXPORT_SYMBOL(skb_orphan_partial); 2643 2644 /* 2645 * Read buffer destructor automatically called from kfree_skb. 2646 */ 2647 void sock_rfree(struct sk_buff *skb) 2648 { 2649 struct sock *sk = skb->sk; 2650 unsigned int len = skb->truesize; 2651 2652 atomic_sub(len, &sk->sk_rmem_alloc); 2653 sk_mem_uncharge(sk, len); 2654 } 2655 EXPORT_SYMBOL(sock_rfree); 2656 2657 /* 2658 * Buffer destructor for skbs that are not used directly in read or write 2659 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2660 */ 2661 void sock_efree(struct sk_buff *skb) 2662 { 2663 sock_put(skb->sk); 2664 } 2665 EXPORT_SYMBOL(sock_efree); 2666 2667 /* Buffer destructor for prefetch/receive path where reference count may 2668 * not be held, e.g. for listen sockets. 2669 */ 2670 #ifdef CONFIG_INET 2671 void sock_pfree(struct sk_buff *skb) 2672 { 2673 struct sock *sk = skb->sk; 2674 2675 if (!sk_is_refcounted(sk)) 2676 return; 2677 2678 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { 2679 inet_reqsk(sk)->rsk_listener = NULL; 2680 reqsk_free(inet_reqsk(sk)); 2681 return; 2682 } 2683 2684 sock_gen_put(sk); 2685 } 2686 EXPORT_SYMBOL(sock_pfree); 2687 #endif /* CONFIG_INET */ 2688 2689 kuid_t sock_i_uid(struct sock *sk) 2690 { 2691 kuid_t uid; 2692 2693 read_lock_bh(&sk->sk_callback_lock); 2694 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2695 read_unlock_bh(&sk->sk_callback_lock); 2696 return uid; 2697 } 2698 EXPORT_SYMBOL(sock_i_uid); 2699 2700 unsigned long __sock_i_ino(struct sock *sk) 2701 { 2702 unsigned long ino; 2703 2704 read_lock(&sk->sk_callback_lock); 2705 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2706 read_unlock(&sk->sk_callback_lock); 2707 return ino; 2708 } 2709 EXPORT_SYMBOL(__sock_i_ino); 2710 2711 unsigned long sock_i_ino(struct sock *sk) 2712 { 2713 unsigned long ino; 2714 2715 local_bh_disable(); 2716 ino = __sock_i_ino(sk); 2717 local_bh_enable(); 2718 return ino; 2719 } 2720 EXPORT_SYMBOL(sock_i_ino); 2721 2722 /* 2723 * Allocate a skb from the socket's send buffer. 2724 */ 2725 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2726 gfp_t priority) 2727 { 2728 if (force || 2729 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2730 struct sk_buff *skb = alloc_skb(size, priority); 2731 2732 if (skb) { 2733 skb_set_owner_w(skb, sk); 2734 return skb; 2735 } 2736 } 2737 return NULL; 2738 } 2739 EXPORT_SYMBOL(sock_wmalloc); 2740 2741 static void sock_ofree(struct sk_buff *skb) 2742 { 2743 struct sock *sk = skb->sk; 2744 2745 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2746 } 2747 2748 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2749 gfp_t priority) 2750 { 2751 struct sk_buff *skb; 2752 2753 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2754 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2755 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2756 return NULL; 2757 2758 skb = alloc_skb(size, priority); 2759 if (!skb) 2760 return NULL; 2761 2762 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2763 skb->sk = sk; 2764 skb->destructor = sock_ofree; 2765 return skb; 2766 } 2767 2768 /* 2769 * Allocate a memory block from the socket's option memory buffer. 2770 */ 2771 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2772 { 2773 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2774 2775 if ((unsigned int)size <= optmem_max && 2776 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2777 void *mem; 2778 /* First do the add, to avoid the race if kmalloc 2779 * might sleep. 2780 */ 2781 atomic_add(size, &sk->sk_omem_alloc); 2782 mem = kmalloc(size, priority); 2783 if (mem) 2784 return mem; 2785 atomic_sub(size, &sk->sk_omem_alloc); 2786 } 2787 return NULL; 2788 } 2789 EXPORT_SYMBOL(sock_kmalloc); 2790 2791 /* Free an option memory block. Note, we actually want the inline 2792 * here as this allows gcc to detect the nullify and fold away the 2793 * condition entirely. 2794 */ 2795 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2796 const bool nullify) 2797 { 2798 if (WARN_ON_ONCE(!mem)) 2799 return; 2800 if (nullify) 2801 kfree_sensitive(mem); 2802 else 2803 kfree(mem); 2804 atomic_sub(size, &sk->sk_omem_alloc); 2805 } 2806 2807 void sock_kfree_s(struct sock *sk, void *mem, int size) 2808 { 2809 __sock_kfree_s(sk, mem, size, false); 2810 } 2811 EXPORT_SYMBOL(sock_kfree_s); 2812 2813 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2814 { 2815 __sock_kfree_s(sk, mem, size, true); 2816 } 2817 EXPORT_SYMBOL(sock_kzfree_s); 2818 2819 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2820 I think, these locks should be removed for datagram sockets. 2821 */ 2822 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2823 { 2824 DEFINE_WAIT(wait); 2825 2826 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2827 for (;;) { 2828 if (!timeo) 2829 break; 2830 if (signal_pending(current)) 2831 break; 2832 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2833 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2834 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2835 break; 2836 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2837 break; 2838 if (READ_ONCE(sk->sk_err)) 2839 break; 2840 timeo = schedule_timeout(timeo); 2841 } 2842 finish_wait(sk_sleep(sk), &wait); 2843 return timeo; 2844 } 2845 2846 2847 /* 2848 * Generic send/receive buffer handlers 2849 */ 2850 2851 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2852 unsigned long data_len, int noblock, 2853 int *errcode, int max_page_order) 2854 { 2855 struct sk_buff *skb; 2856 long timeo; 2857 int err; 2858 2859 timeo = sock_sndtimeo(sk, noblock); 2860 for (;;) { 2861 err = sock_error(sk); 2862 if (err != 0) 2863 goto failure; 2864 2865 err = -EPIPE; 2866 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2867 goto failure; 2868 2869 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2870 break; 2871 2872 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2873 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2874 err = -EAGAIN; 2875 if (!timeo) 2876 goto failure; 2877 if (signal_pending(current)) 2878 goto interrupted; 2879 timeo = sock_wait_for_wmem(sk, timeo); 2880 } 2881 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2882 errcode, sk->sk_allocation); 2883 if (skb) 2884 skb_set_owner_w(skb, sk); 2885 return skb; 2886 2887 interrupted: 2888 err = sock_intr_errno(timeo); 2889 failure: 2890 *errcode = err; 2891 return NULL; 2892 } 2893 EXPORT_SYMBOL(sock_alloc_send_pskb); 2894 2895 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2896 struct sockcm_cookie *sockc) 2897 { 2898 u32 tsflags; 2899 2900 BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); 2901 2902 switch (cmsg->cmsg_type) { 2903 case SO_MARK: 2904 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2905 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2906 return -EPERM; 2907 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2908 return -EINVAL; 2909 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2910 break; 2911 case SO_TIMESTAMPING_OLD: 2912 case SO_TIMESTAMPING_NEW: 2913 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2914 return -EINVAL; 2915 2916 tsflags = *(u32 *)CMSG_DATA(cmsg); 2917 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2918 return -EINVAL; 2919 2920 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2921 sockc->tsflags |= tsflags; 2922 break; 2923 case SCM_TXTIME: 2924 if (!sock_flag(sk, SOCK_TXTIME)) 2925 return -EINVAL; 2926 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2927 return -EINVAL; 2928 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2929 break; 2930 case SCM_TS_OPT_ID: 2931 if (sk_is_tcp(sk)) 2932 return -EINVAL; 2933 tsflags = READ_ONCE(sk->sk_tsflags); 2934 if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) 2935 return -EINVAL; 2936 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2937 return -EINVAL; 2938 sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); 2939 sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; 2940 break; 2941 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2942 case SCM_RIGHTS: 2943 case SCM_CREDENTIALS: 2944 break; 2945 default: 2946 return -EINVAL; 2947 } 2948 return 0; 2949 } 2950 EXPORT_SYMBOL(__sock_cmsg_send); 2951 2952 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2953 struct sockcm_cookie *sockc) 2954 { 2955 struct cmsghdr *cmsg; 2956 int ret; 2957 2958 for_each_cmsghdr(cmsg, msg) { 2959 if (!CMSG_OK(msg, cmsg)) 2960 return -EINVAL; 2961 if (cmsg->cmsg_level != SOL_SOCKET) 2962 continue; 2963 ret = __sock_cmsg_send(sk, cmsg, sockc); 2964 if (ret) 2965 return ret; 2966 } 2967 return 0; 2968 } 2969 EXPORT_SYMBOL(sock_cmsg_send); 2970 2971 static void sk_enter_memory_pressure(struct sock *sk) 2972 { 2973 if (!sk->sk_prot->enter_memory_pressure) 2974 return; 2975 2976 sk->sk_prot->enter_memory_pressure(sk); 2977 } 2978 2979 static void sk_leave_memory_pressure(struct sock *sk) 2980 { 2981 if (sk->sk_prot->leave_memory_pressure) { 2982 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2983 tcp_leave_memory_pressure, sk); 2984 } else { 2985 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2986 2987 if (memory_pressure && READ_ONCE(*memory_pressure)) 2988 WRITE_ONCE(*memory_pressure, 0); 2989 } 2990 } 2991 2992 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2993 2994 /** 2995 * skb_page_frag_refill - check that a page_frag contains enough room 2996 * @sz: minimum size of the fragment we want to get 2997 * @pfrag: pointer to page_frag 2998 * @gfp: priority for memory allocation 2999 * 3000 * Note: While this allocator tries to use high order pages, there is 3001 * no guarantee that allocations succeed. Therefore, @sz MUST be 3002 * less or equal than PAGE_SIZE. 3003 */ 3004 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 3005 { 3006 if (pfrag->page) { 3007 if (page_ref_count(pfrag->page) == 1) { 3008 pfrag->offset = 0; 3009 return true; 3010 } 3011 if (pfrag->offset + sz <= pfrag->size) 3012 return true; 3013 put_page(pfrag->page); 3014 } 3015 3016 pfrag->offset = 0; 3017 if (SKB_FRAG_PAGE_ORDER && 3018 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 3019 /* Avoid direct reclaim but allow kswapd to wake */ 3020 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 3021 __GFP_COMP | __GFP_NOWARN | 3022 __GFP_NORETRY, 3023 SKB_FRAG_PAGE_ORDER); 3024 if (likely(pfrag->page)) { 3025 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 3026 return true; 3027 } 3028 } 3029 pfrag->page = alloc_page(gfp); 3030 if (likely(pfrag->page)) { 3031 pfrag->size = PAGE_SIZE; 3032 return true; 3033 } 3034 return false; 3035 } 3036 EXPORT_SYMBOL(skb_page_frag_refill); 3037 3038 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 3039 { 3040 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 3041 return true; 3042 3043 sk_enter_memory_pressure(sk); 3044 sk_stream_moderate_sndbuf(sk); 3045 return false; 3046 } 3047 EXPORT_SYMBOL(sk_page_frag_refill); 3048 3049 void __lock_sock(struct sock *sk) 3050 __releases(&sk->sk_lock.slock) 3051 __acquires(&sk->sk_lock.slock) 3052 { 3053 DEFINE_WAIT(wait); 3054 3055 for (;;) { 3056 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 3057 TASK_UNINTERRUPTIBLE); 3058 spin_unlock_bh(&sk->sk_lock.slock); 3059 schedule(); 3060 spin_lock_bh(&sk->sk_lock.slock); 3061 if (!sock_owned_by_user(sk)) 3062 break; 3063 } 3064 finish_wait(&sk->sk_lock.wq, &wait); 3065 } 3066 3067 void __release_sock(struct sock *sk) 3068 __releases(&sk->sk_lock.slock) 3069 __acquires(&sk->sk_lock.slock) 3070 { 3071 struct sk_buff *skb, *next; 3072 3073 while ((skb = sk->sk_backlog.head) != NULL) { 3074 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 3075 3076 spin_unlock_bh(&sk->sk_lock.slock); 3077 3078 do { 3079 next = skb->next; 3080 prefetch(next); 3081 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 3082 skb_mark_not_on_list(skb); 3083 sk_backlog_rcv(sk, skb); 3084 3085 cond_resched(); 3086 3087 skb = next; 3088 } while (skb != NULL); 3089 3090 spin_lock_bh(&sk->sk_lock.slock); 3091 } 3092 3093 /* 3094 * Doing the zeroing here guarantee we can not loop forever 3095 * while a wild producer attempts to flood us. 3096 */ 3097 sk->sk_backlog.len = 0; 3098 } 3099 3100 void __sk_flush_backlog(struct sock *sk) 3101 { 3102 spin_lock_bh(&sk->sk_lock.slock); 3103 __release_sock(sk); 3104 3105 if (sk->sk_prot->release_cb) 3106 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3107 tcp_release_cb, sk); 3108 3109 spin_unlock_bh(&sk->sk_lock.slock); 3110 } 3111 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3112 3113 /** 3114 * sk_wait_data - wait for data to arrive at sk_receive_queue 3115 * @sk: sock to wait on 3116 * @timeo: for how long 3117 * @skb: last skb seen on sk_receive_queue 3118 * 3119 * Now socket state including sk->sk_err is changed only under lock, 3120 * hence we may omit checks after joining wait queue. 3121 * We check receive queue before schedule() only as optimization; 3122 * it is very likely that release_sock() added new data. 3123 */ 3124 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3125 { 3126 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3127 int rc; 3128 3129 add_wait_queue(sk_sleep(sk), &wait); 3130 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3131 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3132 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3133 remove_wait_queue(sk_sleep(sk), &wait); 3134 return rc; 3135 } 3136 EXPORT_SYMBOL(sk_wait_data); 3137 3138 /** 3139 * __sk_mem_raise_allocated - increase memory_allocated 3140 * @sk: socket 3141 * @size: memory size to allocate 3142 * @amt: pages to allocate 3143 * @kind: allocation type 3144 * 3145 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3146 * 3147 * Unlike the globally shared limits among the sockets under same protocol, 3148 * consuming the budget of a memcg won't have direct effect on other ones. 3149 * So be optimistic about memcg's tolerance, and leave the callers to decide 3150 * whether or not to raise allocated through sk_under_memory_pressure() or 3151 * its variants. 3152 */ 3153 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3154 { 3155 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3156 struct proto *prot = sk->sk_prot; 3157 bool charged = false; 3158 long allocated; 3159 3160 sk_memory_allocated_add(sk, amt); 3161 allocated = sk_memory_allocated(sk); 3162 3163 if (memcg) { 3164 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3165 goto suppress_allocation; 3166 charged = true; 3167 } 3168 3169 /* Under limit. */ 3170 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3171 sk_leave_memory_pressure(sk); 3172 return 1; 3173 } 3174 3175 /* Under pressure. */ 3176 if (allocated > sk_prot_mem_limits(sk, 1)) 3177 sk_enter_memory_pressure(sk); 3178 3179 /* Over hard limit. */ 3180 if (allocated > sk_prot_mem_limits(sk, 2)) 3181 goto suppress_allocation; 3182 3183 /* Guarantee minimum buffer size under pressure (either global 3184 * or memcg) to make sure features described in RFC 7323 (TCP 3185 * Extensions for High Performance) work properly. 3186 * 3187 * This rule does NOT stand when exceeds global or memcg's hard 3188 * limit, or else a DoS attack can be taken place by spawning 3189 * lots of sockets whose usage are under minimum buffer size. 3190 */ 3191 if (kind == SK_MEM_RECV) { 3192 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3193 return 1; 3194 3195 } else { /* SK_MEM_SEND */ 3196 int wmem0 = sk_get_wmem0(sk, prot); 3197 3198 if (sk->sk_type == SOCK_STREAM) { 3199 if (sk->sk_wmem_queued < wmem0) 3200 return 1; 3201 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3202 return 1; 3203 } 3204 } 3205 3206 if (sk_has_memory_pressure(sk)) { 3207 u64 alloc; 3208 3209 /* The following 'average' heuristic is within the 3210 * scope of global accounting, so it only makes 3211 * sense for global memory pressure. 3212 */ 3213 if (!sk_under_global_memory_pressure(sk)) 3214 return 1; 3215 3216 /* Try to be fair among all the sockets under global 3217 * pressure by allowing the ones that below average 3218 * usage to raise. 3219 */ 3220 alloc = sk_sockets_allocated_read_positive(sk); 3221 if (sk_prot_mem_limits(sk, 2) > alloc * 3222 sk_mem_pages(sk->sk_wmem_queued + 3223 atomic_read(&sk->sk_rmem_alloc) + 3224 sk->sk_forward_alloc)) 3225 return 1; 3226 } 3227 3228 suppress_allocation: 3229 3230 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3231 sk_stream_moderate_sndbuf(sk); 3232 3233 /* Fail only if socket is _under_ its sndbuf. 3234 * In this case we cannot block, so that we have to fail. 3235 */ 3236 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3237 /* Force charge with __GFP_NOFAIL */ 3238 if (memcg && !charged) { 3239 mem_cgroup_charge_skmem(memcg, amt, 3240 gfp_memcg_charge() | __GFP_NOFAIL); 3241 } 3242 return 1; 3243 } 3244 } 3245 3246 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3247 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3248 3249 sk_memory_allocated_sub(sk, amt); 3250 3251 if (charged) 3252 mem_cgroup_uncharge_skmem(memcg, amt); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3259 * @sk: socket 3260 * @size: memory size to allocate 3261 * @kind: allocation type 3262 * 3263 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3264 * rmem allocation. This function assumes that protocols which have 3265 * memory_pressure use sk_wmem_queued as write buffer accounting. 3266 */ 3267 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3268 { 3269 int ret, amt = sk_mem_pages(size); 3270 3271 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3272 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3273 if (!ret) 3274 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3275 return ret; 3276 } 3277 EXPORT_SYMBOL(__sk_mem_schedule); 3278 3279 /** 3280 * __sk_mem_reduce_allocated - reclaim memory_allocated 3281 * @sk: socket 3282 * @amount: number of quanta 3283 * 3284 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3285 */ 3286 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3287 { 3288 sk_memory_allocated_sub(sk, amount); 3289 3290 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3291 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3292 3293 if (sk_under_global_memory_pressure(sk) && 3294 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3295 sk_leave_memory_pressure(sk); 3296 } 3297 3298 /** 3299 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3300 * @sk: socket 3301 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3302 */ 3303 void __sk_mem_reclaim(struct sock *sk, int amount) 3304 { 3305 amount >>= PAGE_SHIFT; 3306 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3307 __sk_mem_reduce_allocated(sk, amount); 3308 } 3309 EXPORT_SYMBOL(__sk_mem_reclaim); 3310 3311 int sk_set_peek_off(struct sock *sk, int val) 3312 { 3313 WRITE_ONCE(sk->sk_peek_off, val); 3314 return 0; 3315 } 3316 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3317 3318 /* 3319 * Set of default routines for initialising struct proto_ops when 3320 * the protocol does not support a particular function. In certain 3321 * cases where it makes no sense for a protocol to have a "do nothing" 3322 * function, some default processing is provided. 3323 */ 3324 3325 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3326 { 3327 return -EOPNOTSUPP; 3328 } 3329 EXPORT_SYMBOL(sock_no_bind); 3330 3331 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3332 int len, int flags) 3333 { 3334 return -EOPNOTSUPP; 3335 } 3336 EXPORT_SYMBOL(sock_no_connect); 3337 3338 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3339 { 3340 return -EOPNOTSUPP; 3341 } 3342 EXPORT_SYMBOL(sock_no_socketpair); 3343 3344 int sock_no_accept(struct socket *sock, struct socket *newsock, 3345 struct proto_accept_arg *arg) 3346 { 3347 return -EOPNOTSUPP; 3348 } 3349 EXPORT_SYMBOL(sock_no_accept); 3350 3351 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3352 int peer) 3353 { 3354 return -EOPNOTSUPP; 3355 } 3356 EXPORT_SYMBOL(sock_no_getname); 3357 3358 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3359 { 3360 return -EOPNOTSUPP; 3361 } 3362 EXPORT_SYMBOL(sock_no_ioctl); 3363 3364 int sock_no_listen(struct socket *sock, int backlog) 3365 { 3366 return -EOPNOTSUPP; 3367 } 3368 EXPORT_SYMBOL(sock_no_listen); 3369 3370 int sock_no_shutdown(struct socket *sock, int how) 3371 { 3372 return -EOPNOTSUPP; 3373 } 3374 EXPORT_SYMBOL(sock_no_shutdown); 3375 3376 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3377 { 3378 return -EOPNOTSUPP; 3379 } 3380 EXPORT_SYMBOL(sock_no_sendmsg); 3381 3382 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3383 { 3384 return -EOPNOTSUPP; 3385 } 3386 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3387 3388 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3389 int flags) 3390 { 3391 return -EOPNOTSUPP; 3392 } 3393 EXPORT_SYMBOL(sock_no_recvmsg); 3394 3395 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3396 { 3397 /* Mirror missing mmap method error code */ 3398 return -ENODEV; 3399 } 3400 EXPORT_SYMBOL(sock_no_mmap); 3401 3402 /* 3403 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3404 * various sock-based usage counts. 3405 */ 3406 void __receive_sock(struct file *file) 3407 { 3408 struct socket *sock; 3409 3410 sock = sock_from_file(file); 3411 if (sock) { 3412 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3413 sock_update_classid(&sock->sk->sk_cgrp_data); 3414 } 3415 } 3416 3417 /* 3418 * Default Socket Callbacks 3419 */ 3420 3421 static void sock_def_wakeup(struct sock *sk) 3422 { 3423 struct socket_wq *wq; 3424 3425 rcu_read_lock(); 3426 wq = rcu_dereference(sk->sk_wq); 3427 if (skwq_has_sleeper(wq)) 3428 wake_up_interruptible_all(&wq->wait); 3429 rcu_read_unlock(); 3430 } 3431 3432 static void sock_def_error_report(struct sock *sk) 3433 { 3434 struct socket_wq *wq; 3435 3436 rcu_read_lock(); 3437 wq = rcu_dereference(sk->sk_wq); 3438 if (skwq_has_sleeper(wq)) 3439 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3440 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); 3441 rcu_read_unlock(); 3442 } 3443 3444 void sock_def_readable(struct sock *sk) 3445 { 3446 struct socket_wq *wq; 3447 3448 trace_sk_data_ready(sk); 3449 3450 rcu_read_lock(); 3451 wq = rcu_dereference(sk->sk_wq); 3452 if (skwq_has_sleeper(wq)) 3453 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3454 EPOLLRDNORM | EPOLLRDBAND); 3455 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 3456 rcu_read_unlock(); 3457 } 3458 3459 static void sock_def_write_space(struct sock *sk) 3460 { 3461 struct socket_wq *wq; 3462 3463 rcu_read_lock(); 3464 3465 /* Do not wake up a writer until he can make "significant" 3466 * progress. --DaveM 3467 */ 3468 if (sock_writeable(sk)) { 3469 wq = rcu_dereference(sk->sk_wq); 3470 if (skwq_has_sleeper(wq)) 3471 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3472 EPOLLWRNORM | EPOLLWRBAND); 3473 3474 /* Should agree with poll, otherwise some programs break */ 3475 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3476 } 3477 3478 rcu_read_unlock(); 3479 } 3480 3481 /* An optimised version of sock_def_write_space(), should only be called 3482 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3483 * ->sk_wmem_alloc. 3484 */ 3485 static void sock_def_write_space_wfree(struct sock *sk) 3486 { 3487 /* Do not wake up a writer until he can make "significant" 3488 * progress. --DaveM 3489 */ 3490 if (sock_writeable(sk)) { 3491 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3492 3493 /* rely on refcount_sub from sock_wfree() */ 3494 smp_mb__after_atomic(); 3495 if (wq && waitqueue_active(&wq->wait)) 3496 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3497 EPOLLWRNORM | EPOLLWRBAND); 3498 3499 /* Should agree with poll, otherwise some programs break */ 3500 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3501 } 3502 } 3503 3504 static void sock_def_destruct(struct sock *sk) 3505 { 3506 } 3507 3508 void sk_send_sigurg(struct sock *sk) 3509 { 3510 if (sk->sk_socket && sk->sk_socket->file) 3511 if (send_sigurg(sk->sk_socket->file)) 3512 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3513 } 3514 EXPORT_SYMBOL(sk_send_sigurg); 3515 3516 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3517 unsigned long expires) 3518 { 3519 if (!mod_timer(timer, expires)) 3520 sock_hold(sk); 3521 } 3522 EXPORT_SYMBOL(sk_reset_timer); 3523 3524 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3525 { 3526 if (del_timer(timer)) 3527 __sock_put(sk); 3528 } 3529 EXPORT_SYMBOL(sk_stop_timer); 3530 3531 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3532 { 3533 if (del_timer_sync(timer)) 3534 __sock_put(sk); 3535 } 3536 EXPORT_SYMBOL(sk_stop_timer_sync); 3537 3538 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3539 { 3540 sk_init_common(sk); 3541 sk->sk_send_head = NULL; 3542 3543 timer_setup(&sk->sk_timer, NULL, 0); 3544 3545 sk->sk_allocation = GFP_KERNEL; 3546 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3547 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3548 sk->sk_state = TCP_CLOSE; 3549 sk->sk_use_task_frag = true; 3550 sk_set_socket(sk, sock); 3551 3552 sock_set_flag(sk, SOCK_ZAPPED); 3553 3554 if (sock) { 3555 sk->sk_type = sock->type; 3556 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3557 sock->sk = sk; 3558 } else { 3559 RCU_INIT_POINTER(sk->sk_wq, NULL); 3560 } 3561 sk->sk_uid = uid; 3562 3563 sk->sk_state_change = sock_def_wakeup; 3564 sk->sk_data_ready = sock_def_readable; 3565 sk->sk_write_space = sock_def_write_space; 3566 sk->sk_error_report = sock_def_error_report; 3567 sk->sk_destruct = sock_def_destruct; 3568 3569 sk->sk_frag.page = NULL; 3570 sk->sk_frag.offset = 0; 3571 sk->sk_peek_off = -1; 3572 3573 sk->sk_peer_pid = NULL; 3574 sk->sk_peer_cred = NULL; 3575 spin_lock_init(&sk->sk_peer_lock); 3576 3577 sk->sk_write_pending = 0; 3578 sk->sk_rcvlowat = 1; 3579 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3580 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3581 3582 sk->sk_stamp = SK_DEFAULT_STAMP; 3583 #if BITS_PER_LONG==32 3584 seqlock_init(&sk->sk_stamp_seq); 3585 #endif 3586 atomic_set(&sk->sk_zckey, 0); 3587 3588 #ifdef CONFIG_NET_RX_BUSY_POLL 3589 sk->sk_napi_id = 0; 3590 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3591 #endif 3592 3593 sk->sk_max_pacing_rate = ~0UL; 3594 sk->sk_pacing_rate = ~0UL; 3595 WRITE_ONCE(sk->sk_pacing_shift, 10); 3596 sk->sk_incoming_cpu = -1; 3597 3598 sk_rx_queue_clear(sk); 3599 /* 3600 * Before updating sk_refcnt, we must commit prior changes to memory 3601 * (Documentation/RCU/rculist_nulls.rst for details) 3602 */ 3603 smp_wmb(); 3604 refcount_set(&sk->sk_refcnt, 1); 3605 atomic_set(&sk->sk_drops, 0); 3606 } 3607 EXPORT_SYMBOL(sock_init_data_uid); 3608 3609 void sock_init_data(struct socket *sock, struct sock *sk) 3610 { 3611 kuid_t uid = sock ? 3612 SOCK_INODE(sock)->i_uid : 3613 make_kuid(sock_net(sk)->user_ns, 0); 3614 3615 sock_init_data_uid(sock, sk, uid); 3616 } 3617 EXPORT_SYMBOL(sock_init_data); 3618 3619 void lock_sock_nested(struct sock *sk, int subclass) 3620 { 3621 /* The sk_lock has mutex_lock() semantics here. */ 3622 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3623 3624 might_sleep(); 3625 spin_lock_bh(&sk->sk_lock.slock); 3626 if (sock_owned_by_user_nocheck(sk)) 3627 __lock_sock(sk); 3628 sk->sk_lock.owned = 1; 3629 spin_unlock_bh(&sk->sk_lock.slock); 3630 } 3631 EXPORT_SYMBOL(lock_sock_nested); 3632 3633 void release_sock(struct sock *sk) 3634 { 3635 spin_lock_bh(&sk->sk_lock.slock); 3636 if (sk->sk_backlog.tail) 3637 __release_sock(sk); 3638 3639 if (sk->sk_prot->release_cb) 3640 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3641 tcp_release_cb, sk); 3642 3643 sock_release_ownership(sk); 3644 if (waitqueue_active(&sk->sk_lock.wq)) 3645 wake_up(&sk->sk_lock.wq); 3646 spin_unlock_bh(&sk->sk_lock.slock); 3647 } 3648 EXPORT_SYMBOL(release_sock); 3649 3650 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3651 { 3652 might_sleep(); 3653 spin_lock_bh(&sk->sk_lock.slock); 3654 3655 if (!sock_owned_by_user_nocheck(sk)) { 3656 /* 3657 * Fast path return with bottom halves disabled and 3658 * sock::sk_lock.slock held. 3659 * 3660 * The 'mutex' is not contended and holding 3661 * sock::sk_lock.slock prevents all other lockers to 3662 * proceed so the corresponding unlock_sock_fast() can 3663 * avoid the slow path of release_sock() completely and 3664 * just release slock. 3665 * 3666 * From a semantical POV this is equivalent to 'acquiring' 3667 * the 'mutex', hence the corresponding lockdep 3668 * mutex_release() has to happen in the fast path of 3669 * unlock_sock_fast(). 3670 */ 3671 return false; 3672 } 3673 3674 __lock_sock(sk); 3675 sk->sk_lock.owned = 1; 3676 __acquire(&sk->sk_lock.slock); 3677 spin_unlock_bh(&sk->sk_lock.slock); 3678 return true; 3679 } 3680 EXPORT_SYMBOL(__lock_sock_fast); 3681 3682 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3683 bool timeval, bool time32) 3684 { 3685 struct sock *sk = sock->sk; 3686 struct timespec64 ts; 3687 3688 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3689 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3690 if (ts.tv_sec == -1) 3691 return -ENOENT; 3692 if (ts.tv_sec == 0) { 3693 ktime_t kt = ktime_get_real(); 3694 sock_write_timestamp(sk, kt); 3695 ts = ktime_to_timespec64(kt); 3696 } 3697 3698 if (timeval) 3699 ts.tv_nsec /= 1000; 3700 3701 #ifdef CONFIG_COMPAT_32BIT_TIME 3702 if (time32) 3703 return put_old_timespec32(&ts, userstamp); 3704 #endif 3705 #ifdef CONFIG_SPARC64 3706 /* beware of padding in sparc64 timeval */ 3707 if (timeval && !in_compat_syscall()) { 3708 struct __kernel_old_timeval __user tv = { 3709 .tv_sec = ts.tv_sec, 3710 .tv_usec = ts.tv_nsec, 3711 }; 3712 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3713 return -EFAULT; 3714 return 0; 3715 } 3716 #endif 3717 return put_timespec64(&ts, userstamp); 3718 } 3719 EXPORT_SYMBOL(sock_gettstamp); 3720 3721 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3722 { 3723 if (!sock_flag(sk, flag)) { 3724 unsigned long previous_flags = sk->sk_flags; 3725 3726 sock_set_flag(sk, flag); 3727 /* 3728 * we just set one of the two flags which require net 3729 * time stamping, but time stamping might have been on 3730 * already because of the other one 3731 */ 3732 if (sock_needs_netstamp(sk) && 3733 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3734 net_enable_timestamp(); 3735 } 3736 } 3737 3738 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3739 int level, int type) 3740 { 3741 struct sock_exterr_skb *serr; 3742 struct sk_buff *skb; 3743 int copied, err; 3744 3745 err = -EAGAIN; 3746 skb = sock_dequeue_err_skb(sk); 3747 if (skb == NULL) 3748 goto out; 3749 3750 copied = skb->len; 3751 if (copied > len) { 3752 msg->msg_flags |= MSG_TRUNC; 3753 copied = len; 3754 } 3755 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3756 if (err) 3757 goto out_free_skb; 3758 3759 sock_recv_timestamp(msg, sk, skb); 3760 3761 serr = SKB_EXT_ERR(skb); 3762 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3763 3764 msg->msg_flags |= MSG_ERRQUEUE; 3765 err = copied; 3766 3767 out_free_skb: 3768 kfree_skb(skb); 3769 out: 3770 return err; 3771 } 3772 EXPORT_SYMBOL(sock_recv_errqueue); 3773 3774 /* 3775 * Get a socket option on an socket. 3776 * 3777 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3778 * asynchronous errors should be reported by getsockopt. We assume 3779 * this means if you specify SO_ERROR (otherwise what is the point of it). 3780 */ 3781 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3782 char __user *optval, int __user *optlen) 3783 { 3784 struct sock *sk = sock->sk; 3785 3786 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3787 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3788 } 3789 EXPORT_SYMBOL(sock_common_getsockopt); 3790 3791 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3792 int flags) 3793 { 3794 struct sock *sk = sock->sk; 3795 int addr_len = 0; 3796 int err; 3797 3798 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3799 if (err >= 0) 3800 msg->msg_namelen = addr_len; 3801 return err; 3802 } 3803 EXPORT_SYMBOL(sock_common_recvmsg); 3804 3805 /* 3806 * Set socket options on an inet socket. 3807 */ 3808 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3809 sockptr_t optval, unsigned int optlen) 3810 { 3811 struct sock *sk = sock->sk; 3812 3813 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3814 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3815 } 3816 EXPORT_SYMBOL(sock_common_setsockopt); 3817 3818 void sk_common_release(struct sock *sk) 3819 { 3820 if (sk->sk_prot->destroy) 3821 sk->sk_prot->destroy(sk); 3822 3823 /* 3824 * Observation: when sk_common_release is called, processes have 3825 * no access to socket. But net still has. 3826 * Step one, detach it from networking: 3827 * 3828 * A. Remove from hash tables. 3829 */ 3830 3831 sk->sk_prot->unhash(sk); 3832 3833 if (sk->sk_socket) 3834 sk->sk_socket->sk = NULL; 3835 3836 /* 3837 * In this point socket cannot receive new packets, but it is possible 3838 * that some packets are in flight because some CPU runs receiver and 3839 * did hash table lookup before we unhashed socket. They will achieve 3840 * receive queue and will be purged by socket destructor. 3841 * 3842 * Also we still have packets pending on receive queue and probably, 3843 * our own packets waiting in device queues. sock_destroy will drain 3844 * receive queue, but transmitted packets will delay socket destruction 3845 * until the last reference will be released. 3846 */ 3847 3848 sock_orphan(sk); 3849 3850 xfrm_sk_free_policy(sk); 3851 3852 sock_put(sk); 3853 } 3854 EXPORT_SYMBOL(sk_common_release); 3855 3856 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3857 { 3858 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3859 3860 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3861 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3862 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3863 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3864 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3865 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3866 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3867 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3868 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3869 } 3870 3871 #ifdef CONFIG_PROC_FS 3872 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3873 3874 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3875 { 3876 int cpu, idx = prot->inuse_idx; 3877 int res = 0; 3878 3879 for_each_possible_cpu(cpu) 3880 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3881 3882 return res >= 0 ? res : 0; 3883 } 3884 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3885 3886 int sock_inuse_get(struct net *net) 3887 { 3888 int cpu, res = 0; 3889 3890 for_each_possible_cpu(cpu) 3891 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3892 3893 return res; 3894 } 3895 3896 EXPORT_SYMBOL_GPL(sock_inuse_get); 3897 3898 static int __net_init sock_inuse_init_net(struct net *net) 3899 { 3900 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3901 if (net->core.prot_inuse == NULL) 3902 return -ENOMEM; 3903 return 0; 3904 } 3905 3906 static void __net_exit sock_inuse_exit_net(struct net *net) 3907 { 3908 free_percpu(net->core.prot_inuse); 3909 } 3910 3911 static struct pernet_operations net_inuse_ops = { 3912 .init = sock_inuse_init_net, 3913 .exit = sock_inuse_exit_net, 3914 }; 3915 3916 static __init int net_inuse_init(void) 3917 { 3918 if (register_pernet_subsys(&net_inuse_ops)) 3919 panic("Cannot initialize net inuse counters"); 3920 3921 return 0; 3922 } 3923 3924 core_initcall(net_inuse_init); 3925 3926 static int assign_proto_idx(struct proto *prot) 3927 { 3928 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3929 3930 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3931 pr_err("PROTO_INUSE_NR exhausted\n"); 3932 return -ENOSPC; 3933 } 3934 3935 set_bit(prot->inuse_idx, proto_inuse_idx); 3936 return 0; 3937 } 3938 3939 static void release_proto_idx(struct proto *prot) 3940 { 3941 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3942 clear_bit(prot->inuse_idx, proto_inuse_idx); 3943 } 3944 #else 3945 static inline int assign_proto_idx(struct proto *prot) 3946 { 3947 return 0; 3948 } 3949 3950 static inline void release_proto_idx(struct proto *prot) 3951 { 3952 } 3953 3954 #endif 3955 3956 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3957 { 3958 if (!twsk_prot) 3959 return; 3960 kfree(twsk_prot->twsk_slab_name); 3961 twsk_prot->twsk_slab_name = NULL; 3962 kmem_cache_destroy(twsk_prot->twsk_slab); 3963 twsk_prot->twsk_slab = NULL; 3964 } 3965 3966 static int tw_prot_init(const struct proto *prot) 3967 { 3968 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3969 3970 if (!twsk_prot) 3971 return 0; 3972 3973 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3974 prot->name); 3975 if (!twsk_prot->twsk_slab_name) 3976 return -ENOMEM; 3977 3978 twsk_prot->twsk_slab = 3979 kmem_cache_create(twsk_prot->twsk_slab_name, 3980 twsk_prot->twsk_obj_size, 0, 3981 SLAB_ACCOUNT | prot->slab_flags, 3982 NULL); 3983 if (!twsk_prot->twsk_slab) { 3984 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3985 prot->name); 3986 return -ENOMEM; 3987 } 3988 3989 return 0; 3990 } 3991 3992 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3993 { 3994 if (!rsk_prot) 3995 return; 3996 kfree(rsk_prot->slab_name); 3997 rsk_prot->slab_name = NULL; 3998 kmem_cache_destroy(rsk_prot->slab); 3999 rsk_prot->slab = NULL; 4000 } 4001 4002 static int req_prot_init(const struct proto *prot) 4003 { 4004 struct request_sock_ops *rsk_prot = prot->rsk_prot; 4005 4006 if (!rsk_prot) 4007 return 0; 4008 4009 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 4010 prot->name); 4011 if (!rsk_prot->slab_name) 4012 return -ENOMEM; 4013 4014 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 4015 rsk_prot->obj_size, 0, 4016 SLAB_ACCOUNT | prot->slab_flags, 4017 NULL); 4018 4019 if (!rsk_prot->slab) { 4020 pr_crit("%s: Can't create request sock SLAB cache!\n", 4021 prot->name); 4022 return -ENOMEM; 4023 } 4024 return 0; 4025 } 4026 4027 int proto_register(struct proto *prot, int alloc_slab) 4028 { 4029 int ret = -ENOBUFS; 4030 4031 if (prot->memory_allocated && !prot->sysctl_mem) { 4032 pr_err("%s: missing sysctl_mem\n", prot->name); 4033 return -EINVAL; 4034 } 4035 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 4036 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 4037 return -EINVAL; 4038 } 4039 if (alloc_slab) { 4040 prot->slab = kmem_cache_create_usercopy(prot->name, 4041 prot->obj_size, 0, 4042 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 4043 prot->slab_flags, 4044 prot->useroffset, prot->usersize, 4045 NULL); 4046 4047 if (prot->slab == NULL) { 4048 pr_crit("%s: Can't create sock SLAB cache!\n", 4049 prot->name); 4050 goto out; 4051 } 4052 4053 if (req_prot_init(prot)) 4054 goto out_free_request_sock_slab; 4055 4056 if (tw_prot_init(prot)) 4057 goto out_free_timewait_sock_slab; 4058 } 4059 4060 mutex_lock(&proto_list_mutex); 4061 ret = assign_proto_idx(prot); 4062 if (ret) { 4063 mutex_unlock(&proto_list_mutex); 4064 goto out_free_timewait_sock_slab; 4065 } 4066 list_add(&prot->node, &proto_list); 4067 mutex_unlock(&proto_list_mutex); 4068 return ret; 4069 4070 out_free_timewait_sock_slab: 4071 if (alloc_slab) 4072 tw_prot_cleanup(prot->twsk_prot); 4073 out_free_request_sock_slab: 4074 if (alloc_slab) { 4075 req_prot_cleanup(prot->rsk_prot); 4076 4077 kmem_cache_destroy(prot->slab); 4078 prot->slab = NULL; 4079 } 4080 out: 4081 return ret; 4082 } 4083 EXPORT_SYMBOL(proto_register); 4084 4085 void proto_unregister(struct proto *prot) 4086 { 4087 mutex_lock(&proto_list_mutex); 4088 release_proto_idx(prot); 4089 list_del(&prot->node); 4090 mutex_unlock(&proto_list_mutex); 4091 4092 kmem_cache_destroy(prot->slab); 4093 prot->slab = NULL; 4094 4095 req_prot_cleanup(prot->rsk_prot); 4096 tw_prot_cleanup(prot->twsk_prot); 4097 } 4098 EXPORT_SYMBOL(proto_unregister); 4099 4100 int sock_load_diag_module(int family, int protocol) 4101 { 4102 if (!protocol) { 4103 if (!sock_is_registered(family)) 4104 return -ENOENT; 4105 4106 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 4107 NETLINK_SOCK_DIAG, family); 4108 } 4109 4110 #ifdef CONFIG_INET 4111 if (family == AF_INET && 4112 protocol != IPPROTO_RAW && 4113 protocol < MAX_INET_PROTOS && 4114 !rcu_access_pointer(inet_protos[protocol])) 4115 return -ENOENT; 4116 #endif 4117 4118 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4119 NETLINK_SOCK_DIAG, family, protocol); 4120 } 4121 EXPORT_SYMBOL(sock_load_diag_module); 4122 4123 #ifdef CONFIG_PROC_FS 4124 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4125 __acquires(proto_list_mutex) 4126 { 4127 mutex_lock(&proto_list_mutex); 4128 return seq_list_start_head(&proto_list, *pos); 4129 } 4130 4131 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4132 { 4133 return seq_list_next(v, &proto_list, pos); 4134 } 4135 4136 static void proto_seq_stop(struct seq_file *seq, void *v) 4137 __releases(proto_list_mutex) 4138 { 4139 mutex_unlock(&proto_list_mutex); 4140 } 4141 4142 static char proto_method_implemented(const void *method) 4143 { 4144 return method == NULL ? 'n' : 'y'; 4145 } 4146 static long sock_prot_memory_allocated(struct proto *proto) 4147 { 4148 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4149 } 4150 4151 static const char *sock_prot_memory_pressure(struct proto *proto) 4152 { 4153 return proto->memory_pressure != NULL ? 4154 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4155 } 4156 4157 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4158 { 4159 4160 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4161 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4162 proto->name, 4163 proto->obj_size, 4164 sock_prot_inuse_get(seq_file_net(seq), proto), 4165 sock_prot_memory_allocated(proto), 4166 sock_prot_memory_pressure(proto), 4167 proto->max_header, 4168 proto->slab == NULL ? "no" : "yes", 4169 module_name(proto->owner), 4170 proto_method_implemented(proto->close), 4171 proto_method_implemented(proto->connect), 4172 proto_method_implemented(proto->disconnect), 4173 proto_method_implemented(proto->accept), 4174 proto_method_implemented(proto->ioctl), 4175 proto_method_implemented(proto->init), 4176 proto_method_implemented(proto->destroy), 4177 proto_method_implemented(proto->shutdown), 4178 proto_method_implemented(proto->setsockopt), 4179 proto_method_implemented(proto->getsockopt), 4180 proto_method_implemented(proto->sendmsg), 4181 proto_method_implemented(proto->recvmsg), 4182 proto_method_implemented(proto->bind), 4183 proto_method_implemented(proto->backlog_rcv), 4184 proto_method_implemented(proto->hash), 4185 proto_method_implemented(proto->unhash), 4186 proto_method_implemented(proto->get_port), 4187 proto_method_implemented(proto->enter_memory_pressure)); 4188 } 4189 4190 static int proto_seq_show(struct seq_file *seq, void *v) 4191 { 4192 if (v == &proto_list) 4193 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4194 "protocol", 4195 "size", 4196 "sockets", 4197 "memory", 4198 "press", 4199 "maxhdr", 4200 "slab", 4201 "module", 4202 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4203 else 4204 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4205 return 0; 4206 } 4207 4208 static const struct seq_operations proto_seq_ops = { 4209 .start = proto_seq_start, 4210 .next = proto_seq_next, 4211 .stop = proto_seq_stop, 4212 .show = proto_seq_show, 4213 }; 4214 4215 static __net_init int proto_init_net(struct net *net) 4216 { 4217 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4218 sizeof(struct seq_net_private))) 4219 return -ENOMEM; 4220 4221 return 0; 4222 } 4223 4224 static __net_exit void proto_exit_net(struct net *net) 4225 { 4226 remove_proc_entry("protocols", net->proc_net); 4227 } 4228 4229 4230 static __net_initdata struct pernet_operations proto_net_ops = { 4231 .init = proto_init_net, 4232 .exit = proto_exit_net, 4233 }; 4234 4235 static int __init proto_init(void) 4236 { 4237 return register_pernet_subsys(&proto_net_ops); 4238 } 4239 4240 subsys_initcall(proto_init); 4241 4242 #endif /* PROC_FS */ 4243 4244 #ifdef CONFIG_NET_RX_BUSY_POLL 4245 bool sk_busy_loop_end(void *p, unsigned long start_time) 4246 { 4247 struct sock *sk = p; 4248 4249 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4250 return true; 4251 4252 if (sk_is_udp(sk) && 4253 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4254 return true; 4255 4256 return sk_busy_loop_timeout(sk, start_time); 4257 } 4258 EXPORT_SYMBOL(sk_busy_loop_end); 4259 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4260 4261 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4262 { 4263 if (!sk->sk_prot->bind_add) 4264 return -EOPNOTSUPP; 4265 return sk->sk_prot->bind_add(sk, addr, addr_len); 4266 } 4267 EXPORT_SYMBOL(sock_bind_add); 4268 4269 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4270 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4271 void __user *arg, void *karg, size_t size) 4272 { 4273 int ret; 4274 4275 if (copy_from_user(karg, arg, size)) 4276 return -EFAULT; 4277 4278 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4279 if (ret) 4280 return ret; 4281 4282 if (copy_to_user(arg, karg, size)) 4283 return -EFAULT; 4284 4285 return 0; 4286 } 4287 EXPORT_SYMBOL(sock_ioctl_inout); 4288 4289 /* This is the most common ioctl prep function, where the result (4 bytes) is 4290 * copied back to userspace if the ioctl() returns successfully. No input is 4291 * copied from userspace as input argument. 4292 */ 4293 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4294 { 4295 int ret, karg = 0; 4296 4297 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4298 if (ret) 4299 return ret; 4300 4301 return put_user(karg, (int __user *)arg); 4302 } 4303 4304 /* A wrapper around sock ioctls, which copies the data from userspace 4305 * (depending on the protocol/ioctl), and copies back the result to userspace. 4306 * The main motivation for this function is to pass kernel memory to the 4307 * protocol ioctl callbacks, instead of userspace memory. 4308 */ 4309 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4310 { 4311 int rc = 1; 4312 4313 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4314 rc = ipmr_sk_ioctl(sk, cmd, arg); 4315 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4316 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4317 else if (sk_is_phonet(sk)) 4318 rc = phonet_sk_ioctl(sk, cmd, arg); 4319 4320 /* If ioctl was processed, returns its value */ 4321 if (rc <= 0) 4322 return rc; 4323 4324 /* Otherwise call the default handler */ 4325 return sock_ioctl_out(sk, cmd, arg); 4326 } 4327 EXPORT_SYMBOL(sk_ioctl); 4328 4329 static int __init sock_struct_check(void) 4330 { 4331 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); 4332 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); 4333 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); 4334 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); 4335 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); 4336 4337 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); 4338 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); 4339 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); 4340 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); 4341 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); 4342 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); 4343 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); 4344 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); 4345 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); 4346 4347 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); 4348 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); 4349 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); 4350 4351 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); 4352 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); 4353 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); 4354 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); 4355 4356 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4357 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4358 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); 4359 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); 4360 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); 4361 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); 4362 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); 4363 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); 4364 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); 4365 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); 4366 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); 4367 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); 4368 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); 4369 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); 4370 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); 4371 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); 4372 4373 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); 4374 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); 4375 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); 4376 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); 4377 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); 4378 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); 4379 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); 4380 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); 4381 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); 4382 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); 4383 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); 4384 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); 4385 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); 4386 return 0; 4387 } 4388 4389 core_initcall(sock_struct_check); 4390