xref: /linux/net/core/sock.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119 
120 #include <asm/uaccess.h>
121 
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133 
134 #include <linux/filter.h>
135 
136 #include <trace/events/sock.h>
137 
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 	struct proto *proto;
149 	int ret = 0;
150 
151 	mutex_lock(&proto_list_mutex);
152 	list_for_each_entry(proto, &proto_list, node) {
153 		if (proto->init_cgroup) {
154 			ret = proto->init_cgroup(memcg, ss);
155 			if (ret)
156 				goto out;
157 		}
158 	}
159 
160 	mutex_unlock(&proto_list_mutex);
161 	return ret;
162 out:
163 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 		if (proto->destroy_cgroup)
165 			proto->destroy_cgroup(memcg);
166 	mutex_unlock(&proto_list_mutex);
167 	return ret;
168 }
169 
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 	struct proto *proto;
173 
174 	mutex_lock(&proto_list_mutex);
175 	list_for_each_entry_reverse(proto, &proto_list, node)
176 		if (proto->destroy_cgroup)
177 			proto->destroy_cgroup(memcg);
178 	mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181 
182 /*
183  * Each address family might have different locking rules, so we have
184  * one slock key per address family:
185  */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188 
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191 
192 /*
193  * Make lock validator output more readable. (we pre-construct these
194  * strings build-time, so that runtime initialization of socket
195  * locks is fast):
196  */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227   "slock-AF_NFC"   , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243   "clock-AF_NFC"   , "clock-AF_MAX"
244 };
245 
246 /*
247  * sk_callback_lock locking rules are per-address-family,
248  * so split the lock classes by using a per-AF key:
249  */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251 
252 /* Take into consideration the size of the struct sk_buff overhead in the
253  * determination of these values, since that is non-constant across
254  * platforms.  This makes socket queueing behavior and performance
255  * not depend upon such differences.
256  */
257 #define _SK_MEM_PACKETS		256
258 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261 
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269 
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273 
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276 
277 /**
278  * sk_set_memalloc - sets %SOCK_MEMALLOC
279  * @sk: socket to set it on
280  *
281  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282  * It's the responsibility of the admin to adjust min_free_kbytes
283  * to meet the requirements
284  */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 	sock_set_flag(sk, SOCK_MEMALLOC);
288 	sk->sk_allocation |= __GFP_MEMALLOC;
289 	static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292 
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 	sock_reset_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation &= ~__GFP_MEMALLOC;
297 	static_key_slow_dec(&memalloc_socks);
298 
299 	/*
300 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 	 * it has rmem allocations there is a risk that the user of the
303 	 * socket cannot make forward progress due to exceeding the rmem
304 	 * limits. By rights, sk_clear_memalloc() should only be called
305 	 * on sockets being torn down but warn and reset the accounting if
306 	 * that assumption breaks.
307 	 */
308 	if (WARN_ON(sk->sk_forward_alloc))
309 		sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312 
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 	int ret;
316 	unsigned long pflags = current->flags;
317 
318 	/* these should have been dropped before queueing */
319 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320 
321 	current->flags |= PF_MEMALLOC;
322 	ret = sk->sk_backlog_rcv(sk, skb);
323 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328 
329 #if defined(CONFIG_CGROUPS)
330 #if !defined(CONFIG_NET_CLS_CGROUP)
331 int net_cls_subsys_id = -1;
332 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333 #endif
334 #if !defined(CONFIG_NETPRIO_CGROUP)
335 int net_prio_subsys_id = -1;
336 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337 #endif
338 #endif
339 
340 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341 {
342 	struct timeval tv;
343 
344 	if (optlen < sizeof(tv))
345 		return -EINVAL;
346 	if (copy_from_user(&tv, optval, sizeof(tv)))
347 		return -EFAULT;
348 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349 		return -EDOM;
350 
351 	if (tv.tv_sec < 0) {
352 		static int warned __read_mostly;
353 
354 		*timeo_p = 0;
355 		if (warned < 10 && net_ratelimit()) {
356 			warned++;
357 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358 				__func__, current->comm, task_pid_nr(current));
359 		}
360 		return 0;
361 	}
362 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
363 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
364 		return 0;
365 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367 	return 0;
368 }
369 
370 static void sock_warn_obsolete_bsdism(const char *name)
371 {
372 	static int warned;
373 	static char warncomm[TASK_COMM_LEN];
374 	if (strcmp(warncomm, current->comm) && warned < 5) {
375 		strcpy(warncomm,  current->comm);
376 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377 			warncomm, name);
378 		warned++;
379 	}
380 }
381 
382 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383 
384 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385 {
386 	if (sk->sk_flags & flags) {
387 		sk->sk_flags &= ~flags;
388 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389 			net_disable_timestamp();
390 	}
391 }
392 
393 
394 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395 {
396 	int err;
397 	int skb_len;
398 	unsigned long flags;
399 	struct sk_buff_head *list = &sk->sk_receive_queue;
400 
401 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402 		atomic_inc(&sk->sk_drops);
403 		trace_sock_rcvqueue_full(sk, skb);
404 		return -ENOMEM;
405 	}
406 
407 	err = sk_filter(sk, skb);
408 	if (err)
409 		return err;
410 
411 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412 		atomic_inc(&sk->sk_drops);
413 		return -ENOBUFS;
414 	}
415 
416 	skb->dev = NULL;
417 	skb_set_owner_r(skb, sk);
418 
419 	/* Cache the SKB length before we tack it onto the receive
420 	 * queue.  Once it is added it no longer belongs to us and
421 	 * may be freed by other threads of control pulling packets
422 	 * from the queue.
423 	 */
424 	skb_len = skb->len;
425 
426 	/* we escape from rcu protected region, make sure we dont leak
427 	 * a norefcounted dst
428 	 */
429 	skb_dst_force(skb);
430 
431 	spin_lock_irqsave(&list->lock, flags);
432 	skb->dropcount = atomic_read(&sk->sk_drops);
433 	__skb_queue_tail(list, skb);
434 	spin_unlock_irqrestore(&list->lock, flags);
435 
436 	if (!sock_flag(sk, SOCK_DEAD))
437 		sk->sk_data_ready(sk, skb_len);
438 	return 0;
439 }
440 EXPORT_SYMBOL(sock_queue_rcv_skb);
441 
442 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443 {
444 	int rc = NET_RX_SUCCESS;
445 
446 	if (sk_filter(sk, skb))
447 		goto discard_and_relse;
448 
449 	skb->dev = NULL;
450 
451 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452 		atomic_inc(&sk->sk_drops);
453 		goto discard_and_relse;
454 	}
455 	if (nested)
456 		bh_lock_sock_nested(sk);
457 	else
458 		bh_lock_sock(sk);
459 	if (!sock_owned_by_user(sk)) {
460 		/*
461 		 * trylock + unlock semantics:
462 		 */
463 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464 
465 		rc = sk_backlog_rcv(sk, skb);
466 
467 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469 		bh_unlock_sock(sk);
470 		atomic_inc(&sk->sk_drops);
471 		goto discard_and_relse;
472 	}
473 
474 	bh_unlock_sock(sk);
475 out:
476 	sock_put(sk);
477 	return rc;
478 discard_and_relse:
479 	kfree_skb(skb);
480 	goto out;
481 }
482 EXPORT_SYMBOL(sk_receive_skb);
483 
484 void sk_reset_txq(struct sock *sk)
485 {
486 	sk_tx_queue_clear(sk);
487 }
488 EXPORT_SYMBOL(sk_reset_txq);
489 
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 	struct dst_entry *dst = __sk_dst_get(sk);
493 
494 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 		sk_tx_queue_clear(sk);
496 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 		dst_release(dst);
498 		return NULL;
499 	}
500 
501 	return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504 
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 	struct dst_entry *dst = sk_dst_get(sk);
508 
509 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 		sk_dst_reset(sk);
511 		dst_release(dst);
512 		return NULL;
513 	}
514 
515 	return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518 
519 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520 {
521 	int ret = -ENOPROTOOPT;
522 #ifdef CONFIG_NETDEVICES
523 	struct net *net = sock_net(sk);
524 	char devname[IFNAMSIZ];
525 	int index;
526 
527 	/* Sorry... */
528 	ret = -EPERM;
529 	if (!capable(CAP_NET_RAW))
530 		goto out;
531 
532 	ret = -EINVAL;
533 	if (optlen < 0)
534 		goto out;
535 
536 	/* Bind this socket to a particular device like "eth0",
537 	 * as specified in the passed interface name. If the
538 	 * name is "" or the option length is zero the socket
539 	 * is not bound.
540 	 */
541 	if (optlen > IFNAMSIZ - 1)
542 		optlen = IFNAMSIZ - 1;
543 	memset(devname, 0, sizeof(devname));
544 
545 	ret = -EFAULT;
546 	if (copy_from_user(devname, optval, optlen))
547 		goto out;
548 
549 	index = 0;
550 	if (devname[0] != '\0') {
551 		struct net_device *dev;
552 
553 		rcu_read_lock();
554 		dev = dev_get_by_name_rcu(net, devname);
555 		if (dev)
556 			index = dev->ifindex;
557 		rcu_read_unlock();
558 		ret = -ENODEV;
559 		if (!dev)
560 			goto out;
561 	}
562 
563 	lock_sock(sk);
564 	sk->sk_bound_dev_if = index;
565 	sk_dst_reset(sk);
566 	release_sock(sk);
567 
568 	ret = 0;
569 
570 out:
571 #endif
572 
573 	return ret;
574 }
575 
576 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577 {
578 	if (valbool)
579 		sock_set_flag(sk, bit);
580 	else
581 		sock_reset_flag(sk, bit);
582 }
583 
584 /*
585  *	This is meant for all protocols to use and covers goings on
586  *	at the socket level. Everything here is generic.
587  */
588 
589 int sock_setsockopt(struct socket *sock, int level, int optname,
590 		    char __user *optval, unsigned int optlen)
591 {
592 	struct sock *sk = sock->sk;
593 	int val;
594 	int valbool;
595 	struct linger ling;
596 	int ret = 0;
597 
598 	/*
599 	 *	Options without arguments
600 	 */
601 
602 	if (optname == SO_BINDTODEVICE)
603 		return sock_bindtodevice(sk, optval, optlen);
604 
605 	if (optlen < sizeof(int))
606 		return -EINVAL;
607 
608 	if (get_user(val, (int __user *)optval))
609 		return -EFAULT;
610 
611 	valbool = val ? 1 : 0;
612 
613 	lock_sock(sk);
614 
615 	switch (optname) {
616 	case SO_DEBUG:
617 		if (val && !capable(CAP_NET_ADMIN))
618 			ret = -EACCES;
619 		else
620 			sock_valbool_flag(sk, SOCK_DBG, valbool);
621 		break;
622 	case SO_REUSEADDR:
623 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624 		break;
625 	case SO_TYPE:
626 	case SO_PROTOCOL:
627 	case SO_DOMAIN:
628 	case SO_ERROR:
629 		ret = -ENOPROTOOPT;
630 		break;
631 	case SO_DONTROUTE:
632 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633 		break;
634 	case SO_BROADCAST:
635 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636 		break;
637 	case SO_SNDBUF:
638 		/* Don't error on this BSD doesn't and if you think
639 		 * about it this is right. Otherwise apps have to
640 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641 		 * are treated in BSD as hints
642 		 */
643 		val = min_t(u32, val, sysctl_wmem_max);
644 set_sndbuf:
645 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647 		/* Wake up sending tasks if we upped the value. */
648 		sk->sk_write_space(sk);
649 		break;
650 
651 	case SO_SNDBUFFORCE:
652 		if (!capable(CAP_NET_ADMIN)) {
653 			ret = -EPERM;
654 			break;
655 		}
656 		goto set_sndbuf;
657 
658 	case SO_RCVBUF:
659 		/* Don't error on this BSD doesn't and if you think
660 		 * about it this is right. Otherwise apps have to
661 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662 		 * are treated in BSD as hints
663 		 */
664 		val = min_t(u32, val, sysctl_rmem_max);
665 set_rcvbuf:
666 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667 		/*
668 		 * We double it on the way in to account for
669 		 * "struct sk_buff" etc. overhead.   Applications
670 		 * assume that the SO_RCVBUF setting they make will
671 		 * allow that much actual data to be received on that
672 		 * socket.
673 		 *
674 		 * Applications are unaware that "struct sk_buff" and
675 		 * other overheads allocate from the receive buffer
676 		 * during socket buffer allocation.
677 		 *
678 		 * And after considering the possible alternatives,
679 		 * returning the value we actually used in getsockopt
680 		 * is the most desirable behavior.
681 		 */
682 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683 		break;
684 
685 	case SO_RCVBUFFORCE:
686 		if (!capable(CAP_NET_ADMIN)) {
687 			ret = -EPERM;
688 			break;
689 		}
690 		goto set_rcvbuf;
691 
692 	case SO_KEEPALIVE:
693 #ifdef CONFIG_INET
694 		if (sk->sk_protocol == IPPROTO_TCP &&
695 		    sk->sk_type == SOCK_STREAM)
696 			tcp_set_keepalive(sk, valbool);
697 #endif
698 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
699 		break;
700 
701 	case SO_OOBINLINE:
702 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
703 		break;
704 
705 	case SO_NO_CHECK:
706 		sk->sk_no_check = valbool;
707 		break;
708 
709 	case SO_PRIORITY:
710 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
711 			sk->sk_priority = val;
712 		else
713 			ret = -EPERM;
714 		break;
715 
716 	case SO_LINGER:
717 		if (optlen < sizeof(ling)) {
718 			ret = -EINVAL;	/* 1003.1g */
719 			break;
720 		}
721 		if (copy_from_user(&ling, optval, sizeof(ling))) {
722 			ret = -EFAULT;
723 			break;
724 		}
725 		if (!ling.l_onoff)
726 			sock_reset_flag(sk, SOCK_LINGER);
727 		else {
728 #if (BITS_PER_LONG == 32)
729 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
730 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
731 			else
732 #endif
733 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
734 			sock_set_flag(sk, SOCK_LINGER);
735 		}
736 		break;
737 
738 	case SO_BSDCOMPAT:
739 		sock_warn_obsolete_bsdism("setsockopt");
740 		break;
741 
742 	case SO_PASSCRED:
743 		if (valbool)
744 			set_bit(SOCK_PASSCRED, &sock->flags);
745 		else
746 			clear_bit(SOCK_PASSCRED, &sock->flags);
747 		break;
748 
749 	case SO_TIMESTAMP:
750 	case SO_TIMESTAMPNS:
751 		if (valbool)  {
752 			if (optname == SO_TIMESTAMP)
753 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
754 			else
755 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
756 			sock_set_flag(sk, SOCK_RCVTSTAMP);
757 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
758 		} else {
759 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
760 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
761 		}
762 		break;
763 
764 	case SO_TIMESTAMPING:
765 		if (val & ~SOF_TIMESTAMPING_MASK) {
766 			ret = -EINVAL;
767 			break;
768 		}
769 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
770 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
771 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
772 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
773 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
774 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
775 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
776 			sock_enable_timestamp(sk,
777 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
778 		else
779 			sock_disable_timestamp(sk,
780 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
781 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
782 				  val & SOF_TIMESTAMPING_SOFTWARE);
783 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
784 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
785 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
786 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
787 		break;
788 
789 	case SO_RCVLOWAT:
790 		if (val < 0)
791 			val = INT_MAX;
792 		sk->sk_rcvlowat = val ? : 1;
793 		break;
794 
795 	case SO_RCVTIMEO:
796 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
797 		break;
798 
799 	case SO_SNDTIMEO:
800 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
801 		break;
802 
803 	case SO_ATTACH_FILTER:
804 		ret = -EINVAL;
805 		if (optlen == sizeof(struct sock_fprog)) {
806 			struct sock_fprog fprog;
807 
808 			ret = -EFAULT;
809 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
810 				break;
811 
812 			ret = sk_attach_filter(&fprog, sk);
813 		}
814 		break;
815 
816 	case SO_DETACH_FILTER:
817 		ret = sk_detach_filter(sk);
818 		break;
819 
820 	case SO_PASSSEC:
821 		if (valbool)
822 			set_bit(SOCK_PASSSEC, &sock->flags);
823 		else
824 			clear_bit(SOCK_PASSSEC, &sock->flags);
825 		break;
826 	case SO_MARK:
827 		if (!capable(CAP_NET_ADMIN))
828 			ret = -EPERM;
829 		else
830 			sk->sk_mark = val;
831 		break;
832 
833 		/* We implement the SO_SNDLOWAT etc to
834 		   not be settable (1003.1g 5.3) */
835 	case SO_RXQ_OVFL:
836 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
837 		break;
838 
839 	case SO_WIFI_STATUS:
840 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
841 		break;
842 
843 	case SO_PEEK_OFF:
844 		if (sock->ops->set_peek_off)
845 			sock->ops->set_peek_off(sk, val);
846 		else
847 			ret = -EOPNOTSUPP;
848 		break;
849 
850 	case SO_NOFCS:
851 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
852 		break;
853 
854 	default:
855 		ret = -ENOPROTOOPT;
856 		break;
857 	}
858 	release_sock(sk);
859 	return ret;
860 }
861 EXPORT_SYMBOL(sock_setsockopt);
862 
863 
864 void cred_to_ucred(struct pid *pid, const struct cred *cred,
865 		   struct ucred *ucred)
866 {
867 	ucred->pid = pid_vnr(pid);
868 	ucred->uid = ucred->gid = -1;
869 	if (cred) {
870 		struct user_namespace *current_ns = current_user_ns();
871 
872 		ucred->uid = from_kuid(current_ns, cred->euid);
873 		ucred->gid = from_kgid(current_ns, cred->egid);
874 	}
875 }
876 EXPORT_SYMBOL_GPL(cred_to_ucred);
877 
878 int sock_getsockopt(struct socket *sock, int level, int optname,
879 		    char __user *optval, int __user *optlen)
880 {
881 	struct sock *sk = sock->sk;
882 
883 	union {
884 		int val;
885 		struct linger ling;
886 		struct timeval tm;
887 	} v;
888 
889 	int lv = sizeof(int);
890 	int len;
891 
892 	if (get_user(len, optlen))
893 		return -EFAULT;
894 	if (len < 0)
895 		return -EINVAL;
896 
897 	memset(&v, 0, sizeof(v));
898 
899 	switch (optname) {
900 	case SO_DEBUG:
901 		v.val = sock_flag(sk, SOCK_DBG);
902 		break;
903 
904 	case SO_DONTROUTE:
905 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
906 		break;
907 
908 	case SO_BROADCAST:
909 		v.val = sock_flag(sk, SOCK_BROADCAST);
910 		break;
911 
912 	case SO_SNDBUF:
913 		v.val = sk->sk_sndbuf;
914 		break;
915 
916 	case SO_RCVBUF:
917 		v.val = sk->sk_rcvbuf;
918 		break;
919 
920 	case SO_REUSEADDR:
921 		v.val = sk->sk_reuse;
922 		break;
923 
924 	case SO_KEEPALIVE:
925 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
926 		break;
927 
928 	case SO_TYPE:
929 		v.val = sk->sk_type;
930 		break;
931 
932 	case SO_PROTOCOL:
933 		v.val = sk->sk_protocol;
934 		break;
935 
936 	case SO_DOMAIN:
937 		v.val = sk->sk_family;
938 		break;
939 
940 	case SO_ERROR:
941 		v.val = -sock_error(sk);
942 		if (v.val == 0)
943 			v.val = xchg(&sk->sk_err_soft, 0);
944 		break;
945 
946 	case SO_OOBINLINE:
947 		v.val = sock_flag(sk, SOCK_URGINLINE);
948 		break;
949 
950 	case SO_NO_CHECK:
951 		v.val = sk->sk_no_check;
952 		break;
953 
954 	case SO_PRIORITY:
955 		v.val = sk->sk_priority;
956 		break;
957 
958 	case SO_LINGER:
959 		lv		= sizeof(v.ling);
960 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
961 		v.ling.l_linger	= sk->sk_lingertime / HZ;
962 		break;
963 
964 	case SO_BSDCOMPAT:
965 		sock_warn_obsolete_bsdism("getsockopt");
966 		break;
967 
968 	case SO_TIMESTAMP:
969 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
970 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
971 		break;
972 
973 	case SO_TIMESTAMPNS:
974 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
975 		break;
976 
977 	case SO_TIMESTAMPING:
978 		v.val = 0;
979 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
980 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
981 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
982 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
983 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
984 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
985 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
986 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
987 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
988 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
989 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
990 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
991 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
992 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
993 		break;
994 
995 	case SO_RCVTIMEO:
996 		lv = sizeof(struct timeval);
997 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
998 			v.tm.tv_sec = 0;
999 			v.tm.tv_usec = 0;
1000 		} else {
1001 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1002 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1003 		}
1004 		break;
1005 
1006 	case SO_SNDTIMEO:
1007 		lv = sizeof(struct timeval);
1008 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1009 			v.tm.tv_sec = 0;
1010 			v.tm.tv_usec = 0;
1011 		} else {
1012 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1013 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1014 		}
1015 		break;
1016 
1017 	case SO_RCVLOWAT:
1018 		v.val = sk->sk_rcvlowat;
1019 		break;
1020 
1021 	case SO_SNDLOWAT:
1022 		v.val = 1;
1023 		break;
1024 
1025 	case SO_PASSCRED:
1026 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1027 		break;
1028 
1029 	case SO_PEERCRED:
1030 	{
1031 		struct ucred peercred;
1032 		if (len > sizeof(peercred))
1033 			len = sizeof(peercred);
1034 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1035 		if (copy_to_user(optval, &peercred, len))
1036 			return -EFAULT;
1037 		goto lenout;
1038 	}
1039 
1040 	case SO_PEERNAME:
1041 	{
1042 		char address[128];
1043 
1044 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1045 			return -ENOTCONN;
1046 		if (lv < len)
1047 			return -EINVAL;
1048 		if (copy_to_user(optval, address, len))
1049 			return -EFAULT;
1050 		goto lenout;
1051 	}
1052 
1053 	/* Dubious BSD thing... Probably nobody even uses it, but
1054 	 * the UNIX standard wants it for whatever reason... -DaveM
1055 	 */
1056 	case SO_ACCEPTCONN:
1057 		v.val = sk->sk_state == TCP_LISTEN;
1058 		break;
1059 
1060 	case SO_PASSSEC:
1061 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1062 		break;
1063 
1064 	case SO_PEERSEC:
1065 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1066 
1067 	case SO_MARK:
1068 		v.val = sk->sk_mark;
1069 		break;
1070 
1071 	case SO_RXQ_OVFL:
1072 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1073 		break;
1074 
1075 	case SO_WIFI_STATUS:
1076 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1077 		break;
1078 
1079 	case SO_PEEK_OFF:
1080 		if (!sock->ops->set_peek_off)
1081 			return -EOPNOTSUPP;
1082 
1083 		v.val = sk->sk_peek_off;
1084 		break;
1085 	case SO_NOFCS:
1086 		v.val = sock_flag(sk, SOCK_NOFCS);
1087 		break;
1088 	default:
1089 		return -ENOPROTOOPT;
1090 	}
1091 
1092 	if (len > lv)
1093 		len = lv;
1094 	if (copy_to_user(optval, &v, len))
1095 		return -EFAULT;
1096 lenout:
1097 	if (put_user(len, optlen))
1098 		return -EFAULT;
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Initialize an sk_lock.
1104  *
1105  * (We also register the sk_lock with the lock validator.)
1106  */
1107 static inline void sock_lock_init(struct sock *sk)
1108 {
1109 	sock_lock_init_class_and_name(sk,
1110 			af_family_slock_key_strings[sk->sk_family],
1111 			af_family_slock_keys + sk->sk_family,
1112 			af_family_key_strings[sk->sk_family],
1113 			af_family_keys + sk->sk_family);
1114 }
1115 
1116 /*
1117  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1118  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1119  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1120  */
1121 static void sock_copy(struct sock *nsk, const struct sock *osk)
1122 {
1123 #ifdef CONFIG_SECURITY_NETWORK
1124 	void *sptr = nsk->sk_security;
1125 #endif
1126 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1127 
1128 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1129 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1130 
1131 #ifdef CONFIG_SECURITY_NETWORK
1132 	nsk->sk_security = sptr;
1133 	security_sk_clone(osk, nsk);
1134 #endif
1135 }
1136 
1137 /*
1138  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1139  * un-modified. Special care is taken when initializing object to zero.
1140  */
1141 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1142 {
1143 	if (offsetof(struct sock, sk_node.next) != 0)
1144 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1145 	memset(&sk->sk_node.pprev, 0,
1146 	       size - offsetof(struct sock, sk_node.pprev));
1147 }
1148 
1149 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1150 {
1151 	unsigned long nulls1, nulls2;
1152 
1153 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1154 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1155 	if (nulls1 > nulls2)
1156 		swap(nulls1, nulls2);
1157 
1158 	if (nulls1 != 0)
1159 		memset((char *)sk, 0, nulls1);
1160 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1161 	       nulls2 - nulls1 - sizeof(void *));
1162 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1163 	       size - nulls2 - sizeof(void *));
1164 }
1165 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1166 
1167 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1168 		int family)
1169 {
1170 	struct sock *sk;
1171 	struct kmem_cache *slab;
1172 
1173 	slab = prot->slab;
1174 	if (slab != NULL) {
1175 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1176 		if (!sk)
1177 			return sk;
1178 		if (priority & __GFP_ZERO) {
1179 			if (prot->clear_sk)
1180 				prot->clear_sk(sk, prot->obj_size);
1181 			else
1182 				sk_prot_clear_nulls(sk, prot->obj_size);
1183 		}
1184 	} else
1185 		sk = kmalloc(prot->obj_size, priority);
1186 
1187 	if (sk != NULL) {
1188 		kmemcheck_annotate_bitfield(sk, flags);
1189 
1190 		if (security_sk_alloc(sk, family, priority))
1191 			goto out_free;
1192 
1193 		if (!try_module_get(prot->owner))
1194 			goto out_free_sec;
1195 		sk_tx_queue_clear(sk);
1196 	}
1197 
1198 	return sk;
1199 
1200 out_free_sec:
1201 	security_sk_free(sk);
1202 out_free:
1203 	if (slab != NULL)
1204 		kmem_cache_free(slab, sk);
1205 	else
1206 		kfree(sk);
1207 	return NULL;
1208 }
1209 
1210 static void sk_prot_free(struct proto *prot, struct sock *sk)
1211 {
1212 	struct kmem_cache *slab;
1213 	struct module *owner;
1214 
1215 	owner = prot->owner;
1216 	slab = prot->slab;
1217 
1218 	security_sk_free(sk);
1219 	if (slab != NULL)
1220 		kmem_cache_free(slab, sk);
1221 	else
1222 		kfree(sk);
1223 	module_put(owner);
1224 }
1225 
1226 #ifdef CONFIG_CGROUPS
1227 void sock_update_classid(struct sock *sk)
1228 {
1229 	u32 classid;
1230 
1231 	rcu_read_lock();  /* doing current task, which cannot vanish. */
1232 	classid = task_cls_classid(current);
1233 	rcu_read_unlock();
1234 	if (classid && classid != sk->sk_classid)
1235 		sk->sk_classid = classid;
1236 }
1237 EXPORT_SYMBOL(sock_update_classid);
1238 
1239 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1240 {
1241 	if (in_interrupt())
1242 		return;
1243 
1244 	sk->sk_cgrp_prioidx = task_netprioidx(task);
1245 }
1246 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1247 #endif
1248 
1249 /**
1250  *	sk_alloc - All socket objects are allocated here
1251  *	@net: the applicable net namespace
1252  *	@family: protocol family
1253  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1254  *	@prot: struct proto associated with this new sock instance
1255  */
1256 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1257 		      struct proto *prot)
1258 {
1259 	struct sock *sk;
1260 
1261 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1262 	if (sk) {
1263 		sk->sk_family = family;
1264 		/*
1265 		 * See comment in struct sock definition to understand
1266 		 * why we need sk_prot_creator -acme
1267 		 */
1268 		sk->sk_prot = sk->sk_prot_creator = prot;
1269 		sock_lock_init(sk);
1270 		sock_net_set(sk, get_net(net));
1271 		atomic_set(&sk->sk_wmem_alloc, 1);
1272 
1273 		sock_update_classid(sk);
1274 		sock_update_netprioidx(sk, current);
1275 	}
1276 
1277 	return sk;
1278 }
1279 EXPORT_SYMBOL(sk_alloc);
1280 
1281 static void __sk_free(struct sock *sk)
1282 {
1283 	struct sk_filter *filter;
1284 
1285 	if (sk->sk_destruct)
1286 		sk->sk_destruct(sk);
1287 
1288 	filter = rcu_dereference_check(sk->sk_filter,
1289 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1290 	if (filter) {
1291 		sk_filter_uncharge(sk, filter);
1292 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1293 	}
1294 
1295 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1296 
1297 	if (atomic_read(&sk->sk_omem_alloc))
1298 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1299 			 __func__, atomic_read(&sk->sk_omem_alloc));
1300 
1301 	if (sk->sk_peer_cred)
1302 		put_cred(sk->sk_peer_cred);
1303 	put_pid(sk->sk_peer_pid);
1304 	put_net(sock_net(sk));
1305 	sk_prot_free(sk->sk_prot_creator, sk);
1306 }
1307 
1308 void sk_free(struct sock *sk)
1309 {
1310 	/*
1311 	 * We subtract one from sk_wmem_alloc and can know if
1312 	 * some packets are still in some tx queue.
1313 	 * If not null, sock_wfree() will call __sk_free(sk) later
1314 	 */
1315 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1316 		__sk_free(sk);
1317 }
1318 EXPORT_SYMBOL(sk_free);
1319 
1320 /*
1321  * Last sock_put should drop reference to sk->sk_net. It has already
1322  * been dropped in sk_change_net. Taking reference to stopping namespace
1323  * is not an option.
1324  * Take reference to a socket to remove it from hash _alive_ and after that
1325  * destroy it in the context of init_net.
1326  */
1327 void sk_release_kernel(struct sock *sk)
1328 {
1329 	if (sk == NULL || sk->sk_socket == NULL)
1330 		return;
1331 
1332 	sock_hold(sk);
1333 	sock_release(sk->sk_socket);
1334 	release_net(sock_net(sk));
1335 	sock_net_set(sk, get_net(&init_net));
1336 	sock_put(sk);
1337 }
1338 EXPORT_SYMBOL(sk_release_kernel);
1339 
1340 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1341 {
1342 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1343 		sock_update_memcg(newsk);
1344 }
1345 
1346 /**
1347  *	sk_clone_lock - clone a socket, and lock its clone
1348  *	@sk: the socket to clone
1349  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1350  *
1351  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1352  */
1353 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1354 {
1355 	struct sock *newsk;
1356 
1357 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1358 	if (newsk != NULL) {
1359 		struct sk_filter *filter;
1360 
1361 		sock_copy(newsk, sk);
1362 
1363 		/* SANITY */
1364 		get_net(sock_net(newsk));
1365 		sk_node_init(&newsk->sk_node);
1366 		sock_lock_init(newsk);
1367 		bh_lock_sock(newsk);
1368 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1369 		newsk->sk_backlog.len = 0;
1370 
1371 		atomic_set(&newsk->sk_rmem_alloc, 0);
1372 		/*
1373 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1374 		 */
1375 		atomic_set(&newsk->sk_wmem_alloc, 1);
1376 		atomic_set(&newsk->sk_omem_alloc, 0);
1377 		skb_queue_head_init(&newsk->sk_receive_queue);
1378 		skb_queue_head_init(&newsk->sk_write_queue);
1379 #ifdef CONFIG_NET_DMA
1380 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1381 #endif
1382 
1383 		spin_lock_init(&newsk->sk_dst_lock);
1384 		rwlock_init(&newsk->sk_callback_lock);
1385 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1386 				af_callback_keys + newsk->sk_family,
1387 				af_family_clock_key_strings[newsk->sk_family]);
1388 
1389 		newsk->sk_dst_cache	= NULL;
1390 		newsk->sk_wmem_queued	= 0;
1391 		newsk->sk_forward_alloc = 0;
1392 		newsk->sk_send_head	= NULL;
1393 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1394 
1395 		sock_reset_flag(newsk, SOCK_DONE);
1396 		skb_queue_head_init(&newsk->sk_error_queue);
1397 
1398 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1399 		if (filter != NULL)
1400 			sk_filter_charge(newsk, filter);
1401 
1402 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1403 			/* It is still raw copy of parent, so invalidate
1404 			 * destructor and make plain sk_free() */
1405 			newsk->sk_destruct = NULL;
1406 			bh_unlock_sock(newsk);
1407 			sk_free(newsk);
1408 			newsk = NULL;
1409 			goto out;
1410 		}
1411 
1412 		newsk->sk_err	   = 0;
1413 		newsk->sk_priority = 0;
1414 		/*
1415 		 * Before updating sk_refcnt, we must commit prior changes to memory
1416 		 * (Documentation/RCU/rculist_nulls.txt for details)
1417 		 */
1418 		smp_wmb();
1419 		atomic_set(&newsk->sk_refcnt, 2);
1420 
1421 		/*
1422 		 * Increment the counter in the same struct proto as the master
1423 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1424 		 * is the same as sk->sk_prot->socks, as this field was copied
1425 		 * with memcpy).
1426 		 *
1427 		 * This _changes_ the previous behaviour, where
1428 		 * tcp_create_openreq_child always was incrementing the
1429 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1430 		 * to be taken into account in all callers. -acme
1431 		 */
1432 		sk_refcnt_debug_inc(newsk);
1433 		sk_set_socket(newsk, NULL);
1434 		newsk->sk_wq = NULL;
1435 
1436 		sk_update_clone(sk, newsk);
1437 
1438 		if (newsk->sk_prot->sockets_allocated)
1439 			sk_sockets_allocated_inc(newsk);
1440 
1441 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1442 			net_enable_timestamp();
1443 	}
1444 out:
1445 	return newsk;
1446 }
1447 EXPORT_SYMBOL_GPL(sk_clone_lock);
1448 
1449 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1450 {
1451 	__sk_dst_set(sk, dst);
1452 	sk->sk_route_caps = dst->dev->features;
1453 	if (sk->sk_route_caps & NETIF_F_GSO)
1454 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1455 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1456 	if (sk_can_gso(sk)) {
1457 		if (dst->header_len) {
1458 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1459 		} else {
1460 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1461 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1462 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1463 		}
1464 	}
1465 }
1466 EXPORT_SYMBOL_GPL(sk_setup_caps);
1467 
1468 void __init sk_init(void)
1469 {
1470 	if (totalram_pages <= 4096) {
1471 		sysctl_wmem_max = 32767;
1472 		sysctl_rmem_max = 32767;
1473 		sysctl_wmem_default = 32767;
1474 		sysctl_rmem_default = 32767;
1475 	} else if (totalram_pages >= 131072) {
1476 		sysctl_wmem_max = 131071;
1477 		sysctl_rmem_max = 131071;
1478 	}
1479 }
1480 
1481 /*
1482  *	Simple resource managers for sockets.
1483  */
1484 
1485 
1486 /*
1487  * Write buffer destructor automatically called from kfree_skb.
1488  */
1489 void sock_wfree(struct sk_buff *skb)
1490 {
1491 	struct sock *sk = skb->sk;
1492 	unsigned int len = skb->truesize;
1493 
1494 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1495 		/*
1496 		 * Keep a reference on sk_wmem_alloc, this will be released
1497 		 * after sk_write_space() call
1498 		 */
1499 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1500 		sk->sk_write_space(sk);
1501 		len = 1;
1502 	}
1503 	/*
1504 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1505 	 * could not do because of in-flight packets
1506 	 */
1507 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1508 		__sk_free(sk);
1509 }
1510 EXPORT_SYMBOL(sock_wfree);
1511 
1512 /*
1513  * Read buffer destructor automatically called from kfree_skb.
1514  */
1515 void sock_rfree(struct sk_buff *skb)
1516 {
1517 	struct sock *sk = skb->sk;
1518 	unsigned int len = skb->truesize;
1519 
1520 	atomic_sub(len, &sk->sk_rmem_alloc);
1521 	sk_mem_uncharge(sk, len);
1522 }
1523 EXPORT_SYMBOL(sock_rfree);
1524 
1525 void sock_edemux(struct sk_buff *skb)
1526 {
1527 	struct sock *sk = skb->sk;
1528 
1529 #ifdef CONFIG_INET
1530 	if (sk->sk_state == TCP_TIME_WAIT)
1531 		inet_twsk_put(inet_twsk(sk));
1532 	else
1533 #endif
1534 		sock_put(sk);
1535 }
1536 EXPORT_SYMBOL(sock_edemux);
1537 
1538 int sock_i_uid(struct sock *sk)
1539 {
1540 	int uid;
1541 
1542 	read_lock_bh(&sk->sk_callback_lock);
1543 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1544 	read_unlock_bh(&sk->sk_callback_lock);
1545 	return uid;
1546 }
1547 EXPORT_SYMBOL(sock_i_uid);
1548 
1549 unsigned long sock_i_ino(struct sock *sk)
1550 {
1551 	unsigned long ino;
1552 
1553 	read_lock_bh(&sk->sk_callback_lock);
1554 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1555 	read_unlock_bh(&sk->sk_callback_lock);
1556 	return ino;
1557 }
1558 EXPORT_SYMBOL(sock_i_ino);
1559 
1560 /*
1561  * Allocate a skb from the socket's send buffer.
1562  */
1563 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1564 			     gfp_t priority)
1565 {
1566 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1567 		struct sk_buff *skb = alloc_skb(size, priority);
1568 		if (skb) {
1569 			skb_set_owner_w(skb, sk);
1570 			return skb;
1571 		}
1572 	}
1573 	return NULL;
1574 }
1575 EXPORT_SYMBOL(sock_wmalloc);
1576 
1577 /*
1578  * Allocate a skb from the socket's receive buffer.
1579  */
1580 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1581 			     gfp_t priority)
1582 {
1583 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1584 		struct sk_buff *skb = alloc_skb(size, priority);
1585 		if (skb) {
1586 			skb_set_owner_r(skb, sk);
1587 			return skb;
1588 		}
1589 	}
1590 	return NULL;
1591 }
1592 
1593 /*
1594  * Allocate a memory block from the socket's option memory buffer.
1595  */
1596 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1597 {
1598 	if ((unsigned int)size <= sysctl_optmem_max &&
1599 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1600 		void *mem;
1601 		/* First do the add, to avoid the race if kmalloc
1602 		 * might sleep.
1603 		 */
1604 		atomic_add(size, &sk->sk_omem_alloc);
1605 		mem = kmalloc(size, priority);
1606 		if (mem)
1607 			return mem;
1608 		atomic_sub(size, &sk->sk_omem_alloc);
1609 	}
1610 	return NULL;
1611 }
1612 EXPORT_SYMBOL(sock_kmalloc);
1613 
1614 /*
1615  * Free an option memory block.
1616  */
1617 void sock_kfree_s(struct sock *sk, void *mem, int size)
1618 {
1619 	kfree(mem);
1620 	atomic_sub(size, &sk->sk_omem_alloc);
1621 }
1622 EXPORT_SYMBOL(sock_kfree_s);
1623 
1624 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1625    I think, these locks should be removed for datagram sockets.
1626  */
1627 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1628 {
1629 	DEFINE_WAIT(wait);
1630 
1631 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1632 	for (;;) {
1633 		if (!timeo)
1634 			break;
1635 		if (signal_pending(current))
1636 			break;
1637 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1638 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1639 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1640 			break;
1641 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1642 			break;
1643 		if (sk->sk_err)
1644 			break;
1645 		timeo = schedule_timeout(timeo);
1646 	}
1647 	finish_wait(sk_sleep(sk), &wait);
1648 	return timeo;
1649 }
1650 
1651 
1652 /*
1653  *	Generic send/receive buffer handlers
1654  */
1655 
1656 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1657 				     unsigned long data_len, int noblock,
1658 				     int *errcode)
1659 {
1660 	struct sk_buff *skb;
1661 	gfp_t gfp_mask;
1662 	long timeo;
1663 	int err;
1664 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1665 
1666 	err = -EMSGSIZE;
1667 	if (npages > MAX_SKB_FRAGS)
1668 		goto failure;
1669 
1670 	gfp_mask = sk->sk_allocation;
1671 	if (gfp_mask & __GFP_WAIT)
1672 		gfp_mask |= __GFP_REPEAT;
1673 
1674 	timeo = sock_sndtimeo(sk, noblock);
1675 	while (1) {
1676 		err = sock_error(sk);
1677 		if (err != 0)
1678 			goto failure;
1679 
1680 		err = -EPIPE;
1681 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1682 			goto failure;
1683 
1684 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1685 			skb = alloc_skb(header_len, gfp_mask);
1686 			if (skb) {
1687 				int i;
1688 
1689 				/* No pages, we're done... */
1690 				if (!data_len)
1691 					break;
1692 
1693 				skb->truesize += data_len;
1694 				skb_shinfo(skb)->nr_frags = npages;
1695 				for (i = 0; i < npages; i++) {
1696 					struct page *page;
1697 
1698 					page = alloc_pages(sk->sk_allocation, 0);
1699 					if (!page) {
1700 						err = -ENOBUFS;
1701 						skb_shinfo(skb)->nr_frags = i;
1702 						kfree_skb(skb);
1703 						goto failure;
1704 					}
1705 
1706 					__skb_fill_page_desc(skb, i,
1707 							page, 0,
1708 							(data_len >= PAGE_SIZE ?
1709 							 PAGE_SIZE :
1710 							 data_len));
1711 					data_len -= PAGE_SIZE;
1712 				}
1713 
1714 				/* Full success... */
1715 				break;
1716 			}
1717 			err = -ENOBUFS;
1718 			goto failure;
1719 		}
1720 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1721 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1722 		err = -EAGAIN;
1723 		if (!timeo)
1724 			goto failure;
1725 		if (signal_pending(current))
1726 			goto interrupted;
1727 		timeo = sock_wait_for_wmem(sk, timeo);
1728 	}
1729 
1730 	skb_set_owner_w(skb, sk);
1731 	return skb;
1732 
1733 interrupted:
1734 	err = sock_intr_errno(timeo);
1735 failure:
1736 	*errcode = err;
1737 	return NULL;
1738 }
1739 EXPORT_SYMBOL(sock_alloc_send_pskb);
1740 
1741 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1742 				    int noblock, int *errcode)
1743 {
1744 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1745 }
1746 EXPORT_SYMBOL(sock_alloc_send_skb);
1747 
1748 static void __lock_sock(struct sock *sk)
1749 	__releases(&sk->sk_lock.slock)
1750 	__acquires(&sk->sk_lock.slock)
1751 {
1752 	DEFINE_WAIT(wait);
1753 
1754 	for (;;) {
1755 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1756 					TASK_UNINTERRUPTIBLE);
1757 		spin_unlock_bh(&sk->sk_lock.slock);
1758 		schedule();
1759 		spin_lock_bh(&sk->sk_lock.slock);
1760 		if (!sock_owned_by_user(sk))
1761 			break;
1762 	}
1763 	finish_wait(&sk->sk_lock.wq, &wait);
1764 }
1765 
1766 static void __release_sock(struct sock *sk)
1767 	__releases(&sk->sk_lock.slock)
1768 	__acquires(&sk->sk_lock.slock)
1769 {
1770 	struct sk_buff *skb = sk->sk_backlog.head;
1771 
1772 	do {
1773 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1774 		bh_unlock_sock(sk);
1775 
1776 		do {
1777 			struct sk_buff *next = skb->next;
1778 
1779 			prefetch(next);
1780 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1781 			skb->next = NULL;
1782 			sk_backlog_rcv(sk, skb);
1783 
1784 			/*
1785 			 * We are in process context here with softirqs
1786 			 * disabled, use cond_resched_softirq() to preempt.
1787 			 * This is safe to do because we've taken the backlog
1788 			 * queue private:
1789 			 */
1790 			cond_resched_softirq();
1791 
1792 			skb = next;
1793 		} while (skb != NULL);
1794 
1795 		bh_lock_sock(sk);
1796 	} while ((skb = sk->sk_backlog.head) != NULL);
1797 
1798 	/*
1799 	 * Doing the zeroing here guarantee we can not loop forever
1800 	 * while a wild producer attempts to flood us.
1801 	 */
1802 	sk->sk_backlog.len = 0;
1803 }
1804 
1805 /**
1806  * sk_wait_data - wait for data to arrive at sk_receive_queue
1807  * @sk:    sock to wait on
1808  * @timeo: for how long
1809  *
1810  * Now socket state including sk->sk_err is changed only under lock,
1811  * hence we may omit checks after joining wait queue.
1812  * We check receive queue before schedule() only as optimization;
1813  * it is very likely that release_sock() added new data.
1814  */
1815 int sk_wait_data(struct sock *sk, long *timeo)
1816 {
1817 	int rc;
1818 	DEFINE_WAIT(wait);
1819 
1820 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1821 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1822 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1823 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1824 	finish_wait(sk_sleep(sk), &wait);
1825 	return rc;
1826 }
1827 EXPORT_SYMBOL(sk_wait_data);
1828 
1829 /**
1830  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1831  *	@sk: socket
1832  *	@size: memory size to allocate
1833  *	@kind: allocation type
1834  *
1835  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1836  *	rmem allocation. This function assumes that protocols which have
1837  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1838  */
1839 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1840 {
1841 	struct proto *prot = sk->sk_prot;
1842 	int amt = sk_mem_pages(size);
1843 	long allocated;
1844 	int parent_status = UNDER_LIMIT;
1845 
1846 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1847 
1848 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1849 
1850 	/* Under limit. */
1851 	if (parent_status == UNDER_LIMIT &&
1852 			allocated <= sk_prot_mem_limits(sk, 0)) {
1853 		sk_leave_memory_pressure(sk);
1854 		return 1;
1855 	}
1856 
1857 	/* Under pressure. (we or our parents) */
1858 	if ((parent_status > SOFT_LIMIT) ||
1859 			allocated > sk_prot_mem_limits(sk, 1))
1860 		sk_enter_memory_pressure(sk);
1861 
1862 	/* Over hard limit (we or our parents) */
1863 	if ((parent_status == OVER_LIMIT) ||
1864 			(allocated > sk_prot_mem_limits(sk, 2)))
1865 		goto suppress_allocation;
1866 
1867 	/* guarantee minimum buffer size under pressure */
1868 	if (kind == SK_MEM_RECV) {
1869 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1870 			return 1;
1871 
1872 	} else { /* SK_MEM_SEND */
1873 		if (sk->sk_type == SOCK_STREAM) {
1874 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1875 				return 1;
1876 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1877 			   prot->sysctl_wmem[0])
1878 				return 1;
1879 	}
1880 
1881 	if (sk_has_memory_pressure(sk)) {
1882 		int alloc;
1883 
1884 		if (!sk_under_memory_pressure(sk))
1885 			return 1;
1886 		alloc = sk_sockets_allocated_read_positive(sk);
1887 		if (sk_prot_mem_limits(sk, 2) > alloc *
1888 		    sk_mem_pages(sk->sk_wmem_queued +
1889 				 atomic_read(&sk->sk_rmem_alloc) +
1890 				 sk->sk_forward_alloc))
1891 			return 1;
1892 	}
1893 
1894 suppress_allocation:
1895 
1896 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1897 		sk_stream_moderate_sndbuf(sk);
1898 
1899 		/* Fail only if socket is _under_ its sndbuf.
1900 		 * In this case we cannot block, so that we have to fail.
1901 		 */
1902 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1903 			return 1;
1904 	}
1905 
1906 	trace_sock_exceed_buf_limit(sk, prot, allocated);
1907 
1908 	/* Alas. Undo changes. */
1909 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1910 
1911 	sk_memory_allocated_sub(sk, amt);
1912 
1913 	return 0;
1914 }
1915 EXPORT_SYMBOL(__sk_mem_schedule);
1916 
1917 /**
1918  *	__sk_reclaim - reclaim memory_allocated
1919  *	@sk: socket
1920  */
1921 void __sk_mem_reclaim(struct sock *sk)
1922 {
1923 	sk_memory_allocated_sub(sk,
1924 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1925 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1926 
1927 	if (sk_under_memory_pressure(sk) &&
1928 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1929 		sk_leave_memory_pressure(sk);
1930 }
1931 EXPORT_SYMBOL(__sk_mem_reclaim);
1932 
1933 
1934 /*
1935  * Set of default routines for initialising struct proto_ops when
1936  * the protocol does not support a particular function. In certain
1937  * cases where it makes no sense for a protocol to have a "do nothing"
1938  * function, some default processing is provided.
1939  */
1940 
1941 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1942 {
1943 	return -EOPNOTSUPP;
1944 }
1945 EXPORT_SYMBOL(sock_no_bind);
1946 
1947 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1948 		    int len, int flags)
1949 {
1950 	return -EOPNOTSUPP;
1951 }
1952 EXPORT_SYMBOL(sock_no_connect);
1953 
1954 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1955 {
1956 	return -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(sock_no_socketpair);
1959 
1960 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1961 {
1962 	return -EOPNOTSUPP;
1963 }
1964 EXPORT_SYMBOL(sock_no_accept);
1965 
1966 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1967 		    int *len, int peer)
1968 {
1969 	return -EOPNOTSUPP;
1970 }
1971 EXPORT_SYMBOL(sock_no_getname);
1972 
1973 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1974 {
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL(sock_no_poll);
1978 
1979 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1980 {
1981 	return -EOPNOTSUPP;
1982 }
1983 EXPORT_SYMBOL(sock_no_ioctl);
1984 
1985 int sock_no_listen(struct socket *sock, int backlog)
1986 {
1987 	return -EOPNOTSUPP;
1988 }
1989 EXPORT_SYMBOL(sock_no_listen);
1990 
1991 int sock_no_shutdown(struct socket *sock, int how)
1992 {
1993 	return -EOPNOTSUPP;
1994 }
1995 EXPORT_SYMBOL(sock_no_shutdown);
1996 
1997 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1998 		    char __user *optval, unsigned int optlen)
1999 {
2000 	return -EOPNOTSUPP;
2001 }
2002 EXPORT_SYMBOL(sock_no_setsockopt);
2003 
2004 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2005 		    char __user *optval, int __user *optlen)
2006 {
2007 	return -EOPNOTSUPP;
2008 }
2009 EXPORT_SYMBOL(sock_no_getsockopt);
2010 
2011 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2012 		    size_t len)
2013 {
2014 	return -EOPNOTSUPP;
2015 }
2016 EXPORT_SYMBOL(sock_no_sendmsg);
2017 
2018 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2019 		    size_t len, int flags)
2020 {
2021 	return -EOPNOTSUPP;
2022 }
2023 EXPORT_SYMBOL(sock_no_recvmsg);
2024 
2025 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2026 {
2027 	/* Mirror missing mmap method error code */
2028 	return -ENODEV;
2029 }
2030 EXPORT_SYMBOL(sock_no_mmap);
2031 
2032 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2033 {
2034 	ssize_t res;
2035 	struct msghdr msg = {.msg_flags = flags};
2036 	struct kvec iov;
2037 	char *kaddr = kmap(page);
2038 	iov.iov_base = kaddr + offset;
2039 	iov.iov_len = size;
2040 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2041 	kunmap(page);
2042 	return res;
2043 }
2044 EXPORT_SYMBOL(sock_no_sendpage);
2045 
2046 /*
2047  *	Default Socket Callbacks
2048  */
2049 
2050 static void sock_def_wakeup(struct sock *sk)
2051 {
2052 	struct socket_wq *wq;
2053 
2054 	rcu_read_lock();
2055 	wq = rcu_dereference(sk->sk_wq);
2056 	if (wq_has_sleeper(wq))
2057 		wake_up_interruptible_all(&wq->wait);
2058 	rcu_read_unlock();
2059 }
2060 
2061 static void sock_def_error_report(struct sock *sk)
2062 {
2063 	struct socket_wq *wq;
2064 
2065 	rcu_read_lock();
2066 	wq = rcu_dereference(sk->sk_wq);
2067 	if (wq_has_sleeper(wq))
2068 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2069 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2070 	rcu_read_unlock();
2071 }
2072 
2073 static void sock_def_readable(struct sock *sk, int len)
2074 {
2075 	struct socket_wq *wq;
2076 
2077 	rcu_read_lock();
2078 	wq = rcu_dereference(sk->sk_wq);
2079 	if (wq_has_sleeper(wq))
2080 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2081 						POLLRDNORM | POLLRDBAND);
2082 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2083 	rcu_read_unlock();
2084 }
2085 
2086 static void sock_def_write_space(struct sock *sk)
2087 {
2088 	struct socket_wq *wq;
2089 
2090 	rcu_read_lock();
2091 
2092 	/* Do not wake up a writer until he can make "significant"
2093 	 * progress.  --DaveM
2094 	 */
2095 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2096 		wq = rcu_dereference(sk->sk_wq);
2097 		if (wq_has_sleeper(wq))
2098 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2099 						POLLWRNORM | POLLWRBAND);
2100 
2101 		/* Should agree with poll, otherwise some programs break */
2102 		if (sock_writeable(sk))
2103 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2104 	}
2105 
2106 	rcu_read_unlock();
2107 }
2108 
2109 static void sock_def_destruct(struct sock *sk)
2110 {
2111 	kfree(sk->sk_protinfo);
2112 }
2113 
2114 void sk_send_sigurg(struct sock *sk)
2115 {
2116 	if (sk->sk_socket && sk->sk_socket->file)
2117 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2118 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2119 }
2120 EXPORT_SYMBOL(sk_send_sigurg);
2121 
2122 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2123 		    unsigned long expires)
2124 {
2125 	if (!mod_timer(timer, expires))
2126 		sock_hold(sk);
2127 }
2128 EXPORT_SYMBOL(sk_reset_timer);
2129 
2130 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2131 {
2132 	if (timer_pending(timer) && del_timer(timer))
2133 		__sock_put(sk);
2134 }
2135 EXPORT_SYMBOL(sk_stop_timer);
2136 
2137 void sock_init_data(struct socket *sock, struct sock *sk)
2138 {
2139 	skb_queue_head_init(&sk->sk_receive_queue);
2140 	skb_queue_head_init(&sk->sk_write_queue);
2141 	skb_queue_head_init(&sk->sk_error_queue);
2142 #ifdef CONFIG_NET_DMA
2143 	skb_queue_head_init(&sk->sk_async_wait_queue);
2144 #endif
2145 
2146 	sk->sk_send_head	=	NULL;
2147 
2148 	init_timer(&sk->sk_timer);
2149 
2150 	sk->sk_allocation	=	GFP_KERNEL;
2151 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2152 	sk->sk_sndbuf		=	sysctl_wmem_default;
2153 	sk->sk_state		=	TCP_CLOSE;
2154 	sk_set_socket(sk, sock);
2155 
2156 	sock_set_flag(sk, SOCK_ZAPPED);
2157 
2158 	if (sock) {
2159 		sk->sk_type	=	sock->type;
2160 		sk->sk_wq	=	sock->wq;
2161 		sock->sk	=	sk;
2162 	} else
2163 		sk->sk_wq	=	NULL;
2164 
2165 	spin_lock_init(&sk->sk_dst_lock);
2166 	rwlock_init(&sk->sk_callback_lock);
2167 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2168 			af_callback_keys + sk->sk_family,
2169 			af_family_clock_key_strings[sk->sk_family]);
2170 
2171 	sk->sk_state_change	=	sock_def_wakeup;
2172 	sk->sk_data_ready	=	sock_def_readable;
2173 	sk->sk_write_space	=	sock_def_write_space;
2174 	sk->sk_error_report	=	sock_def_error_report;
2175 	sk->sk_destruct		=	sock_def_destruct;
2176 
2177 	sk->sk_sndmsg_page	=	NULL;
2178 	sk->sk_sndmsg_off	=	0;
2179 	sk->sk_peek_off		=	-1;
2180 
2181 	sk->sk_peer_pid 	=	NULL;
2182 	sk->sk_peer_cred	=	NULL;
2183 	sk->sk_write_pending	=	0;
2184 	sk->sk_rcvlowat		=	1;
2185 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2186 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2187 
2188 	sk->sk_stamp = ktime_set(-1L, 0);
2189 
2190 	/*
2191 	 * Before updating sk_refcnt, we must commit prior changes to memory
2192 	 * (Documentation/RCU/rculist_nulls.txt for details)
2193 	 */
2194 	smp_wmb();
2195 	atomic_set(&sk->sk_refcnt, 1);
2196 	atomic_set(&sk->sk_drops, 0);
2197 }
2198 EXPORT_SYMBOL(sock_init_data);
2199 
2200 void lock_sock_nested(struct sock *sk, int subclass)
2201 {
2202 	might_sleep();
2203 	spin_lock_bh(&sk->sk_lock.slock);
2204 	if (sk->sk_lock.owned)
2205 		__lock_sock(sk);
2206 	sk->sk_lock.owned = 1;
2207 	spin_unlock(&sk->sk_lock.slock);
2208 	/*
2209 	 * The sk_lock has mutex_lock() semantics here:
2210 	 */
2211 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2212 	local_bh_enable();
2213 }
2214 EXPORT_SYMBOL(lock_sock_nested);
2215 
2216 void release_sock(struct sock *sk)
2217 {
2218 	/*
2219 	 * The sk_lock has mutex_unlock() semantics:
2220 	 */
2221 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2222 
2223 	spin_lock_bh(&sk->sk_lock.slock);
2224 	if (sk->sk_backlog.tail)
2225 		__release_sock(sk);
2226 
2227 	if (sk->sk_prot->release_cb)
2228 		sk->sk_prot->release_cb(sk);
2229 
2230 	sk->sk_lock.owned = 0;
2231 	if (waitqueue_active(&sk->sk_lock.wq))
2232 		wake_up(&sk->sk_lock.wq);
2233 	spin_unlock_bh(&sk->sk_lock.slock);
2234 }
2235 EXPORT_SYMBOL(release_sock);
2236 
2237 /**
2238  * lock_sock_fast - fast version of lock_sock
2239  * @sk: socket
2240  *
2241  * This version should be used for very small section, where process wont block
2242  * return false if fast path is taken
2243  *   sk_lock.slock locked, owned = 0, BH disabled
2244  * return true if slow path is taken
2245  *   sk_lock.slock unlocked, owned = 1, BH enabled
2246  */
2247 bool lock_sock_fast(struct sock *sk)
2248 {
2249 	might_sleep();
2250 	spin_lock_bh(&sk->sk_lock.slock);
2251 
2252 	if (!sk->sk_lock.owned)
2253 		/*
2254 		 * Note : We must disable BH
2255 		 */
2256 		return false;
2257 
2258 	__lock_sock(sk);
2259 	sk->sk_lock.owned = 1;
2260 	spin_unlock(&sk->sk_lock.slock);
2261 	/*
2262 	 * The sk_lock has mutex_lock() semantics here:
2263 	 */
2264 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2265 	local_bh_enable();
2266 	return true;
2267 }
2268 EXPORT_SYMBOL(lock_sock_fast);
2269 
2270 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2271 {
2272 	struct timeval tv;
2273 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2274 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2275 	tv = ktime_to_timeval(sk->sk_stamp);
2276 	if (tv.tv_sec == -1)
2277 		return -ENOENT;
2278 	if (tv.tv_sec == 0) {
2279 		sk->sk_stamp = ktime_get_real();
2280 		tv = ktime_to_timeval(sk->sk_stamp);
2281 	}
2282 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2283 }
2284 EXPORT_SYMBOL(sock_get_timestamp);
2285 
2286 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2287 {
2288 	struct timespec ts;
2289 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2290 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2291 	ts = ktime_to_timespec(sk->sk_stamp);
2292 	if (ts.tv_sec == -1)
2293 		return -ENOENT;
2294 	if (ts.tv_sec == 0) {
2295 		sk->sk_stamp = ktime_get_real();
2296 		ts = ktime_to_timespec(sk->sk_stamp);
2297 	}
2298 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2299 }
2300 EXPORT_SYMBOL(sock_get_timestampns);
2301 
2302 void sock_enable_timestamp(struct sock *sk, int flag)
2303 {
2304 	if (!sock_flag(sk, flag)) {
2305 		unsigned long previous_flags = sk->sk_flags;
2306 
2307 		sock_set_flag(sk, flag);
2308 		/*
2309 		 * we just set one of the two flags which require net
2310 		 * time stamping, but time stamping might have been on
2311 		 * already because of the other one
2312 		 */
2313 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2314 			net_enable_timestamp();
2315 	}
2316 }
2317 
2318 /*
2319  *	Get a socket option on an socket.
2320  *
2321  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2322  *	asynchronous errors should be reported by getsockopt. We assume
2323  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2324  */
2325 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2326 			   char __user *optval, int __user *optlen)
2327 {
2328 	struct sock *sk = sock->sk;
2329 
2330 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2331 }
2332 EXPORT_SYMBOL(sock_common_getsockopt);
2333 
2334 #ifdef CONFIG_COMPAT
2335 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2336 				  char __user *optval, int __user *optlen)
2337 {
2338 	struct sock *sk = sock->sk;
2339 
2340 	if (sk->sk_prot->compat_getsockopt != NULL)
2341 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2342 						      optval, optlen);
2343 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2344 }
2345 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2346 #endif
2347 
2348 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2349 			struct msghdr *msg, size_t size, int flags)
2350 {
2351 	struct sock *sk = sock->sk;
2352 	int addr_len = 0;
2353 	int err;
2354 
2355 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2356 				   flags & ~MSG_DONTWAIT, &addr_len);
2357 	if (err >= 0)
2358 		msg->msg_namelen = addr_len;
2359 	return err;
2360 }
2361 EXPORT_SYMBOL(sock_common_recvmsg);
2362 
2363 /*
2364  *	Set socket options on an inet socket.
2365  */
2366 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2367 			   char __user *optval, unsigned int optlen)
2368 {
2369 	struct sock *sk = sock->sk;
2370 
2371 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2372 }
2373 EXPORT_SYMBOL(sock_common_setsockopt);
2374 
2375 #ifdef CONFIG_COMPAT
2376 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2377 				  char __user *optval, unsigned int optlen)
2378 {
2379 	struct sock *sk = sock->sk;
2380 
2381 	if (sk->sk_prot->compat_setsockopt != NULL)
2382 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2383 						      optval, optlen);
2384 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2385 }
2386 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2387 #endif
2388 
2389 void sk_common_release(struct sock *sk)
2390 {
2391 	if (sk->sk_prot->destroy)
2392 		sk->sk_prot->destroy(sk);
2393 
2394 	/*
2395 	 * Observation: when sock_common_release is called, processes have
2396 	 * no access to socket. But net still has.
2397 	 * Step one, detach it from networking:
2398 	 *
2399 	 * A. Remove from hash tables.
2400 	 */
2401 
2402 	sk->sk_prot->unhash(sk);
2403 
2404 	/*
2405 	 * In this point socket cannot receive new packets, but it is possible
2406 	 * that some packets are in flight because some CPU runs receiver and
2407 	 * did hash table lookup before we unhashed socket. They will achieve
2408 	 * receive queue and will be purged by socket destructor.
2409 	 *
2410 	 * Also we still have packets pending on receive queue and probably,
2411 	 * our own packets waiting in device queues. sock_destroy will drain
2412 	 * receive queue, but transmitted packets will delay socket destruction
2413 	 * until the last reference will be released.
2414 	 */
2415 
2416 	sock_orphan(sk);
2417 
2418 	xfrm_sk_free_policy(sk);
2419 
2420 	sk_refcnt_debug_release(sk);
2421 	sock_put(sk);
2422 }
2423 EXPORT_SYMBOL(sk_common_release);
2424 
2425 #ifdef CONFIG_PROC_FS
2426 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2427 struct prot_inuse {
2428 	int val[PROTO_INUSE_NR];
2429 };
2430 
2431 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2432 
2433 #ifdef CONFIG_NET_NS
2434 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2435 {
2436 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2437 }
2438 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2439 
2440 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2441 {
2442 	int cpu, idx = prot->inuse_idx;
2443 	int res = 0;
2444 
2445 	for_each_possible_cpu(cpu)
2446 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2447 
2448 	return res >= 0 ? res : 0;
2449 }
2450 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2451 
2452 static int __net_init sock_inuse_init_net(struct net *net)
2453 {
2454 	net->core.inuse = alloc_percpu(struct prot_inuse);
2455 	return net->core.inuse ? 0 : -ENOMEM;
2456 }
2457 
2458 static void __net_exit sock_inuse_exit_net(struct net *net)
2459 {
2460 	free_percpu(net->core.inuse);
2461 }
2462 
2463 static struct pernet_operations net_inuse_ops = {
2464 	.init = sock_inuse_init_net,
2465 	.exit = sock_inuse_exit_net,
2466 };
2467 
2468 static __init int net_inuse_init(void)
2469 {
2470 	if (register_pernet_subsys(&net_inuse_ops))
2471 		panic("Cannot initialize net inuse counters");
2472 
2473 	return 0;
2474 }
2475 
2476 core_initcall(net_inuse_init);
2477 #else
2478 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2479 
2480 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2481 {
2482 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2483 }
2484 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2485 
2486 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2487 {
2488 	int cpu, idx = prot->inuse_idx;
2489 	int res = 0;
2490 
2491 	for_each_possible_cpu(cpu)
2492 		res += per_cpu(prot_inuse, cpu).val[idx];
2493 
2494 	return res >= 0 ? res : 0;
2495 }
2496 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2497 #endif
2498 
2499 static void assign_proto_idx(struct proto *prot)
2500 {
2501 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2502 
2503 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2504 		pr_err("PROTO_INUSE_NR exhausted\n");
2505 		return;
2506 	}
2507 
2508 	set_bit(prot->inuse_idx, proto_inuse_idx);
2509 }
2510 
2511 static void release_proto_idx(struct proto *prot)
2512 {
2513 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2514 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2515 }
2516 #else
2517 static inline void assign_proto_idx(struct proto *prot)
2518 {
2519 }
2520 
2521 static inline void release_proto_idx(struct proto *prot)
2522 {
2523 }
2524 #endif
2525 
2526 int proto_register(struct proto *prot, int alloc_slab)
2527 {
2528 	if (alloc_slab) {
2529 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2530 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2531 					NULL);
2532 
2533 		if (prot->slab == NULL) {
2534 			pr_crit("%s: Can't create sock SLAB cache!\n",
2535 				prot->name);
2536 			goto out;
2537 		}
2538 
2539 		if (prot->rsk_prot != NULL) {
2540 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2541 			if (prot->rsk_prot->slab_name == NULL)
2542 				goto out_free_sock_slab;
2543 
2544 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2545 								 prot->rsk_prot->obj_size, 0,
2546 								 SLAB_HWCACHE_ALIGN, NULL);
2547 
2548 			if (prot->rsk_prot->slab == NULL) {
2549 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2550 					prot->name);
2551 				goto out_free_request_sock_slab_name;
2552 			}
2553 		}
2554 
2555 		if (prot->twsk_prot != NULL) {
2556 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2557 
2558 			if (prot->twsk_prot->twsk_slab_name == NULL)
2559 				goto out_free_request_sock_slab;
2560 
2561 			prot->twsk_prot->twsk_slab =
2562 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2563 						  prot->twsk_prot->twsk_obj_size,
2564 						  0,
2565 						  SLAB_HWCACHE_ALIGN |
2566 							prot->slab_flags,
2567 						  NULL);
2568 			if (prot->twsk_prot->twsk_slab == NULL)
2569 				goto out_free_timewait_sock_slab_name;
2570 		}
2571 	}
2572 
2573 	mutex_lock(&proto_list_mutex);
2574 	list_add(&prot->node, &proto_list);
2575 	assign_proto_idx(prot);
2576 	mutex_unlock(&proto_list_mutex);
2577 	return 0;
2578 
2579 out_free_timewait_sock_slab_name:
2580 	kfree(prot->twsk_prot->twsk_slab_name);
2581 out_free_request_sock_slab:
2582 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2583 		kmem_cache_destroy(prot->rsk_prot->slab);
2584 		prot->rsk_prot->slab = NULL;
2585 	}
2586 out_free_request_sock_slab_name:
2587 	if (prot->rsk_prot)
2588 		kfree(prot->rsk_prot->slab_name);
2589 out_free_sock_slab:
2590 	kmem_cache_destroy(prot->slab);
2591 	prot->slab = NULL;
2592 out:
2593 	return -ENOBUFS;
2594 }
2595 EXPORT_SYMBOL(proto_register);
2596 
2597 void proto_unregister(struct proto *prot)
2598 {
2599 	mutex_lock(&proto_list_mutex);
2600 	release_proto_idx(prot);
2601 	list_del(&prot->node);
2602 	mutex_unlock(&proto_list_mutex);
2603 
2604 	if (prot->slab != NULL) {
2605 		kmem_cache_destroy(prot->slab);
2606 		prot->slab = NULL;
2607 	}
2608 
2609 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2610 		kmem_cache_destroy(prot->rsk_prot->slab);
2611 		kfree(prot->rsk_prot->slab_name);
2612 		prot->rsk_prot->slab = NULL;
2613 	}
2614 
2615 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2616 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2617 		kfree(prot->twsk_prot->twsk_slab_name);
2618 		prot->twsk_prot->twsk_slab = NULL;
2619 	}
2620 }
2621 EXPORT_SYMBOL(proto_unregister);
2622 
2623 #ifdef CONFIG_PROC_FS
2624 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2625 	__acquires(proto_list_mutex)
2626 {
2627 	mutex_lock(&proto_list_mutex);
2628 	return seq_list_start_head(&proto_list, *pos);
2629 }
2630 
2631 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2632 {
2633 	return seq_list_next(v, &proto_list, pos);
2634 }
2635 
2636 static void proto_seq_stop(struct seq_file *seq, void *v)
2637 	__releases(proto_list_mutex)
2638 {
2639 	mutex_unlock(&proto_list_mutex);
2640 }
2641 
2642 static char proto_method_implemented(const void *method)
2643 {
2644 	return method == NULL ? 'n' : 'y';
2645 }
2646 static long sock_prot_memory_allocated(struct proto *proto)
2647 {
2648 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2649 }
2650 
2651 static char *sock_prot_memory_pressure(struct proto *proto)
2652 {
2653 	return proto->memory_pressure != NULL ?
2654 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2655 }
2656 
2657 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2658 {
2659 
2660 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2661 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2662 		   proto->name,
2663 		   proto->obj_size,
2664 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2665 		   sock_prot_memory_allocated(proto),
2666 		   sock_prot_memory_pressure(proto),
2667 		   proto->max_header,
2668 		   proto->slab == NULL ? "no" : "yes",
2669 		   module_name(proto->owner),
2670 		   proto_method_implemented(proto->close),
2671 		   proto_method_implemented(proto->connect),
2672 		   proto_method_implemented(proto->disconnect),
2673 		   proto_method_implemented(proto->accept),
2674 		   proto_method_implemented(proto->ioctl),
2675 		   proto_method_implemented(proto->init),
2676 		   proto_method_implemented(proto->destroy),
2677 		   proto_method_implemented(proto->shutdown),
2678 		   proto_method_implemented(proto->setsockopt),
2679 		   proto_method_implemented(proto->getsockopt),
2680 		   proto_method_implemented(proto->sendmsg),
2681 		   proto_method_implemented(proto->recvmsg),
2682 		   proto_method_implemented(proto->sendpage),
2683 		   proto_method_implemented(proto->bind),
2684 		   proto_method_implemented(proto->backlog_rcv),
2685 		   proto_method_implemented(proto->hash),
2686 		   proto_method_implemented(proto->unhash),
2687 		   proto_method_implemented(proto->get_port),
2688 		   proto_method_implemented(proto->enter_memory_pressure));
2689 }
2690 
2691 static int proto_seq_show(struct seq_file *seq, void *v)
2692 {
2693 	if (v == &proto_list)
2694 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2695 			   "protocol",
2696 			   "size",
2697 			   "sockets",
2698 			   "memory",
2699 			   "press",
2700 			   "maxhdr",
2701 			   "slab",
2702 			   "module",
2703 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2704 	else
2705 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2706 	return 0;
2707 }
2708 
2709 static const struct seq_operations proto_seq_ops = {
2710 	.start  = proto_seq_start,
2711 	.next   = proto_seq_next,
2712 	.stop   = proto_seq_stop,
2713 	.show   = proto_seq_show,
2714 };
2715 
2716 static int proto_seq_open(struct inode *inode, struct file *file)
2717 {
2718 	return seq_open_net(inode, file, &proto_seq_ops,
2719 			    sizeof(struct seq_net_private));
2720 }
2721 
2722 static const struct file_operations proto_seq_fops = {
2723 	.owner		= THIS_MODULE,
2724 	.open		= proto_seq_open,
2725 	.read		= seq_read,
2726 	.llseek		= seq_lseek,
2727 	.release	= seq_release_net,
2728 };
2729 
2730 static __net_init int proto_init_net(struct net *net)
2731 {
2732 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2733 		return -ENOMEM;
2734 
2735 	return 0;
2736 }
2737 
2738 static __net_exit void proto_exit_net(struct net *net)
2739 {
2740 	proc_net_remove(net, "protocols");
2741 }
2742 
2743 
2744 static __net_initdata struct pernet_operations proto_net_ops = {
2745 	.init = proto_init_net,
2746 	.exit = proto_exit_net,
2747 };
2748 
2749 static int __init proto_init(void)
2750 {
2751 	return register_pernet_subsys(&proto_net_ops);
2752 }
2753 
2754 subsys_initcall(proto_init);
2755 
2756 #endif /* PROC_FS */
2757