1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 int size; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 size = sizeof(old_tv); 358 } else { 359 *(struct __kernel_sock_timeval *)optval = tv; 360 size = sizeof(tv); 361 } 362 363 return size; 364 } 365 366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 367 { 368 struct __kernel_sock_timeval tv; 369 370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 371 struct old_timeval32 tv32; 372 373 if (optlen < sizeof(tv32)) 374 return -EINVAL; 375 376 if (copy_from_user(&tv32, optval, sizeof(tv32))) 377 return -EFAULT; 378 tv.tv_sec = tv32.tv_sec; 379 tv.tv_usec = tv32.tv_usec; 380 } else if (old_timeval) { 381 struct __kernel_old_timeval old_tv; 382 383 if (optlen < sizeof(old_tv)) 384 return -EINVAL; 385 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 386 return -EFAULT; 387 tv.tv_sec = old_tv.tv_sec; 388 tv.tv_usec = old_tv.tv_usec; 389 } else { 390 if (optlen < sizeof(tv)) 391 return -EINVAL; 392 if (copy_from_user(&tv, optval, sizeof(tv))) 393 return -EFAULT; 394 } 395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 396 return -EDOM; 397 398 if (tv.tv_sec < 0) { 399 static int warned __read_mostly; 400 401 *timeo_p = 0; 402 if (warned < 10 && net_ratelimit()) { 403 warned++; 404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 405 __func__, current->comm, task_pid_nr(current)); 406 } 407 return 0; 408 } 409 *timeo_p = MAX_SCHEDULE_TIMEOUT; 410 if (tv.tv_sec == 0 && tv.tv_usec == 0) 411 return 0; 412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 414 return 0; 415 } 416 417 static void sock_warn_obsolete_bsdism(const char *name) 418 { 419 static int warned; 420 static char warncomm[TASK_COMM_LEN]; 421 if (strcmp(warncomm, current->comm) && warned < 5) { 422 strcpy(warncomm, current->comm); 423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 424 warncomm, name); 425 warned++; 426 } 427 } 428 429 static bool sock_needs_netstamp(const struct sock *sk) 430 { 431 switch (sk->sk_family) { 432 case AF_UNSPEC: 433 case AF_UNIX: 434 return false; 435 default: 436 return true; 437 } 438 } 439 440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 441 { 442 if (sk->sk_flags & flags) { 443 sk->sk_flags &= ~flags; 444 if (sock_needs_netstamp(sk) && 445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 446 net_disable_timestamp(); 447 } 448 } 449 450 451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 452 { 453 unsigned long flags; 454 struct sk_buff_head *list = &sk->sk_receive_queue; 455 456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 457 atomic_inc(&sk->sk_drops); 458 trace_sock_rcvqueue_full(sk, skb); 459 return -ENOMEM; 460 } 461 462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 463 atomic_inc(&sk->sk_drops); 464 return -ENOBUFS; 465 } 466 467 skb->dev = NULL; 468 skb_set_owner_r(skb, sk); 469 470 /* we escape from rcu protected region, make sure we dont leak 471 * a norefcounted dst 472 */ 473 skb_dst_force(skb); 474 475 spin_lock_irqsave(&list->lock, flags); 476 sock_skb_set_dropcount(sk, skb); 477 __skb_queue_tail(list, skb); 478 spin_unlock_irqrestore(&list->lock, flags); 479 480 if (!sock_flag(sk, SOCK_DEAD)) 481 sk->sk_data_ready(sk); 482 return 0; 483 } 484 EXPORT_SYMBOL(__sock_queue_rcv_skb); 485 486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 int err; 489 490 err = sk_filter(sk, skb); 491 if (err) 492 return err; 493 494 return __sock_queue_rcv_skb(sk, skb); 495 } 496 EXPORT_SYMBOL(sock_queue_rcv_skb); 497 498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 499 const int nested, unsigned int trim_cap, bool refcounted) 500 { 501 int rc = NET_RX_SUCCESS; 502 503 if (sk_filter_trim_cap(sk, skb, trim_cap)) 504 goto discard_and_relse; 505 506 skb->dev = NULL; 507 508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 509 atomic_inc(&sk->sk_drops); 510 goto discard_and_relse; 511 } 512 if (nested) 513 bh_lock_sock_nested(sk); 514 else 515 bh_lock_sock(sk); 516 if (!sock_owned_by_user(sk)) { 517 /* 518 * trylock + unlock semantics: 519 */ 520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 521 522 rc = sk_backlog_rcv(sk, skb); 523 524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 526 bh_unlock_sock(sk); 527 atomic_inc(&sk->sk_drops); 528 goto discard_and_relse; 529 } 530 531 bh_unlock_sock(sk); 532 out: 533 if (refcounted) 534 sock_put(sk); 535 return rc; 536 discard_and_relse: 537 kfree_skb(skb); 538 goto out; 539 } 540 EXPORT_SYMBOL(__sk_receive_skb); 541 542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 543 { 544 struct dst_entry *dst = __sk_dst_get(sk); 545 546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 547 sk_tx_queue_clear(sk); 548 sk->sk_dst_pending_confirm = 0; 549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(__sk_dst_check); 557 558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 559 { 560 struct dst_entry *dst = sk_dst_get(sk); 561 562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 563 sk_dst_reset(sk); 564 dst_release(dst); 565 return NULL; 566 } 567 568 return dst; 569 } 570 EXPORT_SYMBOL(sk_dst_check); 571 572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 573 { 574 int ret = -ENOPROTOOPT; 575 #ifdef CONFIG_NETDEVICES 576 struct net *net = sock_net(sk); 577 578 /* Sorry... */ 579 ret = -EPERM; 580 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 581 goto out; 582 583 ret = -EINVAL; 584 if (ifindex < 0) 585 goto out; 586 587 sk->sk_bound_dev_if = ifindex; 588 if (sk->sk_prot->rehash) 589 sk->sk_prot->rehash(sk); 590 sk_dst_reset(sk); 591 592 ret = 0; 593 594 out: 595 #endif 596 597 return ret; 598 } 599 600 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 601 int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_user(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 lock_sock(sk); 641 ret = sock_setbindtodevice_locked(sk, index); 642 release_sock(sk); 643 644 out: 645 #endif 646 647 return ret; 648 } 649 650 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 651 int __user *optlen, int len) 652 { 653 int ret = -ENOPROTOOPT; 654 #ifdef CONFIG_NETDEVICES 655 struct net *net = sock_net(sk); 656 char devname[IFNAMSIZ]; 657 658 if (sk->sk_bound_dev_if == 0) { 659 len = 0; 660 goto zero; 661 } 662 663 ret = -EINVAL; 664 if (len < IFNAMSIZ) 665 goto out; 666 667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 668 if (ret) 669 goto out; 670 671 len = strlen(devname) + 1; 672 673 ret = -EFAULT; 674 if (copy_to_user(optval, devname, len)) 675 goto out; 676 677 zero: 678 ret = -EFAULT; 679 if (put_user(len, optlen)) 680 goto out; 681 682 ret = 0; 683 684 out: 685 #endif 686 687 return ret; 688 } 689 690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 691 { 692 if (valbool) 693 sock_set_flag(sk, bit); 694 else 695 sock_reset_flag(sk, bit); 696 } 697 698 bool sk_mc_loop(struct sock *sk) 699 { 700 if (dev_recursion_level()) 701 return false; 702 if (!sk) 703 return true; 704 switch (sk->sk_family) { 705 case AF_INET: 706 return inet_sk(sk)->mc_loop; 707 #if IS_ENABLED(CONFIG_IPV6) 708 case AF_INET6: 709 return inet6_sk(sk)->mc_loop; 710 #endif 711 } 712 WARN_ON(1); 713 return true; 714 } 715 EXPORT_SYMBOL(sk_mc_loop); 716 717 /* 718 * This is meant for all protocols to use and covers goings on 719 * at the socket level. Everything here is generic. 720 */ 721 722 int sock_setsockopt(struct socket *sock, int level, int optname, 723 char __user *optval, unsigned int optlen) 724 { 725 struct sock_txtime sk_txtime; 726 struct sock *sk = sock->sk; 727 int val; 728 int valbool; 729 struct linger ling; 730 int ret = 0; 731 732 /* 733 * Options without arguments 734 */ 735 736 if (optname == SO_BINDTODEVICE) 737 return sock_setbindtodevice(sk, optval, optlen); 738 739 if (optlen < sizeof(int)) 740 return -EINVAL; 741 742 if (get_user(val, (int __user *)optval)) 743 return -EFAULT; 744 745 valbool = val ? 1 : 0; 746 747 lock_sock(sk); 748 749 switch (optname) { 750 case SO_DEBUG: 751 if (val && !capable(CAP_NET_ADMIN)) 752 ret = -EACCES; 753 else 754 sock_valbool_flag(sk, SOCK_DBG, valbool); 755 break; 756 case SO_REUSEADDR: 757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 758 break; 759 case SO_REUSEPORT: 760 sk->sk_reuseport = valbool; 761 break; 762 case SO_TYPE: 763 case SO_PROTOCOL: 764 case SO_DOMAIN: 765 case SO_ERROR: 766 ret = -ENOPROTOOPT; 767 break; 768 case SO_DONTROUTE: 769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 770 sk_dst_reset(sk); 771 break; 772 case SO_BROADCAST: 773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 774 break; 775 case SO_SNDBUF: 776 /* Don't error on this BSD doesn't and if you think 777 * about it this is right. Otherwise apps have to 778 * play 'guess the biggest size' games. RCVBUF/SNDBUF 779 * are treated in BSD as hints 780 */ 781 val = min_t(u32, val, sysctl_wmem_max); 782 set_sndbuf: 783 /* Ensure val * 2 fits into an int, to prevent max_t() 784 * from treating it as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 789 /* Wake up sending tasks if we upped the value. */ 790 sk->sk_write_space(sk); 791 break; 792 793 case SO_SNDBUFFORCE: 794 if (!capable(CAP_NET_ADMIN)) { 795 ret = -EPERM; 796 break; 797 } 798 799 /* No negative values (to prevent underflow, as val will be 800 * multiplied by 2). 801 */ 802 if (val < 0) 803 val = 0; 804 goto set_sndbuf; 805 806 case SO_RCVBUF: 807 /* Don't error on this BSD doesn't and if you think 808 * about it this is right. Otherwise apps have to 809 * play 'guess the biggest size' games. RCVBUF/SNDBUF 810 * are treated in BSD as hints 811 */ 812 val = min_t(u32, val, sysctl_rmem_max); 813 set_rcvbuf: 814 /* Ensure val * 2 fits into an int, to prevent max_t() 815 * from treating it as a negative value. 816 */ 817 val = min_t(int, val, INT_MAX / 2); 818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 819 /* 820 * We double it on the way in to account for 821 * "struct sk_buff" etc. overhead. Applications 822 * assume that the SO_RCVBUF setting they make will 823 * allow that much actual data to be received on that 824 * socket. 825 * 826 * Applications are unaware that "struct sk_buff" and 827 * other overheads allocate from the receive buffer 828 * during socket buffer allocation. 829 * 830 * And after considering the possible alternatives, 831 * returning the value we actually used in getsockopt 832 * is the most desirable behavior. 833 */ 834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 sk->sk_rcvlowat = val ? : 1; 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 sk->sk_incoming_cpu = val; 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = sk->sk_incoming_cpu; 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 #ifdef CONFIG_SECURITY_NETWORK 1576 void *sptr = nsk->sk_security; 1577 #endif 1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1579 1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1582 1583 #ifdef CONFIG_SECURITY_NETWORK 1584 nsk->sk_security = sptr; 1585 security_sk_clone(osk, nsk); 1586 #endif 1587 } 1588 1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1590 int family) 1591 { 1592 struct sock *sk; 1593 struct kmem_cache *slab; 1594 1595 slab = prot->slab; 1596 if (slab != NULL) { 1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1598 if (!sk) 1599 return sk; 1600 if (want_init_on_alloc(priority)) 1601 sk_prot_clear_nulls(sk, prot->obj_size); 1602 } else 1603 sk = kmalloc(prot->obj_size, priority); 1604 1605 if (sk != NULL) { 1606 if (security_sk_alloc(sk, family, priority)) 1607 goto out_free; 1608 1609 if (!try_module_get(prot->owner)) 1610 goto out_free_sec; 1611 sk_tx_queue_clear(sk); 1612 } 1613 1614 return sk; 1615 1616 out_free_sec: 1617 security_sk_free(sk); 1618 out_free: 1619 if (slab != NULL) 1620 kmem_cache_free(slab, sk); 1621 else 1622 kfree(sk); 1623 return NULL; 1624 } 1625 1626 static void sk_prot_free(struct proto *prot, struct sock *sk) 1627 { 1628 struct kmem_cache *slab; 1629 struct module *owner; 1630 1631 owner = prot->owner; 1632 slab = prot->slab; 1633 1634 cgroup_sk_free(&sk->sk_cgrp_data); 1635 mem_cgroup_sk_free(sk); 1636 security_sk_free(sk); 1637 if (slab != NULL) 1638 kmem_cache_free(slab, sk); 1639 else 1640 kfree(sk); 1641 module_put(owner); 1642 } 1643 1644 /** 1645 * sk_alloc - All socket objects are allocated here 1646 * @net: the applicable net namespace 1647 * @family: protocol family 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * @prot: struct proto associated with this new sock instance 1650 * @kern: is this to be a kernel socket? 1651 */ 1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1653 struct proto *prot, int kern) 1654 { 1655 struct sock *sk; 1656 1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1658 if (sk) { 1659 sk->sk_family = family; 1660 /* 1661 * See comment in struct sock definition to understand 1662 * why we need sk_prot_creator -acme 1663 */ 1664 sk->sk_prot = sk->sk_prot_creator = prot; 1665 sk->sk_kern_sock = kern; 1666 sock_lock_init(sk); 1667 sk->sk_net_refcnt = kern ? 0 : 1; 1668 if (likely(sk->sk_net_refcnt)) { 1669 get_net(net); 1670 sock_inuse_add(net, 1); 1671 } 1672 1673 sock_net_set(sk, net); 1674 refcount_set(&sk->sk_wmem_alloc, 1); 1675 1676 mem_cgroup_sk_alloc(sk); 1677 cgroup_sk_alloc(&sk->sk_cgrp_data); 1678 sock_update_classid(&sk->sk_cgrp_data); 1679 sock_update_netprioidx(&sk->sk_cgrp_data); 1680 } 1681 1682 return sk; 1683 } 1684 EXPORT_SYMBOL(sk_alloc); 1685 1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1687 * grace period. This is the case for UDP sockets and TCP listeners. 1688 */ 1689 static void __sk_destruct(struct rcu_head *head) 1690 { 1691 struct sock *sk = container_of(head, struct sock, sk_rcu); 1692 struct sk_filter *filter; 1693 1694 if (sk->sk_destruct) 1695 sk->sk_destruct(sk); 1696 1697 filter = rcu_dereference_check(sk->sk_filter, 1698 refcount_read(&sk->sk_wmem_alloc) == 0); 1699 if (filter) { 1700 sk_filter_uncharge(sk, filter); 1701 RCU_INIT_POINTER(sk->sk_filter, NULL); 1702 } 1703 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1704 reuseport_detach_sock(sk); 1705 1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1707 1708 #ifdef CONFIG_BPF_SYSCALL 1709 bpf_sk_storage_free(sk); 1710 #endif 1711 1712 if (atomic_read(&sk->sk_omem_alloc)) 1713 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1714 __func__, atomic_read(&sk->sk_omem_alloc)); 1715 1716 if (sk->sk_frag.page) { 1717 put_page(sk->sk_frag.page); 1718 sk->sk_frag.page = NULL; 1719 } 1720 1721 if (sk->sk_peer_cred) 1722 put_cred(sk->sk_peer_cred); 1723 put_pid(sk->sk_peer_pid); 1724 if (likely(sk->sk_net_refcnt)) 1725 put_net(sock_net(sk)); 1726 sk_prot_free(sk->sk_prot_creator, sk); 1727 } 1728 1729 void sk_destruct(struct sock *sk) 1730 { 1731 if (sock_flag(sk, SOCK_RCU_FREE)) 1732 call_rcu(&sk->sk_rcu, __sk_destruct); 1733 else 1734 __sk_destruct(&sk->sk_rcu); 1735 } 1736 1737 static void __sk_free(struct sock *sk) 1738 { 1739 if (likely(sk->sk_net_refcnt)) 1740 sock_inuse_add(sock_net(sk), -1); 1741 1742 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1743 sock_diag_broadcast_destroy(sk); 1744 else 1745 sk_destruct(sk); 1746 } 1747 1748 void sk_free(struct sock *sk) 1749 { 1750 /* 1751 * We subtract one from sk_wmem_alloc and can know if 1752 * some packets are still in some tx queue. 1753 * If not null, sock_wfree() will call __sk_free(sk) later 1754 */ 1755 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1756 __sk_free(sk); 1757 } 1758 EXPORT_SYMBOL(sk_free); 1759 1760 static void sk_init_common(struct sock *sk) 1761 { 1762 skb_queue_head_init(&sk->sk_receive_queue); 1763 skb_queue_head_init(&sk->sk_write_queue); 1764 skb_queue_head_init(&sk->sk_error_queue); 1765 1766 rwlock_init(&sk->sk_callback_lock); 1767 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1768 af_rlock_keys + sk->sk_family, 1769 af_family_rlock_key_strings[sk->sk_family]); 1770 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1771 af_wlock_keys + sk->sk_family, 1772 af_family_wlock_key_strings[sk->sk_family]); 1773 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1774 af_elock_keys + sk->sk_family, 1775 af_family_elock_key_strings[sk->sk_family]); 1776 lockdep_set_class_and_name(&sk->sk_callback_lock, 1777 af_callback_keys + sk->sk_family, 1778 af_family_clock_key_strings[sk->sk_family]); 1779 } 1780 1781 /** 1782 * sk_clone_lock - clone a socket, and lock its clone 1783 * @sk: the socket to clone 1784 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1785 * 1786 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1787 */ 1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1789 { 1790 struct sock *newsk; 1791 bool is_charged = true; 1792 1793 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1794 if (newsk != NULL) { 1795 struct sk_filter *filter; 1796 1797 sock_copy(newsk, sk); 1798 1799 newsk->sk_prot_creator = sk->sk_prot; 1800 1801 /* SANITY */ 1802 if (likely(newsk->sk_net_refcnt)) 1803 get_net(sock_net(newsk)); 1804 sk_node_init(&newsk->sk_node); 1805 sock_lock_init(newsk); 1806 bh_lock_sock(newsk); 1807 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1808 newsk->sk_backlog.len = 0; 1809 1810 atomic_set(&newsk->sk_rmem_alloc, 0); 1811 /* 1812 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1813 */ 1814 refcount_set(&newsk->sk_wmem_alloc, 1); 1815 atomic_set(&newsk->sk_omem_alloc, 0); 1816 sk_init_common(newsk); 1817 1818 newsk->sk_dst_cache = NULL; 1819 newsk->sk_dst_pending_confirm = 0; 1820 newsk->sk_wmem_queued = 0; 1821 newsk->sk_forward_alloc = 0; 1822 atomic_set(&newsk->sk_drops, 0); 1823 newsk->sk_send_head = NULL; 1824 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1825 atomic_set(&newsk->sk_zckey, 0); 1826 1827 sock_reset_flag(newsk, SOCK_DONE); 1828 mem_cgroup_sk_alloc(newsk); 1829 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1830 1831 rcu_read_lock(); 1832 filter = rcu_dereference(sk->sk_filter); 1833 if (filter != NULL) 1834 /* though it's an empty new sock, the charging may fail 1835 * if sysctl_optmem_max was changed between creation of 1836 * original socket and cloning 1837 */ 1838 is_charged = sk_filter_charge(newsk, filter); 1839 RCU_INIT_POINTER(newsk->sk_filter, filter); 1840 rcu_read_unlock(); 1841 1842 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1843 /* We need to make sure that we don't uncharge the new 1844 * socket if we couldn't charge it in the first place 1845 * as otherwise we uncharge the parent's filter. 1846 */ 1847 if (!is_charged) 1848 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1849 sk_free_unlock_clone(newsk); 1850 newsk = NULL; 1851 goto out; 1852 } 1853 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1854 1855 if (bpf_sk_storage_clone(sk, newsk)) { 1856 sk_free_unlock_clone(newsk); 1857 newsk = NULL; 1858 goto out; 1859 } 1860 1861 newsk->sk_err = 0; 1862 newsk->sk_err_soft = 0; 1863 newsk->sk_priority = 0; 1864 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1865 if (likely(newsk->sk_net_refcnt)) 1866 sock_inuse_add(sock_net(newsk), 1); 1867 1868 /* 1869 * Before updating sk_refcnt, we must commit prior changes to memory 1870 * (Documentation/RCU/rculist_nulls.txt for details) 1871 */ 1872 smp_wmb(); 1873 refcount_set(&newsk->sk_refcnt, 2); 1874 1875 /* 1876 * Increment the counter in the same struct proto as the master 1877 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1878 * is the same as sk->sk_prot->socks, as this field was copied 1879 * with memcpy). 1880 * 1881 * This _changes_ the previous behaviour, where 1882 * tcp_create_openreq_child always was incrementing the 1883 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1884 * to be taken into account in all callers. -acme 1885 */ 1886 sk_refcnt_debug_inc(newsk); 1887 sk_set_socket(newsk, NULL); 1888 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1889 1890 if (newsk->sk_prot->sockets_allocated) 1891 sk_sockets_allocated_inc(newsk); 1892 1893 if (sock_needs_netstamp(sk) && 1894 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1895 net_enable_timestamp(); 1896 } 1897 out: 1898 return newsk; 1899 } 1900 EXPORT_SYMBOL_GPL(sk_clone_lock); 1901 1902 void sk_free_unlock_clone(struct sock *sk) 1903 { 1904 /* It is still raw copy of parent, so invalidate 1905 * destructor and make plain sk_free() */ 1906 sk->sk_destruct = NULL; 1907 bh_unlock_sock(sk); 1908 sk_free(sk); 1909 } 1910 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1911 1912 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1913 { 1914 u32 max_segs = 1; 1915 1916 sk_dst_set(sk, dst); 1917 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1918 if (sk->sk_route_caps & NETIF_F_GSO) 1919 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1920 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1921 if (sk_can_gso(sk)) { 1922 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1923 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1924 } else { 1925 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1926 sk->sk_gso_max_size = dst->dev->gso_max_size; 1927 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1928 } 1929 } 1930 sk->sk_gso_max_segs = max_segs; 1931 } 1932 EXPORT_SYMBOL_GPL(sk_setup_caps); 1933 1934 /* 1935 * Simple resource managers for sockets. 1936 */ 1937 1938 1939 /* 1940 * Write buffer destructor automatically called from kfree_skb. 1941 */ 1942 void sock_wfree(struct sk_buff *skb) 1943 { 1944 struct sock *sk = skb->sk; 1945 unsigned int len = skb->truesize; 1946 1947 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1948 /* 1949 * Keep a reference on sk_wmem_alloc, this will be released 1950 * after sk_write_space() call 1951 */ 1952 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1953 sk->sk_write_space(sk); 1954 len = 1; 1955 } 1956 /* 1957 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1958 * could not do because of in-flight packets 1959 */ 1960 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1961 __sk_free(sk); 1962 } 1963 EXPORT_SYMBOL(sock_wfree); 1964 1965 /* This variant of sock_wfree() is used by TCP, 1966 * since it sets SOCK_USE_WRITE_QUEUE. 1967 */ 1968 void __sock_wfree(struct sk_buff *skb) 1969 { 1970 struct sock *sk = skb->sk; 1971 1972 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1973 __sk_free(sk); 1974 } 1975 1976 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1977 { 1978 skb_orphan(skb); 1979 skb->sk = sk; 1980 #ifdef CONFIG_INET 1981 if (unlikely(!sk_fullsock(sk))) { 1982 skb->destructor = sock_edemux; 1983 sock_hold(sk); 1984 return; 1985 } 1986 #endif 1987 skb->destructor = sock_wfree; 1988 skb_set_hash_from_sk(skb, sk); 1989 /* 1990 * We used to take a refcount on sk, but following operation 1991 * is enough to guarantee sk_free() wont free this sock until 1992 * all in-flight packets are completed 1993 */ 1994 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1995 } 1996 EXPORT_SYMBOL(skb_set_owner_w); 1997 1998 /* This helper is used by netem, as it can hold packets in its 1999 * delay queue. We want to allow the owner socket to send more 2000 * packets, as if they were already TX completed by a typical driver. 2001 * But we also want to keep skb->sk set because some packet schedulers 2002 * rely on it (sch_fq for example). 2003 */ 2004 void skb_orphan_partial(struct sk_buff *skb) 2005 { 2006 if (skb_is_tcp_pure_ack(skb)) 2007 return; 2008 2009 if (skb->destructor == sock_wfree 2010 #ifdef CONFIG_INET 2011 || skb->destructor == tcp_wfree 2012 #endif 2013 ) { 2014 struct sock *sk = skb->sk; 2015 2016 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2017 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2018 skb->destructor = sock_efree; 2019 } 2020 } else { 2021 skb_orphan(skb); 2022 } 2023 } 2024 EXPORT_SYMBOL(skb_orphan_partial); 2025 2026 /* 2027 * Read buffer destructor automatically called from kfree_skb. 2028 */ 2029 void sock_rfree(struct sk_buff *skb) 2030 { 2031 struct sock *sk = skb->sk; 2032 unsigned int len = skb->truesize; 2033 2034 atomic_sub(len, &sk->sk_rmem_alloc); 2035 sk_mem_uncharge(sk, len); 2036 } 2037 EXPORT_SYMBOL(sock_rfree); 2038 2039 /* 2040 * Buffer destructor for skbs that are not used directly in read or write 2041 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2042 */ 2043 void sock_efree(struct sk_buff *skb) 2044 { 2045 sock_put(skb->sk); 2046 } 2047 EXPORT_SYMBOL(sock_efree); 2048 2049 kuid_t sock_i_uid(struct sock *sk) 2050 { 2051 kuid_t uid; 2052 2053 read_lock_bh(&sk->sk_callback_lock); 2054 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2055 read_unlock_bh(&sk->sk_callback_lock); 2056 return uid; 2057 } 2058 EXPORT_SYMBOL(sock_i_uid); 2059 2060 unsigned long sock_i_ino(struct sock *sk) 2061 { 2062 unsigned long ino; 2063 2064 read_lock_bh(&sk->sk_callback_lock); 2065 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2066 read_unlock_bh(&sk->sk_callback_lock); 2067 return ino; 2068 } 2069 EXPORT_SYMBOL(sock_i_ino); 2070 2071 /* 2072 * Allocate a skb from the socket's send buffer. 2073 */ 2074 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2075 gfp_t priority) 2076 { 2077 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2078 struct sk_buff *skb = alloc_skb(size, priority); 2079 if (skb) { 2080 skb_set_owner_w(skb, sk); 2081 return skb; 2082 } 2083 } 2084 return NULL; 2085 } 2086 EXPORT_SYMBOL(sock_wmalloc); 2087 2088 static void sock_ofree(struct sk_buff *skb) 2089 { 2090 struct sock *sk = skb->sk; 2091 2092 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2093 } 2094 2095 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2096 gfp_t priority) 2097 { 2098 struct sk_buff *skb; 2099 2100 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2101 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2102 sysctl_optmem_max) 2103 return NULL; 2104 2105 skb = alloc_skb(size, priority); 2106 if (!skb) 2107 return NULL; 2108 2109 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2110 skb->sk = sk; 2111 skb->destructor = sock_ofree; 2112 return skb; 2113 } 2114 2115 /* 2116 * Allocate a memory block from the socket's option memory buffer. 2117 */ 2118 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2119 { 2120 if ((unsigned int)size <= sysctl_optmem_max && 2121 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2122 void *mem; 2123 /* First do the add, to avoid the race if kmalloc 2124 * might sleep. 2125 */ 2126 atomic_add(size, &sk->sk_omem_alloc); 2127 mem = kmalloc(size, priority); 2128 if (mem) 2129 return mem; 2130 atomic_sub(size, &sk->sk_omem_alloc); 2131 } 2132 return NULL; 2133 } 2134 EXPORT_SYMBOL(sock_kmalloc); 2135 2136 /* Free an option memory block. Note, we actually want the inline 2137 * here as this allows gcc to detect the nullify and fold away the 2138 * condition entirely. 2139 */ 2140 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2141 const bool nullify) 2142 { 2143 if (WARN_ON_ONCE(!mem)) 2144 return; 2145 if (nullify) 2146 kzfree(mem); 2147 else 2148 kfree(mem); 2149 atomic_sub(size, &sk->sk_omem_alloc); 2150 } 2151 2152 void sock_kfree_s(struct sock *sk, void *mem, int size) 2153 { 2154 __sock_kfree_s(sk, mem, size, false); 2155 } 2156 EXPORT_SYMBOL(sock_kfree_s); 2157 2158 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2159 { 2160 __sock_kfree_s(sk, mem, size, true); 2161 } 2162 EXPORT_SYMBOL(sock_kzfree_s); 2163 2164 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2165 I think, these locks should be removed for datagram sockets. 2166 */ 2167 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2168 { 2169 DEFINE_WAIT(wait); 2170 2171 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2172 for (;;) { 2173 if (!timeo) 2174 break; 2175 if (signal_pending(current)) 2176 break; 2177 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2178 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2179 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2180 break; 2181 if (sk->sk_shutdown & SEND_SHUTDOWN) 2182 break; 2183 if (sk->sk_err) 2184 break; 2185 timeo = schedule_timeout(timeo); 2186 } 2187 finish_wait(sk_sleep(sk), &wait); 2188 return timeo; 2189 } 2190 2191 2192 /* 2193 * Generic send/receive buffer handlers 2194 */ 2195 2196 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2197 unsigned long data_len, int noblock, 2198 int *errcode, int max_page_order) 2199 { 2200 struct sk_buff *skb; 2201 long timeo; 2202 int err; 2203 2204 timeo = sock_sndtimeo(sk, noblock); 2205 for (;;) { 2206 err = sock_error(sk); 2207 if (err != 0) 2208 goto failure; 2209 2210 err = -EPIPE; 2211 if (sk->sk_shutdown & SEND_SHUTDOWN) 2212 goto failure; 2213 2214 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2215 break; 2216 2217 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2218 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2219 err = -EAGAIN; 2220 if (!timeo) 2221 goto failure; 2222 if (signal_pending(current)) 2223 goto interrupted; 2224 timeo = sock_wait_for_wmem(sk, timeo); 2225 } 2226 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2227 errcode, sk->sk_allocation); 2228 if (skb) 2229 skb_set_owner_w(skb, sk); 2230 return skb; 2231 2232 interrupted: 2233 err = sock_intr_errno(timeo); 2234 failure: 2235 *errcode = err; 2236 return NULL; 2237 } 2238 EXPORT_SYMBOL(sock_alloc_send_pskb); 2239 2240 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2241 int noblock, int *errcode) 2242 { 2243 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2244 } 2245 EXPORT_SYMBOL(sock_alloc_send_skb); 2246 2247 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2248 struct sockcm_cookie *sockc) 2249 { 2250 u32 tsflags; 2251 2252 switch (cmsg->cmsg_type) { 2253 case SO_MARK: 2254 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2255 return -EPERM; 2256 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2257 return -EINVAL; 2258 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2259 break; 2260 case SO_TIMESTAMPING_OLD: 2261 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2262 return -EINVAL; 2263 2264 tsflags = *(u32 *)CMSG_DATA(cmsg); 2265 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2266 return -EINVAL; 2267 2268 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2269 sockc->tsflags |= tsflags; 2270 break; 2271 case SCM_TXTIME: 2272 if (!sock_flag(sk, SOCK_TXTIME)) 2273 return -EINVAL; 2274 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2275 return -EINVAL; 2276 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2277 break; 2278 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2279 case SCM_RIGHTS: 2280 case SCM_CREDENTIALS: 2281 break; 2282 default: 2283 return -EINVAL; 2284 } 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(__sock_cmsg_send); 2288 2289 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2290 struct sockcm_cookie *sockc) 2291 { 2292 struct cmsghdr *cmsg; 2293 int ret; 2294 2295 for_each_cmsghdr(cmsg, msg) { 2296 if (!CMSG_OK(msg, cmsg)) 2297 return -EINVAL; 2298 if (cmsg->cmsg_level != SOL_SOCKET) 2299 continue; 2300 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2301 if (ret) 2302 return ret; 2303 } 2304 return 0; 2305 } 2306 EXPORT_SYMBOL(sock_cmsg_send); 2307 2308 static void sk_enter_memory_pressure(struct sock *sk) 2309 { 2310 if (!sk->sk_prot->enter_memory_pressure) 2311 return; 2312 2313 sk->sk_prot->enter_memory_pressure(sk); 2314 } 2315 2316 static void sk_leave_memory_pressure(struct sock *sk) 2317 { 2318 if (sk->sk_prot->leave_memory_pressure) { 2319 sk->sk_prot->leave_memory_pressure(sk); 2320 } else { 2321 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2322 2323 if (memory_pressure && *memory_pressure) 2324 *memory_pressure = 0; 2325 } 2326 } 2327 2328 /* On 32bit arches, an skb frag is limited to 2^15 */ 2329 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2330 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2331 2332 /** 2333 * skb_page_frag_refill - check that a page_frag contains enough room 2334 * @sz: minimum size of the fragment we want to get 2335 * @pfrag: pointer to page_frag 2336 * @gfp: priority for memory allocation 2337 * 2338 * Note: While this allocator tries to use high order pages, there is 2339 * no guarantee that allocations succeed. Therefore, @sz MUST be 2340 * less or equal than PAGE_SIZE. 2341 */ 2342 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2343 { 2344 if (pfrag->page) { 2345 if (page_ref_count(pfrag->page) == 1) { 2346 pfrag->offset = 0; 2347 return true; 2348 } 2349 if (pfrag->offset + sz <= pfrag->size) 2350 return true; 2351 put_page(pfrag->page); 2352 } 2353 2354 pfrag->offset = 0; 2355 if (SKB_FRAG_PAGE_ORDER && 2356 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2357 /* Avoid direct reclaim but allow kswapd to wake */ 2358 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2359 __GFP_COMP | __GFP_NOWARN | 2360 __GFP_NORETRY, 2361 SKB_FRAG_PAGE_ORDER); 2362 if (likely(pfrag->page)) { 2363 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2364 return true; 2365 } 2366 } 2367 pfrag->page = alloc_page(gfp); 2368 if (likely(pfrag->page)) { 2369 pfrag->size = PAGE_SIZE; 2370 return true; 2371 } 2372 return false; 2373 } 2374 EXPORT_SYMBOL(skb_page_frag_refill); 2375 2376 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2377 { 2378 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2379 return true; 2380 2381 sk_enter_memory_pressure(sk); 2382 sk_stream_moderate_sndbuf(sk); 2383 return false; 2384 } 2385 EXPORT_SYMBOL(sk_page_frag_refill); 2386 2387 static void __lock_sock(struct sock *sk) 2388 __releases(&sk->sk_lock.slock) 2389 __acquires(&sk->sk_lock.slock) 2390 { 2391 DEFINE_WAIT(wait); 2392 2393 for (;;) { 2394 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2395 TASK_UNINTERRUPTIBLE); 2396 spin_unlock_bh(&sk->sk_lock.slock); 2397 schedule(); 2398 spin_lock_bh(&sk->sk_lock.slock); 2399 if (!sock_owned_by_user(sk)) 2400 break; 2401 } 2402 finish_wait(&sk->sk_lock.wq, &wait); 2403 } 2404 2405 void __release_sock(struct sock *sk) 2406 __releases(&sk->sk_lock.slock) 2407 __acquires(&sk->sk_lock.slock) 2408 { 2409 struct sk_buff *skb, *next; 2410 2411 while ((skb = sk->sk_backlog.head) != NULL) { 2412 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2413 2414 spin_unlock_bh(&sk->sk_lock.slock); 2415 2416 do { 2417 next = skb->next; 2418 prefetch(next); 2419 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2420 skb_mark_not_on_list(skb); 2421 sk_backlog_rcv(sk, skb); 2422 2423 cond_resched(); 2424 2425 skb = next; 2426 } while (skb != NULL); 2427 2428 spin_lock_bh(&sk->sk_lock.slock); 2429 } 2430 2431 /* 2432 * Doing the zeroing here guarantee we can not loop forever 2433 * while a wild producer attempts to flood us. 2434 */ 2435 sk->sk_backlog.len = 0; 2436 } 2437 2438 void __sk_flush_backlog(struct sock *sk) 2439 { 2440 spin_lock_bh(&sk->sk_lock.slock); 2441 __release_sock(sk); 2442 spin_unlock_bh(&sk->sk_lock.slock); 2443 } 2444 2445 /** 2446 * sk_wait_data - wait for data to arrive at sk_receive_queue 2447 * @sk: sock to wait on 2448 * @timeo: for how long 2449 * @skb: last skb seen on sk_receive_queue 2450 * 2451 * Now socket state including sk->sk_err is changed only under lock, 2452 * hence we may omit checks after joining wait queue. 2453 * We check receive queue before schedule() only as optimization; 2454 * it is very likely that release_sock() added new data. 2455 */ 2456 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2457 { 2458 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2459 int rc; 2460 2461 add_wait_queue(sk_sleep(sk), &wait); 2462 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2463 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2464 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2465 remove_wait_queue(sk_sleep(sk), &wait); 2466 return rc; 2467 } 2468 EXPORT_SYMBOL(sk_wait_data); 2469 2470 /** 2471 * __sk_mem_raise_allocated - increase memory_allocated 2472 * @sk: socket 2473 * @size: memory size to allocate 2474 * @amt: pages to allocate 2475 * @kind: allocation type 2476 * 2477 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2478 */ 2479 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2480 { 2481 struct proto *prot = sk->sk_prot; 2482 long allocated = sk_memory_allocated_add(sk, amt); 2483 bool charged = true; 2484 2485 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2486 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2487 goto suppress_allocation; 2488 2489 /* Under limit. */ 2490 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2491 sk_leave_memory_pressure(sk); 2492 return 1; 2493 } 2494 2495 /* Under pressure. */ 2496 if (allocated > sk_prot_mem_limits(sk, 1)) 2497 sk_enter_memory_pressure(sk); 2498 2499 /* Over hard limit. */ 2500 if (allocated > sk_prot_mem_limits(sk, 2)) 2501 goto suppress_allocation; 2502 2503 /* guarantee minimum buffer size under pressure */ 2504 if (kind == SK_MEM_RECV) { 2505 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2506 return 1; 2507 2508 } else { /* SK_MEM_SEND */ 2509 int wmem0 = sk_get_wmem0(sk, prot); 2510 2511 if (sk->sk_type == SOCK_STREAM) { 2512 if (sk->sk_wmem_queued < wmem0) 2513 return 1; 2514 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2515 return 1; 2516 } 2517 } 2518 2519 if (sk_has_memory_pressure(sk)) { 2520 u64 alloc; 2521 2522 if (!sk_under_memory_pressure(sk)) 2523 return 1; 2524 alloc = sk_sockets_allocated_read_positive(sk); 2525 if (sk_prot_mem_limits(sk, 2) > alloc * 2526 sk_mem_pages(sk->sk_wmem_queued + 2527 atomic_read(&sk->sk_rmem_alloc) + 2528 sk->sk_forward_alloc)) 2529 return 1; 2530 } 2531 2532 suppress_allocation: 2533 2534 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2535 sk_stream_moderate_sndbuf(sk); 2536 2537 /* Fail only if socket is _under_ its sndbuf. 2538 * In this case we cannot block, so that we have to fail. 2539 */ 2540 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2541 return 1; 2542 } 2543 2544 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2545 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2546 2547 sk_memory_allocated_sub(sk, amt); 2548 2549 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2550 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2551 2552 return 0; 2553 } 2554 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2555 2556 /** 2557 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2558 * @sk: socket 2559 * @size: memory size to allocate 2560 * @kind: allocation type 2561 * 2562 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2563 * rmem allocation. This function assumes that protocols which have 2564 * memory_pressure use sk_wmem_queued as write buffer accounting. 2565 */ 2566 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2567 { 2568 int ret, amt = sk_mem_pages(size); 2569 2570 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2571 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2572 if (!ret) 2573 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2574 return ret; 2575 } 2576 EXPORT_SYMBOL(__sk_mem_schedule); 2577 2578 /** 2579 * __sk_mem_reduce_allocated - reclaim memory_allocated 2580 * @sk: socket 2581 * @amount: number of quanta 2582 * 2583 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2584 */ 2585 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2586 { 2587 sk_memory_allocated_sub(sk, amount); 2588 2589 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2590 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2591 2592 if (sk_under_memory_pressure(sk) && 2593 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2594 sk_leave_memory_pressure(sk); 2595 } 2596 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2597 2598 /** 2599 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2600 * @sk: socket 2601 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2602 */ 2603 void __sk_mem_reclaim(struct sock *sk, int amount) 2604 { 2605 amount >>= SK_MEM_QUANTUM_SHIFT; 2606 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2607 __sk_mem_reduce_allocated(sk, amount); 2608 } 2609 EXPORT_SYMBOL(__sk_mem_reclaim); 2610 2611 int sk_set_peek_off(struct sock *sk, int val) 2612 { 2613 sk->sk_peek_off = val; 2614 return 0; 2615 } 2616 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2617 2618 /* 2619 * Set of default routines for initialising struct proto_ops when 2620 * the protocol does not support a particular function. In certain 2621 * cases where it makes no sense for a protocol to have a "do nothing" 2622 * function, some default processing is provided. 2623 */ 2624 2625 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2626 { 2627 return -EOPNOTSUPP; 2628 } 2629 EXPORT_SYMBOL(sock_no_bind); 2630 2631 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2632 int len, int flags) 2633 { 2634 return -EOPNOTSUPP; 2635 } 2636 EXPORT_SYMBOL(sock_no_connect); 2637 2638 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2639 { 2640 return -EOPNOTSUPP; 2641 } 2642 EXPORT_SYMBOL(sock_no_socketpair); 2643 2644 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2645 bool kern) 2646 { 2647 return -EOPNOTSUPP; 2648 } 2649 EXPORT_SYMBOL(sock_no_accept); 2650 2651 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2652 int peer) 2653 { 2654 return -EOPNOTSUPP; 2655 } 2656 EXPORT_SYMBOL(sock_no_getname); 2657 2658 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2659 { 2660 return -EOPNOTSUPP; 2661 } 2662 EXPORT_SYMBOL(sock_no_ioctl); 2663 2664 int sock_no_listen(struct socket *sock, int backlog) 2665 { 2666 return -EOPNOTSUPP; 2667 } 2668 EXPORT_SYMBOL(sock_no_listen); 2669 2670 int sock_no_shutdown(struct socket *sock, int how) 2671 { 2672 return -EOPNOTSUPP; 2673 } 2674 EXPORT_SYMBOL(sock_no_shutdown); 2675 2676 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2677 char __user *optval, unsigned int optlen) 2678 { 2679 return -EOPNOTSUPP; 2680 } 2681 EXPORT_SYMBOL(sock_no_setsockopt); 2682 2683 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2684 char __user *optval, int __user *optlen) 2685 { 2686 return -EOPNOTSUPP; 2687 } 2688 EXPORT_SYMBOL(sock_no_getsockopt); 2689 2690 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2691 { 2692 return -EOPNOTSUPP; 2693 } 2694 EXPORT_SYMBOL(sock_no_sendmsg); 2695 2696 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2697 { 2698 return -EOPNOTSUPP; 2699 } 2700 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2701 2702 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2703 int flags) 2704 { 2705 return -EOPNOTSUPP; 2706 } 2707 EXPORT_SYMBOL(sock_no_recvmsg); 2708 2709 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2710 { 2711 /* Mirror missing mmap method error code */ 2712 return -ENODEV; 2713 } 2714 EXPORT_SYMBOL(sock_no_mmap); 2715 2716 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2717 { 2718 ssize_t res; 2719 struct msghdr msg = {.msg_flags = flags}; 2720 struct kvec iov; 2721 char *kaddr = kmap(page); 2722 iov.iov_base = kaddr + offset; 2723 iov.iov_len = size; 2724 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2725 kunmap(page); 2726 return res; 2727 } 2728 EXPORT_SYMBOL(sock_no_sendpage); 2729 2730 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2731 int offset, size_t size, int flags) 2732 { 2733 ssize_t res; 2734 struct msghdr msg = {.msg_flags = flags}; 2735 struct kvec iov; 2736 char *kaddr = kmap(page); 2737 2738 iov.iov_base = kaddr + offset; 2739 iov.iov_len = size; 2740 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2741 kunmap(page); 2742 return res; 2743 } 2744 EXPORT_SYMBOL(sock_no_sendpage_locked); 2745 2746 /* 2747 * Default Socket Callbacks 2748 */ 2749 2750 static void sock_def_wakeup(struct sock *sk) 2751 { 2752 struct socket_wq *wq; 2753 2754 rcu_read_lock(); 2755 wq = rcu_dereference(sk->sk_wq); 2756 if (skwq_has_sleeper(wq)) 2757 wake_up_interruptible_all(&wq->wait); 2758 rcu_read_unlock(); 2759 } 2760 2761 static void sock_def_error_report(struct sock *sk) 2762 { 2763 struct socket_wq *wq; 2764 2765 rcu_read_lock(); 2766 wq = rcu_dereference(sk->sk_wq); 2767 if (skwq_has_sleeper(wq)) 2768 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2769 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2770 rcu_read_unlock(); 2771 } 2772 2773 static void sock_def_readable(struct sock *sk) 2774 { 2775 struct socket_wq *wq; 2776 2777 rcu_read_lock(); 2778 wq = rcu_dereference(sk->sk_wq); 2779 if (skwq_has_sleeper(wq)) 2780 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2781 EPOLLRDNORM | EPOLLRDBAND); 2782 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2783 rcu_read_unlock(); 2784 } 2785 2786 static void sock_def_write_space(struct sock *sk) 2787 { 2788 struct socket_wq *wq; 2789 2790 rcu_read_lock(); 2791 2792 /* Do not wake up a writer until he can make "significant" 2793 * progress. --DaveM 2794 */ 2795 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2796 wq = rcu_dereference(sk->sk_wq); 2797 if (skwq_has_sleeper(wq)) 2798 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2799 EPOLLWRNORM | EPOLLWRBAND); 2800 2801 /* Should agree with poll, otherwise some programs break */ 2802 if (sock_writeable(sk)) 2803 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2804 } 2805 2806 rcu_read_unlock(); 2807 } 2808 2809 static void sock_def_destruct(struct sock *sk) 2810 { 2811 } 2812 2813 void sk_send_sigurg(struct sock *sk) 2814 { 2815 if (sk->sk_socket && sk->sk_socket->file) 2816 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2817 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2818 } 2819 EXPORT_SYMBOL(sk_send_sigurg); 2820 2821 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2822 unsigned long expires) 2823 { 2824 if (!mod_timer(timer, expires)) 2825 sock_hold(sk); 2826 } 2827 EXPORT_SYMBOL(sk_reset_timer); 2828 2829 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2830 { 2831 if (del_timer(timer)) 2832 __sock_put(sk); 2833 } 2834 EXPORT_SYMBOL(sk_stop_timer); 2835 2836 void sock_init_data(struct socket *sock, struct sock *sk) 2837 { 2838 sk_init_common(sk); 2839 sk->sk_send_head = NULL; 2840 2841 timer_setup(&sk->sk_timer, NULL, 0); 2842 2843 sk->sk_allocation = GFP_KERNEL; 2844 sk->sk_rcvbuf = sysctl_rmem_default; 2845 sk->sk_sndbuf = sysctl_wmem_default; 2846 sk->sk_state = TCP_CLOSE; 2847 sk_set_socket(sk, sock); 2848 2849 sock_set_flag(sk, SOCK_ZAPPED); 2850 2851 if (sock) { 2852 sk->sk_type = sock->type; 2853 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2854 sock->sk = sk; 2855 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2856 } else { 2857 RCU_INIT_POINTER(sk->sk_wq, NULL); 2858 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2859 } 2860 2861 rwlock_init(&sk->sk_callback_lock); 2862 if (sk->sk_kern_sock) 2863 lockdep_set_class_and_name( 2864 &sk->sk_callback_lock, 2865 af_kern_callback_keys + sk->sk_family, 2866 af_family_kern_clock_key_strings[sk->sk_family]); 2867 else 2868 lockdep_set_class_and_name( 2869 &sk->sk_callback_lock, 2870 af_callback_keys + sk->sk_family, 2871 af_family_clock_key_strings[sk->sk_family]); 2872 2873 sk->sk_state_change = sock_def_wakeup; 2874 sk->sk_data_ready = sock_def_readable; 2875 sk->sk_write_space = sock_def_write_space; 2876 sk->sk_error_report = sock_def_error_report; 2877 sk->sk_destruct = sock_def_destruct; 2878 2879 sk->sk_frag.page = NULL; 2880 sk->sk_frag.offset = 0; 2881 sk->sk_peek_off = -1; 2882 2883 sk->sk_peer_pid = NULL; 2884 sk->sk_peer_cred = NULL; 2885 sk->sk_write_pending = 0; 2886 sk->sk_rcvlowat = 1; 2887 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2888 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2889 2890 sk->sk_stamp = SK_DEFAULT_STAMP; 2891 #if BITS_PER_LONG==32 2892 seqlock_init(&sk->sk_stamp_seq); 2893 #endif 2894 atomic_set(&sk->sk_zckey, 0); 2895 2896 #ifdef CONFIG_NET_RX_BUSY_POLL 2897 sk->sk_napi_id = 0; 2898 sk->sk_ll_usec = sysctl_net_busy_read; 2899 #endif 2900 2901 sk->sk_max_pacing_rate = ~0UL; 2902 sk->sk_pacing_rate = ~0UL; 2903 sk->sk_pacing_shift = 10; 2904 sk->sk_incoming_cpu = -1; 2905 2906 sk_rx_queue_clear(sk); 2907 /* 2908 * Before updating sk_refcnt, we must commit prior changes to memory 2909 * (Documentation/RCU/rculist_nulls.txt for details) 2910 */ 2911 smp_wmb(); 2912 refcount_set(&sk->sk_refcnt, 1); 2913 atomic_set(&sk->sk_drops, 0); 2914 } 2915 EXPORT_SYMBOL(sock_init_data); 2916 2917 void lock_sock_nested(struct sock *sk, int subclass) 2918 { 2919 might_sleep(); 2920 spin_lock_bh(&sk->sk_lock.slock); 2921 if (sk->sk_lock.owned) 2922 __lock_sock(sk); 2923 sk->sk_lock.owned = 1; 2924 spin_unlock(&sk->sk_lock.slock); 2925 /* 2926 * The sk_lock has mutex_lock() semantics here: 2927 */ 2928 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2929 local_bh_enable(); 2930 } 2931 EXPORT_SYMBOL(lock_sock_nested); 2932 2933 void release_sock(struct sock *sk) 2934 { 2935 spin_lock_bh(&sk->sk_lock.slock); 2936 if (sk->sk_backlog.tail) 2937 __release_sock(sk); 2938 2939 /* Warning : release_cb() might need to release sk ownership, 2940 * ie call sock_release_ownership(sk) before us. 2941 */ 2942 if (sk->sk_prot->release_cb) 2943 sk->sk_prot->release_cb(sk); 2944 2945 sock_release_ownership(sk); 2946 if (waitqueue_active(&sk->sk_lock.wq)) 2947 wake_up(&sk->sk_lock.wq); 2948 spin_unlock_bh(&sk->sk_lock.slock); 2949 } 2950 EXPORT_SYMBOL(release_sock); 2951 2952 /** 2953 * lock_sock_fast - fast version of lock_sock 2954 * @sk: socket 2955 * 2956 * This version should be used for very small section, where process wont block 2957 * return false if fast path is taken: 2958 * 2959 * sk_lock.slock locked, owned = 0, BH disabled 2960 * 2961 * return true if slow path is taken: 2962 * 2963 * sk_lock.slock unlocked, owned = 1, BH enabled 2964 */ 2965 bool lock_sock_fast(struct sock *sk) 2966 { 2967 might_sleep(); 2968 spin_lock_bh(&sk->sk_lock.slock); 2969 2970 if (!sk->sk_lock.owned) 2971 /* 2972 * Note : We must disable BH 2973 */ 2974 return false; 2975 2976 __lock_sock(sk); 2977 sk->sk_lock.owned = 1; 2978 spin_unlock(&sk->sk_lock.slock); 2979 /* 2980 * The sk_lock has mutex_lock() semantics here: 2981 */ 2982 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2983 local_bh_enable(); 2984 return true; 2985 } 2986 EXPORT_SYMBOL(lock_sock_fast); 2987 2988 int sock_gettstamp(struct socket *sock, void __user *userstamp, 2989 bool timeval, bool time32) 2990 { 2991 struct sock *sk = sock->sk; 2992 struct timespec64 ts; 2993 2994 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2995 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 2996 if (ts.tv_sec == -1) 2997 return -ENOENT; 2998 if (ts.tv_sec == 0) { 2999 ktime_t kt = ktime_get_real(); 3000 sock_write_timestamp(sk, kt);; 3001 ts = ktime_to_timespec64(kt); 3002 } 3003 3004 if (timeval) 3005 ts.tv_nsec /= 1000; 3006 3007 #ifdef CONFIG_COMPAT_32BIT_TIME 3008 if (time32) 3009 return put_old_timespec32(&ts, userstamp); 3010 #endif 3011 #ifdef CONFIG_SPARC64 3012 /* beware of padding in sparc64 timeval */ 3013 if (timeval && !in_compat_syscall()) { 3014 struct __kernel_old_timeval __user tv = { 3015 .tv_sec = ts.tv_sec, 3016 .tv_usec = ts.tv_nsec, 3017 }; 3018 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3019 return -EFAULT; 3020 return 0; 3021 } 3022 #endif 3023 return put_timespec64(&ts, userstamp); 3024 } 3025 EXPORT_SYMBOL(sock_gettstamp); 3026 3027 void sock_enable_timestamp(struct sock *sk, int flag) 3028 { 3029 if (!sock_flag(sk, flag)) { 3030 unsigned long previous_flags = sk->sk_flags; 3031 3032 sock_set_flag(sk, flag); 3033 /* 3034 * we just set one of the two flags which require net 3035 * time stamping, but time stamping might have been on 3036 * already because of the other one 3037 */ 3038 if (sock_needs_netstamp(sk) && 3039 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3040 net_enable_timestamp(); 3041 } 3042 } 3043 3044 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3045 int level, int type) 3046 { 3047 struct sock_exterr_skb *serr; 3048 struct sk_buff *skb; 3049 int copied, err; 3050 3051 err = -EAGAIN; 3052 skb = sock_dequeue_err_skb(sk); 3053 if (skb == NULL) 3054 goto out; 3055 3056 copied = skb->len; 3057 if (copied > len) { 3058 msg->msg_flags |= MSG_TRUNC; 3059 copied = len; 3060 } 3061 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3062 if (err) 3063 goto out_free_skb; 3064 3065 sock_recv_timestamp(msg, sk, skb); 3066 3067 serr = SKB_EXT_ERR(skb); 3068 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3069 3070 msg->msg_flags |= MSG_ERRQUEUE; 3071 err = copied; 3072 3073 out_free_skb: 3074 kfree_skb(skb); 3075 out: 3076 return err; 3077 } 3078 EXPORT_SYMBOL(sock_recv_errqueue); 3079 3080 /* 3081 * Get a socket option on an socket. 3082 * 3083 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3084 * asynchronous errors should be reported by getsockopt. We assume 3085 * this means if you specify SO_ERROR (otherwise whats the point of it). 3086 */ 3087 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3088 char __user *optval, int __user *optlen) 3089 { 3090 struct sock *sk = sock->sk; 3091 3092 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3093 } 3094 EXPORT_SYMBOL(sock_common_getsockopt); 3095 3096 #ifdef CONFIG_COMPAT 3097 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3098 char __user *optval, int __user *optlen) 3099 { 3100 struct sock *sk = sock->sk; 3101 3102 if (sk->sk_prot->compat_getsockopt != NULL) 3103 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3104 optval, optlen); 3105 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3106 } 3107 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3108 #endif 3109 3110 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3111 int flags) 3112 { 3113 struct sock *sk = sock->sk; 3114 int addr_len = 0; 3115 int err; 3116 3117 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3118 flags & ~MSG_DONTWAIT, &addr_len); 3119 if (err >= 0) 3120 msg->msg_namelen = addr_len; 3121 return err; 3122 } 3123 EXPORT_SYMBOL(sock_common_recvmsg); 3124 3125 /* 3126 * Set socket options on an inet socket. 3127 */ 3128 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3129 char __user *optval, unsigned int optlen) 3130 { 3131 struct sock *sk = sock->sk; 3132 3133 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3134 } 3135 EXPORT_SYMBOL(sock_common_setsockopt); 3136 3137 #ifdef CONFIG_COMPAT 3138 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3139 char __user *optval, unsigned int optlen) 3140 { 3141 struct sock *sk = sock->sk; 3142 3143 if (sk->sk_prot->compat_setsockopt != NULL) 3144 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3145 optval, optlen); 3146 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3147 } 3148 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3149 #endif 3150 3151 void sk_common_release(struct sock *sk) 3152 { 3153 if (sk->sk_prot->destroy) 3154 sk->sk_prot->destroy(sk); 3155 3156 /* 3157 * Observation: when sock_common_release is called, processes have 3158 * no access to socket. But net still has. 3159 * Step one, detach it from networking: 3160 * 3161 * A. Remove from hash tables. 3162 */ 3163 3164 sk->sk_prot->unhash(sk); 3165 3166 /* 3167 * In this point socket cannot receive new packets, but it is possible 3168 * that some packets are in flight because some CPU runs receiver and 3169 * did hash table lookup before we unhashed socket. They will achieve 3170 * receive queue and will be purged by socket destructor. 3171 * 3172 * Also we still have packets pending on receive queue and probably, 3173 * our own packets waiting in device queues. sock_destroy will drain 3174 * receive queue, but transmitted packets will delay socket destruction 3175 * until the last reference will be released. 3176 */ 3177 3178 sock_orphan(sk); 3179 3180 xfrm_sk_free_policy(sk); 3181 3182 sk_refcnt_debug_release(sk); 3183 3184 sock_put(sk); 3185 } 3186 EXPORT_SYMBOL(sk_common_release); 3187 3188 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3189 { 3190 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3191 3192 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3193 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3194 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3195 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3196 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3197 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3198 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3199 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3200 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3201 } 3202 3203 #ifdef CONFIG_PROC_FS 3204 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3205 struct prot_inuse { 3206 int val[PROTO_INUSE_NR]; 3207 }; 3208 3209 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3210 3211 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3212 { 3213 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3214 } 3215 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3216 3217 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3218 { 3219 int cpu, idx = prot->inuse_idx; 3220 int res = 0; 3221 3222 for_each_possible_cpu(cpu) 3223 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3224 3225 return res >= 0 ? res : 0; 3226 } 3227 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3228 3229 static void sock_inuse_add(struct net *net, int val) 3230 { 3231 this_cpu_add(*net->core.sock_inuse, val); 3232 } 3233 3234 int sock_inuse_get(struct net *net) 3235 { 3236 int cpu, res = 0; 3237 3238 for_each_possible_cpu(cpu) 3239 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3240 3241 return res; 3242 } 3243 3244 EXPORT_SYMBOL_GPL(sock_inuse_get); 3245 3246 static int __net_init sock_inuse_init_net(struct net *net) 3247 { 3248 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3249 if (net->core.prot_inuse == NULL) 3250 return -ENOMEM; 3251 3252 net->core.sock_inuse = alloc_percpu(int); 3253 if (net->core.sock_inuse == NULL) 3254 goto out; 3255 3256 return 0; 3257 3258 out: 3259 free_percpu(net->core.prot_inuse); 3260 return -ENOMEM; 3261 } 3262 3263 static void __net_exit sock_inuse_exit_net(struct net *net) 3264 { 3265 free_percpu(net->core.prot_inuse); 3266 free_percpu(net->core.sock_inuse); 3267 } 3268 3269 static struct pernet_operations net_inuse_ops = { 3270 .init = sock_inuse_init_net, 3271 .exit = sock_inuse_exit_net, 3272 }; 3273 3274 static __init int net_inuse_init(void) 3275 { 3276 if (register_pernet_subsys(&net_inuse_ops)) 3277 panic("Cannot initialize net inuse counters"); 3278 3279 return 0; 3280 } 3281 3282 core_initcall(net_inuse_init); 3283 3284 static void assign_proto_idx(struct proto *prot) 3285 { 3286 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3287 3288 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3289 pr_err("PROTO_INUSE_NR exhausted\n"); 3290 return; 3291 } 3292 3293 set_bit(prot->inuse_idx, proto_inuse_idx); 3294 } 3295 3296 static void release_proto_idx(struct proto *prot) 3297 { 3298 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3299 clear_bit(prot->inuse_idx, proto_inuse_idx); 3300 } 3301 #else 3302 static inline void assign_proto_idx(struct proto *prot) 3303 { 3304 } 3305 3306 static inline void release_proto_idx(struct proto *prot) 3307 { 3308 } 3309 3310 static void sock_inuse_add(struct net *net, int val) 3311 { 3312 } 3313 #endif 3314 3315 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3316 { 3317 if (!rsk_prot) 3318 return; 3319 kfree(rsk_prot->slab_name); 3320 rsk_prot->slab_name = NULL; 3321 kmem_cache_destroy(rsk_prot->slab); 3322 rsk_prot->slab = NULL; 3323 } 3324 3325 static int req_prot_init(const struct proto *prot) 3326 { 3327 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3328 3329 if (!rsk_prot) 3330 return 0; 3331 3332 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3333 prot->name); 3334 if (!rsk_prot->slab_name) 3335 return -ENOMEM; 3336 3337 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3338 rsk_prot->obj_size, 0, 3339 SLAB_ACCOUNT | prot->slab_flags, 3340 NULL); 3341 3342 if (!rsk_prot->slab) { 3343 pr_crit("%s: Can't create request sock SLAB cache!\n", 3344 prot->name); 3345 return -ENOMEM; 3346 } 3347 return 0; 3348 } 3349 3350 int proto_register(struct proto *prot, int alloc_slab) 3351 { 3352 if (alloc_slab) { 3353 prot->slab = kmem_cache_create_usercopy(prot->name, 3354 prot->obj_size, 0, 3355 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3356 prot->slab_flags, 3357 prot->useroffset, prot->usersize, 3358 NULL); 3359 3360 if (prot->slab == NULL) { 3361 pr_crit("%s: Can't create sock SLAB cache!\n", 3362 prot->name); 3363 goto out; 3364 } 3365 3366 if (req_prot_init(prot)) 3367 goto out_free_request_sock_slab; 3368 3369 if (prot->twsk_prot != NULL) { 3370 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3371 3372 if (prot->twsk_prot->twsk_slab_name == NULL) 3373 goto out_free_request_sock_slab; 3374 3375 prot->twsk_prot->twsk_slab = 3376 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3377 prot->twsk_prot->twsk_obj_size, 3378 0, 3379 SLAB_ACCOUNT | 3380 prot->slab_flags, 3381 NULL); 3382 if (prot->twsk_prot->twsk_slab == NULL) 3383 goto out_free_timewait_sock_slab_name; 3384 } 3385 } 3386 3387 mutex_lock(&proto_list_mutex); 3388 list_add(&prot->node, &proto_list); 3389 assign_proto_idx(prot); 3390 mutex_unlock(&proto_list_mutex); 3391 return 0; 3392 3393 out_free_timewait_sock_slab_name: 3394 kfree(prot->twsk_prot->twsk_slab_name); 3395 out_free_request_sock_slab: 3396 req_prot_cleanup(prot->rsk_prot); 3397 3398 kmem_cache_destroy(prot->slab); 3399 prot->slab = NULL; 3400 out: 3401 return -ENOBUFS; 3402 } 3403 EXPORT_SYMBOL(proto_register); 3404 3405 void proto_unregister(struct proto *prot) 3406 { 3407 mutex_lock(&proto_list_mutex); 3408 release_proto_idx(prot); 3409 list_del(&prot->node); 3410 mutex_unlock(&proto_list_mutex); 3411 3412 kmem_cache_destroy(prot->slab); 3413 prot->slab = NULL; 3414 3415 req_prot_cleanup(prot->rsk_prot); 3416 3417 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3418 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3419 kfree(prot->twsk_prot->twsk_slab_name); 3420 prot->twsk_prot->twsk_slab = NULL; 3421 } 3422 } 3423 EXPORT_SYMBOL(proto_unregister); 3424 3425 int sock_load_diag_module(int family, int protocol) 3426 { 3427 if (!protocol) { 3428 if (!sock_is_registered(family)) 3429 return -ENOENT; 3430 3431 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3432 NETLINK_SOCK_DIAG, family); 3433 } 3434 3435 #ifdef CONFIG_INET 3436 if (family == AF_INET && 3437 protocol != IPPROTO_RAW && 3438 !rcu_access_pointer(inet_protos[protocol])) 3439 return -ENOENT; 3440 #endif 3441 3442 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3443 NETLINK_SOCK_DIAG, family, protocol); 3444 } 3445 EXPORT_SYMBOL(sock_load_diag_module); 3446 3447 #ifdef CONFIG_PROC_FS 3448 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3449 __acquires(proto_list_mutex) 3450 { 3451 mutex_lock(&proto_list_mutex); 3452 return seq_list_start_head(&proto_list, *pos); 3453 } 3454 3455 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3456 { 3457 return seq_list_next(v, &proto_list, pos); 3458 } 3459 3460 static void proto_seq_stop(struct seq_file *seq, void *v) 3461 __releases(proto_list_mutex) 3462 { 3463 mutex_unlock(&proto_list_mutex); 3464 } 3465 3466 static char proto_method_implemented(const void *method) 3467 { 3468 return method == NULL ? 'n' : 'y'; 3469 } 3470 static long sock_prot_memory_allocated(struct proto *proto) 3471 { 3472 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3473 } 3474 3475 static char *sock_prot_memory_pressure(struct proto *proto) 3476 { 3477 return proto->memory_pressure != NULL ? 3478 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3479 } 3480 3481 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3482 { 3483 3484 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3485 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3486 proto->name, 3487 proto->obj_size, 3488 sock_prot_inuse_get(seq_file_net(seq), proto), 3489 sock_prot_memory_allocated(proto), 3490 sock_prot_memory_pressure(proto), 3491 proto->max_header, 3492 proto->slab == NULL ? "no" : "yes", 3493 module_name(proto->owner), 3494 proto_method_implemented(proto->close), 3495 proto_method_implemented(proto->connect), 3496 proto_method_implemented(proto->disconnect), 3497 proto_method_implemented(proto->accept), 3498 proto_method_implemented(proto->ioctl), 3499 proto_method_implemented(proto->init), 3500 proto_method_implemented(proto->destroy), 3501 proto_method_implemented(proto->shutdown), 3502 proto_method_implemented(proto->setsockopt), 3503 proto_method_implemented(proto->getsockopt), 3504 proto_method_implemented(proto->sendmsg), 3505 proto_method_implemented(proto->recvmsg), 3506 proto_method_implemented(proto->sendpage), 3507 proto_method_implemented(proto->bind), 3508 proto_method_implemented(proto->backlog_rcv), 3509 proto_method_implemented(proto->hash), 3510 proto_method_implemented(proto->unhash), 3511 proto_method_implemented(proto->get_port), 3512 proto_method_implemented(proto->enter_memory_pressure)); 3513 } 3514 3515 static int proto_seq_show(struct seq_file *seq, void *v) 3516 { 3517 if (v == &proto_list) 3518 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3519 "protocol", 3520 "size", 3521 "sockets", 3522 "memory", 3523 "press", 3524 "maxhdr", 3525 "slab", 3526 "module", 3527 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3528 else 3529 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3530 return 0; 3531 } 3532 3533 static const struct seq_operations proto_seq_ops = { 3534 .start = proto_seq_start, 3535 .next = proto_seq_next, 3536 .stop = proto_seq_stop, 3537 .show = proto_seq_show, 3538 }; 3539 3540 static __net_init int proto_init_net(struct net *net) 3541 { 3542 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3543 sizeof(struct seq_net_private))) 3544 return -ENOMEM; 3545 3546 return 0; 3547 } 3548 3549 static __net_exit void proto_exit_net(struct net *net) 3550 { 3551 remove_proc_entry("protocols", net->proc_net); 3552 } 3553 3554 3555 static __net_initdata struct pernet_operations proto_net_ops = { 3556 .init = proto_init_net, 3557 .exit = proto_exit_net, 3558 }; 3559 3560 static int __init proto_init(void) 3561 { 3562 return register_pernet_subsys(&proto_net_ops); 3563 } 3564 3565 subsys_initcall(proto_init); 3566 3567 #endif /* PROC_FS */ 3568 3569 #ifdef CONFIG_NET_RX_BUSY_POLL 3570 bool sk_busy_loop_end(void *p, unsigned long start_time) 3571 { 3572 struct sock *sk = p; 3573 3574 return !skb_queue_empty(&sk->sk_receive_queue) || 3575 sk_busy_loop_timeout(sk, start_time); 3576 } 3577 EXPORT_SYMBOL(sk_busy_loop_end); 3578 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3579