1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #include <linux/capability.h> 93 #include <linux/errno.h> 94 #include <linux/types.h> 95 #include <linux/socket.h> 96 #include <linux/in.h> 97 #include <linux/kernel.h> 98 #include <linux/module.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/sched.h> 102 #include <linux/timer.h> 103 #include <linux/string.h> 104 #include <linux/sockios.h> 105 #include <linux/net.h> 106 #include <linux/mm.h> 107 #include <linux/slab.h> 108 #include <linux/interrupt.h> 109 #include <linux/poll.h> 110 #include <linux/tcp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 114 #include <asm/uaccess.h> 115 #include <asm/system.h> 116 117 #include <linux/netdevice.h> 118 #include <net/protocol.h> 119 #include <linux/skbuff.h> 120 #include <net/net_namespace.h> 121 #include <net/request_sock.h> 122 #include <net/sock.h> 123 #include <linux/net_tstamp.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 127 #include <linux/filter.h> 128 129 #ifdef CONFIG_INET 130 #include <net/tcp.h> 131 #endif 132 133 /* 134 * Each address family might have different locking rules, so we have 135 * one slock key per address family: 136 */ 137 static struct lock_class_key af_family_keys[AF_MAX]; 138 static struct lock_class_key af_family_slock_keys[AF_MAX]; 139 140 /* 141 * Make lock validator output more readable. (we pre-construct these 142 * strings build-time, so that runtime initialization of socket 143 * locks is fast): 144 */ 145 static const char *const af_family_key_strings[AF_MAX+1] = { 146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 158 "sk_lock-AF_IEEE802154", 159 "sk_lock-AF_MAX" 160 }; 161 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 171 "slock-27" , "slock-28" , "slock-AF_CAN" , 172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 174 "slock-AF_IEEE802154", 175 "slock-AF_MAX" 176 }; 177 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 187 "clock-27" , "clock-28" , "clock-AF_CAN" , 188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 190 "clock-AF_IEEE802154", 191 "clock-AF_MAX" 192 }; 193 194 /* 195 * sk_callback_lock locking rules are per-address-family, 196 * so split the lock classes by using a per-AF key: 197 */ 198 static struct lock_class_key af_callback_keys[AF_MAX]; 199 200 /* Take into consideration the size of the struct sk_buff overhead in the 201 * determination of these values, since that is non-constant across 202 * platforms. This makes socket queueing behavior and performance 203 * not depend upon such differences. 204 */ 205 #define _SK_MEM_PACKETS 256 206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 209 210 /* Run time adjustable parameters. */ 211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 215 216 /* Maximal space eaten by iovec or ancilliary data plus some space */ 217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 218 EXPORT_SYMBOL(sysctl_optmem_max); 219 220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 221 { 222 struct timeval tv; 223 224 if (optlen < sizeof(tv)) 225 return -EINVAL; 226 if (copy_from_user(&tv, optval, sizeof(tv))) 227 return -EFAULT; 228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 229 return -EDOM; 230 231 if (tv.tv_sec < 0) { 232 static int warned __read_mostly; 233 234 *timeo_p = 0; 235 if (warned < 10 && net_ratelimit()) { 236 warned++; 237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " 238 "tries to set negative timeout\n", 239 current->comm, task_pid_nr(current)); 240 } 241 return 0; 242 } 243 *timeo_p = MAX_SCHEDULE_TIMEOUT; 244 if (tv.tv_sec == 0 && tv.tv_usec == 0) 245 return 0; 246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 248 return 0; 249 } 250 251 static void sock_warn_obsolete_bsdism(const char *name) 252 { 253 static int warned; 254 static char warncomm[TASK_COMM_LEN]; 255 if (strcmp(warncomm, current->comm) && warned < 5) { 256 strcpy(warncomm, current->comm); 257 printk(KERN_WARNING "process `%s' is using obsolete " 258 "%s SO_BSDCOMPAT\n", warncomm, name); 259 warned++; 260 } 261 } 262 263 static void sock_disable_timestamp(struct sock *sk, int flag) 264 { 265 if (sock_flag(sk, flag)) { 266 sock_reset_flag(sk, flag); 267 if (!sock_flag(sk, SOCK_TIMESTAMP) && 268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) { 269 net_disable_timestamp(); 270 } 271 } 272 } 273 274 275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 276 { 277 int err; 278 int skb_len; 279 unsigned long flags; 280 struct sk_buff_head *list = &sk->sk_receive_queue; 281 282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces 283 number of warnings when compiling with -W --ANK 284 */ 285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 286 (unsigned)sk->sk_rcvbuf) { 287 atomic_inc(&sk->sk_drops); 288 return -ENOMEM; 289 } 290 291 err = sk_filter(sk, skb); 292 if (err) 293 return err; 294 295 if (!sk_rmem_schedule(sk, skb->truesize)) { 296 atomic_inc(&sk->sk_drops); 297 return -ENOBUFS; 298 } 299 300 skb->dev = NULL; 301 skb_set_owner_r(skb, sk); 302 303 /* Cache the SKB length before we tack it onto the receive 304 * queue. Once it is added it no longer belongs to us and 305 * may be freed by other threads of control pulling packets 306 * from the queue. 307 */ 308 skb_len = skb->len; 309 310 spin_lock_irqsave(&list->lock, flags); 311 skb->dropcount = atomic_read(&sk->sk_drops); 312 __skb_queue_tail(list, skb); 313 spin_unlock_irqrestore(&list->lock, flags); 314 315 if (!sock_flag(sk, SOCK_DEAD)) 316 sk->sk_data_ready(sk, skb_len); 317 return 0; 318 } 319 EXPORT_SYMBOL(sock_queue_rcv_skb); 320 321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 322 { 323 int rc = NET_RX_SUCCESS; 324 325 if (sk_filter(sk, skb)) 326 goto discard_and_relse; 327 328 skb->dev = NULL; 329 330 if (nested) 331 bh_lock_sock_nested(sk); 332 else 333 bh_lock_sock(sk); 334 if (!sock_owned_by_user(sk)) { 335 /* 336 * trylock + unlock semantics: 337 */ 338 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 339 340 rc = sk_backlog_rcv(sk, skb); 341 342 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 343 } else if (sk_add_backlog(sk, skb)) { 344 bh_unlock_sock(sk); 345 atomic_inc(&sk->sk_drops); 346 goto discard_and_relse; 347 } 348 349 bh_unlock_sock(sk); 350 out: 351 sock_put(sk); 352 return rc; 353 discard_and_relse: 354 kfree_skb(skb); 355 goto out; 356 } 357 EXPORT_SYMBOL(sk_receive_skb); 358 359 void sk_reset_txq(struct sock *sk) 360 { 361 sk_tx_queue_clear(sk); 362 } 363 EXPORT_SYMBOL(sk_reset_txq); 364 365 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 366 { 367 struct dst_entry *dst = sk->sk_dst_cache; 368 369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 370 sk_tx_queue_clear(sk); 371 sk->sk_dst_cache = NULL; 372 dst_release(dst); 373 return NULL; 374 } 375 376 return dst; 377 } 378 EXPORT_SYMBOL(__sk_dst_check); 379 380 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 381 { 382 struct dst_entry *dst = sk_dst_get(sk); 383 384 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 385 sk_dst_reset(sk); 386 dst_release(dst); 387 return NULL; 388 } 389 390 return dst; 391 } 392 EXPORT_SYMBOL(sk_dst_check); 393 394 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) 395 { 396 int ret = -ENOPROTOOPT; 397 #ifdef CONFIG_NETDEVICES 398 struct net *net = sock_net(sk); 399 char devname[IFNAMSIZ]; 400 int index; 401 402 /* Sorry... */ 403 ret = -EPERM; 404 if (!capable(CAP_NET_RAW)) 405 goto out; 406 407 ret = -EINVAL; 408 if (optlen < 0) 409 goto out; 410 411 /* Bind this socket to a particular device like "eth0", 412 * as specified in the passed interface name. If the 413 * name is "" or the option length is zero the socket 414 * is not bound. 415 */ 416 if (optlen > IFNAMSIZ - 1) 417 optlen = IFNAMSIZ - 1; 418 memset(devname, 0, sizeof(devname)); 419 420 ret = -EFAULT; 421 if (copy_from_user(devname, optval, optlen)) 422 goto out; 423 424 index = 0; 425 if (devname[0] != '\0') { 426 struct net_device *dev; 427 428 rcu_read_lock(); 429 dev = dev_get_by_name_rcu(net, devname); 430 if (dev) 431 index = dev->ifindex; 432 rcu_read_unlock(); 433 ret = -ENODEV; 434 if (!dev) 435 goto out; 436 } 437 438 lock_sock(sk); 439 sk->sk_bound_dev_if = index; 440 sk_dst_reset(sk); 441 release_sock(sk); 442 443 ret = 0; 444 445 out: 446 #endif 447 448 return ret; 449 } 450 451 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 452 { 453 if (valbool) 454 sock_set_flag(sk, bit); 455 else 456 sock_reset_flag(sk, bit); 457 } 458 459 /* 460 * This is meant for all protocols to use and covers goings on 461 * at the socket level. Everything here is generic. 462 */ 463 464 int sock_setsockopt(struct socket *sock, int level, int optname, 465 char __user *optval, unsigned int optlen) 466 { 467 struct sock *sk = sock->sk; 468 int val; 469 int valbool; 470 struct linger ling; 471 int ret = 0; 472 473 /* 474 * Options without arguments 475 */ 476 477 if (optname == SO_BINDTODEVICE) 478 return sock_bindtodevice(sk, optval, optlen); 479 480 if (optlen < sizeof(int)) 481 return -EINVAL; 482 483 if (get_user(val, (int __user *)optval)) 484 return -EFAULT; 485 486 valbool = val ? 1 : 0; 487 488 lock_sock(sk); 489 490 switch (optname) { 491 case SO_DEBUG: 492 if (val && !capable(CAP_NET_ADMIN)) 493 ret = -EACCES; 494 else 495 sock_valbool_flag(sk, SOCK_DBG, valbool); 496 break; 497 case SO_REUSEADDR: 498 sk->sk_reuse = valbool; 499 break; 500 case SO_TYPE: 501 case SO_PROTOCOL: 502 case SO_DOMAIN: 503 case SO_ERROR: 504 ret = -ENOPROTOOPT; 505 break; 506 case SO_DONTROUTE: 507 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 508 break; 509 case SO_BROADCAST: 510 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 511 break; 512 case SO_SNDBUF: 513 /* Don't error on this BSD doesn't and if you think 514 about it this is right. Otherwise apps have to 515 play 'guess the biggest size' games. RCVBUF/SNDBUF 516 are treated in BSD as hints */ 517 518 if (val > sysctl_wmem_max) 519 val = sysctl_wmem_max; 520 set_sndbuf: 521 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 522 if ((val * 2) < SOCK_MIN_SNDBUF) 523 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 524 else 525 sk->sk_sndbuf = val * 2; 526 527 /* 528 * Wake up sending tasks if we 529 * upped the value. 530 */ 531 sk->sk_write_space(sk); 532 break; 533 534 case SO_SNDBUFFORCE: 535 if (!capable(CAP_NET_ADMIN)) { 536 ret = -EPERM; 537 break; 538 } 539 goto set_sndbuf; 540 541 case SO_RCVBUF: 542 /* Don't error on this BSD doesn't and if you think 543 about it this is right. Otherwise apps have to 544 play 'guess the biggest size' games. RCVBUF/SNDBUF 545 are treated in BSD as hints */ 546 547 if (val > sysctl_rmem_max) 548 val = sysctl_rmem_max; 549 set_rcvbuf: 550 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 551 /* 552 * We double it on the way in to account for 553 * "struct sk_buff" etc. overhead. Applications 554 * assume that the SO_RCVBUF setting they make will 555 * allow that much actual data to be received on that 556 * socket. 557 * 558 * Applications are unaware that "struct sk_buff" and 559 * other overheads allocate from the receive buffer 560 * during socket buffer allocation. 561 * 562 * And after considering the possible alternatives, 563 * returning the value we actually used in getsockopt 564 * is the most desirable behavior. 565 */ 566 if ((val * 2) < SOCK_MIN_RCVBUF) 567 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 568 else 569 sk->sk_rcvbuf = val * 2; 570 break; 571 572 case SO_RCVBUFFORCE: 573 if (!capable(CAP_NET_ADMIN)) { 574 ret = -EPERM; 575 break; 576 } 577 goto set_rcvbuf; 578 579 case SO_KEEPALIVE: 580 #ifdef CONFIG_INET 581 if (sk->sk_protocol == IPPROTO_TCP) 582 tcp_set_keepalive(sk, valbool); 583 #endif 584 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 585 break; 586 587 case SO_OOBINLINE: 588 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 589 break; 590 591 case SO_NO_CHECK: 592 sk->sk_no_check = valbool; 593 break; 594 595 case SO_PRIORITY: 596 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 597 sk->sk_priority = val; 598 else 599 ret = -EPERM; 600 break; 601 602 case SO_LINGER: 603 if (optlen < sizeof(ling)) { 604 ret = -EINVAL; /* 1003.1g */ 605 break; 606 } 607 if (copy_from_user(&ling, optval, sizeof(ling))) { 608 ret = -EFAULT; 609 break; 610 } 611 if (!ling.l_onoff) 612 sock_reset_flag(sk, SOCK_LINGER); 613 else { 614 #if (BITS_PER_LONG == 32) 615 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 616 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 617 else 618 #endif 619 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 620 sock_set_flag(sk, SOCK_LINGER); 621 } 622 break; 623 624 case SO_BSDCOMPAT: 625 sock_warn_obsolete_bsdism("setsockopt"); 626 break; 627 628 case SO_PASSCRED: 629 if (valbool) 630 set_bit(SOCK_PASSCRED, &sock->flags); 631 else 632 clear_bit(SOCK_PASSCRED, &sock->flags); 633 break; 634 635 case SO_TIMESTAMP: 636 case SO_TIMESTAMPNS: 637 if (valbool) { 638 if (optname == SO_TIMESTAMP) 639 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 640 else 641 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 642 sock_set_flag(sk, SOCK_RCVTSTAMP); 643 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 644 } else { 645 sock_reset_flag(sk, SOCK_RCVTSTAMP); 646 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 647 } 648 break; 649 650 case SO_TIMESTAMPING: 651 if (val & ~SOF_TIMESTAMPING_MASK) { 652 ret = -EINVAL; 653 break; 654 } 655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, 656 val & SOF_TIMESTAMPING_TX_HARDWARE); 657 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, 658 val & SOF_TIMESTAMPING_TX_SOFTWARE); 659 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, 660 val & SOF_TIMESTAMPING_RX_HARDWARE); 661 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 662 sock_enable_timestamp(sk, 663 SOCK_TIMESTAMPING_RX_SOFTWARE); 664 else 665 sock_disable_timestamp(sk, 666 SOCK_TIMESTAMPING_RX_SOFTWARE); 667 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, 668 val & SOF_TIMESTAMPING_SOFTWARE); 669 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, 670 val & SOF_TIMESTAMPING_SYS_HARDWARE); 671 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, 672 val & SOF_TIMESTAMPING_RAW_HARDWARE); 673 break; 674 675 case SO_RCVLOWAT: 676 if (val < 0) 677 val = INT_MAX; 678 sk->sk_rcvlowat = val ? : 1; 679 break; 680 681 case SO_RCVTIMEO: 682 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 683 break; 684 685 case SO_SNDTIMEO: 686 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 687 break; 688 689 case SO_ATTACH_FILTER: 690 ret = -EINVAL; 691 if (optlen == sizeof(struct sock_fprog)) { 692 struct sock_fprog fprog; 693 694 ret = -EFAULT; 695 if (copy_from_user(&fprog, optval, sizeof(fprog))) 696 break; 697 698 ret = sk_attach_filter(&fprog, sk); 699 } 700 break; 701 702 case SO_DETACH_FILTER: 703 ret = sk_detach_filter(sk); 704 break; 705 706 case SO_PASSSEC: 707 if (valbool) 708 set_bit(SOCK_PASSSEC, &sock->flags); 709 else 710 clear_bit(SOCK_PASSSEC, &sock->flags); 711 break; 712 case SO_MARK: 713 if (!capable(CAP_NET_ADMIN)) 714 ret = -EPERM; 715 else 716 sk->sk_mark = val; 717 break; 718 719 /* We implement the SO_SNDLOWAT etc to 720 not be settable (1003.1g 5.3) */ 721 case SO_RXQ_OVFL: 722 if (valbool) 723 sock_set_flag(sk, SOCK_RXQ_OVFL); 724 else 725 sock_reset_flag(sk, SOCK_RXQ_OVFL); 726 break; 727 default: 728 ret = -ENOPROTOOPT; 729 break; 730 } 731 release_sock(sk); 732 return ret; 733 } 734 EXPORT_SYMBOL(sock_setsockopt); 735 736 737 int sock_getsockopt(struct socket *sock, int level, int optname, 738 char __user *optval, int __user *optlen) 739 { 740 struct sock *sk = sock->sk; 741 742 union { 743 int val; 744 struct linger ling; 745 struct timeval tm; 746 } v; 747 748 int lv = sizeof(int); 749 int len; 750 751 if (get_user(len, optlen)) 752 return -EFAULT; 753 if (len < 0) 754 return -EINVAL; 755 756 memset(&v, 0, sizeof(v)); 757 758 switch (optname) { 759 case SO_DEBUG: 760 v.val = sock_flag(sk, SOCK_DBG); 761 break; 762 763 case SO_DONTROUTE: 764 v.val = sock_flag(sk, SOCK_LOCALROUTE); 765 break; 766 767 case SO_BROADCAST: 768 v.val = !!sock_flag(sk, SOCK_BROADCAST); 769 break; 770 771 case SO_SNDBUF: 772 v.val = sk->sk_sndbuf; 773 break; 774 775 case SO_RCVBUF: 776 v.val = sk->sk_rcvbuf; 777 break; 778 779 case SO_REUSEADDR: 780 v.val = sk->sk_reuse; 781 break; 782 783 case SO_KEEPALIVE: 784 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 785 break; 786 787 case SO_TYPE: 788 v.val = sk->sk_type; 789 break; 790 791 case SO_PROTOCOL: 792 v.val = sk->sk_protocol; 793 break; 794 795 case SO_DOMAIN: 796 v.val = sk->sk_family; 797 break; 798 799 case SO_ERROR: 800 v.val = -sock_error(sk); 801 if (v.val == 0) 802 v.val = xchg(&sk->sk_err_soft, 0); 803 break; 804 805 case SO_OOBINLINE: 806 v.val = !!sock_flag(sk, SOCK_URGINLINE); 807 break; 808 809 case SO_NO_CHECK: 810 v.val = sk->sk_no_check; 811 break; 812 813 case SO_PRIORITY: 814 v.val = sk->sk_priority; 815 break; 816 817 case SO_LINGER: 818 lv = sizeof(v.ling); 819 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 820 v.ling.l_linger = sk->sk_lingertime / HZ; 821 break; 822 823 case SO_BSDCOMPAT: 824 sock_warn_obsolete_bsdism("getsockopt"); 825 break; 826 827 case SO_TIMESTAMP: 828 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 829 !sock_flag(sk, SOCK_RCVTSTAMPNS); 830 break; 831 832 case SO_TIMESTAMPNS: 833 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 834 break; 835 836 case SO_TIMESTAMPING: 837 v.val = 0; 838 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 839 v.val |= SOF_TIMESTAMPING_TX_HARDWARE; 840 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 841 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE; 842 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE)) 843 v.val |= SOF_TIMESTAMPING_RX_HARDWARE; 844 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 845 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE; 846 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) 847 v.val |= SOF_TIMESTAMPING_SOFTWARE; 848 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)) 849 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE; 850 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) 851 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE; 852 break; 853 854 case SO_RCVTIMEO: 855 lv = sizeof(struct timeval); 856 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 857 v.tm.tv_sec = 0; 858 v.tm.tv_usec = 0; 859 } else { 860 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 861 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 862 } 863 break; 864 865 case SO_SNDTIMEO: 866 lv = sizeof(struct timeval); 867 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 868 v.tm.tv_sec = 0; 869 v.tm.tv_usec = 0; 870 } else { 871 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 872 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 873 } 874 break; 875 876 case SO_RCVLOWAT: 877 v.val = sk->sk_rcvlowat; 878 break; 879 880 case SO_SNDLOWAT: 881 v.val = 1; 882 break; 883 884 case SO_PASSCRED: 885 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 886 break; 887 888 case SO_PEERCRED: 889 if (len > sizeof(sk->sk_peercred)) 890 len = sizeof(sk->sk_peercred); 891 if (copy_to_user(optval, &sk->sk_peercred, len)) 892 return -EFAULT; 893 goto lenout; 894 895 case SO_PEERNAME: 896 { 897 char address[128]; 898 899 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 900 return -ENOTCONN; 901 if (lv < len) 902 return -EINVAL; 903 if (copy_to_user(optval, address, len)) 904 return -EFAULT; 905 goto lenout; 906 } 907 908 /* Dubious BSD thing... Probably nobody even uses it, but 909 * the UNIX standard wants it for whatever reason... -DaveM 910 */ 911 case SO_ACCEPTCONN: 912 v.val = sk->sk_state == TCP_LISTEN; 913 break; 914 915 case SO_PASSSEC: 916 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; 917 break; 918 919 case SO_PEERSEC: 920 return security_socket_getpeersec_stream(sock, optval, optlen, len); 921 922 case SO_MARK: 923 v.val = sk->sk_mark; 924 break; 925 926 case SO_RXQ_OVFL: 927 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL); 928 break; 929 930 default: 931 return -ENOPROTOOPT; 932 } 933 934 if (len > lv) 935 len = lv; 936 if (copy_to_user(optval, &v, len)) 937 return -EFAULT; 938 lenout: 939 if (put_user(len, optlen)) 940 return -EFAULT; 941 return 0; 942 } 943 944 /* 945 * Initialize an sk_lock. 946 * 947 * (We also register the sk_lock with the lock validator.) 948 */ 949 static inline void sock_lock_init(struct sock *sk) 950 { 951 sock_lock_init_class_and_name(sk, 952 af_family_slock_key_strings[sk->sk_family], 953 af_family_slock_keys + sk->sk_family, 954 af_family_key_strings[sk->sk_family], 955 af_family_keys + sk->sk_family); 956 } 957 958 /* 959 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 960 * even temporarly, because of RCU lookups. sk_node should also be left as is. 961 */ 962 static void sock_copy(struct sock *nsk, const struct sock *osk) 963 { 964 #ifdef CONFIG_SECURITY_NETWORK 965 void *sptr = nsk->sk_security; 966 #endif 967 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) != 968 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) + 969 sizeof(osk->sk_tx_queue_mapping)); 970 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start, 971 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start)); 972 #ifdef CONFIG_SECURITY_NETWORK 973 nsk->sk_security = sptr; 974 security_sk_clone(osk, nsk); 975 #endif 976 } 977 978 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 979 int family) 980 { 981 struct sock *sk; 982 struct kmem_cache *slab; 983 984 slab = prot->slab; 985 if (slab != NULL) { 986 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 987 if (!sk) 988 return sk; 989 if (priority & __GFP_ZERO) { 990 /* 991 * caches using SLAB_DESTROY_BY_RCU should let 992 * sk_node.next un-modified. Special care is taken 993 * when initializing object to zero. 994 */ 995 if (offsetof(struct sock, sk_node.next) != 0) 996 memset(sk, 0, offsetof(struct sock, sk_node.next)); 997 memset(&sk->sk_node.pprev, 0, 998 prot->obj_size - offsetof(struct sock, 999 sk_node.pprev)); 1000 } 1001 } 1002 else 1003 sk = kmalloc(prot->obj_size, priority); 1004 1005 if (sk != NULL) { 1006 kmemcheck_annotate_bitfield(sk, flags); 1007 1008 if (security_sk_alloc(sk, family, priority)) 1009 goto out_free; 1010 1011 if (!try_module_get(prot->owner)) 1012 goto out_free_sec; 1013 sk_tx_queue_clear(sk); 1014 } 1015 1016 return sk; 1017 1018 out_free_sec: 1019 security_sk_free(sk); 1020 out_free: 1021 if (slab != NULL) 1022 kmem_cache_free(slab, sk); 1023 else 1024 kfree(sk); 1025 return NULL; 1026 } 1027 1028 static void sk_prot_free(struct proto *prot, struct sock *sk) 1029 { 1030 struct kmem_cache *slab; 1031 struct module *owner; 1032 1033 owner = prot->owner; 1034 slab = prot->slab; 1035 1036 security_sk_free(sk); 1037 if (slab != NULL) 1038 kmem_cache_free(slab, sk); 1039 else 1040 kfree(sk); 1041 module_put(owner); 1042 } 1043 1044 /** 1045 * sk_alloc - All socket objects are allocated here 1046 * @net: the applicable net namespace 1047 * @family: protocol family 1048 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1049 * @prot: struct proto associated with this new sock instance 1050 */ 1051 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1052 struct proto *prot) 1053 { 1054 struct sock *sk; 1055 1056 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1057 if (sk) { 1058 sk->sk_family = family; 1059 /* 1060 * See comment in struct sock definition to understand 1061 * why we need sk_prot_creator -acme 1062 */ 1063 sk->sk_prot = sk->sk_prot_creator = prot; 1064 sock_lock_init(sk); 1065 sock_net_set(sk, get_net(net)); 1066 atomic_set(&sk->sk_wmem_alloc, 1); 1067 } 1068 1069 return sk; 1070 } 1071 EXPORT_SYMBOL(sk_alloc); 1072 1073 static void __sk_free(struct sock *sk) 1074 { 1075 struct sk_filter *filter; 1076 1077 if (sk->sk_destruct) 1078 sk->sk_destruct(sk); 1079 1080 filter = rcu_dereference_check(sk->sk_filter, 1081 atomic_read(&sk->sk_wmem_alloc) == 0); 1082 if (filter) { 1083 sk_filter_uncharge(sk, filter); 1084 rcu_assign_pointer(sk->sk_filter, NULL); 1085 } 1086 1087 sock_disable_timestamp(sk, SOCK_TIMESTAMP); 1088 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); 1089 1090 if (atomic_read(&sk->sk_omem_alloc)) 1091 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 1092 __func__, atomic_read(&sk->sk_omem_alloc)); 1093 1094 put_net(sock_net(sk)); 1095 sk_prot_free(sk->sk_prot_creator, sk); 1096 } 1097 1098 void sk_free(struct sock *sk) 1099 { 1100 /* 1101 * We substract one from sk_wmem_alloc and can know if 1102 * some packets are still in some tx queue. 1103 * If not null, sock_wfree() will call __sk_free(sk) later 1104 */ 1105 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1106 __sk_free(sk); 1107 } 1108 EXPORT_SYMBOL(sk_free); 1109 1110 /* 1111 * Last sock_put should drop referrence to sk->sk_net. It has already 1112 * been dropped in sk_change_net. Taking referrence to stopping namespace 1113 * is not an option. 1114 * Take referrence to a socket to remove it from hash _alive_ and after that 1115 * destroy it in the context of init_net. 1116 */ 1117 void sk_release_kernel(struct sock *sk) 1118 { 1119 if (sk == NULL || sk->sk_socket == NULL) 1120 return; 1121 1122 sock_hold(sk); 1123 sock_release(sk->sk_socket); 1124 release_net(sock_net(sk)); 1125 sock_net_set(sk, get_net(&init_net)); 1126 sock_put(sk); 1127 } 1128 EXPORT_SYMBOL(sk_release_kernel); 1129 1130 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 1131 { 1132 struct sock *newsk; 1133 1134 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1135 if (newsk != NULL) { 1136 struct sk_filter *filter; 1137 1138 sock_copy(newsk, sk); 1139 1140 /* SANITY */ 1141 get_net(sock_net(newsk)); 1142 sk_node_init(&newsk->sk_node); 1143 sock_lock_init(newsk); 1144 bh_lock_sock(newsk); 1145 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1146 newsk->sk_backlog.len = 0; 1147 1148 atomic_set(&newsk->sk_rmem_alloc, 0); 1149 /* 1150 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1151 */ 1152 atomic_set(&newsk->sk_wmem_alloc, 1); 1153 atomic_set(&newsk->sk_omem_alloc, 0); 1154 skb_queue_head_init(&newsk->sk_receive_queue); 1155 skb_queue_head_init(&newsk->sk_write_queue); 1156 #ifdef CONFIG_NET_DMA 1157 skb_queue_head_init(&newsk->sk_async_wait_queue); 1158 #endif 1159 1160 rwlock_init(&newsk->sk_dst_lock); 1161 rwlock_init(&newsk->sk_callback_lock); 1162 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1163 af_callback_keys + newsk->sk_family, 1164 af_family_clock_key_strings[newsk->sk_family]); 1165 1166 newsk->sk_dst_cache = NULL; 1167 newsk->sk_wmem_queued = 0; 1168 newsk->sk_forward_alloc = 0; 1169 newsk->sk_send_head = NULL; 1170 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1171 1172 sock_reset_flag(newsk, SOCK_DONE); 1173 skb_queue_head_init(&newsk->sk_error_queue); 1174 1175 filter = newsk->sk_filter; 1176 if (filter != NULL) 1177 sk_filter_charge(newsk, filter); 1178 1179 if (unlikely(xfrm_sk_clone_policy(newsk))) { 1180 /* It is still raw copy of parent, so invalidate 1181 * destructor and make plain sk_free() */ 1182 newsk->sk_destruct = NULL; 1183 sk_free(newsk); 1184 newsk = NULL; 1185 goto out; 1186 } 1187 1188 newsk->sk_err = 0; 1189 newsk->sk_priority = 0; 1190 /* 1191 * Before updating sk_refcnt, we must commit prior changes to memory 1192 * (Documentation/RCU/rculist_nulls.txt for details) 1193 */ 1194 smp_wmb(); 1195 atomic_set(&newsk->sk_refcnt, 2); 1196 1197 /* 1198 * Increment the counter in the same struct proto as the master 1199 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1200 * is the same as sk->sk_prot->socks, as this field was copied 1201 * with memcpy). 1202 * 1203 * This _changes_ the previous behaviour, where 1204 * tcp_create_openreq_child always was incrementing the 1205 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1206 * to be taken into account in all callers. -acme 1207 */ 1208 sk_refcnt_debug_inc(newsk); 1209 sk_set_socket(newsk, NULL); 1210 newsk->sk_sleep = NULL; 1211 1212 if (newsk->sk_prot->sockets_allocated) 1213 percpu_counter_inc(newsk->sk_prot->sockets_allocated); 1214 1215 if (sock_flag(newsk, SOCK_TIMESTAMP) || 1216 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 1217 net_enable_timestamp(); 1218 } 1219 out: 1220 return newsk; 1221 } 1222 EXPORT_SYMBOL_GPL(sk_clone); 1223 1224 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1225 { 1226 __sk_dst_set(sk, dst); 1227 sk->sk_route_caps = dst->dev->features; 1228 if (sk->sk_route_caps & NETIF_F_GSO) 1229 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1230 if (sk_can_gso(sk)) { 1231 if (dst->header_len) { 1232 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1233 } else { 1234 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1235 sk->sk_gso_max_size = dst->dev->gso_max_size; 1236 } 1237 } 1238 } 1239 EXPORT_SYMBOL_GPL(sk_setup_caps); 1240 1241 void __init sk_init(void) 1242 { 1243 if (totalram_pages <= 4096) { 1244 sysctl_wmem_max = 32767; 1245 sysctl_rmem_max = 32767; 1246 sysctl_wmem_default = 32767; 1247 sysctl_rmem_default = 32767; 1248 } else if (totalram_pages >= 131072) { 1249 sysctl_wmem_max = 131071; 1250 sysctl_rmem_max = 131071; 1251 } 1252 } 1253 1254 /* 1255 * Simple resource managers for sockets. 1256 */ 1257 1258 1259 /* 1260 * Write buffer destructor automatically called from kfree_skb. 1261 */ 1262 void sock_wfree(struct sk_buff *skb) 1263 { 1264 struct sock *sk = skb->sk; 1265 unsigned int len = skb->truesize; 1266 1267 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1268 /* 1269 * Keep a reference on sk_wmem_alloc, this will be released 1270 * after sk_write_space() call 1271 */ 1272 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1273 sk->sk_write_space(sk); 1274 len = 1; 1275 } 1276 /* 1277 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1278 * could not do because of in-flight packets 1279 */ 1280 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1281 __sk_free(sk); 1282 } 1283 EXPORT_SYMBOL(sock_wfree); 1284 1285 /* 1286 * Read buffer destructor automatically called from kfree_skb. 1287 */ 1288 void sock_rfree(struct sk_buff *skb) 1289 { 1290 struct sock *sk = skb->sk; 1291 1292 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1293 sk_mem_uncharge(skb->sk, skb->truesize); 1294 } 1295 EXPORT_SYMBOL(sock_rfree); 1296 1297 1298 int sock_i_uid(struct sock *sk) 1299 { 1300 int uid; 1301 1302 read_lock(&sk->sk_callback_lock); 1303 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 1304 read_unlock(&sk->sk_callback_lock); 1305 return uid; 1306 } 1307 EXPORT_SYMBOL(sock_i_uid); 1308 1309 unsigned long sock_i_ino(struct sock *sk) 1310 { 1311 unsigned long ino; 1312 1313 read_lock(&sk->sk_callback_lock); 1314 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1315 read_unlock(&sk->sk_callback_lock); 1316 return ino; 1317 } 1318 EXPORT_SYMBOL(sock_i_ino); 1319 1320 /* 1321 * Allocate a skb from the socket's send buffer. 1322 */ 1323 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1324 gfp_t priority) 1325 { 1326 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1327 struct sk_buff *skb = alloc_skb(size, priority); 1328 if (skb) { 1329 skb_set_owner_w(skb, sk); 1330 return skb; 1331 } 1332 } 1333 return NULL; 1334 } 1335 EXPORT_SYMBOL(sock_wmalloc); 1336 1337 /* 1338 * Allocate a skb from the socket's receive buffer. 1339 */ 1340 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1341 gfp_t priority) 1342 { 1343 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1344 struct sk_buff *skb = alloc_skb(size, priority); 1345 if (skb) { 1346 skb_set_owner_r(skb, sk); 1347 return skb; 1348 } 1349 } 1350 return NULL; 1351 } 1352 1353 /* 1354 * Allocate a memory block from the socket's option memory buffer. 1355 */ 1356 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1357 { 1358 if ((unsigned)size <= sysctl_optmem_max && 1359 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1360 void *mem; 1361 /* First do the add, to avoid the race if kmalloc 1362 * might sleep. 1363 */ 1364 atomic_add(size, &sk->sk_omem_alloc); 1365 mem = kmalloc(size, priority); 1366 if (mem) 1367 return mem; 1368 atomic_sub(size, &sk->sk_omem_alloc); 1369 } 1370 return NULL; 1371 } 1372 EXPORT_SYMBOL(sock_kmalloc); 1373 1374 /* 1375 * Free an option memory block. 1376 */ 1377 void sock_kfree_s(struct sock *sk, void *mem, int size) 1378 { 1379 kfree(mem); 1380 atomic_sub(size, &sk->sk_omem_alloc); 1381 } 1382 EXPORT_SYMBOL(sock_kfree_s); 1383 1384 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1385 I think, these locks should be removed for datagram sockets. 1386 */ 1387 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1388 { 1389 DEFINE_WAIT(wait); 1390 1391 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1392 for (;;) { 1393 if (!timeo) 1394 break; 1395 if (signal_pending(current)) 1396 break; 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1399 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1400 break; 1401 if (sk->sk_shutdown & SEND_SHUTDOWN) 1402 break; 1403 if (sk->sk_err) 1404 break; 1405 timeo = schedule_timeout(timeo); 1406 } 1407 finish_wait(sk->sk_sleep, &wait); 1408 return timeo; 1409 } 1410 1411 1412 /* 1413 * Generic send/receive buffer handlers 1414 */ 1415 1416 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1417 unsigned long data_len, int noblock, 1418 int *errcode) 1419 { 1420 struct sk_buff *skb; 1421 gfp_t gfp_mask; 1422 long timeo; 1423 int err; 1424 1425 gfp_mask = sk->sk_allocation; 1426 if (gfp_mask & __GFP_WAIT) 1427 gfp_mask |= __GFP_REPEAT; 1428 1429 timeo = sock_sndtimeo(sk, noblock); 1430 while (1) { 1431 err = sock_error(sk); 1432 if (err != 0) 1433 goto failure; 1434 1435 err = -EPIPE; 1436 if (sk->sk_shutdown & SEND_SHUTDOWN) 1437 goto failure; 1438 1439 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1440 skb = alloc_skb(header_len, gfp_mask); 1441 if (skb) { 1442 int npages; 1443 int i; 1444 1445 /* No pages, we're done... */ 1446 if (!data_len) 1447 break; 1448 1449 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1450 skb->truesize += data_len; 1451 skb_shinfo(skb)->nr_frags = npages; 1452 for (i = 0; i < npages; i++) { 1453 struct page *page; 1454 skb_frag_t *frag; 1455 1456 page = alloc_pages(sk->sk_allocation, 0); 1457 if (!page) { 1458 err = -ENOBUFS; 1459 skb_shinfo(skb)->nr_frags = i; 1460 kfree_skb(skb); 1461 goto failure; 1462 } 1463 1464 frag = &skb_shinfo(skb)->frags[i]; 1465 frag->page = page; 1466 frag->page_offset = 0; 1467 frag->size = (data_len >= PAGE_SIZE ? 1468 PAGE_SIZE : 1469 data_len); 1470 data_len -= PAGE_SIZE; 1471 } 1472 1473 /* Full success... */ 1474 break; 1475 } 1476 err = -ENOBUFS; 1477 goto failure; 1478 } 1479 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1480 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1481 err = -EAGAIN; 1482 if (!timeo) 1483 goto failure; 1484 if (signal_pending(current)) 1485 goto interrupted; 1486 timeo = sock_wait_for_wmem(sk, timeo); 1487 } 1488 1489 skb_set_owner_w(skb, sk); 1490 return skb; 1491 1492 interrupted: 1493 err = sock_intr_errno(timeo); 1494 failure: 1495 *errcode = err; 1496 return NULL; 1497 } 1498 EXPORT_SYMBOL(sock_alloc_send_pskb); 1499 1500 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1501 int noblock, int *errcode) 1502 { 1503 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1504 } 1505 EXPORT_SYMBOL(sock_alloc_send_skb); 1506 1507 static void __lock_sock(struct sock *sk) 1508 { 1509 DEFINE_WAIT(wait); 1510 1511 for (;;) { 1512 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1513 TASK_UNINTERRUPTIBLE); 1514 spin_unlock_bh(&sk->sk_lock.slock); 1515 schedule(); 1516 spin_lock_bh(&sk->sk_lock.slock); 1517 if (!sock_owned_by_user(sk)) 1518 break; 1519 } 1520 finish_wait(&sk->sk_lock.wq, &wait); 1521 } 1522 1523 static void __release_sock(struct sock *sk) 1524 { 1525 struct sk_buff *skb = sk->sk_backlog.head; 1526 1527 do { 1528 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1529 bh_unlock_sock(sk); 1530 1531 do { 1532 struct sk_buff *next = skb->next; 1533 1534 skb->next = NULL; 1535 sk_backlog_rcv(sk, skb); 1536 1537 /* 1538 * We are in process context here with softirqs 1539 * disabled, use cond_resched_softirq() to preempt. 1540 * This is safe to do because we've taken the backlog 1541 * queue private: 1542 */ 1543 cond_resched_softirq(); 1544 1545 skb = next; 1546 } while (skb != NULL); 1547 1548 bh_lock_sock(sk); 1549 } while ((skb = sk->sk_backlog.head) != NULL); 1550 1551 /* 1552 * Doing the zeroing here guarantee we can not loop forever 1553 * while a wild producer attempts to flood us. 1554 */ 1555 sk->sk_backlog.len = 0; 1556 } 1557 1558 /** 1559 * sk_wait_data - wait for data to arrive at sk_receive_queue 1560 * @sk: sock to wait on 1561 * @timeo: for how long 1562 * 1563 * Now socket state including sk->sk_err is changed only under lock, 1564 * hence we may omit checks after joining wait queue. 1565 * We check receive queue before schedule() only as optimization; 1566 * it is very likely that release_sock() added new data. 1567 */ 1568 int sk_wait_data(struct sock *sk, long *timeo) 1569 { 1570 int rc; 1571 DEFINE_WAIT(wait); 1572 1573 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1574 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1575 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1576 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1577 finish_wait(sk->sk_sleep, &wait); 1578 return rc; 1579 } 1580 EXPORT_SYMBOL(sk_wait_data); 1581 1582 /** 1583 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1584 * @sk: socket 1585 * @size: memory size to allocate 1586 * @kind: allocation type 1587 * 1588 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1589 * rmem allocation. This function assumes that protocols which have 1590 * memory_pressure use sk_wmem_queued as write buffer accounting. 1591 */ 1592 int __sk_mem_schedule(struct sock *sk, int size, int kind) 1593 { 1594 struct proto *prot = sk->sk_prot; 1595 int amt = sk_mem_pages(size); 1596 int allocated; 1597 1598 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 1599 allocated = atomic_add_return(amt, prot->memory_allocated); 1600 1601 /* Under limit. */ 1602 if (allocated <= prot->sysctl_mem[0]) { 1603 if (prot->memory_pressure && *prot->memory_pressure) 1604 *prot->memory_pressure = 0; 1605 return 1; 1606 } 1607 1608 /* Under pressure. */ 1609 if (allocated > prot->sysctl_mem[1]) 1610 if (prot->enter_memory_pressure) 1611 prot->enter_memory_pressure(sk); 1612 1613 /* Over hard limit. */ 1614 if (allocated > prot->sysctl_mem[2]) 1615 goto suppress_allocation; 1616 1617 /* guarantee minimum buffer size under pressure */ 1618 if (kind == SK_MEM_RECV) { 1619 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 1620 return 1; 1621 } else { /* SK_MEM_SEND */ 1622 if (sk->sk_type == SOCK_STREAM) { 1623 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 1624 return 1; 1625 } else if (atomic_read(&sk->sk_wmem_alloc) < 1626 prot->sysctl_wmem[0]) 1627 return 1; 1628 } 1629 1630 if (prot->memory_pressure) { 1631 int alloc; 1632 1633 if (!*prot->memory_pressure) 1634 return 1; 1635 alloc = percpu_counter_read_positive(prot->sockets_allocated); 1636 if (prot->sysctl_mem[2] > alloc * 1637 sk_mem_pages(sk->sk_wmem_queued + 1638 atomic_read(&sk->sk_rmem_alloc) + 1639 sk->sk_forward_alloc)) 1640 return 1; 1641 } 1642 1643 suppress_allocation: 1644 1645 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 1646 sk_stream_moderate_sndbuf(sk); 1647 1648 /* Fail only if socket is _under_ its sndbuf. 1649 * In this case we cannot block, so that we have to fail. 1650 */ 1651 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 1652 return 1; 1653 } 1654 1655 /* Alas. Undo changes. */ 1656 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 1657 atomic_sub(amt, prot->memory_allocated); 1658 return 0; 1659 } 1660 EXPORT_SYMBOL(__sk_mem_schedule); 1661 1662 /** 1663 * __sk_reclaim - reclaim memory_allocated 1664 * @sk: socket 1665 */ 1666 void __sk_mem_reclaim(struct sock *sk) 1667 { 1668 struct proto *prot = sk->sk_prot; 1669 1670 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 1671 prot->memory_allocated); 1672 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 1673 1674 if (prot->memory_pressure && *prot->memory_pressure && 1675 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) 1676 *prot->memory_pressure = 0; 1677 } 1678 EXPORT_SYMBOL(__sk_mem_reclaim); 1679 1680 1681 /* 1682 * Set of default routines for initialising struct proto_ops when 1683 * the protocol does not support a particular function. In certain 1684 * cases where it makes no sense for a protocol to have a "do nothing" 1685 * function, some default processing is provided. 1686 */ 1687 1688 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1689 { 1690 return -EOPNOTSUPP; 1691 } 1692 EXPORT_SYMBOL(sock_no_bind); 1693 1694 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1695 int len, int flags) 1696 { 1697 return -EOPNOTSUPP; 1698 } 1699 EXPORT_SYMBOL(sock_no_connect); 1700 1701 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1702 { 1703 return -EOPNOTSUPP; 1704 } 1705 EXPORT_SYMBOL(sock_no_socketpair); 1706 1707 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1708 { 1709 return -EOPNOTSUPP; 1710 } 1711 EXPORT_SYMBOL(sock_no_accept); 1712 1713 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1714 int *len, int peer) 1715 { 1716 return -EOPNOTSUPP; 1717 } 1718 EXPORT_SYMBOL(sock_no_getname); 1719 1720 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 1721 { 1722 return 0; 1723 } 1724 EXPORT_SYMBOL(sock_no_poll); 1725 1726 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1727 { 1728 return -EOPNOTSUPP; 1729 } 1730 EXPORT_SYMBOL(sock_no_ioctl); 1731 1732 int sock_no_listen(struct socket *sock, int backlog) 1733 { 1734 return -EOPNOTSUPP; 1735 } 1736 EXPORT_SYMBOL(sock_no_listen); 1737 1738 int sock_no_shutdown(struct socket *sock, int how) 1739 { 1740 return -EOPNOTSUPP; 1741 } 1742 EXPORT_SYMBOL(sock_no_shutdown); 1743 1744 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1745 char __user *optval, unsigned int optlen) 1746 { 1747 return -EOPNOTSUPP; 1748 } 1749 EXPORT_SYMBOL(sock_no_setsockopt); 1750 1751 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1752 char __user *optval, int __user *optlen) 1753 { 1754 return -EOPNOTSUPP; 1755 } 1756 EXPORT_SYMBOL(sock_no_getsockopt); 1757 1758 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1759 size_t len) 1760 { 1761 return -EOPNOTSUPP; 1762 } 1763 EXPORT_SYMBOL(sock_no_sendmsg); 1764 1765 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1766 size_t len, int flags) 1767 { 1768 return -EOPNOTSUPP; 1769 } 1770 EXPORT_SYMBOL(sock_no_recvmsg); 1771 1772 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1773 { 1774 /* Mirror missing mmap method error code */ 1775 return -ENODEV; 1776 } 1777 EXPORT_SYMBOL(sock_no_mmap); 1778 1779 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1780 { 1781 ssize_t res; 1782 struct msghdr msg = {.msg_flags = flags}; 1783 struct kvec iov; 1784 char *kaddr = kmap(page); 1785 iov.iov_base = kaddr + offset; 1786 iov.iov_len = size; 1787 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1788 kunmap(page); 1789 return res; 1790 } 1791 EXPORT_SYMBOL(sock_no_sendpage); 1792 1793 /* 1794 * Default Socket Callbacks 1795 */ 1796 1797 static void sock_def_wakeup(struct sock *sk) 1798 { 1799 read_lock(&sk->sk_callback_lock); 1800 if (sk_has_sleeper(sk)) 1801 wake_up_interruptible_all(sk->sk_sleep); 1802 read_unlock(&sk->sk_callback_lock); 1803 } 1804 1805 static void sock_def_error_report(struct sock *sk) 1806 { 1807 read_lock(&sk->sk_callback_lock); 1808 if (sk_has_sleeper(sk)) 1809 wake_up_interruptible_poll(sk->sk_sleep, POLLERR); 1810 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 1811 read_unlock(&sk->sk_callback_lock); 1812 } 1813 1814 static void sock_def_readable(struct sock *sk, int len) 1815 { 1816 read_lock(&sk->sk_callback_lock); 1817 if (sk_has_sleeper(sk)) 1818 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN | 1819 POLLRDNORM | POLLRDBAND); 1820 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 1821 read_unlock(&sk->sk_callback_lock); 1822 } 1823 1824 static void sock_def_write_space(struct sock *sk) 1825 { 1826 read_lock(&sk->sk_callback_lock); 1827 1828 /* Do not wake up a writer until he can make "significant" 1829 * progress. --DaveM 1830 */ 1831 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1832 if (sk_has_sleeper(sk)) 1833 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT | 1834 POLLWRNORM | POLLWRBAND); 1835 1836 /* Should agree with poll, otherwise some programs break */ 1837 if (sock_writeable(sk)) 1838 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 1839 } 1840 1841 read_unlock(&sk->sk_callback_lock); 1842 } 1843 1844 static void sock_def_destruct(struct sock *sk) 1845 { 1846 kfree(sk->sk_protinfo); 1847 } 1848 1849 void sk_send_sigurg(struct sock *sk) 1850 { 1851 if (sk->sk_socket && sk->sk_socket->file) 1852 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1853 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 1854 } 1855 EXPORT_SYMBOL(sk_send_sigurg); 1856 1857 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1858 unsigned long expires) 1859 { 1860 if (!mod_timer(timer, expires)) 1861 sock_hold(sk); 1862 } 1863 EXPORT_SYMBOL(sk_reset_timer); 1864 1865 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1866 { 1867 if (timer_pending(timer) && del_timer(timer)) 1868 __sock_put(sk); 1869 } 1870 EXPORT_SYMBOL(sk_stop_timer); 1871 1872 void sock_init_data(struct socket *sock, struct sock *sk) 1873 { 1874 skb_queue_head_init(&sk->sk_receive_queue); 1875 skb_queue_head_init(&sk->sk_write_queue); 1876 skb_queue_head_init(&sk->sk_error_queue); 1877 #ifdef CONFIG_NET_DMA 1878 skb_queue_head_init(&sk->sk_async_wait_queue); 1879 #endif 1880 1881 sk->sk_send_head = NULL; 1882 1883 init_timer(&sk->sk_timer); 1884 1885 sk->sk_allocation = GFP_KERNEL; 1886 sk->sk_rcvbuf = sysctl_rmem_default; 1887 sk->sk_sndbuf = sysctl_wmem_default; 1888 sk->sk_backlog.limit = sk->sk_rcvbuf << 1; 1889 sk->sk_state = TCP_CLOSE; 1890 sk_set_socket(sk, sock); 1891 1892 sock_set_flag(sk, SOCK_ZAPPED); 1893 1894 if (sock) { 1895 sk->sk_type = sock->type; 1896 sk->sk_sleep = &sock->wait; 1897 sock->sk = sk; 1898 } else 1899 sk->sk_sleep = NULL; 1900 1901 rwlock_init(&sk->sk_dst_lock); 1902 rwlock_init(&sk->sk_callback_lock); 1903 lockdep_set_class_and_name(&sk->sk_callback_lock, 1904 af_callback_keys + sk->sk_family, 1905 af_family_clock_key_strings[sk->sk_family]); 1906 1907 sk->sk_state_change = sock_def_wakeup; 1908 sk->sk_data_ready = sock_def_readable; 1909 sk->sk_write_space = sock_def_write_space; 1910 sk->sk_error_report = sock_def_error_report; 1911 sk->sk_destruct = sock_def_destruct; 1912 1913 sk->sk_sndmsg_page = NULL; 1914 sk->sk_sndmsg_off = 0; 1915 1916 sk->sk_peercred.pid = 0; 1917 sk->sk_peercred.uid = -1; 1918 sk->sk_peercred.gid = -1; 1919 sk->sk_write_pending = 0; 1920 sk->sk_rcvlowat = 1; 1921 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1922 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1923 1924 sk->sk_stamp = ktime_set(-1L, 0); 1925 1926 /* 1927 * Before updating sk_refcnt, we must commit prior changes to memory 1928 * (Documentation/RCU/rculist_nulls.txt for details) 1929 */ 1930 smp_wmb(); 1931 atomic_set(&sk->sk_refcnt, 1); 1932 atomic_set(&sk->sk_drops, 0); 1933 } 1934 EXPORT_SYMBOL(sock_init_data); 1935 1936 void lock_sock_nested(struct sock *sk, int subclass) 1937 { 1938 might_sleep(); 1939 spin_lock_bh(&sk->sk_lock.slock); 1940 if (sk->sk_lock.owned) 1941 __lock_sock(sk); 1942 sk->sk_lock.owned = 1; 1943 spin_unlock(&sk->sk_lock.slock); 1944 /* 1945 * The sk_lock has mutex_lock() semantics here: 1946 */ 1947 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 1948 local_bh_enable(); 1949 } 1950 EXPORT_SYMBOL(lock_sock_nested); 1951 1952 void release_sock(struct sock *sk) 1953 { 1954 /* 1955 * The sk_lock has mutex_unlock() semantics: 1956 */ 1957 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1958 1959 spin_lock_bh(&sk->sk_lock.slock); 1960 if (sk->sk_backlog.tail) 1961 __release_sock(sk); 1962 sk->sk_lock.owned = 0; 1963 if (waitqueue_active(&sk->sk_lock.wq)) 1964 wake_up(&sk->sk_lock.wq); 1965 spin_unlock_bh(&sk->sk_lock.slock); 1966 } 1967 EXPORT_SYMBOL(release_sock); 1968 1969 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1970 { 1971 struct timeval tv; 1972 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1973 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1974 tv = ktime_to_timeval(sk->sk_stamp); 1975 if (tv.tv_sec == -1) 1976 return -ENOENT; 1977 if (tv.tv_sec == 0) { 1978 sk->sk_stamp = ktime_get_real(); 1979 tv = ktime_to_timeval(sk->sk_stamp); 1980 } 1981 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 1982 } 1983 EXPORT_SYMBOL(sock_get_timestamp); 1984 1985 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 1986 { 1987 struct timespec ts; 1988 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1989 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1990 ts = ktime_to_timespec(sk->sk_stamp); 1991 if (ts.tv_sec == -1) 1992 return -ENOENT; 1993 if (ts.tv_sec == 0) { 1994 sk->sk_stamp = ktime_get_real(); 1995 ts = ktime_to_timespec(sk->sk_stamp); 1996 } 1997 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 1998 } 1999 EXPORT_SYMBOL(sock_get_timestampns); 2000 2001 void sock_enable_timestamp(struct sock *sk, int flag) 2002 { 2003 if (!sock_flag(sk, flag)) { 2004 sock_set_flag(sk, flag); 2005 /* 2006 * we just set one of the two flags which require net 2007 * time stamping, but time stamping might have been on 2008 * already because of the other one 2009 */ 2010 if (!sock_flag(sk, 2011 flag == SOCK_TIMESTAMP ? 2012 SOCK_TIMESTAMPING_RX_SOFTWARE : 2013 SOCK_TIMESTAMP)) 2014 net_enable_timestamp(); 2015 } 2016 } 2017 2018 /* 2019 * Get a socket option on an socket. 2020 * 2021 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2022 * asynchronous errors should be reported by getsockopt. We assume 2023 * this means if you specify SO_ERROR (otherwise whats the point of it). 2024 */ 2025 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2026 char __user *optval, int __user *optlen) 2027 { 2028 struct sock *sk = sock->sk; 2029 2030 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2031 } 2032 EXPORT_SYMBOL(sock_common_getsockopt); 2033 2034 #ifdef CONFIG_COMPAT 2035 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2036 char __user *optval, int __user *optlen) 2037 { 2038 struct sock *sk = sock->sk; 2039 2040 if (sk->sk_prot->compat_getsockopt != NULL) 2041 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2042 optval, optlen); 2043 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2044 } 2045 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2046 #endif 2047 2048 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 2049 struct msghdr *msg, size_t size, int flags) 2050 { 2051 struct sock *sk = sock->sk; 2052 int addr_len = 0; 2053 int err; 2054 2055 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 2056 flags & ~MSG_DONTWAIT, &addr_len); 2057 if (err >= 0) 2058 msg->msg_namelen = addr_len; 2059 return err; 2060 } 2061 EXPORT_SYMBOL(sock_common_recvmsg); 2062 2063 /* 2064 * Set socket options on an inet socket. 2065 */ 2066 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2067 char __user *optval, unsigned int optlen) 2068 { 2069 struct sock *sk = sock->sk; 2070 2071 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2072 } 2073 EXPORT_SYMBOL(sock_common_setsockopt); 2074 2075 #ifdef CONFIG_COMPAT 2076 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2077 char __user *optval, unsigned int optlen) 2078 { 2079 struct sock *sk = sock->sk; 2080 2081 if (sk->sk_prot->compat_setsockopt != NULL) 2082 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2083 optval, optlen); 2084 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2085 } 2086 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2087 #endif 2088 2089 void sk_common_release(struct sock *sk) 2090 { 2091 if (sk->sk_prot->destroy) 2092 sk->sk_prot->destroy(sk); 2093 2094 /* 2095 * Observation: when sock_common_release is called, processes have 2096 * no access to socket. But net still has. 2097 * Step one, detach it from networking: 2098 * 2099 * A. Remove from hash tables. 2100 */ 2101 2102 sk->sk_prot->unhash(sk); 2103 2104 /* 2105 * In this point socket cannot receive new packets, but it is possible 2106 * that some packets are in flight because some CPU runs receiver and 2107 * did hash table lookup before we unhashed socket. They will achieve 2108 * receive queue and will be purged by socket destructor. 2109 * 2110 * Also we still have packets pending on receive queue and probably, 2111 * our own packets waiting in device queues. sock_destroy will drain 2112 * receive queue, but transmitted packets will delay socket destruction 2113 * until the last reference will be released. 2114 */ 2115 2116 sock_orphan(sk); 2117 2118 xfrm_sk_free_policy(sk); 2119 2120 sk_refcnt_debug_release(sk); 2121 sock_put(sk); 2122 } 2123 EXPORT_SYMBOL(sk_common_release); 2124 2125 static DEFINE_RWLOCK(proto_list_lock); 2126 static LIST_HEAD(proto_list); 2127 2128 #ifdef CONFIG_PROC_FS 2129 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2130 struct prot_inuse { 2131 int val[PROTO_INUSE_NR]; 2132 }; 2133 2134 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2135 2136 #ifdef CONFIG_NET_NS 2137 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2138 { 2139 int cpu = smp_processor_id(); 2140 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; 2141 } 2142 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2143 2144 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2145 { 2146 int cpu, idx = prot->inuse_idx; 2147 int res = 0; 2148 2149 for_each_possible_cpu(cpu) 2150 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2151 2152 return res >= 0 ? res : 0; 2153 } 2154 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2155 2156 static int __net_init sock_inuse_init_net(struct net *net) 2157 { 2158 net->core.inuse = alloc_percpu(struct prot_inuse); 2159 return net->core.inuse ? 0 : -ENOMEM; 2160 } 2161 2162 static void __net_exit sock_inuse_exit_net(struct net *net) 2163 { 2164 free_percpu(net->core.inuse); 2165 } 2166 2167 static struct pernet_operations net_inuse_ops = { 2168 .init = sock_inuse_init_net, 2169 .exit = sock_inuse_exit_net, 2170 }; 2171 2172 static __init int net_inuse_init(void) 2173 { 2174 if (register_pernet_subsys(&net_inuse_ops)) 2175 panic("Cannot initialize net inuse counters"); 2176 2177 return 0; 2178 } 2179 2180 core_initcall(net_inuse_init); 2181 #else 2182 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2183 2184 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2185 { 2186 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; 2187 } 2188 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2189 2190 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2191 { 2192 int cpu, idx = prot->inuse_idx; 2193 int res = 0; 2194 2195 for_each_possible_cpu(cpu) 2196 res += per_cpu(prot_inuse, cpu).val[idx]; 2197 2198 return res >= 0 ? res : 0; 2199 } 2200 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2201 #endif 2202 2203 static void assign_proto_idx(struct proto *prot) 2204 { 2205 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2206 2207 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2208 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); 2209 return; 2210 } 2211 2212 set_bit(prot->inuse_idx, proto_inuse_idx); 2213 } 2214 2215 static void release_proto_idx(struct proto *prot) 2216 { 2217 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2218 clear_bit(prot->inuse_idx, proto_inuse_idx); 2219 } 2220 #else 2221 static inline void assign_proto_idx(struct proto *prot) 2222 { 2223 } 2224 2225 static inline void release_proto_idx(struct proto *prot) 2226 { 2227 } 2228 #endif 2229 2230 int proto_register(struct proto *prot, int alloc_slab) 2231 { 2232 if (alloc_slab) { 2233 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2234 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2235 NULL); 2236 2237 if (prot->slab == NULL) { 2238 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 2239 prot->name); 2240 goto out; 2241 } 2242 2243 if (prot->rsk_prot != NULL) { 2244 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name); 2245 if (prot->rsk_prot->slab_name == NULL) 2246 goto out_free_sock_slab; 2247 2248 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name, 2249 prot->rsk_prot->obj_size, 0, 2250 SLAB_HWCACHE_ALIGN, NULL); 2251 2252 if (prot->rsk_prot->slab == NULL) { 2253 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 2254 prot->name); 2255 goto out_free_request_sock_slab_name; 2256 } 2257 } 2258 2259 if (prot->twsk_prot != NULL) { 2260 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2261 2262 if (prot->twsk_prot->twsk_slab_name == NULL) 2263 goto out_free_request_sock_slab; 2264 2265 prot->twsk_prot->twsk_slab = 2266 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2267 prot->twsk_prot->twsk_obj_size, 2268 0, 2269 SLAB_HWCACHE_ALIGN | 2270 prot->slab_flags, 2271 NULL); 2272 if (prot->twsk_prot->twsk_slab == NULL) 2273 goto out_free_timewait_sock_slab_name; 2274 } 2275 } 2276 2277 write_lock(&proto_list_lock); 2278 list_add(&prot->node, &proto_list); 2279 assign_proto_idx(prot); 2280 write_unlock(&proto_list_lock); 2281 return 0; 2282 2283 out_free_timewait_sock_slab_name: 2284 kfree(prot->twsk_prot->twsk_slab_name); 2285 out_free_request_sock_slab: 2286 if (prot->rsk_prot && prot->rsk_prot->slab) { 2287 kmem_cache_destroy(prot->rsk_prot->slab); 2288 prot->rsk_prot->slab = NULL; 2289 } 2290 out_free_request_sock_slab_name: 2291 if (prot->rsk_prot) 2292 kfree(prot->rsk_prot->slab_name); 2293 out_free_sock_slab: 2294 kmem_cache_destroy(prot->slab); 2295 prot->slab = NULL; 2296 out: 2297 return -ENOBUFS; 2298 } 2299 EXPORT_SYMBOL(proto_register); 2300 2301 void proto_unregister(struct proto *prot) 2302 { 2303 write_lock(&proto_list_lock); 2304 release_proto_idx(prot); 2305 list_del(&prot->node); 2306 write_unlock(&proto_list_lock); 2307 2308 if (prot->slab != NULL) { 2309 kmem_cache_destroy(prot->slab); 2310 prot->slab = NULL; 2311 } 2312 2313 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 2314 kmem_cache_destroy(prot->rsk_prot->slab); 2315 kfree(prot->rsk_prot->slab_name); 2316 prot->rsk_prot->slab = NULL; 2317 } 2318 2319 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2320 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2321 kfree(prot->twsk_prot->twsk_slab_name); 2322 prot->twsk_prot->twsk_slab = NULL; 2323 } 2324 } 2325 EXPORT_SYMBOL(proto_unregister); 2326 2327 #ifdef CONFIG_PROC_FS 2328 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2329 __acquires(proto_list_lock) 2330 { 2331 read_lock(&proto_list_lock); 2332 return seq_list_start_head(&proto_list, *pos); 2333 } 2334 2335 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2336 { 2337 return seq_list_next(v, &proto_list, pos); 2338 } 2339 2340 static void proto_seq_stop(struct seq_file *seq, void *v) 2341 __releases(proto_list_lock) 2342 { 2343 read_unlock(&proto_list_lock); 2344 } 2345 2346 static char proto_method_implemented(const void *method) 2347 { 2348 return method == NULL ? 'n' : 'y'; 2349 } 2350 2351 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2352 { 2353 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 2354 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2355 proto->name, 2356 proto->obj_size, 2357 sock_prot_inuse_get(seq_file_net(seq), proto), 2358 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 2359 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 2360 proto->max_header, 2361 proto->slab == NULL ? "no" : "yes", 2362 module_name(proto->owner), 2363 proto_method_implemented(proto->close), 2364 proto_method_implemented(proto->connect), 2365 proto_method_implemented(proto->disconnect), 2366 proto_method_implemented(proto->accept), 2367 proto_method_implemented(proto->ioctl), 2368 proto_method_implemented(proto->init), 2369 proto_method_implemented(proto->destroy), 2370 proto_method_implemented(proto->shutdown), 2371 proto_method_implemented(proto->setsockopt), 2372 proto_method_implemented(proto->getsockopt), 2373 proto_method_implemented(proto->sendmsg), 2374 proto_method_implemented(proto->recvmsg), 2375 proto_method_implemented(proto->sendpage), 2376 proto_method_implemented(proto->bind), 2377 proto_method_implemented(proto->backlog_rcv), 2378 proto_method_implemented(proto->hash), 2379 proto_method_implemented(proto->unhash), 2380 proto_method_implemented(proto->get_port), 2381 proto_method_implemented(proto->enter_memory_pressure)); 2382 } 2383 2384 static int proto_seq_show(struct seq_file *seq, void *v) 2385 { 2386 if (v == &proto_list) 2387 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2388 "protocol", 2389 "size", 2390 "sockets", 2391 "memory", 2392 "press", 2393 "maxhdr", 2394 "slab", 2395 "module", 2396 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2397 else 2398 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2399 return 0; 2400 } 2401 2402 static const struct seq_operations proto_seq_ops = { 2403 .start = proto_seq_start, 2404 .next = proto_seq_next, 2405 .stop = proto_seq_stop, 2406 .show = proto_seq_show, 2407 }; 2408 2409 static int proto_seq_open(struct inode *inode, struct file *file) 2410 { 2411 return seq_open_net(inode, file, &proto_seq_ops, 2412 sizeof(struct seq_net_private)); 2413 } 2414 2415 static const struct file_operations proto_seq_fops = { 2416 .owner = THIS_MODULE, 2417 .open = proto_seq_open, 2418 .read = seq_read, 2419 .llseek = seq_lseek, 2420 .release = seq_release_net, 2421 }; 2422 2423 static __net_init int proto_init_net(struct net *net) 2424 { 2425 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops)) 2426 return -ENOMEM; 2427 2428 return 0; 2429 } 2430 2431 static __net_exit void proto_exit_net(struct net *net) 2432 { 2433 proc_net_remove(net, "protocols"); 2434 } 2435 2436 2437 static __net_initdata struct pernet_operations proto_net_ops = { 2438 .init = proto_init_net, 2439 .exit = proto_exit_net, 2440 }; 2441 2442 static int __init proto_init(void) 2443 { 2444 return register_pernet_subsys(&proto_net_ops); 2445 } 2446 2447 subsys_initcall(proto_init); 2448 2449 #endif /* PROC_FS */ 2450