1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <net/proto_memory.h> 131 #include <linux/net_tstamp.h> 132 #include <net/xfrm.h> 133 #include <linux/ipsec.h> 134 #include <net/cls_cgroup.h> 135 #include <net/netprio_cgroup.h> 136 #include <linux/sock_diag.h> 137 138 #include <linux/filter.h> 139 #include <net/sock_reuseport.h> 140 #include <net/bpf_sk_storage.h> 141 142 #include <trace/events/sock.h> 143 144 #include <net/tcp.h> 145 #include <net/busy_poll.h> 146 #include <net/phonet/phonet.h> 147 148 #include <linux/ethtool.h> 149 150 #include "dev.h" 151 152 static DEFINE_MUTEX(proto_list_mutex); 153 static LIST_HEAD(proto_list); 154 155 static void sock_def_write_space_wfree(struct sock *sk); 156 static void sock_def_write_space(struct sock *sk); 157 158 /** 159 * sk_ns_capable - General socket capability test 160 * @sk: Socket to use a capability on or through 161 * @user_ns: The user namespace of the capability to use 162 * @cap: The capability to use 163 * 164 * Test to see if the opener of the socket had when the socket was 165 * created and the current process has the capability @cap in the user 166 * namespace @user_ns. 167 */ 168 bool sk_ns_capable(const struct sock *sk, 169 struct user_namespace *user_ns, int cap) 170 { 171 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 172 ns_capable(user_ns, cap); 173 } 174 EXPORT_SYMBOL(sk_ns_capable); 175 176 /** 177 * sk_capable - Socket global capability test 178 * @sk: Socket to use a capability on or through 179 * @cap: The global capability to use 180 * 181 * Test to see if the opener of the socket had when the socket was 182 * created and the current process has the capability @cap in all user 183 * namespaces. 184 */ 185 bool sk_capable(const struct sock *sk, int cap) 186 { 187 return sk_ns_capable(sk, &init_user_ns, cap); 188 } 189 EXPORT_SYMBOL(sk_capable); 190 191 /** 192 * sk_net_capable - Network namespace socket capability test 193 * @sk: Socket to use a capability on or through 194 * @cap: The capability to use 195 * 196 * Test to see if the opener of the socket had when the socket was created 197 * and the current process has the capability @cap over the network namespace 198 * the socket is a member of. 199 */ 200 bool sk_net_capable(const struct sock *sk, int cap) 201 { 202 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 203 } 204 EXPORT_SYMBOL(sk_net_capable); 205 206 /* 207 * Each address family might have different locking rules, so we have 208 * one slock key per address family and separate keys for internal and 209 * userspace sockets. 210 */ 211 static struct lock_class_key af_family_keys[AF_MAX]; 212 static struct lock_class_key af_family_kern_keys[AF_MAX]; 213 static struct lock_class_key af_family_slock_keys[AF_MAX]; 214 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 215 216 /* 217 * Make lock validator output more readable. (we pre-construct these 218 * strings build-time, so that runtime initialization of socket 219 * locks is fast): 220 */ 221 222 #define _sock_locks(x) \ 223 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 224 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 225 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 226 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 227 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 228 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 229 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 230 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 231 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 232 x "27" , x "28" , x "AF_CAN" , \ 233 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 234 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 235 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 236 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 237 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 238 x "AF_MCTP" , \ 239 x "AF_MAX" 240 241 static const char *const af_family_key_strings[AF_MAX+1] = { 242 _sock_locks("sk_lock-") 243 }; 244 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 245 _sock_locks("slock-") 246 }; 247 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 248 _sock_locks("clock-") 249 }; 250 251 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 252 _sock_locks("k-sk_lock-") 253 }; 254 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 255 _sock_locks("k-slock-") 256 }; 257 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 258 _sock_locks("k-clock-") 259 }; 260 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 261 _sock_locks("rlock-") 262 }; 263 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 264 _sock_locks("wlock-") 265 }; 266 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 267 _sock_locks("elock-") 268 }; 269 270 /* 271 * sk_callback_lock and sk queues locking rules are per-address-family, 272 * so split the lock classes by using a per-AF key: 273 */ 274 static struct lock_class_key af_callback_keys[AF_MAX]; 275 static struct lock_class_key af_rlock_keys[AF_MAX]; 276 static struct lock_class_key af_wlock_keys[AF_MAX]; 277 static struct lock_class_key af_elock_keys[AF_MAX]; 278 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 279 280 /* Run time adjustable parameters. */ 281 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 282 EXPORT_SYMBOL(sysctl_wmem_max); 283 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 284 EXPORT_SYMBOL(sysctl_rmem_max); 285 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 286 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 287 288 int sysctl_tstamp_allow_data __read_mostly = 1; 289 290 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 291 EXPORT_SYMBOL_GPL(memalloc_socks_key); 292 293 /** 294 * sk_set_memalloc - sets %SOCK_MEMALLOC 295 * @sk: socket to set it on 296 * 297 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 298 * It's the responsibility of the admin to adjust min_free_kbytes 299 * to meet the requirements 300 */ 301 void sk_set_memalloc(struct sock *sk) 302 { 303 sock_set_flag(sk, SOCK_MEMALLOC); 304 sk->sk_allocation |= __GFP_MEMALLOC; 305 static_branch_inc(&memalloc_socks_key); 306 } 307 EXPORT_SYMBOL_GPL(sk_set_memalloc); 308 309 void sk_clear_memalloc(struct sock *sk) 310 { 311 sock_reset_flag(sk, SOCK_MEMALLOC); 312 sk->sk_allocation &= ~__GFP_MEMALLOC; 313 static_branch_dec(&memalloc_socks_key); 314 315 /* 316 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 317 * progress of swapping. SOCK_MEMALLOC may be cleared while 318 * it has rmem allocations due to the last swapfile being deactivated 319 * but there is a risk that the socket is unusable due to exceeding 320 * the rmem limits. Reclaim the reserves and obey rmem limits again. 321 */ 322 sk_mem_reclaim(sk); 323 } 324 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 325 326 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 327 { 328 int ret; 329 unsigned int noreclaim_flag; 330 331 /* these should have been dropped before queueing */ 332 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 333 334 noreclaim_flag = memalloc_noreclaim_save(); 335 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 336 tcp_v6_do_rcv, 337 tcp_v4_do_rcv, 338 sk, skb); 339 memalloc_noreclaim_restore(noreclaim_flag); 340 341 return ret; 342 } 343 EXPORT_SYMBOL(__sk_backlog_rcv); 344 345 void sk_error_report(struct sock *sk) 346 { 347 sk->sk_error_report(sk); 348 349 switch (sk->sk_family) { 350 case AF_INET: 351 fallthrough; 352 case AF_INET6: 353 trace_inet_sk_error_report(sk); 354 break; 355 default: 356 break; 357 } 358 } 359 EXPORT_SYMBOL(sk_error_report); 360 361 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 362 { 363 struct __kernel_sock_timeval tv; 364 365 if (timeo == MAX_SCHEDULE_TIMEOUT) { 366 tv.tv_sec = 0; 367 tv.tv_usec = 0; 368 } else { 369 tv.tv_sec = timeo / HZ; 370 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 371 } 372 373 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 374 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 375 *(struct old_timeval32 *)optval = tv32; 376 return sizeof(tv32); 377 } 378 379 if (old_timeval) { 380 struct __kernel_old_timeval old_tv; 381 old_tv.tv_sec = tv.tv_sec; 382 old_tv.tv_usec = tv.tv_usec; 383 *(struct __kernel_old_timeval *)optval = old_tv; 384 return sizeof(old_tv); 385 } 386 387 *(struct __kernel_sock_timeval *)optval = tv; 388 return sizeof(tv); 389 } 390 EXPORT_SYMBOL(sock_get_timeout); 391 392 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 393 sockptr_t optval, int optlen, bool old_timeval) 394 { 395 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 396 struct old_timeval32 tv32; 397 398 if (optlen < sizeof(tv32)) 399 return -EINVAL; 400 401 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 402 return -EFAULT; 403 tv->tv_sec = tv32.tv_sec; 404 tv->tv_usec = tv32.tv_usec; 405 } else if (old_timeval) { 406 struct __kernel_old_timeval old_tv; 407 408 if (optlen < sizeof(old_tv)) 409 return -EINVAL; 410 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 411 return -EFAULT; 412 tv->tv_sec = old_tv.tv_sec; 413 tv->tv_usec = old_tv.tv_usec; 414 } else { 415 if (optlen < sizeof(*tv)) 416 return -EINVAL; 417 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 418 return -EFAULT; 419 } 420 421 return 0; 422 } 423 EXPORT_SYMBOL(sock_copy_user_timeval); 424 425 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 426 bool old_timeval) 427 { 428 struct __kernel_sock_timeval tv; 429 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 430 long val; 431 432 if (err) 433 return err; 434 435 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 436 return -EDOM; 437 438 if (tv.tv_sec < 0) { 439 static int warned __read_mostly; 440 441 WRITE_ONCE(*timeo_p, 0); 442 if (warned < 10 && net_ratelimit()) { 443 warned++; 444 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 445 __func__, current->comm, task_pid_nr(current)); 446 } 447 return 0; 448 } 449 val = MAX_SCHEDULE_TIMEOUT; 450 if ((tv.tv_sec || tv.tv_usec) && 451 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 452 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 453 USEC_PER_SEC / HZ); 454 WRITE_ONCE(*timeo_p, val); 455 return 0; 456 } 457 458 static bool sock_needs_netstamp(const struct sock *sk) 459 { 460 switch (sk->sk_family) { 461 case AF_UNSPEC: 462 case AF_UNIX: 463 return false; 464 default: 465 return true; 466 } 467 } 468 469 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 470 { 471 if (sk->sk_flags & flags) { 472 sk->sk_flags &= ~flags; 473 if (sock_needs_netstamp(sk) && 474 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 475 net_disable_timestamp(); 476 } 477 } 478 479 480 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 481 { 482 unsigned long flags; 483 struct sk_buff_head *list = &sk->sk_receive_queue; 484 485 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { 486 atomic_inc(&sk->sk_drops); 487 trace_sock_rcvqueue_full(sk, skb); 488 return -ENOMEM; 489 } 490 491 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 492 atomic_inc(&sk->sk_drops); 493 return -ENOBUFS; 494 } 495 496 skb->dev = NULL; 497 skb_set_owner_r(skb, sk); 498 499 /* we escape from rcu protected region, make sure we dont leak 500 * a norefcounted dst 501 */ 502 skb_dst_force(skb); 503 504 spin_lock_irqsave(&list->lock, flags); 505 sock_skb_set_dropcount(sk, skb); 506 __skb_queue_tail(list, skb); 507 spin_unlock_irqrestore(&list->lock, flags); 508 509 if (!sock_flag(sk, SOCK_DEAD)) 510 sk->sk_data_ready(sk); 511 return 0; 512 } 513 EXPORT_SYMBOL(__sock_queue_rcv_skb); 514 515 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 516 enum skb_drop_reason *reason) 517 { 518 enum skb_drop_reason drop_reason; 519 int err; 520 521 err = sk_filter(sk, skb); 522 if (err) { 523 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 524 goto out; 525 } 526 err = __sock_queue_rcv_skb(sk, skb); 527 switch (err) { 528 case -ENOMEM: 529 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 530 break; 531 case -ENOBUFS: 532 drop_reason = SKB_DROP_REASON_PROTO_MEM; 533 break; 534 default: 535 drop_reason = SKB_NOT_DROPPED_YET; 536 break; 537 } 538 out: 539 if (reason) 540 *reason = drop_reason; 541 return err; 542 } 543 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 544 545 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 546 const int nested, unsigned int trim_cap, bool refcounted) 547 { 548 int rc = NET_RX_SUCCESS; 549 550 if (sk_filter_trim_cap(sk, skb, trim_cap)) 551 goto discard_and_relse; 552 553 skb->dev = NULL; 554 555 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { 556 atomic_inc(&sk->sk_drops); 557 goto discard_and_relse; 558 } 559 if (nested) 560 bh_lock_sock_nested(sk); 561 else 562 bh_lock_sock(sk); 563 if (!sock_owned_by_user(sk)) { 564 /* 565 * trylock + unlock semantics: 566 */ 567 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 568 569 rc = sk_backlog_rcv(sk, skb); 570 571 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 572 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 573 bh_unlock_sock(sk); 574 atomic_inc(&sk->sk_drops); 575 goto discard_and_relse; 576 } 577 578 bh_unlock_sock(sk); 579 out: 580 if (refcounted) 581 sock_put(sk); 582 return rc; 583 discard_and_relse: 584 kfree_skb(skb); 585 goto out; 586 } 587 EXPORT_SYMBOL(__sk_receive_skb); 588 589 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 590 u32)); 591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 592 u32)); 593 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 594 { 595 struct dst_entry *dst = __sk_dst_get(sk); 596 597 if (dst && dst->obsolete && 598 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 599 dst, cookie) == NULL) { 600 sk_tx_queue_clear(sk); 601 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 602 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 603 dst_release(dst); 604 return NULL; 605 } 606 607 return dst; 608 } 609 EXPORT_SYMBOL(__sk_dst_check); 610 611 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 612 { 613 struct dst_entry *dst = sk_dst_get(sk); 614 615 if (dst && dst->obsolete && 616 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 617 dst, cookie) == NULL) { 618 sk_dst_reset(sk); 619 dst_release(dst); 620 return NULL; 621 } 622 623 return dst; 624 } 625 EXPORT_SYMBOL(sk_dst_check); 626 627 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 628 { 629 int ret = -ENOPROTOOPT; 630 #ifdef CONFIG_NETDEVICES 631 struct net *net = sock_net(sk); 632 633 /* Sorry... */ 634 ret = -EPERM; 635 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 636 goto out; 637 638 ret = -EINVAL; 639 if (ifindex < 0) 640 goto out; 641 642 /* Paired with all READ_ONCE() done locklessly. */ 643 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 644 645 if (sk->sk_prot->rehash) 646 sk->sk_prot->rehash(sk); 647 sk_dst_reset(sk); 648 649 ret = 0; 650 651 out: 652 #endif 653 654 return ret; 655 } 656 657 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 658 { 659 int ret; 660 661 if (lock_sk) 662 lock_sock(sk); 663 ret = sock_bindtoindex_locked(sk, ifindex); 664 if (lock_sk) 665 release_sock(sk); 666 667 return ret; 668 } 669 EXPORT_SYMBOL(sock_bindtoindex); 670 671 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 672 { 673 int ret = -ENOPROTOOPT; 674 #ifdef CONFIG_NETDEVICES 675 struct net *net = sock_net(sk); 676 char devname[IFNAMSIZ]; 677 int index; 678 679 ret = -EINVAL; 680 if (optlen < 0) 681 goto out; 682 683 /* Bind this socket to a particular device like "eth0", 684 * as specified in the passed interface name. If the 685 * name is "" or the option length is zero the socket 686 * is not bound. 687 */ 688 if (optlen > IFNAMSIZ - 1) 689 optlen = IFNAMSIZ - 1; 690 memset(devname, 0, sizeof(devname)); 691 692 ret = -EFAULT; 693 if (copy_from_sockptr(devname, optval, optlen)) 694 goto out; 695 696 index = 0; 697 if (devname[0] != '\0') { 698 struct net_device *dev; 699 700 rcu_read_lock(); 701 dev = dev_get_by_name_rcu(net, devname); 702 if (dev) 703 index = dev->ifindex; 704 rcu_read_unlock(); 705 ret = -ENODEV; 706 if (!dev) 707 goto out; 708 } 709 710 sockopt_lock_sock(sk); 711 ret = sock_bindtoindex_locked(sk, index); 712 sockopt_release_sock(sk); 713 out: 714 #endif 715 716 return ret; 717 } 718 719 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 720 sockptr_t optlen, int len) 721 { 722 int ret = -ENOPROTOOPT; 723 #ifdef CONFIG_NETDEVICES 724 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 725 struct net *net = sock_net(sk); 726 char devname[IFNAMSIZ]; 727 728 if (bound_dev_if == 0) { 729 len = 0; 730 goto zero; 731 } 732 733 ret = -EINVAL; 734 if (len < IFNAMSIZ) 735 goto out; 736 737 ret = netdev_get_name(net, devname, bound_dev_if); 738 if (ret) 739 goto out; 740 741 len = strlen(devname) + 1; 742 743 ret = -EFAULT; 744 if (copy_to_sockptr(optval, devname, len)) 745 goto out; 746 747 zero: 748 ret = -EFAULT; 749 if (copy_to_sockptr(optlen, &len, sizeof(int))) 750 goto out; 751 752 ret = 0; 753 754 out: 755 #endif 756 757 return ret; 758 } 759 760 bool sk_mc_loop(const struct sock *sk) 761 { 762 if (dev_recursion_level()) 763 return false; 764 if (!sk) 765 return true; 766 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 767 switch (READ_ONCE(sk->sk_family)) { 768 case AF_INET: 769 return inet_test_bit(MC_LOOP, sk); 770 #if IS_ENABLED(CONFIG_IPV6) 771 case AF_INET6: 772 return inet6_test_bit(MC6_LOOP, sk); 773 #endif 774 } 775 WARN_ON_ONCE(1); 776 return true; 777 } 778 EXPORT_SYMBOL(sk_mc_loop); 779 780 void sock_set_reuseaddr(struct sock *sk) 781 { 782 lock_sock(sk); 783 sk->sk_reuse = SK_CAN_REUSE; 784 release_sock(sk); 785 } 786 EXPORT_SYMBOL(sock_set_reuseaddr); 787 788 void sock_set_reuseport(struct sock *sk) 789 { 790 lock_sock(sk); 791 sk->sk_reuseport = true; 792 release_sock(sk); 793 } 794 EXPORT_SYMBOL(sock_set_reuseport); 795 796 void sock_no_linger(struct sock *sk) 797 { 798 lock_sock(sk); 799 WRITE_ONCE(sk->sk_lingertime, 0); 800 sock_set_flag(sk, SOCK_LINGER); 801 release_sock(sk); 802 } 803 EXPORT_SYMBOL(sock_no_linger); 804 805 void sock_set_priority(struct sock *sk, u32 priority) 806 { 807 WRITE_ONCE(sk->sk_priority, priority); 808 } 809 EXPORT_SYMBOL(sock_set_priority); 810 811 void sock_set_sndtimeo(struct sock *sk, s64 secs) 812 { 813 lock_sock(sk); 814 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 815 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 816 else 817 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 818 release_sock(sk); 819 } 820 EXPORT_SYMBOL(sock_set_sndtimeo); 821 822 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 823 { 824 if (val) { 825 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 826 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 827 sock_set_flag(sk, SOCK_RCVTSTAMP); 828 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 829 } else { 830 sock_reset_flag(sk, SOCK_RCVTSTAMP); 831 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 832 } 833 } 834 835 void sock_enable_timestamps(struct sock *sk) 836 { 837 lock_sock(sk); 838 __sock_set_timestamps(sk, true, false, true); 839 release_sock(sk); 840 } 841 EXPORT_SYMBOL(sock_enable_timestamps); 842 843 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 844 { 845 switch (optname) { 846 case SO_TIMESTAMP_OLD: 847 __sock_set_timestamps(sk, valbool, false, false); 848 break; 849 case SO_TIMESTAMP_NEW: 850 __sock_set_timestamps(sk, valbool, true, false); 851 break; 852 case SO_TIMESTAMPNS_OLD: 853 __sock_set_timestamps(sk, valbool, false, true); 854 break; 855 case SO_TIMESTAMPNS_NEW: 856 __sock_set_timestamps(sk, valbool, true, true); 857 break; 858 } 859 } 860 861 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 862 { 863 struct net *net = sock_net(sk); 864 struct net_device *dev = NULL; 865 bool match = false; 866 int *vclock_index; 867 int i, num; 868 869 if (sk->sk_bound_dev_if) 870 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 871 872 if (!dev) { 873 pr_err("%s: sock not bind to device\n", __func__); 874 return -EOPNOTSUPP; 875 } 876 877 num = ethtool_get_phc_vclocks(dev, &vclock_index); 878 dev_put(dev); 879 880 for (i = 0; i < num; i++) { 881 if (*(vclock_index + i) == phc_index) { 882 match = true; 883 break; 884 } 885 } 886 887 if (num > 0) 888 kfree(vclock_index); 889 890 if (!match) 891 return -EINVAL; 892 893 WRITE_ONCE(sk->sk_bind_phc, phc_index); 894 895 return 0; 896 } 897 898 int sock_set_timestamping(struct sock *sk, int optname, 899 struct so_timestamping timestamping) 900 { 901 int val = timestamping.flags; 902 int ret; 903 904 if (val & ~SOF_TIMESTAMPING_MASK) 905 return -EINVAL; 906 907 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 908 !(val & SOF_TIMESTAMPING_OPT_ID)) 909 return -EINVAL; 910 911 if (val & SOF_TIMESTAMPING_OPT_ID && 912 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 913 if (sk_is_tcp(sk)) { 914 if ((1 << sk->sk_state) & 915 (TCPF_CLOSE | TCPF_LISTEN)) 916 return -EINVAL; 917 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 918 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 919 else 920 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 921 } else { 922 atomic_set(&sk->sk_tskey, 0); 923 } 924 } 925 926 if (val & SOF_TIMESTAMPING_OPT_STATS && 927 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 928 return -EINVAL; 929 930 if (val & SOF_TIMESTAMPING_BIND_PHC) { 931 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 932 if (ret) 933 return ret; 934 } 935 936 WRITE_ONCE(sk->sk_tsflags, val); 937 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 938 939 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 940 sock_enable_timestamp(sk, 941 SOCK_TIMESTAMPING_RX_SOFTWARE); 942 else 943 sock_disable_timestamp(sk, 944 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 945 return 0; 946 } 947 948 void sock_set_keepalive(struct sock *sk) 949 { 950 lock_sock(sk); 951 if (sk->sk_prot->keepalive) 952 sk->sk_prot->keepalive(sk, true); 953 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 954 release_sock(sk); 955 } 956 EXPORT_SYMBOL(sock_set_keepalive); 957 958 static void __sock_set_rcvbuf(struct sock *sk, int val) 959 { 960 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 961 * as a negative value. 962 */ 963 val = min_t(int, val, INT_MAX / 2); 964 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 965 966 /* We double it on the way in to account for "struct sk_buff" etc. 967 * overhead. Applications assume that the SO_RCVBUF setting they make 968 * will allow that much actual data to be received on that socket. 969 * 970 * Applications are unaware that "struct sk_buff" and other overheads 971 * allocate from the receive buffer during socket buffer allocation. 972 * 973 * And after considering the possible alternatives, returning the value 974 * we actually used in getsockopt is the most desirable behavior. 975 */ 976 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 977 } 978 979 void sock_set_rcvbuf(struct sock *sk, int val) 980 { 981 lock_sock(sk); 982 __sock_set_rcvbuf(sk, val); 983 release_sock(sk); 984 } 985 EXPORT_SYMBOL(sock_set_rcvbuf); 986 987 static void __sock_set_mark(struct sock *sk, u32 val) 988 { 989 if (val != sk->sk_mark) { 990 WRITE_ONCE(sk->sk_mark, val); 991 sk_dst_reset(sk); 992 } 993 } 994 995 void sock_set_mark(struct sock *sk, u32 val) 996 { 997 lock_sock(sk); 998 __sock_set_mark(sk, val); 999 release_sock(sk); 1000 } 1001 EXPORT_SYMBOL(sock_set_mark); 1002 1003 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1004 { 1005 /* Round down bytes to multiple of pages */ 1006 bytes = round_down(bytes, PAGE_SIZE); 1007 1008 WARN_ON(bytes > sk->sk_reserved_mem); 1009 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1010 sk_mem_reclaim(sk); 1011 } 1012 1013 static int sock_reserve_memory(struct sock *sk, int bytes) 1014 { 1015 long allocated; 1016 bool charged; 1017 int pages; 1018 1019 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1020 return -EOPNOTSUPP; 1021 1022 if (!bytes) 1023 return 0; 1024 1025 pages = sk_mem_pages(bytes); 1026 1027 /* pre-charge to memcg */ 1028 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1029 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1030 if (!charged) 1031 return -ENOMEM; 1032 1033 /* pre-charge to forward_alloc */ 1034 sk_memory_allocated_add(sk, pages); 1035 allocated = sk_memory_allocated(sk); 1036 /* If the system goes into memory pressure with this 1037 * precharge, give up and return error. 1038 */ 1039 if (allocated > sk_prot_mem_limits(sk, 1)) { 1040 sk_memory_allocated_sub(sk, pages); 1041 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1042 return -ENOMEM; 1043 } 1044 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1045 1046 WRITE_ONCE(sk->sk_reserved_mem, 1047 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1048 1049 return 0; 1050 } 1051 1052 void sockopt_lock_sock(struct sock *sk) 1053 { 1054 /* When current->bpf_ctx is set, the setsockopt is called from 1055 * a bpf prog. bpf has ensured the sk lock has been 1056 * acquired before calling setsockopt(). 1057 */ 1058 if (has_current_bpf_ctx()) 1059 return; 1060 1061 lock_sock(sk); 1062 } 1063 EXPORT_SYMBOL(sockopt_lock_sock); 1064 1065 void sockopt_release_sock(struct sock *sk) 1066 { 1067 if (has_current_bpf_ctx()) 1068 return; 1069 1070 release_sock(sk); 1071 } 1072 EXPORT_SYMBOL(sockopt_release_sock); 1073 1074 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1075 { 1076 return has_current_bpf_ctx() || ns_capable(ns, cap); 1077 } 1078 EXPORT_SYMBOL(sockopt_ns_capable); 1079 1080 bool sockopt_capable(int cap) 1081 { 1082 return has_current_bpf_ctx() || capable(cap); 1083 } 1084 EXPORT_SYMBOL(sockopt_capable); 1085 1086 /* 1087 * This is meant for all protocols to use and covers goings on 1088 * at the socket level. Everything here is generic. 1089 */ 1090 1091 int sk_setsockopt(struct sock *sk, int level, int optname, 1092 sockptr_t optval, unsigned int optlen) 1093 { 1094 struct so_timestamping timestamping; 1095 struct socket *sock = sk->sk_socket; 1096 struct sock_txtime sk_txtime; 1097 int val; 1098 int valbool; 1099 struct linger ling; 1100 int ret = 0; 1101 1102 /* 1103 * Options without arguments 1104 */ 1105 1106 if (optname == SO_BINDTODEVICE) 1107 return sock_setbindtodevice(sk, optval, optlen); 1108 1109 if (optlen < sizeof(int)) 1110 return -EINVAL; 1111 1112 if (copy_from_sockptr(&val, optval, sizeof(val))) 1113 return -EFAULT; 1114 1115 valbool = val ? 1 : 0; 1116 1117 /* handle options which do not require locking the socket. */ 1118 switch (optname) { 1119 case SO_PRIORITY: 1120 if ((val >= 0 && val <= 6) || 1121 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1122 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1123 sock_set_priority(sk, val); 1124 return 0; 1125 } 1126 return -EPERM; 1127 case SO_PASSSEC: 1128 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1129 return 0; 1130 case SO_PASSCRED: 1131 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1132 return 0; 1133 case SO_PASSPIDFD: 1134 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1135 return 0; 1136 case SO_TYPE: 1137 case SO_PROTOCOL: 1138 case SO_DOMAIN: 1139 case SO_ERROR: 1140 return -ENOPROTOOPT; 1141 #ifdef CONFIG_NET_RX_BUSY_POLL 1142 case SO_BUSY_POLL: 1143 if (val < 0) 1144 return -EINVAL; 1145 WRITE_ONCE(sk->sk_ll_usec, val); 1146 return 0; 1147 case SO_PREFER_BUSY_POLL: 1148 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1149 return -EPERM; 1150 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1151 return 0; 1152 case SO_BUSY_POLL_BUDGET: 1153 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1154 !sockopt_capable(CAP_NET_ADMIN)) 1155 return -EPERM; 1156 if (val < 0 || val > U16_MAX) 1157 return -EINVAL; 1158 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1159 return 0; 1160 #endif 1161 case SO_MAX_PACING_RATE: 1162 { 1163 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1164 unsigned long pacing_rate; 1165 1166 if (sizeof(ulval) != sizeof(val) && 1167 optlen >= sizeof(ulval) && 1168 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1169 return -EFAULT; 1170 } 1171 if (ulval != ~0UL) 1172 cmpxchg(&sk->sk_pacing_status, 1173 SK_PACING_NONE, 1174 SK_PACING_NEEDED); 1175 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1176 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1177 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1178 if (ulval < pacing_rate) 1179 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1180 return 0; 1181 } 1182 case SO_TXREHASH: 1183 if (val < -1 || val > 1) 1184 return -EINVAL; 1185 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1186 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1187 /* Paired with READ_ONCE() in tcp_rtx_synack() 1188 * and sk_getsockopt(). 1189 */ 1190 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1191 return 0; 1192 case SO_PEEK_OFF: 1193 { 1194 int (*set_peek_off)(struct sock *sk, int val); 1195 1196 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1197 if (set_peek_off) 1198 ret = set_peek_off(sk, val); 1199 else 1200 ret = -EOPNOTSUPP; 1201 return ret; 1202 } 1203 } 1204 1205 sockopt_lock_sock(sk); 1206 1207 switch (optname) { 1208 case SO_DEBUG: 1209 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1210 ret = -EACCES; 1211 else 1212 sock_valbool_flag(sk, SOCK_DBG, valbool); 1213 break; 1214 case SO_REUSEADDR: 1215 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1216 break; 1217 case SO_REUSEPORT: 1218 sk->sk_reuseport = valbool; 1219 break; 1220 case SO_DONTROUTE: 1221 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1222 sk_dst_reset(sk); 1223 break; 1224 case SO_BROADCAST: 1225 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1226 break; 1227 case SO_SNDBUF: 1228 /* Don't error on this BSD doesn't and if you think 1229 * about it this is right. Otherwise apps have to 1230 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1231 * are treated in BSD as hints 1232 */ 1233 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1234 set_sndbuf: 1235 /* Ensure val * 2 fits into an int, to prevent max_t() 1236 * from treating it as a negative value. 1237 */ 1238 val = min_t(int, val, INT_MAX / 2); 1239 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1240 WRITE_ONCE(sk->sk_sndbuf, 1241 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1242 /* Wake up sending tasks if we upped the value. */ 1243 sk->sk_write_space(sk); 1244 break; 1245 1246 case SO_SNDBUFFORCE: 1247 if (!sockopt_capable(CAP_NET_ADMIN)) { 1248 ret = -EPERM; 1249 break; 1250 } 1251 1252 /* No negative values (to prevent underflow, as val will be 1253 * multiplied by 2). 1254 */ 1255 if (val < 0) 1256 val = 0; 1257 goto set_sndbuf; 1258 1259 case SO_RCVBUF: 1260 /* Don't error on this BSD doesn't and if you think 1261 * about it this is right. Otherwise apps have to 1262 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1263 * are treated in BSD as hints 1264 */ 1265 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1266 break; 1267 1268 case SO_RCVBUFFORCE: 1269 if (!sockopt_capable(CAP_NET_ADMIN)) { 1270 ret = -EPERM; 1271 break; 1272 } 1273 1274 /* No negative values (to prevent underflow, as val will be 1275 * multiplied by 2). 1276 */ 1277 __sock_set_rcvbuf(sk, max(val, 0)); 1278 break; 1279 1280 case SO_KEEPALIVE: 1281 if (sk->sk_prot->keepalive) 1282 sk->sk_prot->keepalive(sk, valbool); 1283 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1284 break; 1285 1286 case SO_OOBINLINE: 1287 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1288 break; 1289 1290 case SO_NO_CHECK: 1291 sk->sk_no_check_tx = valbool; 1292 break; 1293 1294 case SO_LINGER: 1295 if (optlen < sizeof(ling)) { 1296 ret = -EINVAL; /* 1003.1g */ 1297 break; 1298 } 1299 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1300 ret = -EFAULT; 1301 break; 1302 } 1303 if (!ling.l_onoff) { 1304 sock_reset_flag(sk, SOCK_LINGER); 1305 } else { 1306 unsigned long t_sec = ling.l_linger; 1307 1308 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1309 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1310 else 1311 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1312 sock_set_flag(sk, SOCK_LINGER); 1313 } 1314 break; 1315 1316 case SO_BSDCOMPAT: 1317 break; 1318 1319 case SO_TIMESTAMP_OLD: 1320 case SO_TIMESTAMP_NEW: 1321 case SO_TIMESTAMPNS_OLD: 1322 case SO_TIMESTAMPNS_NEW: 1323 sock_set_timestamp(sk, optname, valbool); 1324 break; 1325 1326 case SO_TIMESTAMPING_NEW: 1327 case SO_TIMESTAMPING_OLD: 1328 if (optlen == sizeof(timestamping)) { 1329 if (copy_from_sockptr(×tamping, optval, 1330 sizeof(timestamping))) { 1331 ret = -EFAULT; 1332 break; 1333 } 1334 } else { 1335 memset(×tamping, 0, sizeof(timestamping)); 1336 timestamping.flags = val; 1337 } 1338 ret = sock_set_timestamping(sk, optname, timestamping); 1339 break; 1340 1341 case SO_RCVLOWAT: 1342 { 1343 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1344 1345 if (val < 0) 1346 val = INT_MAX; 1347 if (sock) 1348 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1349 if (set_rcvlowat) 1350 ret = set_rcvlowat(sk, val); 1351 else 1352 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1353 break; 1354 } 1355 case SO_RCVTIMEO_OLD: 1356 case SO_RCVTIMEO_NEW: 1357 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1358 optlen, optname == SO_RCVTIMEO_OLD); 1359 break; 1360 1361 case SO_SNDTIMEO_OLD: 1362 case SO_SNDTIMEO_NEW: 1363 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1364 optlen, optname == SO_SNDTIMEO_OLD); 1365 break; 1366 1367 case SO_ATTACH_FILTER: { 1368 struct sock_fprog fprog; 1369 1370 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1371 if (!ret) 1372 ret = sk_attach_filter(&fprog, sk); 1373 break; 1374 } 1375 case SO_ATTACH_BPF: 1376 ret = -EINVAL; 1377 if (optlen == sizeof(u32)) { 1378 u32 ufd; 1379 1380 ret = -EFAULT; 1381 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1382 break; 1383 1384 ret = sk_attach_bpf(ufd, sk); 1385 } 1386 break; 1387 1388 case SO_ATTACH_REUSEPORT_CBPF: { 1389 struct sock_fprog fprog; 1390 1391 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1392 if (!ret) 1393 ret = sk_reuseport_attach_filter(&fprog, sk); 1394 break; 1395 } 1396 case SO_ATTACH_REUSEPORT_EBPF: 1397 ret = -EINVAL; 1398 if (optlen == sizeof(u32)) { 1399 u32 ufd; 1400 1401 ret = -EFAULT; 1402 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1403 break; 1404 1405 ret = sk_reuseport_attach_bpf(ufd, sk); 1406 } 1407 break; 1408 1409 case SO_DETACH_REUSEPORT_BPF: 1410 ret = reuseport_detach_prog(sk); 1411 break; 1412 1413 case SO_DETACH_FILTER: 1414 ret = sk_detach_filter(sk); 1415 break; 1416 1417 case SO_LOCK_FILTER: 1418 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1419 ret = -EPERM; 1420 else 1421 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1422 break; 1423 1424 case SO_MARK: 1425 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1426 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1427 ret = -EPERM; 1428 break; 1429 } 1430 1431 __sock_set_mark(sk, val); 1432 break; 1433 case SO_RCVMARK: 1434 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1435 break; 1436 1437 case SO_RXQ_OVFL: 1438 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1439 break; 1440 1441 case SO_WIFI_STATUS: 1442 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1443 break; 1444 1445 case SO_NOFCS: 1446 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1447 break; 1448 1449 case SO_SELECT_ERR_QUEUE: 1450 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1451 break; 1452 1453 1454 case SO_INCOMING_CPU: 1455 reuseport_update_incoming_cpu(sk, val); 1456 break; 1457 1458 case SO_CNX_ADVICE: 1459 if (val == 1) 1460 dst_negative_advice(sk); 1461 break; 1462 1463 case SO_ZEROCOPY: 1464 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1465 if (!(sk_is_tcp(sk) || 1466 (sk->sk_type == SOCK_DGRAM && 1467 sk->sk_protocol == IPPROTO_UDP))) 1468 ret = -EOPNOTSUPP; 1469 } else if (sk->sk_family != PF_RDS) { 1470 ret = -EOPNOTSUPP; 1471 } 1472 if (!ret) { 1473 if (val < 0 || val > 1) 1474 ret = -EINVAL; 1475 else 1476 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1477 } 1478 break; 1479 1480 case SO_TXTIME: 1481 if (optlen != sizeof(struct sock_txtime)) { 1482 ret = -EINVAL; 1483 break; 1484 } else if (copy_from_sockptr(&sk_txtime, optval, 1485 sizeof(struct sock_txtime))) { 1486 ret = -EFAULT; 1487 break; 1488 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1489 ret = -EINVAL; 1490 break; 1491 } 1492 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1493 * scheduler has enough safe guards. 1494 */ 1495 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1496 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1497 ret = -EPERM; 1498 break; 1499 } 1500 sock_valbool_flag(sk, SOCK_TXTIME, true); 1501 sk->sk_clockid = sk_txtime.clockid; 1502 sk->sk_txtime_deadline_mode = 1503 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1504 sk->sk_txtime_report_errors = 1505 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1506 break; 1507 1508 case SO_BINDTOIFINDEX: 1509 ret = sock_bindtoindex_locked(sk, val); 1510 break; 1511 1512 case SO_BUF_LOCK: 1513 if (val & ~SOCK_BUF_LOCK_MASK) { 1514 ret = -EINVAL; 1515 break; 1516 } 1517 sk->sk_userlocks = val | (sk->sk_userlocks & 1518 ~SOCK_BUF_LOCK_MASK); 1519 break; 1520 1521 case SO_RESERVE_MEM: 1522 { 1523 int delta; 1524 1525 if (val < 0) { 1526 ret = -EINVAL; 1527 break; 1528 } 1529 1530 delta = val - sk->sk_reserved_mem; 1531 if (delta < 0) 1532 sock_release_reserved_memory(sk, -delta); 1533 else 1534 ret = sock_reserve_memory(sk, delta); 1535 break; 1536 } 1537 1538 default: 1539 ret = -ENOPROTOOPT; 1540 break; 1541 } 1542 sockopt_release_sock(sk); 1543 return ret; 1544 } 1545 1546 int sock_setsockopt(struct socket *sock, int level, int optname, 1547 sockptr_t optval, unsigned int optlen) 1548 { 1549 return sk_setsockopt(sock->sk, level, optname, 1550 optval, optlen); 1551 } 1552 EXPORT_SYMBOL(sock_setsockopt); 1553 1554 static const struct cred *sk_get_peer_cred(struct sock *sk) 1555 { 1556 const struct cred *cred; 1557 1558 spin_lock(&sk->sk_peer_lock); 1559 cred = get_cred(sk->sk_peer_cred); 1560 spin_unlock(&sk->sk_peer_lock); 1561 1562 return cred; 1563 } 1564 1565 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1566 struct ucred *ucred) 1567 { 1568 ucred->pid = pid_vnr(pid); 1569 ucred->uid = ucred->gid = -1; 1570 if (cred) { 1571 struct user_namespace *current_ns = current_user_ns(); 1572 1573 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1574 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1575 } 1576 } 1577 1578 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1579 { 1580 struct user_namespace *user_ns = current_user_ns(); 1581 int i; 1582 1583 for (i = 0; i < src->ngroups; i++) { 1584 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1585 1586 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1587 return -EFAULT; 1588 } 1589 1590 return 0; 1591 } 1592 1593 int sk_getsockopt(struct sock *sk, int level, int optname, 1594 sockptr_t optval, sockptr_t optlen) 1595 { 1596 struct socket *sock = sk->sk_socket; 1597 1598 union { 1599 int val; 1600 u64 val64; 1601 unsigned long ulval; 1602 struct linger ling; 1603 struct old_timeval32 tm32; 1604 struct __kernel_old_timeval tm; 1605 struct __kernel_sock_timeval stm; 1606 struct sock_txtime txtime; 1607 struct so_timestamping timestamping; 1608 } v; 1609 1610 int lv = sizeof(int); 1611 int len; 1612 1613 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1614 return -EFAULT; 1615 if (len < 0) 1616 return -EINVAL; 1617 1618 memset(&v, 0, sizeof(v)); 1619 1620 switch (optname) { 1621 case SO_DEBUG: 1622 v.val = sock_flag(sk, SOCK_DBG); 1623 break; 1624 1625 case SO_DONTROUTE: 1626 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1627 break; 1628 1629 case SO_BROADCAST: 1630 v.val = sock_flag(sk, SOCK_BROADCAST); 1631 break; 1632 1633 case SO_SNDBUF: 1634 v.val = READ_ONCE(sk->sk_sndbuf); 1635 break; 1636 1637 case SO_RCVBUF: 1638 v.val = READ_ONCE(sk->sk_rcvbuf); 1639 break; 1640 1641 case SO_REUSEADDR: 1642 v.val = sk->sk_reuse; 1643 break; 1644 1645 case SO_REUSEPORT: 1646 v.val = sk->sk_reuseport; 1647 break; 1648 1649 case SO_KEEPALIVE: 1650 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1651 break; 1652 1653 case SO_TYPE: 1654 v.val = sk->sk_type; 1655 break; 1656 1657 case SO_PROTOCOL: 1658 v.val = sk->sk_protocol; 1659 break; 1660 1661 case SO_DOMAIN: 1662 v.val = sk->sk_family; 1663 break; 1664 1665 case SO_ERROR: 1666 v.val = -sock_error(sk); 1667 if (v.val == 0) 1668 v.val = xchg(&sk->sk_err_soft, 0); 1669 break; 1670 1671 case SO_OOBINLINE: 1672 v.val = sock_flag(sk, SOCK_URGINLINE); 1673 break; 1674 1675 case SO_NO_CHECK: 1676 v.val = sk->sk_no_check_tx; 1677 break; 1678 1679 case SO_PRIORITY: 1680 v.val = READ_ONCE(sk->sk_priority); 1681 break; 1682 1683 case SO_LINGER: 1684 lv = sizeof(v.ling); 1685 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1686 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1687 break; 1688 1689 case SO_BSDCOMPAT: 1690 break; 1691 1692 case SO_TIMESTAMP_OLD: 1693 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1694 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1695 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1696 break; 1697 1698 case SO_TIMESTAMPNS_OLD: 1699 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1700 break; 1701 1702 case SO_TIMESTAMP_NEW: 1703 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1704 break; 1705 1706 case SO_TIMESTAMPNS_NEW: 1707 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1708 break; 1709 1710 case SO_TIMESTAMPING_OLD: 1711 case SO_TIMESTAMPING_NEW: 1712 lv = sizeof(v.timestamping); 1713 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1714 * returning the flags when they were set through the same option. 1715 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1716 */ 1717 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1718 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1719 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1720 } 1721 break; 1722 1723 case SO_RCVTIMEO_OLD: 1724 case SO_RCVTIMEO_NEW: 1725 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1726 SO_RCVTIMEO_OLD == optname); 1727 break; 1728 1729 case SO_SNDTIMEO_OLD: 1730 case SO_SNDTIMEO_NEW: 1731 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1732 SO_SNDTIMEO_OLD == optname); 1733 break; 1734 1735 case SO_RCVLOWAT: 1736 v.val = READ_ONCE(sk->sk_rcvlowat); 1737 break; 1738 1739 case SO_SNDLOWAT: 1740 v.val = 1; 1741 break; 1742 1743 case SO_PASSCRED: 1744 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1745 break; 1746 1747 case SO_PASSPIDFD: 1748 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1749 break; 1750 1751 case SO_PEERCRED: 1752 { 1753 struct ucred peercred; 1754 if (len > sizeof(peercred)) 1755 len = sizeof(peercred); 1756 1757 spin_lock(&sk->sk_peer_lock); 1758 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1759 spin_unlock(&sk->sk_peer_lock); 1760 1761 if (copy_to_sockptr(optval, &peercred, len)) 1762 return -EFAULT; 1763 goto lenout; 1764 } 1765 1766 case SO_PEERPIDFD: 1767 { 1768 struct pid *peer_pid; 1769 struct file *pidfd_file = NULL; 1770 int pidfd; 1771 1772 if (len > sizeof(pidfd)) 1773 len = sizeof(pidfd); 1774 1775 spin_lock(&sk->sk_peer_lock); 1776 peer_pid = get_pid(sk->sk_peer_pid); 1777 spin_unlock(&sk->sk_peer_lock); 1778 1779 if (!peer_pid) 1780 return -ENODATA; 1781 1782 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1783 put_pid(peer_pid); 1784 if (pidfd < 0) 1785 return pidfd; 1786 1787 if (copy_to_sockptr(optval, &pidfd, len) || 1788 copy_to_sockptr(optlen, &len, sizeof(int))) { 1789 put_unused_fd(pidfd); 1790 fput(pidfd_file); 1791 1792 return -EFAULT; 1793 } 1794 1795 fd_install(pidfd, pidfd_file); 1796 return 0; 1797 } 1798 1799 case SO_PEERGROUPS: 1800 { 1801 const struct cred *cred; 1802 int ret, n; 1803 1804 cred = sk_get_peer_cred(sk); 1805 if (!cred) 1806 return -ENODATA; 1807 1808 n = cred->group_info->ngroups; 1809 if (len < n * sizeof(gid_t)) { 1810 len = n * sizeof(gid_t); 1811 put_cred(cred); 1812 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1813 } 1814 len = n * sizeof(gid_t); 1815 1816 ret = groups_to_user(optval, cred->group_info); 1817 put_cred(cred); 1818 if (ret) 1819 return ret; 1820 goto lenout; 1821 } 1822 1823 case SO_PEERNAME: 1824 { 1825 struct sockaddr_storage address; 1826 1827 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1828 if (lv < 0) 1829 return -ENOTCONN; 1830 if (lv < len) 1831 return -EINVAL; 1832 if (copy_to_sockptr(optval, &address, len)) 1833 return -EFAULT; 1834 goto lenout; 1835 } 1836 1837 /* Dubious BSD thing... Probably nobody even uses it, but 1838 * the UNIX standard wants it for whatever reason... -DaveM 1839 */ 1840 case SO_ACCEPTCONN: 1841 v.val = sk->sk_state == TCP_LISTEN; 1842 break; 1843 1844 case SO_PASSSEC: 1845 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1846 break; 1847 1848 case SO_PEERSEC: 1849 return security_socket_getpeersec_stream(sock, 1850 optval, optlen, len); 1851 1852 case SO_MARK: 1853 v.val = READ_ONCE(sk->sk_mark); 1854 break; 1855 1856 case SO_RCVMARK: 1857 v.val = sock_flag(sk, SOCK_RCVMARK); 1858 break; 1859 1860 case SO_RXQ_OVFL: 1861 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1862 break; 1863 1864 case SO_WIFI_STATUS: 1865 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1866 break; 1867 1868 case SO_PEEK_OFF: 1869 if (!READ_ONCE(sock->ops)->set_peek_off) 1870 return -EOPNOTSUPP; 1871 1872 v.val = READ_ONCE(sk->sk_peek_off); 1873 break; 1874 case SO_NOFCS: 1875 v.val = sock_flag(sk, SOCK_NOFCS); 1876 break; 1877 1878 case SO_BINDTODEVICE: 1879 return sock_getbindtodevice(sk, optval, optlen, len); 1880 1881 case SO_GET_FILTER: 1882 len = sk_get_filter(sk, optval, len); 1883 if (len < 0) 1884 return len; 1885 1886 goto lenout; 1887 1888 case SO_LOCK_FILTER: 1889 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1890 break; 1891 1892 case SO_BPF_EXTENSIONS: 1893 v.val = bpf_tell_extensions(); 1894 break; 1895 1896 case SO_SELECT_ERR_QUEUE: 1897 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1898 break; 1899 1900 #ifdef CONFIG_NET_RX_BUSY_POLL 1901 case SO_BUSY_POLL: 1902 v.val = READ_ONCE(sk->sk_ll_usec); 1903 break; 1904 case SO_PREFER_BUSY_POLL: 1905 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1906 break; 1907 #endif 1908 1909 case SO_MAX_PACING_RATE: 1910 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1911 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1912 lv = sizeof(v.ulval); 1913 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1914 } else { 1915 /* 32bit version */ 1916 v.val = min_t(unsigned long, ~0U, 1917 READ_ONCE(sk->sk_max_pacing_rate)); 1918 } 1919 break; 1920 1921 case SO_INCOMING_CPU: 1922 v.val = READ_ONCE(sk->sk_incoming_cpu); 1923 break; 1924 1925 case SO_MEMINFO: 1926 { 1927 u32 meminfo[SK_MEMINFO_VARS]; 1928 1929 sk_get_meminfo(sk, meminfo); 1930 1931 len = min_t(unsigned int, len, sizeof(meminfo)); 1932 if (copy_to_sockptr(optval, &meminfo, len)) 1933 return -EFAULT; 1934 1935 goto lenout; 1936 } 1937 1938 #ifdef CONFIG_NET_RX_BUSY_POLL 1939 case SO_INCOMING_NAPI_ID: 1940 v.val = READ_ONCE(sk->sk_napi_id); 1941 1942 /* aggregate non-NAPI IDs down to 0 */ 1943 if (v.val < MIN_NAPI_ID) 1944 v.val = 0; 1945 1946 break; 1947 #endif 1948 1949 case SO_COOKIE: 1950 lv = sizeof(u64); 1951 if (len < lv) 1952 return -EINVAL; 1953 v.val64 = sock_gen_cookie(sk); 1954 break; 1955 1956 case SO_ZEROCOPY: 1957 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1958 break; 1959 1960 case SO_TXTIME: 1961 lv = sizeof(v.txtime); 1962 v.txtime.clockid = sk->sk_clockid; 1963 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1964 SOF_TXTIME_DEADLINE_MODE : 0; 1965 v.txtime.flags |= sk->sk_txtime_report_errors ? 1966 SOF_TXTIME_REPORT_ERRORS : 0; 1967 break; 1968 1969 case SO_BINDTOIFINDEX: 1970 v.val = READ_ONCE(sk->sk_bound_dev_if); 1971 break; 1972 1973 case SO_NETNS_COOKIE: 1974 lv = sizeof(u64); 1975 if (len != lv) 1976 return -EINVAL; 1977 v.val64 = sock_net(sk)->net_cookie; 1978 break; 1979 1980 case SO_BUF_LOCK: 1981 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1982 break; 1983 1984 case SO_RESERVE_MEM: 1985 v.val = READ_ONCE(sk->sk_reserved_mem); 1986 break; 1987 1988 case SO_TXREHASH: 1989 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 1990 v.val = READ_ONCE(sk->sk_txrehash); 1991 break; 1992 1993 default: 1994 /* We implement the SO_SNDLOWAT etc to not be settable 1995 * (1003.1g 7). 1996 */ 1997 return -ENOPROTOOPT; 1998 } 1999 2000 if (len > lv) 2001 len = lv; 2002 if (copy_to_sockptr(optval, &v, len)) 2003 return -EFAULT; 2004 lenout: 2005 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2006 return -EFAULT; 2007 return 0; 2008 } 2009 2010 /* 2011 * Initialize an sk_lock. 2012 * 2013 * (We also register the sk_lock with the lock validator.) 2014 */ 2015 static inline void sock_lock_init(struct sock *sk) 2016 { 2017 if (sk->sk_kern_sock) 2018 sock_lock_init_class_and_name( 2019 sk, 2020 af_family_kern_slock_key_strings[sk->sk_family], 2021 af_family_kern_slock_keys + sk->sk_family, 2022 af_family_kern_key_strings[sk->sk_family], 2023 af_family_kern_keys + sk->sk_family); 2024 else 2025 sock_lock_init_class_and_name( 2026 sk, 2027 af_family_slock_key_strings[sk->sk_family], 2028 af_family_slock_keys + sk->sk_family, 2029 af_family_key_strings[sk->sk_family], 2030 af_family_keys + sk->sk_family); 2031 } 2032 2033 /* 2034 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2035 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2036 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2037 */ 2038 static void sock_copy(struct sock *nsk, const struct sock *osk) 2039 { 2040 const struct proto *prot = READ_ONCE(osk->sk_prot); 2041 #ifdef CONFIG_SECURITY_NETWORK 2042 void *sptr = nsk->sk_security; 2043 #endif 2044 2045 /* If we move sk_tx_queue_mapping out of the private section, 2046 * we must check if sk_tx_queue_clear() is called after 2047 * sock_copy() in sk_clone_lock(). 2048 */ 2049 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2050 offsetof(struct sock, sk_dontcopy_begin) || 2051 offsetof(struct sock, sk_tx_queue_mapping) >= 2052 offsetof(struct sock, sk_dontcopy_end)); 2053 2054 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2055 2056 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2057 prot->obj_size - offsetof(struct sock, sk_dontcopy_end), 2058 /* alloc is larger than struct, see sk_prot_alloc() */); 2059 2060 #ifdef CONFIG_SECURITY_NETWORK 2061 nsk->sk_security = sptr; 2062 security_sk_clone(osk, nsk); 2063 #endif 2064 } 2065 2066 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2067 int family) 2068 { 2069 struct sock *sk; 2070 struct kmem_cache *slab; 2071 2072 slab = prot->slab; 2073 if (slab != NULL) { 2074 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2075 if (!sk) 2076 return sk; 2077 if (want_init_on_alloc(priority)) 2078 sk_prot_clear_nulls(sk, prot->obj_size); 2079 } else 2080 sk = kmalloc(prot->obj_size, priority); 2081 2082 if (sk != NULL) { 2083 if (security_sk_alloc(sk, family, priority)) 2084 goto out_free; 2085 2086 if (!try_module_get(prot->owner)) 2087 goto out_free_sec; 2088 } 2089 2090 return sk; 2091 2092 out_free_sec: 2093 security_sk_free(sk); 2094 out_free: 2095 if (slab != NULL) 2096 kmem_cache_free(slab, sk); 2097 else 2098 kfree(sk); 2099 return NULL; 2100 } 2101 2102 static void sk_prot_free(struct proto *prot, struct sock *sk) 2103 { 2104 struct kmem_cache *slab; 2105 struct module *owner; 2106 2107 owner = prot->owner; 2108 slab = prot->slab; 2109 2110 cgroup_sk_free(&sk->sk_cgrp_data); 2111 mem_cgroup_sk_free(sk); 2112 security_sk_free(sk); 2113 if (slab != NULL) 2114 kmem_cache_free(slab, sk); 2115 else 2116 kfree(sk); 2117 module_put(owner); 2118 } 2119 2120 /** 2121 * sk_alloc - All socket objects are allocated here 2122 * @net: the applicable net namespace 2123 * @family: protocol family 2124 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2125 * @prot: struct proto associated with this new sock instance 2126 * @kern: is this to be a kernel socket? 2127 */ 2128 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2129 struct proto *prot, int kern) 2130 { 2131 struct sock *sk; 2132 2133 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2134 if (sk) { 2135 sk->sk_family = family; 2136 /* 2137 * See comment in struct sock definition to understand 2138 * why we need sk_prot_creator -acme 2139 */ 2140 sk->sk_prot = sk->sk_prot_creator = prot; 2141 sk->sk_kern_sock = kern; 2142 sock_lock_init(sk); 2143 sk->sk_net_refcnt = kern ? 0 : 1; 2144 if (likely(sk->sk_net_refcnt)) { 2145 get_net_track(net, &sk->ns_tracker, priority); 2146 sock_inuse_add(net, 1); 2147 } else { 2148 __netns_tracker_alloc(net, &sk->ns_tracker, 2149 false, priority); 2150 } 2151 2152 sock_net_set(sk, net); 2153 refcount_set(&sk->sk_wmem_alloc, 1); 2154 2155 mem_cgroup_sk_alloc(sk); 2156 cgroup_sk_alloc(&sk->sk_cgrp_data); 2157 sock_update_classid(&sk->sk_cgrp_data); 2158 sock_update_netprioidx(&sk->sk_cgrp_data); 2159 sk_tx_queue_clear(sk); 2160 } 2161 2162 return sk; 2163 } 2164 EXPORT_SYMBOL(sk_alloc); 2165 2166 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2167 * grace period. This is the case for UDP sockets and TCP listeners. 2168 */ 2169 static void __sk_destruct(struct rcu_head *head) 2170 { 2171 struct sock *sk = container_of(head, struct sock, sk_rcu); 2172 struct sk_filter *filter; 2173 2174 if (sk->sk_destruct) 2175 sk->sk_destruct(sk); 2176 2177 filter = rcu_dereference_check(sk->sk_filter, 2178 refcount_read(&sk->sk_wmem_alloc) == 0); 2179 if (filter) { 2180 sk_filter_uncharge(sk, filter); 2181 RCU_INIT_POINTER(sk->sk_filter, NULL); 2182 } 2183 2184 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2185 2186 #ifdef CONFIG_BPF_SYSCALL 2187 bpf_sk_storage_free(sk); 2188 #endif 2189 2190 if (atomic_read(&sk->sk_omem_alloc)) 2191 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2192 __func__, atomic_read(&sk->sk_omem_alloc)); 2193 2194 if (sk->sk_frag.page) { 2195 put_page(sk->sk_frag.page); 2196 sk->sk_frag.page = NULL; 2197 } 2198 2199 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2200 put_cred(sk->sk_peer_cred); 2201 put_pid(sk->sk_peer_pid); 2202 2203 if (likely(sk->sk_net_refcnt)) 2204 put_net_track(sock_net(sk), &sk->ns_tracker); 2205 else 2206 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2207 2208 sk_prot_free(sk->sk_prot_creator, sk); 2209 } 2210 2211 void sk_destruct(struct sock *sk) 2212 { 2213 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2214 2215 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2216 reuseport_detach_sock(sk); 2217 use_call_rcu = true; 2218 } 2219 2220 if (use_call_rcu) 2221 call_rcu(&sk->sk_rcu, __sk_destruct); 2222 else 2223 __sk_destruct(&sk->sk_rcu); 2224 } 2225 2226 static void __sk_free(struct sock *sk) 2227 { 2228 if (likely(sk->sk_net_refcnt)) 2229 sock_inuse_add(sock_net(sk), -1); 2230 2231 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2232 sock_diag_broadcast_destroy(sk); 2233 else 2234 sk_destruct(sk); 2235 } 2236 2237 void sk_free(struct sock *sk) 2238 { 2239 /* 2240 * We subtract one from sk_wmem_alloc and can know if 2241 * some packets are still in some tx queue. 2242 * If not null, sock_wfree() will call __sk_free(sk) later 2243 */ 2244 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2245 __sk_free(sk); 2246 } 2247 EXPORT_SYMBOL(sk_free); 2248 2249 static void sk_init_common(struct sock *sk) 2250 { 2251 skb_queue_head_init(&sk->sk_receive_queue); 2252 skb_queue_head_init(&sk->sk_write_queue); 2253 skb_queue_head_init(&sk->sk_error_queue); 2254 2255 rwlock_init(&sk->sk_callback_lock); 2256 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2257 af_rlock_keys + sk->sk_family, 2258 af_family_rlock_key_strings[sk->sk_family]); 2259 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2260 af_wlock_keys + sk->sk_family, 2261 af_family_wlock_key_strings[sk->sk_family]); 2262 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2263 af_elock_keys + sk->sk_family, 2264 af_family_elock_key_strings[sk->sk_family]); 2265 lockdep_set_class_and_name(&sk->sk_callback_lock, 2266 af_callback_keys + sk->sk_family, 2267 af_family_clock_key_strings[sk->sk_family]); 2268 } 2269 2270 /** 2271 * sk_clone_lock - clone a socket, and lock its clone 2272 * @sk: the socket to clone 2273 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2274 * 2275 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2276 */ 2277 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2278 { 2279 struct proto *prot = READ_ONCE(sk->sk_prot); 2280 struct sk_filter *filter; 2281 bool is_charged = true; 2282 struct sock *newsk; 2283 2284 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2285 if (!newsk) 2286 goto out; 2287 2288 sock_copy(newsk, sk); 2289 2290 newsk->sk_prot_creator = prot; 2291 2292 /* SANITY */ 2293 if (likely(newsk->sk_net_refcnt)) { 2294 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2295 sock_inuse_add(sock_net(newsk), 1); 2296 } else { 2297 /* Kernel sockets are not elevating the struct net refcount. 2298 * Instead, use a tracker to more easily detect if a layer 2299 * is not properly dismantling its kernel sockets at netns 2300 * destroy time. 2301 */ 2302 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2303 false, priority); 2304 } 2305 sk_node_init(&newsk->sk_node); 2306 sock_lock_init(newsk); 2307 bh_lock_sock(newsk); 2308 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2309 newsk->sk_backlog.len = 0; 2310 2311 atomic_set(&newsk->sk_rmem_alloc, 0); 2312 2313 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2314 refcount_set(&newsk->sk_wmem_alloc, 1); 2315 2316 atomic_set(&newsk->sk_omem_alloc, 0); 2317 sk_init_common(newsk); 2318 2319 newsk->sk_dst_cache = NULL; 2320 newsk->sk_dst_pending_confirm = 0; 2321 newsk->sk_wmem_queued = 0; 2322 newsk->sk_forward_alloc = 0; 2323 newsk->sk_reserved_mem = 0; 2324 atomic_set(&newsk->sk_drops, 0); 2325 newsk->sk_send_head = NULL; 2326 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2327 atomic_set(&newsk->sk_zckey, 0); 2328 2329 sock_reset_flag(newsk, SOCK_DONE); 2330 2331 /* sk->sk_memcg will be populated at accept() time */ 2332 newsk->sk_memcg = NULL; 2333 2334 cgroup_sk_clone(&newsk->sk_cgrp_data); 2335 2336 rcu_read_lock(); 2337 filter = rcu_dereference(sk->sk_filter); 2338 if (filter != NULL) 2339 /* though it's an empty new sock, the charging may fail 2340 * if sysctl_optmem_max was changed between creation of 2341 * original socket and cloning 2342 */ 2343 is_charged = sk_filter_charge(newsk, filter); 2344 RCU_INIT_POINTER(newsk->sk_filter, filter); 2345 rcu_read_unlock(); 2346 2347 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2348 /* We need to make sure that we don't uncharge the new 2349 * socket if we couldn't charge it in the first place 2350 * as otherwise we uncharge the parent's filter. 2351 */ 2352 if (!is_charged) 2353 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2354 sk_free_unlock_clone(newsk); 2355 newsk = NULL; 2356 goto out; 2357 } 2358 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2359 2360 if (bpf_sk_storage_clone(sk, newsk)) { 2361 sk_free_unlock_clone(newsk); 2362 newsk = NULL; 2363 goto out; 2364 } 2365 2366 /* Clear sk_user_data if parent had the pointer tagged 2367 * as not suitable for copying when cloning. 2368 */ 2369 if (sk_user_data_is_nocopy(newsk)) 2370 newsk->sk_user_data = NULL; 2371 2372 newsk->sk_err = 0; 2373 newsk->sk_err_soft = 0; 2374 newsk->sk_priority = 0; 2375 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2376 2377 /* Before updating sk_refcnt, we must commit prior changes to memory 2378 * (Documentation/RCU/rculist_nulls.rst for details) 2379 */ 2380 smp_wmb(); 2381 refcount_set(&newsk->sk_refcnt, 2); 2382 2383 sk_set_socket(newsk, NULL); 2384 sk_tx_queue_clear(newsk); 2385 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2386 2387 if (newsk->sk_prot->sockets_allocated) 2388 sk_sockets_allocated_inc(newsk); 2389 2390 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2391 net_enable_timestamp(); 2392 out: 2393 return newsk; 2394 } 2395 EXPORT_SYMBOL_GPL(sk_clone_lock); 2396 2397 void sk_free_unlock_clone(struct sock *sk) 2398 { 2399 /* It is still raw copy of parent, so invalidate 2400 * destructor and make plain sk_free() */ 2401 sk->sk_destruct = NULL; 2402 bh_unlock_sock(sk); 2403 sk_free(sk); 2404 } 2405 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2406 2407 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2408 { 2409 bool is_ipv6 = false; 2410 u32 max_size; 2411 2412 #if IS_ENABLED(CONFIG_IPV6) 2413 is_ipv6 = (sk->sk_family == AF_INET6 && 2414 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2415 #endif 2416 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2417 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2418 READ_ONCE(dst->dev->gso_ipv4_max_size); 2419 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2420 max_size = GSO_LEGACY_MAX_SIZE; 2421 2422 return max_size - (MAX_TCP_HEADER + 1); 2423 } 2424 2425 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2426 { 2427 u32 max_segs = 1; 2428 2429 sk->sk_route_caps = dst->dev->features; 2430 if (sk_is_tcp(sk)) 2431 sk->sk_route_caps |= NETIF_F_GSO; 2432 if (sk->sk_route_caps & NETIF_F_GSO) 2433 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2434 if (unlikely(sk->sk_gso_disabled)) 2435 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2436 if (sk_can_gso(sk)) { 2437 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2438 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2439 } else { 2440 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2441 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2442 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2443 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2444 } 2445 } 2446 sk->sk_gso_max_segs = max_segs; 2447 sk_dst_set(sk, dst); 2448 } 2449 EXPORT_SYMBOL_GPL(sk_setup_caps); 2450 2451 /* 2452 * Simple resource managers for sockets. 2453 */ 2454 2455 2456 /* 2457 * Write buffer destructor automatically called from kfree_skb. 2458 */ 2459 void sock_wfree(struct sk_buff *skb) 2460 { 2461 struct sock *sk = skb->sk; 2462 unsigned int len = skb->truesize; 2463 bool free; 2464 2465 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2466 if (sock_flag(sk, SOCK_RCU_FREE) && 2467 sk->sk_write_space == sock_def_write_space) { 2468 rcu_read_lock(); 2469 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2470 sock_def_write_space_wfree(sk); 2471 rcu_read_unlock(); 2472 if (unlikely(free)) 2473 __sk_free(sk); 2474 return; 2475 } 2476 2477 /* 2478 * Keep a reference on sk_wmem_alloc, this will be released 2479 * after sk_write_space() call 2480 */ 2481 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2482 sk->sk_write_space(sk); 2483 len = 1; 2484 } 2485 /* 2486 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2487 * could not do because of in-flight packets 2488 */ 2489 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2490 __sk_free(sk); 2491 } 2492 EXPORT_SYMBOL(sock_wfree); 2493 2494 /* This variant of sock_wfree() is used by TCP, 2495 * since it sets SOCK_USE_WRITE_QUEUE. 2496 */ 2497 void __sock_wfree(struct sk_buff *skb) 2498 { 2499 struct sock *sk = skb->sk; 2500 2501 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2502 __sk_free(sk); 2503 } 2504 2505 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2506 { 2507 skb_orphan(skb); 2508 skb->sk = sk; 2509 #ifdef CONFIG_INET 2510 if (unlikely(!sk_fullsock(sk))) { 2511 skb->destructor = sock_edemux; 2512 sock_hold(sk); 2513 return; 2514 } 2515 #endif 2516 skb->destructor = sock_wfree; 2517 skb_set_hash_from_sk(skb, sk); 2518 /* 2519 * We used to take a refcount on sk, but following operation 2520 * is enough to guarantee sk_free() wont free this sock until 2521 * all in-flight packets are completed 2522 */ 2523 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2524 } 2525 EXPORT_SYMBOL(skb_set_owner_w); 2526 2527 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2528 { 2529 /* Drivers depend on in-order delivery for crypto offload, 2530 * partial orphan breaks out-of-order-OK logic. 2531 */ 2532 if (skb_is_decrypted(skb)) 2533 return false; 2534 2535 return (skb->destructor == sock_wfree || 2536 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2537 } 2538 2539 /* This helper is used by netem, as it can hold packets in its 2540 * delay queue. We want to allow the owner socket to send more 2541 * packets, as if they were already TX completed by a typical driver. 2542 * But we also want to keep skb->sk set because some packet schedulers 2543 * rely on it (sch_fq for example). 2544 */ 2545 void skb_orphan_partial(struct sk_buff *skb) 2546 { 2547 if (skb_is_tcp_pure_ack(skb)) 2548 return; 2549 2550 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2551 return; 2552 2553 skb_orphan(skb); 2554 } 2555 EXPORT_SYMBOL(skb_orphan_partial); 2556 2557 /* 2558 * Read buffer destructor automatically called from kfree_skb. 2559 */ 2560 void sock_rfree(struct sk_buff *skb) 2561 { 2562 struct sock *sk = skb->sk; 2563 unsigned int len = skb->truesize; 2564 2565 atomic_sub(len, &sk->sk_rmem_alloc); 2566 sk_mem_uncharge(sk, len); 2567 } 2568 EXPORT_SYMBOL(sock_rfree); 2569 2570 /* 2571 * Buffer destructor for skbs that are not used directly in read or write 2572 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2573 */ 2574 void sock_efree(struct sk_buff *skb) 2575 { 2576 sock_put(skb->sk); 2577 } 2578 EXPORT_SYMBOL(sock_efree); 2579 2580 /* Buffer destructor for prefetch/receive path where reference count may 2581 * not be held, e.g. for listen sockets. 2582 */ 2583 #ifdef CONFIG_INET 2584 void sock_pfree(struct sk_buff *skb) 2585 { 2586 struct sock *sk = skb->sk; 2587 2588 if (!sk_is_refcounted(sk)) 2589 return; 2590 2591 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { 2592 inet_reqsk(sk)->rsk_listener = NULL; 2593 reqsk_free(inet_reqsk(sk)); 2594 return; 2595 } 2596 2597 sock_gen_put(sk); 2598 } 2599 EXPORT_SYMBOL(sock_pfree); 2600 #endif /* CONFIG_INET */ 2601 2602 kuid_t sock_i_uid(struct sock *sk) 2603 { 2604 kuid_t uid; 2605 2606 read_lock_bh(&sk->sk_callback_lock); 2607 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2608 read_unlock_bh(&sk->sk_callback_lock); 2609 return uid; 2610 } 2611 EXPORT_SYMBOL(sock_i_uid); 2612 2613 unsigned long __sock_i_ino(struct sock *sk) 2614 { 2615 unsigned long ino; 2616 2617 read_lock(&sk->sk_callback_lock); 2618 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2619 read_unlock(&sk->sk_callback_lock); 2620 return ino; 2621 } 2622 EXPORT_SYMBOL(__sock_i_ino); 2623 2624 unsigned long sock_i_ino(struct sock *sk) 2625 { 2626 unsigned long ino; 2627 2628 local_bh_disable(); 2629 ino = __sock_i_ino(sk); 2630 local_bh_enable(); 2631 return ino; 2632 } 2633 EXPORT_SYMBOL(sock_i_ino); 2634 2635 /* 2636 * Allocate a skb from the socket's send buffer. 2637 */ 2638 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2639 gfp_t priority) 2640 { 2641 if (force || 2642 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2643 struct sk_buff *skb = alloc_skb(size, priority); 2644 2645 if (skb) { 2646 skb_set_owner_w(skb, sk); 2647 return skb; 2648 } 2649 } 2650 return NULL; 2651 } 2652 EXPORT_SYMBOL(sock_wmalloc); 2653 2654 static void sock_ofree(struct sk_buff *skb) 2655 { 2656 struct sock *sk = skb->sk; 2657 2658 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2659 } 2660 2661 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2662 gfp_t priority) 2663 { 2664 struct sk_buff *skb; 2665 2666 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2667 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2668 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2669 return NULL; 2670 2671 skb = alloc_skb(size, priority); 2672 if (!skb) 2673 return NULL; 2674 2675 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2676 skb->sk = sk; 2677 skb->destructor = sock_ofree; 2678 return skb; 2679 } 2680 2681 /* 2682 * Allocate a memory block from the socket's option memory buffer. 2683 */ 2684 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2685 { 2686 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2687 2688 if ((unsigned int)size <= optmem_max && 2689 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2690 void *mem; 2691 /* First do the add, to avoid the race if kmalloc 2692 * might sleep. 2693 */ 2694 atomic_add(size, &sk->sk_omem_alloc); 2695 mem = kmalloc(size, priority); 2696 if (mem) 2697 return mem; 2698 atomic_sub(size, &sk->sk_omem_alloc); 2699 } 2700 return NULL; 2701 } 2702 EXPORT_SYMBOL(sock_kmalloc); 2703 2704 /* Free an option memory block. Note, we actually want the inline 2705 * here as this allows gcc to detect the nullify and fold away the 2706 * condition entirely. 2707 */ 2708 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2709 const bool nullify) 2710 { 2711 if (WARN_ON_ONCE(!mem)) 2712 return; 2713 if (nullify) 2714 kfree_sensitive(mem); 2715 else 2716 kfree(mem); 2717 atomic_sub(size, &sk->sk_omem_alloc); 2718 } 2719 2720 void sock_kfree_s(struct sock *sk, void *mem, int size) 2721 { 2722 __sock_kfree_s(sk, mem, size, false); 2723 } 2724 EXPORT_SYMBOL(sock_kfree_s); 2725 2726 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2727 { 2728 __sock_kfree_s(sk, mem, size, true); 2729 } 2730 EXPORT_SYMBOL(sock_kzfree_s); 2731 2732 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2733 I think, these locks should be removed for datagram sockets. 2734 */ 2735 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2736 { 2737 DEFINE_WAIT(wait); 2738 2739 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2740 for (;;) { 2741 if (!timeo) 2742 break; 2743 if (signal_pending(current)) 2744 break; 2745 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2746 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2747 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2748 break; 2749 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2750 break; 2751 if (READ_ONCE(sk->sk_err)) 2752 break; 2753 timeo = schedule_timeout(timeo); 2754 } 2755 finish_wait(sk_sleep(sk), &wait); 2756 return timeo; 2757 } 2758 2759 2760 /* 2761 * Generic send/receive buffer handlers 2762 */ 2763 2764 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2765 unsigned long data_len, int noblock, 2766 int *errcode, int max_page_order) 2767 { 2768 struct sk_buff *skb; 2769 long timeo; 2770 int err; 2771 2772 timeo = sock_sndtimeo(sk, noblock); 2773 for (;;) { 2774 err = sock_error(sk); 2775 if (err != 0) 2776 goto failure; 2777 2778 err = -EPIPE; 2779 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2780 goto failure; 2781 2782 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2783 break; 2784 2785 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2786 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2787 err = -EAGAIN; 2788 if (!timeo) 2789 goto failure; 2790 if (signal_pending(current)) 2791 goto interrupted; 2792 timeo = sock_wait_for_wmem(sk, timeo); 2793 } 2794 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2795 errcode, sk->sk_allocation); 2796 if (skb) 2797 skb_set_owner_w(skb, sk); 2798 return skb; 2799 2800 interrupted: 2801 err = sock_intr_errno(timeo); 2802 failure: 2803 *errcode = err; 2804 return NULL; 2805 } 2806 EXPORT_SYMBOL(sock_alloc_send_pskb); 2807 2808 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2809 struct sockcm_cookie *sockc) 2810 { 2811 u32 tsflags; 2812 2813 switch (cmsg->cmsg_type) { 2814 case SO_MARK: 2815 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2816 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2817 return -EPERM; 2818 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2819 return -EINVAL; 2820 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2821 break; 2822 case SO_TIMESTAMPING_OLD: 2823 case SO_TIMESTAMPING_NEW: 2824 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2825 return -EINVAL; 2826 2827 tsflags = *(u32 *)CMSG_DATA(cmsg); 2828 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2829 return -EINVAL; 2830 2831 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2832 sockc->tsflags |= tsflags; 2833 break; 2834 case SCM_TXTIME: 2835 if (!sock_flag(sk, SOCK_TXTIME)) 2836 return -EINVAL; 2837 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2838 return -EINVAL; 2839 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2840 break; 2841 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2842 case SCM_RIGHTS: 2843 case SCM_CREDENTIALS: 2844 break; 2845 default: 2846 return -EINVAL; 2847 } 2848 return 0; 2849 } 2850 EXPORT_SYMBOL(__sock_cmsg_send); 2851 2852 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2853 struct sockcm_cookie *sockc) 2854 { 2855 struct cmsghdr *cmsg; 2856 int ret; 2857 2858 for_each_cmsghdr(cmsg, msg) { 2859 if (!CMSG_OK(msg, cmsg)) 2860 return -EINVAL; 2861 if (cmsg->cmsg_level != SOL_SOCKET) 2862 continue; 2863 ret = __sock_cmsg_send(sk, cmsg, sockc); 2864 if (ret) 2865 return ret; 2866 } 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(sock_cmsg_send); 2870 2871 static void sk_enter_memory_pressure(struct sock *sk) 2872 { 2873 if (!sk->sk_prot->enter_memory_pressure) 2874 return; 2875 2876 sk->sk_prot->enter_memory_pressure(sk); 2877 } 2878 2879 static void sk_leave_memory_pressure(struct sock *sk) 2880 { 2881 if (sk->sk_prot->leave_memory_pressure) { 2882 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2883 tcp_leave_memory_pressure, sk); 2884 } else { 2885 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2886 2887 if (memory_pressure && READ_ONCE(*memory_pressure)) 2888 WRITE_ONCE(*memory_pressure, 0); 2889 } 2890 } 2891 2892 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2893 2894 /** 2895 * skb_page_frag_refill - check that a page_frag contains enough room 2896 * @sz: minimum size of the fragment we want to get 2897 * @pfrag: pointer to page_frag 2898 * @gfp: priority for memory allocation 2899 * 2900 * Note: While this allocator tries to use high order pages, there is 2901 * no guarantee that allocations succeed. Therefore, @sz MUST be 2902 * less or equal than PAGE_SIZE. 2903 */ 2904 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2905 { 2906 if (pfrag->page) { 2907 if (page_ref_count(pfrag->page) == 1) { 2908 pfrag->offset = 0; 2909 return true; 2910 } 2911 if (pfrag->offset + sz <= pfrag->size) 2912 return true; 2913 put_page(pfrag->page); 2914 } 2915 2916 pfrag->offset = 0; 2917 if (SKB_FRAG_PAGE_ORDER && 2918 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2919 /* Avoid direct reclaim but allow kswapd to wake */ 2920 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2921 __GFP_COMP | __GFP_NOWARN | 2922 __GFP_NORETRY, 2923 SKB_FRAG_PAGE_ORDER); 2924 if (likely(pfrag->page)) { 2925 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2926 return true; 2927 } 2928 } 2929 pfrag->page = alloc_page(gfp); 2930 if (likely(pfrag->page)) { 2931 pfrag->size = PAGE_SIZE; 2932 return true; 2933 } 2934 return false; 2935 } 2936 EXPORT_SYMBOL(skb_page_frag_refill); 2937 2938 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2939 { 2940 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2941 return true; 2942 2943 sk_enter_memory_pressure(sk); 2944 sk_stream_moderate_sndbuf(sk); 2945 return false; 2946 } 2947 EXPORT_SYMBOL(sk_page_frag_refill); 2948 2949 void __lock_sock(struct sock *sk) 2950 __releases(&sk->sk_lock.slock) 2951 __acquires(&sk->sk_lock.slock) 2952 { 2953 DEFINE_WAIT(wait); 2954 2955 for (;;) { 2956 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2957 TASK_UNINTERRUPTIBLE); 2958 spin_unlock_bh(&sk->sk_lock.slock); 2959 schedule(); 2960 spin_lock_bh(&sk->sk_lock.slock); 2961 if (!sock_owned_by_user(sk)) 2962 break; 2963 } 2964 finish_wait(&sk->sk_lock.wq, &wait); 2965 } 2966 2967 void __release_sock(struct sock *sk) 2968 __releases(&sk->sk_lock.slock) 2969 __acquires(&sk->sk_lock.slock) 2970 { 2971 struct sk_buff *skb, *next; 2972 2973 while ((skb = sk->sk_backlog.head) != NULL) { 2974 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2975 2976 spin_unlock_bh(&sk->sk_lock.slock); 2977 2978 do { 2979 next = skb->next; 2980 prefetch(next); 2981 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2982 skb_mark_not_on_list(skb); 2983 sk_backlog_rcv(sk, skb); 2984 2985 cond_resched(); 2986 2987 skb = next; 2988 } while (skb != NULL); 2989 2990 spin_lock_bh(&sk->sk_lock.slock); 2991 } 2992 2993 /* 2994 * Doing the zeroing here guarantee we can not loop forever 2995 * while a wild producer attempts to flood us. 2996 */ 2997 sk->sk_backlog.len = 0; 2998 } 2999 3000 void __sk_flush_backlog(struct sock *sk) 3001 { 3002 spin_lock_bh(&sk->sk_lock.slock); 3003 __release_sock(sk); 3004 3005 if (sk->sk_prot->release_cb) 3006 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3007 tcp_release_cb, sk); 3008 3009 spin_unlock_bh(&sk->sk_lock.slock); 3010 } 3011 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3012 3013 /** 3014 * sk_wait_data - wait for data to arrive at sk_receive_queue 3015 * @sk: sock to wait on 3016 * @timeo: for how long 3017 * @skb: last skb seen on sk_receive_queue 3018 * 3019 * Now socket state including sk->sk_err is changed only under lock, 3020 * hence we may omit checks after joining wait queue. 3021 * We check receive queue before schedule() only as optimization; 3022 * it is very likely that release_sock() added new data. 3023 */ 3024 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3025 { 3026 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3027 int rc; 3028 3029 add_wait_queue(sk_sleep(sk), &wait); 3030 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3031 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3032 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3033 remove_wait_queue(sk_sleep(sk), &wait); 3034 return rc; 3035 } 3036 EXPORT_SYMBOL(sk_wait_data); 3037 3038 /** 3039 * __sk_mem_raise_allocated - increase memory_allocated 3040 * @sk: socket 3041 * @size: memory size to allocate 3042 * @amt: pages to allocate 3043 * @kind: allocation type 3044 * 3045 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3046 * 3047 * Unlike the globally shared limits among the sockets under same protocol, 3048 * consuming the budget of a memcg won't have direct effect on other ones. 3049 * So be optimistic about memcg's tolerance, and leave the callers to decide 3050 * whether or not to raise allocated through sk_under_memory_pressure() or 3051 * its variants. 3052 */ 3053 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3054 { 3055 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3056 struct proto *prot = sk->sk_prot; 3057 bool charged = false; 3058 long allocated; 3059 3060 sk_memory_allocated_add(sk, amt); 3061 allocated = sk_memory_allocated(sk); 3062 3063 if (memcg) { 3064 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3065 goto suppress_allocation; 3066 charged = true; 3067 } 3068 3069 /* Under limit. */ 3070 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3071 sk_leave_memory_pressure(sk); 3072 return 1; 3073 } 3074 3075 /* Under pressure. */ 3076 if (allocated > sk_prot_mem_limits(sk, 1)) 3077 sk_enter_memory_pressure(sk); 3078 3079 /* Over hard limit. */ 3080 if (allocated > sk_prot_mem_limits(sk, 2)) 3081 goto suppress_allocation; 3082 3083 /* Guarantee minimum buffer size under pressure (either global 3084 * or memcg) to make sure features described in RFC 7323 (TCP 3085 * Extensions for High Performance) work properly. 3086 * 3087 * This rule does NOT stand when exceeds global or memcg's hard 3088 * limit, or else a DoS attack can be taken place by spawning 3089 * lots of sockets whose usage are under minimum buffer size. 3090 */ 3091 if (kind == SK_MEM_RECV) { 3092 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3093 return 1; 3094 3095 } else { /* SK_MEM_SEND */ 3096 int wmem0 = sk_get_wmem0(sk, prot); 3097 3098 if (sk->sk_type == SOCK_STREAM) { 3099 if (sk->sk_wmem_queued < wmem0) 3100 return 1; 3101 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3102 return 1; 3103 } 3104 } 3105 3106 if (sk_has_memory_pressure(sk)) { 3107 u64 alloc; 3108 3109 /* The following 'average' heuristic is within the 3110 * scope of global accounting, so it only makes 3111 * sense for global memory pressure. 3112 */ 3113 if (!sk_under_global_memory_pressure(sk)) 3114 return 1; 3115 3116 /* Try to be fair among all the sockets under global 3117 * pressure by allowing the ones that below average 3118 * usage to raise. 3119 */ 3120 alloc = sk_sockets_allocated_read_positive(sk); 3121 if (sk_prot_mem_limits(sk, 2) > alloc * 3122 sk_mem_pages(sk->sk_wmem_queued + 3123 atomic_read(&sk->sk_rmem_alloc) + 3124 sk->sk_forward_alloc)) 3125 return 1; 3126 } 3127 3128 suppress_allocation: 3129 3130 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3131 sk_stream_moderate_sndbuf(sk); 3132 3133 /* Fail only if socket is _under_ its sndbuf. 3134 * In this case we cannot block, so that we have to fail. 3135 */ 3136 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3137 /* Force charge with __GFP_NOFAIL */ 3138 if (memcg && !charged) { 3139 mem_cgroup_charge_skmem(memcg, amt, 3140 gfp_memcg_charge() | __GFP_NOFAIL); 3141 } 3142 return 1; 3143 } 3144 } 3145 3146 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3147 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3148 3149 sk_memory_allocated_sub(sk, amt); 3150 3151 if (charged) 3152 mem_cgroup_uncharge_skmem(memcg, amt); 3153 3154 return 0; 3155 } 3156 3157 /** 3158 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3159 * @sk: socket 3160 * @size: memory size to allocate 3161 * @kind: allocation type 3162 * 3163 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3164 * rmem allocation. This function assumes that protocols which have 3165 * memory_pressure use sk_wmem_queued as write buffer accounting. 3166 */ 3167 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3168 { 3169 int ret, amt = sk_mem_pages(size); 3170 3171 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3172 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3173 if (!ret) 3174 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3175 return ret; 3176 } 3177 EXPORT_SYMBOL(__sk_mem_schedule); 3178 3179 /** 3180 * __sk_mem_reduce_allocated - reclaim memory_allocated 3181 * @sk: socket 3182 * @amount: number of quanta 3183 * 3184 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3185 */ 3186 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3187 { 3188 sk_memory_allocated_sub(sk, amount); 3189 3190 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3191 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3192 3193 if (sk_under_global_memory_pressure(sk) && 3194 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3195 sk_leave_memory_pressure(sk); 3196 } 3197 3198 /** 3199 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3200 * @sk: socket 3201 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3202 */ 3203 void __sk_mem_reclaim(struct sock *sk, int amount) 3204 { 3205 amount >>= PAGE_SHIFT; 3206 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3207 __sk_mem_reduce_allocated(sk, amount); 3208 } 3209 EXPORT_SYMBOL(__sk_mem_reclaim); 3210 3211 int sk_set_peek_off(struct sock *sk, int val) 3212 { 3213 WRITE_ONCE(sk->sk_peek_off, val); 3214 return 0; 3215 } 3216 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3217 3218 /* 3219 * Set of default routines for initialising struct proto_ops when 3220 * the protocol does not support a particular function. In certain 3221 * cases where it makes no sense for a protocol to have a "do nothing" 3222 * function, some default processing is provided. 3223 */ 3224 3225 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3226 { 3227 return -EOPNOTSUPP; 3228 } 3229 EXPORT_SYMBOL(sock_no_bind); 3230 3231 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3232 int len, int flags) 3233 { 3234 return -EOPNOTSUPP; 3235 } 3236 EXPORT_SYMBOL(sock_no_connect); 3237 3238 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3239 { 3240 return -EOPNOTSUPP; 3241 } 3242 EXPORT_SYMBOL(sock_no_socketpair); 3243 3244 int sock_no_accept(struct socket *sock, struct socket *newsock, 3245 struct proto_accept_arg *arg) 3246 { 3247 return -EOPNOTSUPP; 3248 } 3249 EXPORT_SYMBOL(sock_no_accept); 3250 3251 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3252 int peer) 3253 { 3254 return -EOPNOTSUPP; 3255 } 3256 EXPORT_SYMBOL(sock_no_getname); 3257 3258 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3259 { 3260 return -EOPNOTSUPP; 3261 } 3262 EXPORT_SYMBOL(sock_no_ioctl); 3263 3264 int sock_no_listen(struct socket *sock, int backlog) 3265 { 3266 return -EOPNOTSUPP; 3267 } 3268 EXPORT_SYMBOL(sock_no_listen); 3269 3270 int sock_no_shutdown(struct socket *sock, int how) 3271 { 3272 return -EOPNOTSUPP; 3273 } 3274 EXPORT_SYMBOL(sock_no_shutdown); 3275 3276 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3277 { 3278 return -EOPNOTSUPP; 3279 } 3280 EXPORT_SYMBOL(sock_no_sendmsg); 3281 3282 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3283 { 3284 return -EOPNOTSUPP; 3285 } 3286 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3287 3288 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3289 int flags) 3290 { 3291 return -EOPNOTSUPP; 3292 } 3293 EXPORT_SYMBOL(sock_no_recvmsg); 3294 3295 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3296 { 3297 /* Mirror missing mmap method error code */ 3298 return -ENODEV; 3299 } 3300 EXPORT_SYMBOL(sock_no_mmap); 3301 3302 /* 3303 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3304 * various sock-based usage counts. 3305 */ 3306 void __receive_sock(struct file *file) 3307 { 3308 struct socket *sock; 3309 3310 sock = sock_from_file(file); 3311 if (sock) { 3312 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3313 sock_update_classid(&sock->sk->sk_cgrp_data); 3314 } 3315 } 3316 3317 /* 3318 * Default Socket Callbacks 3319 */ 3320 3321 static void sock_def_wakeup(struct sock *sk) 3322 { 3323 struct socket_wq *wq; 3324 3325 rcu_read_lock(); 3326 wq = rcu_dereference(sk->sk_wq); 3327 if (skwq_has_sleeper(wq)) 3328 wake_up_interruptible_all(&wq->wait); 3329 rcu_read_unlock(); 3330 } 3331 3332 static void sock_def_error_report(struct sock *sk) 3333 { 3334 struct socket_wq *wq; 3335 3336 rcu_read_lock(); 3337 wq = rcu_dereference(sk->sk_wq); 3338 if (skwq_has_sleeper(wq)) 3339 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3340 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); 3341 rcu_read_unlock(); 3342 } 3343 3344 void sock_def_readable(struct sock *sk) 3345 { 3346 struct socket_wq *wq; 3347 3348 trace_sk_data_ready(sk); 3349 3350 rcu_read_lock(); 3351 wq = rcu_dereference(sk->sk_wq); 3352 if (skwq_has_sleeper(wq)) 3353 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3354 EPOLLRDNORM | EPOLLRDBAND); 3355 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 3356 rcu_read_unlock(); 3357 } 3358 3359 static void sock_def_write_space(struct sock *sk) 3360 { 3361 struct socket_wq *wq; 3362 3363 rcu_read_lock(); 3364 3365 /* Do not wake up a writer until he can make "significant" 3366 * progress. --DaveM 3367 */ 3368 if (sock_writeable(sk)) { 3369 wq = rcu_dereference(sk->sk_wq); 3370 if (skwq_has_sleeper(wq)) 3371 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3372 EPOLLWRNORM | EPOLLWRBAND); 3373 3374 /* Should agree with poll, otherwise some programs break */ 3375 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3376 } 3377 3378 rcu_read_unlock(); 3379 } 3380 3381 /* An optimised version of sock_def_write_space(), should only be called 3382 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3383 * ->sk_wmem_alloc. 3384 */ 3385 static void sock_def_write_space_wfree(struct sock *sk) 3386 { 3387 /* Do not wake up a writer until he can make "significant" 3388 * progress. --DaveM 3389 */ 3390 if (sock_writeable(sk)) { 3391 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3392 3393 /* rely on refcount_sub from sock_wfree() */ 3394 smp_mb__after_atomic(); 3395 if (wq && waitqueue_active(&wq->wait)) 3396 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3397 EPOLLWRNORM | EPOLLWRBAND); 3398 3399 /* Should agree with poll, otherwise some programs break */ 3400 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3401 } 3402 } 3403 3404 static void sock_def_destruct(struct sock *sk) 3405 { 3406 } 3407 3408 void sk_send_sigurg(struct sock *sk) 3409 { 3410 if (sk->sk_socket && sk->sk_socket->file) 3411 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3412 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3413 } 3414 EXPORT_SYMBOL(sk_send_sigurg); 3415 3416 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3417 unsigned long expires) 3418 { 3419 if (!mod_timer(timer, expires)) 3420 sock_hold(sk); 3421 } 3422 EXPORT_SYMBOL(sk_reset_timer); 3423 3424 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3425 { 3426 if (del_timer(timer)) 3427 __sock_put(sk); 3428 } 3429 EXPORT_SYMBOL(sk_stop_timer); 3430 3431 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3432 { 3433 if (del_timer_sync(timer)) 3434 __sock_put(sk); 3435 } 3436 EXPORT_SYMBOL(sk_stop_timer_sync); 3437 3438 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3439 { 3440 sk_init_common(sk); 3441 sk->sk_send_head = NULL; 3442 3443 timer_setup(&sk->sk_timer, NULL, 0); 3444 3445 sk->sk_allocation = GFP_KERNEL; 3446 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3447 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3448 sk->sk_state = TCP_CLOSE; 3449 sk->sk_use_task_frag = true; 3450 sk_set_socket(sk, sock); 3451 3452 sock_set_flag(sk, SOCK_ZAPPED); 3453 3454 if (sock) { 3455 sk->sk_type = sock->type; 3456 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3457 sock->sk = sk; 3458 } else { 3459 RCU_INIT_POINTER(sk->sk_wq, NULL); 3460 } 3461 sk->sk_uid = uid; 3462 3463 rwlock_init(&sk->sk_callback_lock); 3464 if (sk->sk_kern_sock) 3465 lockdep_set_class_and_name( 3466 &sk->sk_callback_lock, 3467 af_kern_callback_keys + sk->sk_family, 3468 af_family_kern_clock_key_strings[sk->sk_family]); 3469 else 3470 lockdep_set_class_and_name( 3471 &sk->sk_callback_lock, 3472 af_callback_keys + sk->sk_family, 3473 af_family_clock_key_strings[sk->sk_family]); 3474 3475 sk->sk_state_change = sock_def_wakeup; 3476 sk->sk_data_ready = sock_def_readable; 3477 sk->sk_write_space = sock_def_write_space; 3478 sk->sk_error_report = sock_def_error_report; 3479 sk->sk_destruct = sock_def_destruct; 3480 3481 sk->sk_frag.page = NULL; 3482 sk->sk_frag.offset = 0; 3483 sk->sk_peek_off = -1; 3484 3485 sk->sk_peer_pid = NULL; 3486 sk->sk_peer_cred = NULL; 3487 spin_lock_init(&sk->sk_peer_lock); 3488 3489 sk->sk_write_pending = 0; 3490 sk->sk_rcvlowat = 1; 3491 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3492 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3493 3494 sk->sk_stamp = SK_DEFAULT_STAMP; 3495 #if BITS_PER_LONG==32 3496 seqlock_init(&sk->sk_stamp_seq); 3497 #endif 3498 atomic_set(&sk->sk_zckey, 0); 3499 3500 #ifdef CONFIG_NET_RX_BUSY_POLL 3501 sk->sk_napi_id = 0; 3502 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3503 #endif 3504 3505 sk->sk_max_pacing_rate = ~0UL; 3506 sk->sk_pacing_rate = ~0UL; 3507 WRITE_ONCE(sk->sk_pacing_shift, 10); 3508 sk->sk_incoming_cpu = -1; 3509 3510 sk_rx_queue_clear(sk); 3511 /* 3512 * Before updating sk_refcnt, we must commit prior changes to memory 3513 * (Documentation/RCU/rculist_nulls.rst for details) 3514 */ 3515 smp_wmb(); 3516 refcount_set(&sk->sk_refcnt, 1); 3517 atomic_set(&sk->sk_drops, 0); 3518 } 3519 EXPORT_SYMBOL(sock_init_data_uid); 3520 3521 void sock_init_data(struct socket *sock, struct sock *sk) 3522 { 3523 kuid_t uid = sock ? 3524 SOCK_INODE(sock)->i_uid : 3525 make_kuid(sock_net(sk)->user_ns, 0); 3526 3527 sock_init_data_uid(sock, sk, uid); 3528 } 3529 EXPORT_SYMBOL(sock_init_data); 3530 3531 void lock_sock_nested(struct sock *sk, int subclass) 3532 { 3533 /* The sk_lock has mutex_lock() semantics here. */ 3534 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3535 3536 might_sleep(); 3537 spin_lock_bh(&sk->sk_lock.slock); 3538 if (sock_owned_by_user_nocheck(sk)) 3539 __lock_sock(sk); 3540 sk->sk_lock.owned = 1; 3541 spin_unlock_bh(&sk->sk_lock.slock); 3542 } 3543 EXPORT_SYMBOL(lock_sock_nested); 3544 3545 void release_sock(struct sock *sk) 3546 { 3547 spin_lock_bh(&sk->sk_lock.slock); 3548 if (sk->sk_backlog.tail) 3549 __release_sock(sk); 3550 3551 if (sk->sk_prot->release_cb) 3552 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3553 tcp_release_cb, sk); 3554 3555 sock_release_ownership(sk); 3556 if (waitqueue_active(&sk->sk_lock.wq)) 3557 wake_up(&sk->sk_lock.wq); 3558 spin_unlock_bh(&sk->sk_lock.slock); 3559 } 3560 EXPORT_SYMBOL(release_sock); 3561 3562 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3563 { 3564 might_sleep(); 3565 spin_lock_bh(&sk->sk_lock.slock); 3566 3567 if (!sock_owned_by_user_nocheck(sk)) { 3568 /* 3569 * Fast path return with bottom halves disabled and 3570 * sock::sk_lock.slock held. 3571 * 3572 * The 'mutex' is not contended and holding 3573 * sock::sk_lock.slock prevents all other lockers to 3574 * proceed so the corresponding unlock_sock_fast() can 3575 * avoid the slow path of release_sock() completely and 3576 * just release slock. 3577 * 3578 * From a semantical POV this is equivalent to 'acquiring' 3579 * the 'mutex', hence the corresponding lockdep 3580 * mutex_release() has to happen in the fast path of 3581 * unlock_sock_fast(). 3582 */ 3583 return false; 3584 } 3585 3586 __lock_sock(sk); 3587 sk->sk_lock.owned = 1; 3588 __acquire(&sk->sk_lock.slock); 3589 spin_unlock_bh(&sk->sk_lock.slock); 3590 return true; 3591 } 3592 EXPORT_SYMBOL(__lock_sock_fast); 3593 3594 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3595 bool timeval, bool time32) 3596 { 3597 struct sock *sk = sock->sk; 3598 struct timespec64 ts; 3599 3600 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3601 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3602 if (ts.tv_sec == -1) 3603 return -ENOENT; 3604 if (ts.tv_sec == 0) { 3605 ktime_t kt = ktime_get_real(); 3606 sock_write_timestamp(sk, kt); 3607 ts = ktime_to_timespec64(kt); 3608 } 3609 3610 if (timeval) 3611 ts.tv_nsec /= 1000; 3612 3613 #ifdef CONFIG_COMPAT_32BIT_TIME 3614 if (time32) 3615 return put_old_timespec32(&ts, userstamp); 3616 #endif 3617 #ifdef CONFIG_SPARC64 3618 /* beware of padding in sparc64 timeval */ 3619 if (timeval && !in_compat_syscall()) { 3620 struct __kernel_old_timeval __user tv = { 3621 .tv_sec = ts.tv_sec, 3622 .tv_usec = ts.tv_nsec, 3623 }; 3624 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3625 return -EFAULT; 3626 return 0; 3627 } 3628 #endif 3629 return put_timespec64(&ts, userstamp); 3630 } 3631 EXPORT_SYMBOL(sock_gettstamp); 3632 3633 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3634 { 3635 if (!sock_flag(sk, flag)) { 3636 unsigned long previous_flags = sk->sk_flags; 3637 3638 sock_set_flag(sk, flag); 3639 /* 3640 * we just set one of the two flags which require net 3641 * time stamping, but time stamping might have been on 3642 * already because of the other one 3643 */ 3644 if (sock_needs_netstamp(sk) && 3645 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3646 net_enable_timestamp(); 3647 } 3648 } 3649 3650 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3651 int level, int type) 3652 { 3653 struct sock_exterr_skb *serr; 3654 struct sk_buff *skb; 3655 int copied, err; 3656 3657 err = -EAGAIN; 3658 skb = sock_dequeue_err_skb(sk); 3659 if (skb == NULL) 3660 goto out; 3661 3662 copied = skb->len; 3663 if (copied > len) { 3664 msg->msg_flags |= MSG_TRUNC; 3665 copied = len; 3666 } 3667 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3668 if (err) 3669 goto out_free_skb; 3670 3671 sock_recv_timestamp(msg, sk, skb); 3672 3673 serr = SKB_EXT_ERR(skb); 3674 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3675 3676 msg->msg_flags |= MSG_ERRQUEUE; 3677 err = copied; 3678 3679 out_free_skb: 3680 kfree_skb(skb); 3681 out: 3682 return err; 3683 } 3684 EXPORT_SYMBOL(sock_recv_errqueue); 3685 3686 /* 3687 * Get a socket option on an socket. 3688 * 3689 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3690 * asynchronous errors should be reported by getsockopt. We assume 3691 * this means if you specify SO_ERROR (otherwise whats the point of it). 3692 */ 3693 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3694 char __user *optval, int __user *optlen) 3695 { 3696 struct sock *sk = sock->sk; 3697 3698 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3699 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3700 } 3701 EXPORT_SYMBOL(sock_common_getsockopt); 3702 3703 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3704 int flags) 3705 { 3706 struct sock *sk = sock->sk; 3707 int addr_len = 0; 3708 int err; 3709 3710 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3711 if (err >= 0) 3712 msg->msg_namelen = addr_len; 3713 return err; 3714 } 3715 EXPORT_SYMBOL(sock_common_recvmsg); 3716 3717 /* 3718 * Set socket options on an inet socket. 3719 */ 3720 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3721 sockptr_t optval, unsigned int optlen) 3722 { 3723 struct sock *sk = sock->sk; 3724 3725 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3726 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3727 } 3728 EXPORT_SYMBOL(sock_common_setsockopt); 3729 3730 void sk_common_release(struct sock *sk) 3731 { 3732 if (sk->sk_prot->destroy) 3733 sk->sk_prot->destroy(sk); 3734 3735 /* 3736 * Observation: when sk_common_release is called, processes have 3737 * no access to socket. But net still has. 3738 * Step one, detach it from networking: 3739 * 3740 * A. Remove from hash tables. 3741 */ 3742 3743 sk->sk_prot->unhash(sk); 3744 3745 if (sk->sk_socket) 3746 sk->sk_socket->sk = NULL; 3747 3748 /* 3749 * In this point socket cannot receive new packets, but it is possible 3750 * that some packets are in flight because some CPU runs receiver and 3751 * did hash table lookup before we unhashed socket. They will achieve 3752 * receive queue and will be purged by socket destructor. 3753 * 3754 * Also we still have packets pending on receive queue and probably, 3755 * our own packets waiting in device queues. sock_destroy will drain 3756 * receive queue, but transmitted packets will delay socket destruction 3757 * until the last reference will be released. 3758 */ 3759 3760 sock_orphan(sk); 3761 3762 xfrm_sk_free_policy(sk); 3763 3764 sock_put(sk); 3765 } 3766 EXPORT_SYMBOL(sk_common_release); 3767 3768 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3769 { 3770 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3771 3772 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3773 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3774 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3775 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3776 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3777 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3778 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3779 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3780 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3781 } 3782 3783 #ifdef CONFIG_PROC_FS 3784 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3785 3786 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3787 { 3788 int cpu, idx = prot->inuse_idx; 3789 int res = 0; 3790 3791 for_each_possible_cpu(cpu) 3792 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3793 3794 return res >= 0 ? res : 0; 3795 } 3796 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3797 3798 int sock_inuse_get(struct net *net) 3799 { 3800 int cpu, res = 0; 3801 3802 for_each_possible_cpu(cpu) 3803 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3804 3805 return res; 3806 } 3807 3808 EXPORT_SYMBOL_GPL(sock_inuse_get); 3809 3810 static int __net_init sock_inuse_init_net(struct net *net) 3811 { 3812 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3813 if (net->core.prot_inuse == NULL) 3814 return -ENOMEM; 3815 return 0; 3816 } 3817 3818 static void __net_exit sock_inuse_exit_net(struct net *net) 3819 { 3820 free_percpu(net->core.prot_inuse); 3821 } 3822 3823 static struct pernet_operations net_inuse_ops = { 3824 .init = sock_inuse_init_net, 3825 .exit = sock_inuse_exit_net, 3826 }; 3827 3828 static __init int net_inuse_init(void) 3829 { 3830 if (register_pernet_subsys(&net_inuse_ops)) 3831 panic("Cannot initialize net inuse counters"); 3832 3833 return 0; 3834 } 3835 3836 core_initcall(net_inuse_init); 3837 3838 static int assign_proto_idx(struct proto *prot) 3839 { 3840 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3841 3842 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3843 pr_err("PROTO_INUSE_NR exhausted\n"); 3844 return -ENOSPC; 3845 } 3846 3847 set_bit(prot->inuse_idx, proto_inuse_idx); 3848 return 0; 3849 } 3850 3851 static void release_proto_idx(struct proto *prot) 3852 { 3853 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3854 clear_bit(prot->inuse_idx, proto_inuse_idx); 3855 } 3856 #else 3857 static inline int assign_proto_idx(struct proto *prot) 3858 { 3859 return 0; 3860 } 3861 3862 static inline void release_proto_idx(struct proto *prot) 3863 { 3864 } 3865 3866 #endif 3867 3868 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3869 { 3870 if (!twsk_prot) 3871 return; 3872 kfree(twsk_prot->twsk_slab_name); 3873 twsk_prot->twsk_slab_name = NULL; 3874 kmem_cache_destroy(twsk_prot->twsk_slab); 3875 twsk_prot->twsk_slab = NULL; 3876 } 3877 3878 static int tw_prot_init(const struct proto *prot) 3879 { 3880 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3881 3882 if (!twsk_prot) 3883 return 0; 3884 3885 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3886 prot->name); 3887 if (!twsk_prot->twsk_slab_name) 3888 return -ENOMEM; 3889 3890 twsk_prot->twsk_slab = 3891 kmem_cache_create(twsk_prot->twsk_slab_name, 3892 twsk_prot->twsk_obj_size, 0, 3893 SLAB_ACCOUNT | prot->slab_flags, 3894 NULL); 3895 if (!twsk_prot->twsk_slab) { 3896 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3897 prot->name); 3898 return -ENOMEM; 3899 } 3900 3901 return 0; 3902 } 3903 3904 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3905 { 3906 if (!rsk_prot) 3907 return; 3908 kfree(rsk_prot->slab_name); 3909 rsk_prot->slab_name = NULL; 3910 kmem_cache_destroy(rsk_prot->slab); 3911 rsk_prot->slab = NULL; 3912 } 3913 3914 static int req_prot_init(const struct proto *prot) 3915 { 3916 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3917 3918 if (!rsk_prot) 3919 return 0; 3920 3921 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3922 prot->name); 3923 if (!rsk_prot->slab_name) 3924 return -ENOMEM; 3925 3926 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3927 rsk_prot->obj_size, 0, 3928 SLAB_ACCOUNT | prot->slab_flags, 3929 NULL); 3930 3931 if (!rsk_prot->slab) { 3932 pr_crit("%s: Can't create request sock SLAB cache!\n", 3933 prot->name); 3934 return -ENOMEM; 3935 } 3936 return 0; 3937 } 3938 3939 int proto_register(struct proto *prot, int alloc_slab) 3940 { 3941 int ret = -ENOBUFS; 3942 3943 if (prot->memory_allocated && !prot->sysctl_mem) { 3944 pr_err("%s: missing sysctl_mem\n", prot->name); 3945 return -EINVAL; 3946 } 3947 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3948 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3949 return -EINVAL; 3950 } 3951 if (alloc_slab) { 3952 prot->slab = kmem_cache_create_usercopy(prot->name, 3953 prot->obj_size, 0, 3954 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3955 prot->slab_flags, 3956 prot->useroffset, prot->usersize, 3957 NULL); 3958 3959 if (prot->slab == NULL) { 3960 pr_crit("%s: Can't create sock SLAB cache!\n", 3961 prot->name); 3962 goto out; 3963 } 3964 3965 if (req_prot_init(prot)) 3966 goto out_free_request_sock_slab; 3967 3968 if (tw_prot_init(prot)) 3969 goto out_free_timewait_sock_slab; 3970 } 3971 3972 mutex_lock(&proto_list_mutex); 3973 ret = assign_proto_idx(prot); 3974 if (ret) { 3975 mutex_unlock(&proto_list_mutex); 3976 goto out_free_timewait_sock_slab; 3977 } 3978 list_add(&prot->node, &proto_list); 3979 mutex_unlock(&proto_list_mutex); 3980 return ret; 3981 3982 out_free_timewait_sock_slab: 3983 if (alloc_slab) 3984 tw_prot_cleanup(prot->twsk_prot); 3985 out_free_request_sock_slab: 3986 if (alloc_slab) { 3987 req_prot_cleanup(prot->rsk_prot); 3988 3989 kmem_cache_destroy(prot->slab); 3990 prot->slab = NULL; 3991 } 3992 out: 3993 return ret; 3994 } 3995 EXPORT_SYMBOL(proto_register); 3996 3997 void proto_unregister(struct proto *prot) 3998 { 3999 mutex_lock(&proto_list_mutex); 4000 release_proto_idx(prot); 4001 list_del(&prot->node); 4002 mutex_unlock(&proto_list_mutex); 4003 4004 kmem_cache_destroy(prot->slab); 4005 prot->slab = NULL; 4006 4007 req_prot_cleanup(prot->rsk_prot); 4008 tw_prot_cleanup(prot->twsk_prot); 4009 } 4010 EXPORT_SYMBOL(proto_unregister); 4011 4012 int sock_load_diag_module(int family, int protocol) 4013 { 4014 if (!protocol) { 4015 if (!sock_is_registered(family)) 4016 return -ENOENT; 4017 4018 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 4019 NETLINK_SOCK_DIAG, family); 4020 } 4021 4022 #ifdef CONFIG_INET 4023 if (family == AF_INET && 4024 protocol != IPPROTO_RAW && 4025 protocol < MAX_INET_PROTOS && 4026 !rcu_access_pointer(inet_protos[protocol])) 4027 return -ENOENT; 4028 #endif 4029 4030 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4031 NETLINK_SOCK_DIAG, family, protocol); 4032 } 4033 EXPORT_SYMBOL(sock_load_diag_module); 4034 4035 #ifdef CONFIG_PROC_FS 4036 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4037 __acquires(proto_list_mutex) 4038 { 4039 mutex_lock(&proto_list_mutex); 4040 return seq_list_start_head(&proto_list, *pos); 4041 } 4042 4043 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4044 { 4045 return seq_list_next(v, &proto_list, pos); 4046 } 4047 4048 static void proto_seq_stop(struct seq_file *seq, void *v) 4049 __releases(proto_list_mutex) 4050 { 4051 mutex_unlock(&proto_list_mutex); 4052 } 4053 4054 static char proto_method_implemented(const void *method) 4055 { 4056 return method == NULL ? 'n' : 'y'; 4057 } 4058 static long sock_prot_memory_allocated(struct proto *proto) 4059 { 4060 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4061 } 4062 4063 static const char *sock_prot_memory_pressure(struct proto *proto) 4064 { 4065 return proto->memory_pressure != NULL ? 4066 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4067 } 4068 4069 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4070 { 4071 4072 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4073 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4074 proto->name, 4075 proto->obj_size, 4076 sock_prot_inuse_get(seq_file_net(seq), proto), 4077 sock_prot_memory_allocated(proto), 4078 sock_prot_memory_pressure(proto), 4079 proto->max_header, 4080 proto->slab == NULL ? "no" : "yes", 4081 module_name(proto->owner), 4082 proto_method_implemented(proto->close), 4083 proto_method_implemented(proto->connect), 4084 proto_method_implemented(proto->disconnect), 4085 proto_method_implemented(proto->accept), 4086 proto_method_implemented(proto->ioctl), 4087 proto_method_implemented(proto->init), 4088 proto_method_implemented(proto->destroy), 4089 proto_method_implemented(proto->shutdown), 4090 proto_method_implemented(proto->setsockopt), 4091 proto_method_implemented(proto->getsockopt), 4092 proto_method_implemented(proto->sendmsg), 4093 proto_method_implemented(proto->recvmsg), 4094 proto_method_implemented(proto->bind), 4095 proto_method_implemented(proto->backlog_rcv), 4096 proto_method_implemented(proto->hash), 4097 proto_method_implemented(proto->unhash), 4098 proto_method_implemented(proto->get_port), 4099 proto_method_implemented(proto->enter_memory_pressure)); 4100 } 4101 4102 static int proto_seq_show(struct seq_file *seq, void *v) 4103 { 4104 if (v == &proto_list) 4105 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4106 "protocol", 4107 "size", 4108 "sockets", 4109 "memory", 4110 "press", 4111 "maxhdr", 4112 "slab", 4113 "module", 4114 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4115 else 4116 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4117 return 0; 4118 } 4119 4120 static const struct seq_operations proto_seq_ops = { 4121 .start = proto_seq_start, 4122 .next = proto_seq_next, 4123 .stop = proto_seq_stop, 4124 .show = proto_seq_show, 4125 }; 4126 4127 static __net_init int proto_init_net(struct net *net) 4128 { 4129 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4130 sizeof(struct seq_net_private))) 4131 return -ENOMEM; 4132 4133 return 0; 4134 } 4135 4136 static __net_exit void proto_exit_net(struct net *net) 4137 { 4138 remove_proc_entry("protocols", net->proc_net); 4139 } 4140 4141 4142 static __net_initdata struct pernet_operations proto_net_ops = { 4143 .init = proto_init_net, 4144 .exit = proto_exit_net, 4145 }; 4146 4147 static int __init proto_init(void) 4148 { 4149 return register_pernet_subsys(&proto_net_ops); 4150 } 4151 4152 subsys_initcall(proto_init); 4153 4154 #endif /* PROC_FS */ 4155 4156 #ifdef CONFIG_NET_RX_BUSY_POLL 4157 bool sk_busy_loop_end(void *p, unsigned long start_time) 4158 { 4159 struct sock *sk = p; 4160 4161 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4162 return true; 4163 4164 if (sk_is_udp(sk) && 4165 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4166 return true; 4167 4168 return sk_busy_loop_timeout(sk, start_time); 4169 } 4170 EXPORT_SYMBOL(sk_busy_loop_end); 4171 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4172 4173 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4174 { 4175 if (!sk->sk_prot->bind_add) 4176 return -EOPNOTSUPP; 4177 return sk->sk_prot->bind_add(sk, addr, addr_len); 4178 } 4179 EXPORT_SYMBOL(sock_bind_add); 4180 4181 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4182 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4183 void __user *arg, void *karg, size_t size) 4184 { 4185 int ret; 4186 4187 if (copy_from_user(karg, arg, size)) 4188 return -EFAULT; 4189 4190 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4191 if (ret) 4192 return ret; 4193 4194 if (copy_to_user(arg, karg, size)) 4195 return -EFAULT; 4196 4197 return 0; 4198 } 4199 EXPORT_SYMBOL(sock_ioctl_inout); 4200 4201 /* This is the most common ioctl prep function, where the result (4 bytes) is 4202 * copied back to userspace if the ioctl() returns successfully. No input is 4203 * copied from userspace as input argument. 4204 */ 4205 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4206 { 4207 int ret, karg = 0; 4208 4209 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4210 if (ret) 4211 return ret; 4212 4213 return put_user(karg, (int __user *)arg); 4214 } 4215 4216 /* A wrapper around sock ioctls, which copies the data from userspace 4217 * (depending on the protocol/ioctl), and copies back the result to userspace. 4218 * The main motivation for this function is to pass kernel memory to the 4219 * protocol ioctl callbacks, instead of userspace memory. 4220 */ 4221 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4222 { 4223 int rc = 1; 4224 4225 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4226 rc = ipmr_sk_ioctl(sk, cmd, arg); 4227 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4228 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4229 else if (sk_is_phonet(sk)) 4230 rc = phonet_sk_ioctl(sk, cmd, arg); 4231 4232 /* If ioctl was processed, returns its value */ 4233 if (rc <= 0) 4234 return rc; 4235 4236 /* Otherwise call the default handler */ 4237 return sock_ioctl_out(sk, cmd, arg); 4238 } 4239 EXPORT_SYMBOL(sk_ioctl); 4240 4241 static int __init sock_struct_check(void) 4242 { 4243 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); 4244 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); 4245 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); 4246 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); 4247 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); 4248 4249 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); 4250 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); 4251 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); 4252 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); 4253 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); 4254 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); 4255 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); 4256 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); 4257 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); 4258 4259 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); 4260 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); 4261 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); 4262 4263 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); 4264 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); 4265 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); 4266 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); 4267 4268 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4269 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4270 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); 4271 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); 4272 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); 4273 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); 4274 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); 4275 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); 4276 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); 4277 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); 4278 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); 4279 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); 4280 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); 4281 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); 4282 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); 4283 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); 4284 4285 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); 4286 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); 4287 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); 4288 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); 4289 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); 4290 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); 4291 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); 4292 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); 4293 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); 4294 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); 4295 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); 4296 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); 4297 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); 4298 return 0; 4299 } 4300 4301 core_initcall(sock_struct_check); 4302