1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 return sock_bindtoindex(sk, index, true); 707 out: 708 #endif 709 710 return ret; 711 } 712 713 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 714 int __user *optlen, int len) 715 { 716 int ret = -ENOPROTOOPT; 717 #ifdef CONFIG_NETDEVICES 718 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 719 struct net *net = sock_net(sk); 720 char devname[IFNAMSIZ]; 721 722 if (bound_dev_if == 0) { 723 len = 0; 724 goto zero; 725 } 726 727 ret = -EINVAL; 728 if (len < IFNAMSIZ) 729 goto out; 730 731 ret = netdev_get_name(net, devname, bound_dev_if); 732 if (ret) 733 goto out; 734 735 len = strlen(devname) + 1; 736 737 ret = -EFAULT; 738 if (copy_to_user(optval, devname, len)) 739 goto out; 740 741 zero: 742 ret = -EFAULT; 743 if (put_user(len, optlen)) 744 goto out; 745 746 ret = 0; 747 748 out: 749 #endif 750 751 return ret; 752 } 753 754 bool sk_mc_loop(struct sock *sk) 755 { 756 if (dev_recursion_level()) 757 return false; 758 if (!sk) 759 return true; 760 switch (sk->sk_family) { 761 case AF_INET: 762 return inet_sk(sk)->mc_loop; 763 #if IS_ENABLED(CONFIG_IPV6) 764 case AF_INET6: 765 return inet6_sk(sk)->mc_loop; 766 #endif 767 } 768 WARN_ON_ONCE(1); 769 return true; 770 } 771 EXPORT_SYMBOL(sk_mc_loop); 772 773 void sock_set_reuseaddr(struct sock *sk) 774 { 775 lock_sock(sk); 776 sk->sk_reuse = SK_CAN_REUSE; 777 release_sock(sk); 778 } 779 EXPORT_SYMBOL(sock_set_reuseaddr); 780 781 void sock_set_reuseport(struct sock *sk) 782 { 783 lock_sock(sk); 784 sk->sk_reuseport = true; 785 release_sock(sk); 786 } 787 EXPORT_SYMBOL(sock_set_reuseport); 788 789 void sock_no_linger(struct sock *sk) 790 { 791 lock_sock(sk); 792 sk->sk_lingertime = 0; 793 sock_set_flag(sk, SOCK_LINGER); 794 release_sock(sk); 795 } 796 EXPORT_SYMBOL(sock_no_linger); 797 798 void sock_set_priority(struct sock *sk, u32 priority) 799 { 800 lock_sock(sk); 801 sk->sk_priority = priority; 802 release_sock(sk); 803 } 804 EXPORT_SYMBOL(sock_set_priority); 805 806 void sock_set_sndtimeo(struct sock *sk, s64 secs) 807 { 808 lock_sock(sk); 809 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 810 sk->sk_sndtimeo = secs * HZ; 811 else 812 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 813 release_sock(sk); 814 } 815 EXPORT_SYMBOL(sock_set_sndtimeo); 816 817 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 818 { 819 if (val) { 820 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 821 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 822 sock_set_flag(sk, SOCK_RCVTSTAMP); 823 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 824 } else { 825 sock_reset_flag(sk, SOCK_RCVTSTAMP); 826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 827 } 828 } 829 830 void sock_enable_timestamps(struct sock *sk) 831 { 832 lock_sock(sk); 833 __sock_set_timestamps(sk, true, false, true); 834 release_sock(sk); 835 } 836 EXPORT_SYMBOL(sock_enable_timestamps); 837 838 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 839 { 840 switch (optname) { 841 case SO_TIMESTAMP_OLD: 842 __sock_set_timestamps(sk, valbool, false, false); 843 break; 844 case SO_TIMESTAMP_NEW: 845 __sock_set_timestamps(sk, valbool, true, false); 846 break; 847 case SO_TIMESTAMPNS_OLD: 848 __sock_set_timestamps(sk, valbool, false, true); 849 break; 850 case SO_TIMESTAMPNS_NEW: 851 __sock_set_timestamps(sk, valbool, true, true); 852 break; 853 } 854 } 855 856 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 857 { 858 struct net *net = sock_net(sk); 859 struct net_device *dev = NULL; 860 bool match = false; 861 int *vclock_index; 862 int i, num; 863 864 if (sk->sk_bound_dev_if) 865 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 866 867 if (!dev) { 868 pr_err("%s: sock not bind to device\n", __func__); 869 return -EOPNOTSUPP; 870 } 871 872 num = ethtool_get_phc_vclocks(dev, &vclock_index); 873 dev_put(dev); 874 875 for (i = 0; i < num; i++) { 876 if (*(vclock_index + i) == phc_index) { 877 match = true; 878 break; 879 } 880 } 881 882 if (num > 0) 883 kfree(vclock_index); 884 885 if (!match) 886 return -EINVAL; 887 888 sk->sk_bind_phc = phc_index; 889 890 return 0; 891 } 892 893 int sock_set_timestamping(struct sock *sk, int optname, 894 struct so_timestamping timestamping) 895 { 896 int val = timestamping.flags; 897 int ret; 898 899 if (val & ~SOF_TIMESTAMPING_MASK) 900 return -EINVAL; 901 902 if (val & SOF_TIMESTAMPING_OPT_ID && 903 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 904 if (sk_is_tcp(sk)) { 905 if ((1 << sk->sk_state) & 906 (TCPF_CLOSE | TCPF_LISTEN)) 907 return -EINVAL; 908 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 909 } else { 910 atomic_set(&sk->sk_tskey, 0); 911 } 912 } 913 914 if (val & SOF_TIMESTAMPING_OPT_STATS && 915 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 916 return -EINVAL; 917 918 if (val & SOF_TIMESTAMPING_BIND_PHC) { 919 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 920 if (ret) 921 return ret; 922 } 923 924 sk->sk_tsflags = val; 925 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 926 927 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 928 sock_enable_timestamp(sk, 929 SOCK_TIMESTAMPING_RX_SOFTWARE); 930 else 931 sock_disable_timestamp(sk, 932 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 933 return 0; 934 } 935 936 void sock_set_keepalive(struct sock *sk) 937 { 938 lock_sock(sk); 939 if (sk->sk_prot->keepalive) 940 sk->sk_prot->keepalive(sk, true); 941 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 942 release_sock(sk); 943 } 944 EXPORT_SYMBOL(sock_set_keepalive); 945 946 static void __sock_set_rcvbuf(struct sock *sk, int val) 947 { 948 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 949 * as a negative value. 950 */ 951 val = min_t(int, val, INT_MAX / 2); 952 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 953 954 /* We double it on the way in to account for "struct sk_buff" etc. 955 * overhead. Applications assume that the SO_RCVBUF setting they make 956 * will allow that much actual data to be received on that socket. 957 * 958 * Applications are unaware that "struct sk_buff" and other overheads 959 * allocate from the receive buffer during socket buffer allocation. 960 * 961 * And after considering the possible alternatives, returning the value 962 * we actually used in getsockopt is the most desirable behavior. 963 */ 964 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 965 } 966 967 void sock_set_rcvbuf(struct sock *sk, int val) 968 { 969 lock_sock(sk); 970 __sock_set_rcvbuf(sk, val); 971 release_sock(sk); 972 } 973 EXPORT_SYMBOL(sock_set_rcvbuf); 974 975 static void __sock_set_mark(struct sock *sk, u32 val) 976 { 977 if (val != sk->sk_mark) { 978 sk->sk_mark = val; 979 sk_dst_reset(sk); 980 } 981 } 982 983 void sock_set_mark(struct sock *sk, u32 val) 984 { 985 lock_sock(sk); 986 __sock_set_mark(sk, val); 987 release_sock(sk); 988 } 989 EXPORT_SYMBOL(sock_set_mark); 990 991 static void sock_release_reserved_memory(struct sock *sk, int bytes) 992 { 993 /* Round down bytes to multiple of pages */ 994 bytes = round_down(bytes, PAGE_SIZE); 995 996 WARN_ON(bytes > sk->sk_reserved_mem); 997 sk->sk_reserved_mem -= bytes; 998 sk_mem_reclaim(sk); 999 } 1000 1001 static int sock_reserve_memory(struct sock *sk, int bytes) 1002 { 1003 long allocated; 1004 bool charged; 1005 int pages; 1006 1007 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1008 return -EOPNOTSUPP; 1009 1010 if (!bytes) 1011 return 0; 1012 1013 pages = sk_mem_pages(bytes); 1014 1015 /* pre-charge to memcg */ 1016 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1017 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1018 if (!charged) 1019 return -ENOMEM; 1020 1021 /* pre-charge to forward_alloc */ 1022 sk_memory_allocated_add(sk, pages); 1023 allocated = sk_memory_allocated(sk); 1024 /* If the system goes into memory pressure with this 1025 * precharge, give up and return error. 1026 */ 1027 if (allocated > sk_prot_mem_limits(sk, 1)) { 1028 sk_memory_allocated_sub(sk, pages); 1029 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1030 return -ENOMEM; 1031 } 1032 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1033 1034 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1035 1036 return 0; 1037 } 1038 1039 /* 1040 * This is meant for all protocols to use and covers goings on 1041 * at the socket level. Everything here is generic. 1042 */ 1043 1044 int sock_setsockopt(struct socket *sock, int level, int optname, 1045 sockptr_t optval, unsigned int optlen) 1046 { 1047 struct so_timestamping timestamping; 1048 struct sock_txtime sk_txtime; 1049 struct sock *sk = sock->sk; 1050 int val; 1051 int valbool; 1052 struct linger ling; 1053 int ret = 0; 1054 1055 /* 1056 * Options without arguments 1057 */ 1058 1059 if (optname == SO_BINDTODEVICE) 1060 return sock_setbindtodevice(sk, optval, optlen); 1061 1062 if (optlen < sizeof(int)) 1063 return -EINVAL; 1064 1065 if (copy_from_sockptr(&val, optval, sizeof(val))) 1066 return -EFAULT; 1067 1068 valbool = val ? 1 : 0; 1069 1070 lock_sock(sk); 1071 1072 switch (optname) { 1073 case SO_DEBUG: 1074 if (val && !capable(CAP_NET_ADMIN)) 1075 ret = -EACCES; 1076 else 1077 sock_valbool_flag(sk, SOCK_DBG, valbool); 1078 break; 1079 case SO_REUSEADDR: 1080 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1081 break; 1082 case SO_REUSEPORT: 1083 sk->sk_reuseport = valbool; 1084 break; 1085 case SO_TYPE: 1086 case SO_PROTOCOL: 1087 case SO_DOMAIN: 1088 case SO_ERROR: 1089 ret = -ENOPROTOOPT; 1090 break; 1091 case SO_DONTROUTE: 1092 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1093 sk_dst_reset(sk); 1094 break; 1095 case SO_BROADCAST: 1096 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1097 break; 1098 case SO_SNDBUF: 1099 /* Don't error on this BSD doesn't and if you think 1100 * about it this is right. Otherwise apps have to 1101 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1102 * are treated in BSD as hints 1103 */ 1104 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1105 set_sndbuf: 1106 /* Ensure val * 2 fits into an int, to prevent max_t() 1107 * from treating it as a negative value. 1108 */ 1109 val = min_t(int, val, INT_MAX / 2); 1110 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1111 WRITE_ONCE(sk->sk_sndbuf, 1112 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1113 /* Wake up sending tasks if we upped the value. */ 1114 sk->sk_write_space(sk); 1115 break; 1116 1117 case SO_SNDBUFFORCE: 1118 if (!capable(CAP_NET_ADMIN)) { 1119 ret = -EPERM; 1120 break; 1121 } 1122 1123 /* No negative values (to prevent underflow, as val will be 1124 * multiplied by 2). 1125 */ 1126 if (val < 0) 1127 val = 0; 1128 goto set_sndbuf; 1129 1130 case SO_RCVBUF: 1131 /* Don't error on this BSD doesn't and if you think 1132 * about it this is right. Otherwise apps have to 1133 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1134 * are treated in BSD as hints 1135 */ 1136 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1137 break; 1138 1139 case SO_RCVBUFFORCE: 1140 if (!capable(CAP_NET_ADMIN)) { 1141 ret = -EPERM; 1142 break; 1143 } 1144 1145 /* No negative values (to prevent underflow, as val will be 1146 * multiplied by 2). 1147 */ 1148 __sock_set_rcvbuf(sk, max(val, 0)); 1149 break; 1150 1151 case SO_KEEPALIVE: 1152 if (sk->sk_prot->keepalive) 1153 sk->sk_prot->keepalive(sk, valbool); 1154 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1155 break; 1156 1157 case SO_OOBINLINE: 1158 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1159 break; 1160 1161 case SO_NO_CHECK: 1162 sk->sk_no_check_tx = valbool; 1163 break; 1164 1165 case SO_PRIORITY: 1166 if ((val >= 0 && val <= 6) || 1167 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1168 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1169 sk->sk_priority = val; 1170 else 1171 ret = -EPERM; 1172 break; 1173 1174 case SO_LINGER: 1175 if (optlen < sizeof(ling)) { 1176 ret = -EINVAL; /* 1003.1g */ 1177 break; 1178 } 1179 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1180 ret = -EFAULT; 1181 break; 1182 } 1183 if (!ling.l_onoff) 1184 sock_reset_flag(sk, SOCK_LINGER); 1185 else { 1186 #if (BITS_PER_LONG == 32) 1187 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1188 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1189 else 1190 #endif 1191 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1192 sock_set_flag(sk, SOCK_LINGER); 1193 } 1194 break; 1195 1196 case SO_BSDCOMPAT: 1197 break; 1198 1199 case SO_PASSCRED: 1200 if (valbool) 1201 set_bit(SOCK_PASSCRED, &sock->flags); 1202 else 1203 clear_bit(SOCK_PASSCRED, &sock->flags); 1204 break; 1205 1206 case SO_TIMESTAMP_OLD: 1207 case SO_TIMESTAMP_NEW: 1208 case SO_TIMESTAMPNS_OLD: 1209 case SO_TIMESTAMPNS_NEW: 1210 sock_set_timestamp(sk, optname, valbool); 1211 break; 1212 1213 case SO_TIMESTAMPING_NEW: 1214 case SO_TIMESTAMPING_OLD: 1215 if (optlen == sizeof(timestamping)) { 1216 if (copy_from_sockptr(×tamping, optval, 1217 sizeof(timestamping))) { 1218 ret = -EFAULT; 1219 break; 1220 } 1221 } else { 1222 memset(×tamping, 0, sizeof(timestamping)); 1223 timestamping.flags = val; 1224 } 1225 ret = sock_set_timestamping(sk, optname, timestamping); 1226 break; 1227 1228 case SO_RCVLOWAT: 1229 if (val < 0) 1230 val = INT_MAX; 1231 if (sock->ops->set_rcvlowat) 1232 ret = sock->ops->set_rcvlowat(sk, val); 1233 else 1234 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1235 break; 1236 1237 case SO_RCVTIMEO_OLD: 1238 case SO_RCVTIMEO_NEW: 1239 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1240 optlen, optname == SO_RCVTIMEO_OLD); 1241 break; 1242 1243 case SO_SNDTIMEO_OLD: 1244 case SO_SNDTIMEO_NEW: 1245 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1246 optlen, optname == SO_SNDTIMEO_OLD); 1247 break; 1248 1249 case SO_ATTACH_FILTER: { 1250 struct sock_fprog fprog; 1251 1252 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1253 if (!ret) 1254 ret = sk_attach_filter(&fprog, sk); 1255 break; 1256 } 1257 case SO_ATTACH_BPF: 1258 ret = -EINVAL; 1259 if (optlen == sizeof(u32)) { 1260 u32 ufd; 1261 1262 ret = -EFAULT; 1263 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1264 break; 1265 1266 ret = sk_attach_bpf(ufd, sk); 1267 } 1268 break; 1269 1270 case SO_ATTACH_REUSEPORT_CBPF: { 1271 struct sock_fprog fprog; 1272 1273 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1274 if (!ret) 1275 ret = sk_reuseport_attach_filter(&fprog, sk); 1276 break; 1277 } 1278 case SO_ATTACH_REUSEPORT_EBPF: 1279 ret = -EINVAL; 1280 if (optlen == sizeof(u32)) { 1281 u32 ufd; 1282 1283 ret = -EFAULT; 1284 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1285 break; 1286 1287 ret = sk_reuseport_attach_bpf(ufd, sk); 1288 } 1289 break; 1290 1291 case SO_DETACH_REUSEPORT_BPF: 1292 ret = reuseport_detach_prog(sk); 1293 break; 1294 1295 case SO_DETACH_FILTER: 1296 ret = sk_detach_filter(sk); 1297 break; 1298 1299 case SO_LOCK_FILTER: 1300 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1301 ret = -EPERM; 1302 else 1303 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1304 break; 1305 1306 case SO_PASSSEC: 1307 if (valbool) 1308 set_bit(SOCK_PASSSEC, &sock->flags); 1309 else 1310 clear_bit(SOCK_PASSSEC, &sock->flags); 1311 break; 1312 case SO_MARK: 1313 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1314 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1315 ret = -EPERM; 1316 break; 1317 } 1318 1319 __sock_set_mark(sk, val); 1320 break; 1321 case SO_RCVMARK: 1322 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1323 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1324 ret = -EPERM; 1325 break; 1326 } 1327 1328 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1329 break; 1330 1331 case SO_RXQ_OVFL: 1332 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1333 break; 1334 1335 case SO_WIFI_STATUS: 1336 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1337 break; 1338 1339 case SO_PEEK_OFF: 1340 if (sock->ops->set_peek_off) 1341 ret = sock->ops->set_peek_off(sk, val); 1342 else 1343 ret = -EOPNOTSUPP; 1344 break; 1345 1346 case SO_NOFCS: 1347 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1348 break; 1349 1350 case SO_SELECT_ERR_QUEUE: 1351 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1352 break; 1353 1354 #ifdef CONFIG_NET_RX_BUSY_POLL 1355 case SO_BUSY_POLL: 1356 /* allow unprivileged users to decrease the value */ 1357 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1358 ret = -EPERM; 1359 else { 1360 if (val < 0) 1361 ret = -EINVAL; 1362 else 1363 WRITE_ONCE(sk->sk_ll_usec, val); 1364 } 1365 break; 1366 case SO_PREFER_BUSY_POLL: 1367 if (valbool && !capable(CAP_NET_ADMIN)) 1368 ret = -EPERM; 1369 else 1370 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1371 break; 1372 case SO_BUSY_POLL_BUDGET: 1373 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1374 ret = -EPERM; 1375 } else { 1376 if (val < 0 || val > U16_MAX) 1377 ret = -EINVAL; 1378 else 1379 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1380 } 1381 break; 1382 #endif 1383 1384 case SO_MAX_PACING_RATE: 1385 { 1386 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1387 1388 if (sizeof(ulval) != sizeof(val) && 1389 optlen >= sizeof(ulval) && 1390 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1391 ret = -EFAULT; 1392 break; 1393 } 1394 if (ulval != ~0UL) 1395 cmpxchg(&sk->sk_pacing_status, 1396 SK_PACING_NONE, 1397 SK_PACING_NEEDED); 1398 sk->sk_max_pacing_rate = ulval; 1399 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1400 break; 1401 } 1402 case SO_INCOMING_CPU: 1403 WRITE_ONCE(sk->sk_incoming_cpu, val); 1404 break; 1405 1406 case SO_CNX_ADVICE: 1407 if (val == 1) 1408 dst_negative_advice(sk); 1409 break; 1410 1411 case SO_ZEROCOPY: 1412 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1413 if (!(sk_is_tcp(sk) || 1414 (sk->sk_type == SOCK_DGRAM && 1415 sk->sk_protocol == IPPROTO_UDP))) 1416 ret = -EOPNOTSUPP; 1417 } else if (sk->sk_family != PF_RDS) { 1418 ret = -EOPNOTSUPP; 1419 } 1420 if (!ret) { 1421 if (val < 0 || val > 1) 1422 ret = -EINVAL; 1423 else 1424 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1425 } 1426 break; 1427 1428 case SO_TXTIME: 1429 if (optlen != sizeof(struct sock_txtime)) { 1430 ret = -EINVAL; 1431 break; 1432 } else if (copy_from_sockptr(&sk_txtime, optval, 1433 sizeof(struct sock_txtime))) { 1434 ret = -EFAULT; 1435 break; 1436 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1437 ret = -EINVAL; 1438 break; 1439 } 1440 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1441 * scheduler has enough safe guards. 1442 */ 1443 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1444 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1445 ret = -EPERM; 1446 break; 1447 } 1448 sock_valbool_flag(sk, SOCK_TXTIME, true); 1449 sk->sk_clockid = sk_txtime.clockid; 1450 sk->sk_txtime_deadline_mode = 1451 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1452 sk->sk_txtime_report_errors = 1453 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1454 break; 1455 1456 case SO_BINDTOIFINDEX: 1457 ret = sock_bindtoindex_locked(sk, val); 1458 break; 1459 1460 case SO_BUF_LOCK: 1461 if (val & ~SOCK_BUF_LOCK_MASK) { 1462 ret = -EINVAL; 1463 break; 1464 } 1465 sk->sk_userlocks = val | (sk->sk_userlocks & 1466 ~SOCK_BUF_LOCK_MASK); 1467 break; 1468 1469 case SO_RESERVE_MEM: 1470 { 1471 int delta; 1472 1473 if (val < 0) { 1474 ret = -EINVAL; 1475 break; 1476 } 1477 1478 delta = val - sk->sk_reserved_mem; 1479 if (delta < 0) 1480 sock_release_reserved_memory(sk, -delta); 1481 else 1482 ret = sock_reserve_memory(sk, delta); 1483 break; 1484 } 1485 1486 case SO_TXREHASH: 1487 if (val < -1 || val > 1) { 1488 ret = -EINVAL; 1489 break; 1490 } 1491 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1492 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1493 break; 1494 1495 default: 1496 ret = -ENOPROTOOPT; 1497 break; 1498 } 1499 release_sock(sk); 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(sock_setsockopt); 1503 1504 static const struct cred *sk_get_peer_cred(struct sock *sk) 1505 { 1506 const struct cred *cred; 1507 1508 spin_lock(&sk->sk_peer_lock); 1509 cred = get_cred(sk->sk_peer_cred); 1510 spin_unlock(&sk->sk_peer_lock); 1511 1512 return cred; 1513 } 1514 1515 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1516 struct ucred *ucred) 1517 { 1518 ucred->pid = pid_vnr(pid); 1519 ucred->uid = ucred->gid = -1; 1520 if (cred) { 1521 struct user_namespace *current_ns = current_user_ns(); 1522 1523 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1524 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1525 } 1526 } 1527 1528 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1529 { 1530 struct user_namespace *user_ns = current_user_ns(); 1531 int i; 1532 1533 for (i = 0; i < src->ngroups; i++) 1534 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1535 return -EFAULT; 1536 1537 return 0; 1538 } 1539 1540 int sock_getsockopt(struct socket *sock, int level, int optname, 1541 char __user *optval, int __user *optlen) 1542 { 1543 struct sock *sk = sock->sk; 1544 1545 union { 1546 int val; 1547 u64 val64; 1548 unsigned long ulval; 1549 struct linger ling; 1550 struct old_timeval32 tm32; 1551 struct __kernel_old_timeval tm; 1552 struct __kernel_sock_timeval stm; 1553 struct sock_txtime txtime; 1554 struct so_timestamping timestamping; 1555 } v; 1556 1557 int lv = sizeof(int); 1558 int len; 1559 1560 if (get_user(len, optlen)) 1561 return -EFAULT; 1562 if (len < 0) 1563 return -EINVAL; 1564 1565 memset(&v, 0, sizeof(v)); 1566 1567 switch (optname) { 1568 case SO_DEBUG: 1569 v.val = sock_flag(sk, SOCK_DBG); 1570 break; 1571 1572 case SO_DONTROUTE: 1573 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1574 break; 1575 1576 case SO_BROADCAST: 1577 v.val = sock_flag(sk, SOCK_BROADCAST); 1578 break; 1579 1580 case SO_SNDBUF: 1581 v.val = sk->sk_sndbuf; 1582 break; 1583 1584 case SO_RCVBUF: 1585 v.val = sk->sk_rcvbuf; 1586 break; 1587 1588 case SO_REUSEADDR: 1589 v.val = sk->sk_reuse; 1590 break; 1591 1592 case SO_REUSEPORT: 1593 v.val = sk->sk_reuseport; 1594 break; 1595 1596 case SO_KEEPALIVE: 1597 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1598 break; 1599 1600 case SO_TYPE: 1601 v.val = sk->sk_type; 1602 break; 1603 1604 case SO_PROTOCOL: 1605 v.val = sk->sk_protocol; 1606 break; 1607 1608 case SO_DOMAIN: 1609 v.val = sk->sk_family; 1610 break; 1611 1612 case SO_ERROR: 1613 v.val = -sock_error(sk); 1614 if (v.val == 0) 1615 v.val = xchg(&sk->sk_err_soft, 0); 1616 break; 1617 1618 case SO_OOBINLINE: 1619 v.val = sock_flag(sk, SOCK_URGINLINE); 1620 break; 1621 1622 case SO_NO_CHECK: 1623 v.val = sk->sk_no_check_tx; 1624 break; 1625 1626 case SO_PRIORITY: 1627 v.val = sk->sk_priority; 1628 break; 1629 1630 case SO_LINGER: 1631 lv = sizeof(v.ling); 1632 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1633 v.ling.l_linger = sk->sk_lingertime / HZ; 1634 break; 1635 1636 case SO_BSDCOMPAT: 1637 break; 1638 1639 case SO_TIMESTAMP_OLD: 1640 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1641 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1642 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1643 break; 1644 1645 case SO_TIMESTAMPNS_OLD: 1646 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1647 break; 1648 1649 case SO_TIMESTAMP_NEW: 1650 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1651 break; 1652 1653 case SO_TIMESTAMPNS_NEW: 1654 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1655 break; 1656 1657 case SO_TIMESTAMPING_OLD: 1658 lv = sizeof(v.timestamping); 1659 v.timestamping.flags = sk->sk_tsflags; 1660 v.timestamping.bind_phc = sk->sk_bind_phc; 1661 break; 1662 1663 case SO_RCVTIMEO_OLD: 1664 case SO_RCVTIMEO_NEW: 1665 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1666 break; 1667 1668 case SO_SNDTIMEO_OLD: 1669 case SO_SNDTIMEO_NEW: 1670 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1671 break; 1672 1673 case SO_RCVLOWAT: 1674 v.val = sk->sk_rcvlowat; 1675 break; 1676 1677 case SO_SNDLOWAT: 1678 v.val = 1; 1679 break; 1680 1681 case SO_PASSCRED: 1682 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1683 break; 1684 1685 case SO_PEERCRED: 1686 { 1687 struct ucred peercred; 1688 if (len > sizeof(peercred)) 1689 len = sizeof(peercred); 1690 1691 spin_lock(&sk->sk_peer_lock); 1692 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1693 spin_unlock(&sk->sk_peer_lock); 1694 1695 if (copy_to_user(optval, &peercred, len)) 1696 return -EFAULT; 1697 goto lenout; 1698 } 1699 1700 case SO_PEERGROUPS: 1701 { 1702 const struct cred *cred; 1703 int ret, n; 1704 1705 cred = sk_get_peer_cred(sk); 1706 if (!cred) 1707 return -ENODATA; 1708 1709 n = cred->group_info->ngroups; 1710 if (len < n * sizeof(gid_t)) { 1711 len = n * sizeof(gid_t); 1712 put_cred(cred); 1713 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1714 } 1715 len = n * sizeof(gid_t); 1716 1717 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1718 put_cred(cred); 1719 if (ret) 1720 return ret; 1721 goto lenout; 1722 } 1723 1724 case SO_PEERNAME: 1725 { 1726 char address[128]; 1727 1728 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1729 if (lv < 0) 1730 return -ENOTCONN; 1731 if (lv < len) 1732 return -EINVAL; 1733 if (copy_to_user(optval, address, len)) 1734 return -EFAULT; 1735 goto lenout; 1736 } 1737 1738 /* Dubious BSD thing... Probably nobody even uses it, but 1739 * the UNIX standard wants it for whatever reason... -DaveM 1740 */ 1741 case SO_ACCEPTCONN: 1742 v.val = sk->sk_state == TCP_LISTEN; 1743 break; 1744 1745 case SO_PASSSEC: 1746 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1747 break; 1748 1749 case SO_PEERSEC: 1750 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1751 1752 case SO_MARK: 1753 v.val = sk->sk_mark; 1754 break; 1755 1756 case SO_RCVMARK: 1757 v.val = sock_flag(sk, SOCK_RCVMARK); 1758 break; 1759 1760 case SO_RXQ_OVFL: 1761 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1762 break; 1763 1764 case SO_WIFI_STATUS: 1765 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1766 break; 1767 1768 case SO_PEEK_OFF: 1769 if (!sock->ops->set_peek_off) 1770 return -EOPNOTSUPP; 1771 1772 v.val = sk->sk_peek_off; 1773 break; 1774 case SO_NOFCS: 1775 v.val = sock_flag(sk, SOCK_NOFCS); 1776 break; 1777 1778 case SO_BINDTODEVICE: 1779 return sock_getbindtodevice(sk, optval, optlen, len); 1780 1781 case SO_GET_FILTER: 1782 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1783 if (len < 0) 1784 return len; 1785 1786 goto lenout; 1787 1788 case SO_LOCK_FILTER: 1789 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1790 break; 1791 1792 case SO_BPF_EXTENSIONS: 1793 v.val = bpf_tell_extensions(); 1794 break; 1795 1796 case SO_SELECT_ERR_QUEUE: 1797 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1798 break; 1799 1800 #ifdef CONFIG_NET_RX_BUSY_POLL 1801 case SO_BUSY_POLL: 1802 v.val = sk->sk_ll_usec; 1803 break; 1804 case SO_PREFER_BUSY_POLL: 1805 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1806 break; 1807 #endif 1808 1809 case SO_MAX_PACING_RATE: 1810 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1811 lv = sizeof(v.ulval); 1812 v.ulval = sk->sk_max_pacing_rate; 1813 } else { 1814 /* 32bit version */ 1815 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1816 } 1817 break; 1818 1819 case SO_INCOMING_CPU: 1820 v.val = READ_ONCE(sk->sk_incoming_cpu); 1821 break; 1822 1823 case SO_MEMINFO: 1824 { 1825 u32 meminfo[SK_MEMINFO_VARS]; 1826 1827 sk_get_meminfo(sk, meminfo); 1828 1829 len = min_t(unsigned int, len, sizeof(meminfo)); 1830 if (copy_to_user(optval, &meminfo, len)) 1831 return -EFAULT; 1832 1833 goto lenout; 1834 } 1835 1836 #ifdef CONFIG_NET_RX_BUSY_POLL 1837 case SO_INCOMING_NAPI_ID: 1838 v.val = READ_ONCE(sk->sk_napi_id); 1839 1840 /* aggregate non-NAPI IDs down to 0 */ 1841 if (v.val < MIN_NAPI_ID) 1842 v.val = 0; 1843 1844 break; 1845 #endif 1846 1847 case SO_COOKIE: 1848 lv = sizeof(u64); 1849 if (len < lv) 1850 return -EINVAL; 1851 v.val64 = sock_gen_cookie(sk); 1852 break; 1853 1854 case SO_ZEROCOPY: 1855 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1856 break; 1857 1858 case SO_TXTIME: 1859 lv = sizeof(v.txtime); 1860 v.txtime.clockid = sk->sk_clockid; 1861 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1862 SOF_TXTIME_DEADLINE_MODE : 0; 1863 v.txtime.flags |= sk->sk_txtime_report_errors ? 1864 SOF_TXTIME_REPORT_ERRORS : 0; 1865 break; 1866 1867 case SO_BINDTOIFINDEX: 1868 v.val = READ_ONCE(sk->sk_bound_dev_if); 1869 break; 1870 1871 case SO_NETNS_COOKIE: 1872 lv = sizeof(u64); 1873 if (len != lv) 1874 return -EINVAL; 1875 v.val64 = sock_net(sk)->net_cookie; 1876 break; 1877 1878 case SO_BUF_LOCK: 1879 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1880 break; 1881 1882 case SO_RESERVE_MEM: 1883 v.val = sk->sk_reserved_mem; 1884 break; 1885 1886 case SO_TXREHASH: 1887 v.val = sk->sk_txrehash; 1888 break; 1889 1890 default: 1891 /* We implement the SO_SNDLOWAT etc to not be settable 1892 * (1003.1g 7). 1893 */ 1894 return -ENOPROTOOPT; 1895 } 1896 1897 if (len > lv) 1898 len = lv; 1899 if (copy_to_user(optval, &v, len)) 1900 return -EFAULT; 1901 lenout: 1902 if (put_user(len, optlen)) 1903 return -EFAULT; 1904 return 0; 1905 } 1906 1907 /* 1908 * Initialize an sk_lock. 1909 * 1910 * (We also register the sk_lock with the lock validator.) 1911 */ 1912 static inline void sock_lock_init(struct sock *sk) 1913 { 1914 if (sk->sk_kern_sock) 1915 sock_lock_init_class_and_name( 1916 sk, 1917 af_family_kern_slock_key_strings[sk->sk_family], 1918 af_family_kern_slock_keys + sk->sk_family, 1919 af_family_kern_key_strings[sk->sk_family], 1920 af_family_kern_keys + sk->sk_family); 1921 else 1922 sock_lock_init_class_and_name( 1923 sk, 1924 af_family_slock_key_strings[sk->sk_family], 1925 af_family_slock_keys + sk->sk_family, 1926 af_family_key_strings[sk->sk_family], 1927 af_family_keys + sk->sk_family); 1928 } 1929 1930 /* 1931 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1932 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1933 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1934 */ 1935 static void sock_copy(struct sock *nsk, const struct sock *osk) 1936 { 1937 const struct proto *prot = READ_ONCE(osk->sk_prot); 1938 #ifdef CONFIG_SECURITY_NETWORK 1939 void *sptr = nsk->sk_security; 1940 #endif 1941 1942 /* If we move sk_tx_queue_mapping out of the private section, 1943 * we must check if sk_tx_queue_clear() is called after 1944 * sock_copy() in sk_clone_lock(). 1945 */ 1946 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1947 offsetof(struct sock, sk_dontcopy_begin) || 1948 offsetof(struct sock, sk_tx_queue_mapping) >= 1949 offsetof(struct sock, sk_dontcopy_end)); 1950 1951 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1952 1953 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1954 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1955 1956 #ifdef CONFIG_SECURITY_NETWORK 1957 nsk->sk_security = sptr; 1958 security_sk_clone(osk, nsk); 1959 #endif 1960 } 1961 1962 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1963 int family) 1964 { 1965 struct sock *sk; 1966 struct kmem_cache *slab; 1967 1968 slab = prot->slab; 1969 if (slab != NULL) { 1970 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1971 if (!sk) 1972 return sk; 1973 if (want_init_on_alloc(priority)) 1974 sk_prot_clear_nulls(sk, prot->obj_size); 1975 } else 1976 sk = kmalloc(prot->obj_size, priority); 1977 1978 if (sk != NULL) { 1979 if (security_sk_alloc(sk, family, priority)) 1980 goto out_free; 1981 1982 if (!try_module_get(prot->owner)) 1983 goto out_free_sec; 1984 } 1985 1986 return sk; 1987 1988 out_free_sec: 1989 security_sk_free(sk); 1990 out_free: 1991 if (slab != NULL) 1992 kmem_cache_free(slab, sk); 1993 else 1994 kfree(sk); 1995 return NULL; 1996 } 1997 1998 static void sk_prot_free(struct proto *prot, struct sock *sk) 1999 { 2000 struct kmem_cache *slab; 2001 struct module *owner; 2002 2003 owner = prot->owner; 2004 slab = prot->slab; 2005 2006 cgroup_sk_free(&sk->sk_cgrp_data); 2007 mem_cgroup_sk_free(sk); 2008 security_sk_free(sk); 2009 if (slab != NULL) 2010 kmem_cache_free(slab, sk); 2011 else 2012 kfree(sk); 2013 module_put(owner); 2014 } 2015 2016 /** 2017 * sk_alloc - All socket objects are allocated here 2018 * @net: the applicable net namespace 2019 * @family: protocol family 2020 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2021 * @prot: struct proto associated with this new sock instance 2022 * @kern: is this to be a kernel socket? 2023 */ 2024 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2025 struct proto *prot, int kern) 2026 { 2027 struct sock *sk; 2028 2029 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2030 if (sk) { 2031 sk->sk_family = family; 2032 /* 2033 * See comment in struct sock definition to understand 2034 * why we need sk_prot_creator -acme 2035 */ 2036 sk->sk_prot = sk->sk_prot_creator = prot; 2037 sk->sk_kern_sock = kern; 2038 sock_lock_init(sk); 2039 sk->sk_net_refcnt = kern ? 0 : 1; 2040 if (likely(sk->sk_net_refcnt)) { 2041 get_net_track(net, &sk->ns_tracker, priority); 2042 sock_inuse_add(net, 1); 2043 } 2044 2045 sock_net_set(sk, net); 2046 refcount_set(&sk->sk_wmem_alloc, 1); 2047 2048 mem_cgroup_sk_alloc(sk); 2049 cgroup_sk_alloc(&sk->sk_cgrp_data); 2050 sock_update_classid(&sk->sk_cgrp_data); 2051 sock_update_netprioidx(&sk->sk_cgrp_data); 2052 sk_tx_queue_clear(sk); 2053 } 2054 2055 return sk; 2056 } 2057 EXPORT_SYMBOL(sk_alloc); 2058 2059 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2060 * grace period. This is the case for UDP sockets and TCP listeners. 2061 */ 2062 static void __sk_destruct(struct rcu_head *head) 2063 { 2064 struct sock *sk = container_of(head, struct sock, sk_rcu); 2065 struct sk_filter *filter; 2066 2067 if (sk->sk_destruct) 2068 sk->sk_destruct(sk); 2069 2070 filter = rcu_dereference_check(sk->sk_filter, 2071 refcount_read(&sk->sk_wmem_alloc) == 0); 2072 if (filter) { 2073 sk_filter_uncharge(sk, filter); 2074 RCU_INIT_POINTER(sk->sk_filter, NULL); 2075 } 2076 2077 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2078 2079 #ifdef CONFIG_BPF_SYSCALL 2080 bpf_sk_storage_free(sk); 2081 #endif 2082 2083 if (atomic_read(&sk->sk_omem_alloc)) 2084 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2085 __func__, atomic_read(&sk->sk_omem_alloc)); 2086 2087 if (sk->sk_frag.page) { 2088 put_page(sk->sk_frag.page); 2089 sk->sk_frag.page = NULL; 2090 } 2091 2092 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2093 put_cred(sk->sk_peer_cred); 2094 put_pid(sk->sk_peer_pid); 2095 2096 if (likely(sk->sk_net_refcnt)) 2097 put_net_track(sock_net(sk), &sk->ns_tracker); 2098 sk_prot_free(sk->sk_prot_creator, sk); 2099 } 2100 2101 void sk_destruct(struct sock *sk) 2102 { 2103 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2104 2105 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2106 reuseport_detach_sock(sk); 2107 use_call_rcu = true; 2108 } 2109 2110 if (use_call_rcu) 2111 call_rcu(&sk->sk_rcu, __sk_destruct); 2112 else 2113 __sk_destruct(&sk->sk_rcu); 2114 } 2115 2116 static void __sk_free(struct sock *sk) 2117 { 2118 if (likely(sk->sk_net_refcnt)) 2119 sock_inuse_add(sock_net(sk), -1); 2120 2121 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2122 sock_diag_broadcast_destroy(sk); 2123 else 2124 sk_destruct(sk); 2125 } 2126 2127 void sk_free(struct sock *sk) 2128 { 2129 /* 2130 * We subtract one from sk_wmem_alloc and can know if 2131 * some packets are still in some tx queue. 2132 * If not null, sock_wfree() will call __sk_free(sk) later 2133 */ 2134 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2135 __sk_free(sk); 2136 } 2137 EXPORT_SYMBOL(sk_free); 2138 2139 static void sk_init_common(struct sock *sk) 2140 { 2141 skb_queue_head_init(&sk->sk_receive_queue); 2142 skb_queue_head_init(&sk->sk_write_queue); 2143 skb_queue_head_init(&sk->sk_error_queue); 2144 2145 rwlock_init(&sk->sk_callback_lock); 2146 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2147 af_rlock_keys + sk->sk_family, 2148 af_family_rlock_key_strings[sk->sk_family]); 2149 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2150 af_wlock_keys + sk->sk_family, 2151 af_family_wlock_key_strings[sk->sk_family]); 2152 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2153 af_elock_keys + sk->sk_family, 2154 af_family_elock_key_strings[sk->sk_family]); 2155 lockdep_set_class_and_name(&sk->sk_callback_lock, 2156 af_callback_keys + sk->sk_family, 2157 af_family_clock_key_strings[sk->sk_family]); 2158 } 2159 2160 /** 2161 * sk_clone_lock - clone a socket, and lock its clone 2162 * @sk: the socket to clone 2163 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2164 * 2165 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2166 */ 2167 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2168 { 2169 struct proto *prot = READ_ONCE(sk->sk_prot); 2170 struct sk_filter *filter; 2171 bool is_charged = true; 2172 struct sock *newsk; 2173 2174 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2175 if (!newsk) 2176 goto out; 2177 2178 sock_copy(newsk, sk); 2179 2180 newsk->sk_prot_creator = prot; 2181 2182 /* SANITY */ 2183 if (likely(newsk->sk_net_refcnt)) { 2184 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2185 sock_inuse_add(sock_net(newsk), 1); 2186 } 2187 sk_node_init(&newsk->sk_node); 2188 sock_lock_init(newsk); 2189 bh_lock_sock(newsk); 2190 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2191 newsk->sk_backlog.len = 0; 2192 2193 atomic_set(&newsk->sk_rmem_alloc, 0); 2194 2195 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2196 refcount_set(&newsk->sk_wmem_alloc, 1); 2197 2198 atomic_set(&newsk->sk_omem_alloc, 0); 2199 sk_init_common(newsk); 2200 2201 newsk->sk_dst_cache = NULL; 2202 newsk->sk_dst_pending_confirm = 0; 2203 newsk->sk_wmem_queued = 0; 2204 newsk->sk_forward_alloc = 0; 2205 newsk->sk_reserved_mem = 0; 2206 atomic_set(&newsk->sk_drops, 0); 2207 newsk->sk_send_head = NULL; 2208 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2209 atomic_set(&newsk->sk_zckey, 0); 2210 2211 sock_reset_flag(newsk, SOCK_DONE); 2212 2213 /* sk->sk_memcg will be populated at accept() time */ 2214 newsk->sk_memcg = NULL; 2215 2216 cgroup_sk_clone(&newsk->sk_cgrp_data); 2217 2218 rcu_read_lock(); 2219 filter = rcu_dereference(sk->sk_filter); 2220 if (filter != NULL) 2221 /* though it's an empty new sock, the charging may fail 2222 * if sysctl_optmem_max was changed between creation of 2223 * original socket and cloning 2224 */ 2225 is_charged = sk_filter_charge(newsk, filter); 2226 RCU_INIT_POINTER(newsk->sk_filter, filter); 2227 rcu_read_unlock(); 2228 2229 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2230 /* We need to make sure that we don't uncharge the new 2231 * socket if we couldn't charge it in the first place 2232 * as otherwise we uncharge the parent's filter. 2233 */ 2234 if (!is_charged) 2235 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2236 sk_free_unlock_clone(newsk); 2237 newsk = NULL; 2238 goto out; 2239 } 2240 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2241 2242 if (bpf_sk_storage_clone(sk, newsk)) { 2243 sk_free_unlock_clone(newsk); 2244 newsk = NULL; 2245 goto out; 2246 } 2247 2248 /* Clear sk_user_data if parent had the pointer tagged 2249 * as not suitable for copying when cloning. 2250 */ 2251 if (sk_user_data_is_nocopy(newsk)) 2252 newsk->sk_user_data = NULL; 2253 2254 newsk->sk_err = 0; 2255 newsk->sk_err_soft = 0; 2256 newsk->sk_priority = 0; 2257 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2258 2259 /* Before updating sk_refcnt, we must commit prior changes to memory 2260 * (Documentation/RCU/rculist_nulls.rst for details) 2261 */ 2262 smp_wmb(); 2263 refcount_set(&newsk->sk_refcnt, 2); 2264 2265 /* Increment the counter in the same struct proto as the master 2266 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2267 * is the same as sk->sk_prot->socks, as this field was copied 2268 * with memcpy). 2269 * 2270 * This _changes_ the previous behaviour, where 2271 * tcp_create_openreq_child always was incrementing the 2272 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2273 * to be taken into account in all callers. -acme 2274 */ 2275 sk_refcnt_debug_inc(newsk); 2276 sk_set_socket(newsk, NULL); 2277 sk_tx_queue_clear(newsk); 2278 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2279 2280 if (newsk->sk_prot->sockets_allocated) 2281 sk_sockets_allocated_inc(newsk); 2282 2283 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2284 net_enable_timestamp(); 2285 out: 2286 return newsk; 2287 } 2288 EXPORT_SYMBOL_GPL(sk_clone_lock); 2289 2290 void sk_free_unlock_clone(struct sock *sk) 2291 { 2292 /* It is still raw copy of parent, so invalidate 2293 * destructor and make plain sk_free() */ 2294 sk->sk_destruct = NULL; 2295 bh_unlock_sock(sk); 2296 sk_free(sk); 2297 } 2298 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2299 2300 static void sk_trim_gso_size(struct sock *sk) 2301 { 2302 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE) 2303 return; 2304 #if IS_ENABLED(CONFIG_IPV6) 2305 if (sk->sk_family == AF_INET6 && 2306 sk_is_tcp(sk) && 2307 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 2308 return; 2309 #endif 2310 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE; 2311 } 2312 2313 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2314 { 2315 u32 max_segs = 1; 2316 2317 sk_dst_set(sk, dst); 2318 sk->sk_route_caps = dst->dev->features; 2319 if (sk_is_tcp(sk)) 2320 sk->sk_route_caps |= NETIF_F_GSO; 2321 if (sk->sk_route_caps & NETIF_F_GSO) 2322 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2323 if (unlikely(sk->sk_gso_disabled)) 2324 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2325 if (sk_can_gso(sk)) { 2326 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2327 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2328 } else { 2329 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2330 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2331 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2332 sk_trim_gso_size(sk); 2333 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2334 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2335 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2336 } 2337 } 2338 sk->sk_gso_max_segs = max_segs; 2339 } 2340 EXPORT_SYMBOL_GPL(sk_setup_caps); 2341 2342 /* 2343 * Simple resource managers for sockets. 2344 */ 2345 2346 2347 /* 2348 * Write buffer destructor automatically called from kfree_skb. 2349 */ 2350 void sock_wfree(struct sk_buff *skb) 2351 { 2352 struct sock *sk = skb->sk; 2353 unsigned int len = skb->truesize; 2354 bool free; 2355 2356 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2357 if (sock_flag(sk, SOCK_RCU_FREE) && 2358 sk->sk_write_space == sock_def_write_space) { 2359 rcu_read_lock(); 2360 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2361 sock_def_write_space_wfree(sk); 2362 rcu_read_unlock(); 2363 if (unlikely(free)) 2364 __sk_free(sk); 2365 return; 2366 } 2367 2368 /* 2369 * Keep a reference on sk_wmem_alloc, this will be released 2370 * after sk_write_space() call 2371 */ 2372 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2373 sk->sk_write_space(sk); 2374 len = 1; 2375 } 2376 /* 2377 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2378 * could not do because of in-flight packets 2379 */ 2380 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2381 __sk_free(sk); 2382 } 2383 EXPORT_SYMBOL(sock_wfree); 2384 2385 /* This variant of sock_wfree() is used by TCP, 2386 * since it sets SOCK_USE_WRITE_QUEUE. 2387 */ 2388 void __sock_wfree(struct sk_buff *skb) 2389 { 2390 struct sock *sk = skb->sk; 2391 2392 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2393 __sk_free(sk); 2394 } 2395 2396 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2397 { 2398 skb_orphan(skb); 2399 skb->sk = sk; 2400 #ifdef CONFIG_INET 2401 if (unlikely(!sk_fullsock(sk))) { 2402 skb->destructor = sock_edemux; 2403 sock_hold(sk); 2404 return; 2405 } 2406 #endif 2407 skb->destructor = sock_wfree; 2408 skb_set_hash_from_sk(skb, sk); 2409 /* 2410 * We used to take a refcount on sk, but following operation 2411 * is enough to guarantee sk_free() wont free this sock until 2412 * all in-flight packets are completed 2413 */ 2414 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2415 } 2416 EXPORT_SYMBOL(skb_set_owner_w); 2417 2418 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2419 { 2420 #ifdef CONFIG_TLS_DEVICE 2421 /* Drivers depend on in-order delivery for crypto offload, 2422 * partial orphan breaks out-of-order-OK logic. 2423 */ 2424 if (skb->decrypted) 2425 return false; 2426 #endif 2427 return (skb->destructor == sock_wfree || 2428 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2429 } 2430 2431 /* This helper is used by netem, as it can hold packets in its 2432 * delay queue. We want to allow the owner socket to send more 2433 * packets, as if they were already TX completed by a typical driver. 2434 * But we also want to keep skb->sk set because some packet schedulers 2435 * rely on it (sch_fq for example). 2436 */ 2437 void skb_orphan_partial(struct sk_buff *skb) 2438 { 2439 if (skb_is_tcp_pure_ack(skb)) 2440 return; 2441 2442 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2443 return; 2444 2445 skb_orphan(skb); 2446 } 2447 EXPORT_SYMBOL(skb_orphan_partial); 2448 2449 /* 2450 * Read buffer destructor automatically called from kfree_skb. 2451 */ 2452 void sock_rfree(struct sk_buff *skb) 2453 { 2454 struct sock *sk = skb->sk; 2455 unsigned int len = skb->truesize; 2456 2457 atomic_sub(len, &sk->sk_rmem_alloc); 2458 sk_mem_uncharge(sk, len); 2459 } 2460 EXPORT_SYMBOL(sock_rfree); 2461 2462 /* 2463 * Buffer destructor for skbs that are not used directly in read or write 2464 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2465 */ 2466 void sock_efree(struct sk_buff *skb) 2467 { 2468 sock_put(skb->sk); 2469 } 2470 EXPORT_SYMBOL(sock_efree); 2471 2472 /* Buffer destructor for prefetch/receive path where reference count may 2473 * not be held, e.g. for listen sockets. 2474 */ 2475 #ifdef CONFIG_INET 2476 void sock_pfree(struct sk_buff *skb) 2477 { 2478 if (sk_is_refcounted(skb->sk)) 2479 sock_gen_put(skb->sk); 2480 } 2481 EXPORT_SYMBOL(sock_pfree); 2482 #endif /* CONFIG_INET */ 2483 2484 kuid_t sock_i_uid(struct sock *sk) 2485 { 2486 kuid_t uid; 2487 2488 read_lock_bh(&sk->sk_callback_lock); 2489 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2490 read_unlock_bh(&sk->sk_callback_lock); 2491 return uid; 2492 } 2493 EXPORT_SYMBOL(sock_i_uid); 2494 2495 unsigned long sock_i_ino(struct sock *sk) 2496 { 2497 unsigned long ino; 2498 2499 read_lock_bh(&sk->sk_callback_lock); 2500 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2501 read_unlock_bh(&sk->sk_callback_lock); 2502 return ino; 2503 } 2504 EXPORT_SYMBOL(sock_i_ino); 2505 2506 /* 2507 * Allocate a skb from the socket's send buffer. 2508 */ 2509 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2510 gfp_t priority) 2511 { 2512 if (force || 2513 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2514 struct sk_buff *skb = alloc_skb(size, priority); 2515 2516 if (skb) { 2517 skb_set_owner_w(skb, sk); 2518 return skb; 2519 } 2520 } 2521 return NULL; 2522 } 2523 EXPORT_SYMBOL(sock_wmalloc); 2524 2525 static void sock_ofree(struct sk_buff *skb) 2526 { 2527 struct sock *sk = skb->sk; 2528 2529 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2530 } 2531 2532 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2533 gfp_t priority) 2534 { 2535 struct sk_buff *skb; 2536 2537 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2538 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2539 READ_ONCE(sysctl_optmem_max)) 2540 return NULL; 2541 2542 skb = alloc_skb(size, priority); 2543 if (!skb) 2544 return NULL; 2545 2546 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2547 skb->sk = sk; 2548 skb->destructor = sock_ofree; 2549 return skb; 2550 } 2551 2552 /* 2553 * Allocate a memory block from the socket's option memory buffer. 2554 */ 2555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2556 { 2557 int optmem_max = READ_ONCE(sysctl_optmem_max); 2558 2559 if ((unsigned int)size <= optmem_max && 2560 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2561 void *mem; 2562 /* First do the add, to avoid the race if kmalloc 2563 * might sleep. 2564 */ 2565 atomic_add(size, &sk->sk_omem_alloc); 2566 mem = kmalloc(size, priority); 2567 if (mem) 2568 return mem; 2569 atomic_sub(size, &sk->sk_omem_alloc); 2570 } 2571 return NULL; 2572 } 2573 EXPORT_SYMBOL(sock_kmalloc); 2574 2575 /* Free an option memory block. Note, we actually want the inline 2576 * here as this allows gcc to detect the nullify and fold away the 2577 * condition entirely. 2578 */ 2579 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2580 const bool nullify) 2581 { 2582 if (WARN_ON_ONCE(!mem)) 2583 return; 2584 if (nullify) 2585 kfree_sensitive(mem); 2586 else 2587 kfree(mem); 2588 atomic_sub(size, &sk->sk_omem_alloc); 2589 } 2590 2591 void sock_kfree_s(struct sock *sk, void *mem, int size) 2592 { 2593 __sock_kfree_s(sk, mem, size, false); 2594 } 2595 EXPORT_SYMBOL(sock_kfree_s); 2596 2597 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2598 { 2599 __sock_kfree_s(sk, mem, size, true); 2600 } 2601 EXPORT_SYMBOL(sock_kzfree_s); 2602 2603 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2604 I think, these locks should be removed for datagram sockets. 2605 */ 2606 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2607 { 2608 DEFINE_WAIT(wait); 2609 2610 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2611 for (;;) { 2612 if (!timeo) 2613 break; 2614 if (signal_pending(current)) 2615 break; 2616 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2617 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2618 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2619 break; 2620 if (sk->sk_shutdown & SEND_SHUTDOWN) 2621 break; 2622 if (sk->sk_err) 2623 break; 2624 timeo = schedule_timeout(timeo); 2625 } 2626 finish_wait(sk_sleep(sk), &wait); 2627 return timeo; 2628 } 2629 2630 2631 /* 2632 * Generic send/receive buffer handlers 2633 */ 2634 2635 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2636 unsigned long data_len, int noblock, 2637 int *errcode, int max_page_order) 2638 { 2639 struct sk_buff *skb; 2640 long timeo; 2641 int err; 2642 2643 timeo = sock_sndtimeo(sk, noblock); 2644 for (;;) { 2645 err = sock_error(sk); 2646 if (err != 0) 2647 goto failure; 2648 2649 err = -EPIPE; 2650 if (sk->sk_shutdown & SEND_SHUTDOWN) 2651 goto failure; 2652 2653 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2654 break; 2655 2656 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2657 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2658 err = -EAGAIN; 2659 if (!timeo) 2660 goto failure; 2661 if (signal_pending(current)) 2662 goto interrupted; 2663 timeo = sock_wait_for_wmem(sk, timeo); 2664 } 2665 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2666 errcode, sk->sk_allocation); 2667 if (skb) 2668 skb_set_owner_w(skb, sk); 2669 return skb; 2670 2671 interrupted: 2672 err = sock_intr_errno(timeo); 2673 failure: 2674 *errcode = err; 2675 return NULL; 2676 } 2677 EXPORT_SYMBOL(sock_alloc_send_pskb); 2678 2679 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2680 struct sockcm_cookie *sockc) 2681 { 2682 u32 tsflags; 2683 2684 switch (cmsg->cmsg_type) { 2685 case SO_MARK: 2686 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2687 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2688 return -EPERM; 2689 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2690 return -EINVAL; 2691 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2692 break; 2693 case SO_TIMESTAMPING_OLD: 2694 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2695 return -EINVAL; 2696 2697 tsflags = *(u32 *)CMSG_DATA(cmsg); 2698 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2699 return -EINVAL; 2700 2701 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2702 sockc->tsflags |= tsflags; 2703 break; 2704 case SCM_TXTIME: 2705 if (!sock_flag(sk, SOCK_TXTIME)) 2706 return -EINVAL; 2707 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2708 return -EINVAL; 2709 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2710 break; 2711 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2712 case SCM_RIGHTS: 2713 case SCM_CREDENTIALS: 2714 break; 2715 default: 2716 return -EINVAL; 2717 } 2718 return 0; 2719 } 2720 EXPORT_SYMBOL(__sock_cmsg_send); 2721 2722 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2723 struct sockcm_cookie *sockc) 2724 { 2725 struct cmsghdr *cmsg; 2726 int ret; 2727 2728 for_each_cmsghdr(cmsg, msg) { 2729 if (!CMSG_OK(msg, cmsg)) 2730 return -EINVAL; 2731 if (cmsg->cmsg_level != SOL_SOCKET) 2732 continue; 2733 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2734 if (ret) 2735 return ret; 2736 } 2737 return 0; 2738 } 2739 EXPORT_SYMBOL(sock_cmsg_send); 2740 2741 static void sk_enter_memory_pressure(struct sock *sk) 2742 { 2743 if (!sk->sk_prot->enter_memory_pressure) 2744 return; 2745 2746 sk->sk_prot->enter_memory_pressure(sk); 2747 } 2748 2749 static void sk_leave_memory_pressure(struct sock *sk) 2750 { 2751 if (sk->sk_prot->leave_memory_pressure) { 2752 sk->sk_prot->leave_memory_pressure(sk); 2753 } else { 2754 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2755 2756 if (memory_pressure && READ_ONCE(*memory_pressure)) 2757 WRITE_ONCE(*memory_pressure, 0); 2758 } 2759 } 2760 2761 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2762 2763 /** 2764 * skb_page_frag_refill - check that a page_frag contains enough room 2765 * @sz: minimum size of the fragment we want to get 2766 * @pfrag: pointer to page_frag 2767 * @gfp: priority for memory allocation 2768 * 2769 * Note: While this allocator tries to use high order pages, there is 2770 * no guarantee that allocations succeed. Therefore, @sz MUST be 2771 * less or equal than PAGE_SIZE. 2772 */ 2773 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2774 { 2775 if (pfrag->page) { 2776 if (page_ref_count(pfrag->page) == 1) { 2777 pfrag->offset = 0; 2778 return true; 2779 } 2780 if (pfrag->offset + sz <= pfrag->size) 2781 return true; 2782 put_page(pfrag->page); 2783 } 2784 2785 pfrag->offset = 0; 2786 if (SKB_FRAG_PAGE_ORDER && 2787 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2788 /* Avoid direct reclaim but allow kswapd to wake */ 2789 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2790 __GFP_COMP | __GFP_NOWARN | 2791 __GFP_NORETRY, 2792 SKB_FRAG_PAGE_ORDER); 2793 if (likely(pfrag->page)) { 2794 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2795 return true; 2796 } 2797 } 2798 pfrag->page = alloc_page(gfp); 2799 if (likely(pfrag->page)) { 2800 pfrag->size = PAGE_SIZE; 2801 return true; 2802 } 2803 return false; 2804 } 2805 EXPORT_SYMBOL(skb_page_frag_refill); 2806 2807 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2808 { 2809 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2810 return true; 2811 2812 sk_enter_memory_pressure(sk); 2813 sk_stream_moderate_sndbuf(sk); 2814 return false; 2815 } 2816 EXPORT_SYMBOL(sk_page_frag_refill); 2817 2818 void __lock_sock(struct sock *sk) 2819 __releases(&sk->sk_lock.slock) 2820 __acquires(&sk->sk_lock.slock) 2821 { 2822 DEFINE_WAIT(wait); 2823 2824 for (;;) { 2825 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2826 TASK_UNINTERRUPTIBLE); 2827 spin_unlock_bh(&sk->sk_lock.slock); 2828 schedule(); 2829 spin_lock_bh(&sk->sk_lock.slock); 2830 if (!sock_owned_by_user(sk)) 2831 break; 2832 } 2833 finish_wait(&sk->sk_lock.wq, &wait); 2834 } 2835 2836 void __release_sock(struct sock *sk) 2837 __releases(&sk->sk_lock.slock) 2838 __acquires(&sk->sk_lock.slock) 2839 { 2840 struct sk_buff *skb, *next; 2841 2842 while ((skb = sk->sk_backlog.head) != NULL) { 2843 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2844 2845 spin_unlock_bh(&sk->sk_lock.slock); 2846 2847 do { 2848 next = skb->next; 2849 prefetch(next); 2850 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2851 skb_mark_not_on_list(skb); 2852 sk_backlog_rcv(sk, skb); 2853 2854 cond_resched(); 2855 2856 skb = next; 2857 } while (skb != NULL); 2858 2859 spin_lock_bh(&sk->sk_lock.slock); 2860 } 2861 2862 /* 2863 * Doing the zeroing here guarantee we can not loop forever 2864 * while a wild producer attempts to flood us. 2865 */ 2866 sk->sk_backlog.len = 0; 2867 } 2868 2869 void __sk_flush_backlog(struct sock *sk) 2870 { 2871 spin_lock_bh(&sk->sk_lock.slock); 2872 __release_sock(sk); 2873 spin_unlock_bh(&sk->sk_lock.slock); 2874 } 2875 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2876 2877 /** 2878 * sk_wait_data - wait for data to arrive at sk_receive_queue 2879 * @sk: sock to wait on 2880 * @timeo: for how long 2881 * @skb: last skb seen on sk_receive_queue 2882 * 2883 * Now socket state including sk->sk_err is changed only under lock, 2884 * hence we may omit checks after joining wait queue. 2885 * We check receive queue before schedule() only as optimization; 2886 * it is very likely that release_sock() added new data. 2887 */ 2888 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2889 { 2890 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2891 int rc; 2892 2893 add_wait_queue(sk_sleep(sk), &wait); 2894 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2895 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2896 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2897 remove_wait_queue(sk_sleep(sk), &wait); 2898 return rc; 2899 } 2900 EXPORT_SYMBOL(sk_wait_data); 2901 2902 /** 2903 * __sk_mem_raise_allocated - increase memory_allocated 2904 * @sk: socket 2905 * @size: memory size to allocate 2906 * @amt: pages to allocate 2907 * @kind: allocation type 2908 * 2909 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2910 */ 2911 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2912 { 2913 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2914 struct proto *prot = sk->sk_prot; 2915 bool charged = true; 2916 long allocated; 2917 2918 sk_memory_allocated_add(sk, amt); 2919 allocated = sk_memory_allocated(sk); 2920 if (memcg_charge && 2921 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2922 gfp_memcg_charge()))) 2923 goto suppress_allocation; 2924 2925 /* Under limit. */ 2926 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2927 sk_leave_memory_pressure(sk); 2928 return 1; 2929 } 2930 2931 /* Under pressure. */ 2932 if (allocated > sk_prot_mem_limits(sk, 1)) 2933 sk_enter_memory_pressure(sk); 2934 2935 /* Over hard limit. */ 2936 if (allocated > sk_prot_mem_limits(sk, 2)) 2937 goto suppress_allocation; 2938 2939 /* guarantee minimum buffer size under pressure */ 2940 if (kind == SK_MEM_RECV) { 2941 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2942 return 1; 2943 2944 } else { /* SK_MEM_SEND */ 2945 int wmem0 = sk_get_wmem0(sk, prot); 2946 2947 if (sk->sk_type == SOCK_STREAM) { 2948 if (sk->sk_wmem_queued < wmem0) 2949 return 1; 2950 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2951 return 1; 2952 } 2953 } 2954 2955 if (sk_has_memory_pressure(sk)) { 2956 u64 alloc; 2957 2958 if (!sk_under_memory_pressure(sk)) 2959 return 1; 2960 alloc = sk_sockets_allocated_read_positive(sk); 2961 if (sk_prot_mem_limits(sk, 2) > alloc * 2962 sk_mem_pages(sk->sk_wmem_queued + 2963 atomic_read(&sk->sk_rmem_alloc) + 2964 sk->sk_forward_alloc)) 2965 return 1; 2966 } 2967 2968 suppress_allocation: 2969 2970 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2971 sk_stream_moderate_sndbuf(sk); 2972 2973 /* Fail only if socket is _under_ its sndbuf. 2974 * In this case we cannot block, so that we have to fail. 2975 */ 2976 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2977 /* Force charge with __GFP_NOFAIL */ 2978 if (memcg_charge && !charged) { 2979 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2980 gfp_memcg_charge() | __GFP_NOFAIL); 2981 } 2982 return 1; 2983 } 2984 } 2985 2986 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2987 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2988 2989 sk_memory_allocated_sub(sk, amt); 2990 2991 if (memcg_charge && charged) 2992 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2993 2994 return 0; 2995 } 2996 2997 /** 2998 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2999 * @sk: socket 3000 * @size: memory size to allocate 3001 * @kind: allocation type 3002 * 3003 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3004 * rmem allocation. This function assumes that protocols which have 3005 * memory_pressure use sk_wmem_queued as write buffer accounting. 3006 */ 3007 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3008 { 3009 int ret, amt = sk_mem_pages(size); 3010 3011 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3012 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3013 if (!ret) 3014 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3015 return ret; 3016 } 3017 EXPORT_SYMBOL(__sk_mem_schedule); 3018 3019 /** 3020 * __sk_mem_reduce_allocated - reclaim memory_allocated 3021 * @sk: socket 3022 * @amount: number of quanta 3023 * 3024 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3025 */ 3026 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3027 { 3028 sk_memory_allocated_sub(sk, amount); 3029 3030 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3031 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3032 3033 if (sk_under_memory_pressure(sk) && 3034 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3035 sk_leave_memory_pressure(sk); 3036 } 3037 3038 /** 3039 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3040 * @sk: socket 3041 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3042 */ 3043 void __sk_mem_reclaim(struct sock *sk, int amount) 3044 { 3045 amount >>= PAGE_SHIFT; 3046 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3047 __sk_mem_reduce_allocated(sk, amount); 3048 } 3049 EXPORT_SYMBOL(__sk_mem_reclaim); 3050 3051 int sk_set_peek_off(struct sock *sk, int val) 3052 { 3053 sk->sk_peek_off = val; 3054 return 0; 3055 } 3056 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3057 3058 /* 3059 * Set of default routines for initialising struct proto_ops when 3060 * the protocol does not support a particular function. In certain 3061 * cases where it makes no sense for a protocol to have a "do nothing" 3062 * function, some default processing is provided. 3063 */ 3064 3065 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3066 { 3067 return -EOPNOTSUPP; 3068 } 3069 EXPORT_SYMBOL(sock_no_bind); 3070 3071 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3072 int len, int flags) 3073 { 3074 return -EOPNOTSUPP; 3075 } 3076 EXPORT_SYMBOL(sock_no_connect); 3077 3078 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3079 { 3080 return -EOPNOTSUPP; 3081 } 3082 EXPORT_SYMBOL(sock_no_socketpair); 3083 3084 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3085 bool kern) 3086 { 3087 return -EOPNOTSUPP; 3088 } 3089 EXPORT_SYMBOL(sock_no_accept); 3090 3091 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3092 int peer) 3093 { 3094 return -EOPNOTSUPP; 3095 } 3096 EXPORT_SYMBOL(sock_no_getname); 3097 3098 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3099 { 3100 return -EOPNOTSUPP; 3101 } 3102 EXPORT_SYMBOL(sock_no_ioctl); 3103 3104 int sock_no_listen(struct socket *sock, int backlog) 3105 { 3106 return -EOPNOTSUPP; 3107 } 3108 EXPORT_SYMBOL(sock_no_listen); 3109 3110 int sock_no_shutdown(struct socket *sock, int how) 3111 { 3112 return -EOPNOTSUPP; 3113 } 3114 EXPORT_SYMBOL(sock_no_shutdown); 3115 3116 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3117 { 3118 return -EOPNOTSUPP; 3119 } 3120 EXPORT_SYMBOL(sock_no_sendmsg); 3121 3122 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3123 { 3124 return -EOPNOTSUPP; 3125 } 3126 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3127 3128 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3129 int flags) 3130 { 3131 return -EOPNOTSUPP; 3132 } 3133 EXPORT_SYMBOL(sock_no_recvmsg); 3134 3135 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3136 { 3137 /* Mirror missing mmap method error code */ 3138 return -ENODEV; 3139 } 3140 EXPORT_SYMBOL(sock_no_mmap); 3141 3142 /* 3143 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3144 * various sock-based usage counts. 3145 */ 3146 void __receive_sock(struct file *file) 3147 { 3148 struct socket *sock; 3149 3150 sock = sock_from_file(file); 3151 if (sock) { 3152 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3153 sock_update_classid(&sock->sk->sk_cgrp_data); 3154 } 3155 } 3156 3157 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3158 { 3159 ssize_t res; 3160 struct msghdr msg = {.msg_flags = flags}; 3161 struct kvec iov; 3162 char *kaddr = kmap(page); 3163 iov.iov_base = kaddr + offset; 3164 iov.iov_len = size; 3165 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3166 kunmap(page); 3167 return res; 3168 } 3169 EXPORT_SYMBOL(sock_no_sendpage); 3170 3171 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3172 int offset, size_t size, int flags) 3173 { 3174 ssize_t res; 3175 struct msghdr msg = {.msg_flags = flags}; 3176 struct kvec iov; 3177 char *kaddr = kmap(page); 3178 3179 iov.iov_base = kaddr + offset; 3180 iov.iov_len = size; 3181 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3182 kunmap(page); 3183 return res; 3184 } 3185 EXPORT_SYMBOL(sock_no_sendpage_locked); 3186 3187 /* 3188 * Default Socket Callbacks 3189 */ 3190 3191 static void sock_def_wakeup(struct sock *sk) 3192 { 3193 struct socket_wq *wq; 3194 3195 rcu_read_lock(); 3196 wq = rcu_dereference(sk->sk_wq); 3197 if (skwq_has_sleeper(wq)) 3198 wake_up_interruptible_all(&wq->wait); 3199 rcu_read_unlock(); 3200 } 3201 3202 static void sock_def_error_report(struct sock *sk) 3203 { 3204 struct socket_wq *wq; 3205 3206 rcu_read_lock(); 3207 wq = rcu_dereference(sk->sk_wq); 3208 if (skwq_has_sleeper(wq)) 3209 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3210 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3211 rcu_read_unlock(); 3212 } 3213 3214 void sock_def_readable(struct sock *sk) 3215 { 3216 struct socket_wq *wq; 3217 3218 rcu_read_lock(); 3219 wq = rcu_dereference(sk->sk_wq); 3220 if (skwq_has_sleeper(wq)) 3221 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3222 EPOLLRDNORM | EPOLLRDBAND); 3223 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3224 rcu_read_unlock(); 3225 } 3226 3227 static void sock_def_write_space(struct sock *sk) 3228 { 3229 struct socket_wq *wq; 3230 3231 rcu_read_lock(); 3232 3233 /* Do not wake up a writer until he can make "significant" 3234 * progress. --DaveM 3235 */ 3236 if (sock_writeable(sk)) { 3237 wq = rcu_dereference(sk->sk_wq); 3238 if (skwq_has_sleeper(wq)) 3239 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3240 EPOLLWRNORM | EPOLLWRBAND); 3241 3242 /* Should agree with poll, otherwise some programs break */ 3243 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3244 } 3245 3246 rcu_read_unlock(); 3247 } 3248 3249 /* An optimised version of sock_def_write_space(), should only be called 3250 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3251 * ->sk_wmem_alloc. 3252 */ 3253 static void sock_def_write_space_wfree(struct sock *sk) 3254 { 3255 /* Do not wake up a writer until he can make "significant" 3256 * progress. --DaveM 3257 */ 3258 if (sock_writeable(sk)) { 3259 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3260 3261 /* rely on refcount_sub from sock_wfree() */ 3262 smp_mb__after_atomic(); 3263 if (wq && waitqueue_active(&wq->wait)) 3264 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3265 EPOLLWRNORM | EPOLLWRBAND); 3266 3267 /* Should agree with poll, otherwise some programs break */ 3268 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3269 } 3270 } 3271 3272 static void sock_def_destruct(struct sock *sk) 3273 { 3274 } 3275 3276 void sk_send_sigurg(struct sock *sk) 3277 { 3278 if (sk->sk_socket && sk->sk_socket->file) 3279 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3280 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3281 } 3282 EXPORT_SYMBOL(sk_send_sigurg); 3283 3284 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3285 unsigned long expires) 3286 { 3287 if (!mod_timer(timer, expires)) 3288 sock_hold(sk); 3289 } 3290 EXPORT_SYMBOL(sk_reset_timer); 3291 3292 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3293 { 3294 if (del_timer(timer)) 3295 __sock_put(sk); 3296 } 3297 EXPORT_SYMBOL(sk_stop_timer); 3298 3299 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3300 { 3301 if (del_timer_sync(timer)) 3302 __sock_put(sk); 3303 } 3304 EXPORT_SYMBOL(sk_stop_timer_sync); 3305 3306 void sock_init_data(struct socket *sock, struct sock *sk) 3307 { 3308 sk_init_common(sk); 3309 sk->sk_send_head = NULL; 3310 3311 timer_setup(&sk->sk_timer, NULL, 0); 3312 3313 sk->sk_allocation = GFP_KERNEL; 3314 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3315 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3316 sk->sk_state = TCP_CLOSE; 3317 sk_set_socket(sk, sock); 3318 3319 sock_set_flag(sk, SOCK_ZAPPED); 3320 3321 if (sock) { 3322 sk->sk_type = sock->type; 3323 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3324 sock->sk = sk; 3325 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3326 } else { 3327 RCU_INIT_POINTER(sk->sk_wq, NULL); 3328 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3329 } 3330 3331 rwlock_init(&sk->sk_callback_lock); 3332 if (sk->sk_kern_sock) 3333 lockdep_set_class_and_name( 3334 &sk->sk_callback_lock, 3335 af_kern_callback_keys + sk->sk_family, 3336 af_family_kern_clock_key_strings[sk->sk_family]); 3337 else 3338 lockdep_set_class_and_name( 3339 &sk->sk_callback_lock, 3340 af_callback_keys + sk->sk_family, 3341 af_family_clock_key_strings[sk->sk_family]); 3342 3343 sk->sk_state_change = sock_def_wakeup; 3344 sk->sk_data_ready = sock_def_readable; 3345 sk->sk_write_space = sock_def_write_space; 3346 sk->sk_error_report = sock_def_error_report; 3347 sk->sk_destruct = sock_def_destruct; 3348 3349 sk->sk_frag.page = NULL; 3350 sk->sk_frag.offset = 0; 3351 sk->sk_peek_off = -1; 3352 3353 sk->sk_peer_pid = NULL; 3354 sk->sk_peer_cred = NULL; 3355 spin_lock_init(&sk->sk_peer_lock); 3356 3357 sk->sk_write_pending = 0; 3358 sk->sk_rcvlowat = 1; 3359 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3360 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3361 3362 sk->sk_stamp = SK_DEFAULT_STAMP; 3363 #if BITS_PER_LONG==32 3364 seqlock_init(&sk->sk_stamp_seq); 3365 #endif 3366 atomic_set(&sk->sk_zckey, 0); 3367 3368 #ifdef CONFIG_NET_RX_BUSY_POLL 3369 sk->sk_napi_id = 0; 3370 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3371 #endif 3372 3373 sk->sk_max_pacing_rate = ~0UL; 3374 sk->sk_pacing_rate = ~0UL; 3375 WRITE_ONCE(sk->sk_pacing_shift, 10); 3376 sk->sk_incoming_cpu = -1; 3377 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3378 3379 sk_rx_queue_clear(sk); 3380 /* 3381 * Before updating sk_refcnt, we must commit prior changes to memory 3382 * (Documentation/RCU/rculist_nulls.rst for details) 3383 */ 3384 smp_wmb(); 3385 refcount_set(&sk->sk_refcnt, 1); 3386 atomic_set(&sk->sk_drops, 0); 3387 } 3388 EXPORT_SYMBOL(sock_init_data); 3389 3390 void lock_sock_nested(struct sock *sk, int subclass) 3391 { 3392 /* The sk_lock has mutex_lock() semantics here. */ 3393 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3394 3395 might_sleep(); 3396 spin_lock_bh(&sk->sk_lock.slock); 3397 if (sock_owned_by_user_nocheck(sk)) 3398 __lock_sock(sk); 3399 sk->sk_lock.owned = 1; 3400 spin_unlock_bh(&sk->sk_lock.slock); 3401 } 3402 EXPORT_SYMBOL(lock_sock_nested); 3403 3404 void release_sock(struct sock *sk) 3405 { 3406 spin_lock_bh(&sk->sk_lock.slock); 3407 if (sk->sk_backlog.tail) 3408 __release_sock(sk); 3409 3410 /* Warning : release_cb() might need to release sk ownership, 3411 * ie call sock_release_ownership(sk) before us. 3412 */ 3413 if (sk->sk_prot->release_cb) 3414 sk->sk_prot->release_cb(sk); 3415 3416 sock_release_ownership(sk); 3417 if (waitqueue_active(&sk->sk_lock.wq)) 3418 wake_up(&sk->sk_lock.wq); 3419 spin_unlock_bh(&sk->sk_lock.slock); 3420 } 3421 EXPORT_SYMBOL(release_sock); 3422 3423 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3424 { 3425 might_sleep(); 3426 spin_lock_bh(&sk->sk_lock.slock); 3427 3428 if (!sock_owned_by_user_nocheck(sk)) { 3429 /* 3430 * Fast path return with bottom halves disabled and 3431 * sock::sk_lock.slock held. 3432 * 3433 * The 'mutex' is not contended and holding 3434 * sock::sk_lock.slock prevents all other lockers to 3435 * proceed so the corresponding unlock_sock_fast() can 3436 * avoid the slow path of release_sock() completely and 3437 * just release slock. 3438 * 3439 * From a semantical POV this is equivalent to 'acquiring' 3440 * the 'mutex', hence the corresponding lockdep 3441 * mutex_release() has to happen in the fast path of 3442 * unlock_sock_fast(). 3443 */ 3444 return false; 3445 } 3446 3447 __lock_sock(sk); 3448 sk->sk_lock.owned = 1; 3449 __acquire(&sk->sk_lock.slock); 3450 spin_unlock_bh(&sk->sk_lock.slock); 3451 return true; 3452 } 3453 EXPORT_SYMBOL(__lock_sock_fast); 3454 3455 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3456 bool timeval, bool time32) 3457 { 3458 struct sock *sk = sock->sk; 3459 struct timespec64 ts; 3460 3461 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3462 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3463 if (ts.tv_sec == -1) 3464 return -ENOENT; 3465 if (ts.tv_sec == 0) { 3466 ktime_t kt = ktime_get_real(); 3467 sock_write_timestamp(sk, kt); 3468 ts = ktime_to_timespec64(kt); 3469 } 3470 3471 if (timeval) 3472 ts.tv_nsec /= 1000; 3473 3474 #ifdef CONFIG_COMPAT_32BIT_TIME 3475 if (time32) 3476 return put_old_timespec32(&ts, userstamp); 3477 #endif 3478 #ifdef CONFIG_SPARC64 3479 /* beware of padding in sparc64 timeval */ 3480 if (timeval && !in_compat_syscall()) { 3481 struct __kernel_old_timeval __user tv = { 3482 .tv_sec = ts.tv_sec, 3483 .tv_usec = ts.tv_nsec, 3484 }; 3485 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3486 return -EFAULT; 3487 return 0; 3488 } 3489 #endif 3490 return put_timespec64(&ts, userstamp); 3491 } 3492 EXPORT_SYMBOL(sock_gettstamp); 3493 3494 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3495 { 3496 if (!sock_flag(sk, flag)) { 3497 unsigned long previous_flags = sk->sk_flags; 3498 3499 sock_set_flag(sk, flag); 3500 /* 3501 * we just set one of the two flags which require net 3502 * time stamping, but time stamping might have been on 3503 * already because of the other one 3504 */ 3505 if (sock_needs_netstamp(sk) && 3506 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3507 net_enable_timestamp(); 3508 } 3509 } 3510 3511 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3512 int level, int type) 3513 { 3514 struct sock_exterr_skb *serr; 3515 struct sk_buff *skb; 3516 int copied, err; 3517 3518 err = -EAGAIN; 3519 skb = sock_dequeue_err_skb(sk); 3520 if (skb == NULL) 3521 goto out; 3522 3523 copied = skb->len; 3524 if (copied > len) { 3525 msg->msg_flags |= MSG_TRUNC; 3526 copied = len; 3527 } 3528 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3529 if (err) 3530 goto out_free_skb; 3531 3532 sock_recv_timestamp(msg, sk, skb); 3533 3534 serr = SKB_EXT_ERR(skb); 3535 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3536 3537 msg->msg_flags |= MSG_ERRQUEUE; 3538 err = copied; 3539 3540 out_free_skb: 3541 kfree_skb(skb); 3542 out: 3543 return err; 3544 } 3545 EXPORT_SYMBOL(sock_recv_errqueue); 3546 3547 /* 3548 * Get a socket option on an socket. 3549 * 3550 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3551 * asynchronous errors should be reported by getsockopt. We assume 3552 * this means if you specify SO_ERROR (otherwise whats the point of it). 3553 */ 3554 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3555 char __user *optval, int __user *optlen) 3556 { 3557 struct sock *sk = sock->sk; 3558 3559 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3560 } 3561 EXPORT_SYMBOL(sock_common_getsockopt); 3562 3563 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3564 int flags) 3565 { 3566 struct sock *sk = sock->sk; 3567 int addr_len = 0; 3568 int err; 3569 3570 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3571 if (err >= 0) 3572 msg->msg_namelen = addr_len; 3573 return err; 3574 } 3575 EXPORT_SYMBOL(sock_common_recvmsg); 3576 3577 /* 3578 * Set socket options on an inet socket. 3579 */ 3580 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3581 sockptr_t optval, unsigned int optlen) 3582 { 3583 struct sock *sk = sock->sk; 3584 3585 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3586 } 3587 EXPORT_SYMBOL(sock_common_setsockopt); 3588 3589 void sk_common_release(struct sock *sk) 3590 { 3591 if (sk->sk_prot->destroy) 3592 sk->sk_prot->destroy(sk); 3593 3594 /* 3595 * Observation: when sk_common_release is called, processes have 3596 * no access to socket. But net still has. 3597 * Step one, detach it from networking: 3598 * 3599 * A. Remove from hash tables. 3600 */ 3601 3602 sk->sk_prot->unhash(sk); 3603 3604 /* 3605 * In this point socket cannot receive new packets, but it is possible 3606 * that some packets are in flight because some CPU runs receiver and 3607 * did hash table lookup before we unhashed socket. They will achieve 3608 * receive queue and will be purged by socket destructor. 3609 * 3610 * Also we still have packets pending on receive queue and probably, 3611 * our own packets waiting in device queues. sock_destroy will drain 3612 * receive queue, but transmitted packets will delay socket destruction 3613 * until the last reference will be released. 3614 */ 3615 3616 sock_orphan(sk); 3617 3618 xfrm_sk_free_policy(sk); 3619 3620 sk_refcnt_debug_release(sk); 3621 3622 sock_put(sk); 3623 } 3624 EXPORT_SYMBOL(sk_common_release); 3625 3626 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3627 { 3628 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3629 3630 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3631 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3632 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3633 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3634 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3635 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3636 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3637 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3638 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3639 } 3640 3641 #ifdef CONFIG_PROC_FS 3642 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3643 3644 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3645 { 3646 int cpu, idx = prot->inuse_idx; 3647 int res = 0; 3648 3649 for_each_possible_cpu(cpu) 3650 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3651 3652 return res >= 0 ? res : 0; 3653 } 3654 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3655 3656 int sock_inuse_get(struct net *net) 3657 { 3658 int cpu, res = 0; 3659 3660 for_each_possible_cpu(cpu) 3661 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3662 3663 return res; 3664 } 3665 3666 EXPORT_SYMBOL_GPL(sock_inuse_get); 3667 3668 static int __net_init sock_inuse_init_net(struct net *net) 3669 { 3670 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3671 if (net->core.prot_inuse == NULL) 3672 return -ENOMEM; 3673 return 0; 3674 } 3675 3676 static void __net_exit sock_inuse_exit_net(struct net *net) 3677 { 3678 free_percpu(net->core.prot_inuse); 3679 } 3680 3681 static struct pernet_operations net_inuse_ops = { 3682 .init = sock_inuse_init_net, 3683 .exit = sock_inuse_exit_net, 3684 }; 3685 3686 static __init int net_inuse_init(void) 3687 { 3688 if (register_pernet_subsys(&net_inuse_ops)) 3689 panic("Cannot initialize net inuse counters"); 3690 3691 return 0; 3692 } 3693 3694 core_initcall(net_inuse_init); 3695 3696 static int assign_proto_idx(struct proto *prot) 3697 { 3698 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3699 3700 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3701 pr_err("PROTO_INUSE_NR exhausted\n"); 3702 return -ENOSPC; 3703 } 3704 3705 set_bit(prot->inuse_idx, proto_inuse_idx); 3706 return 0; 3707 } 3708 3709 static void release_proto_idx(struct proto *prot) 3710 { 3711 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3712 clear_bit(prot->inuse_idx, proto_inuse_idx); 3713 } 3714 #else 3715 static inline int assign_proto_idx(struct proto *prot) 3716 { 3717 return 0; 3718 } 3719 3720 static inline void release_proto_idx(struct proto *prot) 3721 { 3722 } 3723 3724 #endif 3725 3726 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3727 { 3728 if (!twsk_prot) 3729 return; 3730 kfree(twsk_prot->twsk_slab_name); 3731 twsk_prot->twsk_slab_name = NULL; 3732 kmem_cache_destroy(twsk_prot->twsk_slab); 3733 twsk_prot->twsk_slab = NULL; 3734 } 3735 3736 static int tw_prot_init(const struct proto *prot) 3737 { 3738 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3739 3740 if (!twsk_prot) 3741 return 0; 3742 3743 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3744 prot->name); 3745 if (!twsk_prot->twsk_slab_name) 3746 return -ENOMEM; 3747 3748 twsk_prot->twsk_slab = 3749 kmem_cache_create(twsk_prot->twsk_slab_name, 3750 twsk_prot->twsk_obj_size, 0, 3751 SLAB_ACCOUNT | prot->slab_flags, 3752 NULL); 3753 if (!twsk_prot->twsk_slab) { 3754 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3755 prot->name); 3756 return -ENOMEM; 3757 } 3758 3759 return 0; 3760 } 3761 3762 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3763 { 3764 if (!rsk_prot) 3765 return; 3766 kfree(rsk_prot->slab_name); 3767 rsk_prot->slab_name = NULL; 3768 kmem_cache_destroy(rsk_prot->slab); 3769 rsk_prot->slab = NULL; 3770 } 3771 3772 static int req_prot_init(const struct proto *prot) 3773 { 3774 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3775 3776 if (!rsk_prot) 3777 return 0; 3778 3779 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3780 prot->name); 3781 if (!rsk_prot->slab_name) 3782 return -ENOMEM; 3783 3784 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3785 rsk_prot->obj_size, 0, 3786 SLAB_ACCOUNT | prot->slab_flags, 3787 NULL); 3788 3789 if (!rsk_prot->slab) { 3790 pr_crit("%s: Can't create request sock SLAB cache!\n", 3791 prot->name); 3792 return -ENOMEM; 3793 } 3794 return 0; 3795 } 3796 3797 int proto_register(struct proto *prot, int alloc_slab) 3798 { 3799 int ret = -ENOBUFS; 3800 3801 if (prot->memory_allocated && !prot->sysctl_mem) { 3802 pr_err("%s: missing sysctl_mem\n", prot->name); 3803 return -EINVAL; 3804 } 3805 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3806 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3807 return -EINVAL; 3808 } 3809 if (alloc_slab) { 3810 prot->slab = kmem_cache_create_usercopy(prot->name, 3811 prot->obj_size, 0, 3812 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3813 prot->slab_flags, 3814 prot->useroffset, prot->usersize, 3815 NULL); 3816 3817 if (prot->slab == NULL) { 3818 pr_crit("%s: Can't create sock SLAB cache!\n", 3819 prot->name); 3820 goto out; 3821 } 3822 3823 if (req_prot_init(prot)) 3824 goto out_free_request_sock_slab; 3825 3826 if (tw_prot_init(prot)) 3827 goto out_free_timewait_sock_slab; 3828 } 3829 3830 mutex_lock(&proto_list_mutex); 3831 ret = assign_proto_idx(prot); 3832 if (ret) { 3833 mutex_unlock(&proto_list_mutex); 3834 goto out_free_timewait_sock_slab; 3835 } 3836 list_add(&prot->node, &proto_list); 3837 mutex_unlock(&proto_list_mutex); 3838 return ret; 3839 3840 out_free_timewait_sock_slab: 3841 if (alloc_slab) 3842 tw_prot_cleanup(prot->twsk_prot); 3843 out_free_request_sock_slab: 3844 if (alloc_slab) { 3845 req_prot_cleanup(prot->rsk_prot); 3846 3847 kmem_cache_destroy(prot->slab); 3848 prot->slab = NULL; 3849 } 3850 out: 3851 return ret; 3852 } 3853 EXPORT_SYMBOL(proto_register); 3854 3855 void proto_unregister(struct proto *prot) 3856 { 3857 mutex_lock(&proto_list_mutex); 3858 release_proto_idx(prot); 3859 list_del(&prot->node); 3860 mutex_unlock(&proto_list_mutex); 3861 3862 kmem_cache_destroy(prot->slab); 3863 prot->slab = NULL; 3864 3865 req_prot_cleanup(prot->rsk_prot); 3866 tw_prot_cleanup(prot->twsk_prot); 3867 } 3868 EXPORT_SYMBOL(proto_unregister); 3869 3870 int sock_load_diag_module(int family, int protocol) 3871 { 3872 if (!protocol) { 3873 if (!sock_is_registered(family)) 3874 return -ENOENT; 3875 3876 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3877 NETLINK_SOCK_DIAG, family); 3878 } 3879 3880 #ifdef CONFIG_INET 3881 if (family == AF_INET && 3882 protocol != IPPROTO_RAW && 3883 protocol < MAX_INET_PROTOS && 3884 !rcu_access_pointer(inet_protos[protocol])) 3885 return -ENOENT; 3886 #endif 3887 3888 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3889 NETLINK_SOCK_DIAG, family, protocol); 3890 } 3891 EXPORT_SYMBOL(sock_load_diag_module); 3892 3893 #ifdef CONFIG_PROC_FS 3894 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3895 __acquires(proto_list_mutex) 3896 { 3897 mutex_lock(&proto_list_mutex); 3898 return seq_list_start_head(&proto_list, *pos); 3899 } 3900 3901 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3902 { 3903 return seq_list_next(v, &proto_list, pos); 3904 } 3905 3906 static void proto_seq_stop(struct seq_file *seq, void *v) 3907 __releases(proto_list_mutex) 3908 { 3909 mutex_unlock(&proto_list_mutex); 3910 } 3911 3912 static char proto_method_implemented(const void *method) 3913 { 3914 return method == NULL ? 'n' : 'y'; 3915 } 3916 static long sock_prot_memory_allocated(struct proto *proto) 3917 { 3918 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3919 } 3920 3921 static const char *sock_prot_memory_pressure(struct proto *proto) 3922 { 3923 return proto->memory_pressure != NULL ? 3924 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3925 } 3926 3927 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3928 { 3929 3930 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3931 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3932 proto->name, 3933 proto->obj_size, 3934 sock_prot_inuse_get(seq_file_net(seq), proto), 3935 sock_prot_memory_allocated(proto), 3936 sock_prot_memory_pressure(proto), 3937 proto->max_header, 3938 proto->slab == NULL ? "no" : "yes", 3939 module_name(proto->owner), 3940 proto_method_implemented(proto->close), 3941 proto_method_implemented(proto->connect), 3942 proto_method_implemented(proto->disconnect), 3943 proto_method_implemented(proto->accept), 3944 proto_method_implemented(proto->ioctl), 3945 proto_method_implemented(proto->init), 3946 proto_method_implemented(proto->destroy), 3947 proto_method_implemented(proto->shutdown), 3948 proto_method_implemented(proto->setsockopt), 3949 proto_method_implemented(proto->getsockopt), 3950 proto_method_implemented(proto->sendmsg), 3951 proto_method_implemented(proto->recvmsg), 3952 proto_method_implemented(proto->sendpage), 3953 proto_method_implemented(proto->bind), 3954 proto_method_implemented(proto->backlog_rcv), 3955 proto_method_implemented(proto->hash), 3956 proto_method_implemented(proto->unhash), 3957 proto_method_implemented(proto->get_port), 3958 proto_method_implemented(proto->enter_memory_pressure)); 3959 } 3960 3961 static int proto_seq_show(struct seq_file *seq, void *v) 3962 { 3963 if (v == &proto_list) 3964 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3965 "protocol", 3966 "size", 3967 "sockets", 3968 "memory", 3969 "press", 3970 "maxhdr", 3971 "slab", 3972 "module", 3973 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3974 else 3975 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3976 return 0; 3977 } 3978 3979 static const struct seq_operations proto_seq_ops = { 3980 .start = proto_seq_start, 3981 .next = proto_seq_next, 3982 .stop = proto_seq_stop, 3983 .show = proto_seq_show, 3984 }; 3985 3986 static __net_init int proto_init_net(struct net *net) 3987 { 3988 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3989 sizeof(struct seq_net_private))) 3990 return -ENOMEM; 3991 3992 return 0; 3993 } 3994 3995 static __net_exit void proto_exit_net(struct net *net) 3996 { 3997 remove_proc_entry("protocols", net->proc_net); 3998 } 3999 4000 4001 static __net_initdata struct pernet_operations proto_net_ops = { 4002 .init = proto_init_net, 4003 .exit = proto_exit_net, 4004 }; 4005 4006 static int __init proto_init(void) 4007 { 4008 return register_pernet_subsys(&proto_net_ops); 4009 } 4010 4011 subsys_initcall(proto_init); 4012 4013 #endif /* PROC_FS */ 4014 4015 #ifdef CONFIG_NET_RX_BUSY_POLL 4016 bool sk_busy_loop_end(void *p, unsigned long start_time) 4017 { 4018 struct sock *sk = p; 4019 4020 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4021 sk_busy_loop_timeout(sk, start_time); 4022 } 4023 EXPORT_SYMBOL(sk_busy_loop_end); 4024 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4025 4026 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4027 { 4028 if (!sk->sk_prot->bind_add) 4029 return -EOPNOTSUPP; 4030 return sk->sk_prot->bind_add(sk, addr, addr_len); 4031 } 4032 EXPORT_SYMBOL(sock_bind_add); 4033