1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 sockopt_lock_sock(sk); 707 ret = sock_bindtoindex_locked(sk, index); 708 sockopt_release_sock(sk); 709 out: 710 #endif 711 712 return ret; 713 } 714 715 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 716 sockptr_t optlen, int len) 717 { 718 int ret = -ENOPROTOOPT; 719 #ifdef CONFIG_NETDEVICES 720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 721 struct net *net = sock_net(sk); 722 char devname[IFNAMSIZ]; 723 724 if (bound_dev_if == 0) { 725 len = 0; 726 goto zero; 727 } 728 729 ret = -EINVAL; 730 if (len < IFNAMSIZ) 731 goto out; 732 733 ret = netdev_get_name(net, devname, bound_dev_if); 734 if (ret) 735 goto out; 736 737 len = strlen(devname) + 1; 738 739 ret = -EFAULT; 740 if (copy_to_sockptr(optval, devname, len)) 741 goto out; 742 743 zero: 744 ret = -EFAULT; 745 if (copy_to_sockptr(optlen, &len, sizeof(int))) 746 goto out; 747 748 ret = 0; 749 750 out: 751 #endif 752 753 return ret; 754 } 755 756 bool sk_mc_loop(struct sock *sk) 757 { 758 if (dev_recursion_level()) 759 return false; 760 if (!sk) 761 return true; 762 switch (sk->sk_family) { 763 case AF_INET: 764 return inet_sk(sk)->mc_loop; 765 #if IS_ENABLED(CONFIG_IPV6) 766 case AF_INET6: 767 return inet6_sk(sk)->mc_loop; 768 #endif 769 } 770 WARN_ON_ONCE(1); 771 return true; 772 } 773 EXPORT_SYMBOL(sk_mc_loop); 774 775 void sock_set_reuseaddr(struct sock *sk) 776 { 777 lock_sock(sk); 778 sk->sk_reuse = SK_CAN_REUSE; 779 release_sock(sk); 780 } 781 EXPORT_SYMBOL(sock_set_reuseaddr); 782 783 void sock_set_reuseport(struct sock *sk) 784 { 785 lock_sock(sk); 786 sk->sk_reuseport = true; 787 release_sock(sk); 788 } 789 EXPORT_SYMBOL(sock_set_reuseport); 790 791 void sock_no_linger(struct sock *sk) 792 { 793 lock_sock(sk); 794 sk->sk_lingertime = 0; 795 sock_set_flag(sk, SOCK_LINGER); 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_no_linger); 799 800 void sock_set_priority(struct sock *sk, u32 priority) 801 { 802 lock_sock(sk); 803 sk->sk_priority = priority; 804 release_sock(sk); 805 } 806 EXPORT_SYMBOL(sock_set_priority); 807 808 void sock_set_sndtimeo(struct sock *sk, s64 secs) 809 { 810 lock_sock(sk); 811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 812 sk->sk_sndtimeo = secs * HZ; 813 else 814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 815 release_sock(sk); 816 } 817 EXPORT_SYMBOL(sock_set_sndtimeo); 818 819 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 820 { 821 if (val) { 822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 824 sock_set_flag(sk, SOCK_RCVTSTAMP); 825 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 826 } else { 827 sock_reset_flag(sk, SOCK_RCVTSTAMP); 828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 829 } 830 } 831 832 void sock_enable_timestamps(struct sock *sk) 833 { 834 lock_sock(sk); 835 __sock_set_timestamps(sk, true, false, true); 836 release_sock(sk); 837 } 838 EXPORT_SYMBOL(sock_enable_timestamps); 839 840 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 841 { 842 switch (optname) { 843 case SO_TIMESTAMP_OLD: 844 __sock_set_timestamps(sk, valbool, false, false); 845 break; 846 case SO_TIMESTAMP_NEW: 847 __sock_set_timestamps(sk, valbool, true, false); 848 break; 849 case SO_TIMESTAMPNS_OLD: 850 __sock_set_timestamps(sk, valbool, false, true); 851 break; 852 case SO_TIMESTAMPNS_NEW: 853 __sock_set_timestamps(sk, valbool, true, true); 854 break; 855 } 856 } 857 858 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 859 { 860 struct net *net = sock_net(sk); 861 struct net_device *dev = NULL; 862 bool match = false; 863 int *vclock_index; 864 int i, num; 865 866 if (sk->sk_bound_dev_if) 867 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 868 869 if (!dev) { 870 pr_err("%s: sock not bind to device\n", __func__); 871 return -EOPNOTSUPP; 872 } 873 874 num = ethtool_get_phc_vclocks(dev, &vclock_index); 875 dev_put(dev); 876 877 for (i = 0; i < num; i++) { 878 if (*(vclock_index + i) == phc_index) { 879 match = true; 880 break; 881 } 882 } 883 884 if (num > 0) 885 kfree(vclock_index); 886 887 if (!match) 888 return -EINVAL; 889 890 sk->sk_bind_phc = phc_index; 891 892 return 0; 893 } 894 895 int sock_set_timestamping(struct sock *sk, int optname, 896 struct so_timestamping timestamping) 897 { 898 int val = timestamping.flags; 899 int ret; 900 901 if (val & ~SOF_TIMESTAMPING_MASK) 902 return -EINVAL; 903 904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 905 !(val & SOF_TIMESTAMPING_OPT_ID)) 906 return -EINVAL; 907 908 if (val & SOF_TIMESTAMPING_OPT_ID && 909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 910 if (sk_is_tcp(sk)) { 911 if ((1 << sk->sk_state) & 912 (TCPF_CLOSE | TCPF_LISTEN)) 913 return -EINVAL; 914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 916 else 917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 918 } else { 919 atomic_set(&sk->sk_tskey, 0); 920 } 921 } 922 923 if (val & SOF_TIMESTAMPING_OPT_STATS && 924 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 925 return -EINVAL; 926 927 if (val & SOF_TIMESTAMPING_BIND_PHC) { 928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 929 if (ret) 930 return ret; 931 } 932 933 sk->sk_tsflags = val; 934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 935 936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 937 sock_enable_timestamp(sk, 938 SOCK_TIMESTAMPING_RX_SOFTWARE); 939 else 940 sock_disable_timestamp(sk, 941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 942 return 0; 943 } 944 945 void sock_set_keepalive(struct sock *sk) 946 { 947 lock_sock(sk); 948 if (sk->sk_prot->keepalive) 949 sk->sk_prot->keepalive(sk, true); 950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 951 release_sock(sk); 952 } 953 EXPORT_SYMBOL(sock_set_keepalive); 954 955 static void __sock_set_rcvbuf(struct sock *sk, int val) 956 { 957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 958 * as a negative value. 959 */ 960 val = min_t(int, val, INT_MAX / 2); 961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 962 963 /* We double it on the way in to account for "struct sk_buff" etc. 964 * overhead. Applications assume that the SO_RCVBUF setting they make 965 * will allow that much actual data to be received on that socket. 966 * 967 * Applications are unaware that "struct sk_buff" and other overheads 968 * allocate from the receive buffer during socket buffer allocation. 969 * 970 * And after considering the possible alternatives, returning the value 971 * we actually used in getsockopt is the most desirable behavior. 972 */ 973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 974 } 975 976 void sock_set_rcvbuf(struct sock *sk, int val) 977 { 978 lock_sock(sk); 979 __sock_set_rcvbuf(sk, val); 980 release_sock(sk); 981 } 982 EXPORT_SYMBOL(sock_set_rcvbuf); 983 984 static void __sock_set_mark(struct sock *sk, u32 val) 985 { 986 if (val != sk->sk_mark) { 987 sk->sk_mark = val; 988 sk_dst_reset(sk); 989 } 990 } 991 992 void sock_set_mark(struct sock *sk, u32 val) 993 { 994 lock_sock(sk); 995 __sock_set_mark(sk, val); 996 release_sock(sk); 997 } 998 EXPORT_SYMBOL(sock_set_mark); 999 1000 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1001 { 1002 /* Round down bytes to multiple of pages */ 1003 bytes = round_down(bytes, PAGE_SIZE); 1004 1005 WARN_ON(bytes > sk->sk_reserved_mem); 1006 sk->sk_reserved_mem -= bytes; 1007 sk_mem_reclaim(sk); 1008 } 1009 1010 static int sock_reserve_memory(struct sock *sk, int bytes) 1011 { 1012 long allocated; 1013 bool charged; 1014 int pages; 1015 1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1017 return -EOPNOTSUPP; 1018 1019 if (!bytes) 1020 return 0; 1021 1022 pages = sk_mem_pages(bytes); 1023 1024 /* pre-charge to memcg */ 1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1027 if (!charged) 1028 return -ENOMEM; 1029 1030 /* pre-charge to forward_alloc */ 1031 sk_memory_allocated_add(sk, pages); 1032 allocated = sk_memory_allocated(sk); 1033 /* If the system goes into memory pressure with this 1034 * precharge, give up and return error. 1035 */ 1036 if (allocated > sk_prot_mem_limits(sk, 1)) { 1037 sk_memory_allocated_sub(sk, pages); 1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1039 return -ENOMEM; 1040 } 1041 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1042 1043 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1044 1045 return 0; 1046 } 1047 1048 void sockopt_lock_sock(struct sock *sk) 1049 { 1050 /* When current->bpf_ctx is set, the setsockopt is called from 1051 * a bpf prog. bpf has ensured the sk lock has been 1052 * acquired before calling setsockopt(). 1053 */ 1054 if (has_current_bpf_ctx()) 1055 return; 1056 1057 lock_sock(sk); 1058 } 1059 EXPORT_SYMBOL(sockopt_lock_sock); 1060 1061 void sockopt_release_sock(struct sock *sk) 1062 { 1063 if (has_current_bpf_ctx()) 1064 return; 1065 1066 release_sock(sk); 1067 } 1068 EXPORT_SYMBOL(sockopt_release_sock); 1069 1070 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1071 { 1072 return has_current_bpf_ctx() || ns_capable(ns, cap); 1073 } 1074 EXPORT_SYMBOL(sockopt_ns_capable); 1075 1076 bool sockopt_capable(int cap) 1077 { 1078 return has_current_bpf_ctx() || capable(cap); 1079 } 1080 EXPORT_SYMBOL(sockopt_capable); 1081 1082 /* 1083 * This is meant for all protocols to use and covers goings on 1084 * at the socket level. Everything here is generic. 1085 */ 1086 1087 int sk_setsockopt(struct sock *sk, int level, int optname, 1088 sockptr_t optval, unsigned int optlen) 1089 { 1090 struct so_timestamping timestamping; 1091 struct socket *sock = sk->sk_socket; 1092 struct sock_txtime sk_txtime; 1093 int val; 1094 int valbool; 1095 struct linger ling; 1096 int ret = 0; 1097 1098 /* 1099 * Options without arguments 1100 */ 1101 1102 if (optname == SO_BINDTODEVICE) 1103 return sock_setbindtodevice(sk, optval, optlen); 1104 1105 if (optlen < sizeof(int)) 1106 return -EINVAL; 1107 1108 if (copy_from_sockptr(&val, optval, sizeof(val))) 1109 return -EFAULT; 1110 1111 valbool = val ? 1 : 0; 1112 1113 sockopt_lock_sock(sk); 1114 1115 switch (optname) { 1116 case SO_DEBUG: 1117 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1118 ret = -EACCES; 1119 else 1120 sock_valbool_flag(sk, SOCK_DBG, valbool); 1121 break; 1122 case SO_REUSEADDR: 1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1124 break; 1125 case SO_REUSEPORT: 1126 sk->sk_reuseport = valbool; 1127 break; 1128 case SO_TYPE: 1129 case SO_PROTOCOL: 1130 case SO_DOMAIN: 1131 case SO_ERROR: 1132 ret = -ENOPROTOOPT; 1133 break; 1134 case SO_DONTROUTE: 1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1136 sk_dst_reset(sk); 1137 break; 1138 case SO_BROADCAST: 1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1140 break; 1141 case SO_SNDBUF: 1142 /* Don't error on this BSD doesn't and if you think 1143 * about it this is right. Otherwise apps have to 1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1145 * are treated in BSD as hints 1146 */ 1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1148 set_sndbuf: 1149 /* Ensure val * 2 fits into an int, to prevent max_t() 1150 * from treating it as a negative value. 1151 */ 1152 val = min_t(int, val, INT_MAX / 2); 1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1154 WRITE_ONCE(sk->sk_sndbuf, 1155 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1156 /* Wake up sending tasks if we upped the value. */ 1157 sk->sk_write_space(sk); 1158 break; 1159 1160 case SO_SNDBUFFORCE: 1161 if (!sockopt_capable(CAP_NET_ADMIN)) { 1162 ret = -EPERM; 1163 break; 1164 } 1165 1166 /* No negative values (to prevent underflow, as val will be 1167 * multiplied by 2). 1168 */ 1169 if (val < 0) 1170 val = 0; 1171 goto set_sndbuf; 1172 1173 case SO_RCVBUF: 1174 /* Don't error on this BSD doesn't and if you think 1175 * about it this is right. Otherwise apps have to 1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1177 * are treated in BSD as hints 1178 */ 1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1180 break; 1181 1182 case SO_RCVBUFFORCE: 1183 if (!sockopt_capable(CAP_NET_ADMIN)) { 1184 ret = -EPERM; 1185 break; 1186 } 1187 1188 /* No negative values (to prevent underflow, as val will be 1189 * multiplied by 2). 1190 */ 1191 __sock_set_rcvbuf(sk, max(val, 0)); 1192 break; 1193 1194 case SO_KEEPALIVE: 1195 if (sk->sk_prot->keepalive) 1196 sk->sk_prot->keepalive(sk, valbool); 1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1198 break; 1199 1200 case SO_OOBINLINE: 1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1202 break; 1203 1204 case SO_NO_CHECK: 1205 sk->sk_no_check_tx = valbool; 1206 break; 1207 1208 case SO_PRIORITY: 1209 if ((val >= 0 && val <= 6) || 1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1212 sk->sk_priority = val; 1213 else 1214 ret = -EPERM; 1215 break; 1216 1217 case SO_LINGER: 1218 if (optlen < sizeof(ling)) { 1219 ret = -EINVAL; /* 1003.1g */ 1220 break; 1221 } 1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1223 ret = -EFAULT; 1224 break; 1225 } 1226 if (!ling.l_onoff) 1227 sock_reset_flag(sk, SOCK_LINGER); 1228 else { 1229 #if (BITS_PER_LONG == 32) 1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1232 else 1233 #endif 1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1235 sock_set_flag(sk, SOCK_LINGER); 1236 } 1237 break; 1238 1239 case SO_BSDCOMPAT: 1240 break; 1241 1242 case SO_PASSCRED: 1243 if (valbool) 1244 set_bit(SOCK_PASSCRED, &sock->flags); 1245 else 1246 clear_bit(SOCK_PASSCRED, &sock->flags); 1247 break; 1248 1249 case SO_PASSPIDFD: 1250 if (valbool) 1251 set_bit(SOCK_PASSPIDFD, &sock->flags); 1252 else 1253 clear_bit(SOCK_PASSPIDFD, &sock->flags); 1254 break; 1255 1256 case SO_TIMESTAMP_OLD: 1257 case SO_TIMESTAMP_NEW: 1258 case SO_TIMESTAMPNS_OLD: 1259 case SO_TIMESTAMPNS_NEW: 1260 sock_set_timestamp(sk, optname, valbool); 1261 break; 1262 1263 case SO_TIMESTAMPING_NEW: 1264 case SO_TIMESTAMPING_OLD: 1265 if (optlen == sizeof(timestamping)) { 1266 if (copy_from_sockptr(×tamping, optval, 1267 sizeof(timestamping))) { 1268 ret = -EFAULT; 1269 break; 1270 } 1271 } else { 1272 memset(×tamping, 0, sizeof(timestamping)); 1273 timestamping.flags = val; 1274 } 1275 ret = sock_set_timestamping(sk, optname, timestamping); 1276 break; 1277 1278 case SO_RCVLOWAT: 1279 if (val < 0) 1280 val = INT_MAX; 1281 if (sock && sock->ops->set_rcvlowat) 1282 ret = sock->ops->set_rcvlowat(sk, val); 1283 else 1284 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1285 break; 1286 1287 case SO_RCVTIMEO_OLD: 1288 case SO_RCVTIMEO_NEW: 1289 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1290 optlen, optname == SO_RCVTIMEO_OLD); 1291 break; 1292 1293 case SO_SNDTIMEO_OLD: 1294 case SO_SNDTIMEO_NEW: 1295 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1296 optlen, optname == SO_SNDTIMEO_OLD); 1297 break; 1298 1299 case SO_ATTACH_FILTER: { 1300 struct sock_fprog fprog; 1301 1302 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1303 if (!ret) 1304 ret = sk_attach_filter(&fprog, sk); 1305 break; 1306 } 1307 case SO_ATTACH_BPF: 1308 ret = -EINVAL; 1309 if (optlen == sizeof(u32)) { 1310 u32 ufd; 1311 1312 ret = -EFAULT; 1313 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1314 break; 1315 1316 ret = sk_attach_bpf(ufd, sk); 1317 } 1318 break; 1319 1320 case SO_ATTACH_REUSEPORT_CBPF: { 1321 struct sock_fprog fprog; 1322 1323 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1324 if (!ret) 1325 ret = sk_reuseport_attach_filter(&fprog, sk); 1326 break; 1327 } 1328 case SO_ATTACH_REUSEPORT_EBPF: 1329 ret = -EINVAL; 1330 if (optlen == sizeof(u32)) { 1331 u32 ufd; 1332 1333 ret = -EFAULT; 1334 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1335 break; 1336 1337 ret = sk_reuseport_attach_bpf(ufd, sk); 1338 } 1339 break; 1340 1341 case SO_DETACH_REUSEPORT_BPF: 1342 ret = reuseport_detach_prog(sk); 1343 break; 1344 1345 case SO_DETACH_FILTER: 1346 ret = sk_detach_filter(sk); 1347 break; 1348 1349 case SO_LOCK_FILTER: 1350 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1351 ret = -EPERM; 1352 else 1353 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1354 break; 1355 1356 case SO_PASSSEC: 1357 if (valbool) 1358 set_bit(SOCK_PASSSEC, &sock->flags); 1359 else 1360 clear_bit(SOCK_PASSSEC, &sock->flags); 1361 break; 1362 case SO_MARK: 1363 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1364 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1365 ret = -EPERM; 1366 break; 1367 } 1368 1369 __sock_set_mark(sk, val); 1370 break; 1371 case SO_RCVMARK: 1372 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1373 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1374 ret = -EPERM; 1375 break; 1376 } 1377 1378 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1379 break; 1380 1381 case SO_RXQ_OVFL: 1382 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1383 break; 1384 1385 case SO_WIFI_STATUS: 1386 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1387 break; 1388 1389 case SO_PEEK_OFF: 1390 if (sock->ops->set_peek_off) 1391 ret = sock->ops->set_peek_off(sk, val); 1392 else 1393 ret = -EOPNOTSUPP; 1394 break; 1395 1396 case SO_NOFCS: 1397 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1398 break; 1399 1400 case SO_SELECT_ERR_QUEUE: 1401 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1402 break; 1403 1404 #ifdef CONFIG_NET_RX_BUSY_POLL 1405 case SO_BUSY_POLL: 1406 if (val < 0) 1407 ret = -EINVAL; 1408 else 1409 WRITE_ONCE(sk->sk_ll_usec, val); 1410 break; 1411 case SO_PREFER_BUSY_POLL: 1412 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1413 ret = -EPERM; 1414 else 1415 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1416 break; 1417 case SO_BUSY_POLL_BUDGET: 1418 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) { 1419 ret = -EPERM; 1420 } else { 1421 if (val < 0 || val > U16_MAX) 1422 ret = -EINVAL; 1423 else 1424 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1425 } 1426 break; 1427 #endif 1428 1429 case SO_MAX_PACING_RATE: 1430 { 1431 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1432 1433 if (sizeof(ulval) != sizeof(val) && 1434 optlen >= sizeof(ulval) && 1435 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1436 ret = -EFAULT; 1437 break; 1438 } 1439 if (ulval != ~0UL) 1440 cmpxchg(&sk->sk_pacing_status, 1441 SK_PACING_NONE, 1442 SK_PACING_NEEDED); 1443 sk->sk_max_pacing_rate = ulval; 1444 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1445 break; 1446 } 1447 case SO_INCOMING_CPU: 1448 reuseport_update_incoming_cpu(sk, val); 1449 break; 1450 1451 case SO_CNX_ADVICE: 1452 if (val == 1) 1453 dst_negative_advice(sk); 1454 break; 1455 1456 case SO_ZEROCOPY: 1457 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1458 if (!(sk_is_tcp(sk) || 1459 (sk->sk_type == SOCK_DGRAM && 1460 sk->sk_protocol == IPPROTO_UDP))) 1461 ret = -EOPNOTSUPP; 1462 } else if (sk->sk_family != PF_RDS) { 1463 ret = -EOPNOTSUPP; 1464 } 1465 if (!ret) { 1466 if (val < 0 || val > 1) 1467 ret = -EINVAL; 1468 else 1469 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1470 } 1471 break; 1472 1473 case SO_TXTIME: 1474 if (optlen != sizeof(struct sock_txtime)) { 1475 ret = -EINVAL; 1476 break; 1477 } else if (copy_from_sockptr(&sk_txtime, optval, 1478 sizeof(struct sock_txtime))) { 1479 ret = -EFAULT; 1480 break; 1481 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1482 ret = -EINVAL; 1483 break; 1484 } 1485 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1486 * scheduler has enough safe guards. 1487 */ 1488 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1489 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1490 ret = -EPERM; 1491 break; 1492 } 1493 sock_valbool_flag(sk, SOCK_TXTIME, true); 1494 sk->sk_clockid = sk_txtime.clockid; 1495 sk->sk_txtime_deadline_mode = 1496 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1497 sk->sk_txtime_report_errors = 1498 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1499 break; 1500 1501 case SO_BINDTOIFINDEX: 1502 ret = sock_bindtoindex_locked(sk, val); 1503 break; 1504 1505 case SO_BUF_LOCK: 1506 if (val & ~SOCK_BUF_LOCK_MASK) { 1507 ret = -EINVAL; 1508 break; 1509 } 1510 sk->sk_userlocks = val | (sk->sk_userlocks & 1511 ~SOCK_BUF_LOCK_MASK); 1512 break; 1513 1514 case SO_RESERVE_MEM: 1515 { 1516 int delta; 1517 1518 if (val < 0) { 1519 ret = -EINVAL; 1520 break; 1521 } 1522 1523 delta = val - sk->sk_reserved_mem; 1524 if (delta < 0) 1525 sock_release_reserved_memory(sk, -delta); 1526 else 1527 ret = sock_reserve_memory(sk, delta); 1528 break; 1529 } 1530 1531 case SO_TXREHASH: 1532 if (val < -1 || val > 1) { 1533 ret = -EINVAL; 1534 break; 1535 } 1536 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1537 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1538 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1539 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1540 break; 1541 1542 default: 1543 ret = -ENOPROTOOPT; 1544 break; 1545 } 1546 sockopt_release_sock(sk); 1547 return ret; 1548 } 1549 1550 int sock_setsockopt(struct socket *sock, int level, int optname, 1551 sockptr_t optval, unsigned int optlen) 1552 { 1553 return sk_setsockopt(sock->sk, level, optname, 1554 optval, optlen); 1555 } 1556 EXPORT_SYMBOL(sock_setsockopt); 1557 1558 static const struct cred *sk_get_peer_cred(struct sock *sk) 1559 { 1560 const struct cred *cred; 1561 1562 spin_lock(&sk->sk_peer_lock); 1563 cred = get_cred(sk->sk_peer_cred); 1564 spin_unlock(&sk->sk_peer_lock); 1565 1566 return cred; 1567 } 1568 1569 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1570 struct ucred *ucred) 1571 { 1572 ucred->pid = pid_vnr(pid); 1573 ucred->uid = ucred->gid = -1; 1574 if (cred) { 1575 struct user_namespace *current_ns = current_user_ns(); 1576 1577 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1578 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1579 } 1580 } 1581 1582 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1583 { 1584 struct user_namespace *user_ns = current_user_ns(); 1585 int i; 1586 1587 for (i = 0; i < src->ngroups; i++) { 1588 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1589 1590 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1591 return -EFAULT; 1592 } 1593 1594 return 0; 1595 } 1596 1597 int sk_getsockopt(struct sock *sk, int level, int optname, 1598 sockptr_t optval, sockptr_t optlen) 1599 { 1600 struct socket *sock = sk->sk_socket; 1601 1602 union { 1603 int val; 1604 u64 val64; 1605 unsigned long ulval; 1606 struct linger ling; 1607 struct old_timeval32 tm32; 1608 struct __kernel_old_timeval tm; 1609 struct __kernel_sock_timeval stm; 1610 struct sock_txtime txtime; 1611 struct so_timestamping timestamping; 1612 } v; 1613 1614 int lv = sizeof(int); 1615 int len; 1616 1617 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1618 return -EFAULT; 1619 if (len < 0) 1620 return -EINVAL; 1621 1622 memset(&v, 0, sizeof(v)); 1623 1624 switch (optname) { 1625 case SO_DEBUG: 1626 v.val = sock_flag(sk, SOCK_DBG); 1627 break; 1628 1629 case SO_DONTROUTE: 1630 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1631 break; 1632 1633 case SO_BROADCAST: 1634 v.val = sock_flag(sk, SOCK_BROADCAST); 1635 break; 1636 1637 case SO_SNDBUF: 1638 v.val = sk->sk_sndbuf; 1639 break; 1640 1641 case SO_RCVBUF: 1642 v.val = sk->sk_rcvbuf; 1643 break; 1644 1645 case SO_REUSEADDR: 1646 v.val = sk->sk_reuse; 1647 break; 1648 1649 case SO_REUSEPORT: 1650 v.val = sk->sk_reuseport; 1651 break; 1652 1653 case SO_KEEPALIVE: 1654 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1655 break; 1656 1657 case SO_TYPE: 1658 v.val = sk->sk_type; 1659 break; 1660 1661 case SO_PROTOCOL: 1662 v.val = sk->sk_protocol; 1663 break; 1664 1665 case SO_DOMAIN: 1666 v.val = sk->sk_family; 1667 break; 1668 1669 case SO_ERROR: 1670 v.val = -sock_error(sk); 1671 if (v.val == 0) 1672 v.val = xchg(&sk->sk_err_soft, 0); 1673 break; 1674 1675 case SO_OOBINLINE: 1676 v.val = sock_flag(sk, SOCK_URGINLINE); 1677 break; 1678 1679 case SO_NO_CHECK: 1680 v.val = sk->sk_no_check_tx; 1681 break; 1682 1683 case SO_PRIORITY: 1684 v.val = sk->sk_priority; 1685 break; 1686 1687 case SO_LINGER: 1688 lv = sizeof(v.ling); 1689 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1690 v.ling.l_linger = sk->sk_lingertime / HZ; 1691 break; 1692 1693 case SO_BSDCOMPAT: 1694 break; 1695 1696 case SO_TIMESTAMP_OLD: 1697 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1698 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1699 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1700 break; 1701 1702 case SO_TIMESTAMPNS_OLD: 1703 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1704 break; 1705 1706 case SO_TIMESTAMP_NEW: 1707 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1708 break; 1709 1710 case SO_TIMESTAMPNS_NEW: 1711 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1712 break; 1713 1714 case SO_TIMESTAMPING_OLD: 1715 lv = sizeof(v.timestamping); 1716 v.timestamping.flags = sk->sk_tsflags; 1717 v.timestamping.bind_phc = sk->sk_bind_phc; 1718 break; 1719 1720 case SO_RCVTIMEO_OLD: 1721 case SO_RCVTIMEO_NEW: 1722 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1723 break; 1724 1725 case SO_SNDTIMEO_OLD: 1726 case SO_SNDTIMEO_NEW: 1727 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1728 break; 1729 1730 case SO_RCVLOWAT: 1731 v.val = sk->sk_rcvlowat; 1732 break; 1733 1734 case SO_SNDLOWAT: 1735 v.val = 1; 1736 break; 1737 1738 case SO_PASSCRED: 1739 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1740 break; 1741 1742 case SO_PASSPIDFD: 1743 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1744 break; 1745 1746 case SO_PEERCRED: 1747 { 1748 struct ucred peercred; 1749 if (len > sizeof(peercred)) 1750 len = sizeof(peercred); 1751 1752 spin_lock(&sk->sk_peer_lock); 1753 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1754 spin_unlock(&sk->sk_peer_lock); 1755 1756 if (copy_to_sockptr(optval, &peercred, len)) 1757 return -EFAULT; 1758 goto lenout; 1759 } 1760 1761 case SO_PEERPIDFD: 1762 { 1763 struct pid *peer_pid; 1764 struct file *pidfd_file = NULL; 1765 int pidfd; 1766 1767 if (len > sizeof(pidfd)) 1768 len = sizeof(pidfd); 1769 1770 spin_lock(&sk->sk_peer_lock); 1771 peer_pid = get_pid(sk->sk_peer_pid); 1772 spin_unlock(&sk->sk_peer_lock); 1773 1774 if (!peer_pid) 1775 return -ESRCH; 1776 1777 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1778 put_pid(peer_pid); 1779 if (pidfd < 0) 1780 return pidfd; 1781 1782 if (copy_to_sockptr(optval, &pidfd, len) || 1783 copy_to_sockptr(optlen, &len, sizeof(int))) { 1784 put_unused_fd(pidfd); 1785 fput(pidfd_file); 1786 1787 return -EFAULT; 1788 } 1789 1790 fd_install(pidfd, pidfd_file); 1791 return 0; 1792 } 1793 1794 case SO_PEERGROUPS: 1795 { 1796 const struct cred *cred; 1797 int ret, n; 1798 1799 cred = sk_get_peer_cred(sk); 1800 if (!cred) 1801 return -ENODATA; 1802 1803 n = cred->group_info->ngroups; 1804 if (len < n * sizeof(gid_t)) { 1805 len = n * sizeof(gid_t); 1806 put_cred(cred); 1807 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1808 } 1809 len = n * sizeof(gid_t); 1810 1811 ret = groups_to_user(optval, cred->group_info); 1812 put_cred(cred); 1813 if (ret) 1814 return ret; 1815 goto lenout; 1816 } 1817 1818 case SO_PEERNAME: 1819 { 1820 char address[128]; 1821 1822 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1823 if (lv < 0) 1824 return -ENOTCONN; 1825 if (lv < len) 1826 return -EINVAL; 1827 if (copy_to_sockptr(optval, address, len)) 1828 return -EFAULT; 1829 goto lenout; 1830 } 1831 1832 /* Dubious BSD thing... Probably nobody even uses it, but 1833 * the UNIX standard wants it for whatever reason... -DaveM 1834 */ 1835 case SO_ACCEPTCONN: 1836 v.val = sk->sk_state == TCP_LISTEN; 1837 break; 1838 1839 case SO_PASSSEC: 1840 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1841 break; 1842 1843 case SO_PEERSEC: 1844 return security_socket_getpeersec_stream(sock, 1845 optval, optlen, len); 1846 1847 case SO_MARK: 1848 v.val = sk->sk_mark; 1849 break; 1850 1851 case SO_RCVMARK: 1852 v.val = sock_flag(sk, SOCK_RCVMARK); 1853 break; 1854 1855 case SO_RXQ_OVFL: 1856 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1857 break; 1858 1859 case SO_WIFI_STATUS: 1860 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1861 break; 1862 1863 case SO_PEEK_OFF: 1864 if (!sock->ops->set_peek_off) 1865 return -EOPNOTSUPP; 1866 1867 v.val = sk->sk_peek_off; 1868 break; 1869 case SO_NOFCS: 1870 v.val = sock_flag(sk, SOCK_NOFCS); 1871 break; 1872 1873 case SO_BINDTODEVICE: 1874 return sock_getbindtodevice(sk, optval, optlen, len); 1875 1876 case SO_GET_FILTER: 1877 len = sk_get_filter(sk, optval, len); 1878 if (len < 0) 1879 return len; 1880 1881 goto lenout; 1882 1883 case SO_LOCK_FILTER: 1884 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1885 break; 1886 1887 case SO_BPF_EXTENSIONS: 1888 v.val = bpf_tell_extensions(); 1889 break; 1890 1891 case SO_SELECT_ERR_QUEUE: 1892 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1893 break; 1894 1895 #ifdef CONFIG_NET_RX_BUSY_POLL 1896 case SO_BUSY_POLL: 1897 v.val = sk->sk_ll_usec; 1898 break; 1899 case SO_PREFER_BUSY_POLL: 1900 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1901 break; 1902 #endif 1903 1904 case SO_MAX_PACING_RATE: 1905 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1906 lv = sizeof(v.ulval); 1907 v.ulval = sk->sk_max_pacing_rate; 1908 } else { 1909 /* 32bit version */ 1910 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1911 } 1912 break; 1913 1914 case SO_INCOMING_CPU: 1915 v.val = READ_ONCE(sk->sk_incoming_cpu); 1916 break; 1917 1918 case SO_MEMINFO: 1919 { 1920 u32 meminfo[SK_MEMINFO_VARS]; 1921 1922 sk_get_meminfo(sk, meminfo); 1923 1924 len = min_t(unsigned int, len, sizeof(meminfo)); 1925 if (copy_to_sockptr(optval, &meminfo, len)) 1926 return -EFAULT; 1927 1928 goto lenout; 1929 } 1930 1931 #ifdef CONFIG_NET_RX_BUSY_POLL 1932 case SO_INCOMING_NAPI_ID: 1933 v.val = READ_ONCE(sk->sk_napi_id); 1934 1935 /* aggregate non-NAPI IDs down to 0 */ 1936 if (v.val < MIN_NAPI_ID) 1937 v.val = 0; 1938 1939 break; 1940 #endif 1941 1942 case SO_COOKIE: 1943 lv = sizeof(u64); 1944 if (len < lv) 1945 return -EINVAL; 1946 v.val64 = sock_gen_cookie(sk); 1947 break; 1948 1949 case SO_ZEROCOPY: 1950 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1951 break; 1952 1953 case SO_TXTIME: 1954 lv = sizeof(v.txtime); 1955 v.txtime.clockid = sk->sk_clockid; 1956 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1957 SOF_TXTIME_DEADLINE_MODE : 0; 1958 v.txtime.flags |= sk->sk_txtime_report_errors ? 1959 SOF_TXTIME_REPORT_ERRORS : 0; 1960 break; 1961 1962 case SO_BINDTOIFINDEX: 1963 v.val = READ_ONCE(sk->sk_bound_dev_if); 1964 break; 1965 1966 case SO_NETNS_COOKIE: 1967 lv = sizeof(u64); 1968 if (len != lv) 1969 return -EINVAL; 1970 v.val64 = sock_net(sk)->net_cookie; 1971 break; 1972 1973 case SO_BUF_LOCK: 1974 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1975 break; 1976 1977 case SO_RESERVE_MEM: 1978 v.val = sk->sk_reserved_mem; 1979 break; 1980 1981 case SO_TXREHASH: 1982 v.val = sk->sk_txrehash; 1983 break; 1984 1985 default: 1986 /* We implement the SO_SNDLOWAT etc to not be settable 1987 * (1003.1g 7). 1988 */ 1989 return -ENOPROTOOPT; 1990 } 1991 1992 if (len > lv) 1993 len = lv; 1994 if (copy_to_sockptr(optval, &v, len)) 1995 return -EFAULT; 1996 lenout: 1997 if (copy_to_sockptr(optlen, &len, sizeof(int))) 1998 return -EFAULT; 1999 return 0; 2000 } 2001 2002 int sock_getsockopt(struct socket *sock, int level, int optname, 2003 char __user *optval, int __user *optlen) 2004 { 2005 return sk_getsockopt(sock->sk, level, optname, 2006 USER_SOCKPTR(optval), 2007 USER_SOCKPTR(optlen)); 2008 } 2009 2010 /* 2011 * Initialize an sk_lock. 2012 * 2013 * (We also register the sk_lock with the lock validator.) 2014 */ 2015 static inline void sock_lock_init(struct sock *sk) 2016 { 2017 if (sk->sk_kern_sock) 2018 sock_lock_init_class_and_name( 2019 sk, 2020 af_family_kern_slock_key_strings[sk->sk_family], 2021 af_family_kern_slock_keys + sk->sk_family, 2022 af_family_kern_key_strings[sk->sk_family], 2023 af_family_kern_keys + sk->sk_family); 2024 else 2025 sock_lock_init_class_and_name( 2026 sk, 2027 af_family_slock_key_strings[sk->sk_family], 2028 af_family_slock_keys + sk->sk_family, 2029 af_family_key_strings[sk->sk_family], 2030 af_family_keys + sk->sk_family); 2031 } 2032 2033 /* 2034 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2035 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2036 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2037 */ 2038 static void sock_copy(struct sock *nsk, const struct sock *osk) 2039 { 2040 const struct proto *prot = READ_ONCE(osk->sk_prot); 2041 #ifdef CONFIG_SECURITY_NETWORK 2042 void *sptr = nsk->sk_security; 2043 #endif 2044 2045 /* If we move sk_tx_queue_mapping out of the private section, 2046 * we must check if sk_tx_queue_clear() is called after 2047 * sock_copy() in sk_clone_lock(). 2048 */ 2049 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2050 offsetof(struct sock, sk_dontcopy_begin) || 2051 offsetof(struct sock, sk_tx_queue_mapping) >= 2052 offsetof(struct sock, sk_dontcopy_end)); 2053 2054 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2055 2056 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2057 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2058 2059 #ifdef CONFIG_SECURITY_NETWORK 2060 nsk->sk_security = sptr; 2061 security_sk_clone(osk, nsk); 2062 #endif 2063 } 2064 2065 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2066 int family) 2067 { 2068 struct sock *sk; 2069 struct kmem_cache *slab; 2070 2071 slab = prot->slab; 2072 if (slab != NULL) { 2073 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2074 if (!sk) 2075 return sk; 2076 if (want_init_on_alloc(priority)) 2077 sk_prot_clear_nulls(sk, prot->obj_size); 2078 } else 2079 sk = kmalloc(prot->obj_size, priority); 2080 2081 if (sk != NULL) { 2082 if (security_sk_alloc(sk, family, priority)) 2083 goto out_free; 2084 2085 if (!try_module_get(prot->owner)) 2086 goto out_free_sec; 2087 } 2088 2089 return sk; 2090 2091 out_free_sec: 2092 security_sk_free(sk); 2093 out_free: 2094 if (slab != NULL) 2095 kmem_cache_free(slab, sk); 2096 else 2097 kfree(sk); 2098 return NULL; 2099 } 2100 2101 static void sk_prot_free(struct proto *prot, struct sock *sk) 2102 { 2103 struct kmem_cache *slab; 2104 struct module *owner; 2105 2106 owner = prot->owner; 2107 slab = prot->slab; 2108 2109 cgroup_sk_free(&sk->sk_cgrp_data); 2110 mem_cgroup_sk_free(sk); 2111 security_sk_free(sk); 2112 if (slab != NULL) 2113 kmem_cache_free(slab, sk); 2114 else 2115 kfree(sk); 2116 module_put(owner); 2117 } 2118 2119 /** 2120 * sk_alloc - All socket objects are allocated here 2121 * @net: the applicable net namespace 2122 * @family: protocol family 2123 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2124 * @prot: struct proto associated with this new sock instance 2125 * @kern: is this to be a kernel socket? 2126 */ 2127 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2128 struct proto *prot, int kern) 2129 { 2130 struct sock *sk; 2131 2132 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2133 if (sk) { 2134 sk->sk_family = family; 2135 /* 2136 * See comment in struct sock definition to understand 2137 * why we need sk_prot_creator -acme 2138 */ 2139 sk->sk_prot = sk->sk_prot_creator = prot; 2140 sk->sk_kern_sock = kern; 2141 sock_lock_init(sk); 2142 sk->sk_net_refcnt = kern ? 0 : 1; 2143 if (likely(sk->sk_net_refcnt)) { 2144 get_net_track(net, &sk->ns_tracker, priority); 2145 sock_inuse_add(net, 1); 2146 } else { 2147 __netns_tracker_alloc(net, &sk->ns_tracker, 2148 false, priority); 2149 } 2150 2151 sock_net_set(sk, net); 2152 refcount_set(&sk->sk_wmem_alloc, 1); 2153 2154 mem_cgroup_sk_alloc(sk); 2155 cgroup_sk_alloc(&sk->sk_cgrp_data); 2156 sock_update_classid(&sk->sk_cgrp_data); 2157 sock_update_netprioidx(&sk->sk_cgrp_data); 2158 sk_tx_queue_clear(sk); 2159 } 2160 2161 return sk; 2162 } 2163 EXPORT_SYMBOL(sk_alloc); 2164 2165 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2166 * grace period. This is the case for UDP sockets and TCP listeners. 2167 */ 2168 static void __sk_destruct(struct rcu_head *head) 2169 { 2170 struct sock *sk = container_of(head, struct sock, sk_rcu); 2171 struct sk_filter *filter; 2172 2173 if (sk->sk_destruct) 2174 sk->sk_destruct(sk); 2175 2176 filter = rcu_dereference_check(sk->sk_filter, 2177 refcount_read(&sk->sk_wmem_alloc) == 0); 2178 if (filter) { 2179 sk_filter_uncharge(sk, filter); 2180 RCU_INIT_POINTER(sk->sk_filter, NULL); 2181 } 2182 2183 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2184 2185 #ifdef CONFIG_BPF_SYSCALL 2186 bpf_sk_storage_free(sk); 2187 #endif 2188 2189 if (atomic_read(&sk->sk_omem_alloc)) 2190 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2191 __func__, atomic_read(&sk->sk_omem_alloc)); 2192 2193 if (sk->sk_frag.page) { 2194 put_page(sk->sk_frag.page); 2195 sk->sk_frag.page = NULL; 2196 } 2197 2198 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2199 put_cred(sk->sk_peer_cred); 2200 put_pid(sk->sk_peer_pid); 2201 2202 if (likely(sk->sk_net_refcnt)) 2203 put_net_track(sock_net(sk), &sk->ns_tracker); 2204 else 2205 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2206 2207 sk_prot_free(sk->sk_prot_creator, sk); 2208 } 2209 2210 void sk_destruct(struct sock *sk) 2211 { 2212 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2213 2214 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2215 reuseport_detach_sock(sk); 2216 use_call_rcu = true; 2217 } 2218 2219 if (use_call_rcu) 2220 call_rcu(&sk->sk_rcu, __sk_destruct); 2221 else 2222 __sk_destruct(&sk->sk_rcu); 2223 } 2224 2225 static void __sk_free(struct sock *sk) 2226 { 2227 if (likely(sk->sk_net_refcnt)) 2228 sock_inuse_add(sock_net(sk), -1); 2229 2230 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2231 sock_diag_broadcast_destroy(sk); 2232 else 2233 sk_destruct(sk); 2234 } 2235 2236 void sk_free(struct sock *sk) 2237 { 2238 /* 2239 * We subtract one from sk_wmem_alloc and can know if 2240 * some packets are still in some tx queue. 2241 * If not null, sock_wfree() will call __sk_free(sk) later 2242 */ 2243 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2244 __sk_free(sk); 2245 } 2246 EXPORT_SYMBOL(sk_free); 2247 2248 static void sk_init_common(struct sock *sk) 2249 { 2250 skb_queue_head_init(&sk->sk_receive_queue); 2251 skb_queue_head_init(&sk->sk_write_queue); 2252 skb_queue_head_init(&sk->sk_error_queue); 2253 2254 rwlock_init(&sk->sk_callback_lock); 2255 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2256 af_rlock_keys + sk->sk_family, 2257 af_family_rlock_key_strings[sk->sk_family]); 2258 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2259 af_wlock_keys + sk->sk_family, 2260 af_family_wlock_key_strings[sk->sk_family]); 2261 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2262 af_elock_keys + sk->sk_family, 2263 af_family_elock_key_strings[sk->sk_family]); 2264 lockdep_set_class_and_name(&sk->sk_callback_lock, 2265 af_callback_keys + sk->sk_family, 2266 af_family_clock_key_strings[sk->sk_family]); 2267 } 2268 2269 /** 2270 * sk_clone_lock - clone a socket, and lock its clone 2271 * @sk: the socket to clone 2272 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2273 * 2274 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2275 */ 2276 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2277 { 2278 struct proto *prot = READ_ONCE(sk->sk_prot); 2279 struct sk_filter *filter; 2280 bool is_charged = true; 2281 struct sock *newsk; 2282 2283 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2284 if (!newsk) 2285 goto out; 2286 2287 sock_copy(newsk, sk); 2288 2289 newsk->sk_prot_creator = prot; 2290 2291 /* SANITY */ 2292 if (likely(newsk->sk_net_refcnt)) { 2293 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2294 sock_inuse_add(sock_net(newsk), 1); 2295 } else { 2296 /* Kernel sockets are not elevating the struct net refcount. 2297 * Instead, use a tracker to more easily detect if a layer 2298 * is not properly dismantling its kernel sockets at netns 2299 * destroy time. 2300 */ 2301 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2302 false, priority); 2303 } 2304 sk_node_init(&newsk->sk_node); 2305 sock_lock_init(newsk); 2306 bh_lock_sock(newsk); 2307 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2308 newsk->sk_backlog.len = 0; 2309 2310 atomic_set(&newsk->sk_rmem_alloc, 0); 2311 2312 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2313 refcount_set(&newsk->sk_wmem_alloc, 1); 2314 2315 atomic_set(&newsk->sk_omem_alloc, 0); 2316 sk_init_common(newsk); 2317 2318 newsk->sk_dst_cache = NULL; 2319 newsk->sk_dst_pending_confirm = 0; 2320 newsk->sk_wmem_queued = 0; 2321 newsk->sk_forward_alloc = 0; 2322 newsk->sk_reserved_mem = 0; 2323 atomic_set(&newsk->sk_drops, 0); 2324 newsk->sk_send_head = NULL; 2325 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2326 atomic_set(&newsk->sk_zckey, 0); 2327 2328 sock_reset_flag(newsk, SOCK_DONE); 2329 2330 /* sk->sk_memcg will be populated at accept() time */ 2331 newsk->sk_memcg = NULL; 2332 2333 cgroup_sk_clone(&newsk->sk_cgrp_data); 2334 2335 rcu_read_lock(); 2336 filter = rcu_dereference(sk->sk_filter); 2337 if (filter != NULL) 2338 /* though it's an empty new sock, the charging may fail 2339 * if sysctl_optmem_max was changed between creation of 2340 * original socket and cloning 2341 */ 2342 is_charged = sk_filter_charge(newsk, filter); 2343 RCU_INIT_POINTER(newsk->sk_filter, filter); 2344 rcu_read_unlock(); 2345 2346 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2347 /* We need to make sure that we don't uncharge the new 2348 * socket if we couldn't charge it in the first place 2349 * as otherwise we uncharge the parent's filter. 2350 */ 2351 if (!is_charged) 2352 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2353 sk_free_unlock_clone(newsk); 2354 newsk = NULL; 2355 goto out; 2356 } 2357 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2358 2359 if (bpf_sk_storage_clone(sk, newsk)) { 2360 sk_free_unlock_clone(newsk); 2361 newsk = NULL; 2362 goto out; 2363 } 2364 2365 /* Clear sk_user_data if parent had the pointer tagged 2366 * as not suitable for copying when cloning. 2367 */ 2368 if (sk_user_data_is_nocopy(newsk)) 2369 newsk->sk_user_data = NULL; 2370 2371 newsk->sk_err = 0; 2372 newsk->sk_err_soft = 0; 2373 newsk->sk_priority = 0; 2374 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2375 2376 /* Before updating sk_refcnt, we must commit prior changes to memory 2377 * (Documentation/RCU/rculist_nulls.rst for details) 2378 */ 2379 smp_wmb(); 2380 refcount_set(&newsk->sk_refcnt, 2); 2381 2382 sk_set_socket(newsk, NULL); 2383 sk_tx_queue_clear(newsk); 2384 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2385 2386 if (newsk->sk_prot->sockets_allocated) 2387 sk_sockets_allocated_inc(newsk); 2388 2389 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2390 net_enable_timestamp(); 2391 out: 2392 return newsk; 2393 } 2394 EXPORT_SYMBOL_GPL(sk_clone_lock); 2395 2396 void sk_free_unlock_clone(struct sock *sk) 2397 { 2398 /* It is still raw copy of parent, so invalidate 2399 * destructor and make plain sk_free() */ 2400 sk->sk_destruct = NULL; 2401 bh_unlock_sock(sk); 2402 sk_free(sk); 2403 } 2404 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2405 2406 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2407 { 2408 bool is_ipv6 = false; 2409 u32 max_size; 2410 2411 #if IS_ENABLED(CONFIG_IPV6) 2412 is_ipv6 = (sk->sk_family == AF_INET6 && 2413 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2414 #endif 2415 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2416 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2417 READ_ONCE(dst->dev->gso_ipv4_max_size); 2418 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2419 max_size = GSO_LEGACY_MAX_SIZE; 2420 2421 return max_size - (MAX_TCP_HEADER + 1); 2422 } 2423 2424 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2425 { 2426 u32 max_segs = 1; 2427 2428 sk->sk_route_caps = dst->dev->features; 2429 if (sk_is_tcp(sk)) 2430 sk->sk_route_caps |= NETIF_F_GSO; 2431 if (sk->sk_route_caps & NETIF_F_GSO) 2432 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2433 if (unlikely(sk->sk_gso_disabled)) 2434 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2435 if (sk_can_gso(sk)) { 2436 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2437 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2438 } else { 2439 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2440 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2441 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2442 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2443 } 2444 } 2445 sk->sk_gso_max_segs = max_segs; 2446 sk_dst_set(sk, dst); 2447 } 2448 EXPORT_SYMBOL_GPL(sk_setup_caps); 2449 2450 /* 2451 * Simple resource managers for sockets. 2452 */ 2453 2454 2455 /* 2456 * Write buffer destructor automatically called from kfree_skb. 2457 */ 2458 void sock_wfree(struct sk_buff *skb) 2459 { 2460 struct sock *sk = skb->sk; 2461 unsigned int len = skb->truesize; 2462 bool free; 2463 2464 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2465 if (sock_flag(sk, SOCK_RCU_FREE) && 2466 sk->sk_write_space == sock_def_write_space) { 2467 rcu_read_lock(); 2468 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2469 sock_def_write_space_wfree(sk); 2470 rcu_read_unlock(); 2471 if (unlikely(free)) 2472 __sk_free(sk); 2473 return; 2474 } 2475 2476 /* 2477 * Keep a reference on sk_wmem_alloc, this will be released 2478 * after sk_write_space() call 2479 */ 2480 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2481 sk->sk_write_space(sk); 2482 len = 1; 2483 } 2484 /* 2485 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2486 * could not do because of in-flight packets 2487 */ 2488 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2489 __sk_free(sk); 2490 } 2491 EXPORT_SYMBOL(sock_wfree); 2492 2493 /* This variant of sock_wfree() is used by TCP, 2494 * since it sets SOCK_USE_WRITE_QUEUE. 2495 */ 2496 void __sock_wfree(struct sk_buff *skb) 2497 { 2498 struct sock *sk = skb->sk; 2499 2500 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2501 __sk_free(sk); 2502 } 2503 2504 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2505 { 2506 skb_orphan(skb); 2507 skb->sk = sk; 2508 #ifdef CONFIG_INET 2509 if (unlikely(!sk_fullsock(sk))) { 2510 skb->destructor = sock_edemux; 2511 sock_hold(sk); 2512 return; 2513 } 2514 #endif 2515 skb->destructor = sock_wfree; 2516 skb_set_hash_from_sk(skb, sk); 2517 /* 2518 * We used to take a refcount on sk, but following operation 2519 * is enough to guarantee sk_free() wont free this sock until 2520 * all in-flight packets are completed 2521 */ 2522 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2523 } 2524 EXPORT_SYMBOL(skb_set_owner_w); 2525 2526 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2527 { 2528 #ifdef CONFIG_TLS_DEVICE 2529 /* Drivers depend on in-order delivery for crypto offload, 2530 * partial orphan breaks out-of-order-OK logic. 2531 */ 2532 if (skb->decrypted) 2533 return false; 2534 #endif 2535 return (skb->destructor == sock_wfree || 2536 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2537 } 2538 2539 /* This helper is used by netem, as it can hold packets in its 2540 * delay queue. We want to allow the owner socket to send more 2541 * packets, as if they were already TX completed by a typical driver. 2542 * But we also want to keep skb->sk set because some packet schedulers 2543 * rely on it (sch_fq for example). 2544 */ 2545 void skb_orphan_partial(struct sk_buff *skb) 2546 { 2547 if (skb_is_tcp_pure_ack(skb)) 2548 return; 2549 2550 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2551 return; 2552 2553 skb_orphan(skb); 2554 } 2555 EXPORT_SYMBOL(skb_orphan_partial); 2556 2557 /* 2558 * Read buffer destructor automatically called from kfree_skb. 2559 */ 2560 void sock_rfree(struct sk_buff *skb) 2561 { 2562 struct sock *sk = skb->sk; 2563 unsigned int len = skb->truesize; 2564 2565 atomic_sub(len, &sk->sk_rmem_alloc); 2566 sk_mem_uncharge(sk, len); 2567 } 2568 EXPORT_SYMBOL(sock_rfree); 2569 2570 /* 2571 * Buffer destructor for skbs that are not used directly in read or write 2572 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2573 */ 2574 void sock_efree(struct sk_buff *skb) 2575 { 2576 sock_put(skb->sk); 2577 } 2578 EXPORT_SYMBOL(sock_efree); 2579 2580 /* Buffer destructor for prefetch/receive path where reference count may 2581 * not be held, e.g. for listen sockets. 2582 */ 2583 #ifdef CONFIG_INET 2584 void sock_pfree(struct sk_buff *skb) 2585 { 2586 if (sk_is_refcounted(skb->sk)) 2587 sock_gen_put(skb->sk); 2588 } 2589 EXPORT_SYMBOL(sock_pfree); 2590 #endif /* CONFIG_INET */ 2591 2592 kuid_t sock_i_uid(struct sock *sk) 2593 { 2594 kuid_t uid; 2595 2596 read_lock_bh(&sk->sk_callback_lock); 2597 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2598 read_unlock_bh(&sk->sk_callback_lock); 2599 return uid; 2600 } 2601 EXPORT_SYMBOL(sock_i_uid); 2602 2603 unsigned long sock_i_ino(struct sock *sk) 2604 { 2605 unsigned long ino; 2606 2607 read_lock_bh(&sk->sk_callback_lock); 2608 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2609 read_unlock_bh(&sk->sk_callback_lock); 2610 return ino; 2611 } 2612 EXPORT_SYMBOL(sock_i_ino); 2613 2614 /* 2615 * Allocate a skb from the socket's send buffer. 2616 */ 2617 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2618 gfp_t priority) 2619 { 2620 if (force || 2621 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2622 struct sk_buff *skb = alloc_skb(size, priority); 2623 2624 if (skb) { 2625 skb_set_owner_w(skb, sk); 2626 return skb; 2627 } 2628 } 2629 return NULL; 2630 } 2631 EXPORT_SYMBOL(sock_wmalloc); 2632 2633 static void sock_ofree(struct sk_buff *skb) 2634 { 2635 struct sock *sk = skb->sk; 2636 2637 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2638 } 2639 2640 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2641 gfp_t priority) 2642 { 2643 struct sk_buff *skb; 2644 2645 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2646 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2647 READ_ONCE(sysctl_optmem_max)) 2648 return NULL; 2649 2650 skb = alloc_skb(size, priority); 2651 if (!skb) 2652 return NULL; 2653 2654 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2655 skb->sk = sk; 2656 skb->destructor = sock_ofree; 2657 return skb; 2658 } 2659 2660 /* 2661 * Allocate a memory block from the socket's option memory buffer. 2662 */ 2663 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2664 { 2665 int optmem_max = READ_ONCE(sysctl_optmem_max); 2666 2667 if ((unsigned int)size <= optmem_max && 2668 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2669 void *mem; 2670 /* First do the add, to avoid the race if kmalloc 2671 * might sleep. 2672 */ 2673 atomic_add(size, &sk->sk_omem_alloc); 2674 mem = kmalloc(size, priority); 2675 if (mem) 2676 return mem; 2677 atomic_sub(size, &sk->sk_omem_alloc); 2678 } 2679 return NULL; 2680 } 2681 EXPORT_SYMBOL(sock_kmalloc); 2682 2683 /* Free an option memory block. Note, we actually want the inline 2684 * here as this allows gcc to detect the nullify and fold away the 2685 * condition entirely. 2686 */ 2687 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2688 const bool nullify) 2689 { 2690 if (WARN_ON_ONCE(!mem)) 2691 return; 2692 if (nullify) 2693 kfree_sensitive(mem); 2694 else 2695 kfree(mem); 2696 atomic_sub(size, &sk->sk_omem_alloc); 2697 } 2698 2699 void sock_kfree_s(struct sock *sk, void *mem, int size) 2700 { 2701 __sock_kfree_s(sk, mem, size, false); 2702 } 2703 EXPORT_SYMBOL(sock_kfree_s); 2704 2705 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2706 { 2707 __sock_kfree_s(sk, mem, size, true); 2708 } 2709 EXPORT_SYMBOL(sock_kzfree_s); 2710 2711 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2712 I think, these locks should be removed for datagram sockets. 2713 */ 2714 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2715 { 2716 DEFINE_WAIT(wait); 2717 2718 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2719 for (;;) { 2720 if (!timeo) 2721 break; 2722 if (signal_pending(current)) 2723 break; 2724 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2725 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2726 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2727 break; 2728 if (sk->sk_shutdown & SEND_SHUTDOWN) 2729 break; 2730 if (sk->sk_err) 2731 break; 2732 timeo = schedule_timeout(timeo); 2733 } 2734 finish_wait(sk_sleep(sk), &wait); 2735 return timeo; 2736 } 2737 2738 2739 /* 2740 * Generic send/receive buffer handlers 2741 */ 2742 2743 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2744 unsigned long data_len, int noblock, 2745 int *errcode, int max_page_order) 2746 { 2747 struct sk_buff *skb; 2748 long timeo; 2749 int err; 2750 2751 timeo = sock_sndtimeo(sk, noblock); 2752 for (;;) { 2753 err = sock_error(sk); 2754 if (err != 0) 2755 goto failure; 2756 2757 err = -EPIPE; 2758 if (sk->sk_shutdown & SEND_SHUTDOWN) 2759 goto failure; 2760 2761 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2762 break; 2763 2764 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2765 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2766 err = -EAGAIN; 2767 if (!timeo) 2768 goto failure; 2769 if (signal_pending(current)) 2770 goto interrupted; 2771 timeo = sock_wait_for_wmem(sk, timeo); 2772 } 2773 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2774 errcode, sk->sk_allocation); 2775 if (skb) 2776 skb_set_owner_w(skb, sk); 2777 return skb; 2778 2779 interrupted: 2780 err = sock_intr_errno(timeo); 2781 failure: 2782 *errcode = err; 2783 return NULL; 2784 } 2785 EXPORT_SYMBOL(sock_alloc_send_pskb); 2786 2787 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2788 struct sockcm_cookie *sockc) 2789 { 2790 u32 tsflags; 2791 2792 switch (cmsg->cmsg_type) { 2793 case SO_MARK: 2794 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2795 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2796 return -EPERM; 2797 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2798 return -EINVAL; 2799 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2800 break; 2801 case SO_TIMESTAMPING_OLD: 2802 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2803 return -EINVAL; 2804 2805 tsflags = *(u32 *)CMSG_DATA(cmsg); 2806 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2807 return -EINVAL; 2808 2809 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2810 sockc->tsflags |= tsflags; 2811 break; 2812 case SCM_TXTIME: 2813 if (!sock_flag(sk, SOCK_TXTIME)) 2814 return -EINVAL; 2815 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2816 return -EINVAL; 2817 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2818 break; 2819 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2820 case SCM_RIGHTS: 2821 case SCM_CREDENTIALS: 2822 break; 2823 default: 2824 return -EINVAL; 2825 } 2826 return 0; 2827 } 2828 EXPORT_SYMBOL(__sock_cmsg_send); 2829 2830 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2831 struct sockcm_cookie *sockc) 2832 { 2833 struct cmsghdr *cmsg; 2834 int ret; 2835 2836 for_each_cmsghdr(cmsg, msg) { 2837 if (!CMSG_OK(msg, cmsg)) 2838 return -EINVAL; 2839 if (cmsg->cmsg_level != SOL_SOCKET) 2840 continue; 2841 ret = __sock_cmsg_send(sk, cmsg, sockc); 2842 if (ret) 2843 return ret; 2844 } 2845 return 0; 2846 } 2847 EXPORT_SYMBOL(sock_cmsg_send); 2848 2849 static void sk_enter_memory_pressure(struct sock *sk) 2850 { 2851 if (!sk->sk_prot->enter_memory_pressure) 2852 return; 2853 2854 sk->sk_prot->enter_memory_pressure(sk); 2855 } 2856 2857 static void sk_leave_memory_pressure(struct sock *sk) 2858 { 2859 if (sk->sk_prot->leave_memory_pressure) { 2860 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2861 tcp_leave_memory_pressure, sk); 2862 } else { 2863 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2864 2865 if (memory_pressure && READ_ONCE(*memory_pressure)) 2866 WRITE_ONCE(*memory_pressure, 0); 2867 } 2868 } 2869 2870 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2871 2872 /** 2873 * skb_page_frag_refill - check that a page_frag contains enough room 2874 * @sz: minimum size of the fragment we want to get 2875 * @pfrag: pointer to page_frag 2876 * @gfp: priority for memory allocation 2877 * 2878 * Note: While this allocator tries to use high order pages, there is 2879 * no guarantee that allocations succeed. Therefore, @sz MUST be 2880 * less or equal than PAGE_SIZE. 2881 */ 2882 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2883 { 2884 if (pfrag->page) { 2885 if (page_ref_count(pfrag->page) == 1) { 2886 pfrag->offset = 0; 2887 return true; 2888 } 2889 if (pfrag->offset + sz <= pfrag->size) 2890 return true; 2891 put_page(pfrag->page); 2892 } 2893 2894 pfrag->offset = 0; 2895 if (SKB_FRAG_PAGE_ORDER && 2896 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2897 /* Avoid direct reclaim but allow kswapd to wake */ 2898 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2899 __GFP_COMP | __GFP_NOWARN | 2900 __GFP_NORETRY, 2901 SKB_FRAG_PAGE_ORDER); 2902 if (likely(pfrag->page)) { 2903 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2904 return true; 2905 } 2906 } 2907 pfrag->page = alloc_page(gfp); 2908 if (likely(pfrag->page)) { 2909 pfrag->size = PAGE_SIZE; 2910 return true; 2911 } 2912 return false; 2913 } 2914 EXPORT_SYMBOL(skb_page_frag_refill); 2915 2916 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2917 { 2918 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2919 return true; 2920 2921 sk_enter_memory_pressure(sk); 2922 sk_stream_moderate_sndbuf(sk); 2923 return false; 2924 } 2925 EXPORT_SYMBOL(sk_page_frag_refill); 2926 2927 void __lock_sock(struct sock *sk) 2928 __releases(&sk->sk_lock.slock) 2929 __acquires(&sk->sk_lock.slock) 2930 { 2931 DEFINE_WAIT(wait); 2932 2933 for (;;) { 2934 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2935 TASK_UNINTERRUPTIBLE); 2936 spin_unlock_bh(&sk->sk_lock.slock); 2937 schedule(); 2938 spin_lock_bh(&sk->sk_lock.slock); 2939 if (!sock_owned_by_user(sk)) 2940 break; 2941 } 2942 finish_wait(&sk->sk_lock.wq, &wait); 2943 } 2944 2945 void __release_sock(struct sock *sk) 2946 __releases(&sk->sk_lock.slock) 2947 __acquires(&sk->sk_lock.slock) 2948 { 2949 struct sk_buff *skb, *next; 2950 2951 while ((skb = sk->sk_backlog.head) != NULL) { 2952 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2953 2954 spin_unlock_bh(&sk->sk_lock.slock); 2955 2956 do { 2957 next = skb->next; 2958 prefetch(next); 2959 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2960 skb_mark_not_on_list(skb); 2961 sk_backlog_rcv(sk, skb); 2962 2963 cond_resched(); 2964 2965 skb = next; 2966 } while (skb != NULL); 2967 2968 spin_lock_bh(&sk->sk_lock.slock); 2969 } 2970 2971 /* 2972 * Doing the zeroing here guarantee we can not loop forever 2973 * while a wild producer attempts to flood us. 2974 */ 2975 sk->sk_backlog.len = 0; 2976 } 2977 2978 void __sk_flush_backlog(struct sock *sk) 2979 { 2980 spin_lock_bh(&sk->sk_lock.slock); 2981 __release_sock(sk); 2982 spin_unlock_bh(&sk->sk_lock.slock); 2983 } 2984 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 2985 2986 /** 2987 * sk_wait_data - wait for data to arrive at sk_receive_queue 2988 * @sk: sock to wait on 2989 * @timeo: for how long 2990 * @skb: last skb seen on sk_receive_queue 2991 * 2992 * Now socket state including sk->sk_err is changed only under lock, 2993 * hence we may omit checks after joining wait queue. 2994 * We check receive queue before schedule() only as optimization; 2995 * it is very likely that release_sock() added new data. 2996 */ 2997 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2998 { 2999 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3000 int rc; 3001 3002 add_wait_queue(sk_sleep(sk), &wait); 3003 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3004 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3005 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3006 remove_wait_queue(sk_sleep(sk), &wait); 3007 return rc; 3008 } 3009 EXPORT_SYMBOL(sk_wait_data); 3010 3011 /** 3012 * __sk_mem_raise_allocated - increase memory_allocated 3013 * @sk: socket 3014 * @size: memory size to allocate 3015 * @amt: pages to allocate 3016 * @kind: allocation type 3017 * 3018 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 3019 */ 3020 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3021 { 3022 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 3023 struct proto *prot = sk->sk_prot; 3024 bool charged = true; 3025 long allocated; 3026 3027 sk_memory_allocated_add(sk, amt); 3028 allocated = sk_memory_allocated(sk); 3029 if (memcg_charge && 3030 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3031 gfp_memcg_charge()))) 3032 goto suppress_allocation; 3033 3034 /* Under limit. */ 3035 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3036 sk_leave_memory_pressure(sk); 3037 return 1; 3038 } 3039 3040 /* Under pressure. */ 3041 if (allocated > sk_prot_mem_limits(sk, 1)) 3042 sk_enter_memory_pressure(sk); 3043 3044 /* Over hard limit. */ 3045 if (allocated > sk_prot_mem_limits(sk, 2)) 3046 goto suppress_allocation; 3047 3048 /* guarantee minimum buffer size under pressure */ 3049 if (kind == SK_MEM_RECV) { 3050 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3051 return 1; 3052 3053 } else { /* SK_MEM_SEND */ 3054 int wmem0 = sk_get_wmem0(sk, prot); 3055 3056 if (sk->sk_type == SOCK_STREAM) { 3057 if (sk->sk_wmem_queued < wmem0) 3058 return 1; 3059 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3060 return 1; 3061 } 3062 } 3063 3064 if (sk_has_memory_pressure(sk)) { 3065 u64 alloc; 3066 3067 if (!sk_under_memory_pressure(sk)) 3068 return 1; 3069 alloc = sk_sockets_allocated_read_positive(sk); 3070 if (sk_prot_mem_limits(sk, 2) > alloc * 3071 sk_mem_pages(sk->sk_wmem_queued + 3072 atomic_read(&sk->sk_rmem_alloc) + 3073 sk->sk_forward_alloc)) 3074 return 1; 3075 } 3076 3077 suppress_allocation: 3078 3079 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3080 sk_stream_moderate_sndbuf(sk); 3081 3082 /* Fail only if socket is _under_ its sndbuf. 3083 * In this case we cannot block, so that we have to fail. 3084 */ 3085 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3086 /* Force charge with __GFP_NOFAIL */ 3087 if (memcg_charge && !charged) { 3088 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3089 gfp_memcg_charge() | __GFP_NOFAIL); 3090 } 3091 return 1; 3092 } 3093 } 3094 3095 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3096 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3097 3098 sk_memory_allocated_sub(sk, amt); 3099 3100 if (memcg_charge && charged) 3101 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 3102 3103 return 0; 3104 } 3105 3106 /** 3107 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3108 * @sk: socket 3109 * @size: memory size to allocate 3110 * @kind: allocation type 3111 * 3112 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3113 * rmem allocation. This function assumes that protocols which have 3114 * memory_pressure use sk_wmem_queued as write buffer accounting. 3115 */ 3116 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3117 { 3118 int ret, amt = sk_mem_pages(size); 3119 3120 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3121 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3122 if (!ret) 3123 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3124 return ret; 3125 } 3126 EXPORT_SYMBOL(__sk_mem_schedule); 3127 3128 /** 3129 * __sk_mem_reduce_allocated - reclaim memory_allocated 3130 * @sk: socket 3131 * @amount: number of quanta 3132 * 3133 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3134 */ 3135 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3136 { 3137 sk_memory_allocated_sub(sk, amount); 3138 3139 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3140 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3141 3142 if (sk_under_memory_pressure(sk) && 3143 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3144 sk_leave_memory_pressure(sk); 3145 } 3146 3147 /** 3148 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3149 * @sk: socket 3150 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3151 */ 3152 void __sk_mem_reclaim(struct sock *sk, int amount) 3153 { 3154 amount >>= PAGE_SHIFT; 3155 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3156 __sk_mem_reduce_allocated(sk, amount); 3157 } 3158 EXPORT_SYMBOL(__sk_mem_reclaim); 3159 3160 int sk_set_peek_off(struct sock *sk, int val) 3161 { 3162 sk->sk_peek_off = val; 3163 return 0; 3164 } 3165 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3166 3167 /* 3168 * Set of default routines for initialising struct proto_ops when 3169 * the protocol does not support a particular function. In certain 3170 * cases where it makes no sense for a protocol to have a "do nothing" 3171 * function, some default processing is provided. 3172 */ 3173 3174 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3175 { 3176 return -EOPNOTSUPP; 3177 } 3178 EXPORT_SYMBOL(sock_no_bind); 3179 3180 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3181 int len, int flags) 3182 { 3183 return -EOPNOTSUPP; 3184 } 3185 EXPORT_SYMBOL(sock_no_connect); 3186 3187 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3188 { 3189 return -EOPNOTSUPP; 3190 } 3191 EXPORT_SYMBOL(sock_no_socketpair); 3192 3193 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3194 bool kern) 3195 { 3196 return -EOPNOTSUPP; 3197 } 3198 EXPORT_SYMBOL(sock_no_accept); 3199 3200 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3201 int peer) 3202 { 3203 return -EOPNOTSUPP; 3204 } 3205 EXPORT_SYMBOL(sock_no_getname); 3206 3207 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3208 { 3209 return -EOPNOTSUPP; 3210 } 3211 EXPORT_SYMBOL(sock_no_ioctl); 3212 3213 int sock_no_listen(struct socket *sock, int backlog) 3214 { 3215 return -EOPNOTSUPP; 3216 } 3217 EXPORT_SYMBOL(sock_no_listen); 3218 3219 int sock_no_shutdown(struct socket *sock, int how) 3220 { 3221 return -EOPNOTSUPP; 3222 } 3223 EXPORT_SYMBOL(sock_no_shutdown); 3224 3225 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3226 { 3227 return -EOPNOTSUPP; 3228 } 3229 EXPORT_SYMBOL(sock_no_sendmsg); 3230 3231 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3232 { 3233 return -EOPNOTSUPP; 3234 } 3235 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3236 3237 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3238 int flags) 3239 { 3240 return -EOPNOTSUPP; 3241 } 3242 EXPORT_SYMBOL(sock_no_recvmsg); 3243 3244 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3245 { 3246 /* Mirror missing mmap method error code */ 3247 return -ENODEV; 3248 } 3249 EXPORT_SYMBOL(sock_no_mmap); 3250 3251 /* 3252 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3253 * various sock-based usage counts. 3254 */ 3255 void __receive_sock(struct file *file) 3256 { 3257 struct socket *sock; 3258 3259 sock = sock_from_file(file); 3260 if (sock) { 3261 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3262 sock_update_classid(&sock->sk->sk_cgrp_data); 3263 } 3264 } 3265 3266 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3267 { 3268 ssize_t res; 3269 struct msghdr msg = {.msg_flags = flags}; 3270 struct kvec iov; 3271 char *kaddr = kmap(page); 3272 iov.iov_base = kaddr + offset; 3273 iov.iov_len = size; 3274 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3275 kunmap(page); 3276 return res; 3277 } 3278 EXPORT_SYMBOL(sock_no_sendpage); 3279 3280 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3281 int offset, size_t size, int flags) 3282 { 3283 ssize_t res; 3284 struct msghdr msg = {.msg_flags = flags}; 3285 struct kvec iov; 3286 char *kaddr = kmap(page); 3287 3288 iov.iov_base = kaddr + offset; 3289 iov.iov_len = size; 3290 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3291 kunmap(page); 3292 return res; 3293 } 3294 EXPORT_SYMBOL(sock_no_sendpage_locked); 3295 3296 /* 3297 * Default Socket Callbacks 3298 */ 3299 3300 static void sock_def_wakeup(struct sock *sk) 3301 { 3302 struct socket_wq *wq; 3303 3304 rcu_read_lock(); 3305 wq = rcu_dereference(sk->sk_wq); 3306 if (skwq_has_sleeper(wq)) 3307 wake_up_interruptible_all(&wq->wait); 3308 rcu_read_unlock(); 3309 } 3310 3311 static void sock_def_error_report(struct sock *sk) 3312 { 3313 struct socket_wq *wq; 3314 3315 rcu_read_lock(); 3316 wq = rcu_dereference(sk->sk_wq); 3317 if (skwq_has_sleeper(wq)) 3318 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3319 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3320 rcu_read_unlock(); 3321 } 3322 3323 void sock_def_readable(struct sock *sk) 3324 { 3325 struct socket_wq *wq; 3326 3327 trace_sk_data_ready(sk); 3328 3329 rcu_read_lock(); 3330 wq = rcu_dereference(sk->sk_wq); 3331 if (skwq_has_sleeper(wq)) 3332 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3333 EPOLLRDNORM | EPOLLRDBAND); 3334 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3335 rcu_read_unlock(); 3336 } 3337 3338 static void sock_def_write_space(struct sock *sk) 3339 { 3340 struct socket_wq *wq; 3341 3342 rcu_read_lock(); 3343 3344 /* Do not wake up a writer until he can make "significant" 3345 * progress. --DaveM 3346 */ 3347 if (sock_writeable(sk)) { 3348 wq = rcu_dereference(sk->sk_wq); 3349 if (skwq_has_sleeper(wq)) 3350 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3351 EPOLLWRNORM | EPOLLWRBAND); 3352 3353 /* Should agree with poll, otherwise some programs break */ 3354 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3355 } 3356 3357 rcu_read_unlock(); 3358 } 3359 3360 /* An optimised version of sock_def_write_space(), should only be called 3361 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3362 * ->sk_wmem_alloc. 3363 */ 3364 static void sock_def_write_space_wfree(struct sock *sk) 3365 { 3366 /* Do not wake up a writer until he can make "significant" 3367 * progress. --DaveM 3368 */ 3369 if (sock_writeable(sk)) { 3370 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3371 3372 /* rely on refcount_sub from sock_wfree() */ 3373 smp_mb__after_atomic(); 3374 if (wq && waitqueue_active(&wq->wait)) 3375 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3376 EPOLLWRNORM | EPOLLWRBAND); 3377 3378 /* Should agree with poll, otherwise some programs break */ 3379 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3380 } 3381 } 3382 3383 static void sock_def_destruct(struct sock *sk) 3384 { 3385 } 3386 3387 void sk_send_sigurg(struct sock *sk) 3388 { 3389 if (sk->sk_socket && sk->sk_socket->file) 3390 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3391 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3392 } 3393 EXPORT_SYMBOL(sk_send_sigurg); 3394 3395 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3396 unsigned long expires) 3397 { 3398 if (!mod_timer(timer, expires)) 3399 sock_hold(sk); 3400 } 3401 EXPORT_SYMBOL(sk_reset_timer); 3402 3403 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3404 { 3405 if (del_timer(timer)) 3406 __sock_put(sk); 3407 } 3408 EXPORT_SYMBOL(sk_stop_timer); 3409 3410 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3411 { 3412 if (del_timer_sync(timer)) 3413 __sock_put(sk); 3414 } 3415 EXPORT_SYMBOL(sk_stop_timer_sync); 3416 3417 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3418 { 3419 sk_init_common(sk); 3420 sk->sk_send_head = NULL; 3421 3422 timer_setup(&sk->sk_timer, NULL, 0); 3423 3424 sk->sk_allocation = GFP_KERNEL; 3425 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3426 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3427 sk->sk_state = TCP_CLOSE; 3428 sk->sk_use_task_frag = true; 3429 sk_set_socket(sk, sock); 3430 3431 sock_set_flag(sk, SOCK_ZAPPED); 3432 3433 if (sock) { 3434 sk->sk_type = sock->type; 3435 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3436 sock->sk = sk; 3437 } else { 3438 RCU_INIT_POINTER(sk->sk_wq, NULL); 3439 } 3440 sk->sk_uid = uid; 3441 3442 rwlock_init(&sk->sk_callback_lock); 3443 if (sk->sk_kern_sock) 3444 lockdep_set_class_and_name( 3445 &sk->sk_callback_lock, 3446 af_kern_callback_keys + sk->sk_family, 3447 af_family_kern_clock_key_strings[sk->sk_family]); 3448 else 3449 lockdep_set_class_and_name( 3450 &sk->sk_callback_lock, 3451 af_callback_keys + sk->sk_family, 3452 af_family_clock_key_strings[sk->sk_family]); 3453 3454 sk->sk_state_change = sock_def_wakeup; 3455 sk->sk_data_ready = sock_def_readable; 3456 sk->sk_write_space = sock_def_write_space; 3457 sk->sk_error_report = sock_def_error_report; 3458 sk->sk_destruct = sock_def_destruct; 3459 3460 sk->sk_frag.page = NULL; 3461 sk->sk_frag.offset = 0; 3462 sk->sk_peek_off = -1; 3463 3464 sk->sk_peer_pid = NULL; 3465 sk->sk_peer_cred = NULL; 3466 spin_lock_init(&sk->sk_peer_lock); 3467 3468 sk->sk_write_pending = 0; 3469 sk->sk_rcvlowat = 1; 3470 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3471 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3472 3473 sk->sk_stamp = SK_DEFAULT_STAMP; 3474 #if BITS_PER_LONG==32 3475 seqlock_init(&sk->sk_stamp_seq); 3476 #endif 3477 atomic_set(&sk->sk_zckey, 0); 3478 3479 #ifdef CONFIG_NET_RX_BUSY_POLL 3480 sk->sk_napi_id = 0; 3481 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3482 #endif 3483 3484 sk->sk_max_pacing_rate = ~0UL; 3485 sk->sk_pacing_rate = ~0UL; 3486 WRITE_ONCE(sk->sk_pacing_shift, 10); 3487 sk->sk_incoming_cpu = -1; 3488 3489 sk_rx_queue_clear(sk); 3490 /* 3491 * Before updating sk_refcnt, we must commit prior changes to memory 3492 * (Documentation/RCU/rculist_nulls.rst for details) 3493 */ 3494 smp_wmb(); 3495 refcount_set(&sk->sk_refcnt, 1); 3496 atomic_set(&sk->sk_drops, 0); 3497 } 3498 EXPORT_SYMBOL(sock_init_data_uid); 3499 3500 void sock_init_data(struct socket *sock, struct sock *sk) 3501 { 3502 kuid_t uid = sock ? 3503 SOCK_INODE(sock)->i_uid : 3504 make_kuid(sock_net(sk)->user_ns, 0); 3505 3506 sock_init_data_uid(sock, sk, uid); 3507 } 3508 EXPORT_SYMBOL(sock_init_data); 3509 3510 void lock_sock_nested(struct sock *sk, int subclass) 3511 { 3512 /* The sk_lock has mutex_lock() semantics here. */ 3513 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3514 3515 might_sleep(); 3516 spin_lock_bh(&sk->sk_lock.slock); 3517 if (sock_owned_by_user_nocheck(sk)) 3518 __lock_sock(sk); 3519 sk->sk_lock.owned = 1; 3520 spin_unlock_bh(&sk->sk_lock.slock); 3521 } 3522 EXPORT_SYMBOL(lock_sock_nested); 3523 3524 void release_sock(struct sock *sk) 3525 { 3526 spin_lock_bh(&sk->sk_lock.slock); 3527 if (sk->sk_backlog.tail) 3528 __release_sock(sk); 3529 3530 /* Warning : release_cb() might need to release sk ownership, 3531 * ie call sock_release_ownership(sk) before us. 3532 */ 3533 if (sk->sk_prot->release_cb) 3534 sk->sk_prot->release_cb(sk); 3535 3536 sock_release_ownership(sk); 3537 if (waitqueue_active(&sk->sk_lock.wq)) 3538 wake_up(&sk->sk_lock.wq); 3539 spin_unlock_bh(&sk->sk_lock.slock); 3540 } 3541 EXPORT_SYMBOL(release_sock); 3542 3543 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3544 { 3545 might_sleep(); 3546 spin_lock_bh(&sk->sk_lock.slock); 3547 3548 if (!sock_owned_by_user_nocheck(sk)) { 3549 /* 3550 * Fast path return with bottom halves disabled and 3551 * sock::sk_lock.slock held. 3552 * 3553 * The 'mutex' is not contended and holding 3554 * sock::sk_lock.slock prevents all other lockers to 3555 * proceed so the corresponding unlock_sock_fast() can 3556 * avoid the slow path of release_sock() completely and 3557 * just release slock. 3558 * 3559 * From a semantical POV this is equivalent to 'acquiring' 3560 * the 'mutex', hence the corresponding lockdep 3561 * mutex_release() has to happen in the fast path of 3562 * unlock_sock_fast(). 3563 */ 3564 return false; 3565 } 3566 3567 __lock_sock(sk); 3568 sk->sk_lock.owned = 1; 3569 __acquire(&sk->sk_lock.slock); 3570 spin_unlock_bh(&sk->sk_lock.slock); 3571 return true; 3572 } 3573 EXPORT_SYMBOL(__lock_sock_fast); 3574 3575 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3576 bool timeval, bool time32) 3577 { 3578 struct sock *sk = sock->sk; 3579 struct timespec64 ts; 3580 3581 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3582 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3583 if (ts.tv_sec == -1) 3584 return -ENOENT; 3585 if (ts.tv_sec == 0) { 3586 ktime_t kt = ktime_get_real(); 3587 sock_write_timestamp(sk, kt); 3588 ts = ktime_to_timespec64(kt); 3589 } 3590 3591 if (timeval) 3592 ts.tv_nsec /= 1000; 3593 3594 #ifdef CONFIG_COMPAT_32BIT_TIME 3595 if (time32) 3596 return put_old_timespec32(&ts, userstamp); 3597 #endif 3598 #ifdef CONFIG_SPARC64 3599 /* beware of padding in sparc64 timeval */ 3600 if (timeval && !in_compat_syscall()) { 3601 struct __kernel_old_timeval __user tv = { 3602 .tv_sec = ts.tv_sec, 3603 .tv_usec = ts.tv_nsec, 3604 }; 3605 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3606 return -EFAULT; 3607 return 0; 3608 } 3609 #endif 3610 return put_timespec64(&ts, userstamp); 3611 } 3612 EXPORT_SYMBOL(sock_gettstamp); 3613 3614 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3615 { 3616 if (!sock_flag(sk, flag)) { 3617 unsigned long previous_flags = sk->sk_flags; 3618 3619 sock_set_flag(sk, flag); 3620 /* 3621 * we just set one of the two flags which require net 3622 * time stamping, but time stamping might have been on 3623 * already because of the other one 3624 */ 3625 if (sock_needs_netstamp(sk) && 3626 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3627 net_enable_timestamp(); 3628 } 3629 } 3630 3631 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3632 int level, int type) 3633 { 3634 struct sock_exterr_skb *serr; 3635 struct sk_buff *skb; 3636 int copied, err; 3637 3638 err = -EAGAIN; 3639 skb = sock_dequeue_err_skb(sk); 3640 if (skb == NULL) 3641 goto out; 3642 3643 copied = skb->len; 3644 if (copied > len) { 3645 msg->msg_flags |= MSG_TRUNC; 3646 copied = len; 3647 } 3648 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3649 if (err) 3650 goto out_free_skb; 3651 3652 sock_recv_timestamp(msg, sk, skb); 3653 3654 serr = SKB_EXT_ERR(skb); 3655 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3656 3657 msg->msg_flags |= MSG_ERRQUEUE; 3658 err = copied; 3659 3660 out_free_skb: 3661 kfree_skb(skb); 3662 out: 3663 return err; 3664 } 3665 EXPORT_SYMBOL(sock_recv_errqueue); 3666 3667 /* 3668 * Get a socket option on an socket. 3669 * 3670 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3671 * asynchronous errors should be reported by getsockopt. We assume 3672 * this means if you specify SO_ERROR (otherwise whats the point of it). 3673 */ 3674 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3675 char __user *optval, int __user *optlen) 3676 { 3677 struct sock *sk = sock->sk; 3678 3679 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3680 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3681 } 3682 EXPORT_SYMBOL(sock_common_getsockopt); 3683 3684 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3685 int flags) 3686 { 3687 struct sock *sk = sock->sk; 3688 int addr_len = 0; 3689 int err; 3690 3691 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3692 if (err >= 0) 3693 msg->msg_namelen = addr_len; 3694 return err; 3695 } 3696 EXPORT_SYMBOL(sock_common_recvmsg); 3697 3698 /* 3699 * Set socket options on an inet socket. 3700 */ 3701 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3702 sockptr_t optval, unsigned int optlen) 3703 { 3704 struct sock *sk = sock->sk; 3705 3706 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3707 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3708 } 3709 EXPORT_SYMBOL(sock_common_setsockopt); 3710 3711 void sk_common_release(struct sock *sk) 3712 { 3713 if (sk->sk_prot->destroy) 3714 sk->sk_prot->destroy(sk); 3715 3716 /* 3717 * Observation: when sk_common_release is called, processes have 3718 * no access to socket. But net still has. 3719 * Step one, detach it from networking: 3720 * 3721 * A. Remove from hash tables. 3722 */ 3723 3724 sk->sk_prot->unhash(sk); 3725 3726 /* 3727 * In this point socket cannot receive new packets, but it is possible 3728 * that some packets are in flight because some CPU runs receiver and 3729 * did hash table lookup before we unhashed socket. They will achieve 3730 * receive queue and will be purged by socket destructor. 3731 * 3732 * Also we still have packets pending on receive queue and probably, 3733 * our own packets waiting in device queues. sock_destroy will drain 3734 * receive queue, but transmitted packets will delay socket destruction 3735 * until the last reference will be released. 3736 */ 3737 3738 sock_orphan(sk); 3739 3740 xfrm_sk_free_policy(sk); 3741 3742 sock_put(sk); 3743 } 3744 EXPORT_SYMBOL(sk_common_release); 3745 3746 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3747 { 3748 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3749 3750 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3751 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3752 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3753 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3754 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3755 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3756 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3757 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3758 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3759 } 3760 3761 #ifdef CONFIG_PROC_FS 3762 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3763 3764 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3765 { 3766 int cpu, idx = prot->inuse_idx; 3767 int res = 0; 3768 3769 for_each_possible_cpu(cpu) 3770 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3771 3772 return res >= 0 ? res : 0; 3773 } 3774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3775 3776 int sock_inuse_get(struct net *net) 3777 { 3778 int cpu, res = 0; 3779 3780 for_each_possible_cpu(cpu) 3781 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3782 3783 return res; 3784 } 3785 3786 EXPORT_SYMBOL_GPL(sock_inuse_get); 3787 3788 static int __net_init sock_inuse_init_net(struct net *net) 3789 { 3790 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3791 if (net->core.prot_inuse == NULL) 3792 return -ENOMEM; 3793 return 0; 3794 } 3795 3796 static void __net_exit sock_inuse_exit_net(struct net *net) 3797 { 3798 free_percpu(net->core.prot_inuse); 3799 } 3800 3801 static struct pernet_operations net_inuse_ops = { 3802 .init = sock_inuse_init_net, 3803 .exit = sock_inuse_exit_net, 3804 }; 3805 3806 static __init int net_inuse_init(void) 3807 { 3808 if (register_pernet_subsys(&net_inuse_ops)) 3809 panic("Cannot initialize net inuse counters"); 3810 3811 return 0; 3812 } 3813 3814 core_initcall(net_inuse_init); 3815 3816 static int assign_proto_idx(struct proto *prot) 3817 { 3818 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3819 3820 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3821 pr_err("PROTO_INUSE_NR exhausted\n"); 3822 return -ENOSPC; 3823 } 3824 3825 set_bit(prot->inuse_idx, proto_inuse_idx); 3826 return 0; 3827 } 3828 3829 static void release_proto_idx(struct proto *prot) 3830 { 3831 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3832 clear_bit(prot->inuse_idx, proto_inuse_idx); 3833 } 3834 #else 3835 static inline int assign_proto_idx(struct proto *prot) 3836 { 3837 return 0; 3838 } 3839 3840 static inline void release_proto_idx(struct proto *prot) 3841 { 3842 } 3843 3844 #endif 3845 3846 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3847 { 3848 if (!twsk_prot) 3849 return; 3850 kfree(twsk_prot->twsk_slab_name); 3851 twsk_prot->twsk_slab_name = NULL; 3852 kmem_cache_destroy(twsk_prot->twsk_slab); 3853 twsk_prot->twsk_slab = NULL; 3854 } 3855 3856 static int tw_prot_init(const struct proto *prot) 3857 { 3858 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3859 3860 if (!twsk_prot) 3861 return 0; 3862 3863 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3864 prot->name); 3865 if (!twsk_prot->twsk_slab_name) 3866 return -ENOMEM; 3867 3868 twsk_prot->twsk_slab = 3869 kmem_cache_create(twsk_prot->twsk_slab_name, 3870 twsk_prot->twsk_obj_size, 0, 3871 SLAB_ACCOUNT | prot->slab_flags, 3872 NULL); 3873 if (!twsk_prot->twsk_slab) { 3874 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3875 prot->name); 3876 return -ENOMEM; 3877 } 3878 3879 return 0; 3880 } 3881 3882 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3883 { 3884 if (!rsk_prot) 3885 return; 3886 kfree(rsk_prot->slab_name); 3887 rsk_prot->slab_name = NULL; 3888 kmem_cache_destroy(rsk_prot->slab); 3889 rsk_prot->slab = NULL; 3890 } 3891 3892 static int req_prot_init(const struct proto *prot) 3893 { 3894 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3895 3896 if (!rsk_prot) 3897 return 0; 3898 3899 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3900 prot->name); 3901 if (!rsk_prot->slab_name) 3902 return -ENOMEM; 3903 3904 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3905 rsk_prot->obj_size, 0, 3906 SLAB_ACCOUNT | prot->slab_flags, 3907 NULL); 3908 3909 if (!rsk_prot->slab) { 3910 pr_crit("%s: Can't create request sock SLAB cache!\n", 3911 prot->name); 3912 return -ENOMEM; 3913 } 3914 return 0; 3915 } 3916 3917 int proto_register(struct proto *prot, int alloc_slab) 3918 { 3919 int ret = -ENOBUFS; 3920 3921 if (prot->memory_allocated && !prot->sysctl_mem) { 3922 pr_err("%s: missing sysctl_mem\n", prot->name); 3923 return -EINVAL; 3924 } 3925 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3926 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3927 return -EINVAL; 3928 } 3929 if (alloc_slab) { 3930 prot->slab = kmem_cache_create_usercopy(prot->name, 3931 prot->obj_size, 0, 3932 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3933 prot->slab_flags, 3934 prot->useroffset, prot->usersize, 3935 NULL); 3936 3937 if (prot->slab == NULL) { 3938 pr_crit("%s: Can't create sock SLAB cache!\n", 3939 prot->name); 3940 goto out; 3941 } 3942 3943 if (req_prot_init(prot)) 3944 goto out_free_request_sock_slab; 3945 3946 if (tw_prot_init(prot)) 3947 goto out_free_timewait_sock_slab; 3948 } 3949 3950 mutex_lock(&proto_list_mutex); 3951 ret = assign_proto_idx(prot); 3952 if (ret) { 3953 mutex_unlock(&proto_list_mutex); 3954 goto out_free_timewait_sock_slab; 3955 } 3956 list_add(&prot->node, &proto_list); 3957 mutex_unlock(&proto_list_mutex); 3958 return ret; 3959 3960 out_free_timewait_sock_slab: 3961 if (alloc_slab) 3962 tw_prot_cleanup(prot->twsk_prot); 3963 out_free_request_sock_slab: 3964 if (alloc_slab) { 3965 req_prot_cleanup(prot->rsk_prot); 3966 3967 kmem_cache_destroy(prot->slab); 3968 prot->slab = NULL; 3969 } 3970 out: 3971 return ret; 3972 } 3973 EXPORT_SYMBOL(proto_register); 3974 3975 void proto_unregister(struct proto *prot) 3976 { 3977 mutex_lock(&proto_list_mutex); 3978 release_proto_idx(prot); 3979 list_del(&prot->node); 3980 mutex_unlock(&proto_list_mutex); 3981 3982 kmem_cache_destroy(prot->slab); 3983 prot->slab = NULL; 3984 3985 req_prot_cleanup(prot->rsk_prot); 3986 tw_prot_cleanup(prot->twsk_prot); 3987 } 3988 EXPORT_SYMBOL(proto_unregister); 3989 3990 int sock_load_diag_module(int family, int protocol) 3991 { 3992 if (!protocol) { 3993 if (!sock_is_registered(family)) 3994 return -ENOENT; 3995 3996 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3997 NETLINK_SOCK_DIAG, family); 3998 } 3999 4000 #ifdef CONFIG_INET 4001 if (family == AF_INET && 4002 protocol != IPPROTO_RAW && 4003 protocol < MAX_INET_PROTOS && 4004 !rcu_access_pointer(inet_protos[protocol])) 4005 return -ENOENT; 4006 #endif 4007 4008 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4009 NETLINK_SOCK_DIAG, family, protocol); 4010 } 4011 EXPORT_SYMBOL(sock_load_diag_module); 4012 4013 #ifdef CONFIG_PROC_FS 4014 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4015 __acquires(proto_list_mutex) 4016 { 4017 mutex_lock(&proto_list_mutex); 4018 return seq_list_start_head(&proto_list, *pos); 4019 } 4020 4021 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4022 { 4023 return seq_list_next(v, &proto_list, pos); 4024 } 4025 4026 static void proto_seq_stop(struct seq_file *seq, void *v) 4027 __releases(proto_list_mutex) 4028 { 4029 mutex_unlock(&proto_list_mutex); 4030 } 4031 4032 static char proto_method_implemented(const void *method) 4033 { 4034 return method == NULL ? 'n' : 'y'; 4035 } 4036 static long sock_prot_memory_allocated(struct proto *proto) 4037 { 4038 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4039 } 4040 4041 static const char *sock_prot_memory_pressure(struct proto *proto) 4042 { 4043 return proto->memory_pressure != NULL ? 4044 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4045 } 4046 4047 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4048 { 4049 4050 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4051 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4052 proto->name, 4053 proto->obj_size, 4054 sock_prot_inuse_get(seq_file_net(seq), proto), 4055 sock_prot_memory_allocated(proto), 4056 sock_prot_memory_pressure(proto), 4057 proto->max_header, 4058 proto->slab == NULL ? "no" : "yes", 4059 module_name(proto->owner), 4060 proto_method_implemented(proto->close), 4061 proto_method_implemented(proto->connect), 4062 proto_method_implemented(proto->disconnect), 4063 proto_method_implemented(proto->accept), 4064 proto_method_implemented(proto->ioctl), 4065 proto_method_implemented(proto->init), 4066 proto_method_implemented(proto->destroy), 4067 proto_method_implemented(proto->shutdown), 4068 proto_method_implemented(proto->setsockopt), 4069 proto_method_implemented(proto->getsockopt), 4070 proto_method_implemented(proto->sendmsg), 4071 proto_method_implemented(proto->recvmsg), 4072 proto_method_implemented(proto->sendpage), 4073 proto_method_implemented(proto->bind), 4074 proto_method_implemented(proto->backlog_rcv), 4075 proto_method_implemented(proto->hash), 4076 proto_method_implemented(proto->unhash), 4077 proto_method_implemented(proto->get_port), 4078 proto_method_implemented(proto->enter_memory_pressure)); 4079 } 4080 4081 static int proto_seq_show(struct seq_file *seq, void *v) 4082 { 4083 if (v == &proto_list) 4084 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4085 "protocol", 4086 "size", 4087 "sockets", 4088 "memory", 4089 "press", 4090 "maxhdr", 4091 "slab", 4092 "module", 4093 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 4094 else 4095 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4096 return 0; 4097 } 4098 4099 static const struct seq_operations proto_seq_ops = { 4100 .start = proto_seq_start, 4101 .next = proto_seq_next, 4102 .stop = proto_seq_stop, 4103 .show = proto_seq_show, 4104 }; 4105 4106 static __net_init int proto_init_net(struct net *net) 4107 { 4108 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4109 sizeof(struct seq_net_private))) 4110 return -ENOMEM; 4111 4112 return 0; 4113 } 4114 4115 static __net_exit void proto_exit_net(struct net *net) 4116 { 4117 remove_proc_entry("protocols", net->proc_net); 4118 } 4119 4120 4121 static __net_initdata struct pernet_operations proto_net_ops = { 4122 .init = proto_init_net, 4123 .exit = proto_exit_net, 4124 }; 4125 4126 static int __init proto_init(void) 4127 { 4128 return register_pernet_subsys(&proto_net_ops); 4129 } 4130 4131 subsys_initcall(proto_init); 4132 4133 #endif /* PROC_FS */ 4134 4135 #ifdef CONFIG_NET_RX_BUSY_POLL 4136 bool sk_busy_loop_end(void *p, unsigned long start_time) 4137 { 4138 struct sock *sk = p; 4139 4140 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4141 sk_busy_loop_timeout(sk, start_time); 4142 } 4143 EXPORT_SYMBOL(sk_busy_loop_end); 4144 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4145 4146 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4147 { 4148 if (!sk->sk_prot->bind_add) 4149 return -EOPNOTSUPP; 4150 return sk->sk_prot->bind_add(sk, addr, addr_len); 4151 } 4152 EXPORT_SYMBOL(sock_bind_add); 4153