xref: /linux/net/core/sock.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <net/xfrm.h>
124 #include <linux/ipsec.h>
125 
126 #include <linux/filter.h>
127 
128 #ifdef CONFIG_INET
129 #include <net/tcp.h>
130 #endif
131 
132 /*
133  * Each address family might have different locking rules, so we have
134  * one slock key per address family:
135  */
136 static struct lock_class_key af_family_keys[AF_MAX];
137 static struct lock_class_key af_family_slock_keys[AF_MAX];
138 
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_MAX"
159 };
160 static const char *af_family_slock_key_strings[AF_MAX+1] = {
161   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
171   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
173   "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
188   "clock-AF_MAX"
189 };
190 #endif
191 
192 /*
193  * sk_callback_lock locking rules are per-address-family,
194  * so split the lock classes by using a per-AF key:
195  */
196 static struct lock_class_key af_callback_keys[AF_MAX];
197 
198 /* Take into consideration the size of the struct sk_buff overhead in the
199  * determination of these values, since that is non-constant across
200  * platforms.  This makes socket queueing behavior and performance
201  * not depend upon such differences.
202  */
203 #define _SK_MEM_PACKETS		256
204 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
205 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
207 
208 /* Run time adjustable parameters. */
209 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
210 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
211 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
213 
214 /* Maximal space eaten by iovec or ancilliary data plus some space */
215 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
216 
217 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
218 {
219 	struct timeval tv;
220 
221 	if (optlen < sizeof(tv))
222 		return -EINVAL;
223 	if (copy_from_user(&tv, optval, sizeof(tv)))
224 		return -EFAULT;
225 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
226 		return -EDOM;
227 
228 	if (tv.tv_sec < 0) {
229 		static int warned __read_mostly;
230 
231 		*timeo_p = 0;
232 		if (warned < 10 && net_ratelimit()) {
233 			warned++;
234 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
235 			       "tries to set negative timeout\n",
236 				current->comm, task_pid_nr(current));
237 		}
238 		return 0;
239 	}
240 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
241 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
242 		return 0;
243 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
244 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
245 	return 0;
246 }
247 
248 static void sock_warn_obsolete_bsdism(const char *name)
249 {
250 	static int warned;
251 	static char warncomm[TASK_COMM_LEN];
252 	if (strcmp(warncomm, current->comm) && warned < 5) {
253 		strcpy(warncomm,  current->comm);
254 		printk(KERN_WARNING "process `%s' is using obsolete "
255 		       "%s SO_BSDCOMPAT\n", warncomm, name);
256 		warned++;
257 	}
258 }
259 
260 static void sock_disable_timestamp(struct sock *sk)
261 {
262 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
263 		sock_reset_flag(sk, SOCK_TIMESTAMP);
264 		net_disable_timestamp();
265 	}
266 }
267 
268 
269 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
270 {
271 	int err = 0;
272 	int skb_len;
273 
274 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
275 	   number of warnings when compiling with -W --ANK
276 	 */
277 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
278 	    (unsigned)sk->sk_rcvbuf) {
279 		err = -ENOMEM;
280 		goto out;
281 	}
282 
283 	err = sk_filter(sk, skb);
284 	if (err)
285 		goto out;
286 
287 	if (!sk_rmem_schedule(sk, skb->truesize)) {
288 		err = -ENOBUFS;
289 		goto out;
290 	}
291 
292 	skb->dev = NULL;
293 	skb_set_owner_r(skb, sk);
294 
295 	/* Cache the SKB length before we tack it onto the receive
296 	 * queue.  Once it is added it no longer belongs to us and
297 	 * may be freed by other threads of control pulling packets
298 	 * from the queue.
299 	 */
300 	skb_len = skb->len;
301 
302 	skb_queue_tail(&sk->sk_receive_queue, skb);
303 
304 	if (!sock_flag(sk, SOCK_DEAD))
305 		sk->sk_data_ready(sk, skb_len);
306 out:
307 	return err;
308 }
309 EXPORT_SYMBOL(sock_queue_rcv_skb);
310 
311 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
312 {
313 	int rc = NET_RX_SUCCESS;
314 
315 	if (sk_filter(sk, skb))
316 		goto discard_and_relse;
317 
318 	skb->dev = NULL;
319 
320 	if (nested)
321 		bh_lock_sock_nested(sk);
322 	else
323 		bh_lock_sock(sk);
324 	if (!sock_owned_by_user(sk)) {
325 		/*
326 		 * trylock + unlock semantics:
327 		 */
328 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
329 
330 		rc = sk_backlog_rcv(sk, skb);
331 
332 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
333 	} else
334 		sk_add_backlog(sk, skb);
335 	bh_unlock_sock(sk);
336 out:
337 	sock_put(sk);
338 	return rc;
339 discard_and_relse:
340 	kfree_skb(skb);
341 	goto out;
342 }
343 EXPORT_SYMBOL(sk_receive_skb);
344 
345 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
346 {
347 	struct dst_entry *dst = sk->sk_dst_cache;
348 
349 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
350 		sk->sk_dst_cache = NULL;
351 		dst_release(dst);
352 		return NULL;
353 	}
354 
355 	return dst;
356 }
357 EXPORT_SYMBOL(__sk_dst_check);
358 
359 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
360 {
361 	struct dst_entry *dst = sk_dst_get(sk);
362 
363 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
364 		sk_dst_reset(sk);
365 		dst_release(dst);
366 		return NULL;
367 	}
368 
369 	return dst;
370 }
371 EXPORT_SYMBOL(sk_dst_check);
372 
373 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
374 {
375 	int ret = -ENOPROTOOPT;
376 #ifdef CONFIG_NETDEVICES
377 	struct net *net = sock_net(sk);
378 	char devname[IFNAMSIZ];
379 	int index;
380 
381 	/* Sorry... */
382 	ret = -EPERM;
383 	if (!capable(CAP_NET_RAW))
384 		goto out;
385 
386 	ret = -EINVAL;
387 	if (optlen < 0)
388 		goto out;
389 
390 	/* Bind this socket to a particular device like "eth0",
391 	 * as specified in the passed interface name. If the
392 	 * name is "" or the option length is zero the socket
393 	 * is not bound.
394 	 */
395 	if (optlen > IFNAMSIZ - 1)
396 		optlen = IFNAMSIZ - 1;
397 	memset(devname, 0, sizeof(devname));
398 
399 	ret = -EFAULT;
400 	if (copy_from_user(devname, optval, optlen))
401 		goto out;
402 
403 	if (devname[0] == '\0') {
404 		index = 0;
405 	} else {
406 		struct net_device *dev = dev_get_by_name(net, devname);
407 
408 		ret = -ENODEV;
409 		if (!dev)
410 			goto out;
411 
412 		index = dev->ifindex;
413 		dev_put(dev);
414 	}
415 
416 	lock_sock(sk);
417 	sk->sk_bound_dev_if = index;
418 	sk_dst_reset(sk);
419 	release_sock(sk);
420 
421 	ret = 0;
422 
423 out:
424 #endif
425 
426 	return ret;
427 }
428 
429 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
430 {
431 	if (valbool)
432 		sock_set_flag(sk, bit);
433 	else
434 		sock_reset_flag(sk, bit);
435 }
436 
437 /*
438  *	This is meant for all protocols to use and covers goings on
439  *	at the socket level. Everything here is generic.
440  */
441 
442 int sock_setsockopt(struct socket *sock, int level, int optname,
443 		    char __user *optval, int optlen)
444 {
445 	struct sock *sk=sock->sk;
446 	int val;
447 	int valbool;
448 	struct linger ling;
449 	int ret = 0;
450 
451 	/*
452 	 *	Options without arguments
453 	 */
454 
455 	if (optname == SO_BINDTODEVICE)
456 		return sock_bindtodevice(sk, optval, optlen);
457 
458 	if (optlen < sizeof(int))
459 		return -EINVAL;
460 
461 	if (get_user(val, (int __user *)optval))
462 		return -EFAULT;
463 
464 	valbool = val?1:0;
465 
466 	lock_sock(sk);
467 
468 	switch(optname) {
469 	case SO_DEBUG:
470 		if (val && !capable(CAP_NET_ADMIN)) {
471 			ret = -EACCES;
472 		} else
473 			sock_valbool_flag(sk, SOCK_DBG, valbool);
474 		break;
475 	case SO_REUSEADDR:
476 		sk->sk_reuse = valbool;
477 		break;
478 	case SO_TYPE:
479 	case SO_ERROR:
480 		ret = -ENOPROTOOPT;
481 		break;
482 	case SO_DONTROUTE:
483 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
484 		break;
485 	case SO_BROADCAST:
486 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487 		break;
488 	case SO_SNDBUF:
489 		/* Don't error on this BSD doesn't and if you think
490 		   about it this is right. Otherwise apps have to
491 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492 		   are treated in BSD as hints */
493 
494 		if (val > sysctl_wmem_max)
495 			val = sysctl_wmem_max;
496 set_sndbuf:
497 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498 		if ((val * 2) < SOCK_MIN_SNDBUF)
499 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500 		else
501 			sk->sk_sndbuf = val * 2;
502 
503 		/*
504 		 *	Wake up sending tasks if we
505 		 *	upped the value.
506 		 */
507 		sk->sk_write_space(sk);
508 		break;
509 
510 	case SO_SNDBUFFORCE:
511 		if (!capable(CAP_NET_ADMIN)) {
512 			ret = -EPERM;
513 			break;
514 		}
515 		goto set_sndbuf;
516 
517 	case SO_RCVBUF:
518 		/* Don't error on this BSD doesn't and if you think
519 		   about it this is right. Otherwise apps have to
520 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521 		   are treated in BSD as hints */
522 
523 		if (val > sysctl_rmem_max)
524 			val = sysctl_rmem_max;
525 set_rcvbuf:
526 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527 		/*
528 		 * We double it on the way in to account for
529 		 * "struct sk_buff" etc. overhead.   Applications
530 		 * assume that the SO_RCVBUF setting they make will
531 		 * allow that much actual data to be received on that
532 		 * socket.
533 		 *
534 		 * Applications are unaware that "struct sk_buff" and
535 		 * other overheads allocate from the receive buffer
536 		 * during socket buffer allocation.
537 		 *
538 		 * And after considering the possible alternatives,
539 		 * returning the value we actually used in getsockopt
540 		 * is the most desirable behavior.
541 		 */
542 		if ((val * 2) < SOCK_MIN_RCVBUF)
543 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544 		else
545 			sk->sk_rcvbuf = val * 2;
546 		break;
547 
548 	case SO_RCVBUFFORCE:
549 		if (!capable(CAP_NET_ADMIN)) {
550 			ret = -EPERM;
551 			break;
552 		}
553 		goto set_rcvbuf;
554 
555 	case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557 		if (sk->sk_protocol == IPPROTO_TCP)
558 			tcp_set_keepalive(sk, valbool);
559 #endif
560 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561 		break;
562 
563 	case SO_OOBINLINE:
564 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565 		break;
566 
567 	case SO_NO_CHECK:
568 		sk->sk_no_check = valbool;
569 		break;
570 
571 	case SO_PRIORITY:
572 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573 			sk->sk_priority = val;
574 		else
575 			ret = -EPERM;
576 		break;
577 
578 	case SO_LINGER:
579 		if (optlen < sizeof(ling)) {
580 			ret = -EINVAL;	/* 1003.1g */
581 			break;
582 		}
583 		if (copy_from_user(&ling,optval,sizeof(ling))) {
584 			ret = -EFAULT;
585 			break;
586 		}
587 		if (!ling.l_onoff)
588 			sock_reset_flag(sk, SOCK_LINGER);
589 		else {
590 #if (BITS_PER_LONG == 32)
591 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593 			else
594 #endif
595 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596 			sock_set_flag(sk, SOCK_LINGER);
597 		}
598 		break;
599 
600 	case SO_BSDCOMPAT:
601 		sock_warn_obsolete_bsdism("setsockopt");
602 		break;
603 
604 	case SO_PASSCRED:
605 		if (valbool)
606 			set_bit(SOCK_PASSCRED, &sock->flags);
607 		else
608 			clear_bit(SOCK_PASSCRED, &sock->flags);
609 		break;
610 
611 	case SO_TIMESTAMP:
612 	case SO_TIMESTAMPNS:
613 		if (valbool)  {
614 			if (optname == SO_TIMESTAMP)
615 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616 			else
617 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618 			sock_set_flag(sk, SOCK_RCVTSTAMP);
619 			sock_enable_timestamp(sk);
620 		} else {
621 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 		}
624 		break;
625 
626 	case SO_RCVLOWAT:
627 		if (val < 0)
628 			val = INT_MAX;
629 		sk->sk_rcvlowat = val ? : 1;
630 		break;
631 
632 	case SO_RCVTIMEO:
633 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634 		break;
635 
636 	case SO_SNDTIMEO:
637 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638 		break;
639 
640 	case SO_ATTACH_FILTER:
641 		ret = -EINVAL;
642 		if (optlen == sizeof(struct sock_fprog)) {
643 			struct sock_fprog fprog;
644 
645 			ret = -EFAULT;
646 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647 				break;
648 
649 			ret = sk_attach_filter(&fprog, sk);
650 		}
651 		break;
652 
653 	case SO_DETACH_FILTER:
654 		ret = sk_detach_filter(sk);
655 		break;
656 
657 	case SO_PASSSEC:
658 		if (valbool)
659 			set_bit(SOCK_PASSSEC, &sock->flags);
660 		else
661 			clear_bit(SOCK_PASSSEC, &sock->flags);
662 		break;
663 	case SO_MARK:
664 		if (!capable(CAP_NET_ADMIN))
665 			ret = -EPERM;
666 		else {
667 			sk->sk_mark = val;
668 		}
669 		break;
670 
671 		/* We implement the SO_SNDLOWAT etc to
672 		   not be settable (1003.1g 5.3) */
673 	default:
674 		ret = -ENOPROTOOPT;
675 		break;
676 	}
677 	release_sock(sk);
678 	return ret;
679 }
680 
681 
682 int sock_getsockopt(struct socket *sock, int level, int optname,
683 		    char __user *optval, int __user *optlen)
684 {
685 	struct sock *sk = sock->sk;
686 
687 	union {
688 		int val;
689 		struct linger ling;
690 		struct timeval tm;
691 	} v;
692 
693 	unsigned int lv = sizeof(int);
694 	int len;
695 
696 	if (get_user(len, optlen))
697 		return -EFAULT;
698 	if (len < 0)
699 		return -EINVAL;
700 
701 	switch(optname) {
702 	case SO_DEBUG:
703 		v.val = sock_flag(sk, SOCK_DBG);
704 		break;
705 
706 	case SO_DONTROUTE:
707 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
708 		break;
709 
710 	case SO_BROADCAST:
711 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
712 		break;
713 
714 	case SO_SNDBUF:
715 		v.val = sk->sk_sndbuf;
716 		break;
717 
718 	case SO_RCVBUF:
719 		v.val = sk->sk_rcvbuf;
720 		break;
721 
722 	case SO_REUSEADDR:
723 		v.val = sk->sk_reuse;
724 		break;
725 
726 	case SO_KEEPALIVE:
727 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
728 		break;
729 
730 	case SO_TYPE:
731 		v.val = sk->sk_type;
732 		break;
733 
734 	case SO_ERROR:
735 		v.val = -sock_error(sk);
736 		if (v.val==0)
737 			v.val = xchg(&sk->sk_err_soft, 0);
738 		break;
739 
740 	case SO_OOBINLINE:
741 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
742 		break;
743 
744 	case SO_NO_CHECK:
745 		v.val = sk->sk_no_check;
746 		break;
747 
748 	case SO_PRIORITY:
749 		v.val = sk->sk_priority;
750 		break;
751 
752 	case SO_LINGER:
753 		lv		= sizeof(v.ling);
754 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
755 		v.ling.l_linger	= sk->sk_lingertime / HZ;
756 		break;
757 
758 	case SO_BSDCOMPAT:
759 		sock_warn_obsolete_bsdism("getsockopt");
760 		break;
761 
762 	case SO_TIMESTAMP:
763 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
764 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
765 		break;
766 
767 	case SO_TIMESTAMPNS:
768 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
769 		break;
770 
771 	case SO_RCVTIMEO:
772 		lv=sizeof(struct timeval);
773 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
774 			v.tm.tv_sec = 0;
775 			v.tm.tv_usec = 0;
776 		} else {
777 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
778 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
779 		}
780 		break;
781 
782 	case SO_SNDTIMEO:
783 		lv=sizeof(struct timeval);
784 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
785 			v.tm.tv_sec = 0;
786 			v.tm.tv_usec = 0;
787 		} else {
788 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
789 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
790 		}
791 		break;
792 
793 	case SO_RCVLOWAT:
794 		v.val = sk->sk_rcvlowat;
795 		break;
796 
797 	case SO_SNDLOWAT:
798 		v.val=1;
799 		break;
800 
801 	case SO_PASSCRED:
802 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
803 		break;
804 
805 	case SO_PEERCRED:
806 		if (len > sizeof(sk->sk_peercred))
807 			len = sizeof(sk->sk_peercred);
808 		if (copy_to_user(optval, &sk->sk_peercred, len))
809 			return -EFAULT;
810 		goto lenout;
811 
812 	case SO_PEERNAME:
813 	{
814 		char address[128];
815 
816 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
817 			return -ENOTCONN;
818 		if (lv < len)
819 			return -EINVAL;
820 		if (copy_to_user(optval, address, len))
821 			return -EFAULT;
822 		goto lenout;
823 	}
824 
825 	/* Dubious BSD thing... Probably nobody even uses it, but
826 	 * the UNIX standard wants it for whatever reason... -DaveM
827 	 */
828 	case SO_ACCEPTCONN:
829 		v.val = sk->sk_state == TCP_LISTEN;
830 		break;
831 
832 	case SO_PASSSEC:
833 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
834 		break;
835 
836 	case SO_PEERSEC:
837 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
838 
839 	case SO_MARK:
840 		v.val = sk->sk_mark;
841 		break;
842 
843 	default:
844 		return -ENOPROTOOPT;
845 	}
846 
847 	if (len > lv)
848 		len = lv;
849 	if (copy_to_user(optval, &v, len))
850 		return -EFAULT;
851 lenout:
852 	if (put_user(len, optlen))
853 		return -EFAULT;
854 	return 0;
855 }
856 
857 /*
858  * Initialize an sk_lock.
859  *
860  * (We also register the sk_lock with the lock validator.)
861  */
862 static inline void sock_lock_init(struct sock *sk)
863 {
864 	sock_lock_init_class_and_name(sk,
865 			af_family_slock_key_strings[sk->sk_family],
866 			af_family_slock_keys + sk->sk_family,
867 			af_family_key_strings[sk->sk_family],
868 			af_family_keys + sk->sk_family);
869 }
870 
871 static void sock_copy(struct sock *nsk, const struct sock *osk)
872 {
873 #ifdef CONFIG_SECURITY_NETWORK
874 	void *sptr = nsk->sk_security;
875 #endif
876 
877 	memcpy(nsk, osk, osk->sk_prot->obj_size);
878 #ifdef CONFIG_SECURITY_NETWORK
879 	nsk->sk_security = sptr;
880 	security_sk_clone(osk, nsk);
881 #endif
882 }
883 
884 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
885 		int family)
886 {
887 	struct sock *sk;
888 	struct kmem_cache *slab;
889 
890 	slab = prot->slab;
891 	if (slab != NULL)
892 		sk = kmem_cache_alloc(slab, priority);
893 	else
894 		sk = kmalloc(prot->obj_size, priority);
895 
896 	if (sk != NULL) {
897 		if (security_sk_alloc(sk, family, priority))
898 			goto out_free;
899 
900 		if (!try_module_get(prot->owner))
901 			goto out_free_sec;
902 	}
903 
904 	return sk;
905 
906 out_free_sec:
907 	security_sk_free(sk);
908 out_free:
909 	if (slab != NULL)
910 		kmem_cache_free(slab, sk);
911 	else
912 		kfree(sk);
913 	return NULL;
914 }
915 
916 static void sk_prot_free(struct proto *prot, struct sock *sk)
917 {
918 	struct kmem_cache *slab;
919 	struct module *owner;
920 
921 	owner = prot->owner;
922 	slab = prot->slab;
923 
924 	security_sk_free(sk);
925 	if (slab != NULL)
926 		kmem_cache_free(slab, sk);
927 	else
928 		kfree(sk);
929 	module_put(owner);
930 }
931 
932 /**
933  *	sk_alloc - All socket objects are allocated here
934  *	@net: the applicable net namespace
935  *	@family: protocol family
936  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
937  *	@prot: struct proto associated with this new sock instance
938  */
939 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
940 		      struct proto *prot)
941 {
942 	struct sock *sk;
943 
944 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
945 	if (sk) {
946 		sk->sk_family = family;
947 		/*
948 		 * See comment in struct sock definition to understand
949 		 * why we need sk_prot_creator -acme
950 		 */
951 		sk->sk_prot = sk->sk_prot_creator = prot;
952 		sock_lock_init(sk);
953 		sock_net_set(sk, get_net(net));
954 	}
955 
956 	return sk;
957 }
958 
959 void sk_free(struct sock *sk)
960 {
961 	struct sk_filter *filter;
962 
963 	if (sk->sk_destruct)
964 		sk->sk_destruct(sk);
965 
966 	filter = rcu_dereference(sk->sk_filter);
967 	if (filter) {
968 		sk_filter_uncharge(sk, filter);
969 		rcu_assign_pointer(sk->sk_filter, NULL);
970 	}
971 
972 	sock_disable_timestamp(sk);
973 
974 	if (atomic_read(&sk->sk_omem_alloc))
975 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
976 		       __func__, atomic_read(&sk->sk_omem_alloc));
977 
978 	put_net(sock_net(sk));
979 	sk_prot_free(sk->sk_prot_creator, sk);
980 }
981 
982 /*
983  * Last sock_put should drop referrence to sk->sk_net. It has already
984  * been dropped in sk_change_net. Taking referrence to stopping namespace
985  * is not an option.
986  * Take referrence to a socket to remove it from hash _alive_ and after that
987  * destroy it in the context of init_net.
988  */
989 void sk_release_kernel(struct sock *sk)
990 {
991 	if (sk == NULL || sk->sk_socket == NULL)
992 		return;
993 
994 	sock_hold(sk);
995 	sock_release(sk->sk_socket);
996 	release_net(sock_net(sk));
997 	sock_net_set(sk, get_net(&init_net));
998 	sock_put(sk);
999 }
1000 EXPORT_SYMBOL(sk_release_kernel);
1001 
1002 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1003 {
1004 	struct sock *newsk;
1005 
1006 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1007 	if (newsk != NULL) {
1008 		struct sk_filter *filter;
1009 
1010 		sock_copy(newsk, sk);
1011 
1012 		/* SANITY */
1013 		get_net(sock_net(newsk));
1014 		sk_node_init(&newsk->sk_node);
1015 		sock_lock_init(newsk);
1016 		bh_lock_sock(newsk);
1017 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1018 
1019 		atomic_set(&newsk->sk_rmem_alloc, 0);
1020 		atomic_set(&newsk->sk_wmem_alloc, 0);
1021 		atomic_set(&newsk->sk_omem_alloc, 0);
1022 		skb_queue_head_init(&newsk->sk_receive_queue);
1023 		skb_queue_head_init(&newsk->sk_write_queue);
1024 #ifdef CONFIG_NET_DMA
1025 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1026 #endif
1027 
1028 		rwlock_init(&newsk->sk_dst_lock);
1029 		rwlock_init(&newsk->sk_callback_lock);
1030 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1031 				af_callback_keys + newsk->sk_family,
1032 				af_family_clock_key_strings[newsk->sk_family]);
1033 
1034 		newsk->sk_dst_cache	= NULL;
1035 		newsk->sk_wmem_queued	= 0;
1036 		newsk->sk_forward_alloc = 0;
1037 		newsk->sk_send_head	= NULL;
1038 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1039 
1040 		sock_reset_flag(newsk, SOCK_DONE);
1041 		skb_queue_head_init(&newsk->sk_error_queue);
1042 
1043 		filter = newsk->sk_filter;
1044 		if (filter != NULL)
1045 			sk_filter_charge(newsk, filter);
1046 
1047 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1048 			/* It is still raw copy of parent, so invalidate
1049 			 * destructor and make plain sk_free() */
1050 			newsk->sk_destruct = NULL;
1051 			sk_free(newsk);
1052 			newsk = NULL;
1053 			goto out;
1054 		}
1055 
1056 		newsk->sk_err	   = 0;
1057 		newsk->sk_priority = 0;
1058 		atomic_set(&newsk->sk_refcnt, 2);
1059 
1060 		/*
1061 		 * Increment the counter in the same struct proto as the master
1062 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1063 		 * is the same as sk->sk_prot->socks, as this field was copied
1064 		 * with memcpy).
1065 		 *
1066 		 * This _changes_ the previous behaviour, where
1067 		 * tcp_create_openreq_child always was incrementing the
1068 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1069 		 * to be taken into account in all callers. -acme
1070 		 */
1071 		sk_refcnt_debug_inc(newsk);
1072 		sk_set_socket(newsk, NULL);
1073 		newsk->sk_sleep	 = NULL;
1074 
1075 		if (newsk->sk_prot->sockets_allocated)
1076 			atomic_inc(newsk->sk_prot->sockets_allocated);
1077 	}
1078 out:
1079 	return newsk;
1080 }
1081 
1082 EXPORT_SYMBOL_GPL(sk_clone);
1083 
1084 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1085 {
1086 	__sk_dst_set(sk, dst);
1087 	sk->sk_route_caps = dst->dev->features;
1088 	if (sk->sk_route_caps & NETIF_F_GSO)
1089 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1090 	if (sk_can_gso(sk)) {
1091 		if (dst->header_len) {
1092 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1093 		} else {
1094 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1095 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1096 		}
1097 	}
1098 }
1099 EXPORT_SYMBOL_GPL(sk_setup_caps);
1100 
1101 void __init sk_init(void)
1102 {
1103 	if (num_physpages <= 4096) {
1104 		sysctl_wmem_max = 32767;
1105 		sysctl_rmem_max = 32767;
1106 		sysctl_wmem_default = 32767;
1107 		sysctl_rmem_default = 32767;
1108 	} else if (num_physpages >= 131072) {
1109 		sysctl_wmem_max = 131071;
1110 		sysctl_rmem_max = 131071;
1111 	}
1112 }
1113 
1114 /*
1115  *	Simple resource managers for sockets.
1116  */
1117 
1118 
1119 /*
1120  * Write buffer destructor automatically called from kfree_skb.
1121  */
1122 void sock_wfree(struct sk_buff *skb)
1123 {
1124 	struct sock *sk = skb->sk;
1125 
1126 	/* In case it might be waiting for more memory. */
1127 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1128 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1129 		sk->sk_write_space(sk);
1130 	sock_put(sk);
1131 }
1132 
1133 /*
1134  * Read buffer destructor automatically called from kfree_skb.
1135  */
1136 void sock_rfree(struct sk_buff *skb)
1137 {
1138 	struct sock *sk = skb->sk;
1139 
1140 	skb_truesize_check(skb);
1141 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1142 	sk_mem_uncharge(skb->sk, skb->truesize);
1143 }
1144 
1145 
1146 int sock_i_uid(struct sock *sk)
1147 {
1148 	int uid;
1149 
1150 	read_lock(&sk->sk_callback_lock);
1151 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1152 	read_unlock(&sk->sk_callback_lock);
1153 	return uid;
1154 }
1155 
1156 unsigned long sock_i_ino(struct sock *sk)
1157 {
1158 	unsigned long ino;
1159 
1160 	read_lock(&sk->sk_callback_lock);
1161 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1162 	read_unlock(&sk->sk_callback_lock);
1163 	return ino;
1164 }
1165 
1166 /*
1167  * Allocate a skb from the socket's send buffer.
1168  */
1169 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1170 			     gfp_t priority)
1171 {
1172 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1173 		struct sk_buff * skb = alloc_skb(size, priority);
1174 		if (skb) {
1175 			skb_set_owner_w(skb, sk);
1176 			return skb;
1177 		}
1178 	}
1179 	return NULL;
1180 }
1181 
1182 /*
1183  * Allocate a skb from the socket's receive buffer.
1184  */
1185 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1186 			     gfp_t priority)
1187 {
1188 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1189 		struct sk_buff *skb = alloc_skb(size, priority);
1190 		if (skb) {
1191 			skb_set_owner_r(skb, sk);
1192 			return skb;
1193 		}
1194 	}
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * Allocate a memory block from the socket's option memory buffer.
1200  */
1201 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1202 {
1203 	if ((unsigned)size <= sysctl_optmem_max &&
1204 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1205 		void *mem;
1206 		/* First do the add, to avoid the race if kmalloc
1207 		 * might sleep.
1208 		 */
1209 		atomic_add(size, &sk->sk_omem_alloc);
1210 		mem = kmalloc(size, priority);
1211 		if (mem)
1212 			return mem;
1213 		atomic_sub(size, &sk->sk_omem_alloc);
1214 	}
1215 	return NULL;
1216 }
1217 
1218 /*
1219  * Free an option memory block.
1220  */
1221 void sock_kfree_s(struct sock *sk, void *mem, int size)
1222 {
1223 	kfree(mem);
1224 	atomic_sub(size, &sk->sk_omem_alloc);
1225 }
1226 
1227 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1228    I think, these locks should be removed for datagram sockets.
1229  */
1230 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1231 {
1232 	DEFINE_WAIT(wait);
1233 
1234 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1235 	for (;;) {
1236 		if (!timeo)
1237 			break;
1238 		if (signal_pending(current))
1239 			break;
1240 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1242 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1243 			break;
1244 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1245 			break;
1246 		if (sk->sk_err)
1247 			break;
1248 		timeo = schedule_timeout(timeo);
1249 	}
1250 	finish_wait(sk->sk_sleep, &wait);
1251 	return timeo;
1252 }
1253 
1254 
1255 /*
1256  *	Generic send/receive buffer handlers
1257  */
1258 
1259 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1260 					    unsigned long header_len,
1261 					    unsigned long data_len,
1262 					    int noblock, int *errcode)
1263 {
1264 	struct sk_buff *skb;
1265 	gfp_t gfp_mask;
1266 	long timeo;
1267 	int err;
1268 
1269 	gfp_mask = sk->sk_allocation;
1270 	if (gfp_mask & __GFP_WAIT)
1271 		gfp_mask |= __GFP_REPEAT;
1272 
1273 	timeo = sock_sndtimeo(sk, noblock);
1274 	while (1) {
1275 		err = sock_error(sk);
1276 		if (err != 0)
1277 			goto failure;
1278 
1279 		err = -EPIPE;
1280 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1281 			goto failure;
1282 
1283 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1284 			skb = alloc_skb(header_len, gfp_mask);
1285 			if (skb) {
1286 				int npages;
1287 				int i;
1288 
1289 				/* No pages, we're done... */
1290 				if (!data_len)
1291 					break;
1292 
1293 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1294 				skb->truesize += data_len;
1295 				skb_shinfo(skb)->nr_frags = npages;
1296 				for (i = 0; i < npages; i++) {
1297 					struct page *page;
1298 					skb_frag_t *frag;
1299 
1300 					page = alloc_pages(sk->sk_allocation, 0);
1301 					if (!page) {
1302 						err = -ENOBUFS;
1303 						skb_shinfo(skb)->nr_frags = i;
1304 						kfree_skb(skb);
1305 						goto failure;
1306 					}
1307 
1308 					frag = &skb_shinfo(skb)->frags[i];
1309 					frag->page = page;
1310 					frag->page_offset = 0;
1311 					frag->size = (data_len >= PAGE_SIZE ?
1312 						      PAGE_SIZE :
1313 						      data_len);
1314 					data_len -= PAGE_SIZE;
1315 				}
1316 
1317 				/* Full success... */
1318 				break;
1319 			}
1320 			err = -ENOBUFS;
1321 			goto failure;
1322 		}
1323 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1324 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1325 		err = -EAGAIN;
1326 		if (!timeo)
1327 			goto failure;
1328 		if (signal_pending(current))
1329 			goto interrupted;
1330 		timeo = sock_wait_for_wmem(sk, timeo);
1331 	}
1332 
1333 	skb_set_owner_w(skb, sk);
1334 	return skb;
1335 
1336 interrupted:
1337 	err = sock_intr_errno(timeo);
1338 failure:
1339 	*errcode = err;
1340 	return NULL;
1341 }
1342 
1343 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1344 				    int noblock, int *errcode)
1345 {
1346 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1347 }
1348 
1349 static void __lock_sock(struct sock *sk)
1350 {
1351 	DEFINE_WAIT(wait);
1352 
1353 	for (;;) {
1354 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1355 					TASK_UNINTERRUPTIBLE);
1356 		spin_unlock_bh(&sk->sk_lock.slock);
1357 		schedule();
1358 		spin_lock_bh(&sk->sk_lock.slock);
1359 		if (!sock_owned_by_user(sk))
1360 			break;
1361 	}
1362 	finish_wait(&sk->sk_lock.wq, &wait);
1363 }
1364 
1365 static void __release_sock(struct sock *sk)
1366 {
1367 	struct sk_buff *skb = sk->sk_backlog.head;
1368 
1369 	do {
1370 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1371 		bh_unlock_sock(sk);
1372 
1373 		do {
1374 			struct sk_buff *next = skb->next;
1375 
1376 			skb->next = NULL;
1377 			sk_backlog_rcv(sk, skb);
1378 
1379 			/*
1380 			 * We are in process context here with softirqs
1381 			 * disabled, use cond_resched_softirq() to preempt.
1382 			 * This is safe to do because we've taken the backlog
1383 			 * queue private:
1384 			 */
1385 			cond_resched_softirq();
1386 
1387 			skb = next;
1388 		} while (skb != NULL);
1389 
1390 		bh_lock_sock(sk);
1391 	} while ((skb = sk->sk_backlog.head) != NULL);
1392 }
1393 
1394 /**
1395  * sk_wait_data - wait for data to arrive at sk_receive_queue
1396  * @sk:    sock to wait on
1397  * @timeo: for how long
1398  *
1399  * Now socket state including sk->sk_err is changed only under lock,
1400  * hence we may omit checks after joining wait queue.
1401  * We check receive queue before schedule() only as optimization;
1402  * it is very likely that release_sock() added new data.
1403  */
1404 int sk_wait_data(struct sock *sk, long *timeo)
1405 {
1406 	int rc;
1407 	DEFINE_WAIT(wait);
1408 
1409 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1410 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1411 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1412 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1413 	finish_wait(sk->sk_sleep, &wait);
1414 	return rc;
1415 }
1416 
1417 EXPORT_SYMBOL(sk_wait_data);
1418 
1419 /**
1420  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1421  *	@sk: socket
1422  *	@size: memory size to allocate
1423  *	@kind: allocation type
1424  *
1425  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1426  *	rmem allocation. This function assumes that protocols which have
1427  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1428  */
1429 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1430 {
1431 	struct proto *prot = sk->sk_prot;
1432 	int amt = sk_mem_pages(size);
1433 	int allocated;
1434 
1435 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1436 	allocated = atomic_add_return(amt, prot->memory_allocated);
1437 
1438 	/* Under limit. */
1439 	if (allocated <= prot->sysctl_mem[0]) {
1440 		if (prot->memory_pressure && *prot->memory_pressure)
1441 			*prot->memory_pressure = 0;
1442 		return 1;
1443 	}
1444 
1445 	/* Under pressure. */
1446 	if (allocated > prot->sysctl_mem[1])
1447 		if (prot->enter_memory_pressure)
1448 			prot->enter_memory_pressure(sk);
1449 
1450 	/* Over hard limit. */
1451 	if (allocated > prot->sysctl_mem[2])
1452 		goto suppress_allocation;
1453 
1454 	/* guarantee minimum buffer size under pressure */
1455 	if (kind == SK_MEM_RECV) {
1456 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1457 			return 1;
1458 	} else { /* SK_MEM_SEND */
1459 		if (sk->sk_type == SOCK_STREAM) {
1460 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1461 				return 1;
1462 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1463 			   prot->sysctl_wmem[0])
1464 				return 1;
1465 	}
1466 
1467 	if (prot->memory_pressure) {
1468 		if (!*prot->memory_pressure ||
1469 		    prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1470 		    sk_mem_pages(sk->sk_wmem_queued +
1471 				 atomic_read(&sk->sk_rmem_alloc) +
1472 				 sk->sk_forward_alloc))
1473 			return 1;
1474 	}
1475 
1476 suppress_allocation:
1477 
1478 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1479 		sk_stream_moderate_sndbuf(sk);
1480 
1481 		/* Fail only if socket is _under_ its sndbuf.
1482 		 * In this case we cannot block, so that we have to fail.
1483 		 */
1484 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1485 			return 1;
1486 	}
1487 
1488 	/* Alas. Undo changes. */
1489 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1490 	atomic_sub(amt, prot->memory_allocated);
1491 	return 0;
1492 }
1493 
1494 EXPORT_SYMBOL(__sk_mem_schedule);
1495 
1496 /**
1497  *	__sk_reclaim - reclaim memory_allocated
1498  *	@sk: socket
1499  */
1500 void __sk_mem_reclaim(struct sock *sk)
1501 {
1502 	struct proto *prot = sk->sk_prot;
1503 
1504 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1505 		   prot->memory_allocated);
1506 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1507 
1508 	if (prot->memory_pressure && *prot->memory_pressure &&
1509 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1510 		*prot->memory_pressure = 0;
1511 }
1512 
1513 EXPORT_SYMBOL(__sk_mem_reclaim);
1514 
1515 
1516 /*
1517  * Set of default routines for initialising struct proto_ops when
1518  * the protocol does not support a particular function. In certain
1519  * cases where it makes no sense for a protocol to have a "do nothing"
1520  * function, some default processing is provided.
1521  */
1522 
1523 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1524 {
1525 	return -EOPNOTSUPP;
1526 }
1527 
1528 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1529 		    int len, int flags)
1530 {
1531 	return -EOPNOTSUPP;
1532 }
1533 
1534 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1535 {
1536 	return -EOPNOTSUPP;
1537 }
1538 
1539 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1540 {
1541 	return -EOPNOTSUPP;
1542 }
1543 
1544 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1545 		    int *len, int peer)
1546 {
1547 	return -EOPNOTSUPP;
1548 }
1549 
1550 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1551 {
1552 	return 0;
1553 }
1554 
1555 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1556 {
1557 	return -EOPNOTSUPP;
1558 }
1559 
1560 int sock_no_listen(struct socket *sock, int backlog)
1561 {
1562 	return -EOPNOTSUPP;
1563 }
1564 
1565 int sock_no_shutdown(struct socket *sock, int how)
1566 {
1567 	return -EOPNOTSUPP;
1568 }
1569 
1570 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1571 		    char __user *optval, int optlen)
1572 {
1573 	return -EOPNOTSUPP;
1574 }
1575 
1576 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1577 		    char __user *optval, int __user *optlen)
1578 {
1579 	return -EOPNOTSUPP;
1580 }
1581 
1582 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1583 		    size_t len)
1584 {
1585 	return -EOPNOTSUPP;
1586 }
1587 
1588 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1589 		    size_t len, int flags)
1590 {
1591 	return -EOPNOTSUPP;
1592 }
1593 
1594 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1595 {
1596 	/* Mirror missing mmap method error code */
1597 	return -ENODEV;
1598 }
1599 
1600 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1601 {
1602 	ssize_t res;
1603 	struct msghdr msg = {.msg_flags = flags};
1604 	struct kvec iov;
1605 	char *kaddr = kmap(page);
1606 	iov.iov_base = kaddr + offset;
1607 	iov.iov_len = size;
1608 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1609 	kunmap(page);
1610 	return res;
1611 }
1612 
1613 /*
1614  *	Default Socket Callbacks
1615  */
1616 
1617 static void sock_def_wakeup(struct sock *sk)
1618 {
1619 	read_lock(&sk->sk_callback_lock);
1620 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1621 		wake_up_interruptible_all(sk->sk_sleep);
1622 	read_unlock(&sk->sk_callback_lock);
1623 }
1624 
1625 static void sock_def_error_report(struct sock *sk)
1626 {
1627 	read_lock(&sk->sk_callback_lock);
1628 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1629 		wake_up_interruptible(sk->sk_sleep);
1630 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1631 	read_unlock(&sk->sk_callback_lock);
1632 }
1633 
1634 static void sock_def_readable(struct sock *sk, int len)
1635 {
1636 	read_lock(&sk->sk_callback_lock);
1637 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1638 		wake_up_interruptible_sync(sk->sk_sleep);
1639 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1640 	read_unlock(&sk->sk_callback_lock);
1641 }
1642 
1643 static void sock_def_write_space(struct sock *sk)
1644 {
1645 	read_lock(&sk->sk_callback_lock);
1646 
1647 	/* Do not wake up a writer until he can make "significant"
1648 	 * progress.  --DaveM
1649 	 */
1650 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1651 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1652 			wake_up_interruptible_sync(sk->sk_sleep);
1653 
1654 		/* Should agree with poll, otherwise some programs break */
1655 		if (sock_writeable(sk))
1656 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1657 	}
1658 
1659 	read_unlock(&sk->sk_callback_lock);
1660 }
1661 
1662 static void sock_def_destruct(struct sock *sk)
1663 {
1664 	kfree(sk->sk_protinfo);
1665 }
1666 
1667 void sk_send_sigurg(struct sock *sk)
1668 {
1669 	if (sk->sk_socket && sk->sk_socket->file)
1670 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1671 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1672 }
1673 
1674 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1675 		    unsigned long expires)
1676 {
1677 	if (!mod_timer(timer, expires))
1678 		sock_hold(sk);
1679 }
1680 
1681 EXPORT_SYMBOL(sk_reset_timer);
1682 
1683 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1684 {
1685 	if (timer_pending(timer) && del_timer(timer))
1686 		__sock_put(sk);
1687 }
1688 
1689 EXPORT_SYMBOL(sk_stop_timer);
1690 
1691 void sock_init_data(struct socket *sock, struct sock *sk)
1692 {
1693 	skb_queue_head_init(&sk->sk_receive_queue);
1694 	skb_queue_head_init(&sk->sk_write_queue);
1695 	skb_queue_head_init(&sk->sk_error_queue);
1696 #ifdef CONFIG_NET_DMA
1697 	skb_queue_head_init(&sk->sk_async_wait_queue);
1698 #endif
1699 
1700 	sk->sk_send_head	=	NULL;
1701 
1702 	init_timer(&sk->sk_timer);
1703 
1704 	sk->sk_allocation	=	GFP_KERNEL;
1705 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1706 	sk->sk_sndbuf		=	sysctl_wmem_default;
1707 	sk->sk_state		=	TCP_CLOSE;
1708 	sk_set_socket(sk, sock);
1709 
1710 	sock_set_flag(sk, SOCK_ZAPPED);
1711 
1712 	if (sock) {
1713 		sk->sk_type	=	sock->type;
1714 		sk->sk_sleep	=	&sock->wait;
1715 		sock->sk	=	sk;
1716 	} else
1717 		sk->sk_sleep	=	NULL;
1718 
1719 	rwlock_init(&sk->sk_dst_lock);
1720 	rwlock_init(&sk->sk_callback_lock);
1721 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1722 			af_callback_keys + sk->sk_family,
1723 			af_family_clock_key_strings[sk->sk_family]);
1724 
1725 	sk->sk_state_change	=	sock_def_wakeup;
1726 	sk->sk_data_ready	=	sock_def_readable;
1727 	sk->sk_write_space	=	sock_def_write_space;
1728 	sk->sk_error_report	=	sock_def_error_report;
1729 	sk->sk_destruct		=	sock_def_destruct;
1730 
1731 	sk->sk_sndmsg_page	=	NULL;
1732 	sk->sk_sndmsg_off	=	0;
1733 
1734 	sk->sk_peercred.pid 	=	0;
1735 	sk->sk_peercred.uid	=	-1;
1736 	sk->sk_peercred.gid	=	-1;
1737 	sk->sk_write_pending	=	0;
1738 	sk->sk_rcvlowat		=	1;
1739 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1740 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1741 
1742 	sk->sk_stamp = ktime_set(-1L, 0);
1743 
1744 	atomic_set(&sk->sk_refcnt, 1);
1745 	atomic_set(&sk->sk_drops, 0);
1746 }
1747 
1748 void lock_sock_nested(struct sock *sk, int subclass)
1749 {
1750 	might_sleep();
1751 	spin_lock_bh(&sk->sk_lock.slock);
1752 	if (sk->sk_lock.owned)
1753 		__lock_sock(sk);
1754 	sk->sk_lock.owned = 1;
1755 	spin_unlock(&sk->sk_lock.slock);
1756 	/*
1757 	 * The sk_lock has mutex_lock() semantics here:
1758 	 */
1759 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1760 	local_bh_enable();
1761 }
1762 
1763 EXPORT_SYMBOL(lock_sock_nested);
1764 
1765 void release_sock(struct sock *sk)
1766 {
1767 	/*
1768 	 * The sk_lock has mutex_unlock() semantics:
1769 	 */
1770 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1771 
1772 	spin_lock_bh(&sk->sk_lock.slock);
1773 	if (sk->sk_backlog.tail)
1774 		__release_sock(sk);
1775 	sk->sk_lock.owned = 0;
1776 	if (waitqueue_active(&sk->sk_lock.wq))
1777 		wake_up(&sk->sk_lock.wq);
1778 	spin_unlock_bh(&sk->sk_lock.slock);
1779 }
1780 EXPORT_SYMBOL(release_sock);
1781 
1782 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1783 {
1784 	struct timeval tv;
1785 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1786 		sock_enable_timestamp(sk);
1787 	tv = ktime_to_timeval(sk->sk_stamp);
1788 	if (tv.tv_sec == -1)
1789 		return -ENOENT;
1790 	if (tv.tv_sec == 0) {
1791 		sk->sk_stamp = ktime_get_real();
1792 		tv = ktime_to_timeval(sk->sk_stamp);
1793 	}
1794 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1795 }
1796 EXPORT_SYMBOL(sock_get_timestamp);
1797 
1798 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1799 {
1800 	struct timespec ts;
1801 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1802 		sock_enable_timestamp(sk);
1803 	ts = ktime_to_timespec(sk->sk_stamp);
1804 	if (ts.tv_sec == -1)
1805 		return -ENOENT;
1806 	if (ts.tv_sec == 0) {
1807 		sk->sk_stamp = ktime_get_real();
1808 		ts = ktime_to_timespec(sk->sk_stamp);
1809 	}
1810 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1811 }
1812 EXPORT_SYMBOL(sock_get_timestampns);
1813 
1814 void sock_enable_timestamp(struct sock *sk)
1815 {
1816 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1817 		sock_set_flag(sk, SOCK_TIMESTAMP);
1818 		net_enable_timestamp();
1819 	}
1820 }
1821 
1822 /*
1823  *	Get a socket option on an socket.
1824  *
1825  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1826  *	asynchronous errors should be reported by getsockopt. We assume
1827  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1828  */
1829 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1830 			   char __user *optval, int __user *optlen)
1831 {
1832 	struct sock *sk = sock->sk;
1833 
1834 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1835 }
1836 
1837 EXPORT_SYMBOL(sock_common_getsockopt);
1838 
1839 #ifdef CONFIG_COMPAT
1840 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1841 				  char __user *optval, int __user *optlen)
1842 {
1843 	struct sock *sk = sock->sk;
1844 
1845 	if (sk->sk_prot->compat_getsockopt != NULL)
1846 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1847 						      optval, optlen);
1848 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1849 }
1850 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1851 #endif
1852 
1853 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1854 			struct msghdr *msg, size_t size, int flags)
1855 {
1856 	struct sock *sk = sock->sk;
1857 	int addr_len = 0;
1858 	int err;
1859 
1860 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1861 				   flags & ~MSG_DONTWAIT, &addr_len);
1862 	if (err >= 0)
1863 		msg->msg_namelen = addr_len;
1864 	return err;
1865 }
1866 
1867 EXPORT_SYMBOL(sock_common_recvmsg);
1868 
1869 /*
1870  *	Set socket options on an inet socket.
1871  */
1872 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1873 			   char __user *optval, int optlen)
1874 {
1875 	struct sock *sk = sock->sk;
1876 
1877 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1878 }
1879 
1880 EXPORT_SYMBOL(sock_common_setsockopt);
1881 
1882 #ifdef CONFIG_COMPAT
1883 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1884 				  char __user *optval, int optlen)
1885 {
1886 	struct sock *sk = sock->sk;
1887 
1888 	if (sk->sk_prot->compat_setsockopt != NULL)
1889 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1890 						      optval, optlen);
1891 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1892 }
1893 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1894 #endif
1895 
1896 void sk_common_release(struct sock *sk)
1897 {
1898 	if (sk->sk_prot->destroy)
1899 		sk->sk_prot->destroy(sk);
1900 
1901 	/*
1902 	 * Observation: when sock_common_release is called, processes have
1903 	 * no access to socket. But net still has.
1904 	 * Step one, detach it from networking:
1905 	 *
1906 	 * A. Remove from hash tables.
1907 	 */
1908 
1909 	sk->sk_prot->unhash(sk);
1910 
1911 	/*
1912 	 * In this point socket cannot receive new packets, but it is possible
1913 	 * that some packets are in flight because some CPU runs receiver and
1914 	 * did hash table lookup before we unhashed socket. They will achieve
1915 	 * receive queue and will be purged by socket destructor.
1916 	 *
1917 	 * Also we still have packets pending on receive queue and probably,
1918 	 * our own packets waiting in device queues. sock_destroy will drain
1919 	 * receive queue, but transmitted packets will delay socket destruction
1920 	 * until the last reference will be released.
1921 	 */
1922 
1923 	sock_orphan(sk);
1924 
1925 	xfrm_sk_free_policy(sk);
1926 
1927 	sk_refcnt_debug_release(sk);
1928 	sock_put(sk);
1929 }
1930 
1931 EXPORT_SYMBOL(sk_common_release);
1932 
1933 static DEFINE_RWLOCK(proto_list_lock);
1934 static LIST_HEAD(proto_list);
1935 
1936 #ifdef CONFIG_PROC_FS
1937 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1938 struct prot_inuse {
1939 	int val[PROTO_INUSE_NR];
1940 };
1941 
1942 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1943 
1944 #ifdef CONFIG_NET_NS
1945 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1946 {
1947 	int cpu = smp_processor_id();
1948 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1949 }
1950 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1951 
1952 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1953 {
1954 	int cpu, idx = prot->inuse_idx;
1955 	int res = 0;
1956 
1957 	for_each_possible_cpu(cpu)
1958 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1959 
1960 	return res >= 0 ? res : 0;
1961 }
1962 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1963 
1964 static int sock_inuse_init_net(struct net *net)
1965 {
1966 	net->core.inuse = alloc_percpu(struct prot_inuse);
1967 	return net->core.inuse ? 0 : -ENOMEM;
1968 }
1969 
1970 static void sock_inuse_exit_net(struct net *net)
1971 {
1972 	free_percpu(net->core.inuse);
1973 }
1974 
1975 static struct pernet_operations net_inuse_ops = {
1976 	.init = sock_inuse_init_net,
1977 	.exit = sock_inuse_exit_net,
1978 };
1979 
1980 static __init int net_inuse_init(void)
1981 {
1982 	if (register_pernet_subsys(&net_inuse_ops))
1983 		panic("Cannot initialize net inuse counters");
1984 
1985 	return 0;
1986 }
1987 
1988 core_initcall(net_inuse_init);
1989 #else
1990 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1991 
1992 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1993 {
1994 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1995 }
1996 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1997 
1998 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1999 {
2000 	int cpu, idx = prot->inuse_idx;
2001 	int res = 0;
2002 
2003 	for_each_possible_cpu(cpu)
2004 		res += per_cpu(prot_inuse, cpu).val[idx];
2005 
2006 	return res >= 0 ? res : 0;
2007 }
2008 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2009 #endif
2010 
2011 static void assign_proto_idx(struct proto *prot)
2012 {
2013 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2014 
2015 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2016 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2017 		return;
2018 	}
2019 
2020 	set_bit(prot->inuse_idx, proto_inuse_idx);
2021 }
2022 
2023 static void release_proto_idx(struct proto *prot)
2024 {
2025 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2026 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2027 }
2028 #else
2029 static inline void assign_proto_idx(struct proto *prot)
2030 {
2031 }
2032 
2033 static inline void release_proto_idx(struct proto *prot)
2034 {
2035 }
2036 #endif
2037 
2038 int proto_register(struct proto *prot, int alloc_slab)
2039 {
2040 	char *request_sock_slab_name = NULL;
2041 	char *timewait_sock_slab_name;
2042 
2043 	if (alloc_slab) {
2044 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2045 					       SLAB_HWCACHE_ALIGN, NULL);
2046 
2047 		if (prot->slab == NULL) {
2048 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2049 			       prot->name);
2050 			goto out;
2051 		}
2052 
2053 		if (prot->rsk_prot != NULL) {
2054 			static const char mask[] = "request_sock_%s";
2055 
2056 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2057 			if (request_sock_slab_name == NULL)
2058 				goto out_free_sock_slab;
2059 
2060 			sprintf(request_sock_slab_name, mask, prot->name);
2061 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
2062 								 prot->rsk_prot->obj_size, 0,
2063 								 SLAB_HWCACHE_ALIGN, NULL);
2064 
2065 			if (prot->rsk_prot->slab == NULL) {
2066 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2067 				       prot->name);
2068 				goto out_free_request_sock_slab_name;
2069 			}
2070 		}
2071 
2072 		if (prot->twsk_prot != NULL) {
2073 			static const char mask[] = "tw_sock_%s";
2074 
2075 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2076 
2077 			if (timewait_sock_slab_name == NULL)
2078 				goto out_free_request_sock_slab;
2079 
2080 			sprintf(timewait_sock_slab_name, mask, prot->name);
2081 			prot->twsk_prot->twsk_slab =
2082 				kmem_cache_create(timewait_sock_slab_name,
2083 						  prot->twsk_prot->twsk_obj_size,
2084 						  0, SLAB_HWCACHE_ALIGN,
2085 						  NULL);
2086 			if (prot->twsk_prot->twsk_slab == NULL)
2087 				goto out_free_timewait_sock_slab_name;
2088 		}
2089 	}
2090 
2091 	write_lock(&proto_list_lock);
2092 	list_add(&prot->node, &proto_list);
2093 	assign_proto_idx(prot);
2094 	write_unlock(&proto_list_lock);
2095 	return 0;
2096 
2097 out_free_timewait_sock_slab_name:
2098 	kfree(timewait_sock_slab_name);
2099 out_free_request_sock_slab:
2100 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2101 		kmem_cache_destroy(prot->rsk_prot->slab);
2102 		prot->rsk_prot->slab = NULL;
2103 	}
2104 out_free_request_sock_slab_name:
2105 	kfree(request_sock_slab_name);
2106 out_free_sock_slab:
2107 	kmem_cache_destroy(prot->slab);
2108 	prot->slab = NULL;
2109 out:
2110 	return -ENOBUFS;
2111 }
2112 
2113 EXPORT_SYMBOL(proto_register);
2114 
2115 void proto_unregister(struct proto *prot)
2116 {
2117 	write_lock(&proto_list_lock);
2118 	release_proto_idx(prot);
2119 	list_del(&prot->node);
2120 	write_unlock(&proto_list_lock);
2121 
2122 	if (prot->slab != NULL) {
2123 		kmem_cache_destroy(prot->slab);
2124 		prot->slab = NULL;
2125 	}
2126 
2127 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2128 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
2129 
2130 		kmem_cache_destroy(prot->rsk_prot->slab);
2131 		kfree(name);
2132 		prot->rsk_prot->slab = NULL;
2133 	}
2134 
2135 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2136 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2137 
2138 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2139 		kfree(name);
2140 		prot->twsk_prot->twsk_slab = NULL;
2141 	}
2142 }
2143 
2144 EXPORT_SYMBOL(proto_unregister);
2145 
2146 #ifdef CONFIG_PROC_FS
2147 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2148 	__acquires(proto_list_lock)
2149 {
2150 	read_lock(&proto_list_lock);
2151 	return seq_list_start_head(&proto_list, *pos);
2152 }
2153 
2154 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2155 {
2156 	return seq_list_next(v, &proto_list, pos);
2157 }
2158 
2159 static void proto_seq_stop(struct seq_file *seq, void *v)
2160 	__releases(proto_list_lock)
2161 {
2162 	read_unlock(&proto_list_lock);
2163 }
2164 
2165 static char proto_method_implemented(const void *method)
2166 {
2167 	return method == NULL ? 'n' : 'y';
2168 }
2169 
2170 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2171 {
2172 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2173 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2174 		   proto->name,
2175 		   proto->obj_size,
2176 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2177 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2178 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2179 		   proto->max_header,
2180 		   proto->slab == NULL ? "no" : "yes",
2181 		   module_name(proto->owner),
2182 		   proto_method_implemented(proto->close),
2183 		   proto_method_implemented(proto->connect),
2184 		   proto_method_implemented(proto->disconnect),
2185 		   proto_method_implemented(proto->accept),
2186 		   proto_method_implemented(proto->ioctl),
2187 		   proto_method_implemented(proto->init),
2188 		   proto_method_implemented(proto->destroy),
2189 		   proto_method_implemented(proto->shutdown),
2190 		   proto_method_implemented(proto->setsockopt),
2191 		   proto_method_implemented(proto->getsockopt),
2192 		   proto_method_implemented(proto->sendmsg),
2193 		   proto_method_implemented(proto->recvmsg),
2194 		   proto_method_implemented(proto->sendpage),
2195 		   proto_method_implemented(proto->bind),
2196 		   proto_method_implemented(proto->backlog_rcv),
2197 		   proto_method_implemented(proto->hash),
2198 		   proto_method_implemented(proto->unhash),
2199 		   proto_method_implemented(proto->get_port),
2200 		   proto_method_implemented(proto->enter_memory_pressure));
2201 }
2202 
2203 static int proto_seq_show(struct seq_file *seq, void *v)
2204 {
2205 	if (v == &proto_list)
2206 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2207 			   "protocol",
2208 			   "size",
2209 			   "sockets",
2210 			   "memory",
2211 			   "press",
2212 			   "maxhdr",
2213 			   "slab",
2214 			   "module",
2215 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2216 	else
2217 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2218 	return 0;
2219 }
2220 
2221 static const struct seq_operations proto_seq_ops = {
2222 	.start  = proto_seq_start,
2223 	.next   = proto_seq_next,
2224 	.stop   = proto_seq_stop,
2225 	.show   = proto_seq_show,
2226 };
2227 
2228 static int proto_seq_open(struct inode *inode, struct file *file)
2229 {
2230 	return seq_open(file, &proto_seq_ops);
2231 }
2232 
2233 static const struct file_operations proto_seq_fops = {
2234 	.owner		= THIS_MODULE,
2235 	.open		= proto_seq_open,
2236 	.read		= seq_read,
2237 	.llseek		= seq_lseek,
2238 	.release	= seq_release,
2239 };
2240 
2241 static int __init proto_init(void)
2242 {
2243 	/* register /proc/net/protocols */
2244 	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2245 }
2246 
2247 subsys_initcall(proto_init);
2248 
2249 #endif /* PROC_FS */
2250 
2251 EXPORT_SYMBOL(sk_alloc);
2252 EXPORT_SYMBOL(sk_free);
2253 EXPORT_SYMBOL(sk_send_sigurg);
2254 EXPORT_SYMBOL(sock_alloc_send_skb);
2255 EXPORT_SYMBOL(sock_init_data);
2256 EXPORT_SYMBOL(sock_kfree_s);
2257 EXPORT_SYMBOL(sock_kmalloc);
2258 EXPORT_SYMBOL(sock_no_accept);
2259 EXPORT_SYMBOL(sock_no_bind);
2260 EXPORT_SYMBOL(sock_no_connect);
2261 EXPORT_SYMBOL(sock_no_getname);
2262 EXPORT_SYMBOL(sock_no_getsockopt);
2263 EXPORT_SYMBOL(sock_no_ioctl);
2264 EXPORT_SYMBOL(sock_no_listen);
2265 EXPORT_SYMBOL(sock_no_mmap);
2266 EXPORT_SYMBOL(sock_no_poll);
2267 EXPORT_SYMBOL(sock_no_recvmsg);
2268 EXPORT_SYMBOL(sock_no_sendmsg);
2269 EXPORT_SYMBOL(sock_no_sendpage);
2270 EXPORT_SYMBOL(sock_no_setsockopt);
2271 EXPORT_SYMBOL(sock_no_shutdown);
2272 EXPORT_SYMBOL(sock_no_socketpair);
2273 EXPORT_SYMBOL(sock_rfree);
2274 EXPORT_SYMBOL(sock_setsockopt);
2275 EXPORT_SYMBOL(sock_wfree);
2276 EXPORT_SYMBOL(sock_wmalloc);
2277 EXPORT_SYMBOL(sock_i_uid);
2278 EXPORT_SYMBOL(sock_i_ino);
2279 EXPORT_SYMBOL(sysctl_optmem_max);
2280