xref: /linux/net/core/sock.c (revision 2a10154abcb75ad0d7b6bfea6210ac743ec60897)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_key_slow_dec(&memalloc_socks);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 	 * it has rmem allocations there is a risk that the user of the
359 	 * socket cannot make forward progress due to exceeding the rmem
360 	 * limits. By rights, sk_clear_memalloc() should only be called
361 	 * on sockets being torn down but warn and reset the accounting if
362 	 * that assumption breaks.
363 	 */
364 	if (WARN_ON(sk->sk_forward_alloc))
365 		sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368 
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 	int ret;
372 	unsigned long pflags = current->flags;
373 
374 	/* these should have been dropped before queueing */
375 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376 
377 	current->flags |= PF_MEMALLOC;
378 	ret = sk->sk_backlog_rcv(sk, skb);
379 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384 
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 	struct timeval tv;
388 
389 	if (optlen < sizeof(tv))
390 		return -EINVAL;
391 	if (copy_from_user(&tv, optval, sizeof(tv)))
392 		return -EFAULT;
393 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 		return -EDOM;
395 
396 	if (tv.tv_sec < 0) {
397 		static int warned __read_mostly;
398 
399 		*timeo_p = 0;
400 		if (warned < 10 && net_ratelimit()) {
401 			warned++;
402 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 				__func__, current->comm, task_pid_nr(current));
404 		}
405 		return 0;
406 	}
407 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
408 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 		return 0;
410 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 	return 0;
413 }
414 
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 	static int warned;
418 	static char warncomm[TASK_COMM_LEN];
419 	if (strcmp(warncomm, current->comm) && warned < 5) {
420 		strcpy(warncomm,  current->comm);
421 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 			warncomm, name);
423 		warned++;
424 	}
425 }
426 
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 	if (sk->sk_flags & flags) {
432 		sk->sk_flags &= ~flags;
433 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 			net_disable_timestamp();
435 	}
436 }
437 
438 
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 	int err;
442 	unsigned long flags;
443 	struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 		atomic_inc(&sk->sk_drops);
447 		trace_sock_rcvqueue_full(sk, skb);
448 		return -ENOMEM;
449 	}
450 
451 	err = sk_filter(sk, skb);
452 	if (err)
453 		return err;
454 
455 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 		atomic_inc(&sk->sk_drops);
457 		return -ENOBUFS;
458 	}
459 
460 	skb->dev = NULL;
461 	skb_set_owner_r(skb, sk);
462 
463 	/* we escape from rcu protected region, make sure we dont leak
464 	 * a norefcounted dst
465 	 */
466 	skb_dst_force(skb);
467 
468 	spin_lock_irqsave(&list->lock, flags);
469 	sock_skb_set_dropcount(sk, skb);
470 	__skb_queue_tail(list, skb);
471 	spin_unlock_irqrestore(&list->lock, flags);
472 
473 	if (!sock_flag(sk, SOCK_DEAD))
474 		sk->sk_data_ready(sk);
475 	return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478 
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 	int rc = NET_RX_SUCCESS;
482 
483 	if (sk_filter(sk, skb))
484 		goto discard_and_relse;
485 
486 	skb->dev = NULL;
487 
488 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 		atomic_inc(&sk->sk_drops);
490 		goto discard_and_relse;
491 	}
492 	if (nested)
493 		bh_lock_sock_nested(sk);
494 	else
495 		bh_lock_sock(sk);
496 	if (!sock_owned_by_user(sk)) {
497 		/*
498 		 * trylock + unlock semantics:
499 		 */
500 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501 
502 		rc = sk_backlog_rcv(sk, skb);
503 
504 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 		bh_unlock_sock(sk);
507 		atomic_inc(&sk->sk_drops);
508 		goto discard_and_relse;
509 	}
510 
511 	bh_unlock_sock(sk);
512 out:
513 	sock_put(sk);
514 	return rc;
515 discard_and_relse:
516 	kfree_skb(skb);
517 	goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520 
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 	struct dst_entry *dst = __sk_dst_get(sk);
524 
525 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 		sk_tx_queue_clear(sk);
527 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 		dst_release(dst);
529 		return NULL;
530 	}
531 
532 	return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535 
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 	struct dst_entry *dst = sk_dst_get(sk);
539 
540 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 		sk_dst_reset(sk);
542 		dst_release(dst);
543 		return NULL;
544 	}
545 
546 	return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549 
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 				int optlen)
552 {
553 	int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 	struct net *net = sock_net(sk);
556 	char devname[IFNAMSIZ];
557 	int index;
558 
559 	/* Sorry... */
560 	ret = -EPERM;
561 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 		goto out;
563 
564 	ret = -EINVAL;
565 	if (optlen < 0)
566 		goto out;
567 
568 	/* Bind this socket to a particular device like "eth0",
569 	 * as specified in the passed interface name. If the
570 	 * name is "" or the option length is zero the socket
571 	 * is not bound.
572 	 */
573 	if (optlen > IFNAMSIZ - 1)
574 		optlen = IFNAMSIZ - 1;
575 	memset(devname, 0, sizeof(devname));
576 
577 	ret = -EFAULT;
578 	if (copy_from_user(devname, optval, optlen))
579 		goto out;
580 
581 	index = 0;
582 	if (devname[0] != '\0') {
583 		struct net_device *dev;
584 
585 		rcu_read_lock();
586 		dev = dev_get_by_name_rcu(net, devname);
587 		if (dev)
588 			index = dev->ifindex;
589 		rcu_read_unlock();
590 		ret = -ENODEV;
591 		if (!dev)
592 			goto out;
593 	}
594 
595 	lock_sock(sk);
596 	sk->sk_bound_dev_if = index;
597 	sk_dst_reset(sk);
598 	release_sock(sk);
599 
600 	ret = 0;
601 
602 out:
603 #endif
604 
605 	return ret;
606 }
607 
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 				int __user *optlen, int len)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 
616 	if (sk->sk_bound_dev_if == 0) {
617 		len = 0;
618 		goto zero;
619 	}
620 
621 	ret = -EINVAL;
622 	if (len < IFNAMSIZ)
623 		goto out;
624 
625 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 	if (ret)
627 		goto out;
628 
629 	len = strlen(devname) + 1;
630 
631 	ret = -EFAULT;
632 	if (copy_to_user(optval, devname, len))
633 		goto out;
634 
635 zero:
636 	ret = -EFAULT;
637 	if (put_user(len, optlen))
638 		goto out;
639 
640 	ret = 0;
641 
642 out:
643 #endif
644 
645 	return ret;
646 }
647 
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 	if (valbool)
651 		sock_set_flag(sk, bit);
652 	else
653 		sock_reset_flag(sk, bit);
654 }
655 
656 bool sk_mc_loop(struct sock *sk)
657 {
658 	if (dev_recursion_level())
659 		return false;
660 	if (!sk)
661 		return true;
662 	switch (sk->sk_family) {
663 	case AF_INET:
664 		return inet_sk(sk)->mc_loop;
665 #if IS_ENABLED(CONFIG_IPV6)
666 	case AF_INET6:
667 		return inet6_sk(sk)->mc_loop;
668 #endif
669 	}
670 	WARN_ON(1);
671 	return true;
672 }
673 EXPORT_SYMBOL(sk_mc_loop);
674 
675 /*
676  *	This is meant for all protocols to use and covers goings on
677  *	at the socket level. Everything here is generic.
678  */
679 
680 int sock_setsockopt(struct socket *sock, int level, int optname,
681 		    char __user *optval, unsigned int optlen)
682 {
683 	struct sock *sk = sock->sk;
684 	int val;
685 	int valbool;
686 	struct linger ling;
687 	int ret = 0;
688 
689 	/*
690 	 *	Options without arguments
691 	 */
692 
693 	if (optname == SO_BINDTODEVICE)
694 		return sock_setbindtodevice(sk, optval, optlen);
695 
696 	if (optlen < sizeof(int))
697 		return -EINVAL;
698 
699 	if (get_user(val, (int __user *)optval))
700 		return -EFAULT;
701 
702 	valbool = val ? 1 : 0;
703 
704 	lock_sock(sk);
705 
706 	switch (optname) {
707 	case SO_DEBUG:
708 		if (val && !capable(CAP_NET_ADMIN))
709 			ret = -EACCES;
710 		else
711 			sock_valbool_flag(sk, SOCK_DBG, valbool);
712 		break;
713 	case SO_REUSEADDR:
714 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 		break;
716 	case SO_REUSEPORT:
717 		sk->sk_reuseport = valbool;
718 		break;
719 	case SO_TYPE:
720 	case SO_PROTOCOL:
721 	case SO_DOMAIN:
722 	case SO_ERROR:
723 		ret = -ENOPROTOOPT;
724 		break;
725 	case SO_DONTROUTE:
726 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 		break;
728 	case SO_BROADCAST:
729 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 		break;
731 	case SO_SNDBUF:
732 		/* Don't error on this BSD doesn't and if you think
733 		 * about it this is right. Otherwise apps have to
734 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 		 * are treated in BSD as hints
736 		 */
737 		val = min_t(u32, val, sysctl_wmem_max);
738 set_sndbuf:
739 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
740 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
741 		/* Wake up sending tasks if we upped the value. */
742 		sk->sk_write_space(sk);
743 		break;
744 
745 	case SO_SNDBUFFORCE:
746 		if (!capable(CAP_NET_ADMIN)) {
747 			ret = -EPERM;
748 			break;
749 		}
750 		goto set_sndbuf;
751 
752 	case SO_RCVBUF:
753 		/* Don't error on this BSD doesn't and if you think
754 		 * about it this is right. Otherwise apps have to
755 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 		 * are treated in BSD as hints
757 		 */
758 		val = min_t(u32, val, sysctl_rmem_max);
759 set_rcvbuf:
760 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
761 		/*
762 		 * We double it on the way in to account for
763 		 * "struct sk_buff" etc. overhead.   Applications
764 		 * assume that the SO_RCVBUF setting they make will
765 		 * allow that much actual data to be received on that
766 		 * socket.
767 		 *
768 		 * Applications are unaware that "struct sk_buff" and
769 		 * other overheads allocate from the receive buffer
770 		 * during socket buffer allocation.
771 		 *
772 		 * And after considering the possible alternatives,
773 		 * returning the value we actually used in getsockopt
774 		 * is the most desirable behavior.
775 		 */
776 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
777 		break;
778 
779 	case SO_RCVBUFFORCE:
780 		if (!capable(CAP_NET_ADMIN)) {
781 			ret = -EPERM;
782 			break;
783 		}
784 		goto set_rcvbuf;
785 
786 	case SO_KEEPALIVE:
787 #ifdef CONFIG_INET
788 		if (sk->sk_protocol == IPPROTO_TCP &&
789 		    sk->sk_type == SOCK_STREAM)
790 			tcp_set_keepalive(sk, valbool);
791 #endif
792 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
793 		break;
794 
795 	case SO_OOBINLINE:
796 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
797 		break;
798 
799 	case SO_NO_CHECK:
800 		sk->sk_no_check_tx = valbool;
801 		break;
802 
803 	case SO_PRIORITY:
804 		if ((val >= 0 && val <= 6) ||
805 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
806 			sk->sk_priority = val;
807 		else
808 			ret = -EPERM;
809 		break;
810 
811 	case SO_LINGER:
812 		if (optlen < sizeof(ling)) {
813 			ret = -EINVAL;	/* 1003.1g */
814 			break;
815 		}
816 		if (copy_from_user(&ling, optval, sizeof(ling))) {
817 			ret = -EFAULT;
818 			break;
819 		}
820 		if (!ling.l_onoff)
821 			sock_reset_flag(sk, SOCK_LINGER);
822 		else {
823 #if (BITS_PER_LONG == 32)
824 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
825 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 			else
827 #endif
828 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
829 			sock_set_flag(sk, SOCK_LINGER);
830 		}
831 		break;
832 
833 	case SO_BSDCOMPAT:
834 		sock_warn_obsolete_bsdism("setsockopt");
835 		break;
836 
837 	case SO_PASSCRED:
838 		if (valbool)
839 			set_bit(SOCK_PASSCRED, &sock->flags);
840 		else
841 			clear_bit(SOCK_PASSCRED, &sock->flags);
842 		break;
843 
844 	case SO_TIMESTAMP:
845 	case SO_TIMESTAMPNS:
846 		if (valbool)  {
847 			if (optname == SO_TIMESTAMP)
848 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
849 			else
850 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
851 			sock_set_flag(sk, SOCK_RCVTSTAMP);
852 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
853 		} else {
854 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
855 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
856 		}
857 		break;
858 
859 	case SO_TIMESTAMPING:
860 		if (val & ~SOF_TIMESTAMPING_MASK) {
861 			ret = -EINVAL;
862 			break;
863 		}
864 
865 		if (val & SOF_TIMESTAMPING_OPT_ID &&
866 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
867 			if (sk->sk_protocol == IPPROTO_TCP) {
868 				if (sk->sk_state != TCP_ESTABLISHED) {
869 					ret = -EINVAL;
870 					break;
871 				}
872 				sk->sk_tskey = tcp_sk(sk)->snd_una;
873 			} else {
874 				sk->sk_tskey = 0;
875 			}
876 		}
877 		sk->sk_tsflags = val;
878 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
879 			sock_enable_timestamp(sk,
880 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
881 		else
882 			sock_disable_timestamp(sk,
883 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
884 		break;
885 
886 	case SO_RCVLOWAT:
887 		if (val < 0)
888 			val = INT_MAX;
889 		sk->sk_rcvlowat = val ? : 1;
890 		break;
891 
892 	case SO_RCVTIMEO:
893 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
894 		break;
895 
896 	case SO_SNDTIMEO:
897 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 		break;
899 
900 	case SO_ATTACH_FILTER:
901 		ret = -EINVAL;
902 		if (optlen == sizeof(struct sock_fprog)) {
903 			struct sock_fprog fprog;
904 
905 			ret = -EFAULT;
906 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 				break;
908 
909 			ret = sk_attach_filter(&fprog, sk);
910 		}
911 		break;
912 
913 	case SO_ATTACH_BPF:
914 		ret = -EINVAL;
915 		if (optlen == sizeof(u32)) {
916 			u32 ufd;
917 
918 			ret = -EFAULT;
919 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 				break;
921 
922 			ret = sk_attach_bpf(ufd, sk);
923 		}
924 		break;
925 
926 	case SO_DETACH_FILTER:
927 		ret = sk_detach_filter(sk);
928 		break;
929 
930 	case SO_LOCK_FILTER:
931 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 			ret = -EPERM;
933 		else
934 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
935 		break;
936 
937 	case SO_PASSSEC:
938 		if (valbool)
939 			set_bit(SOCK_PASSSEC, &sock->flags);
940 		else
941 			clear_bit(SOCK_PASSSEC, &sock->flags);
942 		break;
943 	case SO_MARK:
944 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
945 			ret = -EPERM;
946 		else
947 			sk->sk_mark = val;
948 		break;
949 
950 	case SO_RXQ_OVFL:
951 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
952 		break;
953 
954 	case SO_WIFI_STATUS:
955 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
956 		break;
957 
958 	case SO_PEEK_OFF:
959 		if (sock->ops->set_peek_off)
960 			ret = sock->ops->set_peek_off(sk, val);
961 		else
962 			ret = -EOPNOTSUPP;
963 		break;
964 
965 	case SO_NOFCS:
966 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
967 		break;
968 
969 	case SO_SELECT_ERR_QUEUE:
970 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
971 		break;
972 
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 	case SO_BUSY_POLL:
975 		/* allow unprivileged users to decrease the value */
976 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
977 			ret = -EPERM;
978 		else {
979 			if (val < 0)
980 				ret = -EINVAL;
981 			else
982 				sk->sk_ll_usec = val;
983 		}
984 		break;
985 #endif
986 
987 	case SO_MAX_PACING_RATE:
988 		sk->sk_max_pacing_rate = val;
989 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
990 					 sk->sk_max_pacing_rate);
991 		break;
992 
993 	default:
994 		ret = -ENOPROTOOPT;
995 		break;
996 	}
997 	release_sock(sk);
998 	return ret;
999 }
1000 EXPORT_SYMBOL(sock_setsockopt);
1001 
1002 
1003 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1004 			  struct ucred *ucred)
1005 {
1006 	ucred->pid = pid_vnr(pid);
1007 	ucred->uid = ucred->gid = -1;
1008 	if (cred) {
1009 		struct user_namespace *current_ns = current_user_ns();
1010 
1011 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1012 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1013 	}
1014 }
1015 
1016 int sock_getsockopt(struct socket *sock, int level, int optname,
1017 		    char __user *optval, int __user *optlen)
1018 {
1019 	struct sock *sk = sock->sk;
1020 
1021 	union {
1022 		int val;
1023 		struct linger ling;
1024 		struct timeval tm;
1025 	} v;
1026 
1027 	int lv = sizeof(int);
1028 	int len;
1029 
1030 	if (get_user(len, optlen))
1031 		return -EFAULT;
1032 	if (len < 0)
1033 		return -EINVAL;
1034 
1035 	memset(&v, 0, sizeof(v));
1036 
1037 	switch (optname) {
1038 	case SO_DEBUG:
1039 		v.val = sock_flag(sk, SOCK_DBG);
1040 		break;
1041 
1042 	case SO_DONTROUTE:
1043 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1044 		break;
1045 
1046 	case SO_BROADCAST:
1047 		v.val = sock_flag(sk, SOCK_BROADCAST);
1048 		break;
1049 
1050 	case SO_SNDBUF:
1051 		v.val = sk->sk_sndbuf;
1052 		break;
1053 
1054 	case SO_RCVBUF:
1055 		v.val = sk->sk_rcvbuf;
1056 		break;
1057 
1058 	case SO_REUSEADDR:
1059 		v.val = sk->sk_reuse;
1060 		break;
1061 
1062 	case SO_REUSEPORT:
1063 		v.val = sk->sk_reuseport;
1064 		break;
1065 
1066 	case SO_KEEPALIVE:
1067 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1068 		break;
1069 
1070 	case SO_TYPE:
1071 		v.val = sk->sk_type;
1072 		break;
1073 
1074 	case SO_PROTOCOL:
1075 		v.val = sk->sk_protocol;
1076 		break;
1077 
1078 	case SO_DOMAIN:
1079 		v.val = sk->sk_family;
1080 		break;
1081 
1082 	case SO_ERROR:
1083 		v.val = -sock_error(sk);
1084 		if (v.val == 0)
1085 			v.val = xchg(&sk->sk_err_soft, 0);
1086 		break;
1087 
1088 	case SO_OOBINLINE:
1089 		v.val = sock_flag(sk, SOCK_URGINLINE);
1090 		break;
1091 
1092 	case SO_NO_CHECK:
1093 		v.val = sk->sk_no_check_tx;
1094 		break;
1095 
1096 	case SO_PRIORITY:
1097 		v.val = sk->sk_priority;
1098 		break;
1099 
1100 	case SO_LINGER:
1101 		lv		= sizeof(v.ling);
1102 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1103 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1104 		break;
1105 
1106 	case SO_BSDCOMPAT:
1107 		sock_warn_obsolete_bsdism("getsockopt");
1108 		break;
1109 
1110 	case SO_TIMESTAMP:
1111 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1112 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 		break;
1114 
1115 	case SO_TIMESTAMPNS:
1116 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 		break;
1118 
1119 	case SO_TIMESTAMPING:
1120 		v.val = sk->sk_tsflags;
1121 		break;
1122 
1123 	case SO_RCVTIMEO:
1124 		lv = sizeof(struct timeval);
1125 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1126 			v.tm.tv_sec = 0;
1127 			v.tm.tv_usec = 0;
1128 		} else {
1129 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1130 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1131 		}
1132 		break;
1133 
1134 	case SO_SNDTIMEO:
1135 		lv = sizeof(struct timeval);
1136 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1137 			v.tm.tv_sec = 0;
1138 			v.tm.tv_usec = 0;
1139 		} else {
1140 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1141 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1142 		}
1143 		break;
1144 
1145 	case SO_RCVLOWAT:
1146 		v.val = sk->sk_rcvlowat;
1147 		break;
1148 
1149 	case SO_SNDLOWAT:
1150 		v.val = 1;
1151 		break;
1152 
1153 	case SO_PASSCRED:
1154 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1155 		break;
1156 
1157 	case SO_PEERCRED:
1158 	{
1159 		struct ucred peercred;
1160 		if (len > sizeof(peercred))
1161 			len = sizeof(peercred);
1162 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1163 		if (copy_to_user(optval, &peercred, len))
1164 			return -EFAULT;
1165 		goto lenout;
1166 	}
1167 
1168 	case SO_PEERNAME:
1169 	{
1170 		char address[128];
1171 
1172 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1173 			return -ENOTCONN;
1174 		if (lv < len)
1175 			return -EINVAL;
1176 		if (copy_to_user(optval, address, len))
1177 			return -EFAULT;
1178 		goto lenout;
1179 	}
1180 
1181 	/* Dubious BSD thing... Probably nobody even uses it, but
1182 	 * the UNIX standard wants it for whatever reason... -DaveM
1183 	 */
1184 	case SO_ACCEPTCONN:
1185 		v.val = sk->sk_state == TCP_LISTEN;
1186 		break;
1187 
1188 	case SO_PASSSEC:
1189 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1190 		break;
1191 
1192 	case SO_PEERSEC:
1193 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1194 
1195 	case SO_MARK:
1196 		v.val = sk->sk_mark;
1197 		break;
1198 
1199 	case SO_RXQ_OVFL:
1200 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1201 		break;
1202 
1203 	case SO_WIFI_STATUS:
1204 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1205 		break;
1206 
1207 	case SO_PEEK_OFF:
1208 		if (!sock->ops->set_peek_off)
1209 			return -EOPNOTSUPP;
1210 
1211 		v.val = sk->sk_peek_off;
1212 		break;
1213 	case SO_NOFCS:
1214 		v.val = sock_flag(sk, SOCK_NOFCS);
1215 		break;
1216 
1217 	case SO_BINDTODEVICE:
1218 		return sock_getbindtodevice(sk, optval, optlen, len);
1219 
1220 	case SO_GET_FILTER:
1221 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1222 		if (len < 0)
1223 			return len;
1224 
1225 		goto lenout;
1226 
1227 	case SO_LOCK_FILTER:
1228 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1229 		break;
1230 
1231 	case SO_BPF_EXTENSIONS:
1232 		v.val = bpf_tell_extensions();
1233 		break;
1234 
1235 	case SO_SELECT_ERR_QUEUE:
1236 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1237 		break;
1238 
1239 #ifdef CONFIG_NET_RX_BUSY_POLL
1240 	case SO_BUSY_POLL:
1241 		v.val = sk->sk_ll_usec;
1242 		break;
1243 #endif
1244 
1245 	case SO_MAX_PACING_RATE:
1246 		v.val = sk->sk_max_pacing_rate;
1247 		break;
1248 
1249 	case SO_INCOMING_CPU:
1250 		v.val = sk->sk_incoming_cpu;
1251 		break;
1252 
1253 	default:
1254 		/* We implement the SO_SNDLOWAT etc to not be settable
1255 		 * (1003.1g 7).
1256 		 */
1257 		return -ENOPROTOOPT;
1258 	}
1259 
1260 	if (len > lv)
1261 		len = lv;
1262 	if (copy_to_user(optval, &v, len))
1263 		return -EFAULT;
1264 lenout:
1265 	if (put_user(len, optlen))
1266 		return -EFAULT;
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Initialize an sk_lock.
1272  *
1273  * (We also register the sk_lock with the lock validator.)
1274  */
1275 static inline void sock_lock_init(struct sock *sk)
1276 {
1277 	sock_lock_init_class_and_name(sk,
1278 			af_family_slock_key_strings[sk->sk_family],
1279 			af_family_slock_keys + sk->sk_family,
1280 			af_family_key_strings[sk->sk_family],
1281 			af_family_keys + sk->sk_family);
1282 }
1283 
1284 /*
1285  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1286  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1287  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1288  */
1289 static void sock_copy(struct sock *nsk, const struct sock *osk)
1290 {
1291 #ifdef CONFIG_SECURITY_NETWORK
1292 	void *sptr = nsk->sk_security;
1293 #endif
1294 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1295 
1296 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1297 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1298 
1299 #ifdef CONFIG_SECURITY_NETWORK
1300 	nsk->sk_security = sptr;
1301 	security_sk_clone(osk, nsk);
1302 #endif
1303 }
1304 
1305 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1306 {
1307 	unsigned long nulls1, nulls2;
1308 
1309 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1310 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1311 	if (nulls1 > nulls2)
1312 		swap(nulls1, nulls2);
1313 
1314 	if (nulls1 != 0)
1315 		memset((char *)sk, 0, nulls1);
1316 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1317 	       nulls2 - nulls1 - sizeof(void *));
1318 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1319 	       size - nulls2 - sizeof(void *));
1320 }
1321 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1322 
1323 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1324 		int family)
1325 {
1326 	struct sock *sk;
1327 	struct kmem_cache *slab;
1328 
1329 	slab = prot->slab;
1330 	if (slab != NULL) {
1331 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1332 		if (!sk)
1333 			return sk;
1334 		if (priority & __GFP_ZERO) {
1335 			if (prot->clear_sk)
1336 				prot->clear_sk(sk, prot->obj_size);
1337 			else
1338 				sk_prot_clear_nulls(sk, prot->obj_size);
1339 		}
1340 	} else
1341 		sk = kmalloc(prot->obj_size, priority);
1342 
1343 	if (sk != NULL) {
1344 		kmemcheck_annotate_bitfield(sk, flags);
1345 
1346 		if (security_sk_alloc(sk, family, priority))
1347 			goto out_free;
1348 
1349 		if (!try_module_get(prot->owner))
1350 			goto out_free_sec;
1351 		sk_tx_queue_clear(sk);
1352 	}
1353 
1354 	return sk;
1355 
1356 out_free_sec:
1357 	security_sk_free(sk);
1358 out_free:
1359 	if (slab != NULL)
1360 		kmem_cache_free(slab, sk);
1361 	else
1362 		kfree(sk);
1363 	return NULL;
1364 }
1365 
1366 static void sk_prot_free(struct proto *prot, struct sock *sk)
1367 {
1368 	struct kmem_cache *slab;
1369 	struct module *owner;
1370 
1371 	owner = prot->owner;
1372 	slab = prot->slab;
1373 
1374 	security_sk_free(sk);
1375 	if (slab != NULL)
1376 		kmem_cache_free(slab, sk);
1377 	else
1378 		kfree(sk);
1379 	module_put(owner);
1380 }
1381 
1382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1383 void sock_update_netprioidx(struct sock *sk)
1384 {
1385 	if (in_interrupt())
1386 		return;
1387 
1388 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1389 }
1390 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1391 #endif
1392 
1393 /**
1394  *	sk_alloc - All socket objects are allocated here
1395  *	@net: the applicable net namespace
1396  *	@family: protocol family
1397  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1398  *	@prot: struct proto associated with this new sock instance
1399  *	@kern: is this to be a kernel socket?
1400  */
1401 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1402 		      struct proto *prot, int kern)
1403 {
1404 	struct sock *sk;
1405 
1406 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1407 	if (sk) {
1408 		sk->sk_family = family;
1409 		/*
1410 		 * See comment in struct sock definition to understand
1411 		 * why we need sk_prot_creator -acme
1412 		 */
1413 		sk->sk_prot = sk->sk_prot_creator = prot;
1414 		sock_lock_init(sk);
1415 		sk->sk_net_refcnt = kern ? 0 : 1;
1416 		if (likely(sk->sk_net_refcnt))
1417 			get_net(net);
1418 		sock_net_set(sk, net);
1419 		atomic_set(&sk->sk_wmem_alloc, 1);
1420 
1421 		sock_update_classid(sk);
1422 		sock_update_netprioidx(sk);
1423 	}
1424 
1425 	return sk;
1426 }
1427 EXPORT_SYMBOL(sk_alloc);
1428 
1429 static void __sk_free(struct sock *sk)
1430 {
1431 	struct sk_filter *filter;
1432 
1433 	if (sk->sk_destruct)
1434 		sk->sk_destruct(sk);
1435 
1436 	filter = rcu_dereference_check(sk->sk_filter,
1437 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1438 	if (filter) {
1439 		sk_filter_uncharge(sk, filter);
1440 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1441 	}
1442 
1443 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1444 
1445 	if (atomic_read(&sk->sk_omem_alloc))
1446 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1447 			 __func__, atomic_read(&sk->sk_omem_alloc));
1448 
1449 	if (sk->sk_peer_cred)
1450 		put_cred(sk->sk_peer_cred);
1451 	put_pid(sk->sk_peer_pid);
1452 	if (likely(sk->sk_net_refcnt))
1453 		put_net(sock_net(sk));
1454 	sk_prot_free(sk->sk_prot_creator, sk);
1455 }
1456 
1457 void sk_free(struct sock *sk)
1458 {
1459 	/*
1460 	 * We subtract one from sk_wmem_alloc and can know if
1461 	 * some packets are still in some tx queue.
1462 	 * If not null, sock_wfree() will call __sk_free(sk) later
1463 	 */
1464 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1465 		__sk_free(sk);
1466 }
1467 EXPORT_SYMBOL(sk_free);
1468 
1469 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1470 {
1471 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1472 		sock_update_memcg(newsk);
1473 }
1474 
1475 /**
1476  *	sk_clone_lock - clone a socket, and lock its clone
1477  *	@sk: the socket to clone
1478  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1479  *
1480  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1481  */
1482 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1483 {
1484 	struct sock *newsk;
1485 	bool is_charged = true;
1486 
1487 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1488 	if (newsk != NULL) {
1489 		struct sk_filter *filter;
1490 
1491 		sock_copy(newsk, sk);
1492 
1493 		/* SANITY */
1494 		get_net(sock_net(newsk));
1495 		sk_node_init(&newsk->sk_node);
1496 		sock_lock_init(newsk);
1497 		bh_lock_sock(newsk);
1498 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1499 		newsk->sk_backlog.len = 0;
1500 
1501 		atomic_set(&newsk->sk_rmem_alloc, 0);
1502 		/*
1503 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1504 		 */
1505 		atomic_set(&newsk->sk_wmem_alloc, 1);
1506 		atomic_set(&newsk->sk_omem_alloc, 0);
1507 		skb_queue_head_init(&newsk->sk_receive_queue);
1508 		skb_queue_head_init(&newsk->sk_write_queue);
1509 
1510 		spin_lock_init(&newsk->sk_dst_lock);
1511 		rwlock_init(&newsk->sk_callback_lock);
1512 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1513 				af_callback_keys + newsk->sk_family,
1514 				af_family_clock_key_strings[newsk->sk_family]);
1515 
1516 		newsk->sk_dst_cache	= NULL;
1517 		newsk->sk_wmem_queued	= 0;
1518 		newsk->sk_forward_alloc = 0;
1519 		newsk->sk_send_head	= NULL;
1520 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1521 
1522 		sock_reset_flag(newsk, SOCK_DONE);
1523 		skb_queue_head_init(&newsk->sk_error_queue);
1524 
1525 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1526 		if (filter != NULL)
1527 			/* though it's an empty new sock, the charging may fail
1528 			 * if sysctl_optmem_max was changed between creation of
1529 			 * original socket and cloning
1530 			 */
1531 			is_charged = sk_filter_charge(newsk, filter);
1532 
1533 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1534 			/* It is still raw copy of parent, so invalidate
1535 			 * destructor and make plain sk_free() */
1536 			newsk->sk_destruct = NULL;
1537 			bh_unlock_sock(newsk);
1538 			sk_free(newsk);
1539 			newsk = NULL;
1540 			goto out;
1541 		}
1542 
1543 		newsk->sk_err	   = 0;
1544 		newsk->sk_priority = 0;
1545 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1546 		atomic64_set(&newsk->sk_cookie, 0);
1547 		/*
1548 		 * Before updating sk_refcnt, we must commit prior changes to memory
1549 		 * (Documentation/RCU/rculist_nulls.txt for details)
1550 		 */
1551 		smp_wmb();
1552 		atomic_set(&newsk->sk_refcnt, 2);
1553 
1554 		/*
1555 		 * Increment the counter in the same struct proto as the master
1556 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1557 		 * is the same as sk->sk_prot->socks, as this field was copied
1558 		 * with memcpy).
1559 		 *
1560 		 * This _changes_ the previous behaviour, where
1561 		 * tcp_create_openreq_child always was incrementing the
1562 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1563 		 * to be taken into account in all callers. -acme
1564 		 */
1565 		sk_refcnt_debug_inc(newsk);
1566 		sk_set_socket(newsk, NULL);
1567 		newsk->sk_wq = NULL;
1568 
1569 		sk_update_clone(sk, newsk);
1570 
1571 		if (newsk->sk_prot->sockets_allocated)
1572 			sk_sockets_allocated_inc(newsk);
1573 
1574 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1575 			net_enable_timestamp();
1576 	}
1577 out:
1578 	return newsk;
1579 }
1580 EXPORT_SYMBOL_GPL(sk_clone_lock);
1581 
1582 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1583 {
1584 	u32 max_segs = 1;
1585 
1586 	__sk_dst_set(sk, dst);
1587 	sk->sk_route_caps = dst->dev->features;
1588 	if (sk->sk_route_caps & NETIF_F_GSO)
1589 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1590 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1591 	if (sk_can_gso(sk)) {
1592 		if (dst->header_len) {
1593 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1594 		} else {
1595 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1596 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1597 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1598 		}
1599 	}
1600 	sk->sk_gso_max_segs = max_segs;
1601 }
1602 EXPORT_SYMBOL_GPL(sk_setup_caps);
1603 
1604 /*
1605  *	Simple resource managers for sockets.
1606  */
1607 
1608 
1609 /*
1610  * Write buffer destructor automatically called from kfree_skb.
1611  */
1612 void sock_wfree(struct sk_buff *skb)
1613 {
1614 	struct sock *sk = skb->sk;
1615 	unsigned int len = skb->truesize;
1616 
1617 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1618 		/*
1619 		 * Keep a reference on sk_wmem_alloc, this will be released
1620 		 * after sk_write_space() call
1621 		 */
1622 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1623 		sk->sk_write_space(sk);
1624 		len = 1;
1625 	}
1626 	/*
1627 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1628 	 * could not do because of in-flight packets
1629 	 */
1630 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1631 		__sk_free(sk);
1632 }
1633 EXPORT_SYMBOL(sock_wfree);
1634 
1635 void skb_orphan_partial(struct sk_buff *skb)
1636 {
1637 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1638 	 * so we do not completely orphan skb, but transfert all
1639 	 * accounted bytes but one, to avoid unexpected reorders.
1640 	 */
1641 	if (skb->destructor == sock_wfree
1642 #ifdef CONFIG_INET
1643 	    || skb->destructor == tcp_wfree
1644 #endif
1645 		) {
1646 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1647 		skb->truesize = 1;
1648 	} else {
1649 		skb_orphan(skb);
1650 	}
1651 }
1652 EXPORT_SYMBOL(skb_orphan_partial);
1653 
1654 /*
1655  * Read buffer destructor automatically called from kfree_skb.
1656  */
1657 void sock_rfree(struct sk_buff *skb)
1658 {
1659 	struct sock *sk = skb->sk;
1660 	unsigned int len = skb->truesize;
1661 
1662 	atomic_sub(len, &sk->sk_rmem_alloc);
1663 	sk_mem_uncharge(sk, len);
1664 }
1665 EXPORT_SYMBOL(sock_rfree);
1666 
1667 /*
1668  * Buffer destructor for skbs that are not used directly in read or write
1669  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1670  */
1671 void sock_efree(struct sk_buff *skb)
1672 {
1673 	sock_put(skb->sk);
1674 }
1675 EXPORT_SYMBOL(sock_efree);
1676 
1677 kuid_t sock_i_uid(struct sock *sk)
1678 {
1679 	kuid_t uid;
1680 
1681 	read_lock_bh(&sk->sk_callback_lock);
1682 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1683 	read_unlock_bh(&sk->sk_callback_lock);
1684 	return uid;
1685 }
1686 EXPORT_SYMBOL(sock_i_uid);
1687 
1688 unsigned long sock_i_ino(struct sock *sk)
1689 {
1690 	unsigned long ino;
1691 
1692 	read_lock_bh(&sk->sk_callback_lock);
1693 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1694 	read_unlock_bh(&sk->sk_callback_lock);
1695 	return ino;
1696 }
1697 EXPORT_SYMBOL(sock_i_ino);
1698 
1699 /*
1700  * Allocate a skb from the socket's send buffer.
1701  */
1702 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1703 			     gfp_t priority)
1704 {
1705 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1706 		struct sk_buff *skb = alloc_skb(size, priority);
1707 		if (skb) {
1708 			skb_set_owner_w(skb, sk);
1709 			return skb;
1710 		}
1711 	}
1712 	return NULL;
1713 }
1714 EXPORT_SYMBOL(sock_wmalloc);
1715 
1716 /*
1717  * Allocate a memory block from the socket's option memory buffer.
1718  */
1719 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1720 {
1721 	if ((unsigned int)size <= sysctl_optmem_max &&
1722 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1723 		void *mem;
1724 		/* First do the add, to avoid the race if kmalloc
1725 		 * might sleep.
1726 		 */
1727 		atomic_add(size, &sk->sk_omem_alloc);
1728 		mem = kmalloc(size, priority);
1729 		if (mem)
1730 			return mem;
1731 		atomic_sub(size, &sk->sk_omem_alloc);
1732 	}
1733 	return NULL;
1734 }
1735 EXPORT_SYMBOL(sock_kmalloc);
1736 
1737 /* Free an option memory block. Note, we actually want the inline
1738  * here as this allows gcc to detect the nullify and fold away the
1739  * condition entirely.
1740  */
1741 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1742 				  const bool nullify)
1743 {
1744 	if (WARN_ON_ONCE(!mem))
1745 		return;
1746 	if (nullify)
1747 		kzfree(mem);
1748 	else
1749 		kfree(mem);
1750 	atomic_sub(size, &sk->sk_omem_alloc);
1751 }
1752 
1753 void sock_kfree_s(struct sock *sk, void *mem, int size)
1754 {
1755 	__sock_kfree_s(sk, mem, size, false);
1756 }
1757 EXPORT_SYMBOL(sock_kfree_s);
1758 
1759 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1760 {
1761 	__sock_kfree_s(sk, mem, size, true);
1762 }
1763 EXPORT_SYMBOL(sock_kzfree_s);
1764 
1765 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1766    I think, these locks should be removed for datagram sockets.
1767  */
1768 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1769 {
1770 	DEFINE_WAIT(wait);
1771 
1772 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1773 	for (;;) {
1774 		if (!timeo)
1775 			break;
1776 		if (signal_pending(current))
1777 			break;
1778 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1779 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1780 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1781 			break;
1782 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1783 			break;
1784 		if (sk->sk_err)
1785 			break;
1786 		timeo = schedule_timeout(timeo);
1787 	}
1788 	finish_wait(sk_sleep(sk), &wait);
1789 	return timeo;
1790 }
1791 
1792 
1793 /*
1794  *	Generic send/receive buffer handlers
1795  */
1796 
1797 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1798 				     unsigned long data_len, int noblock,
1799 				     int *errcode, int max_page_order)
1800 {
1801 	struct sk_buff *skb;
1802 	long timeo;
1803 	int err;
1804 
1805 	timeo = sock_sndtimeo(sk, noblock);
1806 	for (;;) {
1807 		err = sock_error(sk);
1808 		if (err != 0)
1809 			goto failure;
1810 
1811 		err = -EPIPE;
1812 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1813 			goto failure;
1814 
1815 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1816 			break;
1817 
1818 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1819 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1820 		err = -EAGAIN;
1821 		if (!timeo)
1822 			goto failure;
1823 		if (signal_pending(current))
1824 			goto interrupted;
1825 		timeo = sock_wait_for_wmem(sk, timeo);
1826 	}
1827 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1828 				   errcode, sk->sk_allocation);
1829 	if (skb)
1830 		skb_set_owner_w(skb, sk);
1831 	return skb;
1832 
1833 interrupted:
1834 	err = sock_intr_errno(timeo);
1835 failure:
1836 	*errcode = err;
1837 	return NULL;
1838 }
1839 EXPORT_SYMBOL(sock_alloc_send_pskb);
1840 
1841 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1842 				    int noblock, int *errcode)
1843 {
1844 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1845 }
1846 EXPORT_SYMBOL(sock_alloc_send_skb);
1847 
1848 /* On 32bit arches, an skb frag is limited to 2^15 */
1849 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1850 
1851 /**
1852  * skb_page_frag_refill - check that a page_frag contains enough room
1853  * @sz: minimum size of the fragment we want to get
1854  * @pfrag: pointer to page_frag
1855  * @gfp: priority for memory allocation
1856  *
1857  * Note: While this allocator tries to use high order pages, there is
1858  * no guarantee that allocations succeed. Therefore, @sz MUST be
1859  * less or equal than PAGE_SIZE.
1860  */
1861 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1862 {
1863 	if (pfrag->page) {
1864 		if (atomic_read(&pfrag->page->_count) == 1) {
1865 			pfrag->offset = 0;
1866 			return true;
1867 		}
1868 		if (pfrag->offset + sz <= pfrag->size)
1869 			return true;
1870 		put_page(pfrag->page);
1871 	}
1872 
1873 	pfrag->offset = 0;
1874 	if (SKB_FRAG_PAGE_ORDER) {
1875 		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1876 					  __GFP_NOWARN | __GFP_NORETRY,
1877 					  SKB_FRAG_PAGE_ORDER);
1878 		if (likely(pfrag->page)) {
1879 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1880 			return true;
1881 		}
1882 	}
1883 	pfrag->page = alloc_page(gfp);
1884 	if (likely(pfrag->page)) {
1885 		pfrag->size = PAGE_SIZE;
1886 		return true;
1887 	}
1888 	return false;
1889 }
1890 EXPORT_SYMBOL(skb_page_frag_refill);
1891 
1892 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1893 {
1894 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1895 		return true;
1896 
1897 	sk_enter_memory_pressure(sk);
1898 	sk_stream_moderate_sndbuf(sk);
1899 	return false;
1900 }
1901 EXPORT_SYMBOL(sk_page_frag_refill);
1902 
1903 static void __lock_sock(struct sock *sk)
1904 	__releases(&sk->sk_lock.slock)
1905 	__acquires(&sk->sk_lock.slock)
1906 {
1907 	DEFINE_WAIT(wait);
1908 
1909 	for (;;) {
1910 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1911 					TASK_UNINTERRUPTIBLE);
1912 		spin_unlock_bh(&sk->sk_lock.slock);
1913 		schedule();
1914 		spin_lock_bh(&sk->sk_lock.slock);
1915 		if (!sock_owned_by_user(sk))
1916 			break;
1917 	}
1918 	finish_wait(&sk->sk_lock.wq, &wait);
1919 }
1920 
1921 static void __release_sock(struct sock *sk)
1922 	__releases(&sk->sk_lock.slock)
1923 	__acquires(&sk->sk_lock.slock)
1924 {
1925 	struct sk_buff *skb = sk->sk_backlog.head;
1926 
1927 	do {
1928 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1929 		bh_unlock_sock(sk);
1930 
1931 		do {
1932 			struct sk_buff *next = skb->next;
1933 
1934 			prefetch(next);
1935 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1936 			skb->next = NULL;
1937 			sk_backlog_rcv(sk, skb);
1938 
1939 			/*
1940 			 * We are in process context here with softirqs
1941 			 * disabled, use cond_resched_softirq() to preempt.
1942 			 * This is safe to do because we've taken the backlog
1943 			 * queue private:
1944 			 */
1945 			cond_resched_softirq();
1946 
1947 			skb = next;
1948 		} while (skb != NULL);
1949 
1950 		bh_lock_sock(sk);
1951 	} while ((skb = sk->sk_backlog.head) != NULL);
1952 
1953 	/*
1954 	 * Doing the zeroing here guarantee we can not loop forever
1955 	 * while a wild producer attempts to flood us.
1956 	 */
1957 	sk->sk_backlog.len = 0;
1958 }
1959 
1960 /**
1961  * sk_wait_data - wait for data to arrive at sk_receive_queue
1962  * @sk:    sock to wait on
1963  * @timeo: for how long
1964  *
1965  * Now socket state including sk->sk_err is changed only under lock,
1966  * hence we may omit checks after joining wait queue.
1967  * We check receive queue before schedule() only as optimization;
1968  * it is very likely that release_sock() added new data.
1969  */
1970 int sk_wait_data(struct sock *sk, long *timeo)
1971 {
1972 	int rc;
1973 	DEFINE_WAIT(wait);
1974 
1975 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1976 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1977 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1978 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1979 	finish_wait(sk_sleep(sk), &wait);
1980 	return rc;
1981 }
1982 EXPORT_SYMBOL(sk_wait_data);
1983 
1984 /**
1985  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1986  *	@sk: socket
1987  *	@size: memory size to allocate
1988  *	@kind: allocation type
1989  *
1990  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1991  *	rmem allocation. This function assumes that protocols which have
1992  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1993  */
1994 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1995 {
1996 	struct proto *prot = sk->sk_prot;
1997 	int amt = sk_mem_pages(size);
1998 	long allocated;
1999 	int parent_status = UNDER_LIMIT;
2000 
2001 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2002 
2003 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2004 
2005 	/* Under limit. */
2006 	if (parent_status == UNDER_LIMIT &&
2007 			allocated <= sk_prot_mem_limits(sk, 0)) {
2008 		sk_leave_memory_pressure(sk);
2009 		return 1;
2010 	}
2011 
2012 	/* Under pressure. (we or our parents) */
2013 	if ((parent_status > SOFT_LIMIT) ||
2014 			allocated > sk_prot_mem_limits(sk, 1))
2015 		sk_enter_memory_pressure(sk);
2016 
2017 	/* Over hard limit (we or our parents) */
2018 	if ((parent_status == OVER_LIMIT) ||
2019 			(allocated > sk_prot_mem_limits(sk, 2)))
2020 		goto suppress_allocation;
2021 
2022 	/* guarantee minimum buffer size under pressure */
2023 	if (kind == SK_MEM_RECV) {
2024 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2025 			return 1;
2026 
2027 	} else { /* SK_MEM_SEND */
2028 		if (sk->sk_type == SOCK_STREAM) {
2029 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2030 				return 1;
2031 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2032 			   prot->sysctl_wmem[0])
2033 				return 1;
2034 	}
2035 
2036 	if (sk_has_memory_pressure(sk)) {
2037 		int alloc;
2038 
2039 		if (!sk_under_memory_pressure(sk))
2040 			return 1;
2041 		alloc = sk_sockets_allocated_read_positive(sk);
2042 		if (sk_prot_mem_limits(sk, 2) > alloc *
2043 		    sk_mem_pages(sk->sk_wmem_queued +
2044 				 atomic_read(&sk->sk_rmem_alloc) +
2045 				 sk->sk_forward_alloc))
2046 			return 1;
2047 	}
2048 
2049 suppress_allocation:
2050 
2051 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2052 		sk_stream_moderate_sndbuf(sk);
2053 
2054 		/* Fail only if socket is _under_ its sndbuf.
2055 		 * In this case we cannot block, so that we have to fail.
2056 		 */
2057 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2058 			return 1;
2059 	}
2060 
2061 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2062 
2063 	/* Alas. Undo changes. */
2064 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2065 
2066 	sk_memory_allocated_sub(sk, amt);
2067 
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL(__sk_mem_schedule);
2071 
2072 /**
2073  *	__sk_reclaim - reclaim memory_allocated
2074  *	@sk: socket
2075  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2076  */
2077 void __sk_mem_reclaim(struct sock *sk, int amount)
2078 {
2079 	amount >>= SK_MEM_QUANTUM_SHIFT;
2080 	sk_memory_allocated_sub(sk, amount);
2081 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2082 
2083 	if (sk_under_memory_pressure(sk) &&
2084 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2085 		sk_leave_memory_pressure(sk);
2086 }
2087 EXPORT_SYMBOL(__sk_mem_reclaim);
2088 
2089 
2090 /*
2091  * Set of default routines for initialising struct proto_ops when
2092  * the protocol does not support a particular function. In certain
2093  * cases where it makes no sense for a protocol to have a "do nothing"
2094  * function, some default processing is provided.
2095  */
2096 
2097 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2098 {
2099 	return -EOPNOTSUPP;
2100 }
2101 EXPORT_SYMBOL(sock_no_bind);
2102 
2103 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2104 		    int len, int flags)
2105 {
2106 	return -EOPNOTSUPP;
2107 }
2108 EXPORT_SYMBOL(sock_no_connect);
2109 
2110 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2111 {
2112 	return -EOPNOTSUPP;
2113 }
2114 EXPORT_SYMBOL(sock_no_socketpair);
2115 
2116 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2117 {
2118 	return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_accept);
2121 
2122 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2123 		    int *len, int peer)
2124 {
2125 	return -EOPNOTSUPP;
2126 }
2127 EXPORT_SYMBOL(sock_no_getname);
2128 
2129 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2130 {
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(sock_no_poll);
2134 
2135 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2136 {
2137 	return -EOPNOTSUPP;
2138 }
2139 EXPORT_SYMBOL(sock_no_ioctl);
2140 
2141 int sock_no_listen(struct socket *sock, int backlog)
2142 {
2143 	return -EOPNOTSUPP;
2144 }
2145 EXPORT_SYMBOL(sock_no_listen);
2146 
2147 int sock_no_shutdown(struct socket *sock, int how)
2148 {
2149 	return -EOPNOTSUPP;
2150 }
2151 EXPORT_SYMBOL(sock_no_shutdown);
2152 
2153 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2154 		    char __user *optval, unsigned int optlen)
2155 {
2156 	return -EOPNOTSUPP;
2157 }
2158 EXPORT_SYMBOL(sock_no_setsockopt);
2159 
2160 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2161 		    char __user *optval, int __user *optlen)
2162 {
2163 	return -EOPNOTSUPP;
2164 }
2165 EXPORT_SYMBOL(sock_no_getsockopt);
2166 
2167 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2168 {
2169 	return -EOPNOTSUPP;
2170 }
2171 EXPORT_SYMBOL(sock_no_sendmsg);
2172 
2173 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2174 		    int flags)
2175 {
2176 	return -EOPNOTSUPP;
2177 }
2178 EXPORT_SYMBOL(sock_no_recvmsg);
2179 
2180 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2181 {
2182 	/* Mirror missing mmap method error code */
2183 	return -ENODEV;
2184 }
2185 EXPORT_SYMBOL(sock_no_mmap);
2186 
2187 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2188 {
2189 	ssize_t res;
2190 	struct msghdr msg = {.msg_flags = flags};
2191 	struct kvec iov;
2192 	char *kaddr = kmap(page);
2193 	iov.iov_base = kaddr + offset;
2194 	iov.iov_len = size;
2195 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2196 	kunmap(page);
2197 	return res;
2198 }
2199 EXPORT_SYMBOL(sock_no_sendpage);
2200 
2201 /*
2202  *	Default Socket Callbacks
2203  */
2204 
2205 static void sock_def_wakeup(struct sock *sk)
2206 {
2207 	struct socket_wq *wq;
2208 
2209 	rcu_read_lock();
2210 	wq = rcu_dereference(sk->sk_wq);
2211 	if (wq_has_sleeper(wq))
2212 		wake_up_interruptible_all(&wq->wait);
2213 	rcu_read_unlock();
2214 }
2215 
2216 static void sock_def_error_report(struct sock *sk)
2217 {
2218 	struct socket_wq *wq;
2219 
2220 	rcu_read_lock();
2221 	wq = rcu_dereference(sk->sk_wq);
2222 	if (wq_has_sleeper(wq))
2223 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2224 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2225 	rcu_read_unlock();
2226 }
2227 
2228 static void sock_def_readable(struct sock *sk)
2229 {
2230 	struct socket_wq *wq;
2231 
2232 	rcu_read_lock();
2233 	wq = rcu_dereference(sk->sk_wq);
2234 	if (wq_has_sleeper(wq))
2235 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2236 						POLLRDNORM | POLLRDBAND);
2237 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2238 	rcu_read_unlock();
2239 }
2240 
2241 static void sock_def_write_space(struct sock *sk)
2242 {
2243 	struct socket_wq *wq;
2244 
2245 	rcu_read_lock();
2246 
2247 	/* Do not wake up a writer until he can make "significant"
2248 	 * progress.  --DaveM
2249 	 */
2250 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2251 		wq = rcu_dereference(sk->sk_wq);
2252 		if (wq_has_sleeper(wq))
2253 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2254 						POLLWRNORM | POLLWRBAND);
2255 
2256 		/* Should agree with poll, otherwise some programs break */
2257 		if (sock_writeable(sk))
2258 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2259 	}
2260 
2261 	rcu_read_unlock();
2262 }
2263 
2264 static void sock_def_destruct(struct sock *sk)
2265 {
2266 	kfree(sk->sk_protinfo);
2267 }
2268 
2269 void sk_send_sigurg(struct sock *sk)
2270 {
2271 	if (sk->sk_socket && sk->sk_socket->file)
2272 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2273 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2274 }
2275 EXPORT_SYMBOL(sk_send_sigurg);
2276 
2277 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2278 		    unsigned long expires)
2279 {
2280 	if (!mod_timer(timer, expires))
2281 		sock_hold(sk);
2282 }
2283 EXPORT_SYMBOL(sk_reset_timer);
2284 
2285 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2286 {
2287 	if (del_timer(timer))
2288 		__sock_put(sk);
2289 }
2290 EXPORT_SYMBOL(sk_stop_timer);
2291 
2292 void sock_init_data(struct socket *sock, struct sock *sk)
2293 {
2294 	skb_queue_head_init(&sk->sk_receive_queue);
2295 	skb_queue_head_init(&sk->sk_write_queue);
2296 	skb_queue_head_init(&sk->sk_error_queue);
2297 
2298 	sk->sk_send_head	=	NULL;
2299 
2300 	init_timer(&sk->sk_timer);
2301 
2302 	sk->sk_allocation	=	GFP_KERNEL;
2303 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2304 	sk->sk_sndbuf		=	sysctl_wmem_default;
2305 	sk->sk_state		=	TCP_CLOSE;
2306 	sk_set_socket(sk, sock);
2307 
2308 	sock_set_flag(sk, SOCK_ZAPPED);
2309 
2310 	if (sock) {
2311 		sk->sk_type	=	sock->type;
2312 		sk->sk_wq	=	sock->wq;
2313 		sock->sk	=	sk;
2314 	} else
2315 		sk->sk_wq	=	NULL;
2316 
2317 	spin_lock_init(&sk->sk_dst_lock);
2318 	rwlock_init(&sk->sk_callback_lock);
2319 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2320 			af_callback_keys + sk->sk_family,
2321 			af_family_clock_key_strings[sk->sk_family]);
2322 
2323 	sk->sk_state_change	=	sock_def_wakeup;
2324 	sk->sk_data_ready	=	sock_def_readable;
2325 	sk->sk_write_space	=	sock_def_write_space;
2326 	sk->sk_error_report	=	sock_def_error_report;
2327 	sk->sk_destruct		=	sock_def_destruct;
2328 
2329 	sk->sk_frag.page	=	NULL;
2330 	sk->sk_frag.offset	=	0;
2331 	sk->sk_peek_off		=	-1;
2332 
2333 	sk->sk_peer_pid 	=	NULL;
2334 	sk->sk_peer_cred	=	NULL;
2335 	sk->sk_write_pending	=	0;
2336 	sk->sk_rcvlowat		=	1;
2337 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2338 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2339 
2340 	sk->sk_stamp = ktime_set(-1L, 0);
2341 
2342 #ifdef CONFIG_NET_RX_BUSY_POLL
2343 	sk->sk_napi_id		=	0;
2344 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2345 #endif
2346 
2347 	sk->sk_max_pacing_rate = ~0U;
2348 	sk->sk_pacing_rate = ~0U;
2349 	/*
2350 	 * Before updating sk_refcnt, we must commit prior changes to memory
2351 	 * (Documentation/RCU/rculist_nulls.txt for details)
2352 	 */
2353 	smp_wmb();
2354 	atomic_set(&sk->sk_refcnt, 1);
2355 	atomic_set(&sk->sk_drops, 0);
2356 }
2357 EXPORT_SYMBOL(sock_init_data);
2358 
2359 void lock_sock_nested(struct sock *sk, int subclass)
2360 {
2361 	might_sleep();
2362 	spin_lock_bh(&sk->sk_lock.slock);
2363 	if (sk->sk_lock.owned)
2364 		__lock_sock(sk);
2365 	sk->sk_lock.owned = 1;
2366 	spin_unlock(&sk->sk_lock.slock);
2367 	/*
2368 	 * The sk_lock has mutex_lock() semantics here:
2369 	 */
2370 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2371 	local_bh_enable();
2372 }
2373 EXPORT_SYMBOL(lock_sock_nested);
2374 
2375 void release_sock(struct sock *sk)
2376 {
2377 	/*
2378 	 * The sk_lock has mutex_unlock() semantics:
2379 	 */
2380 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2381 
2382 	spin_lock_bh(&sk->sk_lock.slock);
2383 	if (sk->sk_backlog.tail)
2384 		__release_sock(sk);
2385 
2386 	/* Warning : release_cb() might need to release sk ownership,
2387 	 * ie call sock_release_ownership(sk) before us.
2388 	 */
2389 	if (sk->sk_prot->release_cb)
2390 		sk->sk_prot->release_cb(sk);
2391 
2392 	sock_release_ownership(sk);
2393 	if (waitqueue_active(&sk->sk_lock.wq))
2394 		wake_up(&sk->sk_lock.wq);
2395 	spin_unlock_bh(&sk->sk_lock.slock);
2396 }
2397 EXPORT_SYMBOL(release_sock);
2398 
2399 /**
2400  * lock_sock_fast - fast version of lock_sock
2401  * @sk: socket
2402  *
2403  * This version should be used for very small section, where process wont block
2404  * return false if fast path is taken
2405  *   sk_lock.slock locked, owned = 0, BH disabled
2406  * return true if slow path is taken
2407  *   sk_lock.slock unlocked, owned = 1, BH enabled
2408  */
2409 bool lock_sock_fast(struct sock *sk)
2410 {
2411 	might_sleep();
2412 	spin_lock_bh(&sk->sk_lock.slock);
2413 
2414 	if (!sk->sk_lock.owned)
2415 		/*
2416 		 * Note : We must disable BH
2417 		 */
2418 		return false;
2419 
2420 	__lock_sock(sk);
2421 	sk->sk_lock.owned = 1;
2422 	spin_unlock(&sk->sk_lock.slock);
2423 	/*
2424 	 * The sk_lock has mutex_lock() semantics here:
2425 	 */
2426 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2427 	local_bh_enable();
2428 	return true;
2429 }
2430 EXPORT_SYMBOL(lock_sock_fast);
2431 
2432 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2433 {
2434 	struct timeval tv;
2435 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2436 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2437 	tv = ktime_to_timeval(sk->sk_stamp);
2438 	if (tv.tv_sec == -1)
2439 		return -ENOENT;
2440 	if (tv.tv_sec == 0) {
2441 		sk->sk_stamp = ktime_get_real();
2442 		tv = ktime_to_timeval(sk->sk_stamp);
2443 	}
2444 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2445 }
2446 EXPORT_SYMBOL(sock_get_timestamp);
2447 
2448 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2449 {
2450 	struct timespec ts;
2451 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2452 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2453 	ts = ktime_to_timespec(sk->sk_stamp);
2454 	if (ts.tv_sec == -1)
2455 		return -ENOENT;
2456 	if (ts.tv_sec == 0) {
2457 		sk->sk_stamp = ktime_get_real();
2458 		ts = ktime_to_timespec(sk->sk_stamp);
2459 	}
2460 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2461 }
2462 EXPORT_SYMBOL(sock_get_timestampns);
2463 
2464 void sock_enable_timestamp(struct sock *sk, int flag)
2465 {
2466 	if (!sock_flag(sk, flag)) {
2467 		unsigned long previous_flags = sk->sk_flags;
2468 
2469 		sock_set_flag(sk, flag);
2470 		/*
2471 		 * we just set one of the two flags which require net
2472 		 * time stamping, but time stamping might have been on
2473 		 * already because of the other one
2474 		 */
2475 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2476 			net_enable_timestamp();
2477 	}
2478 }
2479 
2480 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2481 		       int level, int type)
2482 {
2483 	struct sock_exterr_skb *serr;
2484 	struct sk_buff *skb;
2485 	int copied, err;
2486 
2487 	err = -EAGAIN;
2488 	skb = sock_dequeue_err_skb(sk);
2489 	if (skb == NULL)
2490 		goto out;
2491 
2492 	copied = skb->len;
2493 	if (copied > len) {
2494 		msg->msg_flags |= MSG_TRUNC;
2495 		copied = len;
2496 	}
2497 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2498 	if (err)
2499 		goto out_free_skb;
2500 
2501 	sock_recv_timestamp(msg, sk, skb);
2502 
2503 	serr = SKB_EXT_ERR(skb);
2504 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2505 
2506 	msg->msg_flags |= MSG_ERRQUEUE;
2507 	err = copied;
2508 
2509 out_free_skb:
2510 	kfree_skb(skb);
2511 out:
2512 	return err;
2513 }
2514 EXPORT_SYMBOL(sock_recv_errqueue);
2515 
2516 /*
2517  *	Get a socket option on an socket.
2518  *
2519  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2520  *	asynchronous errors should be reported by getsockopt. We assume
2521  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2522  */
2523 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2524 			   char __user *optval, int __user *optlen)
2525 {
2526 	struct sock *sk = sock->sk;
2527 
2528 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2529 }
2530 EXPORT_SYMBOL(sock_common_getsockopt);
2531 
2532 #ifdef CONFIG_COMPAT
2533 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2534 				  char __user *optval, int __user *optlen)
2535 {
2536 	struct sock *sk = sock->sk;
2537 
2538 	if (sk->sk_prot->compat_getsockopt != NULL)
2539 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2540 						      optval, optlen);
2541 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2542 }
2543 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2544 #endif
2545 
2546 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2547 			int flags)
2548 {
2549 	struct sock *sk = sock->sk;
2550 	int addr_len = 0;
2551 	int err;
2552 
2553 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2554 				   flags & ~MSG_DONTWAIT, &addr_len);
2555 	if (err >= 0)
2556 		msg->msg_namelen = addr_len;
2557 	return err;
2558 }
2559 EXPORT_SYMBOL(sock_common_recvmsg);
2560 
2561 /*
2562  *	Set socket options on an inet socket.
2563  */
2564 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2565 			   char __user *optval, unsigned int optlen)
2566 {
2567 	struct sock *sk = sock->sk;
2568 
2569 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2570 }
2571 EXPORT_SYMBOL(sock_common_setsockopt);
2572 
2573 #ifdef CONFIG_COMPAT
2574 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2575 				  char __user *optval, unsigned int optlen)
2576 {
2577 	struct sock *sk = sock->sk;
2578 
2579 	if (sk->sk_prot->compat_setsockopt != NULL)
2580 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2581 						      optval, optlen);
2582 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2583 }
2584 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2585 #endif
2586 
2587 void sk_common_release(struct sock *sk)
2588 {
2589 	if (sk->sk_prot->destroy)
2590 		sk->sk_prot->destroy(sk);
2591 
2592 	/*
2593 	 * Observation: when sock_common_release is called, processes have
2594 	 * no access to socket. But net still has.
2595 	 * Step one, detach it from networking:
2596 	 *
2597 	 * A. Remove from hash tables.
2598 	 */
2599 
2600 	sk->sk_prot->unhash(sk);
2601 
2602 	/*
2603 	 * In this point socket cannot receive new packets, but it is possible
2604 	 * that some packets are in flight because some CPU runs receiver and
2605 	 * did hash table lookup before we unhashed socket. They will achieve
2606 	 * receive queue and will be purged by socket destructor.
2607 	 *
2608 	 * Also we still have packets pending on receive queue and probably,
2609 	 * our own packets waiting in device queues. sock_destroy will drain
2610 	 * receive queue, but transmitted packets will delay socket destruction
2611 	 * until the last reference will be released.
2612 	 */
2613 
2614 	sock_orphan(sk);
2615 
2616 	xfrm_sk_free_policy(sk);
2617 
2618 	sk_refcnt_debug_release(sk);
2619 
2620 	if (sk->sk_frag.page) {
2621 		put_page(sk->sk_frag.page);
2622 		sk->sk_frag.page = NULL;
2623 	}
2624 
2625 	sock_put(sk);
2626 }
2627 EXPORT_SYMBOL(sk_common_release);
2628 
2629 #ifdef CONFIG_PROC_FS
2630 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2631 struct prot_inuse {
2632 	int val[PROTO_INUSE_NR];
2633 };
2634 
2635 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2636 
2637 #ifdef CONFIG_NET_NS
2638 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2639 {
2640 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2641 }
2642 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2643 
2644 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2645 {
2646 	int cpu, idx = prot->inuse_idx;
2647 	int res = 0;
2648 
2649 	for_each_possible_cpu(cpu)
2650 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2651 
2652 	return res >= 0 ? res : 0;
2653 }
2654 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2655 
2656 static int __net_init sock_inuse_init_net(struct net *net)
2657 {
2658 	net->core.inuse = alloc_percpu(struct prot_inuse);
2659 	return net->core.inuse ? 0 : -ENOMEM;
2660 }
2661 
2662 static void __net_exit sock_inuse_exit_net(struct net *net)
2663 {
2664 	free_percpu(net->core.inuse);
2665 }
2666 
2667 static struct pernet_operations net_inuse_ops = {
2668 	.init = sock_inuse_init_net,
2669 	.exit = sock_inuse_exit_net,
2670 };
2671 
2672 static __init int net_inuse_init(void)
2673 {
2674 	if (register_pernet_subsys(&net_inuse_ops))
2675 		panic("Cannot initialize net inuse counters");
2676 
2677 	return 0;
2678 }
2679 
2680 core_initcall(net_inuse_init);
2681 #else
2682 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2683 
2684 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2685 {
2686 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2687 }
2688 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2689 
2690 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2691 {
2692 	int cpu, idx = prot->inuse_idx;
2693 	int res = 0;
2694 
2695 	for_each_possible_cpu(cpu)
2696 		res += per_cpu(prot_inuse, cpu).val[idx];
2697 
2698 	return res >= 0 ? res : 0;
2699 }
2700 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2701 #endif
2702 
2703 static void assign_proto_idx(struct proto *prot)
2704 {
2705 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2706 
2707 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2708 		pr_err("PROTO_INUSE_NR exhausted\n");
2709 		return;
2710 	}
2711 
2712 	set_bit(prot->inuse_idx, proto_inuse_idx);
2713 }
2714 
2715 static void release_proto_idx(struct proto *prot)
2716 {
2717 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2718 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2719 }
2720 #else
2721 static inline void assign_proto_idx(struct proto *prot)
2722 {
2723 }
2724 
2725 static inline void release_proto_idx(struct proto *prot)
2726 {
2727 }
2728 #endif
2729 
2730 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2731 {
2732 	if (!rsk_prot)
2733 		return;
2734 	kfree(rsk_prot->slab_name);
2735 	rsk_prot->slab_name = NULL;
2736 	if (rsk_prot->slab) {
2737 		kmem_cache_destroy(rsk_prot->slab);
2738 		rsk_prot->slab = NULL;
2739 	}
2740 }
2741 
2742 static int req_prot_init(const struct proto *prot)
2743 {
2744 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2745 
2746 	if (!rsk_prot)
2747 		return 0;
2748 
2749 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2750 					prot->name);
2751 	if (!rsk_prot->slab_name)
2752 		return -ENOMEM;
2753 
2754 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2755 					   rsk_prot->obj_size, 0,
2756 					   0, NULL);
2757 
2758 	if (!rsk_prot->slab) {
2759 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2760 			prot->name);
2761 		return -ENOMEM;
2762 	}
2763 	return 0;
2764 }
2765 
2766 int proto_register(struct proto *prot, int alloc_slab)
2767 {
2768 	if (alloc_slab) {
2769 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2770 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2771 					NULL);
2772 
2773 		if (prot->slab == NULL) {
2774 			pr_crit("%s: Can't create sock SLAB cache!\n",
2775 				prot->name);
2776 			goto out;
2777 		}
2778 
2779 		if (req_prot_init(prot))
2780 			goto out_free_request_sock_slab;
2781 
2782 		if (prot->twsk_prot != NULL) {
2783 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2784 
2785 			if (prot->twsk_prot->twsk_slab_name == NULL)
2786 				goto out_free_request_sock_slab;
2787 
2788 			prot->twsk_prot->twsk_slab =
2789 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2790 						  prot->twsk_prot->twsk_obj_size,
2791 						  0,
2792 						  prot->slab_flags,
2793 						  NULL);
2794 			if (prot->twsk_prot->twsk_slab == NULL)
2795 				goto out_free_timewait_sock_slab_name;
2796 		}
2797 	}
2798 
2799 	mutex_lock(&proto_list_mutex);
2800 	list_add(&prot->node, &proto_list);
2801 	assign_proto_idx(prot);
2802 	mutex_unlock(&proto_list_mutex);
2803 	return 0;
2804 
2805 out_free_timewait_sock_slab_name:
2806 	kfree(prot->twsk_prot->twsk_slab_name);
2807 out_free_request_sock_slab:
2808 	req_prot_cleanup(prot->rsk_prot);
2809 
2810 	kmem_cache_destroy(prot->slab);
2811 	prot->slab = NULL;
2812 out:
2813 	return -ENOBUFS;
2814 }
2815 EXPORT_SYMBOL(proto_register);
2816 
2817 void proto_unregister(struct proto *prot)
2818 {
2819 	mutex_lock(&proto_list_mutex);
2820 	release_proto_idx(prot);
2821 	list_del(&prot->node);
2822 	mutex_unlock(&proto_list_mutex);
2823 
2824 	if (prot->slab != NULL) {
2825 		kmem_cache_destroy(prot->slab);
2826 		prot->slab = NULL;
2827 	}
2828 
2829 	req_prot_cleanup(prot->rsk_prot);
2830 
2831 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2832 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2833 		kfree(prot->twsk_prot->twsk_slab_name);
2834 		prot->twsk_prot->twsk_slab = NULL;
2835 	}
2836 }
2837 EXPORT_SYMBOL(proto_unregister);
2838 
2839 #ifdef CONFIG_PROC_FS
2840 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2841 	__acquires(proto_list_mutex)
2842 {
2843 	mutex_lock(&proto_list_mutex);
2844 	return seq_list_start_head(&proto_list, *pos);
2845 }
2846 
2847 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2848 {
2849 	return seq_list_next(v, &proto_list, pos);
2850 }
2851 
2852 static void proto_seq_stop(struct seq_file *seq, void *v)
2853 	__releases(proto_list_mutex)
2854 {
2855 	mutex_unlock(&proto_list_mutex);
2856 }
2857 
2858 static char proto_method_implemented(const void *method)
2859 {
2860 	return method == NULL ? 'n' : 'y';
2861 }
2862 static long sock_prot_memory_allocated(struct proto *proto)
2863 {
2864 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2865 }
2866 
2867 static char *sock_prot_memory_pressure(struct proto *proto)
2868 {
2869 	return proto->memory_pressure != NULL ?
2870 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2871 }
2872 
2873 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2874 {
2875 
2876 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2877 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2878 		   proto->name,
2879 		   proto->obj_size,
2880 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2881 		   sock_prot_memory_allocated(proto),
2882 		   sock_prot_memory_pressure(proto),
2883 		   proto->max_header,
2884 		   proto->slab == NULL ? "no" : "yes",
2885 		   module_name(proto->owner),
2886 		   proto_method_implemented(proto->close),
2887 		   proto_method_implemented(proto->connect),
2888 		   proto_method_implemented(proto->disconnect),
2889 		   proto_method_implemented(proto->accept),
2890 		   proto_method_implemented(proto->ioctl),
2891 		   proto_method_implemented(proto->init),
2892 		   proto_method_implemented(proto->destroy),
2893 		   proto_method_implemented(proto->shutdown),
2894 		   proto_method_implemented(proto->setsockopt),
2895 		   proto_method_implemented(proto->getsockopt),
2896 		   proto_method_implemented(proto->sendmsg),
2897 		   proto_method_implemented(proto->recvmsg),
2898 		   proto_method_implemented(proto->sendpage),
2899 		   proto_method_implemented(proto->bind),
2900 		   proto_method_implemented(proto->backlog_rcv),
2901 		   proto_method_implemented(proto->hash),
2902 		   proto_method_implemented(proto->unhash),
2903 		   proto_method_implemented(proto->get_port),
2904 		   proto_method_implemented(proto->enter_memory_pressure));
2905 }
2906 
2907 static int proto_seq_show(struct seq_file *seq, void *v)
2908 {
2909 	if (v == &proto_list)
2910 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2911 			   "protocol",
2912 			   "size",
2913 			   "sockets",
2914 			   "memory",
2915 			   "press",
2916 			   "maxhdr",
2917 			   "slab",
2918 			   "module",
2919 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2920 	else
2921 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2922 	return 0;
2923 }
2924 
2925 static const struct seq_operations proto_seq_ops = {
2926 	.start  = proto_seq_start,
2927 	.next   = proto_seq_next,
2928 	.stop   = proto_seq_stop,
2929 	.show   = proto_seq_show,
2930 };
2931 
2932 static int proto_seq_open(struct inode *inode, struct file *file)
2933 {
2934 	return seq_open_net(inode, file, &proto_seq_ops,
2935 			    sizeof(struct seq_net_private));
2936 }
2937 
2938 static const struct file_operations proto_seq_fops = {
2939 	.owner		= THIS_MODULE,
2940 	.open		= proto_seq_open,
2941 	.read		= seq_read,
2942 	.llseek		= seq_lseek,
2943 	.release	= seq_release_net,
2944 };
2945 
2946 static __net_init int proto_init_net(struct net *net)
2947 {
2948 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2949 		return -ENOMEM;
2950 
2951 	return 0;
2952 }
2953 
2954 static __net_exit void proto_exit_net(struct net *net)
2955 {
2956 	remove_proc_entry("protocols", net->proc_net);
2957 }
2958 
2959 
2960 static __net_initdata struct pernet_operations proto_net_ops = {
2961 	.init = proto_init_net,
2962 	.exit = proto_exit_net,
2963 };
2964 
2965 static int __init proto_init(void)
2966 {
2967 	return register_pernet_subsys(&proto_net_ops);
2968 }
2969 
2970 subsys_initcall(proto_init);
2971 
2972 #endif /* PROC_FS */
2973