xref: /linux/net/core/sock.c (revision 264ba53fac79b03ff754bce62da5027ee3c57b8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 #include <linux/ethtool.h>
143 
144 #include "dev.h"
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 static void sock_def_write_space_wfree(struct sock *sk);
150 static void sock_def_write_space(struct sock *sk);
151 
152 /**
153  * sk_ns_capable - General socket capability test
154  * @sk: Socket to use a capability on or through
155  * @user_ns: The user namespace of the capability to use
156  * @cap: The capability to use
157  *
158  * Test to see if the opener of the socket had when the socket was
159  * created and the current process has the capability @cap in the user
160  * namespace @user_ns.
161  */
162 bool sk_ns_capable(const struct sock *sk,
163 		   struct user_namespace *user_ns, int cap)
164 {
165 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 		ns_capable(user_ns, cap);
167 }
168 EXPORT_SYMBOL(sk_ns_capable);
169 
170 /**
171  * sk_capable - Socket global capability test
172  * @sk: Socket to use a capability on or through
173  * @cap: The global capability to use
174  *
175  * Test to see if the opener of the socket had when the socket was
176  * created and the current process has the capability @cap in all user
177  * namespaces.
178  */
179 bool sk_capable(const struct sock *sk, int cap)
180 {
181 	return sk_ns_capable(sk, &init_user_ns, cap);
182 }
183 EXPORT_SYMBOL(sk_capable);
184 
185 /**
186  * sk_net_capable - Network namespace socket capability test
187  * @sk: Socket to use a capability on or through
188  * @cap: The capability to use
189  *
190  * Test to see if the opener of the socket had when the socket was created
191  * and the current process has the capability @cap over the network namespace
192  * the socket is a member of.
193  */
194 bool sk_net_capable(const struct sock *sk, int cap)
195 {
196 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197 }
198 EXPORT_SYMBOL(sk_net_capable);
199 
200 /*
201  * Each address family might have different locking rules, so we have
202  * one slock key per address family and separate keys for internal and
203  * userspace sockets.
204  */
205 static struct lock_class_key af_family_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_keys[AF_MAX];
207 static struct lock_class_key af_family_slock_keys[AF_MAX];
208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209 
210 /*
211  * Make lock validator output more readable. (we pre-construct these
212  * strings build-time, so that runtime initialization of socket
213  * locks is fast):
214  */
215 
216 #define _sock_locks(x)						  \
217   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
218   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
219   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
220   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
221   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
222   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
223   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
224   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
225   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
226   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
227   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
228   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
229   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
230   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
231   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
232   x "AF_MCTP"  , \
233   x "AF_MAX"
234 
235 static const char *const af_family_key_strings[AF_MAX+1] = {
236 	_sock_locks("sk_lock-")
237 };
238 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 	_sock_locks("slock-")
240 };
241 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 	_sock_locks("clock-")
243 };
244 
245 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-sk_lock-")
247 };
248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 	_sock_locks("k-slock-")
250 };
251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 	_sock_locks("k-clock-")
253 };
254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 	_sock_locks("rlock-")
256 };
257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 	_sock_locks("wlock-")
259 };
260 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 	_sock_locks("elock-")
262 };
263 
264 /*
265  * sk_callback_lock and sk queues locking rules are per-address-family,
266  * so split the lock classes by using a per-AF key:
267  */
268 static struct lock_class_key af_callback_keys[AF_MAX];
269 static struct lock_class_key af_rlock_keys[AF_MAX];
270 static struct lock_class_key af_wlock_keys[AF_MAX];
271 static struct lock_class_key af_elock_keys[AF_MAX];
272 static struct lock_class_key af_kern_callback_keys[AF_MAX];
273 
274 /* Run time adjustable parameters. */
275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276 EXPORT_SYMBOL(sysctl_wmem_max);
277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278 EXPORT_SYMBOL(sysctl_rmem_max);
279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281 
282 /* Maximal space eaten by iovec or ancillary data plus some space */
283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284 EXPORT_SYMBOL(sysctl_optmem_max);
285 
286 int sysctl_tstamp_allow_data __read_mostly = 1;
287 
288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289 EXPORT_SYMBOL_GPL(memalloc_socks_key);
290 
291 /**
292  * sk_set_memalloc - sets %SOCK_MEMALLOC
293  * @sk: socket to set it on
294  *
295  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296  * It's the responsibility of the admin to adjust min_free_kbytes
297  * to meet the requirements
298  */
299 void sk_set_memalloc(struct sock *sk)
300 {
301 	sock_set_flag(sk, SOCK_MEMALLOC);
302 	sk->sk_allocation |= __GFP_MEMALLOC;
303 	static_branch_inc(&memalloc_socks_key);
304 }
305 EXPORT_SYMBOL_GPL(sk_set_memalloc);
306 
307 void sk_clear_memalloc(struct sock *sk)
308 {
309 	sock_reset_flag(sk, SOCK_MEMALLOC);
310 	sk->sk_allocation &= ~__GFP_MEMALLOC;
311 	static_branch_dec(&memalloc_socks_key);
312 
313 	/*
314 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 	 * it has rmem allocations due to the last swapfile being deactivated
317 	 * but there is a risk that the socket is unusable due to exceeding
318 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 	 */
320 	sk_mem_reclaim(sk);
321 }
322 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323 
324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325 {
326 	int ret;
327 	unsigned int noreclaim_flag;
328 
329 	/* these should have been dropped before queueing */
330 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331 
332 	noreclaim_flag = memalloc_noreclaim_save();
333 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 				 tcp_v6_do_rcv,
335 				 tcp_v4_do_rcv,
336 				 sk, skb);
337 	memalloc_noreclaim_restore(noreclaim_flag);
338 
339 	return ret;
340 }
341 EXPORT_SYMBOL(__sk_backlog_rcv);
342 
343 void sk_error_report(struct sock *sk)
344 {
345 	sk->sk_error_report(sk);
346 
347 	switch (sk->sk_family) {
348 	case AF_INET:
349 		fallthrough;
350 	case AF_INET6:
351 		trace_inet_sk_error_report(sk);
352 		break;
353 	default:
354 		break;
355 	}
356 }
357 EXPORT_SYMBOL(sk_error_report);
358 
359 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360 {
361 	struct __kernel_sock_timeval tv;
362 
363 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 		tv.tv_sec = 0;
365 		tv.tv_usec = 0;
366 	} else {
367 		tv.tv_sec = timeo / HZ;
368 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 	}
370 
371 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 		*(struct old_timeval32 *)optval = tv32;
374 		return sizeof(tv32);
375 	}
376 
377 	if (old_timeval) {
378 		struct __kernel_old_timeval old_tv;
379 		old_tv.tv_sec = tv.tv_sec;
380 		old_tv.tv_usec = tv.tv_usec;
381 		*(struct __kernel_old_timeval *)optval = old_tv;
382 		return sizeof(old_tv);
383 	}
384 
385 	*(struct __kernel_sock_timeval *)optval = tv;
386 	return sizeof(tv);
387 }
388 EXPORT_SYMBOL(sock_get_timeout);
389 
390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 			   sockptr_t optval, int optlen, bool old_timeval)
392 {
393 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 		struct old_timeval32 tv32;
395 
396 		if (optlen < sizeof(tv32))
397 			return -EINVAL;
398 
399 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 			return -EFAULT;
401 		tv->tv_sec = tv32.tv_sec;
402 		tv->tv_usec = tv32.tv_usec;
403 	} else if (old_timeval) {
404 		struct __kernel_old_timeval old_tv;
405 
406 		if (optlen < sizeof(old_tv))
407 			return -EINVAL;
408 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 			return -EFAULT;
410 		tv->tv_sec = old_tv.tv_sec;
411 		tv->tv_usec = old_tv.tv_usec;
412 	} else {
413 		if (optlen < sizeof(*tv))
414 			return -EINVAL;
415 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 			return -EFAULT;
417 	}
418 
419 	return 0;
420 }
421 EXPORT_SYMBOL(sock_copy_user_timeval);
422 
423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 			    bool old_timeval)
425 {
426 	struct __kernel_sock_timeval tv;
427 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428 
429 	if (err)
430 		return err;
431 
432 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 		return -EDOM;
434 
435 	if (tv.tv_sec < 0) {
436 		static int warned __read_mostly;
437 
438 		*timeo_p = 0;
439 		if (warned < 10 && net_ratelimit()) {
440 			warned++;
441 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 				__func__, current->comm, task_pid_nr(current));
443 		}
444 		return 0;
445 	}
446 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
447 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 		return 0;
449 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 	return 0;
452 }
453 
454 static bool sock_needs_netstamp(const struct sock *sk)
455 {
456 	switch (sk->sk_family) {
457 	case AF_UNSPEC:
458 	case AF_UNIX:
459 		return false;
460 	default:
461 		return true;
462 	}
463 }
464 
465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466 {
467 	if (sk->sk_flags & flags) {
468 		sk->sk_flags &= ~flags;
469 		if (sock_needs_netstamp(sk) &&
470 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 			net_disable_timestamp();
472 	}
473 }
474 
475 
476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477 {
478 	unsigned long flags;
479 	struct sk_buff_head *list = &sk->sk_receive_queue;
480 
481 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 		atomic_inc(&sk->sk_drops);
483 		trace_sock_rcvqueue_full(sk, skb);
484 		return -ENOMEM;
485 	}
486 
487 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 		atomic_inc(&sk->sk_drops);
489 		return -ENOBUFS;
490 	}
491 
492 	skb->dev = NULL;
493 	skb_set_owner_r(skb, sk);
494 
495 	/* we escape from rcu protected region, make sure we dont leak
496 	 * a norefcounted dst
497 	 */
498 	skb_dst_force(skb);
499 
500 	spin_lock_irqsave(&list->lock, flags);
501 	sock_skb_set_dropcount(sk, skb);
502 	__skb_queue_tail(list, skb);
503 	spin_unlock_irqrestore(&list->lock, flags);
504 
505 	if (!sock_flag(sk, SOCK_DEAD))
506 		sk->sk_data_ready(sk);
507 	return 0;
508 }
509 EXPORT_SYMBOL(__sock_queue_rcv_skb);
510 
511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 			      enum skb_drop_reason *reason)
513 {
514 	enum skb_drop_reason drop_reason;
515 	int err;
516 
517 	err = sk_filter(sk, skb);
518 	if (err) {
519 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 		goto out;
521 	}
522 	err = __sock_queue_rcv_skb(sk, skb);
523 	switch (err) {
524 	case -ENOMEM:
525 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 		break;
527 	case -ENOBUFS:
528 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 		break;
530 	default:
531 		drop_reason = SKB_NOT_DROPPED_YET;
532 		break;
533 	}
534 out:
535 	if (reason)
536 		*reason = drop_reason;
537 	return err;
538 }
539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540 
541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 		     const int nested, unsigned int trim_cap, bool refcounted)
543 {
544 	int rc = NET_RX_SUCCESS;
545 
546 	if (sk_filter_trim_cap(sk, skb, trim_cap))
547 		goto discard_and_relse;
548 
549 	skb->dev = NULL;
550 
551 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 		atomic_inc(&sk->sk_drops);
553 		goto discard_and_relse;
554 	}
555 	if (nested)
556 		bh_lock_sock_nested(sk);
557 	else
558 		bh_lock_sock(sk);
559 	if (!sock_owned_by_user(sk)) {
560 		/*
561 		 * trylock + unlock semantics:
562 		 */
563 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564 
565 		rc = sk_backlog_rcv(sk, skb);
566 
567 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 		bh_unlock_sock(sk);
570 		atomic_inc(&sk->sk_drops);
571 		goto discard_and_relse;
572 	}
573 
574 	bh_unlock_sock(sk);
575 out:
576 	if (refcounted)
577 		sock_put(sk);
578 	return rc;
579 discard_and_relse:
580 	kfree_skb(skb);
581 	goto out;
582 }
583 EXPORT_SYMBOL(__sk_receive_skb);
584 
585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 							  u32));
587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 							   u32));
589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590 {
591 	struct dst_entry *dst = __sk_dst_get(sk);
592 
593 	if (dst && dst->obsolete &&
594 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 			       dst, cookie) == NULL) {
596 		sk_tx_queue_clear(sk);
597 		sk->sk_dst_pending_confirm = 0;
598 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 		dst_release(dst);
600 		return NULL;
601 	}
602 
603 	return dst;
604 }
605 EXPORT_SYMBOL(__sk_dst_check);
606 
607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608 {
609 	struct dst_entry *dst = sk_dst_get(sk);
610 
611 	if (dst && dst->obsolete &&
612 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 			       dst, cookie) == NULL) {
614 		sk_dst_reset(sk);
615 		dst_release(dst);
616 		return NULL;
617 	}
618 
619 	return dst;
620 }
621 EXPORT_SYMBOL(sk_dst_check);
622 
623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624 {
625 	int ret = -ENOPROTOOPT;
626 #ifdef CONFIG_NETDEVICES
627 	struct net *net = sock_net(sk);
628 
629 	/* Sorry... */
630 	ret = -EPERM;
631 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 		goto out;
633 
634 	ret = -EINVAL;
635 	if (ifindex < 0)
636 		goto out;
637 
638 	/* Paired with all READ_ONCE() done locklessly. */
639 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640 
641 	if (sk->sk_prot->rehash)
642 		sk->sk_prot->rehash(sk);
643 	sk_dst_reset(sk);
644 
645 	ret = 0;
646 
647 out:
648 #endif
649 
650 	return ret;
651 }
652 
653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654 {
655 	int ret;
656 
657 	if (lock_sk)
658 		lock_sock(sk);
659 	ret = sock_bindtoindex_locked(sk, ifindex);
660 	if (lock_sk)
661 		release_sock(sk);
662 
663 	return ret;
664 }
665 EXPORT_SYMBOL(sock_bindtoindex);
666 
667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668 {
669 	int ret = -ENOPROTOOPT;
670 #ifdef CONFIG_NETDEVICES
671 	struct net *net = sock_net(sk);
672 	char devname[IFNAMSIZ];
673 	int index;
674 
675 	ret = -EINVAL;
676 	if (optlen < 0)
677 		goto out;
678 
679 	/* Bind this socket to a particular device like "eth0",
680 	 * as specified in the passed interface name. If the
681 	 * name is "" or the option length is zero the socket
682 	 * is not bound.
683 	 */
684 	if (optlen > IFNAMSIZ - 1)
685 		optlen = IFNAMSIZ - 1;
686 	memset(devname, 0, sizeof(devname));
687 
688 	ret = -EFAULT;
689 	if (copy_from_sockptr(devname, optval, optlen))
690 		goto out;
691 
692 	index = 0;
693 	if (devname[0] != '\0') {
694 		struct net_device *dev;
695 
696 		rcu_read_lock();
697 		dev = dev_get_by_name_rcu(net, devname);
698 		if (dev)
699 			index = dev->ifindex;
700 		rcu_read_unlock();
701 		ret = -ENODEV;
702 		if (!dev)
703 			goto out;
704 	}
705 
706 	sockopt_lock_sock(sk);
707 	ret = sock_bindtoindex_locked(sk, index);
708 	sockopt_release_sock(sk);
709 out:
710 #endif
711 
712 	return ret;
713 }
714 
715 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
716 				sockptr_t optlen, int len)
717 {
718 	int ret = -ENOPROTOOPT;
719 #ifdef CONFIG_NETDEVICES
720 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
721 	struct net *net = sock_net(sk);
722 	char devname[IFNAMSIZ];
723 
724 	if (bound_dev_if == 0) {
725 		len = 0;
726 		goto zero;
727 	}
728 
729 	ret = -EINVAL;
730 	if (len < IFNAMSIZ)
731 		goto out;
732 
733 	ret = netdev_get_name(net, devname, bound_dev_if);
734 	if (ret)
735 		goto out;
736 
737 	len = strlen(devname) + 1;
738 
739 	ret = -EFAULT;
740 	if (copy_to_sockptr(optval, devname, len))
741 		goto out;
742 
743 zero:
744 	ret = -EFAULT;
745 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
746 		goto out;
747 
748 	ret = 0;
749 
750 out:
751 #endif
752 
753 	return ret;
754 }
755 
756 bool sk_mc_loop(struct sock *sk)
757 {
758 	if (dev_recursion_level())
759 		return false;
760 	if (!sk)
761 		return true;
762 	switch (sk->sk_family) {
763 	case AF_INET:
764 		return inet_sk(sk)->mc_loop;
765 #if IS_ENABLED(CONFIG_IPV6)
766 	case AF_INET6:
767 		return inet6_sk(sk)->mc_loop;
768 #endif
769 	}
770 	WARN_ON_ONCE(1);
771 	return true;
772 }
773 EXPORT_SYMBOL(sk_mc_loop);
774 
775 void sock_set_reuseaddr(struct sock *sk)
776 {
777 	lock_sock(sk);
778 	sk->sk_reuse = SK_CAN_REUSE;
779 	release_sock(sk);
780 }
781 EXPORT_SYMBOL(sock_set_reuseaddr);
782 
783 void sock_set_reuseport(struct sock *sk)
784 {
785 	lock_sock(sk);
786 	sk->sk_reuseport = true;
787 	release_sock(sk);
788 }
789 EXPORT_SYMBOL(sock_set_reuseport);
790 
791 void sock_no_linger(struct sock *sk)
792 {
793 	lock_sock(sk);
794 	sk->sk_lingertime = 0;
795 	sock_set_flag(sk, SOCK_LINGER);
796 	release_sock(sk);
797 }
798 EXPORT_SYMBOL(sock_no_linger);
799 
800 void sock_set_priority(struct sock *sk, u32 priority)
801 {
802 	lock_sock(sk);
803 	sk->sk_priority = priority;
804 	release_sock(sk);
805 }
806 EXPORT_SYMBOL(sock_set_priority);
807 
808 void sock_set_sndtimeo(struct sock *sk, s64 secs)
809 {
810 	lock_sock(sk);
811 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
812 		sk->sk_sndtimeo = secs * HZ;
813 	else
814 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
815 	release_sock(sk);
816 }
817 EXPORT_SYMBOL(sock_set_sndtimeo);
818 
819 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
820 {
821 	if (val)  {
822 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
823 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
824 		sock_set_flag(sk, SOCK_RCVTSTAMP);
825 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
826 	} else {
827 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
828 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 	}
830 }
831 
832 void sock_enable_timestamps(struct sock *sk)
833 {
834 	lock_sock(sk);
835 	__sock_set_timestamps(sk, true, false, true);
836 	release_sock(sk);
837 }
838 EXPORT_SYMBOL(sock_enable_timestamps);
839 
840 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
841 {
842 	switch (optname) {
843 	case SO_TIMESTAMP_OLD:
844 		__sock_set_timestamps(sk, valbool, false, false);
845 		break;
846 	case SO_TIMESTAMP_NEW:
847 		__sock_set_timestamps(sk, valbool, true, false);
848 		break;
849 	case SO_TIMESTAMPNS_OLD:
850 		__sock_set_timestamps(sk, valbool, false, true);
851 		break;
852 	case SO_TIMESTAMPNS_NEW:
853 		__sock_set_timestamps(sk, valbool, true, true);
854 		break;
855 	}
856 }
857 
858 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
859 {
860 	struct net *net = sock_net(sk);
861 	struct net_device *dev = NULL;
862 	bool match = false;
863 	int *vclock_index;
864 	int i, num;
865 
866 	if (sk->sk_bound_dev_if)
867 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
868 
869 	if (!dev) {
870 		pr_err("%s: sock not bind to device\n", __func__);
871 		return -EOPNOTSUPP;
872 	}
873 
874 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
875 	dev_put(dev);
876 
877 	for (i = 0; i < num; i++) {
878 		if (*(vclock_index + i) == phc_index) {
879 			match = true;
880 			break;
881 		}
882 	}
883 
884 	if (num > 0)
885 		kfree(vclock_index);
886 
887 	if (!match)
888 		return -EINVAL;
889 
890 	sk->sk_bind_phc = phc_index;
891 
892 	return 0;
893 }
894 
895 int sock_set_timestamping(struct sock *sk, int optname,
896 			  struct so_timestamping timestamping)
897 {
898 	int val = timestamping.flags;
899 	int ret;
900 
901 	if (val & ~SOF_TIMESTAMPING_MASK)
902 		return -EINVAL;
903 
904 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
905 	    !(val & SOF_TIMESTAMPING_OPT_ID))
906 		return -EINVAL;
907 
908 	if (val & SOF_TIMESTAMPING_OPT_ID &&
909 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
910 		if (sk_is_tcp(sk)) {
911 			if ((1 << sk->sk_state) &
912 			    (TCPF_CLOSE | TCPF_LISTEN))
913 				return -EINVAL;
914 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
915 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
916 			else
917 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
918 		} else {
919 			atomic_set(&sk->sk_tskey, 0);
920 		}
921 	}
922 
923 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
924 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
925 		return -EINVAL;
926 
927 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
928 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
929 		if (ret)
930 			return ret;
931 	}
932 
933 	sk->sk_tsflags = val;
934 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
935 
936 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
937 		sock_enable_timestamp(sk,
938 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
939 	else
940 		sock_disable_timestamp(sk,
941 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
942 	return 0;
943 }
944 
945 void sock_set_keepalive(struct sock *sk)
946 {
947 	lock_sock(sk);
948 	if (sk->sk_prot->keepalive)
949 		sk->sk_prot->keepalive(sk, true);
950 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
951 	release_sock(sk);
952 }
953 EXPORT_SYMBOL(sock_set_keepalive);
954 
955 static void __sock_set_rcvbuf(struct sock *sk, int val)
956 {
957 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
958 	 * as a negative value.
959 	 */
960 	val = min_t(int, val, INT_MAX / 2);
961 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
962 
963 	/* We double it on the way in to account for "struct sk_buff" etc.
964 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
965 	 * will allow that much actual data to be received on that socket.
966 	 *
967 	 * Applications are unaware that "struct sk_buff" and other overheads
968 	 * allocate from the receive buffer during socket buffer allocation.
969 	 *
970 	 * And after considering the possible alternatives, returning the value
971 	 * we actually used in getsockopt is the most desirable behavior.
972 	 */
973 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
974 }
975 
976 void sock_set_rcvbuf(struct sock *sk, int val)
977 {
978 	lock_sock(sk);
979 	__sock_set_rcvbuf(sk, val);
980 	release_sock(sk);
981 }
982 EXPORT_SYMBOL(sock_set_rcvbuf);
983 
984 static void __sock_set_mark(struct sock *sk, u32 val)
985 {
986 	if (val != sk->sk_mark) {
987 		sk->sk_mark = val;
988 		sk_dst_reset(sk);
989 	}
990 }
991 
992 void sock_set_mark(struct sock *sk, u32 val)
993 {
994 	lock_sock(sk);
995 	__sock_set_mark(sk, val);
996 	release_sock(sk);
997 }
998 EXPORT_SYMBOL(sock_set_mark);
999 
1000 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001 {
1002 	/* Round down bytes to multiple of pages */
1003 	bytes = round_down(bytes, PAGE_SIZE);
1004 
1005 	WARN_ON(bytes > sk->sk_reserved_mem);
1006 	sk->sk_reserved_mem -= bytes;
1007 	sk_mem_reclaim(sk);
1008 }
1009 
1010 static int sock_reserve_memory(struct sock *sk, int bytes)
1011 {
1012 	long allocated;
1013 	bool charged;
1014 	int pages;
1015 
1016 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017 		return -EOPNOTSUPP;
1018 
1019 	if (!bytes)
1020 		return 0;
1021 
1022 	pages = sk_mem_pages(bytes);
1023 
1024 	/* pre-charge to memcg */
1025 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027 	if (!charged)
1028 		return -ENOMEM;
1029 
1030 	/* pre-charge to forward_alloc */
1031 	sk_memory_allocated_add(sk, pages);
1032 	allocated = sk_memory_allocated(sk);
1033 	/* If the system goes into memory pressure with this
1034 	 * precharge, give up and return error.
1035 	 */
1036 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1037 		sk_memory_allocated_sub(sk, pages);
1038 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039 		return -ENOMEM;
1040 	}
1041 	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042 
1043 	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044 
1045 	return 0;
1046 }
1047 
1048 void sockopt_lock_sock(struct sock *sk)
1049 {
1050 	/* When current->bpf_ctx is set, the setsockopt is called from
1051 	 * a bpf prog.  bpf has ensured the sk lock has been
1052 	 * acquired before calling setsockopt().
1053 	 */
1054 	if (has_current_bpf_ctx())
1055 		return;
1056 
1057 	lock_sock(sk);
1058 }
1059 EXPORT_SYMBOL(sockopt_lock_sock);
1060 
1061 void sockopt_release_sock(struct sock *sk)
1062 {
1063 	if (has_current_bpf_ctx())
1064 		return;
1065 
1066 	release_sock(sk);
1067 }
1068 EXPORT_SYMBOL(sockopt_release_sock);
1069 
1070 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071 {
1072 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073 }
1074 EXPORT_SYMBOL(sockopt_ns_capable);
1075 
1076 bool sockopt_capable(int cap)
1077 {
1078 	return has_current_bpf_ctx() || capable(cap);
1079 }
1080 EXPORT_SYMBOL(sockopt_capable);
1081 
1082 /*
1083  *	This is meant for all protocols to use and covers goings on
1084  *	at the socket level. Everything here is generic.
1085  */
1086 
1087 int sk_setsockopt(struct sock *sk, int level, int optname,
1088 		  sockptr_t optval, unsigned int optlen)
1089 {
1090 	struct so_timestamping timestamping;
1091 	struct socket *sock = sk->sk_socket;
1092 	struct sock_txtime sk_txtime;
1093 	int val;
1094 	int valbool;
1095 	struct linger ling;
1096 	int ret = 0;
1097 
1098 	/*
1099 	 *	Options without arguments
1100 	 */
1101 
1102 	if (optname == SO_BINDTODEVICE)
1103 		return sock_setbindtodevice(sk, optval, optlen);
1104 
1105 	if (optlen < sizeof(int))
1106 		return -EINVAL;
1107 
1108 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109 		return -EFAULT;
1110 
1111 	valbool = val ? 1 : 0;
1112 
1113 	sockopt_lock_sock(sk);
1114 
1115 	switch (optname) {
1116 	case SO_DEBUG:
1117 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118 			ret = -EACCES;
1119 		else
1120 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121 		break;
1122 	case SO_REUSEADDR:
1123 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124 		break;
1125 	case SO_REUSEPORT:
1126 		sk->sk_reuseport = valbool;
1127 		break;
1128 	case SO_TYPE:
1129 	case SO_PROTOCOL:
1130 	case SO_DOMAIN:
1131 	case SO_ERROR:
1132 		ret = -ENOPROTOOPT;
1133 		break;
1134 	case SO_DONTROUTE:
1135 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136 		sk_dst_reset(sk);
1137 		break;
1138 	case SO_BROADCAST:
1139 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140 		break;
1141 	case SO_SNDBUF:
1142 		/* Don't error on this BSD doesn't and if you think
1143 		 * about it this is right. Otherwise apps have to
1144 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145 		 * are treated in BSD as hints
1146 		 */
1147 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148 set_sndbuf:
1149 		/* Ensure val * 2 fits into an int, to prevent max_t()
1150 		 * from treating it as a negative value.
1151 		 */
1152 		val = min_t(int, val, INT_MAX / 2);
1153 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154 		WRITE_ONCE(sk->sk_sndbuf,
1155 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156 		/* Wake up sending tasks if we upped the value. */
1157 		sk->sk_write_space(sk);
1158 		break;
1159 
1160 	case SO_SNDBUFFORCE:
1161 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162 			ret = -EPERM;
1163 			break;
1164 		}
1165 
1166 		/* No negative values (to prevent underflow, as val will be
1167 		 * multiplied by 2).
1168 		 */
1169 		if (val < 0)
1170 			val = 0;
1171 		goto set_sndbuf;
1172 
1173 	case SO_RCVBUF:
1174 		/* Don't error on this BSD doesn't and if you think
1175 		 * about it this is right. Otherwise apps have to
1176 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177 		 * are treated in BSD as hints
1178 		 */
1179 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180 		break;
1181 
1182 	case SO_RCVBUFFORCE:
1183 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184 			ret = -EPERM;
1185 			break;
1186 		}
1187 
1188 		/* No negative values (to prevent underflow, as val will be
1189 		 * multiplied by 2).
1190 		 */
1191 		__sock_set_rcvbuf(sk, max(val, 0));
1192 		break;
1193 
1194 	case SO_KEEPALIVE:
1195 		if (sk->sk_prot->keepalive)
1196 			sk->sk_prot->keepalive(sk, valbool);
1197 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198 		break;
1199 
1200 	case SO_OOBINLINE:
1201 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202 		break;
1203 
1204 	case SO_NO_CHECK:
1205 		sk->sk_no_check_tx = valbool;
1206 		break;
1207 
1208 	case SO_PRIORITY:
1209 		if ((val >= 0 && val <= 6) ||
1210 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212 			sk->sk_priority = val;
1213 		else
1214 			ret = -EPERM;
1215 		break;
1216 
1217 	case SO_LINGER:
1218 		if (optlen < sizeof(ling)) {
1219 			ret = -EINVAL;	/* 1003.1g */
1220 			break;
1221 		}
1222 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223 			ret = -EFAULT;
1224 			break;
1225 		}
1226 		if (!ling.l_onoff)
1227 			sock_reset_flag(sk, SOCK_LINGER);
1228 		else {
1229 #if (BITS_PER_LONG == 32)
1230 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232 			else
1233 #endif
1234 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235 			sock_set_flag(sk, SOCK_LINGER);
1236 		}
1237 		break;
1238 
1239 	case SO_BSDCOMPAT:
1240 		break;
1241 
1242 	case SO_PASSCRED:
1243 		if (valbool)
1244 			set_bit(SOCK_PASSCRED, &sock->flags);
1245 		else
1246 			clear_bit(SOCK_PASSCRED, &sock->flags);
1247 		break;
1248 
1249 	case SO_PASSPIDFD:
1250 		if (valbool)
1251 			set_bit(SOCK_PASSPIDFD, &sock->flags);
1252 		else
1253 			clear_bit(SOCK_PASSPIDFD, &sock->flags);
1254 		break;
1255 
1256 	case SO_TIMESTAMP_OLD:
1257 	case SO_TIMESTAMP_NEW:
1258 	case SO_TIMESTAMPNS_OLD:
1259 	case SO_TIMESTAMPNS_NEW:
1260 		sock_set_timestamp(sk, optname, valbool);
1261 		break;
1262 
1263 	case SO_TIMESTAMPING_NEW:
1264 	case SO_TIMESTAMPING_OLD:
1265 		if (optlen == sizeof(timestamping)) {
1266 			if (copy_from_sockptr(&timestamping, optval,
1267 					      sizeof(timestamping))) {
1268 				ret = -EFAULT;
1269 				break;
1270 			}
1271 		} else {
1272 			memset(&timestamping, 0, sizeof(timestamping));
1273 			timestamping.flags = val;
1274 		}
1275 		ret = sock_set_timestamping(sk, optname, timestamping);
1276 		break;
1277 
1278 	case SO_RCVLOWAT:
1279 		if (val < 0)
1280 			val = INT_MAX;
1281 		if (sock && sock->ops->set_rcvlowat)
1282 			ret = sock->ops->set_rcvlowat(sk, val);
1283 		else
1284 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1285 		break;
1286 
1287 	case SO_RCVTIMEO_OLD:
1288 	case SO_RCVTIMEO_NEW:
1289 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1290 				       optlen, optname == SO_RCVTIMEO_OLD);
1291 		break;
1292 
1293 	case SO_SNDTIMEO_OLD:
1294 	case SO_SNDTIMEO_NEW:
1295 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1296 				       optlen, optname == SO_SNDTIMEO_OLD);
1297 		break;
1298 
1299 	case SO_ATTACH_FILTER: {
1300 		struct sock_fprog fprog;
1301 
1302 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1303 		if (!ret)
1304 			ret = sk_attach_filter(&fprog, sk);
1305 		break;
1306 	}
1307 	case SO_ATTACH_BPF:
1308 		ret = -EINVAL;
1309 		if (optlen == sizeof(u32)) {
1310 			u32 ufd;
1311 
1312 			ret = -EFAULT;
1313 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1314 				break;
1315 
1316 			ret = sk_attach_bpf(ufd, sk);
1317 		}
1318 		break;
1319 
1320 	case SO_ATTACH_REUSEPORT_CBPF: {
1321 		struct sock_fprog fprog;
1322 
1323 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1324 		if (!ret)
1325 			ret = sk_reuseport_attach_filter(&fprog, sk);
1326 		break;
1327 	}
1328 	case SO_ATTACH_REUSEPORT_EBPF:
1329 		ret = -EINVAL;
1330 		if (optlen == sizeof(u32)) {
1331 			u32 ufd;
1332 
1333 			ret = -EFAULT;
1334 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1335 				break;
1336 
1337 			ret = sk_reuseport_attach_bpf(ufd, sk);
1338 		}
1339 		break;
1340 
1341 	case SO_DETACH_REUSEPORT_BPF:
1342 		ret = reuseport_detach_prog(sk);
1343 		break;
1344 
1345 	case SO_DETACH_FILTER:
1346 		ret = sk_detach_filter(sk);
1347 		break;
1348 
1349 	case SO_LOCK_FILTER:
1350 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1351 			ret = -EPERM;
1352 		else
1353 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1354 		break;
1355 
1356 	case SO_PASSSEC:
1357 		if (valbool)
1358 			set_bit(SOCK_PASSSEC, &sock->flags);
1359 		else
1360 			clear_bit(SOCK_PASSSEC, &sock->flags);
1361 		break;
1362 	case SO_MARK:
1363 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1364 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1365 			ret = -EPERM;
1366 			break;
1367 		}
1368 
1369 		__sock_set_mark(sk, val);
1370 		break;
1371 	case SO_RCVMARK:
1372 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1373 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1374 			ret = -EPERM;
1375 			break;
1376 		}
1377 
1378 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1379 		break;
1380 
1381 	case SO_RXQ_OVFL:
1382 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1383 		break;
1384 
1385 	case SO_WIFI_STATUS:
1386 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1387 		break;
1388 
1389 	case SO_PEEK_OFF:
1390 		if (sock->ops->set_peek_off)
1391 			ret = sock->ops->set_peek_off(sk, val);
1392 		else
1393 			ret = -EOPNOTSUPP;
1394 		break;
1395 
1396 	case SO_NOFCS:
1397 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1398 		break;
1399 
1400 	case SO_SELECT_ERR_QUEUE:
1401 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1402 		break;
1403 
1404 #ifdef CONFIG_NET_RX_BUSY_POLL
1405 	case SO_BUSY_POLL:
1406 		if (val < 0)
1407 			ret = -EINVAL;
1408 		else
1409 			WRITE_ONCE(sk->sk_ll_usec, val);
1410 		break;
1411 	case SO_PREFER_BUSY_POLL:
1412 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1413 			ret = -EPERM;
1414 		else
1415 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1416 		break;
1417 	case SO_BUSY_POLL_BUDGET:
1418 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1419 			ret = -EPERM;
1420 		} else {
1421 			if (val < 0 || val > U16_MAX)
1422 				ret = -EINVAL;
1423 			else
1424 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1425 		}
1426 		break;
1427 #endif
1428 
1429 	case SO_MAX_PACING_RATE:
1430 		{
1431 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1432 
1433 		if (sizeof(ulval) != sizeof(val) &&
1434 		    optlen >= sizeof(ulval) &&
1435 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1436 			ret = -EFAULT;
1437 			break;
1438 		}
1439 		if (ulval != ~0UL)
1440 			cmpxchg(&sk->sk_pacing_status,
1441 				SK_PACING_NONE,
1442 				SK_PACING_NEEDED);
1443 		sk->sk_max_pacing_rate = ulval;
1444 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1445 		break;
1446 		}
1447 	case SO_INCOMING_CPU:
1448 		reuseport_update_incoming_cpu(sk, val);
1449 		break;
1450 
1451 	case SO_CNX_ADVICE:
1452 		if (val == 1)
1453 			dst_negative_advice(sk);
1454 		break;
1455 
1456 	case SO_ZEROCOPY:
1457 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1458 			if (!(sk_is_tcp(sk) ||
1459 			      (sk->sk_type == SOCK_DGRAM &&
1460 			       sk->sk_protocol == IPPROTO_UDP)))
1461 				ret = -EOPNOTSUPP;
1462 		} else if (sk->sk_family != PF_RDS) {
1463 			ret = -EOPNOTSUPP;
1464 		}
1465 		if (!ret) {
1466 			if (val < 0 || val > 1)
1467 				ret = -EINVAL;
1468 			else
1469 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1470 		}
1471 		break;
1472 
1473 	case SO_TXTIME:
1474 		if (optlen != sizeof(struct sock_txtime)) {
1475 			ret = -EINVAL;
1476 			break;
1477 		} else if (copy_from_sockptr(&sk_txtime, optval,
1478 			   sizeof(struct sock_txtime))) {
1479 			ret = -EFAULT;
1480 			break;
1481 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1482 			ret = -EINVAL;
1483 			break;
1484 		}
1485 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1486 		 * scheduler has enough safe guards.
1487 		 */
1488 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1489 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1490 			ret = -EPERM;
1491 			break;
1492 		}
1493 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1494 		sk->sk_clockid = sk_txtime.clockid;
1495 		sk->sk_txtime_deadline_mode =
1496 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1497 		sk->sk_txtime_report_errors =
1498 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1499 		break;
1500 
1501 	case SO_BINDTOIFINDEX:
1502 		ret = sock_bindtoindex_locked(sk, val);
1503 		break;
1504 
1505 	case SO_BUF_LOCK:
1506 		if (val & ~SOCK_BUF_LOCK_MASK) {
1507 			ret = -EINVAL;
1508 			break;
1509 		}
1510 		sk->sk_userlocks = val | (sk->sk_userlocks &
1511 					  ~SOCK_BUF_LOCK_MASK);
1512 		break;
1513 
1514 	case SO_RESERVE_MEM:
1515 	{
1516 		int delta;
1517 
1518 		if (val < 0) {
1519 			ret = -EINVAL;
1520 			break;
1521 		}
1522 
1523 		delta = val - sk->sk_reserved_mem;
1524 		if (delta < 0)
1525 			sock_release_reserved_memory(sk, -delta);
1526 		else
1527 			ret = sock_reserve_memory(sk, delta);
1528 		break;
1529 	}
1530 
1531 	case SO_TXREHASH:
1532 		if (val < -1 || val > 1) {
1533 			ret = -EINVAL;
1534 			break;
1535 		}
1536 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1537 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1538 		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1539 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1540 		break;
1541 
1542 	default:
1543 		ret = -ENOPROTOOPT;
1544 		break;
1545 	}
1546 	sockopt_release_sock(sk);
1547 	return ret;
1548 }
1549 
1550 int sock_setsockopt(struct socket *sock, int level, int optname,
1551 		    sockptr_t optval, unsigned int optlen)
1552 {
1553 	return sk_setsockopt(sock->sk, level, optname,
1554 			     optval, optlen);
1555 }
1556 EXPORT_SYMBOL(sock_setsockopt);
1557 
1558 static const struct cred *sk_get_peer_cred(struct sock *sk)
1559 {
1560 	const struct cred *cred;
1561 
1562 	spin_lock(&sk->sk_peer_lock);
1563 	cred = get_cred(sk->sk_peer_cred);
1564 	spin_unlock(&sk->sk_peer_lock);
1565 
1566 	return cred;
1567 }
1568 
1569 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1570 			  struct ucred *ucred)
1571 {
1572 	ucred->pid = pid_vnr(pid);
1573 	ucred->uid = ucred->gid = -1;
1574 	if (cred) {
1575 		struct user_namespace *current_ns = current_user_ns();
1576 
1577 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1578 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1579 	}
1580 }
1581 
1582 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1583 {
1584 	struct user_namespace *user_ns = current_user_ns();
1585 	int i;
1586 
1587 	for (i = 0; i < src->ngroups; i++) {
1588 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1589 
1590 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1591 			return -EFAULT;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 int sk_getsockopt(struct sock *sk, int level, int optname,
1598 		  sockptr_t optval, sockptr_t optlen)
1599 {
1600 	struct socket *sock = sk->sk_socket;
1601 
1602 	union {
1603 		int val;
1604 		u64 val64;
1605 		unsigned long ulval;
1606 		struct linger ling;
1607 		struct old_timeval32 tm32;
1608 		struct __kernel_old_timeval tm;
1609 		struct  __kernel_sock_timeval stm;
1610 		struct sock_txtime txtime;
1611 		struct so_timestamping timestamping;
1612 	} v;
1613 
1614 	int lv = sizeof(int);
1615 	int len;
1616 
1617 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1618 		return -EFAULT;
1619 	if (len < 0)
1620 		return -EINVAL;
1621 
1622 	memset(&v, 0, sizeof(v));
1623 
1624 	switch (optname) {
1625 	case SO_DEBUG:
1626 		v.val = sock_flag(sk, SOCK_DBG);
1627 		break;
1628 
1629 	case SO_DONTROUTE:
1630 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1631 		break;
1632 
1633 	case SO_BROADCAST:
1634 		v.val = sock_flag(sk, SOCK_BROADCAST);
1635 		break;
1636 
1637 	case SO_SNDBUF:
1638 		v.val = sk->sk_sndbuf;
1639 		break;
1640 
1641 	case SO_RCVBUF:
1642 		v.val = sk->sk_rcvbuf;
1643 		break;
1644 
1645 	case SO_REUSEADDR:
1646 		v.val = sk->sk_reuse;
1647 		break;
1648 
1649 	case SO_REUSEPORT:
1650 		v.val = sk->sk_reuseport;
1651 		break;
1652 
1653 	case SO_KEEPALIVE:
1654 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1655 		break;
1656 
1657 	case SO_TYPE:
1658 		v.val = sk->sk_type;
1659 		break;
1660 
1661 	case SO_PROTOCOL:
1662 		v.val = sk->sk_protocol;
1663 		break;
1664 
1665 	case SO_DOMAIN:
1666 		v.val = sk->sk_family;
1667 		break;
1668 
1669 	case SO_ERROR:
1670 		v.val = -sock_error(sk);
1671 		if (v.val == 0)
1672 			v.val = xchg(&sk->sk_err_soft, 0);
1673 		break;
1674 
1675 	case SO_OOBINLINE:
1676 		v.val = sock_flag(sk, SOCK_URGINLINE);
1677 		break;
1678 
1679 	case SO_NO_CHECK:
1680 		v.val = sk->sk_no_check_tx;
1681 		break;
1682 
1683 	case SO_PRIORITY:
1684 		v.val = sk->sk_priority;
1685 		break;
1686 
1687 	case SO_LINGER:
1688 		lv		= sizeof(v.ling);
1689 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1690 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1691 		break;
1692 
1693 	case SO_BSDCOMPAT:
1694 		break;
1695 
1696 	case SO_TIMESTAMP_OLD:
1697 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1698 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1699 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1700 		break;
1701 
1702 	case SO_TIMESTAMPNS_OLD:
1703 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1704 		break;
1705 
1706 	case SO_TIMESTAMP_NEW:
1707 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1708 		break;
1709 
1710 	case SO_TIMESTAMPNS_NEW:
1711 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1712 		break;
1713 
1714 	case SO_TIMESTAMPING_OLD:
1715 		lv = sizeof(v.timestamping);
1716 		v.timestamping.flags = sk->sk_tsflags;
1717 		v.timestamping.bind_phc = sk->sk_bind_phc;
1718 		break;
1719 
1720 	case SO_RCVTIMEO_OLD:
1721 	case SO_RCVTIMEO_NEW:
1722 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1723 		break;
1724 
1725 	case SO_SNDTIMEO_OLD:
1726 	case SO_SNDTIMEO_NEW:
1727 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1728 		break;
1729 
1730 	case SO_RCVLOWAT:
1731 		v.val = sk->sk_rcvlowat;
1732 		break;
1733 
1734 	case SO_SNDLOWAT:
1735 		v.val = 1;
1736 		break;
1737 
1738 	case SO_PASSCRED:
1739 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1740 		break;
1741 
1742 	case SO_PASSPIDFD:
1743 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1744 		break;
1745 
1746 	case SO_PEERCRED:
1747 	{
1748 		struct ucred peercred;
1749 		if (len > sizeof(peercred))
1750 			len = sizeof(peercred);
1751 
1752 		spin_lock(&sk->sk_peer_lock);
1753 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1754 		spin_unlock(&sk->sk_peer_lock);
1755 
1756 		if (copy_to_sockptr(optval, &peercred, len))
1757 			return -EFAULT;
1758 		goto lenout;
1759 	}
1760 
1761 	case SO_PEERPIDFD:
1762 	{
1763 		struct pid *peer_pid;
1764 		struct file *pidfd_file = NULL;
1765 		int pidfd;
1766 
1767 		if (len > sizeof(pidfd))
1768 			len = sizeof(pidfd);
1769 
1770 		spin_lock(&sk->sk_peer_lock);
1771 		peer_pid = get_pid(sk->sk_peer_pid);
1772 		spin_unlock(&sk->sk_peer_lock);
1773 
1774 		if (!peer_pid)
1775 			return -ESRCH;
1776 
1777 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1778 		put_pid(peer_pid);
1779 		if (pidfd < 0)
1780 			return pidfd;
1781 
1782 		if (copy_to_sockptr(optval, &pidfd, len) ||
1783 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1784 			put_unused_fd(pidfd);
1785 			fput(pidfd_file);
1786 
1787 			return -EFAULT;
1788 		}
1789 
1790 		fd_install(pidfd, pidfd_file);
1791 		return 0;
1792 	}
1793 
1794 	case SO_PEERGROUPS:
1795 	{
1796 		const struct cred *cred;
1797 		int ret, n;
1798 
1799 		cred = sk_get_peer_cred(sk);
1800 		if (!cred)
1801 			return -ENODATA;
1802 
1803 		n = cred->group_info->ngroups;
1804 		if (len < n * sizeof(gid_t)) {
1805 			len = n * sizeof(gid_t);
1806 			put_cred(cred);
1807 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1808 		}
1809 		len = n * sizeof(gid_t);
1810 
1811 		ret = groups_to_user(optval, cred->group_info);
1812 		put_cred(cred);
1813 		if (ret)
1814 			return ret;
1815 		goto lenout;
1816 	}
1817 
1818 	case SO_PEERNAME:
1819 	{
1820 		char address[128];
1821 
1822 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1823 		if (lv < 0)
1824 			return -ENOTCONN;
1825 		if (lv < len)
1826 			return -EINVAL;
1827 		if (copy_to_sockptr(optval, address, len))
1828 			return -EFAULT;
1829 		goto lenout;
1830 	}
1831 
1832 	/* Dubious BSD thing... Probably nobody even uses it, but
1833 	 * the UNIX standard wants it for whatever reason... -DaveM
1834 	 */
1835 	case SO_ACCEPTCONN:
1836 		v.val = sk->sk_state == TCP_LISTEN;
1837 		break;
1838 
1839 	case SO_PASSSEC:
1840 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1841 		break;
1842 
1843 	case SO_PEERSEC:
1844 		return security_socket_getpeersec_stream(sock,
1845 							 optval, optlen, len);
1846 
1847 	case SO_MARK:
1848 		v.val = sk->sk_mark;
1849 		break;
1850 
1851 	case SO_RCVMARK:
1852 		v.val = sock_flag(sk, SOCK_RCVMARK);
1853 		break;
1854 
1855 	case SO_RXQ_OVFL:
1856 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1857 		break;
1858 
1859 	case SO_WIFI_STATUS:
1860 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1861 		break;
1862 
1863 	case SO_PEEK_OFF:
1864 		if (!sock->ops->set_peek_off)
1865 			return -EOPNOTSUPP;
1866 
1867 		v.val = sk->sk_peek_off;
1868 		break;
1869 	case SO_NOFCS:
1870 		v.val = sock_flag(sk, SOCK_NOFCS);
1871 		break;
1872 
1873 	case SO_BINDTODEVICE:
1874 		return sock_getbindtodevice(sk, optval, optlen, len);
1875 
1876 	case SO_GET_FILTER:
1877 		len = sk_get_filter(sk, optval, len);
1878 		if (len < 0)
1879 			return len;
1880 
1881 		goto lenout;
1882 
1883 	case SO_LOCK_FILTER:
1884 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1885 		break;
1886 
1887 	case SO_BPF_EXTENSIONS:
1888 		v.val = bpf_tell_extensions();
1889 		break;
1890 
1891 	case SO_SELECT_ERR_QUEUE:
1892 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1893 		break;
1894 
1895 #ifdef CONFIG_NET_RX_BUSY_POLL
1896 	case SO_BUSY_POLL:
1897 		v.val = sk->sk_ll_usec;
1898 		break;
1899 	case SO_PREFER_BUSY_POLL:
1900 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1901 		break;
1902 #endif
1903 
1904 	case SO_MAX_PACING_RATE:
1905 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1906 			lv = sizeof(v.ulval);
1907 			v.ulval = sk->sk_max_pacing_rate;
1908 		} else {
1909 			/* 32bit version */
1910 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1911 		}
1912 		break;
1913 
1914 	case SO_INCOMING_CPU:
1915 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1916 		break;
1917 
1918 	case SO_MEMINFO:
1919 	{
1920 		u32 meminfo[SK_MEMINFO_VARS];
1921 
1922 		sk_get_meminfo(sk, meminfo);
1923 
1924 		len = min_t(unsigned int, len, sizeof(meminfo));
1925 		if (copy_to_sockptr(optval, &meminfo, len))
1926 			return -EFAULT;
1927 
1928 		goto lenout;
1929 	}
1930 
1931 #ifdef CONFIG_NET_RX_BUSY_POLL
1932 	case SO_INCOMING_NAPI_ID:
1933 		v.val = READ_ONCE(sk->sk_napi_id);
1934 
1935 		/* aggregate non-NAPI IDs down to 0 */
1936 		if (v.val < MIN_NAPI_ID)
1937 			v.val = 0;
1938 
1939 		break;
1940 #endif
1941 
1942 	case SO_COOKIE:
1943 		lv = sizeof(u64);
1944 		if (len < lv)
1945 			return -EINVAL;
1946 		v.val64 = sock_gen_cookie(sk);
1947 		break;
1948 
1949 	case SO_ZEROCOPY:
1950 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1951 		break;
1952 
1953 	case SO_TXTIME:
1954 		lv = sizeof(v.txtime);
1955 		v.txtime.clockid = sk->sk_clockid;
1956 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1957 				  SOF_TXTIME_DEADLINE_MODE : 0;
1958 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1959 				  SOF_TXTIME_REPORT_ERRORS : 0;
1960 		break;
1961 
1962 	case SO_BINDTOIFINDEX:
1963 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1964 		break;
1965 
1966 	case SO_NETNS_COOKIE:
1967 		lv = sizeof(u64);
1968 		if (len != lv)
1969 			return -EINVAL;
1970 		v.val64 = sock_net(sk)->net_cookie;
1971 		break;
1972 
1973 	case SO_BUF_LOCK:
1974 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1975 		break;
1976 
1977 	case SO_RESERVE_MEM:
1978 		v.val = sk->sk_reserved_mem;
1979 		break;
1980 
1981 	case SO_TXREHASH:
1982 		v.val = sk->sk_txrehash;
1983 		break;
1984 
1985 	default:
1986 		/* We implement the SO_SNDLOWAT etc to not be settable
1987 		 * (1003.1g 7).
1988 		 */
1989 		return -ENOPROTOOPT;
1990 	}
1991 
1992 	if (len > lv)
1993 		len = lv;
1994 	if (copy_to_sockptr(optval, &v, len))
1995 		return -EFAULT;
1996 lenout:
1997 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1998 		return -EFAULT;
1999 	return 0;
2000 }
2001 
2002 int sock_getsockopt(struct socket *sock, int level, int optname,
2003 		    char __user *optval, int __user *optlen)
2004 {
2005 	return sk_getsockopt(sock->sk, level, optname,
2006 			     USER_SOCKPTR(optval),
2007 			     USER_SOCKPTR(optlen));
2008 }
2009 
2010 /*
2011  * Initialize an sk_lock.
2012  *
2013  * (We also register the sk_lock with the lock validator.)
2014  */
2015 static inline void sock_lock_init(struct sock *sk)
2016 {
2017 	if (sk->sk_kern_sock)
2018 		sock_lock_init_class_and_name(
2019 			sk,
2020 			af_family_kern_slock_key_strings[sk->sk_family],
2021 			af_family_kern_slock_keys + sk->sk_family,
2022 			af_family_kern_key_strings[sk->sk_family],
2023 			af_family_kern_keys + sk->sk_family);
2024 	else
2025 		sock_lock_init_class_and_name(
2026 			sk,
2027 			af_family_slock_key_strings[sk->sk_family],
2028 			af_family_slock_keys + sk->sk_family,
2029 			af_family_key_strings[sk->sk_family],
2030 			af_family_keys + sk->sk_family);
2031 }
2032 
2033 /*
2034  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2035  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2036  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2037  */
2038 static void sock_copy(struct sock *nsk, const struct sock *osk)
2039 {
2040 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2041 #ifdef CONFIG_SECURITY_NETWORK
2042 	void *sptr = nsk->sk_security;
2043 #endif
2044 
2045 	/* If we move sk_tx_queue_mapping out of the private section,
2046 	 * we must check if sk_tx_queue_clear() is called after
2047 	 * sock_copy() in sk_clone_lock().
2048 	 */
2049 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2050 		     offsetof(struct sock, sk_dontcopy_begin) ||
2051 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2052 		     offsetof(struct sock, sk_dontcopy_end));
2053 
2054 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2055 
2056 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2057 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2058 
2059 #ifdef CONFIG_SECURITY_NETWORK
2060 	nsk->sk_security = sptr;
2061 	security_sk_clone(osk, nsk);
2062 #endif
2063 }
2064 
2065 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2066 		int family)
2067 {
2068 	struct sock *sk;
2069 	struct kmem_cache *slab;
2070 
2071 	slab = prot->slab;
2072 	if (slab != NULL) {
2073 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2074 		if (!sk)
2075 			return sk;
2076 		if (want_init_on_alloc(priority))
2077 			sk_prot_clear_nulls(sk, prot->obj_size);
2078 	} else
2079 		sk = kmalloc(prot->obj_size, priority);
2080 
2081 	if (sk != NULL) {
2082 		if (security_sk_alloc(sk, family, priority))
2083 			goto out_free;
2084 
2085 		if (!try_module_get(prot->owner))
2086 			goto out_free_sec;
2087 	}
2088 
2089 	return sk;
2090 
2091 out_free_sec:
2092 	security_sk_free(sk);
2093 out_free:
2094 	if (slab != NULL)
2095 		kmem_cache_free(slab, sk);
2096 	else
2097 		kfree(sk);
2098 	return NULL;
2099 }
2100 
2101 static void sk_prot_free(struct proto *prot, struct sock *sk)
2102 {
2103 	struct kmem_cache *slab;
2104 	struct module *owner;
2105 
2106 	owner = prot->owner;
2107 	slab = prot->slab;
2108 
2109 	cgroup_sk_free(&sk->sk_cgrp_data);
2110 	mem_cgroup_sk_free(sk);
2111 	security_sk_free(sk);
2112 	if (slab != NULL)
2113 		kmem_cache_free(slab, sk);
2114 	else
2115 		kfree(sk);
2116 	module_put(owner);
2117 }
2118 
2119 /**
2120  *	sk_alloc - All socket objects are allocated here
2121  *	@net: the applicable net namespace
2122  *	@family: protocol family
2123  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2124  *	@prot: struct proto associated with this new sock instance
2125  *	@kern: is this to be a kernel socket?
2126  */
2127 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2128 		      struct proto *prot, int kern)
2129 {
2130 	struct sock *sk;
2131 
2132 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2133 	if (sk) {
2134 		sk->sk_family = family;
2135 		/*
2136 		 * See comment in struct sock definition to understand
2137 		 * why we need sk_prot_creator -acme
2138 		 */
2139 		sk->sk_prot = sk->sk_prot_creator = prot;
2140 		sk->sk_kern_sock = kern;
2141 		sock_lock_init(sk);
2142 		sk->sk_net_refcnt = kern ? 0 : 1;
2143 		if (likely(sk->sk_net_refcnt)) {
2144 			get_net_track(net, &sk->ns_tracker, priority);
2145 			sock_inuse_add(net, 1);
2146 		} else {
2147 			__netns_tracker_alloc(net, &sk->ns_tracker,
2148 					      false, priority);
2149 		}
2150 
2151 		sock_net_set(sk, net);
2152 		refcount_set(&sk->sk_wmem_alloc, 1);
2153 
2154 		mem_cgroup_sk_alloc(sk);
2155 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2156 		sock_update_classid(&sk->sk_cgrp_data);
2157 		sock_update_netprioidx(&sk->sk_cgrp_data);
2158 		sk_tx_queue_clear(sk);
2159 	}
2160 
2161 	return sk;
2162 }
2163 EXPORT_SYMBOL(sk_alloc);
2164 
2165 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2166  * grace period. This is the case for UDP sockets and TCP listeners.
2167  */
2168 static void __sk_destruct(struct rcu_head *head)
2169 {
2170 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2171 	struct sk_filter *filter;
2172 
2173 	if (sk->sk_destruct)
2174 		sk->sk_destruct(sk);
2175 
2176 	filter = rcu_dereference_check(sk->sk_filter,
2177 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2178 	if (filter) {
2179 		sk_filter_uncharge(sk, filter);
2180 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2181 	}
2182 
2183 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2184 
2185 #ifdef CONFIG_BPF_SYSCALL
2186 	bpf_sk_storage_free(sk);
2187 #endif
2188 
2189 	if (atomic_read(&sk->sk_omem_alloc))
2190 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2191 			 __func__, atomic_read(&sk->sk_omem_alloc));
2192 
2193 	if (sk->sk_frag.page) {
2194 		put_page(sk->sk_frag.page);
2195 		sk->sk_frag.page = NULL;
2196 	}
2197 
2198 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2199 	put_cred(sk->sk_peer_cred);
2200 	put_pid(sk->sk_peer_pid);
2201 
2202 	if (likely(sk->sk_net_refcnt))
2203 		put_net_track(sock_net(sk), &sk->ns_tracker);
2204 	else
2205 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2206 
2207 	sk_prot_free(sk->sk_prot_creator, sk);
2208 }
2209 
2210 void sk_destruct(struct sock *sk)
2211 {
2212 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2213 
2214 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2215 		reuseport_detach_sock(sk);
2216 		use_call_rcu = true;
2217 	}
2218 
2219 	if (use_call_rcu)
2220 		call_rcu(&sk->sk_rcu, __sk_destruct);
2221 	else
2222 		__sk_destruct(&sk->sk_rcu);
2223 }
2224 
2225 static void __sk_free(struct sock *sk)
2226 {
2227 	if (likely(sk->sk_net_refcnt))
2228 		sock_inuse_add(sock_net(sk), -1);
2229 
2230 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2231 		sock_diag_broadcast_destroy(sk);
2232 	else
2233 		sk_destruct(sk);
2234 }
2235 
2236 void sk_free(struct sock *sk)
2237 {
2238 	/*
2239 	 * We subtract one from sk_wmem_alloc and can know if
2240 	 * some packets are still in some tx queue.
2241 	 * If not null, sock_wfree() will call __sk_free(sk) later
2242 	 */
2243 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2244 		__sk_free(sk);
2245 }
2246 EXPORT_SYMBOL(sk_free);
2247 
2248 static void sk_init_common(struct sock *sk)
2249 {
2250 	skb_queue_head_init(&sk->sk_receive_queue);
2251 	skb_queue_head_init(&sk->sk_write_queue);
2252 	skb_queue_head_init(&sk->sk_error_queue);
2253 
2254 	rwlock_init(&sk->sk_callback_lock);
2255 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2256 			af_rlock_keys + sk->sk_family,
2257 			af_family_rlock_key_strings[sk->sk_family]);
2258 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2259 			af_wlock_keys + sk->sk_family,
2260 			af_family_wlock_key_strings[sk->sk_family]);
2261 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2262 			af_elock_keys + sk->sk_family,
2263 			af_family_elock_key_strings[sk->sk_family]);
2264 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2265 			af_callback_keys + sk->sk_family,
2266 			af_family_clock_key_strings[sk->sk_family]);
2267 }
2268 
2269 /**
2270  *	sk_clone_lock - clone a socket, and lock its clone
2271  *	@sk: the socket to clone
2272  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2273  *
2274  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2275  */
2276 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2277 {
2278 	struct proto *prot = READ_ONCE(sk->sk_prot);
2279 	struct sk_filter *filter;
2280 	bool is_charged = true;
2281 	struct sock *newsk;
2282 
2283 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2284 	if (!newsk)
2285 		goto out;
2286 
2287 	sock_copy(newsk, sk);
2288 
2289 	newsk->sk_prot_creator = prot;
2290 
2291 	/* SANITY */
2292 	if (likely(newsk->sk_net_refcnt)) {
2293 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2294 		sock_inuse_add(sock_net(newsk), 1);
2295 	} else {
2296 		/* Kernel sockets are not elevating the struct net refcount.
2297 		 * Instead, use a tracker to more easily detect if a layer
2298 		 * is not properly dismantling its kernel sockets at netns
2299 		 * destroy time.
2300 		 */
2301 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2302 				      false, priority);
2303 	}
2304 	sk_node_init(&newsk->sk_node);
2305 	sock_lock_init(newsk);
2306 	bh_lock_sock(newsk);
2307 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2308 	newsk->sk_backlog.len = 0;
2309 
2310 	atomic_set(&newsk->sk_rmem_alloc, 0);
2311 
2312 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2313 	refcount_set(&newsk->sk_wmem_alloc, 1);
2314 
2315 	atomic_set(&newsk->sk_omem_alloc, 0);
2316 	sk_init_common(newsk);
2317 
2318 	newsk->sk_dst_cache	= NULL;
2319 	newsk->sk_dst_pending_confirm = 0;
2320 	newsk->sk_wmem_queued	= 0;
2321 	newsk->sk_forward_alloc = 0;
2322 	newsk->sk_reserved_mem  = 0;
2323 	atomic_set(&newsk->sk_drops, 0);
2324 	newsk->sk_send_head	= NULL;
2325 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2326 	atomic_set(&newsk->sk_zckey, 0);
2327 
2328 	sock_reset_flag(newsk, SOCK_DONE);
2329 
2330 	/* sk->sk_memcg will be populated at accept() time */
2331 	newsk->sk_memcg = NULL;
2332 
2333 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2334 
2335 	rcu_read_lock();
2336 	filter = rcu_dereference(sk->sk_filter);
2337 	if (filter != NULL)
2338 		/* though it's an empty new sock, the charging may fail
2339 		 * if sysctl_optmem_max was changed between creation of
2340 		 * original socket and cloning
2341 		 */
2342 		is_charged = sk_filter_charge(newsk, filter);
2343 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2344 	rcu_read_unlock();
2345 
2346 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2347 		/* We need to make sure that we don't uncharge the new
2348 		 * socket if we couldn't charge it in the first place
2349 		 * as otherwise we uncharge the parent's filter.
2350 		 */
2351 		if (!is_charged)
2352 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2353 		sk_free_unlock_clone(newsk);
2354 		newsk = NULL;
2355 		goto out;
2356 	}
2357 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2358 
2359 	if (bpf_sk_storage_clone(sk, newsk)) {
2360 		sk_free_unlock_clone(newsk);
2361 		newsk = NULL;
2362 		goto out;
2363 	}
2364 
2365 	/* Clear sk_user_data if parent had the pointer tagged
2366 	 * as not suitable for copying when cloning.
2367 	 */
2368 	if (sk_user_data_is_nocopy(newsk))
2369 		newsk->sk_user_data = NULL;
2370 
2371 	newsk->sk_err	   = 0;
2372 	newsk->sk_err_soft = 0;
2373 	newsk->sk_priority = 0;
2374 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2375 
2376 	/* Before updating sk_refcnt, we must commit prior changes to memory
2377 	 * (Documentation/RCU/rculist_nulls.rst for details)
2378 	 */
2379 	smp_wmb();
2380 	refcount_set(&newsk->sk_refcnt, 2);
2381 
2382 	sk_set_socket(newsk, NULL);
2383 	sk_tx_queue_clear(newsk);
2384 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2385 
2386 	if (newsk->sk_prot->sockets_allocated)
2387 		sk_sockets_allocated_inc(newsk);
2388 
2389 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2390 		net_enable_timestamp();
2391 out:
2392 	return newsk;
2393 }
2394 EXPORT_SYMBOL_GPL(sk_clone_lock);
2395 
2396 void sk_free_unlock_clone(struct sock *sk)
2397 {
2398 	/* It is still raw copy of parent, so invalidate
2399 	 * destructor and make plain sk_free() */
2400 	sk->sk_destruct = NULL;
2401 	bh_unlock_sock(sk);
2402 	sk_free(sk);
2403 }
2404 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2405 
2406 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2407 {
2408 	bool is_ipv6 = false;
2409 	u32 max_size;
2410 
2411 #if IS_ENABLED(CONFIG_IPV6)
2412 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2413 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2414 #endif
2415 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2416 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2417 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2418 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2419 		max_size = GSO_LEGACY_MAX_SIZE;
2420 
2421 	return max_size - (MAX_TCP_HEADER + 1);
2422 }
2423 
2424 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2425 {
2426 	u32 max_segs = 1;
2427 
2428 	sk->sk_route_caps = dst->dev->features;
2429 	if (sk_is_tcp(sk))
2430 		sk->sk_route_caps |= NETIF_F_GSO;
2431 	if (sk->sk_route_caps & NETIF_F_GSO)
2432 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2433 	if (unlikely(sk->sk_gso_disabled))
2434 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2435 	if (sk_can_gso(sk)) {
2436 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2437 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2438 		} else {
2439 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2440 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2441 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2442 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2443 		}
2444 	}
2445 	sk->sk_gso_max_segs = max_segs;
2446 	sk_dst_set(sk, dst);
2447 }
2448 EXPORT_SYMBOL_GPL(sk_setup_caps);
2449 
2450 /*
2451  *	Simple resource managers for sockets.
2452  */
2453 
2454 
2455 /*
2456  * Write buffer destructor automatically called from kfree_skb.
2457  */
2458 void sock_wfree(struct sk_buff *skb)
2459 {
2460 	struct sock *sk = skb->sk;
2461 	unsigned int len = skb->truesize;
2462 	bool free;
2463 
2464 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2465 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2466 		    sk->sk_write_space == sock_def_write_space) {
2467 			rcu_read_lock();
2468 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2469 			sock_def_write_space_wfree(sk);
2470 			rcu_read_unlock();
2471 			if (unlikely(free))
2472 				__sk_free(sk);
2473 			return;
2474 		}
2475 
2476 		/*
2477 		 * Keep a reference on sk_wmem_alloc, this will be released
2478 		 * after sk_write_space() call
2479 		 */
2480 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2481 		sk->sk_write_space(sk);
2482 		len = 1;
2483 	}
2484 	/*
2485 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2486 	 * could not do because of in-flight packets
2487 	 */
2488 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2489 		__sk_free(sk);
2490 }
2491 EXPORT_SYMBOL(sock_wfree);
2492 
2493 /* This variant of sock_wfree() is used by TCP,
2494  * since it sets SOCK_USE_WRITE_QUEUE.
2495  */
2496 void __sock_wfree(struct sk_buff *skb)
2497 {
2498 	struct sock *sk = skb->sk;
2499 
2500 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2501 		__sk_free(sk);
2502 }
2503 
2504 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2505 {
2506 	skb_orphan(skb);
2507 	skb->sk = sk;
2508 #ifdef CONFIG_INET
2509 	if (unlikely(!sk_fullsock(sk))) {
2510 		skb->destructor = sock_edemux;
2511 		sock_hold(sk);
2512 		return;
2513 	}
2514 #endif
2515 	skb->destructor = sock_wfree;
2516 	skb_set_hash_from_sk(skb, sk);
2517 	/*
2518 	 * We used to take a refcount on sk, but following operation
2519 	 * is enough to guarantee sk_free() wont free this sock until
2520 	 * all in-flight packets are completed
2521 	 */
2522 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2523 }
2524 EXPORT_SYMBOL(skb_set_owner_w);
2525 
2526 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2527 {
2528 #ifdef CONFIG_TLS_DEVICE
2529 	/* Drivers depend on in-order delivery for crypto offload,
2530 	 * partial orphan breaks out-of-order-OK logic.
2531 	 */
2532 	if (skb->decrypted)
2533 		return false;
2534 #endif
2535 	return (skb->destructor == sock_wfree ||
2536 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2537 }
2538 
2539 /* This helper is used by netem, as it can hold packets in its
2540  * delay queue. We want to allow the owner socket to send more
2541  * packets, as if they were already TX completed by a typical driver.
2542  * But we also want to keep skb->sk set because some packet schedulers
2543  * rely on it (sch_fq for example).
2544  */
2545 void skb_orphan_partial(struct sk_buff *skb)
2546 {
2547 	if (skb_is_tcp_pure_ack(skb))
2548 		return;
2549 
2550 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2551 		return;
2552 
2553 	skb_orphan(skb);
2554 }
2555 EXPORT_SYMBOL(skb_orphan_partial);
2556 
2557 /*
2558  * Read buffer destructor automatically called from kfree_skb.
2559  */
2560 void sock_rfree(struct sk_buff *skb)
2561 {
2562 	struct sock *sk = skb->sk;
2563 	unsigned int len = skb->truesize;
2564 
2565 	atomic_sub(len, &sk->sk_rmem_alloc);
2566 	sk_mem_uncharge(sk, len);
2567 }
2568 EXPORT_SYMBOL(sock_rfree);
2569 
2570 /*
2571  * Buffer destructor for skbs that are not used directly in read or write
2572  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2573  */
2574 void sock_efree(struct sk_buff *skb)
2575 {
2576 	sock_put(skb->sk);
2577 }
2578 EXPORT_SYMBOL(sock_efree);
2579 
2580 /* Buffer destructor for prefetch/receive path where reference count may
2581  * not be held, e.g. for listen sockets.
2582  */
2583 #ifdef CONFIG_INET
2584 void sock_pfree(struct sk_buff *skb)
2585 {
2586 	if (sk_is_refcounted(skb->sk))
2587 		sock_gen_put(skb->sk);
2588 }
2589 EXPORT_SYMBOL(sock_pfree);
2590 #endif /* CONFIG_INET */
2591 
2592 kuid_t sock_i_uid(struct sock *sk)
2593 {
2594 	kuid_t uid;
2595 
2596 	read_lock_bh(&sk->sk_callback_lock);
2597 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2598 	read_unlock_bh(&sk->sk_callback_lock);
2599 	return uid;
2600 }
2601 EXPORT_SYMBOL(sock_i_uid);
2602 
2603 unsigned long sock_i_ino(struct sock *sk)
2604 {
2605 	unsigned long ino;
2606 
2607 	read_lock_bh(&sk->sk_callback_lock);
2608 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2609 	read_unlock_bh(&sk->sk_callback_lock);
2610 	return ino;
2611 }
2612 EXPORT_SYMBOL(sock_i_ino);
2613 
2614 /*
2615  * Allocate a skb from the socket's send buffer.
2616  */
2617 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2618 			     gfp_t priority)
2619 {
2620 	if (force ||
2621 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2622 		struct sk_buff *skb = alloc_skb(size, priority);
2623 
2624 		if (skb) {
2625 			skb_set_owner_w(skb, sk);
2626 			return skb;
2627 		}
2628 	}
2629 	return NULL;
2630 }
2631 EXPORT_SYMBOL(sock_wmalloc);
2632 
2633 static void sock_ofree(struct sk_buff *skb)
2634 {
2635 	struct sock *sk = skb->sk;
2636 
2637 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2638 }
2639 
2640 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2641 			     gfp_t priority)
2642 {
2643 	struct sk_buff *skb;
2644 
2645 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2646 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2647 	    READ_ONCE(sysctl_optmem_max))
2648 		return NULL;
2649 
2650 	skb = alloc_skb(size, priority);
2651 	if (!skb)
2652 		return NULL;
2653 
2654 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2655 	skb->sk = sk;
2656 	skb->destructor = sock_ofree;
2657 	return skb;
2658 }
2659 
2660 /*
2661  * Allocate a memory block from the socket's option memory buffer.
2662  */
2663 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2664 {
2665 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2666 
2667 	if ((unsigned int)size <= optmem_max &&
2668 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2669 		void *mem;
2670 		/* First do the add, to avoid the race if kmalloc
2671 		 * might sleep.
2672 		 */
2673 		atomic_add(size, &sk->sk_omem_alloc);
2674 		mem = kmalloc(size, priority);
2675 		if (mem)
2676 			return mem;
2677 		atomic_sub(size, &sk->sk_omem_alloc);
2678 	}
2679 	return NULL;
2680 }
2681 EXPORT_SYMBOL(sock_kmalloc);
2682 
2683 /* Free an option memory block. Note, we actually want the inline
2684  * here as this allows gcc to detect the nullify and fold away the
2685  * condition entirely.
2686  */
2687 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2688 				  const bool nullify)
2689 {
2690 	if (WARN_ON_ONCE(!mem))
2691 		return;
2692 	if (nullify)
2693 		kfree_sensitive(mem);
2694 	else
2695 		kfree(mem);
2696 	atomic_sub(size, &sk->sk_omem_alloc);
2697 }
2698 
2699 void sock_kfree_s(struct sock *sk, void *mem, int size)
2700 {
2701 	__sock_kfree_s(sk, mem, size, false);
2702 }
2703 EXPORT_SYMBOL(sock_kfree_s);
2704 
2705 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2706 {
2707 	__sock_kfree_s(sk, mem, size, true);
2708 }
2709 EXPORT_SYMBOL(sock_kzfree_s);
2710 
2711 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2712    I think, these locks should be removed for datagram sockets.
2713  */
2714 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2715 {
2716 	DEFINE_WAIT(wait);
2717 
2718 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2719 	for (;;) {
2720 		if (!timeo)
2721 			break;
2722 		if (signal_pending(current))
2723 			break;
2724 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2725 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2726 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2727 			break;
2728 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2729 			break;
2730 		if (sk->sk_err)
2731 			break;
2732 		timeo = schedule_timeout(timeo);
2733 	}
2734 	finish_wait(sk_sleep(sk), &wait);
2735 	return timeo;
2736 }
2737 
2738 
2739 /*
2740  *	Generic send/receive buffer handlers
2741  */
2742 
2743 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2744 				     unsigned long data_len, int noblock,
2745 				     int *errcode, int max_page_order)
2746 {
2747 	struct sk_buff *skb;
2748 	long timeo;
2749 	int err;
2750 
2751 	timeo = sock_sndtimeo(sk, noblock);
2752 	for (;;) {
2753 		err = sock_error(sk);
2754 		if (err != 0)
2755 			goto failure;
2756 
2757 		err = -EPIPE;
2758 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2759 			goto failure;
2760 
2761 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2762 			break;
2763 
2764 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2765 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2766 		err = -EAGAIN;
2767 		if (!timeo)
2768 			goto failure;
2769 		if (signal_pending(current))
2770 			goto interrupted;
2771 		timeo = sock_wait_for_wmem(sk, timeo);
2772 	}
2773 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2774 				   errcode, sk->sk_allocation);
2775 	if (skb)
2776 		skb_set_owner_w(skb, sk);
2777 	return skb;
2778 
2779 interrupted:
2780 	err = sock_intr_errno(timeo);
2781 failure:
2782 	*errcode = err;
2783 	return NULL;
2784 }
2785 EXPORT_SYMBOL(sock_alloc_send_pskb);
2786 
2787 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2788 		     struct sockcm_cookie *sockc)
2789 {
2790 	u32 tsflags;
2791 
2792 	switch (cmsg->cmsg_type) {
2793 	case SO_MARK:
2794 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2795 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2796 			return -EPERM;
2797 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2798 			return -EINVAL;
2799 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2800 		break;
2801 	case SO_TIMESTAMPING_OLD:
2802 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2803 			return -EINVAL;
2804 
2805 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2806 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2807 			return -EINVAL;
2808 
2809 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2810 		sockc->tsflags |= tsflags;
2811 		break;
2812 	case SCM_TXTIME:
2813 		if (!sock_flag(sk, SOCK_TXTIME))
2814 			return -EINVAL;
2815 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2816 			return -EINVAL;
2817 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2818 		break;
2819 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2820 	case SCM_RIGHTS:
2821 	case SCM_CREDENTIALS:
2822 		break;
2823 	default:
2824 		return -EINVAL;
2825 	}
2826 	return 0;
2827 }
2828 EXPORT_SYMBOL(__sock_cmsg_send);
2829 
2830 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2831 		   struct sockcm_cookie *sockc)
2832 {
2833 	struct cmsghdr *cmsg;
2834 	int ret;
2835 
2836 	for_each_cmsghdr(cmsg, msg) {
2837 		if (!CMSG_OK(msg, cmsg))
2838 			return -EINVAL;
2839 		if (cmsg->cmsg_level != SOL_SOCKET)
2840 			continue;
2841 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2842 		if (ret)
2843 			return ret;
2844 	}
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL(sock_cmsg_send);
2848 
2849 static void sk_enter_memory_pressure(struct sock *sk)
2850 {
2851 	if (!sk->sk_prot->enter_memory_pressure)
2852 		return;
2853 
2854 	sk->sk_prot->enter_memory_pressure(sk);
2855 }
2856 
2857 static void sk_leave_memory_pressure(struct sock *sk)
2858 {
2859 	if (sk->sk_prot->leave_memory_pressure) {
2860 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2861 				     tcp_leave_memory_pressure, sk);
2862 	} else {
2863 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2864 
2865 		if (memory_pressure && READ_ONCE(*memory_pressure))
2866 			WRITE_ONCE(*memory_pressure, 0);
2867 	}
2868 }
2869 
2870 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2871 
2872 /**
2873  * skb_page_frag_refill - check that a page_frag contains enough room
2874  * @sz: minimum size of the fragment we want to get
2875  * @pfrag: pointer to page_frag
2876  * @gfp: priority for memory allocation
2877  *
2878  * Note: While this allocator tries to use high order pages, there is
2879  * no guarantee that allocations succeed. Therefore, @sz MUST be
2880  * less or equal than PAGE_SIZE.
2881  */
2882 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2883 {
2884 	if (pfrag->page) {
2885 		if (page_ref_count(pfrag->page) == 1) {
2886 			pfrag->offset = 0;
2887 			return true;
2888 		}
2889 		if (pfrag->offset + sz <= pfrag->size)
2890 			return true;
2891 		put_page(pfrag->page);
2892 	}
2893 
2894 	pfrag->offset = 0;
2895 	if (SKB_FRAG_PAGE_ORDER &&
2896 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2897 		/* Avoid direct reclaim but allow kswapd to wake */
2898 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2899 					  __GFP_COMP | __GFP_NOWARN |
2900 					  __GFP_NORETRY,
2901 					  SKB_FRAG_PAGE_ORDER);
2902 		if (likely(pfrag->page)) {
2903 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2904 			return true;
2905 		}
2906 	}
2907 	pfrag->page = alloc_page(gfp);
2908 	if (likely(pfrag->page)) {
2909 		pfrag->size = PAGE_SIZE;
2910 		return true;
2911 	}
2912 	return false;
2913 }
2914 EXPORT_SYMBOL(skb_page_frag_refill);
2915 
2916 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2917 {
2918 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2919 		return true;
2920 
2921 	sk_enter_memory_pressure(sk);
2922 	sk_stream_moderate_sndbuf(sk);
2923 	return false;
2924 }
2925 EXPORT_SYMBOL(sk_page_frag_refill);
2926 
2927 void __lock_sock(struct sock *sk)
2928 	__releases(&sk->sk_lock.slock)
2929 	__acquires(&sk->sk_lock.slock)
2930 {
2931 	DEFINE_WAIT(wait);
2932 
2933 	for (;;) {
2934 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2935 					TASK_UNINTERRUPTIBLE);
2936 		spin_unlock_bh(&sk->sk_lock.slock);
2937 		schedule();
2938 		spin_lock_bh(&sk->sk_lock.slock);
2939 		if (!sock_owned_by_user(sk))
2940 			break;
2941 	}
2942 	finish_wait(&sk->sk_lock.wq, &wait);
2943 }
2944 
2945 void __release_sock(struct sock *sk)
2946 	__releases(&sk->sk_lock.slock)
2947 	__acquires(&sk->sk_lock.slock)
2948 {
2949 	struct sk_buff *skb, *next;
2950 
2951 	while ((skb = sk->sk_backlog.head) != NULL) {
2952 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2953 
2954 		spin_unlock_bh(&sk->sk_lock.slock);
2955 
2956 		do {
2957 			next = skb->next;
2958 			prefetch(next);
2959 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2960 			skb_mark_not_on_list(skb);
2961 			sk_backlog_rcv(sk, skb);
2962 
2963 			cond_resched();
2964 
2965 			skb = next;
2966 		} while (skb != NULL);
2967 
2968 		spin_lock_bh(&sk->sk_lock.slock);
2969 	}
2970 
2971 	/*
2972 	 * Doing the zeroing here guarantee we can not loop forever
2973 	 * while a wild producer attempts to flood us.
2974 	 */
2975 	sk->sk_backlog.len = 0;
2976 }
2977 
2978 void __sk_flush_backlog(struct sock *sk)
2979 {
2980 	spin_lock_bh(&sk->sk_lock.slock);
2981 	__release_sock(sk);
2982 	spin_unlock_bh(&sk->sk_lock.slock);
2983 }
2984 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2985 
2986 /**
2987  * sk_wait_data - wait for data to arrive at sk_receive_queue
2988  * @sk:    sock to wait on
2989  * @timeo: for how long
2990  * @skb:   last skb seen on sk_receive_queue
2991  *
2992  * Now socket state including sk->sk_err is changed only under lock,
2993  * hence we may omit checks after joining wait queue.
2994  * We check receive queue before schedule() only as optimization;
2995  * it is very likely that release_sock() added new data.
2996  */
2997 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2998 {
2999 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3000 	int rc;
3001 
3002 	add_wait_queue(sk_sleep(sk), &wait);
3003 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3004 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3005 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3006 	remove_wait_queue(sk_sleep(sk), &wait);
3007 	return rc;
3008 }
3009 EXPORT_SYMBOL(sk_wait_data);
3010 
3011 /**
3012  *	__sk_mem_raise_allocated - increase memory_allocated
3013  *	@sk: socket
3014  *	@size: memory size to allocate
3015  *	@amt: pages to allocate
3016  *	@kind: allocation type
3017  *
3018  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3019  */
3020 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3021 {
3022 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3023 	struct proto *prot = sk->sk_prot;
3024 	bool charged = true;
3025 	long allocated;
3026 
3027 	sk_memory_allocated_add(sk, amt);
3028 	allocated = sk_memory_allocated(sk);
3029 	if (memcg_charge &&
3030 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3031 						gfp_memcg_charge())))
3032 		goto suppress_allocation;
3033 
3034 	/* Under limit. */
3035 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3036 		sk_leave_memory_pressure(sk);
3037 		return 1;
3038 	}
3039 
3040 	/* Under pressure. */
3041 	if (allocated > sk_prot_mem_limits(sk, 1))
3042 		sk_enter_memory_pressure(sk);
3043 
3044 	/* Over hard limit. */
3045 	if (allocated > sk_prot_mem_limits(sk, 2))
3046 		goto suppress_allocation;
3047 
3048 	/* guarantee minimum buffer size under pressure */
3049 	if (kind == SK_MEM_RECV) {
3050 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3051 			return 1;
3052 
3053 	} else { /* SK_MEM_SEND */
3054 		int wmem0 = sk_get_wmem0(sk, prot);
3055 
3056 		if (sk->sk_type == SOCK_STREAM) {
3057 			if (sk->sk_wmem_queued < wmem0)
3058 				return 1;
3059 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3060 				return 1;
3061 		}
3062 	}
3063 
3064 	if (sk_has_memory_pressure(sk)) {
3065 		u64 alloc;
3066 
3067 		if (!sk_under_memory_pressure(sk))
3068 			return 1;
3069 		alloc = sk_sockets_allocated_read_positive(sk);
3070 		if (sk_prot_mem_limits(sk, 2) > alloc *
3071 		    sk_mem_pages(sk->sk_wmem_queued +
3072 				 atomic_read(&sk->sk_rmem_alloc) +
3073 				 sk->sk_forward_alloc))
3074 			return 1;
3075 	}
3076 
3077 suppress_allocation:
3078 
3079 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3080 		sk_stream_moderate_sndbuf(sk);
3081 
3082 		/* Fail only if socket is _under_ its sndbuf.
3083 		 * In this case we cannot block, so that we have to fail.
3084 		 */
3085 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3086 			/* Force charge with __GFP_NOFAIL */
3087 			if (memcg_charge && !charged) {
3088 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3089 					gfp_memcg_charge() | __GFP_NOFAIL);
3090 			}
3091 			return 1;
3092 		}
3093 	}
3094 
3095 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3096 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3097 
3098 	sk_memory_allocated_sub(sk, amt);
3099 
3100 	if (memcg_charge && charged)
3101 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3102 
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3108  *	@sk: socket
3109  *	@size: memory size to allocate
3110  *	@kind: allocation type
3111  *
3112  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3113  *	rmem allocation. This function assumes that protocols which have
3114  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3115  */
3116 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3117 {
3118 	int ret, amt = sk_mem_pages(size);
3119 
3120 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3121 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3122 	if (!ret)
3123 		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3124 	return ret;
3125 }
3126 EXPORT_SYMBOL(__sk_mem_schedule);
3127 
3128 /**
3129  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3130  *	@sk: socket
3131  *	@amount: number of quanta
3132  *
3133  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3134  */
3135 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3136 {
3137 	sk_memory_allocated_sub(sk, amount);
3138 
3139 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3140 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3141 
3142 	if (sk_under_memory_pressure(sk) &&
3143 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3144 		sk_leave_memory_pressure(sk);
3145 }
3146 
3147 /**
3148  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3149  *	@sk: socket
3150  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3151  */
3152 void __sk_mem_reclaim(struct sock *sk, int amount)
3153 {
3154 	amount >>= PAGE_SHIFT;
3155 	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3156 	__sk_mem_reduce_allocated(sk, amount);
3157 }
3158 EXPORT_SYMBOL(__sk_mem_reclaim);
3159 
3160 int sk_set_peek_off(struct sock *sk, int val)
3161 {
3162 	sk->sk_peek_off = val;
3163 	return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3166 
3167 /*
3168  * Set of default routines for initialising struct proto_ops when
3169  * the protocol does not support a particular function. In certain
3170  * cases where it makes no sense for a protocol to have a "do nothing"
3171  * function, some default processing is provided.
3172  */
3173 
3174 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3175 {
3176 	return -EOPNOTSUPP;
3177 }
3178 EXPORT_SYMBOL(sock_no_bind);
3179 
3180 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3181 		    int len, int flags)
3182 {
3183 	return -EOPNOTSUPP;
3184 }
3185 EXPORT_SYMBOL(sock_no_connect);
3186 
3187 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3188 {
3189 	return -EOPNOTSUPP;
3190 }
3191 EXPORT_SYMBOL(sock_no_socketpair);
3192 
3193 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3194 		   bool kern)
3195 {
3196 	return -EOPNOTSUPP;
3197 }
3198 EXPORT_SYMBOL(sock_no_accept);
3199 
3200 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3201 		    int peer)
3202 {
3203 	return -EOPNOTSUPP;
3204 }
3205 EXPORT_SYMBOL(sock_no_getname);
3206 
3207 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3208 {
3209 	return -EOPNOTSUPP;
3210 }
3211 EXPORT_SYMBOL(sock_no_ioctl);
3212 
3213 int sock_no_listen(struct socket *sock, int backlog)
3214 {
3215 	return -EOPNOTSUPP;
3216 }
3217 EXPORT_SYMBOL(sock_no_listen);
3218 
3219 int sock_no_shutdown(struct socket *sock, int how)
3220 {
3221 	return -EOPNOTSUPP;
3222 }
3223 EXPORT_SYMBOL(sock_no_shutdown);
3224 
3225 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3226 {
3227 	return -EOPNOTSUPP;
3228 }
3229 EXPORT_SYMBOL(sock_no_sendmsg);
3230 
3231 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3232 {
3233 	return -EOPNOTSUPP;
3234 }
3235 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3236 
3237 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3238 		    int flags)
3239 {
3240 	return -EOPNOTSUPP;
3241 }
3242 EXPORT_SYMBOL(sock_no_recvmsg);
3243 
3244 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3245 {
3246 	/* Mirror missing mmap method error code */
3247 	return -ENODEV;
3248 }
3249 EXPORT_SYMBOL(sock_no_mmap);
3250 
3251 /*
3252  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3253  * various sock-based usage counts.
3254  */
3255 void __receive_sock(struct file *file)
3256 {
3257 	struct socket *sock;
3258 
3259 	sock = sock_from_file(file);
3260 	if (sock) {
3261 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3262 		sock_update_classid(&sock->sk->sk_cgrp_data);
3263 	}
3264 }
3265 
3266 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3267 {
3268 	ssize_t res;
3269 	struct msghdr msg = {.msg_flags = flags};
3270 	struct kvec iov;
3271 	char *kaddr = kmap(page);
3272 	iov.iov_base = kaddr + offset;
3273 	iov.iov_len = size;
3274 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3275 	kunmap(page);
3276 	return res;
3277 }
3278 EXPORT_SYMBOL(sock_no_sendpage);
3279 
3280 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3281 				int offset, size_t size, int flags)
3282 {
3283 	ssize_t res;
3284 	struct msghdr msg = {.msg_flags = flags};
3285 	struct kvec iov;
3286 	char *kaddr = kmap(page);
3287 
3288 	iov.iov_base = kaddr + offset;
3289 	iov.iov_len = size;
3290 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3291 	kunmap(page);
3292 	return res;
3293 }
3294 EXPORT_SYMBOL(sock_no_sendpage_locked);
3295 
3296 /*
3297  *	Default Socket Callbacks
3298  */
3299 
3300 static void sock_def_wakeup(struct sock *sk)
3301 {
3302 	struct socket_wq *wq;
3303 
3304 	rcu_read_lock();
3305 	wq = rcu_dereference(sk->sk_wq);
3306 	if (skwq_has_sleeper(wq))
3307 		wake_up_interruptible_all(&wq->wait);
3308 	rcu_read_unlock();
3309 }
3310 
3311 static void sock_def_error_report(struct sock *sk)
3312 {
3313 	struct socket_wq *wq;
3314 
3315 	rcu_read_lock();
3316 	wq = rcu_dereference(sk->sk_wq);
3317 	if (skwq_has_sleeper(wq))
3318 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3319 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3320 	rcu_read_unlock();
3321 }
3322 
3323 void sock_def_readable(struct sock *sk)
3324 {
3325 	struct socket_wq *wq;
3326 
3327 	trace_sk_data_ready(sk);
3328 
3329 	rcu_read_lock();
3330 	wq = rcu_dereference(sk->sk_wq);
3331 	if (skwq_has_sleeper(wq))
3332 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3333 						EPOLLRDNORM | EPOLLRDBAND);
3334 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3335 	rcu_read_unlock();
3336 }
3337 
3338 static void sock_def_write_space(struct sock *sk)
3339 {
3340 	struct socket_wq *wq;
3341 
3342 	rcu_read_lock();
3343 
3344 	/* Do not wake up a writer until he can make "significant"
3345 	 * progress.  --DaveM
3346 	 */
3347 	if (sock_writeable(sk)) {
3348 		wq = rcu_dereference(sk->sk_wq);
3349 		if (skwq_has_sleeper(wq))
3350 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3351 						EPOLLWRNORM | EPOLLWRBAND);
3352 
3353 		/* Should agree with poll, otherwise some programs break */
3354 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3355 	}
3356 
3357 	rcu_read_unlock();
3358 }
3359 
3360 /* An optimised version of sock_def_write_space(), should only be called
3361  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3362  * ->sk_wmem_alloc.
3363  */
3364 static void sock_def_write_space_wfree(struct sock *sk)
3365 {
3366 	/* Do not wake up a writer until he can make "significant"
3367 	 * progress.  --DaveM
3368 	 */
3369 	if (sock_writeable(sk)) {
3370 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3371 
3372 		/* rely on refcount_sub from sock_wfree() */
3373 		smp_mb__after_atomic();
3374 		if (wq && waitqueue_active(&wq->wait))
3375 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3376 						EPOLLWRNORM | EPOLLWRBAND);
3377 
3378 		/* Should agree with poll, otherwise some programs break */
3379 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3380 	}
3381 }
3382 
3383 static void sock_def_destruct(struct sock *sk)
3384 {
3385 }
3386 
3387 void sk_send_sigurg(struct sock *sk)
3388 {
3389 	if (sk->sk_socket && sk->sk_socket->file)
3390 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3391 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3392 }
3393 EXPORT_SYMBOL(sk_send_sigurg);
3394 
3395 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3396 		    unsigned long expires)
3397 {
3398 	if (!mod_timer(timer, expires))
3399 		sock_hold(sk);
3400 }
3401 EXPORT_SYMBOL(sk_reset_timer);
3402 
3403 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3404 {
3405 	if (del_timer(timer))
3406 		__sock_put(sk);
3407 }
3408 EXPORT_SYMBOL(sk_stop_timer);
3409 
3410 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3411 {
3412 	if (del_timer_sync(timer))
3413 		__sock_put(sk);
3414 }
3415 EXPORT_SYMBOL(sk_stop_timer_sync);
3416 
3417 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3418 {
3419 	sk_init_common(sk);
3420 	sk->sk_send_head	=	NULL;
3421 
3422 	timer_setup(&sk->sk_timer, NULL, 0);
3423 
3424 	sk->sk_allocation	=	GFP_KERNEL;
3425 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3426 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3427 	sk->sk_state		=	TCP_CLOSE;
3428 	sk->sk_use_task_frag	=	true;
3429 	sk_set_socket(sk, sock);
3430 
3431 	sock_set_flag(sk, SOCK_ZAPPED);
3432 
3433 	if (sock) {
3434 		sk->sk_type	=	sock->type;
3435 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3436 		sock->sk	=	sk;
3437 	} else {
3438 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3439 	}
3440 	sk->sk_uid	=	uid;
3441 
3442 	rwlock_init(&sk->sk_callback_lock);
3443 	if (sk->sk_kern_sock)
3444 		lockdep_set_class_and_name(
3445 			&sk->sk_callback_lock,
3446 			af_kern_callback_keys + sk->sk_family,
3447 			af_family_kern_clock_key_strings[sk->sk_family]);
3448 	else
3449 		lockdep_set_class_and_name(
3450 			&sk->sk_callback_lock,
3451 			af_callback_keys + sk->sk_family,
3452 			af_family_clock_key_strings[sk->sk_family]);
3453 
3454 	sk->sk_state_change	=	sock_def_wakeup;
3455 	sk->sk_data_ready	=	sock_def_readable;
3456 	sk->sk_write_space	=	sock_def_write_space;
3457 	sk->sk_error_report	=	sock_def_error_report;
3458 	sk->sk_destruct		=	sock_def_destruct;
3459 
3460 	sk->sk_frag.page	=	NULL;
3461 	sk->sk_frag.offset	=	0;
3462 	sk->sk_peek_off		=	-1;
3463 
3464 	sk->sk_peer_pid 	=	NULL;
3465 	sk->sk_peer_cred	=	NULL;
3466 	spin_lock_init(&sk->sk_peer_lock);
3467 
3468 	sk->sk_write_pending	=	0;
3469 	sk->sk_rcvlowat		=	1;
3470 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3471 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3472 
3473 	sk->sk_stamp = SK_DEFAULT_STAMP;
3474 #if BITS_PER_LONG==32
3475 	seqlock_init(&sk->sk_stamp_seq);
3476 #endif
3477 	atomic_set(&sk->sk_zckey, 0);
3478 
3479 #ifdef CONFIG_NET_RX_BUSY_POLL
3480 	sk->sk_napi_id		=	0;
3481 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3482 #endif
3483 
3484 	sk->sk_max_pacing_rate = ~0UL;
3485 	sk->sk_pacing_rate = ~0UL;
3486 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3487 	sk->sk_incoming_cpu = -1;
3488 
3489 	sk_rx_queue_clear(sk);
3490 	/*
3491 	 * Before updating sk_refcnt, we must commit prior changes to memory
3492 	 * (Documentation/RCU/rculist_nulls.rst for details)
3493 	 */
3494 	smp_wmb();
3495 	refcount_set(&sk->sk_refcnt, 1);
3496 	atomic_set(&sk->sk_drops, 0);
3497 }
3498 EXPORT_SYMBOL(sock_init_data_uid);
3499 
3500 void sock_init_data(struct socket *sock, struct sock *sk)
3501 {
3502 	kuid_t uid = sock ?
3503 		SOCK_INODE(sock)->i_uid :
3504 		make_kuid(sock_net(sk)->user_ns, 0);
3505 
3506 	sock_init_data_uid(sock, sk, uid);
3507 }
3508 EXPORT_SYMBOL(sock_init_data);
3509 
3510 void lock_sock_nested(struct sock *sk, int subclass)
3511 {
3512 	/* The sk_lock has mutex_lock() semantics here. */
3513 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3514 
3515 	might_sleep();
3516 	spin_lock_bh(&sk->sk_lock.slock);
3517 	if (sock_owned_by_user_nocheck(sk))
3518 		__lock_sock(sk);
3519 	sk->sk_lock.owned = 1;
3520 	spin_unlock_bh(&sk->sk_lock.slock);
3521 }
3522 EXPORT_SYMBOL(lock_sock_nested);
3523 
3524 void release_sock(struct sock *sk)
3525 {
3526 	spin_lock_bh(&sk->sk_lock.slock);
3527 	if (sk->sk_backlog.tail)
3528 		__release_sock(sk);
3529 
3530 	/* Warning : release_cb() might need to release sk ownership,
3531 	 * ie call sock_release_ownership(sk) before us.
3532 	 */
3533 	if (sk->sk_prot->release_cb)
3534 		sk->sk_prot->release_cb(sk);
3535 
3536 	sock_release_ownership(sk);
3537 	if (waitqueue_active(&sk->sk_lock.wq))
3538 		wake_up(&sk->sk_lock.wq);
3539 	spin_unlock_bh(&sk->sk_lock.slock);
3540 }
3541 EXPORT_SYMBOL(release_sock);
3542 
3543 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3544 {
3545 	might_sleep();
3546 	spin_lock_bh(&sk->sk_lock.slock);
3547 
3548 	if (!sock_owned_by_user_nocheck(sk)) {
3549 		/*
3550 		 * Fast path return with bottom halves disabled and
3551 		 * sock::sk_lock.slock held.
3552 		 *
3553 		 * The 'mutex' is not contended and holding
3554 		 * sock::sk_lock.slock prevents all other lockers to
3555 		 * proceed so the corresponding unlock_sock_fast() can
3556 		 * avoid the slow path of release_sock() completely and
3557 		 * just release slock.
3558 		 *
3559 		 * From a semantical POV this is equivalent to 'acquiring'
3560 		 * the 'mutex', hence the corresponding lockdep
3561 		 * mutex_release() has to happen in the fast path of
3562 		 * unlock_sock_fast().
3563 		 */
3564 		return false;
3565 	}
3566 
3567 	__lock_sock(sk);
3568 	sk->sk_lock.owned = 1;
3569 	__acquire(&sk->sk_lock.slock);
3570 	spin_unlock_bh(&sk->sk_lock.slock);
3571 	return true;
3572 }
3573 EXPORT_SYMBOL(__lock_sock_fast);
3574 
3575 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3576 		   bool timeval, bool time32)
3577 {
3578 	struct sock *sk = sock->sk;
3579 	struct timespec64 ts;
3580 
3581 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3582 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3583 	if (ts.tv_sec == -1)
3584 		return -ENOENT;
3585 	if (ts.tv_sec == 0) {
3586 		ktime_t kt = ktime_get_real();
3587 		sock_write_timestamp(sk, kt);
3588 		ts = ktime_to_timespec64(kt);
3589 	}
3590 
3591 	if (timeval)
3592 		ts.tv_nsec /= 1000;
3593 
3594 #ifdef CONFIG_COMPAT_32BIT_TIME
3595 	if (time32)
3596 		return put_old_timespec32(&ts, userstamp);
3597 #endif
3598 #ifdef CONFIG_SPARC64
3599 	/* beware of padding in sparc64 timeval */
3600 	if (timeval && !in_compat_syscall()) {
3601 		struct __kernel_old_timeval __user tv = {
3602 			.tv_sec = ts.tv_sec,
3603 			.tv_usec = ts.tv_nsec,
3604 		};
3605 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3606 			return -EFAULT;
3607 		return 0;
3608 	}
3609 #endif
3610 	return put_timespec64(&ts, userstamp);
3611 }
3612 EXPORT_SYMBOL(sock_gettstamp);
3613 
3614 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3615 {
3616 	if (!sock_flag(sk, flag)) {
3617 		unsigned long previous_flags = sk->sk_flags;
3618 
3619 		sock_set_flag(sk, flag);
3620 		/*
3621 		 * we just set one of the two flags which require net
3622 		 * time stamping, but time stamping might have been on
3623 		 * already because of the other one
3624 		 */
3625 		if (sock_needs_netstamp(sk) &&
3626 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3627 			net_enable_timestamp();
3628 	}
3629 }
3630 
3631 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3632 		       int level, int type)
3633 {
3634 	struct sock_exterr_skb *serr;
3635 	struct sk_buff *skb;
3636 	int copied, err;
3637 
3638 	err = -EAGAIN;
3639 	skb = sock_dequeue_err_skb(sk);
3640 	if (skb == NULL)
3641 		goto out;
3642 
3643 	copied = skb->len;
3644 	if (copied > len) {
3645 		msg->msg_flags |= MSG_TRUNC;
3646 		copied = len;
3647 	}
3648 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3649 	if (err)
3650 		goto out_free_skb;
3651 
3652 	sock_recv_timestamp(msg, sk, skb);
3653 
3654 	serr = SKB_EXT_ERR(skb);
3655 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3656 
3657 	msg->msg_flags |= MSG_ERRQUEUE;
3658 	err = copied;
3659 
3660 out_free_skb:
3661 	kfree_skb(skb);
3662 out:
3663 	return err;
3664 }
3665 EXPORT_SYMBOL(sock_recv_errqueue);
3666 
3667 /*
3668  *	Get a socket option on an socket.
3669  *
3670  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3671  *	asynchronous errors should be reported by getsockopt. We assume
3672  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3673  */
3674 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3675 			   char __user *optval, int __user *optlen)
3676 {
3677 	struct sock *sk = sock->sk;
3678 
3679 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3680 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3681 }
3682 EXPORT_SYMBOL(sock_common_getsockopt);
3683 
3684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3685 			int flags)
3686 {
3687 	struct sock *sk = sock->sk;
3688 	int addr_len = 0;
3689 	int err;
3690 
3691 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3692 	if (err >= 0)
3693 		msg->msg_namelen = addr_len;
3694 	return err;
3695 }
3696 EXPORT_SYMBOL(sock_common_recvmsg);
3697 
3698 /*
3699  *	Set socket options on an inet socket.
3700  */
3701 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3702 			   sockptr_t optval, unsigned int optlen)
3703 {
3704 	struct sock *sk = sock->sk;
3705 
3706 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3707 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3708 }
3709 EXPORT_SYMBOL(sock_common_setsockopt);
3710 
3711 void sk_common_release(struct sock *sk)
3712 {
3713 	if (sk->sk_prot->destroy)
3714 		sk->sk_prot->destroy(sk);
3715 
3716 	/*
3717 	 * Observation: when sk_common_release is called, processes have
3718 	 * no access to socket. But net still has.
3719 	 * Step one, detach it from networking:
3720 	 *
3721 	 * A. Remove from hash tables.
3722 	 */
3723 
3724 	sk->sk_prot->unhash(sk);
3725 
3726 	/*
3727 	 * In this point socket cannot receive new packets, but it is possible
3728 	 * that some packets are in flight because some CPU runs receiver and
3729 	 * did hash table lookup before we unhashed socket. They will achieve
3730 	 * receive queue and will be purged by socket destructor.
3731 	 *
3732 	 * Also we still have packets pending on receive queue and probably,
3733 	 * our own packets waiting in device queues. sock_destroy will drain
3734 	 * receive queue, but transmitted packets will delay socket destruction
3735 	 * until the last reference will be released.
3736 	 */
3737 
3738 	sock_orphan(sk);
3739 
3740 	xfrm_sk_free_policy(sk);
3741 
3742 	sock_put(sk);
3743 }
3744 EXPORT_SYMBOL(sk_common_release);
3745 
3746 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3747 {
3748 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3749 
3750 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3751 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3752 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3753 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3754 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3755 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3756 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3757 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3758 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3759 }
3760 
3761 #ifdef CONFIG_PROC_FS
3762 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3763 
3764 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3765 {
3766 	int cpu, idx = prot->inuse_idx;
3767 	int res = 0;
3768 
3769 	for_each_possible_cpu(cpu)
3770 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3771 
3772 	return res >= 0 ? res : 0;
3773 }
3774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3775 
3776 int sock_inuse_get(struct net *net)
3777 {
3778 	int cpu, res = 0;
3779 
3780 	for_each_possible_cpu(cpu)
3781 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3782 
3783 	return res;
3784 }
3785 
3786 EXPORT_SYMBOL_GPL(sock_inuse_get);
3787 
3788 static int __net_init sock_inuse_init_net(struct net *net)
3789 {
3790 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3791 	if (net->core.prot_inuse == NULL)
3792 		return -ENOMEM;
3793 	return 0;
3794 }
3795 
3796 static void __net_exit sock_inuse_exit_net(struct net *net)
3797 {
3798 	free_percpu(net->core.prot_inuse);
3799 }
3800 
3801 static struct pernet_operations net_inuse_ops = {
3802 	.init = sock_inuse_init_net,
3803 	.exit = sock_inuse_exit_net,
3804 };
3805 
3806 static __init int net_inuse_init(void)
3807 {
3808 	if (register_pernet_subsys(&net_inuse_ops))
3809 		panic("Cannot initialize net inuse counters");
3810 
3811 	return 0;
3812 }
3813 
3814 core_initcall(net_inuse_init);
3815 
3816 static int assign_proto_idx(struct proto *prot)
3817 {
3818 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3819 
3820 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3821 		pr_err("PROTO_INUSE_NR exhausted\n");
3822 		return -ENOSPC;
3823 	}
3824 
3825 	set_bit(prot->inuse_idx, proto_inuse_idx);
3826 	return 0;
3827 }
3828 
3829 static void release_proto_idx(struct proto *prot)
3830 {
3831 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3832 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3833 }
3834 #else
3835 static inline int assign_proto_idx(struct proto *prot)
3836 {
3837 	return 0;
3838 }
3839 
3840 static inline void release_proto_idx(struct proto *prot)
3841 {
3842 }
3843 
3844 #endif
3845 
3846 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3847 {
3848 	if (!twsk_prot)
3849 		return;
3850 	kfree(twsk_prot->twsk_slab_name);
3851 	twsk_prot->twsk_slab_name = NULL;
3852 	kmem_cache_destroy(twsk_prot->twsk_slab);
3853 	twsk_prot->twsk_slab = NULL;
3854 }
3855 
3856 static int tw_prot_init(const struct proto *prot)
3857 {
3858 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3859 
3860 	if (!twsk_prot)
3861 		return 0;
3862 
3863 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3864 					      prot->name);
3865 	if (!twsk_prot->twsk_slab_name)
3866 		return -ENOMEM;
3867 
3868 	twsk_prot->twsk_slab =
3869 		kmem_cache_create(twsk_prot->twsk_slab_name,
3870 				  twsk_prot->twsk_obj_size, 0,
3871 				  SLAB_ACCOUNT | prot->slab_flags,
3872 				  NULL);
3873 	if (!twsk_prot->twsk_slab) {
3874 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3875 			prot->name);
3876 		return -ENOMEM;
3877 	}
3878 
3879 	return 0;
3880 }
3881 
3882 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3883 {
3884 	if (!rsk_prot)
3885 		return;
3886 	kfree(rsk_prot->slab_name);
3887 	rsk_prot->slab_name = NULL;
3888 	kmem_cache_destroy(rsk_prot->slab);
3889 	rsk_prot->slab = NULL;
3890 }
3891 
3892 static int req_prot_init(const struct proto *prot)
3893 {
3894 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3895 
3896 	if (!rsk_prot)
3897 		return 0;
3898 
3899 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3900 					prot->name);
3901 	if (!rsk_prot->slab_name)
3902 		return -ENOMEM;
3903 
3904 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3905 					   rsk_prot->obj_size, 0,
3906 					   SLAB_ACCOUNT | prot->slab_flags,
3907 					   NULL);
3908 
3909 	if (!rsk_prot->slab) {
3910 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3911 			prot->name);
3912 		return -ENOMEM;
3913 	}
3914 	return 0;
3915 }
3916 
3917 int proto_register(struct proto *prot, int alloc_slab)
3918 {
3919 	int ret = -ENOBUFS;
3920 
3921 	if (prot->memory_allocated && !prot->sysctl_mem) {
3922 		pr_err("%s: missing sysctl_mem\n", prot->name);
3923 		return -EINVAL;
3924 	}
3925 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3926 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3927 		return -EINVAL;
3928 	}
3929 	if (alloc_slab) {
3930 		prot->slab = kmem_cache_create_usercopy(prot->name,
3931 					prot->obj_size, 0,
3932 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3933 					prot->slab_flags,
3934 					prot->useroffset, prot->usersize,
3935 					NULL);
3936 
3937 		if (prot->slab == NULL) {
3938 			pr_crit("%s: Can't create sock SLAB cache!\n",
3939 				prot->name);
3940 			goto out;
3941 		}
3942 
3943 		if (req_prot_init(prot))
3944 			goto out_free_request_sock_slab;
3945 
3946 		if (tw_prot_init(prot))
3947 			goto out_free_timewait_sock_slab;
3948 	}
3949 
3950 	mutex_lock(&proto_list_mutex);
3951 	ret = assign_proto_idx(prot);
3952 	if (ret) {
3953 		mutex_unlock(&proto_list_mutex);
3954 		goto out_free_timewait_sock_slab;
3955 	}
3956 	list_add(&prot->node, &proto_list);
3957 	mutex_unlock(&proto_list_mutex);
3958 	return ret;
3959 
3960 out_free_timewait_sock_slab:
3961 	if (alloc_slab)
3962 		tw_prot_cleanup(prot->twsk_prot);
3963 out_free_request_sock_slab:
3964 	if (alloc_slab) {
3965 		req_prot_cleanup(prot->rsk_prot);
3966 
3967 		kmem_cache_destroy(prot->slab);
3968 		prot->slab = NULL;
3969 	}
3970 out:
3971 	return ret;
3972 }
3973 EXPORT_SYMBOL(proto_register);
3974 
3975 void proto_unregister(struct proto *prot)
3976 {
3977 	mutex_lock(&proto_list_mutex);
3978 	release_proto_idx(prot);
3979 	list_del(&prot->node);
3980 	mutex_unlock(&proto_list_mutex);
3981 
3982 	kmem_cache_destroy(prot->slab);
3983 	prot->slab = NULL;
3984 
3985 	req_prot_cleanup(prot->rsk_prot);
3986 	tw_prot_cleanup(prot->twsk_prot);
3987 }
3988 EXPORT_SYMBOL(proto_unregister);
3989 
3990 int sock_load_diag_module(int family, int protocol)
3991 {
3992 	if (!protocol) {
3993 		if (!sock_is_registered(family))
3994 			return -ENOENT;
3995 
3996 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3997 				      NETLINK_SOCK_DIAG, family);
3998 	}
3999 
4000 #ifdef CONFIG_INET
4001 	if (family == AF_INET &&
4002 	    protocol != IPPROTO_RAW &&
4003 	    protocol < MAX_INET_PROTOS &&
4004 	    !rcu_access_pointer(inet_protos[protocol]))
4005 		return -ENOENT;
4006 #endif
4007 
4008 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4009 			      NETLINK_SOCK_DIAG, family, protocol);
4010 }
4011 EXPORT_SYMBOL(sock_load_diag_module);
4012 
4013 #ifdef CONFIG_PROC_FS
4014 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4015 	__acquires(proto_list_mutex)
4016 {
4017 	mutex_lock(&proto_list_mutex);
4018 	return seq_list_start_head(&proto_list, *pos);
4019 }
4020 
4021 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4022 {
4023 	return seq_list_next(v, &proto_list, pos);
4024 }
4025 
4026 static void proto_seq_stop(struct seq_file *seq, void *v)
4027 	__releases(proto_list_mutex)
4028 {
4029 	mutex_unlock(&proto_list_mutex);
4030 }
4031 
4032 static char proto_method_implemented(const void *method)
4033 {
4034 	return method == NULL ? 'n' : 'y';
4035 }
4036 static long sock_prot_memory_allocated(struct proto *proto)
4037 {
4038 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4039 }
4040 
4041 static const char *sock_prot_memory_pressure(struct proto *proto)
4042 {
4043 	return proto->memory_pressure != NULL ?
4044 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4045 }
4046 
4047 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4048 {
4049 
4050 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4051 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4052 		   proto->name,
4053 		   proto->obj_size,
4054 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4055 		   sock_prot_memory_allocated(proto),
4056 		   sock_prot_memory_pressure(proto),
4057 		   proto->max_header,
4058 		   proto->slab == NULL ? "no" : "yes",
4059 		   module_name(proto->owner),
4060 		   proto_method_implemented(proto->close),
4061 		   proto_method_implemented(proto->connect),
4062 		   proto_method_implemented(proto->disconnect),
4063 		   proto_method_implemented(proto->accept),
4064 		   proto_method_implemented(proto->ioctl),
4065 		   proto_method_implemented(proto->init),
4066 		   proto_method_implemented(proto->destroy),
4067 		   proto_method_implemented(proto->shutdown),
4068 		   proto_method_implemented(proto->setsockopt),
4069 		   proto_method_implemented(proto->getsockopt),
4070 		   proto_method_implemented(proto->sendmsg),
4071 		   proto_method_implemented(proto->recvmsg),
4072 		   proto_method_implemented(proto->sendpage),
4073 		   proto_method_implemented(proto->bind),
4074 		   proto_method_implemented(proto->backlog_rcv),
4075 		   proto_method_implemented(proto->hash),
4076 		   proto_method_implemented(proto->unhash),
4077 		   proto_method_implemented(proto->get_port),
4078 		   proto_method_implemented(proto->enter_memory_pressure));
4079 }
4080 
4081 static int proto_seq_show(struct seq_file *seq, void *v)
4082 {
4083 	if (v == &proto_list)
4084 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4085 			   "protocol",
4086 			   "size",
4087 			   "sockets",
4088 			   "memory",
4089 			   "press",
4090 			   "maxhdr",
4091 			   "slab",
4092 			   "module",
4093 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4094 	else
4095 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4096 	return 0;
4097 }
4098 
4099 static const struct seq_operations proto_seq_ops = {
4100 	.start  = proto_seq_start,
4101 	.next   = proto_seq_next,
4102 	.stop   = proto_seq_stop,
4103 	.show   = proto_seq_show,
4104 };
4105 
4106 static __net_init int proto_init_net(struct net *net)
4107 {
4108 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4109 			sizeof(struct seq_net_private)))
4110 		return -ENOMEM;
4111 
4112 	return 0;
4113 }
4114 
4115 static __net_exit void proto_exit_net(struct net *net)
4116 {
4117 	remove_proc_entry("protocols", net->proc_net);
4118 }
4119 
4120 
4121 static __net_initdata struct pernet_operations proto_net_ops = {
4122 	.init = proto_init_net,
4123 	.exit = proto_exit_net,
4124 };
4125 
4126 static int __init proto_init(void)
4127 {
4128 	return register_pernet_subsys(&proto_net_ops);
4129 }
4130 
4131 subsys_initcall(proto_init);
4132 
4133 #endif /* PROC_FS */
4134 
4135 #ifdef CONFIG_NET_RX_BUSY_POLL
4136 bool sk_busy_loop_end(void *p, unsigned long start_time)
4137 {
4138 	struct sock *sk = p;
4139 
4140 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4141 	       sk_busy_loop_timeout(sk, start_time);
4142 }
4143 EXPORT_SYMBOL(sk_busy_loop_end);
4144 #endif /* CONFIG_NET_RX_BUSY_POLL */
4145 
4146 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4147 {
4148 	if (!sk->sk_prot->bind_add)
4149 		return -EOPNOTSUPP;
4150 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4151 }
4152 EXPORT_SYMBOL(sock_bind_add);
4153