xref: /linux/net/core/sock.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 
128 #include <linux/filter.h>
129 
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133 
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190 
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196 
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS		256
203 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206 
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212 
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215 
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 	struct timeval tv;
219 
220 	if (optlen < sizeof(tv))
221 		return -EINVAL;
222 	if (copy_from_user(&tv, optval, sizeof(tv)))
223 		return -EFAULT;
224 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 		return -EDOM;
226 
227 	if (tv.tv_sec < 0) {
228 		static int warned __read_mostly;
229 
230 		*timeo_p = 0;
231 		if (warned < 10 && net_ratelimit())
232 			warned++;
233 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 			       "tries to set negative timeout\n",
235 				current->comm, current->pid);
236 		return 0;
237 	}
238 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 		return 0;
241 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 	return 0;
244 }
245 
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 	static int warned;
249 	static char warncomm[TASK_COMM_LEN];
250 	if (strcmp(warncomm, current->comm) && warned < 5) {
251 		strcpy(warncomm,  current->comm);
252 		printk(KERN_WARNING "process `%s' is using obsolete "
253 		       "%s SO_BSDCOMPAT\n", warncomm, name);
254 		warned++;
255 	}
256 }
257 
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 		sock_reset_flag(sk, SOCK_TIMESTAMP);
262 		net_disable_timestamp();
263 	}
264 }
265 
266 
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 	int err = 0;
270 	int skb_len;
271 
272 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 	   number of warnings when compiling with -W --ANK
274 	 */
275 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 	    (unsigned)sk->sk_rcvbuf) {
277 		err = -ENOMEM;
278 		goto out;
279 	}
280 
281 	err = sk_filter(sk, skb);
282 	if (err)
283 		goto out;
284 
285 	skb->dev = NULL;
286 	skb_set_owner_r(skb, sk);
287 
288 	/* Cache the SKB length before we tack it onto the receive
289 	 * queue.  Once it is added it no longer belongs to us and
290 	 * may be freed by other threads of control pulling packets
291 	 * from the queue.
292 	 */
293 	skb_len = skb->len;
294 
295 	skb_queue_tail(&sk->sk_receive_queue, skb);
296 
297 	if (!sock_flag(sk, SOCK_DEAD))
298 		sk->sk_data_ready(sk, skb_len);
299 out:
300 	return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303 
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306 	int rc = NET_RX_SUCCESS;
307 
308 	if (sk_filter(sk, skb))
309 		goto discard_and_relse;
310 
311 	skb->dev = NULL;
312 
313 	if (nested)
314 		bh_lock_sock_nested(sk);
315 	else
316 		bh_lock_sock(sk);
317 	if (!sock_owned_by_user(sk)) {
318 		/*
319 		 * trylock + unlock semantics:
320 		 */
321 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322 
323 		rc = sk->sk_backlog_rcv(sk, skb);
324 
325 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326 	} else
327 		sk_add_backlog(sk, skb);
328 	bh_unlock_sock(sk);
329 out:
330 	sock_put(sk);
331 	return rc;
332 discard_and_relse:
333 	kfree_skb(skb);
334 	goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337 
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340 	struct dst_entry *dst = sk->sk_dst_cache;
341 
342 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343 		sk->sk_dst_cache = NULL;
344 		dst_release(dst);
345 		return NULL;
346 	}
347 
348 	return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351 
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354 	struct dst_entry *dst = sk_dst_get(sk);
355 
356 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357 		sk_dst_reset(sk);
358 		dst_release(dst);
359 		return NULL;
360 	}
361 
362 	return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365 
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368 	int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370 	struct net *net = sk->sk_net;
371 	char devname[IFNAMSIZ];
372 	int index;
373 
374 	/* Sorry... */
375 	ret = -EPERM;
376 	if (!capable(CAP_NET_RAW))
377 		goto out;
378 
379 	ret = -EINVAL;
380 	if (optlen < 0)
381 		goto out;
382 
383 	/* Bind this socket to a particular device like "eth0",
384 	 * as specified in the passed interface name. If the
385 	 * name is "" or the option length is zero the socket
386 	 * is not bound.
387 	 */
388 	if (optlen > IFNAMSIZ - 1)
389 		optlen = IFNAMSIZ - 1;
390 	memset(devname, 0, sizeof(devname));
391 
392 	ret = -EFAULT;
393 	if (copy_from_user(devname, optval, optlen))
394 		goto out;
395 
396 	if (devname[0] == '\0') {
397 		index = 0;
398 	} else {
399 		struct net_device *dev = dev_get_by_name(net, devname);
400 
401 		ret = -ENODEV;
402 		if (!dev)
403 			goto out;
404 
405 		index = dev->ifindex;
406 		dev_put(dev);
407 	}
408 
409 	lock_sock(sk);
410 	sk->sk_bound_dev_if = index;
411 	sk_dst_reset(sk);
412 	release_sock(sk);
413 
414 	ret = 0;
415 
416 out:
417 #endif
418 
419 	return ret;
420 }
421 
422 /*
423  *	This is meant for all protocols to use and covers goings on
424  *	at the socket level. Everything here is generic.
425  */
426 
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428 		    char __user *optval, int optlen)
429 {
430 	struct sock *sk=sock->sk;
431 	struct sk_filter *filter;
432 	int val;
433 	int valbool;
434 	struct linger ling;
435 	int ret = 0;
436 
437 	/*
438 	 *	Options without arguments
439 	 */
440 
441 #ifdef SO_DONTLINGER		/* Compatibility item... */
442 	if (optname == SO_DONTLINGER) {
443 		lock_sock(sk);
444 		sock_reset_flag(sk, SOCK_LINGER);
445 		release_sock(sk);
446 		return 0;
447 	}
448 #endif
449 
450 	if (optname == SO_BINDTODEVICE)
451 		return sock_bindtodevice(sk, optval, optlen);
452 
453 	if (optlen < sizeof(int))
454 		return -EINVAL;
455 
456 	if (get_user(val, (int __user *)optval))
457 		return -EFAULT;
458 
459 	valbool = val?1:0;
460 
461 	lock_sock(sk);
462 
463 	switch(optname) {
464 	case SO_DEBUG:
465 		if (val && !capable(CAP_NET_ADMIN)) {
466 			ret = -EACCES;
467 		}
468 		else if (valbool)
469 			sock_set_flag(sk, SOCK_DBG);
470 		else
471 			sock_reset_flag(sk, SOCK_DBG);
472 		break;
473 	case SO_REUSEADDR:
474 		sk->sk_reuse = valbool;
475 		break;
476 	case SO_TYPE:
477 	case SO_ERROR:
478 		ret = -ENOPROTOOPT;
479 		break;
480 	case SO_DONTROUTE:
481 		if (valbool)
482 			sock_set_flag(sk, SOCK_LOCALROUTE);
483 		else
484 			sock_reset_flag(sk, SOCK_LOCALROUTE);
485 		break;
486 	case SO_BROADCAST:
487 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
488 		break;
489 	case SO_SNDBUF:
490 		/* Don't error on this BSD doesn't and if you think
491 		   about it this is right. Otherwise apps have to
492 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
493 		   are treated in BSD as hints */
494 
495 		if (val > sysctl_wmem_max)
496 			val = sysctl_wmem_max;
497 set_sndbuf:
498 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
499 		if ((val * 2) < SOCK_MIN_SNDBUF)
500 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
501 		else
502 			sk->sk_sndbuf = val * 2;
503 
504 		/*
505 		 *	Wake up sending tasks if we
506 		 *	upped the value.
507 		 */
508 		sk->sk_write_space(sk);
509 		break;
510 
511 	case SO_SNDBUFFORCE:
512 		if (!capable(CAP_NET_ADMIN)) {
513 			ret = -EPERM;
514 			break;
515 		}
516 		goto set_sndbuf;
517 
518 	case SO_RCVBUF:
519 		/* Don't error on this BSD doesn't and if you think
520 		   about it this is right. Otherwise apps have to
521 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
522 		   are treated in BSD as hints */
523 
524 		if (val > sysctl_rmem_max)
525 			val = sysctl_rmem_max;
526 set_rcvbuf:
527 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
528 		/*
529 		 * We double it on the way in to account for
530 		 * "struct sk_buff" etc. overhead.   Applications
531 		 * assume that the SO_RCVBUF setting they make will
532 		 * allow that much actual data to be received on that
533 		 * socket.
534 		 *
535 		 * Applications are unaware that "struct sk_buff" and
536 		 * other overheads allocate from the receive buffer
537 		 * during socket buffer allocation.
538 		 *
539 		 * And after considering the possible alternatives,
540 		 * returning the value we actually used in getsockopt
541 		 * is the most desirable behavior.
542 		 */
543 		if ((val * 2) < SOCK_MIN_RCVBUF)
544 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
545 		else
546 			sk->sk_rcvbuf = val * 2;
547 		break;
548 
549 	case SO_RCVBUFFORCE:
550 		if (!capable(CAP_NET_ADMIN)) {
551 			ret = -EPERM;
552 			break;
553 		}
554 		goto set_rcvbuf;
555 
556 	case SO_KEEPALIVE:
557 #ifdef CONFIG_INET
558 		if (sk->sk_protocol == IPPROTO_TCP)
559 			tcp_set_keepalive(sk, valbool);
560 #endif
561 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
562 		break;
563 
564 	case SO_OOBINLINE:
565 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
566 		break;
567 
568 	case SO_NO_CHECK:
569 		sk->sk_no_check = valbool;
570 		break;
571 
572 	case SO_PRIORITY:
573 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
574 			sk->sk_priority = val;
575 		else
576 			ret = -EPERM;
577 		break;
578 
579 	case SO_LINGER:
580 		if (optlen < sizeof(ling)) {
581 			ret = -EINVAL;	/* 1003.1g */
582 			break;
583 		}
584 		if (copy_from_user(&ling,optval,sizeof(ling))) {
585 			ret = -EFAULT;
586 			break;
587 		}
588 		if (!ling.l_onoff)
589 			sock_reset_flag(sk, SOCK_LINGER);
590 		else {
591 #if (BITS_PER_LONG == 32)
592 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
593 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
594 			else
595 #endif
596 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
597 			sock_set_flag(sk, SOCK_LINGER);
598 		}
599 		break;
600 
601 	case SO_BSDCOMPAT:
602 		sock_warn_obsolete_bsdism("setsockopt");
603 		break;
604 
605 	case SO_PASSCRED:
606 		if (valbool)
607 			set_bit(SOCK_PASSCRED, &sock->flags);
608 		else
609 			clear_bit(SOCK_PASSCRED, &sock->flags);
610 		break;
611 
612 	case SO_TIMESTAMP:
613 	case SO_TIMESTAMPNS:
614 		if (valbool)  {
615 			if (optname == SO_TIMESTAMP)
616 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
617 			else
618 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
619 			sock_set_flag(sk, SOCK_RCVTSTAMP);
620 			sock_enable_timestamp(sk);
621 		} else {
622 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
623 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
624 		}
625 		break;
626 
627 	case SO_RCVLOWAT:
628 		if (val < 0)
629 			val = INT_MAX;
630 		sk->sk_rcvlowat = val ? : 1;
631 		break;
632 
633 	case SO_RCVTIMEO:
634 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
635 		break;
636 
637 	case SO_SNDTIMEO:
638 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
639 		break;
640 
641 	case SO_ATTACH_FILTER:
642 		ret = -EINVAL;
643 		if (optlen == sizeof(struct sock_fprog)) {
644 			struct sock_fprog fprog;
645 
646 			ret = -EFAULT;
647 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
648 				break;
649 
650 			ret = sk_attach_filter(&fprog, sk);
651 		}
652 		break;
653 
654 	case SO_DETACH_FILTER:
655 		rcu_read_lock_bh();
656 		filter = rcu_dereference(sk->sk_filter);
657 		if (filter) {
658 			rcu_assign_pointer(sk->sk_filter, NULL);
659 			sk_filter_release(sk, filter);
660 			rcu_read_unlock_bh();
661 			break;
662 		}
663 		rcu_read_unlock_bh();
664 		ret = -ENONET;
665 		break;
666 
667 	case SO_PASSSEC:
668 		if (valbool)
669 			set_bit(SOCK_PASSSEC, &sock->flags);
670 		else
671 			clear_bit(SOCK_PASSSEC, &sock->flags);
672 		break;
673 
674 		/* We implement the SO_SNDLOWAT etc to
675 		   not be settable (1003.1g 5.3) */
676 	default:
677 		ret = -ENOPROTOOPT;
678 		break;
679 	}
680 	release_sock(sk);
681 	return ret;
682 }
683 
684 
685 int sock_getsockopt(struct socket *sock, int level, int optname,
686 		    char __user *optval, int __user *optlen)
687 {
688 	struct sock *sk = sock->sk;
689 
690 	union {
691 		int val;
692 		struct linger ling;
693 		struct timeval tm;
694 	} v;
695 
696 	unsigned int lv = sizeof(int);
697 	int len;
698 
699 	if (get_user(len, optlen))
700 		return -EFAULT;
701 	if (len < 0)
702 		return -EINVAL;
703 
704 	switch(optname) {
705 	case SO_DEBUG:
706 		v.val = sock_flag(sk, SOCK_DBG);
707 		break;
708 
709 	case SO_DONTROUTE:
710 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
711 		break;
712 
713 	case SO_BROADCAST:
714 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
715 		break;
716 
717 	case SO_SNDBUF:
718 		v.val = sk->sk_sndbuf;
719 		break;
720 
721 	case SO_RCVBUF:
722 		v.val = sk->sk_rcvbuf;
723 		break;
724 
725 	case SO_REUSEADDR:
726 		v.val = sk->sk_reuse;
727 		break;
728 
729 	case SO_KEEPALIVE:
730 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
731 		break;
732 
733 	case SO_TYPE:
734 		v.val = sk->sk_type;
735 		break;
736 
737 	case SO_ERROR:
738 		v.val = -sock_error(sk);
739 		if (v.val==0)
740 			v.val = xchg(&sk->sk_err_soft, 0);
741 		break;
742 
743 	case SO_OOBINLINE:
744 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
745 		break;
746 
747 	case SO_NO_CHECK:
748 		v.val = sk->sk_no_check;
749 		break;
750 
751 	case SO_PRIORITY:
752 		v.val = sk->sk_priority;
753 		break;
754 
755 	case SO_LINGER:
756 		lv		= sizeof(v.ling);
757 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
758 		v.ling.l_linger	= sk->sk_lingertime / HZ;
759 		break;
760 
761 	case SO_BSDCOMPAT:
762 		sock_warn_obsolete_bsdism("getsockopt");
763 		break;
764 
765 	case SO_TIMESTAMP:
766 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
767 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
768 		break;
769 
770 	case SO_TIMESTAMPNS:
771 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
772 		break;
773 
774 	case SO_RCVTIMEO:
775 		lv=sizeof(struct timeval);
776 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
777 			v.tm.tv_sec = 0;
778 			v.tm.tv_usec = 0;
779 		} else {
780 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
781 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
782 		}
783 		break;
784 
785 	case SO_SNDTIMEO:
786 		lv=sizeof(struct timeval);
787 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
788 			v.tm.tv_sec = 0;
789 			v.tm.tv_usec = 0;
790 		} else {
791 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
792 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
793 		}
794 		break;
795 
796 	case SO_RCVLOWAT:
797 		v.val = sk->sk_rcvlowat;
798 		break;
799 
800 	case SO_SNDLOWAT:
801 		v.val=1;
802 		break;
803 
804 	case SO_PASSCRED:
805 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
806 		break;
807 
808 	case SO_PEERCRED:
809 		if (len > sizeof(sk->sk_peercred))
810 			len = sizeof(sk->sk_peercred);
811 		if (copy_to_user(optval, &sk->sk_peercred, len))
812 			return -EFAULT;
813 		goto lenout;
814 
815 	case SO_PEERNAME:
816 	{
817 		char address[128];
818 
819 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
820 			return -ENOTCONN;
821 		if (lv < len)
822 			return -EINVAL;
823 		if (copy_to_user(optval, address, len))
824 			return -EFAULT;
825 		goto lenout;
826 	}
827 
828 	/* Dubious BSD thing... Probably nobody even uses it, but
829 	 * the UNIX standard wants it for whatever reason... -DaveM
830 	 */
831 	case SO_ACCEPTCONN:
832 		v.val = sk->sk_state == TCP_LISTEN;
833 		break;
834 
835 	case SO_PASSSEC:
836 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
837 		break;
838 
839 	case SO_PEERSEC:
840 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
841 
842 	default:
843 		return -ENOPROTOOPT;
844 	}
845 
846 	if (len > lv)
847 		len = lv;
848 	if (copy_to_user(optval, &v, len))
849 		return -EFAULT;
850 lenout:
851 	if (put_user(len, optlen))
852 		return -EFAULT;
853 	return 0;
854 }
855 
856 /*
857  * Initialize an sk_lock.
858  *
859  * (We also register the sk_lock with the lock validator.)
860  */
861 static inline void sock_lock_init(struct sock *sk)
862 {
863 	sock_lock_init_class_and_name(sk,
864 			af_family_slock_key_strings[sk->sk_family],
865 			af_family_slock_keys + sk->sk_family,
866 			af_family_key_strings[sk->sk_family],
867 			af_family_keys + sk->sk_family);
868 }
869 
870 /**
871  *	sk_alloc - All socket objects are allocated here
872  *	@net: the applicable net namespace
873  *	@family: protocol family
874  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
875  *	@prot: struct proto associated with this new sock instance
876  *	@zero_it: if we should zero the newly allocated sock
877  */
878 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
879 		      struct proto *prot, int zero_it)
880 {
881 	struct sock *sk = NULL;
882 	struct kmem_cache *slab = prot->slab;
883 
884 	if (slab != NULL)
885 		sk = kmem_cache_alloc(slab, priority);
886 	else
887 		sk = kmalloc(prot->obj_size, priority);
888 
889 	if (sk) {
890 		if (zero_it) {
891 			memset(sk, 0, prot->obj_size);
892 			sk->sk_family = family;
893 			/*
894 			 * See comment in struct sock definition to understand
895 			 * why we need sk_prot_creator -acme
896 			 */
897 			sk->sk_prot = sk->sk_prot_creator = prot;
898 			sock_lock_init(sk);
899 			sk->sk_net = get_net(net);
900 		}
901 
902 		if (security_sk_alloc(sk, family, priority))
903 			goto out_free;
904 
905 		if (!try_module_get(prot->owner))
906 			goto out_free;
907 	}
908 	return sk;
909 
910 out_free:
911 	if (slab != NULL)
912 		kmem_cache_free(slab, sk);
913 	else
914 		kfree(sk);
915 	return NULL;
916 }
917 
918 void sk_free(struct sock *sk)
919 {
920 	struct sk_filter *filter;
921 	struct module *owner = sk->sk_prot_creator->owner;
922 
923 	if (sk->sk_destruct)
924 		sk->sk_destruct(sk);
925 
926 	filter = rcu_dereference(sk->sk_filter);
927 	if (filter) {
928 		sk_filter_release(sk, filter);
929 		rcu_assign_pointer(sk->sk_filter, NULL);
930 	}
931 
932 	sock_disable_timestamp(sk);
933 
934 	if (atomic_read(&sk->sk_omem_alloc))
935 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
936 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
937 
938 	security_sk_free(sk);
939 	put_net(sk->sk_net);
940 	if (sk->sk_prot_creator->slab != NULL)
941 		kmem_cache_free(sk->sk_prot_creator->slab, sk);
942 	else
943 		kfree(sk);
944 	module_put(owner);
945 }
946 
947 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
948 {
949 	struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
950 
951 	if (newsk != NULL) {
952 		struct sk_filter *filter;
953 
954 		sock_copy(newsk, sk);
955 
956 		/* SANITY */
957 		sk_node_init(&newsk->sk_node);
958 		sock_lock_init(newsk);
959 		bh_lock_sock(newsk);
960 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
961 
962 		atomic_set(&newsk->sk_rmem_alloc, 0);
963 		atomic_set(&newsk->sk_wmem_alloc, 0);
964 		atomic_set(&newsk->sk_omem_alloc, 0);
965 		skb_queue_head_init(&newsk->sk_receive_queue);
966 		skb_queue_head_init(&newsk->sk_write_queue);
967 #ifdef CONFIG_NET_DMA
968 		skb_queue_head_init(&newsk->sk_async_wait_queue);
969 #endif
970 
971 		rwlock_init(&newsk->sk_dst_lock);
972 		rwlock_init(&newsk->sk_callback_lock);
973 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
974 				af_callback_keys + newsk->sk_family,
975 				af_family_clock_key_strings[newsk->sk_family]);
976 
977 		newsk->sk_dst_cache	= NULL;
978 		newsk->sk_wmem_queued	= 0;
979 		newsk->sk_forward_alloc = 0;
980 		newsk->sk_send_head	= NULL;
981 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
982 
983 		sock_reset_flag(newsk, SOCK_DONE);
984 		skb_queue_head_init(&newsk->sk_error_queue);
985 
986 		filter = newsk->sk_filter;
987 		if (filter != NULL)
988 			sk_filter_charge(newsk, filter);
989 
990 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
991 			/* It is still raw copy of parent, so invalidate
992 			 * destructor and make plain sk_free() */
993 			newsk->sk_destruct = NULL;
994 			sk_free(newsk);
995 			newsk = NULL;
996 			goto out;
997 		}
998 
999 		newsk->sk_err	   = 0;
1000 		newsk->sk_priority = 0;
1001 		atomic_set(&newsk->sk_refcnt, 2);
1002 
1003 		/*
1004 		 * Increment the counter in the same struct proto as the master
1005 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1006 		 * is the same as sk->sk_prot->socks, as this field was copied
1007 		 * with memcpy).
1008 		 *
1009 		 * This _changes_ the previous behaviour, where
1010 		 * tcp_create_openreq_child always was incrementing the
1011 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1012 		 * to be taken into account in all callers. -acme
1013 		 */
1014 		sk_refcnt_debug_inc(newsk);
1015 		newsk->sk_socket = NULL;
1016 		newsk->sk_sleep	 = NULL;
1017 
1018 		if (newsk->sk_prot->sockets_allocated)
1019 			atomic_inc(newsk->sk_prot->sockets_allocated);
1020 	}
1021 out:
1022 	return newsk;
1023 }
1024 
1025 EXPORT_SYMBOL_GPL(sk_clone);
1026 
1027 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1028 {
1029 	__sk_dst_set(sk, dst);
1030 	sk->sk_route_caps = dst->dev->features;
1031 	if (sk->sk_route_caps & NETIF_F_GSO)
1032 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1033 	if (sk_can_gso(sk)) {
1034 		if (dst->header_len)
1035 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1036 		else
1037 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1038 	}
1039 }
1040 EXPORT_SYMBOL_GPL(sk_setup_caps);
1041 
1042 void __init sk_init(void)
1043 {
1044 	if (num_physpages <= 4096) {
1045 		sysctl_wmem_max = 32767;
1046 		sysctl_rmem_max = 32767;
1047 		sysctl_wmem_default = 32767;
1048 		sysctl_rmem_default = 32767;
1049 	} else if (num_physpages >= 131072) {
1050 		sysctl_wmem_max = 131071;
1051 		sysctl_rmem_max = 131071;
1052 	}
1053 }
1054 
1055 /*
1056  *	Simple resource managers for sockets.
1057  */
1058 
1059 
1060 /*
1061  * Write buffer destructor automatically called from kfree_skb.
1062  */
1063 void sock_wfree(struct sk_buff *skb)
1064 {
1065 	struct sock *sk = skb->sk;
1066 
1067 	/* In case it might be waiting for more memory. */
1068 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1069 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1070 		sk->sk_write_space(sk);
1071 	sock_put(sk);
1072 }
1073 
1074 /*
1075  * Read buffer destructor automatically called from kfree_skb.
1076  */
1077 void sock_rfree(struct sk_buff *skb)
1078 {
1079 	struct sock *sk = skb->sk;
1080 
1081 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1082 }
1083 
1084 
1085 int sock_i_uid(struct sock *sk)
1086 {
1087 	int uid;
1088 
1089 	read_lock(&sk->sk_callback_lock);
1090 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1091 	read_unlock(&sk->sk_callback_lock);
1092 	return uid;
1093 }
1094 
1095 unsigned long sock_i_ino(struct sock *sk)
1096 {
1097 	unsigned long ino;
1098 
1099 	read_lock(&sk->sk_callback_lock);
1100 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1101 	read_unlock(&sk->sk_callback_lock);
1102 	return ino;
1103 }
1104 
1105 /*
1106  * Allocate a skb from the socket's send buffer.
1107  */
1108 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1109 			     gfp_t priority)
1110 {
1111 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1112 		struct sk_buff * skb = alloc_skb(size, priority);
1113 		if (skb) {
1114 			skb_set_owner_w(skb, sk);
1115 			return skb;
1116 		}
1117 	}
1118 	return NULL;
1119 }
1120 
1121 /*
1122  * Allocate a skb from the socket's receive buffer.
1123  */
1124 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1125 			     gfp_t priority)
1126 {
1127 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1128 		struct sk_buff *skb = alloc_skb(size, priority);
1129 		if (skb) {
1130 			skb_set_owner_r(skb, sk);
1131 			return skb;
1132 		}
1133 	}
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * Allocate a memory block from the socket's option memory buffer.
1139  */
1140 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1141 {
1142 	if ((unsigned)size <= sysctl_optmem_max &&
1143 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1144 		void *mem;
1145 		/* First do the add, to avoid the race if kmalloc
1146 		 * might sleep.
1147 		 */
1148 		atomic_add(size, &sk->sk_omem_alloc);
1149 		mem = kmalloc(size, priority);
1150 		if (mem)
1151 			return mem;
1152 		atomic_sub(size, &sk->sk_omem_alloc);
1153 	}
1154 	return NULL;
1155 }
1156 
1157 /*
1158  * Free an option memory block.
1159  */
1160 void sock_kfree_s(struct sock *sk, void *mem, int size)
1161 {
1162 	kfree(mem);
1163 	atomic_sub(size, &sk->sk_omem_alloc);
1164 }
1165 
1166 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1167    I think, these locks should be removed for datagram sockets.
1168  */
1169 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1170 {
1171 	DEFINE_WAIT(wait);
1172 
1173 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1174 	for (;;) {
1175 		if (!timeo)
1176 			break;
1177 		if (signal_pending(current))
1178 			break;
1179 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1180 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1181 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1182 			break;
1183 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1184 			break;
1185 		if (sk->sk_err)
1186 			break;
1187 		timeo = schedule_timeout(timeo);
1188 	}
1189 	finish_wait(sk->sk_sleep, &wait);
1190 	return timeo;
1191 }
1192 
1193 
1194 /*
1195  *	Generic send/receive buffer handlers
1196  */
1197 
1198 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1199 					    unsigned long header_len,
1200 					    unsigned long data_len,
1201 					    int noblock, int *errcode)
1202 {
1203 	struct sk_buff *skb;
1204 	gfp_t gfp_mask;
1205 	long timeo;
1206 	int err;
1207 
1208 	gfp_mask = sk->sk_allocation;
1209 	if (gfp_mask & __GFP_WAIT)
1210 		gfp_mask |= __GFP_REPEAT;
1211 
1212 	timeo = sock_sndtimeo(sk, noblock);
1213 	while (1) {
1214 		err = sock_error(sk);
1215 		if (err != 0)
1216 			goto failure;
1217 
1218 		err = -EPIPE;
1219 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1220 			goto failure;
1221 
1222 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1223 			skb = alloc_skb(header_len, gfp_mask);
1224 			if (skb) {
1225 				int npages;
1226 				int i;
1227 
1228 				/* No pages, we're done... */
1229 				if (!data_len)
1230 					break;
1231 
1232 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1233 				skb->truesize += data_len;
1234 				skb_shinfo(skb)->nr_frags = npages;
1235 				for (i = 0; i < npages; i++) {
1236 					struct page *page;
1237 					skb_frag_t *frag;
1238 
1239 					page = alloc_pages(sk->sk_allocation, 0);
1240 					if (!page) {
1241 						err = -ENOBUFS;
1242 						skb_shinfo(skb)->nr_frags = i;
1243 						kfree_skb(skb);
1244 						goto failure;
1245 					}
1246 
1247 					frag = &skb_shinfo(skb)->frags[i];
1248 					frag->page = page;
1249 					frag->page_offset = 0;
1250 					frag->size = (data_len >= PAGE_SIZE ?
1251 						      PAGE_SIZE :
1252 						      data_len);
1253 					data_len -= PAGE_SIZE;
1254 				}
1255 
1256 				/* Full success... */
1257 				break;
1258 			}
1259 			err = -ENOBUFS;
1260 			goto failure;
1261 		}
1262 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1263 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1264 		err = -EAGAIN;
1265 		if (!timeo)
1266 			goto failure;
1267 		if (signal_pending(current))
1268 			goto interrupted;
1269 		timeo = sock_wait_for_wmem(sk, timeo);
1270 	}
1271 
1272 	skb_set_owner_w(skb, sk);
1273 	return skb;
1274 
1275 interrupted:
1276 	err = sock_intr_errno(timeo);
1277 failure:
1278 	*errcode = err;
1279 	return NULL;
1280 }
1281 
1282 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1283 				    int noblock, int *errcode)
1284 {
1285 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1286 }
1287 
1288 static void __lock_sock(struct sock *sk)
1289 {
1290 	DEFINE_WAIT(wait);
1291 
1292 	for (;;) {
1293 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1294 					TASK_UNINTERRUPTIBLE);
1295 		spin_unlock_bh(&sk->sk_lock.slock);
1296 		schedule();
1297 		spin_lock_bh(&sk->sk_lock.slock);
1298 		if (!sock_owned_by_user(sk))
1299 			break;
1300 	}
1301 	finish_wait(&sk->sk_lock.wq, &wait);
1302 }
1303 
1304 static void __release_sock(struct sock *sk)
1305 {
1306 	struct sk_buff *skb = sk->sk_backlog.head;
1307 
1308 	do {
1309 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1310 		bh_unlock_sock(sk);
1311 
1312 		do {
1313 			struct sk_buff *next = skb->next;
1314 
1315 			skb->next = NULL;
1316 			sk->sk_backlog_rcv(sk, skb);
1317 
1318 			/*
1319 			 * We are in process context here with softirqs
1320 			 * disabled, use cond_resched_softirq() to preempt.
1321 			 * This is safe to do because we've taken the backlog
1322 			 * queue private:
1323 			 */
1324 			cond_resched_softirq();
1325 
1326 			skb = next;
1327 		} while (skb != NULL);
1328 
1329 		bh_lock_sock(sk);
1330 	} while ((skb = sk->sk_backlog.head) != NULL);
1331 }
1332 
1333 /**
1334  * sk_wait_data - wait for data to arrive at sk_receive_queue
1335  * @sk:    sock to wait on
1336  * @timeo: for how long
1337  *
1338  * Now socket state including sk->sk_err is changed only under lock,
1339  * hence we may omit checks after joining wait queue.
1340  * We check receive queue before schedule() only as optimization;
1341  * it is very likely that release_sock() added new data.
1342  */
1343 int sk_wait_data(struct sock *sk, long *timeo)
1344 {
1345 	int rc;
1346 	DEFINE_WAIT(wait);
1347 
1348 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1349 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1350 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1351 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1352 	finish_wait(sk->sk_sleep, &wait);
1353 	return rc;
1354 }
1355 
1356 EXPORT_SYMBOL(sk_wait_data);
1357 
1358 /*
1359  * Set of default routines for initialising struct proto_ops when
1360  * the protocol does not support a particular function. In certain
1361  * cases where it makes no sense for a protocol to have a "do nothing"
1362  * function, some default processing is provided.
1363  */
1364 
1365 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1366 {
1367 	return -EOPNOTSUPP;
1368 }
1369 
1370 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1371 		    int len, int flags)
1372 {
1373 	return -EOPNOTSUPP;
1374 }
1375 
1376 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1377 {
1378 	return -EOPNOTSUPP;
1379 }
1380 
1381 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1382 {
1383 	return -EOPNOTSUPP;
1384 }
1385 
1386 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1387 		    int *len, int peer)
1388 {
1389 	return -EOPNOTSUPP;
1390 }
1391 
1392 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1393 {
1394 	return 0;
1395 }
1396 
1397 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1398 {
1399 	return -EOPNOTSUPP;
1400 }
1401 
1402 int sock_no_listen(struct socket *sock, int backlog)
1403 {
1404 	return -EOPNOTSUPP;
1405 }
1406 
1407 int sock_no_shutdown(struct socket *sock, int how)
1408 {
1409 	return -EOPNOTSUPP;
1410 }
1411 
1412 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1413 		    char __user *optval, int optlen)
1414 {
1415 	return -EOPNOTSUPP;
1416 }
1417 
1418 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1419 		    char __user *optval, int __user *optlen)
1420 {
1421 	return -EOPNOTSUPP;
1422 }
1423 
1424 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1425 		    size_t len)
1426 {
1427 	return -EOPNOTSUPP;
1428 }
1429 
1430 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1431 		    size_t len, int flags)
1432 {
1433 	return -EOPNOTSUPP;
1434 }
1435 
1436 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1437 {
1438 	/* Mirror missing mmap method error code */
1439 	return -ENODEV;
1440 }
1441 
1442 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1443 {
1444 	ssize_t res;
1445 	struct msghdr msg = {.msg_flags = flags};
1446 	struct kvec iov;
1447 	char *kaddr = kmap(page);
1448 	iov.iov_base = kaddr + offset;
1449 	iov.iov_len = size;
1450 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1451 	kunmap(page);
1452 	return res;
1453 }
1454 
1455 /*
1456  *	Default Socket Callbacks
1457  */
1458 
1459 static void sock_def_wakeup(struct sock *sk)
1460 {
1461 	read_lock(&sk->sk_callback_lock);
1462 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1463 		wake_up_interruptible_all(sk->sk_sleep);
1464 	read_unlock(&sk->sk_callback_lock);
1465 }
1466 
1467 static void sock_def_error_report(struct sock *sk)
1468 {
1469 	read_lock(&sk->sk_callback_lock);
1470 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1471 		wake_up_interruptible(sk->sk_sleep);
1472 	sk_wake_async(sk,0,POLL_ERR);
1473 	read_unlock(&sk->sk_callback_lock);
1474 }
1475 
1476 static void sock_def_readable(struct sock *sk, int len)
1477 {
1478 	read_lock(&sk->sk_callback_lock);
1479 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1480 		wake_up_interruptible(sk->sk_sleep);
1481 	sk_wake_async(sk,1,POLL_IN);
1482 	read_unlock(&sk->sk_callback_lock);
1483 }
1484 
1485 static void sock_def_write_space(struct sock *sk)
1486 {
1487 	read_lock(&sk->sk_callback_lock);
1488 
1489 	/* Do not wake up a writer until he can make "significant"
1490 	 * progress.  --DaveM
1491 	 */
1492 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1493 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1494 			wake_up_interruptible(sk->sk_sleep);
1495 
1496 		/* Should agree with poll, otherwise some programs break */
1497 		if (sock_writeable(sk))
1498 			sk_wake_async(sk, 2, POLL_OUT);
1499 	}
1500 
1501 	read_unlock(&sk->sk_callback_lock);
1502 }
1503 
1504 static void sock_def_destruct(struct sock *sk)
1505 {
1506 	kfree(sk->sk_protinfo);
1507 }
1508 
1509 void sk_send_sigurg(struct sock *sk)
1510 {
1511 	if (sk->sk_socket && sk->sk_socket->file)
1512 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1513 			sk_wake_async(sk, 3, POLL_PRI);
1514 }
1515 
1516 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1517 		    unsigned long expires)
1518 {
1519 	if (!mod_timer(timer, expires))
1520 		sock_hold(sk);
1521 }
1522 
1523 EXPORT_SYMBOL(sk_reset_timer);
1524 
1525 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1526 {
1527 	if (timer_pending(timer) && del_timer(timer))
1528 		__sock_put(sk);
1529 }
1530 
1531 EXPORT_SYMBOL(sk_stop_timer);
1532 
1533 void sock_init_data(struct socket *sock, struct sock *sk)
1534 {
1535 	skb_queue_head_init(&sk->sk_receive_queue);
1536 	skb_queue_head_init(&sk->sk_write_queue);
1537 	skb_queue_head_init(&sk->sk_error_queue);
1538 #ifdef CONFIG_NET_DMA
1539 	skb_queue_head_init(&sk->sk_async_wait_queue);
1540 #endif
1541 
1542 	sk->sk_send_head	=	NULL;
1543 
1544 	init_timer(&sk->sk_timer);
1545 
1546 	sk->sk_allocation	=	GFP_KERNEL;
1547 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1548 	sk->sk_sndbuf		=	sysctl_wmem_default;
1549 	sk->sk_state		=	TCP_CLOSE;
1550 	sk->sk_socket		=	sock;
1551 
1552 	sock_set_flag(sk, SOCK_ZAPPED);
1553 
1554 	if (sock) {
1555 		sk->sk_type	=	sock->type;
1556 		sk->sk_sleep	=	&sock->wait;
1557 		sock->sk	=	sk;
1558 	} else
1559 		sk->sk_sleep	=	NULL;
1560 
1561 	rwlock_init(&sk->sk_dst_lock);
1562 	rwlock_init(&sk->sk_callback_lock);
1563 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1564 			af_callback_keys + sk->sk_family,
1565 			af_family_clock_key_strings[sk->sk_family]);
1566 
1567 	sk->sk_state_change	=	sock_def_wakeup;
1568 	sk->sk_data_ready	=	sock_def_readable;
1569 	sk->sk_write_space	=	sock_def_write_space;
1570 	sk->sk_error_report	=	sock_def_error_report;
1571 	sk->sk_destruct		=	sock_def_destruct;
1572 
1573 	sk->sk_sndmsg_page	=	NULL;
1574 	sk->sk_sndmsg_off	=	0;
1575 
1576 	sk->sk_peercred.pid 	=	0;
1577 	sk->sk_peercred.uid	=	-1;
1578 	sk->sk_peercred.gid	=	-1;
1579 	sk->sk_write_pending	=	0;
1580 	sk->sk_rcvlowat		=	1;
1581 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1582 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1583 
1584 	sk->sk_stamp = ktime_set(-1L, -1L);
1585 
1586 	atomic_set(&sk->sk_refcnt, 1);
1587 }
1588 
1589 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1590 {
1591 	might_sleep();
1592 	spin_lock_bh(&sk->sk_lock.slock);
1593 	if (sk->sk_lock.owned)
1594 		__lock_sock(sk);
1595 	sk->sk_lock.owned = 1;
1596 	spin_unlock(&sk->sk_lock.slock);
1597 	/*
1598 	 * The sk_lock has mutex_lock() semantics here:
1599 	 */
1600 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1601 	local_bh_enable();
1602 }
1603 
1604 EXPORT_SYMBOL(lock_sock_nested);
1605 
1606 void fastcall release_sock(struct sock *sk)
1607 {
1608 	/*
1609 	 * The sk_lock has mutex_unlock() semantics:
1610 	 */
1611 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1612 
1613 	spin_lock_bh(&sk->sk_lock.slock);
1614 	if (sk->sk_backlog.tail)
1615 		__release_sock(sk);
1616 	sk->sk_lock.owned = 0;
1617 	if (waitqueue_active(&sk->sk_lock.wq))
1618 		wake_up(&sk->sk_lock.wq);
1619 	spin_unlock_bh(&sk->sk_lock.slock);
1620 }
1621 EXPORT_SYMBOL(release_sock);
1622 
1623 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1624 {
1625 	struct timeval tv;
1626 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1627 		sock_enable_timestamp(sk);
1628 	tv = ktime_to_timeval(sk->sk_stamp);
1629 	if (tv.tv_sec == -1)
1630 		return -ENOENT;
1631 	if (tv.tv_sec == 0) {
1632 		sk->sk_stamp = ktime_get_real();
1633 		tv = ktime_to_timeval(sk->sk_stamp);
1634 	}
1635 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1636 }
1637 EXPORT_SYMBOL(sock_get_timestamp);
1638 
1639 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1640 {
1641 	struct timespec ts;
1642 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1643 		sock_enable_timestamp(sk);
1644 	ts = ktime_to_timespec(sk->sk_stamp);
1645 	if (ts.tv_sec == -1)
1646 		return -ENOENT;
1647 	if (ts.tv_sec == 0) {
1648 		sk->sk_stamp = ktime_get_real();
1649 		ts = ktime_to_timespec(sk->sk_stamp);
1650 	}
1651 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1652 }
1653 EXPORT_SYMBOL(sock_get_timestampns);
1654 
1655 void sock_enable_timestamp(struct sock *sk)
1656 {
1657 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1658 		sock_set_flag(sk, SOCK_TIMESTAMP);
1659 		net_enable_timestamp();
1660 	}
1661 }
1662 EXPORT_SYMBOL(sock_enable_timestamp);
1663 
1664 /*
1665  *	Get a socket option on an socket.
1666  *
1667  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1668  *	asynchronous errors should be reported by getsockopt. We assume
1669  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1670  */
1671 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1672 			   char __user *optval, int __user *optlen)
1673 {
1674 	struct sock *sk = sock->sk;
1675 
1676 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1677 }
1678 
1679 EXPORT_SYMBOL(sock_common_getsockopt);
1680 
1681 #ifdef CONFIG_COMPAT
1682 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1683 				  char __user *optval, int __user *optlen)
1684 {
1685 	struct sock *sk = sock->sk;
1686 
1687 	if (sk->sk_prot->compat_getsockopt != NULL)
1688 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1689 						      optval, optlen);
1690 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1691 }
1692 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1693 #endif
1694 
1695 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1696 			struct msghdr *msg, size_t size, int flags)
1697 {
1698 	struct sock *sk = sock->sk;
1699 	int addr_len = 0;
1700 	int err;
1701 
1702 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1703 				   flags & ~MSG_DONTWAIT, &addr_len);
1704 	if (err >= 0)
1705 		msg->msg_namelen = addr_len;
1706 	return err;
1707 }
1708 
1709 EXPORT_SYMBOL(sock_common_recvmsg);
1710 
1711 /*
1712  *	Set socket options on an inet socket.
1713  */
1714 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1715 			   char __user *optval, int optlen)
1716 {
1717 	struct sock *sk = sock->sk;
1718 
1719 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1720 }
1721 
1722 EXPORT_SYMBOL(sock_common_setsockopt);
1723 
1724 #ifdef CONFIG_COMPAT
1725 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1726 				  char __user *optval, int optlen)
1727 {
1728 	struct sock *sk = sock->sk;
1729 
1730 	if (sk->sk_prot->compat_setsockopt != NULL)
1731 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1732 						      optval, optlen);
1733 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1734 }
1735 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1736 #endif
1737 
1738 void sk_common_release(struct sock *sk)
1739 {
1740 	if (sk->sk_prot->destroy)
1741 		sk->sk_prot->destroy(sk);
1742 
1743 	/*
1744 	 * Observation: when sock_common_release is called, processes have
1745 	 * no access to socket. But net still has.
1746 	 * Step one, detach it from networking:
1747 	 *
1748 	 * A. Remove from hash tables.
1749 	 */
1750 
1751 	sk->sk_prot->unhash(sk);
1752 
1753 	/*
1754 	 * In this point socket cannot receive new packets, but it is possible
1755 	 * that some packets are in flight because some CPU runs receiver and
1756 	 * did hash table lookup before we unhashed socket. They will achieve
1757 	 * receive queue and will be purged by socket destructor.
1758 	 *
1759 	 * Also we still have packets pending on receive queue and probably,
1760 	 * our own packets waiting in device queues. sock_destroy will drain
1761 	 * receive queue, but transmitted packets will delay socket destruction
1762 	 * until the last reference will be released.
1763 	 */
1764 
1765 	sock_orphan(sk);
1766 
1767 	xfrm_sk_free_policy(sk);
1768 
1769 	sk_refcnt_debug_release(sk);
1770 	sock_put(sk);
1771 }
1772 
1773 EXPORT_SYMBOL(sk_common_release);
1774 
1775 static DEFINE_RWLOCK(proto_list_lock);
1776 static LIST_HEAD(proto_list);
1777 
1778 int proto_register(struct proto *prot, int alloc_slab)
1779 {
1780 	char *request_sock_slab_name = NULL;
1781 	char *timewait_sock_slab_name;
1782 	int rc = -ENOBUFS;
1783 
1784 	if (alloc_slab) {
1785 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1786 					       SLAB_HWCACHE_ALIGN, NULL);
1787 
1788 		if (prot->slab == NULL) {
1789 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1790 			       prot->name);
1791 			goto out;
1792 		}
1793 
1794 		if (prot->rsk_prot != NULL) {
1795 			static const char mask[] = "request_sock_%s";
1796 
1797 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1798 			if (request_sock_slab_name == NULL)
1799 				goto out_free_sock_slab;
1800 
1801 			sprintf(request_sock_slab_name, mask, prot->name);
1802 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1803 								 prot->rsk_prot->obj_size, 0,
1804 								 SLAB_HWCACHE_ALIGN, NULL);
1805 
1806 			if (prot->rsk_prot->slab == NULL) {
1807 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1808 				       prot->name);
1809 				goto out_free_request_sock_slab_name;
1810 			}
1811 		}
1812 
1813 		if (prot->twsk_prot != NULL) {
1814 			static const char mask[] = "tw_sock_%s";
1815 
1816 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1817 
1818 			if (timewait_sock_slab_name == NULL)
1819 				goto out_free_request_sock_slab;
1820 
1821 			sprintf(timewait_sock_slab_name, mask, prot->name);
1822 			prot->twsk_prot->twsk_slab =
1823 				kmem_cache_create(timewait_sock_slab_name,
1824 						  prot->twsk_prot->twsk_obj_size,
1825 						  0, SLAB_HWCACHE_ALIGN,
1826 						  NULL);
1827 			if (prot->twsk_prot->twsk_slab == NULL)
1828 				goto out_free_timewait_sock_slab_name;
1829 		}
1830 	}
1831 
1832 	write_lock(&proto_list_lock);
1833 	list_add(&prot->node, &proto_list);
1834 	write_unlock(&proto_list_lock);
1835 	rc = 0;
1836 out:
1837 	return rc;
1838 out_free_timewait_sock_slab_name:
1839 	kfree(timewait_sock_slab_name);
1840 out_free_request_sock_slab:
1841 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1842 		kmem_cache_destroy(prot->rsk_prot->slab);
1843 		prot->rsk_prot->slab = NULL;
1844 	}
1845 out_free_request_sock_slab_name:
1846 	kfree(request_sock_slab_name);
1847 out_free_sock_slab:
1848 	kmem_cache_destroy(prot->slab);
1849 	prot->slab = NULL;
1850 	goto out;
1851 }
1852 
1853 EXPORT_SYMBOL(proto_register);
1854 
1855 void proto_unregister(struct proto *prot)
1856 {
1857 	write_lock(&proto_list_lock);
1858 	list_del(&prot->node);
1859 	write_unlock(&proto_list_lock);
1860 
1861 	if (prot->slab != NULL) {
1862 		kmem_cache_destroy(prot->slab);
1863 		prot->slab = NULL;
1864 	}
1865 
1866 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1867 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1868 
1869 		kmem_cache_destroy(prot->rsk_prot->slab);
1870 		kfree(name);
1871 		prot->rsk_prot->slab = NULL;
1872 	}
1873 
1874 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1875 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1876 
1877 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1878 		kfree(name);
1879 		prot->twsk_prot->twsk_slab = NULL;
1880 	}
1881 }
1882 
1883 EXPORT_SYMBOL(proto_unregister);
1884 
1885 #ifdef CONFIG_PROC_FS
1886 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1887 {
1888 	read_lock(&proto_list_lock);
1889 	return seq_list_start_head(&proto_list, *pos);
1890 }
1891 
1892 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1893 {
1894 	return seq_list_next(v, &proto_list, pos);
1895 }
1896 
1897 static void proto_seq_stop(struct seq_file *seq, void *v)
1898 {
1899 	read_unlock(&proto_list_lock);
1900 }
1901 
1902 static char proto_method_implemented(const void *method)
1903 {
1904 	return method == NULL ? 'n' : 'y';
1905 }
1906 
1907 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1908 {
1909 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1910 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1911 		   proto->name,
1912 		   proto->obj_size,
1913 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1914 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1915 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1916 		   proto->max_header,
1917 		   proto->slab == NULL ? "no" : "yes",
1918 		   module_name(proto->owner),
1919 		   proto_method_implemented(proto->close),
1920 		   proto_method_implemented(proto->connect),
1921 		   proto_method_implemented(proto->disconnect),
1922 		   proto_method_implemented(proto->accept),
1923 		   proto_method_implemented(proto->ioctl),
1924 		   proto_method_implemented(proto->init),
1925 		   proto_method_implemented(proto->destroy),
1926 		   proto_method_implemented(proto->shutdown),
1927 		   proto_method_implemented(proto->setsockopt),
1928 		   proto_method_implemented(proto->getsockopt),
1929 		   proto_method_implemented(proto->sendmsg),
1930 		   proto_method_implemented(proto->recvmsg),
1931 		   proto_method_implemented(proto->sendpage),
1932 		   proto_method_implemented(proto->bind),
1933 		   proto_method_implemented(proto->backlog_rcv),
1934 		   proto_method_implemented(proto->hash),
1935 		   proto_method_implemented(proto->unhash),
1936 		   proto_method_implemented(proto->get_port),
1937 		   proto_method_implemented(proto->enter_memory_pressure));
1938 }
1939 
1940 static int proto_seq_show(struct seq_file *seq, void *v)
1941 {
1942 	if (v == &proto_list)
1943 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1944 			   "protocol",
1945 			   "size",
1946 			   "sockets",
1947 			   "memory",
1948 			   "press",
1949 			   "maxhdr",
1950 			   "slab",
1951 			   "module",
1952 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1953 	else
1954 		proto_seq_printf(seq, list_entry(v, struct proto, node));
1955 	return 0;
1956 }
1957 
1958 static const struct seq_operations proto_seq_ops = {
1959 	.start  = proto_seq_start,
1960 	.next   = proto_seq_next,
1961 	.stop   = proto_seq_stop,
1962 	.show   = proto_seq_show,
1963 };
1964 
1965 static int proto_seq_open(struct inode *inode, struct file *file)
1966 {
1967 	return seq_open(file, &proto_seq_ops);
1968 }
1969 
1970 static const struct file_operations proto_seq_fops = {
1971 	.owner		= THIS_MODULE,
1972 	.open		= proto_seq_open,
1973 	.read		= seq_read,
1974 	.llseek		= seq_lseek,
1975 	.release	= seq_release,
1976 };
1977 
1978 static int __init proto_init(void)
1979 {
1980 	/* register /proc/net/protocols */
1981 	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1982 }
1983 
1984 subsys_initcall(proto_init);
1985 
1986 #endif /* PROC_FS */
1987 
1988 EXPORT_SYMBOL(sk_alloc);
1989 EXPORT_SYMBOL(sk_free);
1990 EXPORT_SYMBOL(sk_send_sigurg);
1991 EXPORT_SYMBOL(sock_alloc_send_skb);
1992 EXPORT_SYMBOL(sock_init_data);
1993 EXPORT_SYMBOL(sock_kfree_s);
1994 EXPORT_SYMBOL(sock_kmalloc);
1995 EXPORT_SYMBOL(sock_no_accept);
1996 EXPORT_SYMBOL(sock_no_bind);
1997 EXPORT_SYMBOL(sock_no_connect);
1998 EXPORT_SYMBOL(sock_no_getname);
1999 EXPORT_SYMBOL(sock_no_getsockopt);
2000 EXPORT_SYMBOL(sock_no_ioctl);
2001 EXPORT_SYMBOL(sock_no_listen);
2002 EXPORT_SYMBOL(sock_no_mmap);
2003 EXPORT_SYMBOL(sock_no_poll);
2004 EXPORT_SYMBOL(sock_no_recvmsg);
2005 EXPORT_SYMBOL(sock_no_sendmsg);
2006 EXPORT_SYMBOL(sock_no_sendpage);
2007 EXPORT_SYMBOL(sock_no_setsockopt);
2008 EXPORT_SYMBOL(sock_no_shutdown);
2009 EXPORT_SYMBOL(sock_no_socketpair);
2010 EXPORT_SYMBOL(sock_rfree);
2011 EXPORT_SYMBOL(sock_setsockopt);
2012 EXPORT_SYMBOL(sock_wfree);
2013 EXPORT_SYMBOL(sock_wmalloc);
2014 EXPORT_SYMBOL(sock_i_uid);
2015 EXPORT_SYMBOL(sock_i_ino);
2016 EXPORT_SYMBOL(sysctl_optmem_max);
2017 #ifdef CONFIG_SYSCTL
2018 EXPORT_SYMBOL(sysctl_rmem_max);
2019 EXPORT_SYMBOL(sysctl_wmem_max);
2020 #endif
2021