1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #include <linux/capability.h> 93 #include <linux/errno.h> 94 #include <linux/types.h> 95 #include <linux/socket.h> 96 #include <linux/in.h> 97 #include <linux/kernel.h> 98 #include <linux/module.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/sched.h> 102 #include <linux/timer.h> 103 #include <linux/string.h> 104 #include <linux/sockios.h> 105 #include <linux/net.h> 106 #include <linux/mm.h> 107 #include <linux/slab.h> 108 #include <linux/interrupt.h> 109 #include <linux/poll.h> 110 #include <linux/tcp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 114 #include <asm/uaccess.h> 115 #include <asm/system.h> 116 117 #include <linux/netdevice.h> 118 #include <net/protocol.h> 119 #include <linux/skbuff.h> 120 #include <net/net_namespace.h> 121 #include <net/request_sock.h> 122 #include <net/sock.h> 123 #include <linux/net_tstamp.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 127 #include <linux/filter.h> 128 129 #ifdef CONFIG_INET 130 #include <net/tcp.h> 131 #endif 132 133 /* 134 * Each address family might have different locking rules, so we have 135 * one slock key per address family: 136 */ 137 static struct lock_class_key af_family_keys[AF_MAX]; 138 static struct lock_class_key af_family_slock_keys[AF_MAX]; 139 140 /* 141 * Make lock validator output more readable. (we pre-construct these 142 * strings build-time, so that runtime initialization of socket 143 * locks is fast): 144 */ 145 static const char *const af_family_key_strings[AF_MAX+1] = { 146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 158 "sk_lock-AF_IEEE802154", 159 "sk_lock-AF_MAX" 160 }; 161 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 171 "slock-27" , "slock-28" , "slock-AF_CAN" , 172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 174 "slock-AF_IEEE802154", 175 "slock-AF_MAX" 176 }; 177 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 187 "clock-27" , "clock-28" , "clock-AF_CAN" , 188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 190 "clock-AF_IEEE802154", 191 "clock-AF_MAX" 192 }; 193 194 /* 195 * sk_callback_lock locking rules are per-address-family, 196 * so split the lock classes by using a per-AF key: 197 */ 198 static struct lock_class_key af_callback_keys[AF_MAX]; 199 200 /* Take into consideration the size of the struct sk_buff overhead in the 201 * determination of these values, since that is non-constant across 202 * platforms. This makes socket queueing behavior and performance 203 * not depend upon such differences. 204 */ 205 #define _SK_MEM_PACKETS 256 206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 209 210 /* Run time adjustable parameters. */ 211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 215 216 /* Maximal space eaten by iovec or ancilliary data plus some space */ 217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 218 EXPORT_SYMBOL(sysctl_optmem_max); 219 220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 221 { 222 struct timeval tv; 223 224 if (optlen < sizeof(tv)) 225 return -EINVAL; 226 if (copy_from_user(&tv, optval, sizeof(tv))) 227 return -EFAULT; 228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 229 return -EDOM; 230 231 if (tv.tv_sec < 0) { 232 static int warned __read_mostly; 233 234 *timeo_p = 0; 235 if (warned < 10 && net_ratelimit()) { 236 warned++; 237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) " 238 "tries to set negative timeout\n", 239 current->comm, task_pid_nr(current)); 240 } 241 return 0; 242 } 243 *timeo_p = MAX_SCHEDULE_TIMEOUT; 244 if (tv.tv_sec == 0 && tv.tv_usec == 0) 245 return 0; 246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 248 return 0; 249 } 250 251 static void sock_warn_obsolete_bsdism(const char *name) 252 { 253 static int warned; 254 static char warncomm[TASK_COMM_LEN]; 255 if (strcmp(warncomm, current->comm) && warned < 5) { 256 strcpy(warncomm, current->comm); 257 printk(KERN_WARNING "process `%s' is using obsolete " 258 "%s SO_BSDCOMPAT\n", warncomm, name); 259 warned++; 260 } 261 } 262 263 static void sock_disable_timestamp(struct sock *sk, int flag) 264 { 265 if (sock_flag(sk, flag)) { 266 sock_reset_flag(sk, flag); 267 if (!sock_flag(sk, SOCK_TIMESTAMP) && 268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) { 269 net_disable_timestamp(); 270 } 271 } 272 } 273 274 275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 276 { 277 int err = 0; 278 int skb_len; 279 280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces 281 number of warnings when compiling with -W --ANK 282 */ 283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 284 (unsigned)sk->sk_rcvbuf) { 285 err = -ENOMEM; 286 goto out; 287 } 288 289 err = sk_filter(sk, skb); 290 if (err) 291 goto out; 292 293 if (!sk_rmem_schedule(sk, skb->truesize)) { 294 err = -ENOBUFS; 295 goto out; 296 } 297 298 skb->dev = NULL; 299 skb_set_owner_r(skb, sk); 300 301 /* Cache the SKB length before we tack it onto the receive 302 * queue. Once it is added it no longer belongs to us and 303 * may be freed by other threads of control pulling packets 304 * from the queue. 305 */ 306 skb_len = skb->len; 307 308 skb_queue_tail(&sk->sk_receive_queue, skb); 309 310 if (!sock_flag(sk, SOCK_DEAD)) 311 sk->sk_data_ready(sk, skb_len); 312 out: 313 return err; 314 } 315 EXPORT_SYMBOL(sock_queue_rcv_skb); 316 317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 318 { 319 int rc = NET_RX_SUCCESS; 320 321 if (sk_filter(sk, skb)) 322 goto discard_and_relse; 323 324 skb->dev = NULL; 325 326 if (nested) 327 bh_lock_sock_nested(sk); 328 else 329 bh_lock_sock(sk); 330 if (!sock_owned_by_user(sk)) { 331 /* 332 * trylock + unlock semantics: 333 */ 334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 335 336 rc = sk_backlog_rcv(sk, skb); 337 338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 339 } else 340 sk_add_backlog(sk, skb); 341 bh_unlock_sock(sk); 342 out: 343 sock_put(sk); 344 return rc; 345 discard_and_relse: 346 kfree_skb(skb); 347 goto out; 348 } 349 EXPORT_SYMBOL(sk_receive_skb); 350 351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 352 { 353 struct dst_entry *dst = sk->sk_dst_cache; 354 355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 356 sk->sk_dst_cache = NULL; 357 dst_release(dst); 358 return NULL; 359 } 360 361 return dst; 362 } 363 EXPORT_SYMBOL(__sk_dst_check); 364 365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 366 { 367 struct dst_entry *dst = sk_dst_get(sk); 368 369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 370 sk_dst_reset(sk); 371 dst_release(dst); 372 return NULL; 373 } 374 375 return dst; 376 } 377 EXPORT_SYMBOL(sk_dst_check); 378 379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen) 380 { 381 int ret = -ENOPROTOOPT; 382 #ifdef CONFIG_NETDEVICES 383 struct net *net = sock_net(sk); 384 char devname[IFNAMSIZ]; 385 int index; 386 387 /* Sorry... */ 388 ret = -EPERM; 389 if (!capable(CAP_NET_RAW)) 390 goto out; 391 392 ret = -EINVAL; 393 if (optlen < 0) 394 goto out; 395 396 /* Bind this socket to a particular device like "eth0", 397 * as specified in the passed interface name. If the 398 * name is "" or the option length is zero the socket 399 * is not bound. 400 */ 401 if (optlen > IFNAMSIZ - 1) 402 optlen = IFNAMSIZ - 1; 403 memset(devname, 0, sizeof(devname)); 404 405 ret = -EFAULT; 406 if (copy_from_user(devname, optval, optlen)) 407 goto out; 408 409 if (devname[0] == '\0') { 410 index = 0; 411 } else { 412 struct net_device *dev = dev_get_by_name(net, devname); 413 414 ret = -ENODEV; 415 if (!dev) 416 goto out; 417 418 index = dev->ifindex; 419 dev_put(dev); 420 } 421 422 lock_sock(sk); 423 sk->sk_bound_dev_if = index; 424 sk_dst_reset(sk); 425 release_sock(sk); 426 427 ret = 0; 428 429 out: 430 #endif 431 432 return ret; 433 } 434 435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 436 { 437 if (valbool) 438 sock_set_flag(sk, bit); 439 else 440 sock_reset_flag(sk, bit); 441 } 442 443 /* 444 * This is meant for all protocols to use and covers goings on 445 * at the socket level. Everything here is generic. 446 */ 447 448 int sock_setsockopt(struct socket *sock, int level, int optname, 449 char __user *optval, int optlen) 450 { 451 struct sock *sk = sock->sk; 452 int val; 453 int valbool; 454 struct linger ling; 455 int ret = 0; 456 457 /* 458 * Options without arguments 459 */ 460 461 if (optname == SO_BINDTODEVICE) 462 return sock_bindtodevice(sk, optval, optlen); 463 464 if (optlen < sizeof(int)) 465 return -EINVAL; 466 467 if (get_user(val, (int __user *)optval)) 468 return -EFAULT; 469 470 valbool = val ? 1 : 0; 471 472 lock_sock(sk); 473 474 switch (optname) { 475 case SO_DEBUG: 476 if (val && !capable(CAP_NET_ADMIN)) 477 ret = -EACCES; 478 else 479 sock_valbool_flag(sk, SOCK_DBG, valbool); 480 break; 481 case SO_REUSEADDR: 482 sk->sk_reuse = valbool; 483 break; 484 case SO_TYPE: 485 case SO_PROTOCOL: 486 case SO_DOMAIN: 487 case SO_ERROR: 488 ret = -ENOPROTOOPT; 489 break; 490 case SO_DONTROUTE: 491 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 492 break; 493 case SO_BROADCAST: 494 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 495 break; 496 case SO_SNDBUF: 497 /* Don't error on this BSD doesn't and if you think 498 about it this is right. Otherwise apps have to 499 play 'guess the biggest size' games. RCVBUF/SNDBUF 500 are treated in BSD as hints */ 501 502 if (val > sysctl_wmem_max) 503 val = sysctl_wmem_max; 504 set_sndbuf: 505 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 506 if ((val * 2) < SOCK_MIN_SNDBUF) 507 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 508 else 509 sk->sk_sndbuf = val * 2; 510 511 /* 512 * Wake up sending tasks if we 513 * upped the value. 514 */ 515 sk->sk_write_space(sk); 516 break; 517 518 case SO_SNDBUFFORCE: 519 if (!capable(CAP_NET_ADMIN)) { 520 ret = -EPERM; 521 break; 522 } 523 goto set_sndbuf; 524 525 case SO_RCVBUF: 526 /* Don't error on this BSD doesn't and if you think 527 about it this is right. Otherwise apps have to 528 play 'guess the biggest size' games. RCVBUF/SNDBUF 529 are treated in BSD as hints */ 530 531 if (val > sysctl_rmem_max) 532 val = sysctl_rmem_max; 533 set_rcvbuf: 534 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 535 /* 536 * We double it on the way in to account for 537 * "struct sk_buff" etc. overhead. Applications 538 * assume that the SO_RCVBUF setting they make will 539 * allow that much actual data to be received on that 540 * socket. 541 * 542 * Applications are unaware that "struct sk_buff" and 543 * other overheads allocate from the receive buffer 544 * during socket buffer allocation. 545 * 546 * And after considering the possible alternatives, 547 * returning the value we actually used in getsockopt 548 * is the most desirable behavior. 549 */ 550 if ((val * 2) < SOCK_MIN_RCVBUF) 551 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 552 else 553 sk->sk_rcvbuf = val * 2; 554 break; 555 556 case SO_RCVBUFFORCE: 557 if (!capable(CAP_NET_ADMIN)) { 558 ret = -EPERM; 559 break; 560 } 561 goto set_rcvbuf; 562 563 case SO_KEEPALIVE: 564 #ifdef CONFIG_INET 565 if (sk->sk_protocol == IPPROTO_TCP) 566 tcp_set_keepalive(sk, valbool); 567 #endif 568 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 569 break; 570 571 case SO_OOBINLINE: 572 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 573 break; 574 575 case SO_NO_CHECK: 576 sk->sk_no_check = valbool; 577 break; 578 579 case SO_PRIORITY: 580 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 581 sk->sk_priority = val; 582 else 583 ret = -EPERM; 584 break; 585 586 case SO_LINGER: 587 if (optlen < sizeof(ling)) { 588 ret = -EINVAL; /* 1003.1g */ 589 break; 590 } 591 if (copy_from_user(&ling, optval, sizeof(ling))) { 592 ret = -EFAULT; 593 break; 594 } 595 if (!ling.l_onoff) 596 sock_reset_flag(sk, SOCK_LINGER); 597 else { 598 #if (BITS_PER_LONG == 32) 599 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 600 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 601 else 602 #endif 603 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 604 sock_set_flag(sk, SOCK_LINGER); 605 } 606 break; 607 608 case SO_BSDCOMPAT: 609 sock_warn_obsolete_bsdism("setsockopt"); 610 break; 611 612 case SO_PASSCRED: 613 if (valbool) 614 set_bit(SOCK_PASSCRED, &sock->flags); 615 else 616 clear_bit(SOCK_PASSCRED, &sock->flags); 617 break; 618 619 case SO_TIMESTAMP: 620 case SO_TIMESTAMPNS: 621 if (valbool) { 622 if (optname == SO_TIMESTAMP) 623 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 624 else 625 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 626 sock_set_flag(sk, SOCK_RCVTSTAMP); 627 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 628 } else { 629 sock_reset_flag(sk, SOCK_RCVTSTAMP); 630 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 631 } 632 break; 633 634 case SO_TIMESTAMPING: 635 if (val & ~SOF_TIMESTAMPING_MASK) { 636 ret = -EINVAL; 637 break; 638 } 639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, 640 val & SOF_TIMESTAMPING_TX_HARDWARE); 641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, 642 val & SOF_TIMESTAMPING_TX_SOFTWARE); 643 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, 644 val & SOF_TIMESTAMPING_RX_HARDWARE); 645 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 646 sock_enable_timestamp(sk, 647 SOCK_TIMESTAMPING_RX_SOFTWARE); 648 else 649 sock_disable_timestamp(sk, 650 SOCK_TIMESTAMPING_RX_SOFTWARE); 651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, 652 val & SOF_TIMESTAMPING_SOFTWARE); 653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, 654 val & SOF_TIMESTAMPING_SYS_HARDWARE); 655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, 656 val & SOF_TIMESTAMPING_RAW_HARDWARE); 657 break; 658 659 case SO_RCVLOWAT: 660 if (val < 0) 661 val = INT_MAX; 662 sk->sk_rcvlowat = val ? : 1; 663 break; 664 665 case SO_RCVTIMEO: 666 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 667 break; 668 669 case SO_SNDTIMEO: 670 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 671 break; 672 673 case SO_ATTACH_FILTER: 674 ret = -EINVAL; 675 if (optlen == sizeof(struct sock_fprog)) { 676 struct sock_fprog fprog; 677 678 ret = -EFAULT; 679 if (copy_from_user(&fprog, optval, sizeof(fprog))) 680 break; 681 682 ret = sk_attach_filter(&fprog, sk); 683 } 684 break; 685 686 case SO_DETACH_FILTER: 687 ret = sk_detach_filter(sk); 688 break; 689 690 case SO_PASSSEC: 691 if (valbool) 692 set_bit(SOCK_PASSSEC, &sock->flags); 693 else 694 clear_bit(SOCK_PASSSEC, &sock->flags); 695 break; 696 case SO_MARK: 697 if (!capable(CAP_NET_ADMIN)) 698 ret = -EPERM; 699 else 700 sk->sk_mark = val; 701 break; 702 703 /* We implement the SO_SNDLOWAT etc to 704 not be settable (1003.1g 5.3) */ 705 default: 706 ret = -ENOPROTOOPT; 707 break; 708 } 709 release_sock(sk); 710 return ret; 711 } 712 EXPORT_SYMBOL(sock_setsockopt); 713 714 715 int sock_getsockopt(struct socket *sock, int level, int optname, 716 char __user *optval, int __user *optlen) 717 { 718 struct sock *sk = sock->sk; 719 720 union { 721 int val; 722 struct linger ling; 723 struct timeval tm; 724 } v; 725 726 unsigned int lv = sizeof(int); 727 int len; 728 729 if (get_user(len, optlen)) 730 return -EFAULT; 731 if (len < 0) 732 return -EINVAL; 733 734 memset(&v, 0, sizeof(v)); 735 736 switch (optname) { 737 case SO_DEBUG: 738 v.val = sock_flag(sk, SOCK_DBG); 739 break; 740 741 case SO_DONTROUTE: 742 v.val = sock_flag(sk, SOCK_LOCALROUTE); 743 break; 744 745 case SO_BROADCAST: 746 v.val = !!sock_flag(sk, SOCK_BROADCAST); 747 break; 748 749 case SO_SNDBUF: 750 v.val = sk->sk_sndbuf; 751 break; 752 753 case SO_RCVBUF: 754 v.val = sk->sk_rcvbuf; 755 break; 756 757 case SO_REUSEADDR: 758 v.val = sk->sk_reuse; 759 break; 760 761 case SO_KEEPALIVE: 762 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 763 break; 764 765 case SO_TYPE: 766 v.val = sk->sk_type; 767 break; 768 769 case SO_PROTOCOL: 770 v.val = sk->sk_protocol; 771 break; 772 773 case SO_DOMAIN: 774 v.val = sk->sk_family; 775 break; 776 777 case SO_ERROR: 778 v.val = -sock_error(sk); 779 if (v.val == 0) 780 v.val = xchg(&sk->sk_err_soft, 0); 781 break; 782 783 case SO_OOBINLINE: 784 v.val = !!sock_flag(sk, SOCK_URGINLINE); 785 break; 786 787 case SO_NO_CHECK: 788 v.val = sk->sk_no_check; 789 break; 790 791 case SO_PRIORITY: 792 v.val = sk->sk_priority; 793 break; 794 795 case SO_LINGER: 796 lv = sizeof(v.ling); 797 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 798 v.ling.l_linger = sk->sk_lingertime / HZ; 799 break; 800 801 case SO_BSDCOMPAT: 802 sock_warn_obsolete_bsdism("getsockopt"); 803 break; 804 805 case SO_TIMESTAMP: 806 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 807 !sock_flag(sk, SOCK_RCVTSTAMPNS); 808 break; 809 810 case SO_TIMESTAMPNS: 811 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 812 break; 813 814 case SO_TIMESTAMPING: 815 v.val = 0; 816 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 817 v.val |= SOF_TIMESTAMPING_TX_HARDWARE; 818 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 819 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE; 820 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE)) 821 v.val |= SOF_TIMESTAMPING_RX_HARDWARE; 822 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) 823 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE; 824 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) 825 v.val |= SOF_TIMESTAMPING_SOFTWARE; 826 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)) 827 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE; 828 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) 829 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE; 830 break; 831 832 case SO_RCVTIMEO: 833 lv = sizeof(struct timeval); 834 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 835 v.tm.tv_sec = 0; 836 v.tm.tv_usec = 0; 837 } else { 838 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 839 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 840 } 841 break; 842 843 case SO_SNDTIMEO: 844 lv = sizeof(struct timeval); 845 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 846 v.tm.tv_sec = 0; 847 v.tm.tv_usec = 0; 848 } else { 849 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 850 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 851 } 852 break; 853 854 case SO_RCVLOWAT: 855 v.val = sk->sk_rcvlowat; 856 break; 857 858 case SO_SNDLOWAT: 859 v.val = 1; 860 break; 861 862 case SO_PASSCRED: 863 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 864 break; 865 866 case SO_PEERCRED: 867 if (len > sizeof(sk->sk_peercred)) 868 len = sizeof(sk->sk_peercred); 869 if (copy_to_user(optval, &sk->sk_peercred, len)) 870 return -EFAULT; 871 goto lenout; 872 873 case SO_PEERNAME: 874 { 875 char address[128]; 876 877 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 878 return -ENOTCONN; 879 if (lv < len) 880 return -EINVAL; 881 if (copy_to_user(optval, address, len)) 882 return -EFAULT; 883 goto lenout; 884 } 885 886 /* Dubious BSD thing... Probably nobody even uses it, but 887 * the UNIX standard wants it for whatever reason... -DaveM 888 */ 889 case SO_ACCEPTCONN: 890 v.val = sk->sk_state == TCP_LISTEN; 891 break; 892 893 case SO_PASSSEC: 894 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0; 895 break; 896 897 case SO_PEERSEC: 898 return security_socket_getpeersec_stream(sock, optval, optlen, len); 899 900 case SO_MARK: 901 v.val = sk->sk_mark; 902 break; 903 904 default: 905 return -ENOPROTOOPT; 906 } 907 908 if (len > lv) 909 len = lv; 910 if (copy_to_user(optval, &v, len)) 911 return -EFAULT; 912 lenout: 913 if (put_user(len, optlen)) 914 return -EFAULT; 915 return 0; 916 } 917 918 /* 919 * Initialize an sk_lock. 920 * 921 * (We also register the sk_lock with the lock validator.) 922 */ 923 static inline void sock_lock_init(struct sock *sk) 924 { 925 sock_lock_init_class_and_name(sk, 926 af_family_slock_key_strings[sk->sk_family], 927 af_family_slock_keys + sk->sk_family, 928 af_family_key_strings[sk->sk_family], 929 af_family_keys + sk->sk_family); 930 } 931 932 /* 933 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 934 * even temporarly, because of RCU lookups. sk_node should also be left as is. 935 */ 936 static void sock_copy(struct sock *nsk, const struct sock *osk) 937 { 938 #ifdef CONFIG_SECURITY_NETWORK 939 void *sptr = nsk->sk_security; 940 #endif 941 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) != 942 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt)); 943 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start, 944 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start)); 945 #ifdef CONFIG_SECURITY_NETWORK 946 nsk->sk_security = sptr; 947 security_sk_clone(osk, nsk); 948 #endif 949 } 950 951 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 952 int family) 953 { 954 struct sock *sk; 955 struct kmem_cache *slab; 956 957 slab = prot->slab; 958 if (slab != NULL) { 959 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 960 if (!sk) 961 return sk; 962 if (priority & __GFP_ZERO) { 963 /* 964 * caches using SLAB_DESTROY_BY_RCU should let 965 * sk_node.next un-modified. Special care is taken 966 * when initializing object to zero. 967 */ 968 if (offsetof(struct sock, sk_node.next) != 0) 969 memset(sk, 0, offsetof(struct sock, sk_node.next)); 970 memset(&sk->sk_node.pprev, 0, 971 prot->obj_size - offsetof(struct sock, 972 sk_node.pprev)); 973 } 974 } 975 else 976 sk = kmalloc(prot->obj_size, priority); 977 978 if (sk != NULL) { 979 kmemcheck_annotate_bitfield(sk, flags); 980 981 if (security_sk_alloc(sk, family, priority)) 982 goto out_free; 983 984 if (!try_module_get(prot->owner)) 985 goto out_free_sec; 986 } 987 988 return sk; 989 990 out_free_sec: 991 security_sk_free(sk); 992 out_free: 993 if (slab != NULL) 994 kmem_cache_free(slab, sk); 995 else 996 kfree(sk); 997 return NULL; 998 } 999 1000 static void sk_prot_free(struct proto *prot, struct sock *sk) 1001 { 1002 struct kmem_cache *slab; 1003 struct module *owner; 1004 1005 owner = prot->owner; 1006 slab = prot->slab; 1007 1008 security_sk_free(sk); 1009 if (slab != NULL) 1010 kmem_cache_free(slab, sk); 1011 else 1012 kfree(sk); 1013 module_put(owner); 1014 } 1015 1016 /** 1017 * sk_alloc - All socket objects are allocated here 1018 * @net: the applicable net namespace 1019 * @family: protocol family 1020 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1021 * @prot: struct proto associated with this new sock instance 1022 */ 1023 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1024 struct proto *prot) 1025 { 1026 struct sock *sk; 1027 1028 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1029 if (sk) { 1030 sk->sk_family = family; 1031 /* 1032 * See comment in struct sock definition to understand 1033 * why we need sk_prot_creator -acme 1034 */ 1035 sk->sk_prot = sk->sk_prot_creator = prot; 1036 sock_lock_init(sk); 1037 sock_net_set(sk, get_net(net)); 1038 atomic_set(&sk->sk_wmem_alloc, 1); 1039 } 1040 1041 return sk; 1042 } 1043 EXPORT_SYMBOL(sk_alloc); 1044 1045 static void __sk_free(struct sock *sk) 1046 { 1047 struct sk_filter *filter; 1048 1049 if (sk->sk_destruct) 1050 sk->sk_destruct(sk); 1051 1052 filter = rcu_dereference(sk->sk_filter); 1053 if (filter) { 1054 sk_filter_uncharge(sk, filter); 1055 rcu_assign_pointer(sk->sk_filter, NULL); 1056 } 1057 1058 sock_disable_timestamp(sk, SOCK_TIMESTAMP); 1059 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); 1060 1061 if (atomic_read(&sk->sk_omem_alloc)) 1062 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 1063 __func__, atomic_read(&sk->sk_omem_alloc)); 1064 1065 put_net(sock_net(sk)); 1066 sk_prot_free(sk->sk_prot_creator, sk); 1067 } 1068 1069 void sk_free(struct sock *sk) 1070 { 1071 /* 1072 * We substract one from sk_wmem_alloc and can know if 1073 * some packets are still in some tx queue. 1074 * If not null, sock_wfree() will call __sk_free(sk) later 1075 */ 1076 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1077 __sk_free(sk); 1078 } 1079 EXPORT_SYMBOL(sk_free); 1080 1081 /* 1082 * Last sock_put should drop referrence to sk->sk_net. It has already 1083 * been dropped in sk_change_net. Taking referrence to stopping namespace 1084 * is not an option. 1085 * Take referrence to a socket to remove it from hash _alive_ and after that 1086 * destroy it in the context of init_net. 1087 */ 1088 void sk_release_kernel(struct sock *sk) 1089 { 1090 if (sk == NULL || sk->sk_socket == NULL) 1091 return; 1092 1093 sock_hold(sk); 1094 sock_release(sk->sk_socket); 1095 release_net(sock_net(sk)); 1096 sock_net_set(sk, get_net(&init_net)); 1097 sock_put(sk); 1098 } 1099 EXPORT_SYMBOL(sk_release_kernel); 1100 1101 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 1102 { 1103 struct sock *newsk; 1104 1105 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1106 if (newsk != NULL) { 1107 struct sk_filter *filter; 1108 1109 sock_copy(newsk, sk); 1110 1111 /* SANITY */ 1112 get_net(sock_net(newsk)); 1113 sk_node_init(&newsk->sk_node); 1114 sock_lock_init(newsk); 1115 bh_lock_sock(newsk); 1116 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1117 1118 atomic_set(&newsk->sk_rmem_alloc, 0); 1119 /* 1120 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1121 */ 1122 atomic_set(&newsk->sk_wmem_alloc, 1); 1123 atomic_set(&newsk->sk_omem_alloc, 0); 1124 skb_queue_head_init(&newsk->sk_receive_queue); 1125 skb_queue_head_init(&newsk->sk_write_queue); 1126 #ifdef CONFIG_NET_DMA 1127 skb_queue_head_init(&newsk->sk_async_wait_queue); 1128 #endif 1129 1130 rwlock_init(&newsk->sk_dst_lock); 1131 rwlock_init(&newsk->sk_callback_lock); 1132 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1133 af_callback_keys + newsk->sk_family, 1134 af_family_clock_key_strings[newsk->sk_family]); 1135 1136 newsk->sk_dst_cache = NULL; 1137 newsk->sk_wmem_queued = 0; 1138 newsk->sk_forward_alloc = 0; 1139 newsk->sk_send_head = NULL; 1140 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1141 1142 sock_reset_flag(newsk, SOCK_DONE); 1143 skb_queue_head_init(&newsk->sk_error_queue); 1144 1145 filter = newsk->sk_filter; 1146 if (filter != NULL) 1147 sk_filter_charge(newsk, filter); 1148 1149 if (unlikely(xfrm_sk_clone_policy(newsk))) { 1150 /* It is still raw copy of parent, so invalidate 1151 * destructor and make plain sk_free() */ 1152 newsk->sk_destruct = NULL; 1153 sk_free(newsk); 1154 newsk = NULL; 1155 goto out; 1156 } 1157 1158 newsk->sk_err = 0; 1159 newsk->sk_priority = 0; 1160 /* 1161 * Before updating sk_refcnt, we must commit prior changes to memory 1162 * (Documentation/RCU/rculist_nulls.txt for details) 1163 */ 1164 smp_wmb(); 1165 atomic_set(&newsk->sk_refcnt, 2); 1166 1167 /* 1168 * Increment the counter in the same struct proto as the master 1169 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1170 * is the same as sk->sk_prot->socks, as this field was copied 1171 * with memcpy). 1172 * 1173 * This _changes_ the previous behaviour, where 1174 * tcp_create_openreq_child always was incrementing the 1175 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1176 * to be taken into account in all callers. -acme 1177 */ 1178 sk_refcnt_debug_inc(newsk); 1179 sk_set_socket(newsk, NULL); 1180 newsk->sk_sleep = NULL; 1181 1182 if (newsk->sk_prot->sockets_allocated) 1183 percpu_counter_inc(newsk->sk_prot->sockets_allocated); 1184 } 1185 out: 1186 return newsk; 1187 } 1188 EXPORT_SYMBOL_GPL(sk_clone); 1189 1190 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1191 { 1192 __sk_dst_set(sk, dst); 1193 sk->sk_route_caps = dst->dev->features; 1194 if (sk->sk_route_caps & NETIF_F_GSO) 1195 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1196 if (sk_can_gso(sk)) { 1197 if (dst->header_len) { 1198 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1199 } else { 1200 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1201 sk->sk_gso_max_size = dst->dev->gso_max_size; 1202 } 1203 } 1204 } 1205 EXPORT_SYMBOL_GPL(sk_setup_caps); 1206 1207 void __init sk_init(void) 1208 { 1209 if (totalram_pages <= 4096) { 1210 sysctl_wmem_max = 32767; 1211 sysctl_rmem_max = 32767; 1212 sysctl_wmem_default = 32767; 1213 sysctl_rmem_default = 32767; 1214 } else if (totalram_pages >= 131072) { 1215 sysctl_wmem_max = 131071; 1216 sysctl_rmem_max = 131071; 1217 } 1218 } 1219 1220 /* 1221 * Simple resource managers for sockets. 1222 */ 1223 1224 1225 /* 1226 * Write buffer destructor automatically called from kfree_skb. 1227 */ 1228 void sock_wfree(struct sk_buff *skb) 1229 { 1230 struct sock *sk = skb->sk; 1231 int res; 1232 1233 /* In case it might be waiting for more memory. */ 1234 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc); 1235 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) 1236 sk->sk_write_space(sk); 1237 /* 1238 * if sk_wmem_alloc reached 0, we are last user and should 1239 * free this sock, as sk_free() call could not do it. 1240 */ 1241 if (res == 0) 1242 __sk_free(sk); 1243 } 1244 EXPORT_SYMBOL(sock_wfree); 1245 1246 /* 1247 * Read buffer destructor automatically called from kfree_skb. 1248 */ 1249 void sock_rfree(struct sk_buff *skb) 1250 { 1251 struct sock *sk = skb->sk; 1252 1253 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1254 sk_mem_uncharge(skb->sk, skb->truesize); 1255 } 1256 EXPORT_SYMBOL(sock_rfree); 1257 1258 1259 int sock_i_uid(struct sock *sk) 1260 { 1261 int uid; 1262 1263 read_lock(&sk->sk_callback_lock); 1264 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 1265 read_unlock(&sk->sk_callback_lock); 1266 return uid; 1267 } 1268 EXPORT_SYMBOL(sock_i_uid); 1269 1270 unsigned long sock_i_ino(struct sock *sk) 1271 { 1272 unsigned long ino; 1273 1274 read_lock(&sk->sk_callback_lock); 1275 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1276 read_unlock(&sk->sk_callback_lock); 1277 return ino; 1278 } 1279 EXPORT_SYMBOL(sock_i_ino); 1280 1281 /* 1282 * Allocate a skb from the socket's send buffer. 1283 */ 1284 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1285 gfp_t priority) 1286 { 1287 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1288 struct sk_buff *skb = alloc_skb(size, priority); 1289 if (skb) { 1290 skb_set_owner_w(skb, sk); 1291 return skb; 1292 } 1293 } 1294 return NULL; 1295 } 1296 EXPORT_SYMBOL(sock_wmalloc); 1297 1298 /* 1299 * Allocate a skb from the socket's receive buffer. 1300 */ 1301 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 1302 gfp_t priority) 1303 { 1304 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1305 struct sk_buff *skb = alloc_skb(size, priority); 1306 if (skb) { 1307 skb_set_owner_r(skb, sk); 1308 return skb; 1309 } 1310 } 1311 return NULL; 1312 } 1313 1314 /* 1315 * Allocate a memory block from the socket's option memory buffer. 1316 */ 1317 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1318 { 1319 if ((unsigned)size <= sysctl_optmem_max && 1320 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1321 void *mem; 1322 /* First do the add, to avoid the race if kmalloc 1323 * might sleep. 1324 */ 1325 atomic_add(size, &sk->sk_omem_alloc); 1326 mem = kmalloc(size, priority); 1327 if (mem) 1328 return mem; 1329 atomic_sub(size, &sk->sk_omem_alloc); 1330 } 1331 return NULL; 1332 } 1333 EXPORT_SYMBOL(sock_kmalloc); 1334 1335 /* 1336 * Free an option memory block. 1337 */ 1338 void sock_kfree_s(struct sock *sk, void *mem, int size) 1339 { 1340 kfree(mem); 1341 atomic_sub(size, &sk->sk_omem_alloc); 1342 } 1343 EXPORT_SYMBOL(sock_kfree_s); 1344 1345 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1346 I think, these locks should be removed for datagram sockets. 1347 */ 1348 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1349 { 1350 DEFINE_WAIT(wait); 1351 1352 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1353 for (;;) { 1354 if (!timeo) 1355 break; 1356 if (signal_pending(current)) 1357 break; 1358 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1359 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1360 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1361 break; 1362 if (sk->sk_shutdown & SEND_SHUTDOWN) 1363 break; 1364 if (sk->sk_err) 1365 break; 1366 timeo = schedule_timeout(timeo); 1367 } 1368 finish_wait(sk->sk_sleep, &wait); 1369 return timeo; 1370 } 1371 1372 1373 /* 1374 * Generic send/receive buffer handlers 1375 */ 1376 1377 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1378 unsigned long data_len, int noblock, 1379 int *errcode) 1380 { 1381 struct sk_buff *skb; 1382 gfp_t gfp_mask; 1383 long timeo; 1384 int err; 1385 1386 gfp_mask = sk->sk_allocation; 1387 if (gfp_mask & __GFP_WAIT) 1388 gfp_mask |= __GFP_REPEAT; 1389 1390 timeo = sock_sndtimeo(sk, noblock); 1391 while (1) { 1392 err = sock_error(sk); 1393 if (err != 0) 1394 goto failure; 1395 1396 err = -EPIPE; 1397 if (sk->sk_shutdown & SEND_SHUTDOWN) 1398 goto failure; 1399 1400 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1401 skb = alloc_skb(header_len, gfp_mask); 1402 if (skb) { 1403 int npages; 1404 int i; 1405 1406 /* No pages, we're done... */ 1407 if (!data_len) 1408 break; 1409 1410 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1411 skb->truesize += data_len; 1412 skb_shinfo(skb)->nr_frags = npages; 1413 for (i = 0; i < npages; i++) { 1414 struct page *page; 1415 skb_frag_t *frag; 1416 1417 page = alloc_pages(sk->sk_allocation, 0); 1418 if (!page) { 1419 err = -ENOBUFS; 1420 skb_shinfo(skb)->nr_frags = i; 1421 kfree_skb(skb); 1422 goto failure; 1423 } 1424 1425 frag = &skb_shinfo(skb)->frags[i]; 1426 frag->page = page; 1427 frag->page_offset = 0; 1428 frag->size = (data_len >= PAGE_SIZE ? 1429 PAGE_SIZE : 1430 data_len); 1431 data_len -= PAGE_SIZE; 1432 } 1433 1434 /* Full success... */ 1435 break; 1436 } 1437 err = -ENOBUFS; 1438 goto failure; 1439 } 1440 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1441 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1442 err = -EAGAIN; 1443 if (!timeo) 1444 goto failure; 1445 if (signal_pending(current)) 1446 goto interrupted; 1447 timeo = sock_wait_for_wmem(sk, timeo); 1448 } 1449 1450 skb_set_owner_w(skb, sk); 1451 return skb; 1452 1453 interrupted: 1454 err = sock_intr_errno(timeo); 1455 failure: 1456 *errcode = err; 1457 return NULL; 1458 } 1459 EXPORT_SYMBOL(sock_alloc_send_pskb); 1460 1461 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1462 int noblock, int *errcode) 1463 { 1464 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1465 } 1466 EXPORT_SYMBOL(sock_alloc_send_skb); 1467 1468 static void __lock_sock(struct sock *sk) 1469 { 1470 DEFINE_WAIT(wait); 1471 1472 for (;;) { 1473 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1474 TASK_UNINTERRUPTIBLE); 1475 spin_unlock_bh(&sk->sk_lock.slock); 1476 schedule(); 1477 spin_lock_bh(&sk->sk_lock.slock); 1478 if (!sock_owned_by_user(sk)) 1479 break; 1480 } 1481 finish_wait(&sk->sk_lock.wq, &wait); 1482 } 1483 1484 static void __release_sock(struct sock *sk) 1485 { 1486 struct sk_buff *skb = sk->sk_backlog.head; 1487 1488 do { 1489 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1490 bh_unlock_sock(sk); 1491 1492 do { 1493 struct sk_buff *next = skb->next; 1494 1495 skb->next = NULL; 1496 sk_backlog_rcv(sk, skb); 1497 1498 /* 1499 * We are in process context here with softirqs 1500 * disabled, use cond_resched_softirq() to preempt. 1501 * This is safe to do because we've taken the backlog 1502 * queue private: 1503 */ 1504 cond_resched_softirq(); 1505 1506 skb = next; 1507 } while (skb != NULL); 1508 1509 bh_lock_sock(sk); 1510 } while ((skb = sk->sk_backlog.head) != NULL); 1511 } 1512 1513 /** 1514 * sk_wait_data - wait for data to arrive at sk_receive_queue 1515 * @sk: sock to wait on 1516 * @timeo: for how long 1517 * 1518 * Now socket state including sk->sk_err is changed only under lock, 1519 * hence we may omit checks after joining wait queue. 1520 * We check receive queue before schedule() only as optimization; 1521 * it is very likely that release_sock() added new data. 1522 */ 1523 int sk_wait_data(struct sock *sk, long *timeo) 1524 { 1525 int rc; 1526 DEFINE_WAIT(wait); 1527 1528 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1529 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1530 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1531 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1532 finish_wait(sk->sk_sleep, &wait); 1533 return rc; 1534 } 1535 EXPORT_SYMBOL(sk_wait_data); 1536 1537 /** 1538 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 1539 * @sk: socket 1540 * @size: memory size to allocate 1541 * @kind: allocation type 1542 * 1543 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 1544 * rmem allocation. This function assumes that protocols which have 1545 * memory_pressure use sk_wmem_queued as write buffer accounting. 1546 */ 1547 int __sk_mem_schedule(struct sock *sk, int size, int kind) 1548 { 1549 struct proto *prot = sk->sk_prot; 1550 int amt = sk_mem_pages(size); 1551 int allocated; 1552 1553 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 1554 allocated = atomic_add_return(amt, prot->memory_allocated); 1555 1556 /* Under limit. */ 1557 if (allocated <= prot->sysctl_mem[0]) { 1558 if (prot->memory_pressure && *prot->memory_pressure) 1559 *prot->memory_pressure = 0; 1560 return 1; 1561 } 1562 1563 /* Under pressure. */ 1564 if (allocated > prot->sysctl_mem[1]) 1565 if (prot->enter_memory_pressure) 1566 prot->enter_memory_pressure(sk); 1567 1568 /* Over hard limit. */ 1569 if (allocated > prot->sysctl_mem[2]) 1570 goto suppress_allocation; 1571 1572 /* guarantee minimum buffer size under pressure */ 1573 if (kind == SK_MEM_RECV) { 1574 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 1575 return 1; 1576 } else { /* SK_MEM_SEND */ 1577 if (sk->sk_type == SOCK_STREAM) { 1578 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 1579 return 1; 1580 } else if (atomic_read(&sk->sk_wmem_alloc) < 1581 prot->sysctl_wmem[0]) 1582 return 1; 1583 } 1584 1585 if (prot->memory_pressure) { 1586 int alloc; 1587 1588 if (!*prot->memory_pressure) 1589 return 1; 1590 alloc = percpu_counter_read_positive(prot->sockets_allocated); 1591 if (prot->sysctl_mem[2] > alloc * 1592 sk_mem_pages(sk->sk_wmem_queued + 1593 atomic_read(&sk->sk_rmem_alloc) + 1594 sk->sk_forward_alloc)) 1595 return 1; 1596 } 1597 1598 suppress_allocation: 1599 1600 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 1601 sk_stream_moderate_sndbuf(sk); 1602 1603 /* Fail only if socket is _under_ its sndbuf. 1604 * In this case we cannot block, so that we have to fail. 1605 */ 1606 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 1607 return 1; 1608 } 1609 1610 /* Alas. Undo changes. */ 1611 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 1612 atomic_sub(amt, prot->memory_allocated); 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(__sk_mem_schedule); 1616 1617 /** 1618 * __sk_reclaim - reclaim memory_allocated 1619 * @sk: socket 1620 */ 1621 void __sk_mem_reclaim(struct sock *sk) 1622 { 1623 struct proto *prot = sk->sk_prot; 1624 1625 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 1626 prot->memory_allocated); 1627 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1; 1628 1629 if (prot->memory_pressure && *prot->memory_pressure && 1630 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0])) 1631 *prot->memory_pressure = 0; 1632 } 1633 EXPORT_SYMBOL(__sk_mem_reclaim); 1634 1635 1636 /* 1637 * Set of default routines for initialising struct proto_ops when 1638 * the protocol does not support a particular function. In certain 1639 * cases where it makes no sense for a protocol to have a "do nothing" 1640 * function, some default processing is provided. 1641 */ 1642 1643 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1644 { 1645 return -EOPNOTSUPP; 1646 } 1647 EXPORT_SYMBOL(sock_no_bind); 1648 1649 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1650 int len, int flags) 1651 { 1652 return -EOPNOTSUPP; 1653 } 1654 EXPORT_SYMBOL(sock_no_connect); 1655 1656 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1657 { 1658 return -EOPNOTSUPP; 1659 } 1660 EXPORT_SYMBOL(sock_no_socketpair); 1661 1662 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1663 { 1664 return -EOPNOTSUPP; 1665 } 1666 EXPORT_SYMBOL(sock_no_accept); 1667 1668 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1669 int *len, int peer) 1670 { 1671 return -EOPNOTSUPP; 1672 } 1673 EXPORT_SYMBOL(sock_no_getname); 1674 1675 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 1676 { 1677 return 0; 1678 } 1679 EXPORT_SYMBOL(sock_no_poll); 1680 1681 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1682 { 1683 return -EOPNOTSUPP; 1684 } 1685 EXPORT_SYMBOL(sock_no_ioctl); 1686 1687 int sock_no_listen(struct socket *sock, int backlog) 1688 { 1689 return -EOPNOTSUPP; 1690 } 1691 EXPORT_SYMBOL(sock_no_listen); 1692 1693 int sock_no_shutdown(struct socket *sock, int how) 1694 { 1695 return -EOPNOTSUPP; 1696 } 1697 EXPORT_SYMBOL(sock_no_shutdown); 1698 1699 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1700 char __user *optval, int optlen) 1701 { 1702 return -EOPNOTSUPP; 1703 } 1704 EXPORT_SYMBOL(sock_no_setsockopt); 1705 1706 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1707 char __user *optval, int __user *optlen) 1708 { 1709 return -EOPNOTSUPP; 1710 } 1711 EXPORT_SYMBOL(sock_no_getsockopt); 1712 1713 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1714 size_t len) 1715 { 1716 return -EOPNOTSUPP; 1717 } 1718 EXPORT_SYMBOL(sock_no_sendmsg); 1719 1720 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1721 size_t len, int flags) 1722 { 1723 return -EOPNOTSUPP; 1724 } 1725 EXPORT_SYMBOL(sock_no_recvmsg); 1726 1727 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1728 { 1729 /* Mirror missing mmap method error code */ 1730 return -ENODEV; 1731 } 1732 EXPORT_SYMBOL(sock_no_mmap); 1733 1734 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1735 { 1736 ssize_t res; 1737 struct msghdr msg = {.msg_flags = flags}; 1738 struct kvec iov; 1739 char *kaddr = kmap(page); 1740 iov.iov_base = kaddr + offset; 1741 iov.iov_len = size; 1742 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1743 kunmap(page); 1744 return res; 1745 } 1746 EXPORT_SYMBOL(sock_no_sendpage); 1747 1748 /* 1749 * Default Socket Callbacks 1750 */ 1751 1752 static void sock_def_wakeup(struct sock *sk) 1753 { 1754 read_lock(&sk->sk_callback_lock); 1755 if (sk_has_sleeper(sk)) 1756 wake_up_interruptible_all(sk->sk_sleep); 1757 read_unlock(&sk->sk_callback_lock); 1758 } 1759 1760 static void sock_def_error_report(struct sock *sk) 1761 { 1762 read_lock(&sk->sk_callback_lock); 1763 if (sk_has_sleeper(sk)) 1764 wake_up_interruptible_poll(sk->sk_sleep, POLLERR); 1765 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 1766 read_unlock(&sk->sk_callback_lock); 1767 } 1768 1769 static void sock_def_readable(struct sock *sk, int len) 1770 { 1771 read_lock(&sk->sk_callback_lock); 1772 if (sk_has_sleeper(sk)) 1773 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN | 1774 POLLRDNORM | POLLRDBAND); 1775 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 1776 read_unlock(&sk->sk_callback_lock); 1777 } 1778 1779 static void sock_def_write_space(struct sock *sk) 1780 { 1781 read_lock(&sk->sk_callback_lock); 1782 1783 /* Do not wake up a writer until he can make "significant" 1784 * progress. --DaveM 1785 */ 1786 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1787 if (sk_has_sleeper(sk)) 1788 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT | 1789 POLLWRNORM | POLLWRBAND); 1790 1791 /* Should agree with poll, otherwise some programs break */ 1792 if (sock_writeable(sk)) 1793 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 1794 } 1795 1796 read_unlock(&sk->sk_callback_lock); 1797 } 1798 1799 static void sock_def_destruct(struct sock *sk) 1800 { 1801 kfree(sk->sk_protinfo); 1802 } 1803 1804 void sk_send_sigurg(struct sock *sk) 1805 { 1806 if (sk->sk_socket && sk->sk_socket->file) 1807 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1808 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 1809 } 1810 EXPORT_SYMBOL(sk_send_sigurg); 1811 1812 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1813 unsigned long expires) 1814 { 1815 if (!mod_timer(timer, expires)) 1816 sock_hold(sk); 1817 } 1818 EXPORT_SYMBOL(sk_reset_timer); 1819 1820 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1821 { 1822 if (timer_pending(timer) && del_timer(timer)) 1823 __sock_put(sk); 1824 } 1825 EXPORT_SYMBOL(sk_stop_timer); 1826 1827 void sock_init_data(struct socket *sock, struct sock *sk) 1828 { 1829 skb_queue_head_init(&sk->sk_receive_queue); 1830 skb_queue_head_init(&sk->sk_write_queue); 1831 skb_queue_head_init(&sk->sk_error_queue); 1832 #ifdef CONFIG_NET_DMA 1833 skb_queue_head_init(&sk->sk_async_wait_queue); 1834 #endif 1835 1836 sk->sk_send_head = NULL; 1837 1838 init_timer(&sk->sk_timer); 1839 1840 sk->sk_allocation = GFP_KERNEL; 1841 sk->sk_rcvbuf = sysctl_rmem_default; 1842 sk->sk_sndbuf = sysctl_wmem_default; 1843 sk->sk_state = TCP_CLOSE; 1844 sk_set_socket(sk, sock); 1845 1846 sock_set_flag(sk, SOCK_ZAPPED); 1847 1848 if (sock) { 1849 sk->sk_type = sock->type; 1850 sk->sk_sleep = &sock->wait; 1851 sock->sk = sk; 1852 } else 1853 sk->sk_sleep = NULL; 1854 1855 rwlock_init(&sk->sk_dst_lock); 1856 rwlock_init(&sk->sk_callback_lock); 1857 lockdep_set_class_and_name(&sk->sk_callback_lock, 1858 af_callback_keys + sk->sk_family, 1859 af_family_clock_key_strings[sk->sk_family]); 1860 1861 sk->sk_state_change = sock_def_wakeup; 1862 sk->sk_data_ready = sock_def_readable; 1863 sk->sk_write_space = sock_def_write_space; 1864 sk->sk_error_report = sock_def_error_report; 1865 sk->sk_destruct = sock_def_destruct; 1866 1867 sk->sk_sndmsg_page = NULL; 1868 sk->sk_sndmsg_off = 0; 1869 1870 sk->sk_peercred.pid = 0; 1871 sk->sk_peercred.uid = -1; 1872 sk->sk_peercred.gid = -1; 1873 sk->sk_write_pending = 0; 1874 sk->sk_rcvlowat = 1; 1875 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1876 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1877 1878 sk->sk_stamp = ktime_set(-1L, 0); 1879 1880 /* 1881 * Before updating sk_refcnt, we must commit prior changes to memory 1882 * (Documentation/RCU/rculist_nulls.txt for details) 1883 */ 1884 smp_wmb(); 1885 atomic_set(&sk->sk_refcnt, 1); 1886 atomic_set(&sk->sk_drops, 0); 1887 } 1888 EXPORT_SYMBOL(sock_init_data); 1889 1890 void lock_sock_nested(struct sock *sk, int subclass) 1891 { 1892 might_sleep(); 1893 spin_lock_bh(&sk->sk_lock.slock); 1894 if (sk->sk_lock.owned) 1895 __lock_sock(sk); 1896 sk->sk_lock.owned = 1; 1897 spin_unlock(&sk->sk_lock.slock); 1898 /* 1899 * The sk_lock has mutex_lock() semantics here: 1900 */ 1901 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 1902 local_bh_enable(); 1903 } 1904 EXPORT_SYMBOL(lock_sock_nested); 1905 1906 void release_sock(struct sock *sk) 1907 { 1908 /* 1909 * The sk_lock has mutex_unlock() semantics: 1910 */ 1911 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1912 1913 spin_lock_bh(&sk->sk_lock.slock); 1914 if (sk->sk_backlog.tail) 1915 __release_sock(sk); 1916 sk->sk_lock.owned = 0; 1917 if (waitqueue_active(&sk->sk_lock.wq)) 1918 wake_up(&sk->sk_lock.wq); 1919 spin_unlock_bh(&sk->sk_lock.slock); 1920 } 1921 EXPORT_SYMBOL(release_sock); 1922 1923 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1924 { 1925 struct timeval tv; 1926 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1927 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1928 tv = ktime_to_timeval(sk->sk_stamp); 1929 if (tv.tv_sec == -1) 1930 return -ENOENT; 1931 if (tv.tv_sec == 0) { 1932 sk->sk_stamp = ktime_get_real(); 1933 tv = ktime_to_timeval(sk->sk_stamp); 1934 } 1935 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 1936 } 1937 EXPORT_SYMBOL(sock_get_timestamp); 1938 1939 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 1940 { 1941 struct timespec ts; 1942 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1943 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 1944 ts = ktime_to_timespec(sk->sk_stamp); 1945 if (ts.tv_sec == -1) 1946 return -ENOENT; 1947 if (ts.tv_sec == 0) { 1948 sk->sk_stamp = ktime_get_real(); 1949 ts = ktime_to_timespec(sk->sk_stamp); 1950 } 1951 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 1952 } 1953 EXPORT_SYMBOL(sock_get_timestampns); 1954 1955 void sock_enable_timestamp(struct sock *sk, int flag) 1956 { 1957 if (!sock_flag(sk, flag)) { 1958 sock_set_flag(sk, flag); 1959 /* 1960 * we just set one of the two flags which require net 1961 * time stamping, but time stamping might have been on 1962 * already because of the other one 1963 */ 1964 if (!sock_flag(sk, 1965 flag == SOCK_TIMESTAMP ? 1966 SOCK_TIMESTAMPING_RX_SOFTWARE : 1967 SOCK_TIMESTAMP)) 1968 net_enable_timestamp(); 1969 } 1970 } 1971 1972 /* 1973 * Get a socket option on an socket. 1974 * 1975 * FIX: POSIX 1003.1g is very ambiguous here. It states that 1976 * asynchronous errors should be reported by getsockopt. We assume 1977 * this means if you specify SO_ERROR (otherwise whats the point of it). 1978 */ 1979 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1980 char __user *optval, int __user *optlen) 1981 { 1982 struct sock *sk = sock->sk; 1983 1984 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1985 } 1986 EXPORT_SYMBOL(sock_common_getsockopt); 1987 1988 #ifdef CONFIG_COMPAT 1989 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 1990 char __user *optval, int __user *optlen) 1991 { 1992 struct sock *sk = sock->sk; 1993 1994 if (sk->sk_prot->compat_getsockopt != NULL) 1995 return sk->sk_prot->compat_getsockopt(sk, level, optname, 1996 optval, optlen); 1997 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1998 } 1999 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2000 #endif 2001 2002 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 2003 struct msghdr *msg, size_t size, int flags) 2004 { 2005 struct sock *sk = sock->sk; 2006 int addr_len = 0; 2007 int err; 2008 2009 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 2010 flags & ~MSG_DONTWAIT, &addr_len); 2011 if (err >= 0) 2012 msg->msg_namelen = addr_len; 2013 return err; 2014 } 2015 EXPORT_SYMBOL(sock_common_recvmsg); 2016 2017 /* 2018 * Set socket options on an inet socket. 2019 */ 2020 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2021 char __user *optval, int optlen) 2022 { 2023 struct sock *sk = sock->sk; 2024 2025 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2026 } 2027 EXPORT_SYMBOL(sock_common_setsockopt); 2028 2029 #ifdef CONFIG_COMPAT 2030 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2031 char __user *optval, int optlen) 2032 { 2033 struct sock *sk = sock->sk; 2034 2035 if (sk->sk_prot->compat_setsockopt != NULL) 2036 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2037 optval, optlen); 2038 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2039 } 2040 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2041 #endif 2042 2043 void sk_common_release(struct sock *sk) 2044 { 2045 if (sk->sk_prot->destroy) 2046 sk->sk_prot->destroy(sk); 2047 2048 /* 2049 * Observation: when sock_common_release is called, processes have 2050 * no access to socket. But net still has. 2051 * Step one, detach it from networking: 2052 * 2053 * A. Remove from hash tables. 2054 */ 2055 2056 sk->sk_prot->unhash(sk); 2057 2058 /* 2059 * In this point socket cannot receive new packets, but it is possible 2060 * that some packets are in flight because some CPU runs receiver and 2061 * did hash table lookup before we unhashed socket. They will achieve 2062 * receive queue and will be purged by socket destructor. 2063 * 2064 * Also we still have packets pending on receive queue and probably, 2065 * our own packets waiting in device queues. sock_destroy will drain 2066 * receive queue, but transmitted packets will delay socket destruction 2067 * until the last reference will be released. 2068 */ 2069 2070 sock_orphan(sk); 2071 2072 xfrm_sk_free_policy(sk); 2073 2074 sk_refcnt_debug_release(sk); 2075 sock_put(sk); 2076 } 2077 EXPORT_SYMBOL(sk_common_release); 2078 2079 static DEFINE_RWLOCK(proto_list_lock); 2080 static LIST_HEAD(proto_list); 2081 2082 #ifdef CONFIG_PROC_FS 2083 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2084 struct prot_inuse { 2085 int val[PROTO_INUSE_NR]; 2086 }; 2087 2088 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2089 2090 #ifdef CONFIG_NET_NS 2091 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2092 { 2093 int cpu = smp_processor_id(); 2094 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val; 2095 } 2096 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2097 2098 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2099 { 2100 int cpu, idx = prot->inuse_idx; 2101 int res = 0; 2102 2103 for_each_possible_cpu(cpu) 2104 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2105 2106 return res >= 0 ? res : 0; 2107 } 2108 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2109 2110 static int sock_inuse_init_net(struct net *net) 2111 { 2112 net->core.inuse = alloc_percpu(struct prot_inuse); 2113 return net->core.inuse ? 0 : -ENOMEM; 2114 } 2115 2116 static void sock_inuse_exit_net(struct net *net) 2117 { 2118 free_percpu(net->core.inuse); 2119 } 2120 2121 static struct pernet_operations net_inuse_ops = { 2122 .init = sock_inuse_init_net, 2123 .exit = sock_inuse_exit_net, 2124 }; 2125 2126 static __init int net_inuse_init(void) 2127 { 2128 if (register_pernet_subsys(&net_inuse_ops)) 2129 panic("Cannot initialize net inuse counters"); 2130 2131 return 0; 2132 } 2133 2134 core_initcall(net_inuse_init); 2135 #else 2136 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2137 2138 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2139 { 2140 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val; 2141 } 2142 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2143 2144 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2145 { 2146 int cpu, idx = prot->inuse_idx; 2147 int res = 0; 2148 2149 for_each_possible_cpu(cpu) 2150 res += per_cpu(prot_inuse, cpu).val[idx]; 2151 2152 return res >= 0 ? res : 0; 2153 } 2154 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2155 #endif 2156 2157 static void assign_proto_idx(struct proto *prot) 2158 { 2159 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2160 2161 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2162 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n"); 2163 return; 2164 } 2165 2166 set_bit(prot->inuse_idx, proto_inuse_idx); 2167 } 2168 2169 static void release_proto_idx(struct proto *prot) 2170 { 2171 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2172 clear_bit(prot->inuse_idx, proto_inuse_idx); 2173 } 2174 #else 2175 static inline void assign_proto_idx(struct proto *prot) 2176 { 2177 } 2178 2179 static inline void release_proto_idx(struct proto *prot) 2180 { 2181 } 2182 #endif 2183 2184 int proto_register(struct proto *prot, int alloc_slab) 2185 { 2186 if (alloc_slab) { 2187 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2188 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2189 NULL); 2190 2191 if (prot->slab == NULL) { 2192 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 2193 prot->name); 2194 goto out; 2195 } 2196 2197 if (prot->rsk_prot != NULL) { 2198 static const char mask[] = "request_sock_%s"; 2199 2200 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2201 if (prot->rsk_prot->slab_name == NULL) 2202 goto out_free_sock_slab; 2203 2204 sprintf(prot->rsk_prot->slab_name, mask, prot->name); 2205 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name, 2206 prot->rsk_prot->obj_size, 0, 2207 SLAB_HWCACHE_ALIGN, NULL); 2208 2209 if (prot->rsk_prot->slab == NULL) { 2210 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 2211 prot->name); 2212 goto out_free_request_sock_slab_name; 2213 } 2214 } 2215 2216 if (prot->twsk_prot != NULL) { 2217 static const char mask[] = "tw_sock_%s"; 2218 2219 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 2220 2221 if (prot->twsk_prot->twsk_slab_name == NULL) 2222 goto out_free_request_sock_slab; 2223 2224 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name); 2225 prot->twsk_prot->twsk_slab = 2226 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2227 prot->twsk_prot->twsk_obj_size, 2228 0, 2229 SLAB_HWCACHE_ALIGN | 2230 prot->slab_flags, 2231 NULL); 2232 if (prot->twsk_prot->twsk_slab == NULL) 2233 goto out_free_timewait_sock_slab_name; 2234 } 2235 } 2236 2237 write_lock(&proto_list_lock); 2238 list_add(&prot->node, &proto_list); 2239 assign_proto_idx(prot); 2240 write_unlock(&proto_list_lock); 2241 return 0; 2242 2243 out_free_timewait_sock_slab_name: 2244 kfree(prot->twsk_prot->twsk_slab_name); 2245 out_free_request_sock_slab: 2246 if (prot->rsk_prot && prot->rsk_prot->slab) { 2247 kmem_cache_destroy(prot->rsk_prot->slab); 2248 prot->rsk_prot->slab = NULL; 2249 } 2250 out_free_request_sock_slab_name: 2251 kfree(prot->rsk_prot->slab_name); 2252 out_free_sock_slab: 2253 kmem_cache_destroy(prot->slab); 2254 prot->slab = NULL; 2255 out: 2256 return -ENOBUFS; 2257 } 2258 EXPORT_SYMBOL(proto_register); 2259 2260 void proto_unregister(struct proto *prot) 2261 { 2262 write_lock(&proto_list_lock); 2263 release_proto_idx(prot); 2264 list_del(&prot->node); 2265 write_unlock(&proto_list_lock); 2266 2267 if (prot->slab != NULL) { 2268 kmem_cache_destroy(prot->slab); 2269 prot->slab = NULL; 2270 } 2271 2272 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 2273 kmem_cache_destroy(prot->rsk_prot->slab); 2274 kfree(prot->rsk_prot->slab_name); 2275 prot->rsk_prot->slab = NULL; 2276 } 2277 2278 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2279 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2280 kfree(prot->twsk_prot->twsk_slab_name); 2281 prot->twsk_prot->twsk_slab = NULL; 2282 } 2283 } 2284 EXPORT_SYMBOL(proto_unregister); 2285 2286 #ifdef CONFIG_PROC_FS 2287 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2288 __acquires(proto_list_lock) 2289 { 2290 read_lock(&proto_list_lock); 2291 return seq_list_start_head(&proto_list, *pos); 2292 } 2293 2294 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2295 { 2296 return seq_list_next(v, &proto_list, pos); 2297 } 2298 2299 static void proto_seq_stop(struct seq_file *seq, void *v) 2300 __releases(proto_list_lock) 2301 { 2302 read_unlock(&proto_list_lock); 2303 } 2304 2305 static char proto_method_implemented(const void *method) 2306 { 2307 return method == NULL ? 'n' : 'y'; 2308 } 2309 2310 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2311 { 2312 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 2313 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2314 proto->name, 2315 proto->obj_size, 2316 sock_prot_inuse_get(seq_file_net(seq), proto), 2317 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 2318 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 2319 proto->max_header, 2320 proto->slab == NULL ? "no" : "yes", 2321 module_name(proto->owner), 2322 proto_method_implemented(proto->close), 2323 proto_method_implemented(proto->connect), 2324 proto_method_implemented(proto->disconnect), 2325 proto_method_implemented(proto->accept), 2326 proto_method_implemented(proto->ioctl), 2327 proto_method_implemented(proto->init), 2328 proto_method_implemented(proto->destroy), 2329 proto_method_implemented(proto->shutdown), 2330 proto_method_implemented(proto->setsockopt), 2331 proto_method_implemented(proto->getsockopt), 2332 proto_method_implemented(proto->sendmsg), 2333 proto_method_implemented(proto->recvmsg), 2334 proto_method_implemented(proto->sendpage), 2335 proto_method_implemented(proto->bind), 2336 proto_method_implemented(proto->backlog_rcv), 2337 proto_method_implemented(proto->hash), 2338 proto_method_implemented(proto->unhash), 2339 proto_method_implemented(proto->get_port), 2340 proto_method_implemented(proto->enter_memory_pressure)); 2341 } 2342 2343 static int proto_seq_show(struct seq_file *seq, void *v) 2344 { 2345 if (v == &proto_list) 2346 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2347 "protocol", 2348 "size", 2349 "sockets", 2350 "memory", 2351 "press", 2352 "maxhdr", 2353 "slab", 2354 "module", 2355 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2356 else 2357 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2358 return 0; 2359 } 2360 2361 static const struct seq_operations proto_seq_ops = { 2362 .start = proto_seq_start, 2363 .next = proto_seq_next, 2364 .stop = proto_seq_stop, 2365 .show = proto_seq_show, 2366 }; 2367 2368 static int proto_seq_open(struct inode *inode, struct file *file) 2369 { 2370 return seq_open_net(inode, file, &proto_seq_ops, 2371 sizeof(struct seq_net_private)); 2372 } 2373 2374 static const struct file_operations proto_seq_fops = { 2375 .owner = THIS_MODULE, 2376 .open = proto_seq_open, 2377 .read = seq_read, 2378 .llseek = seq_lseek, 2379 .release = seq_release_net, 2380 }; 2381 2382 static __net_init int proto_init_net(struct net *net) 2383 { 2384 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops)) 2385 return -ENOMEM; 2386 2387 return 0; 2388 } 2389 2390 static __net_exit void proto_exit_net(struct net *net) 2391 { 2392 proc_net_remove(net, "protocols"); 2393 } 2394 2395 2396 static __net_initdata struct pernet_operations proto_net_ops = { 2397 .init = proto_init_net, 2398 .exit = proto_exit_net, 2399 }; 2400 2401 static int __init proto_init(void) 2402 { 2403 return register_pernet_subsys(&proto_net_ops); 2404 } 2405 2406 subsys_initcall(proto_init); 2407 2408 #endif /* PROC_FS */ 2409