1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <linux/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <linux/skbuff_ref.h> 128 #include <net/net_namespace.h> 129 #include <net/request_sock.h> 130 #include <net/sock.h> 131 #include <net/proto_memory.h> 132 #include <linux/net_tstamp.h> 133 #include <net/xfrm.h> 134 #include <linux/ipsec.h> 135 #include <net/cls_cgroup.h> 136 #include <net/netprio_cgroup.h> 137 #include <linux/sock_diag.h> 138 139 #include <linux/filter.h> 140 #include <net/sock_reuseport.h> 141 #include <net/bpf_sk_storage.h> 142 143 #include <trace/events/sock.h> 144 145 #include <net/tcp.h> 146 #include <net/busy_poll.h> 147 #include <net/phonet/phonet.h> 148 149 #include <linux/ethtool.h> 150 151 #include "dev.h" 152 153 static DEFINE_MUTEX(proto_list_mutex); 154 static LIST_HEAD(proto_list); 155 156 static void sock_def_write_space_wfree(struct sock *sk); 157 static void sock_def_write_space(struct sock *sk); 158 159 /** 160 * sk_ns_capable - General socket capability test 161 * @sk: Socket to use a capability on or through 162 * @user_ns: The user namespace of the capability to use 163 * @cap: The capability to use 164 * 165 * Test to see if the opener of the socket had when the socket was 166 * created and the current process has the capability @cap in the user 167 * namespace @user_ns. 168 */ 169 bool sk_ns_capable(const struct sock *sk, 170 struct user_namespace *user_ns, int cap) 171 { 172 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 173 ns_capable(user_ns, cap); 174 } 175 EXPORT_SYMBOL(sk_ns_capable); 176 177 /** 178 * sk_capable - Socket global capability test 179 * @sk: Socket to use a capability on or through 180 * @cap: The global capability to use 181 * 182 * Test to see if the opener of the socket had when the socket was 183 * created and the current process has the capability @cap in all user 184 * namespaces. 185 */ 186 bool sk_capable(const struct sock *sk, int cap) 187 { 188 return sk_ns_capable(sk, &init_user_ns, cap); 189 } 190 EXPORT_SYMBOL(sk_capable); 191 192 /** 193 * sk_net_capable - Network namespace socket capability test 194 * @sk: Socket to use a capability on or through 195 * @cap: The capability to use 196 * 197 * Test to see if the opener of the socket had when the socket was created 198 * and the current process has the capability @cap over the network namespace 199 * the socket is a member of. 200 */ 201 bool sk_net_capable(const struct sock *sk, int cap) 202 { 203 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 204 } 205 EXPORT_SYMBOL(sk_net_capable); 206 207 /* 208 * Each address family might have different locking rules, so we have 209 * one slock key per address family and separate keys for internal and 210 * userspace sockets. 211 */ 212 static struct lock_class_key af_family_keys[AF_MAX]; 213 static struct lock_class_key af_family_kern_keys[AF_MAX]; 214 static struct lock_class_key af_family_slock_keys[AF_MAX]; 215 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 216 217 /* 218 * Make lock validator output more readable. (we pre-construct these 219 * strings build-time, so that runtime initialization of socket 220 * locks is fast): 221 */ 222 223 #define _sock_locks(x) \ 224 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 225 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 226 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 227 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 228 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 229 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 230 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 231 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 232 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 233 x "27" , x "28" , x "AF_CAN" , \ 234 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 235 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 236 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 237 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 238 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 239 x "AF_MCTP" , \ 240 x "AF_MAX" 241 242 static const char *const af_family_key_strings[AF_MAX+1] = { 243 _sock_locks("sk_lock-") 244 }; 245 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("slock-") 247 }; 248 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("clock-") 250 }; 251 252 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 253 _sock_locks("k-sk_lock-") 254 }; 255 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-slock-") 257 }; 258 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 259 _sock_locks("k-clock-") 260 }; 261 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 262 _sock_locks("rlock-") 263 }; 264 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 265 _sock_locks("wlock-") 266 }; 267 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 268 _sock_locks("elock-") 269 }; 270 271 /* 272 * sk_callback_lock and sk queues locking rules are per-address-family, 273 * so split the lock classes by using a per-AF key: 274 */ 275 static struct lock_class_key af_callback_keys[AF_MAX]; 276 static struct lock_class_key af_rlock_keys[AF_MAX]; 277 static struct lock_class_key af_wlock_keys[AF_MAX]; 278 static struct lock_class_key af_elock_keys[AF_MAX]; 279 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 280 281 /* Run time adjustable parameters. */ 282 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 283 EXPORT_SYMBOL(sysctl_wmem_max); 284 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 285 EXPORT_SYMBOL(sysctl_rmem_max); 286 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 287 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 288 289 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 290 EXPORT_SYMBOL_GPL(memalloc_socks_key); 291 292 /** 293 * sk_set_memalloc - sets %SOCK_MEMALLOC 294 * @sk: socket to set it on 295 * 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 297 * It's the responsibility of the admin to adjust min_free_kbytes 298 * to meet the requirements 299 */ 300 void sk_set_memalloc(struct sock *sk) 301 { 302 sock_set_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation |= __GFP_MEMALLOC; 304 static_branch_inc(&memalloc_socks_key); 305 } 306 EXPORT_SYMBOL_GPL(sk_set_memalloc); 307 308 void sk_clear_memalloc(struct sock *sk) 309 { 310 sock_reset_flag(sk, SOCK_MEMALLOC); 311 sk->sk_allocation &= ~__GFP_MEMALLOC; 312 static_branch_dec(&memalloc_socks_key); 313 314 /* 315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 316 * progress of swapping. SOCK_MEMALLOC may be cleared while 317 * it has rmem allocations due to the last swapfile being deactivated 318 * but there is a risk that the socket is unusable due to exceeding 319 * the rmem limits. Reclaim the reserves and obey rmem limits again. 320 */ 321 sk_mem_reclaim(sk); 322 } 323 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 324 325 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 326 { 327 int ret; 328 unsigned int noreclaim_flag; 329 330 /* these should have been dropped before queueing */ 331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 332 333 noreclaim_flag = memalloc_noreclaim_save(); 334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 335 tcp_v6_do_rcv, 336 tcp_v4_do_rcv, 337 sk, skb); 338 memalloc_noreclaim_restore(noreclaim_flag); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 void sk_error_report(struct sock *sk) 345 { 346 sk->sk_error_report(sk); 347 348 switch (sk->sk_family) { 349 case AF_INET: 350 fallthrough; 351 case AF_INET6: 352 trace_inet_sk_error_report(sk); 353 break; 354 default: 355 break; 356 } 357 } 358 EXPORT_SYMBOL(sk_error_report); 359 360 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 361 { 362 struct __kernel_sock_timeval tv; 363 364 if (timeo == MAX_SCHEDULE_TIMEOUT) { 365 tv.tv_sec = 0; 366 tv.tv_usec = 0; 367 } else { 368 tv.tv_sec = timeo / HZ; 369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 370 } 371 372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 374 *(struct old_timeval32 *)optval = tv32; 375 return sizeof(tv32); 376 } 377 378 if (old_timeval) { 379 struct __kernel_old_timeval old_tv; 380 old_tv.tv_sec = tv.tv_sec; 381 old_tv.tv_usec = tv.tv_usec; 382 *(struct __kernel_old_timeval *)optval = old_tv; 383 return sizeof(old_tv); 384 } 385 386 *(struct __kernel_sock_timeval *)optval = tv; 387 return sizeof(tv); 388 } 389 EXPORT_SYMBOL(sock_get_timeout); 390 391 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 392 sockptr_t optval, int optlen, bool old_timeval) 393 { 394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 395 struct old_timeval32 tv32; 396 397 if (optlen < sizeof(tv32)) 398 return -EINVAL; 399 400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 401 return -EFAULT; 402 tv->tv_sec = tv32.tv_sec; 403 tv->tv_usec = tv32.tv_usec; 404 } else if (old_timeval) { 405 struct __kernel_old_timeval old_tv; 406 407 if (optlen < sizeof(old_tv)) 408 return -EINVAL; 409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 410 return -EFAULT; 411 tv->tv_sec = old_tv.tv_sec; 412 tv->tv_usec = old_tv.tv_usec; 413 } else { 414 if (optlen < sizeof(*tv)) 415 return -EINVAL; 416 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 417 return -EFAULT; 418 } 419 420 return 0; 421 } 422 EXPORT_SYMBOL(sock_copy_user_timeval); 423 424 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 425 bool old_timeval) 426 { 427 struct __kernel_sock_timeval tv; 428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 429 long val; 430 431 if (err) 432 return err; 433 434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 435 return -EDOM; 436 437 if (tv.tv_sec < 0) { 438 static int warned __read_mostly; 439 440 WRITE_ONCE(*timeo_p, 0); 441 if (warned < 10 && net_ratelimit()) { 442 warned++; 443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 444 __func__, current->comm, task_pid_nr(current)); 445 } 446 return 0; 447 } 448 val = MAX_SCHEDULE_TIMEOUT; 449 if ((tv.tv_sec || tv.tv_usec) && 450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 452 USEC_PER_SEC / HZ); 453 WRITE_ONCE(*timeo_p, val); 454 return 0; 455 } 456 457 static bool sock_needs_netstamp(const struct sock *sk) 458 { 459 switch (sk->sk_family) { 460 case AF_UNSPEC: 461 case AF_UNIX: 462 return false; 463 default: 464 return true; 465 } 466 } 467 468 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 469 { 470 if (sk->sk_flags & flags) { 471 sk->sk_flags &= ~flags; 472 if (sock_needs_netstamp(sk) && 473 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 474 net_disable_timestamp(); 475 } 476 } 477 478 479 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 480 { 481 unsigned long flags; 482 struct sk_buff_head *list = &sk->sk_receive_queue; 483 484 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { 485 atomic_inc(&sk->sk_drops); 486 trace_sock_rcvqueue_full(sk, skb); 487 return -ENOMEM; 488 } 489 490 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 491 atomic_inc(&sk->sk_drops); 492 return -ENOBUFS; 493 } 494 495 skb->dev = NULL; 496 skb_set_owner_r(skb, sk); 497 498 /* we escape from rcu protected region, make sure we dont leak 499 * a norefcounted dst 500 */ 501 skb_dst_force(skb); 502 503 spin_lock_irqsave(&list->lock, flags); 504 sock_skb_set_dropcount(sk, skb); 505 __skb_queue_tail(list, skb); 506 spin_unlock_irqrestore(&list->lock, flags); 507 508 if (!sock_flag(sk, SOCK_DEAD)) 509 sk->sk_data_ready(sk); 510 return 0; 511 } 512 EXPORT_SYMBOL(__sock_queue_rcv_skb); 513 514 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 515 enum skb_drop_reason *reason) 516 { 517 enum skb_drop_reason drop_reason; 518 int err; 519 520 err = sk_filter(sk, skb); 521 if (err) { 522 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 523 goto out; 524 } 525 err = __sock_queue_rcv_skb(sk, skb); 526 switch (err) { 527 case -ENOMEM: 528 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 529 break; 530 case -ENOBUFS: 531 drop_reason = SKB_DROP_REASON_PROTO_MEM; 532 break; 533 default: 534 drop_reason = SKB_NOT_DROPPED_YET; 535 break; 536 } 537 out: 538 if (reason) 539 *reason = drop_reason; 540 return err; 541 } 542 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 543 544 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 545 const int nested, unsigned int trim_cap, bool refcounted) 546 { 547 int rc = NET_RX_SUCCESS; 548 549 if (sk_filter_trim_cap(sk, skb, trim_cap)) 550 goto discard_and_relse; 551 552 skb->dev = NULL; 553 554 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { 555 atomic_inc(&sk->sk_drops); 556 goto discard_and_relse; 557 } 558 if (nested) 559 bh_lock_sock_nested(sk); 560 else 561 bh_lock_sock(sk); 562 if (!sock_owned_by_user(sk)) { 563 /* 564 * trylock + unlock semantics: 565 */ 566 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 567 568 rc = sk_backlog_rcv(sk, skb); 569 570 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 571 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 572 bh_unlock_sock(sk); 573 atomic_inc(&sk->sk_drops); 574 goto discard_and_relse; 575 } 576 577 bh_unlock_sock(sk); 578 out: 579 if (refcounted) 580 sock_put(sk); 581 return rc; 582 discard_and_relse: 583 kfree_skb(skb); 584 goto out; 585 } 586 EXPORT_SYMBOL(__sk_receive_skb); 587 588 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 589 u32)); 590 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 591 u32)); 592 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 593 { 594 struct dst_entry *dst = __sk_dst_get(sk); 595 596 if (dst && dst->obsolete && 597 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 598 dst, cookie) == NULL) { 599 sk_tx_queue_clear(sk); 600 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 601 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 602 dst_release(dst); 603 return NULL; 604 } 605 606 return dst; 607 } 608 EXPORT_SYMBOL(__sk_dst_check); 609 610 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 611 { 612 struct dst_entry *dst = sk_dst_get(sk); 613 614 if (dst && dst->obsolete && 615 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 616 dst, cookie) == NULL) { 617 sk_dst_reset(sk); 618 dst_release(dst); 619 return NULL; 620 } 621 622 return dst; 623 } 624 EXPORT_SYMBOL(sk_dst_check); 625 626 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 627 { 628 int ret = -ENOPROTOOPT; 629 #ifdef CONFIG_NETDEVICES 630 struct net *net = sock_net(sk); 631 632 /* Sorry... */ 633 ret = -EPERM; 634 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 635 goto out; 636 637 ret = -EINVAL; 638 if (ifindex < 0) 639 goto out; 640 641 /* Paired with all READ_ONCE() done locklessly. */ 642 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 643 644 if (sk->sk_prot->rehash) 645 sk->sk_prot->rehash(sk); 646 sk_dst_reset(sk); 647 648 ret = 0; 649 650 out: 651 #endif 652 653 return ret; 654 } 655 656 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 657 { 658 int ret; 659 660 if (lock_sk) 661 lock_sock(sk); 662 ret = sock_bindtoindex_locked(sk, ifindex); 663 if (lock_sk) 664 release_sock(sk); 665 666 return ret; 667 } 668 EXPORT_SYMBOL(sock_bindtoindex); 669 670 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 671 { 672 int ret = -ENOPROTOOPT; 673 #ifdef CONFIG_NETDEVICES 674 struct net *net = sock_net(sk); 675 char devname[IFNAMSIZ]; 676 int index; 677 678 ret = -EINVAL; 679 if (optlen < 0) 680 goto out; 681 682 /* Bind this socket to a particular device like "eth0", 683 * as specified in the passed interface name. If the 684 * name is "" or the option length is zero the socket 685 * is not bound. 686 */ 687 if (optlen > IFNAMSIZ - 1) 688 optlen = IFNAMSIZ - 1; 689 memset(devname, 0, sizeof(devname)); 690 691 ret = -EFAULT; 692 if (copy_from_sockptr(devname, optval, optlen)) 693 goto out; 694 695 index = 0; 696 if (devname[0] != '\0') { 697 struct net_device *dev; 698 699 rcu_read_lock(); 700 dev = dev_get_by_name_rcu(net, devname); 701 if (dev) 702 index = dev->ifindex; 703 rcu_read_unlock(); 704 ret = -ENODEV; 705 if (!dev) 706 goto out; 707 } 708 709 sockopt_lock_sock(sk); 710 ret = sock_bindtoindex_locked(sk, index); 711 sockopt_release_sock(sk); 712 out: 713 #endif 714 715 return ret; 716 } 717 718 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 719 sockptr_t optlen, int len) 720 { 721 int ret = -ENOPROTOOPT; 722 #ifdef CONFIG_NETDEVICES 723 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 724 struct net *net = sock_net(sk); 725 char devname[IFNAMSIZ]; 726 727 if (bound_dev_if == 0) { 728 len = 0; 729 goto zero; 730 } 731 732 ret = -EINVAL; 733 if (len < IFNAMSIZ) 734 goto out; 735 736 ret = netdev_get_name(net, devname, bound_dev_if); 737 if (ret) 738 goto out; 739 740 len = strlen(devname) + 1; 741 742 ret = -EFAULT; 743 if (copy_to_sockptr(optval, devname, len)) 744 goto out; 745 746 zero: 747 ret = -EFAULT; 748 if (copy_to_sockptr(optlen, &len, sizeof(int))) 749 goto out; 750 751 ret = 0; 752 753 out: 754 #endif 755 756 return ret; 757 } 758 759 bool sk_mc_loop(const struct sock *sk) 760 { 761 if (dev_recursion_level()) 762 return false; 763 if (!sk) 764 return true; 765 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 766 switch (READ_ONCE(sk->sk_family)) { 767 case AF_INET: 768 return inet_test_bit(MC_LOOP, sk); 769 #if IS_ENABLED(CONFIG_IPV6) 770 case AF_INET6: 771 return inet6_test_bit(MC6_LOOP, sk); 772 #endif 773 } 774 WARN_ON_ONCE(1); 775 return true; 776 } 777 EXPORT_SYMBOL(sk_mc_loop); 778 779 void sock_set_reuseaddr(struct sock *sk) 780 { 781 lock_sock(sk); 782 sk->sk_reuse = SK_CAN_REUSE; 783 release_sock(sk); 784 } 785 EXPORT_SYMBOL(sock_set_reuseaddr); 786 787 void sock_set_reuseport(struct sock *sk) 788 { 789 lock_sock(sk); 790 sk->sk_reuseport = true; 791 release_sock(sk); 792 } 793 EXPORT_SYMBOL(sock_set_reuseport); 794 795 void sock_no_linger(struct sock *sk) 796 { 797 lock_sock(sk); 798 WRITE_ONCE(sk->sk_lingertime, 0); 799 sock_set_flag(sk, SOCK_LINGER); 800 release_sock(sk); 801 } 802 EXPORT_SYMBOL(sock_no_linger); 803 804 void sock_set_priority(struct sock *sk, u32 priority) 805 { 806 WRITE_ONCE(sk->sk_priority, priority); 807 } 808 EXPORT_SYMBOL(sock_set_priority); 809 810 void sock_set_sndtimeo(struct sock *sk, s64 secs) 811 { 812 lock_sock(sk); 813 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 814 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 815 else 816 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 817 release_sock(sk); 818 } 819 EXPORT_SYMBOL(sock_set_sndtimeo); 820 821 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 822 { 823 sock_valbool_flag(sk, SOCK_RCVTSTAMP, val); 824 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns); 825 if (val) { 826 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 827 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 828 } 829 } 830 831 void sock_enable_timestamps(struct sock *sk) 832 { 833 lock_sock(sk); 834 __sock_set_timestamps(sk, true, false, true); 835 release_sock(sk); 836 } 837 EXPORT_SYMBOL(sock_enable_timestamps); 838 839 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 840 { 841 switch (optname) { 842 case SO_TIMESTAMP_OLD: 843 __sock_set_timestamps(sk, valbool, false, false); 844 break; 845 case SO_TIMESTAMP_NEW: 846 __sock_set_timestamps(sk, valbool, true, false); 847 break; 848 case SO_TIMESTAMPNS_OLD: 849 __sock_set_timestamps(sk, valbool, false, true); 850 break; 851 case SO_TIMESTAMPNS_NEW: 852 __sock_set_timestamps(sk, valbool, true, true); 853 break; 854 } 855 } 856 857 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 858 { 859 struct net *net = sock_net(sk); 860 struct net_device *dev = NULL; 861 bool match = false; 862 int *vclock_index; 863 int i, num; 864 865 if (sk->sk_bound_dev_if) 866 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 867 868 if (!dev) { 869 pr_err("%s: sock not bind to device\n", __func__); 870 return -EOPNOTSUPP; 871 } 872 873 num = ethtool_get_phc_vclocks(dev, &vclock_index); 874 dev_put(dev); 875 876 for (i = 0; i < num; i++) { 877 if (*(vclock_index + i) == phc_index) { 878 match = true; 879 break; 880 } 881 } 882 883 if (num > 0) 884 kfree(vclock_index); 885 886 if (!match) 887 return -EINVAL; 888 889 WRITE_ONCE(sk->sk_bind_phc, phc_index); 890 891 return 0; 892 } 893 894 int sock_set_timestamping(struct sock *sk, int optname, 895 struct so_timestamping timestamping) 896 { 897 int val = timestamping.flags; 898 int ret; 899 900 if (val & ~SOF_TIMESTAMPING_MASK) 901 return -EINVAL; 902 903 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 904 !(val & SOF_TIMESTAMPING_OPT_ID)) 905 return -EINVAL; 906 907 if (val & SOF_TIMESTAMPING_OPT_ID && 908 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 909 if (sk_is_tcp(sk)) { 910 if ((1 << sk->sk_state) & 911 (TCPF_CLOSE | TCPF_LISTEN)) 912 return -EINVAL; 913 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 914 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 915 else 916 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 917 } else { 918 atomic_set(&sk->sk_tskey, 0); 919 } 920 } 921 922 if (val & SOF_TIMESTAMPING_OPT_STATS && 923 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 924 return -EINVAL; 925 926 if (val & SOF_TIMESTAMPING_BIND_PHC) { 927 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 928 if (ret) 929 return ret; 930 } 931 932 WRITE_ONCE(sk->sk_tsflags, val); 933 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 934 935 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 936 sock_enable_timestamp(sk, 937 SOCK_TIMESTAMPING_RX_SOFTWARE); 938 else 939 sock_disable_timestamp(sk, 940 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 941 return 0; 942 } 943 944 void sock_set_keepalive(struct sock *sk) 945 { 946 lock_sock(sk); 947 if (sk->sk_prot->keepalive) 948 sk->sk_prot->keepalive(sk, true); 949 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 950 release_sock(sk); 951 } 952 EXPORT_SYMBOL(sock_set_keepalive); 953 954 static void __sock_set_rcvbuf(struct sock *sk, int val) 955 { 956 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 957 * as a negative value. 958 */ 959 val = min_t(int, val, INT_MAX / 2); 960 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 961 962 /* We double it on the way in to account for "struct sk_buff" etc. 963 * overhead. Applications assume that the SO_RCVBUF setting they make 964 * will allow that much actual data to be received on that socket. 965 * 966 * Applications are unaware that "struct sk_buff" and other overheads 967 * allocate from the receive buffer during socket buffer allocation. 968 * 969 * And after considering the possible alternatives, returning the value 970 * we actually used in getsockopt is the most desirable behavior. 971 */ 972 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 973 } 974 975 void sock_set_rcvbuf(struct sock *sk, int val) 976 { 977 lock_sock(sk); 978 __sock_set_rcvbuf(sk, val); 979 release_sock(sk); 980 } 981 EXPORT_SYMBOL(sock_set_rcvbuf); 982 983 static void __sock_set_mark(struct sock *sk, u32 val) 984 { 985 if (val != sk->sk_mark) { 986 WRITE_ONCE(sk->sk_mark, val); 987 sk_dst_reset(sk); 988 } 989 } 990 991 void sock_set_mark(struct sock *sk, u32 val) 992 { 993 lock_sock(sk); 994 __sock_set_mark(sk, val); 995 release_sock(sk); 996 } 997 EXPORT_SYMBOL(sock_set_mark); 998 999 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1000 { 1001 /* Round down bytes to multiple of pages */ 1002 bytes = round_down(bytes, PAGE_SIZE); 1003 1004 WARN_ON(bytes > sk->sk_reserved_mem); 1005 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1006 sk_mem_reclaim(sk); 1007 } 1008 1009 static int sock_reserve_memory(struct sock *sk, int bytes) 1010 { 1011 long allocated; 1012 bool charged; 1013 int pages; 1014 1015 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1016 return -EOPNOTSUPP; 1017 1018 if (!bytes) 1019 return 0; 1020 1021 pages = sk_mem_pages(bytes); 1022 1023 /* pre-charge to memcg */ 1024 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1025 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1026 if (!charged) 1027 return -ENOMEM; 1028 1029 /* pre-charge to forward_alloc */ 1030 sk_memory_allocated_add(sk, pages); 1031 allocated = sk_memory_allocated(sk); 1032 /* If the system goes into memory pressure with this 1033 * precharge, give up and return error. 1034 */ 1035 if (allocated > sk_prot_mem_limits(sk, 1)) { 1036 sk_memory_allocated_sub(sk, pages); 1037 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1038 return -ENOMEM; 1039 } 1040 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1041 1042 WRITE_ONCE(sk->sk_reserved_mem, 1043 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1044 1045 return 0; 1046 } 1047 1048 #ifdef CONFIG_PAGE_POOL 1049 1050 /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED 1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel 1052 * allocates to copy these tokens, and to prevent looping over the frags for 1053 * too long. 1054 */ 1055 #define MAX_DONTNEED_TOKENS 128 1056 #define MAX_DONTNEED_FRAGS 1024 1057 1058 static noinline_for_stack int 1059 sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) 1060 { 1061 unsigned int num_tokens, i, j, k, netmem_num = 0; 1062 struct dmabuf_token *tokens; 1063 int ret = 0, num_frags = 0; 1064 netmem_ref netmems[16]; 1065 1066 if (!sk_is_tcp(sk)) 1067 return -EBADF; 1068 1069 if (optlen % sizeof(*tokens) || 1070 optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) 1071 return -EINVAL; 1072 1073 num_tokens = optlen / sizeof(*tokens); 1074 tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); 1075 if (!tokens) 1076 return -ENOMEM; 1077 1078 if (copy_from_sockptr(tokens, optval, optlen)) { 1079 kvfree(tokens); 1080 return -EFAULT; 1081 } 1082 1083 xa_lock_bh(&sk->sk_user_frags); 1084 for (i = 0; i < num_tokens; i++) { 1085 for (j = 0; j < tokens[i].token_count; j++) { 1086 if (++num_frags > MAX_DONTNEED_FRAGS) 1087 goto frag_limit_reached; 1088 1089 netmem_ref netmem = (__force netmem_ref)__xa_erase( 1090 &sk->sk_user_frags, tokens[i].token_start + j); 1091 1092 if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) 1093 continue; 1094 1095 netmems[netmem_num++] = netmem; 1096 if (netmem_num == ARRAY_SIZE(netmems)) { 1097 xa_unlock_bh(&sk->sk_user_frags); 1098 for (k = 0; k < netmem_num; k++) 1099 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1100 netmem_num = 0; 1101 xa_lock_bh(&sk->sk_user_frags); 1102 } 1103 ret++; 1104 } 1105 } 1106 1107 frag_limit_reached: 1108 xa_unlock_bh(&sk->sk_user_frags); 1109 for (k = 0; k < netmem_num; k++) 1110 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1111 1112 kvfree(tokens); 1113 return ret; 1114 } 1115 #endif 1116 1117 void sockopt_lock_sock(struct sock *sk) 1118 { 1119 /* When current->bpf_ctx is set, the setsockopt is called from 1120 * a bpf prog. bpf has ensured the sk lock has been 1121 * acquired before calling setsockopt(). 1122 */ 1123 if (has_current_bpf_ctx()) 1124 return; 1125 1126 lock_sock(sk); 1127 } 1128 EXPORT_SYMBOL(sockopt_lock_sock); 1129 1130 void sockopt_release_sock(struct sock *sk) 1131 { 1132 if (has_current_bpf_ctx()) 1133 return; 1134 1135 release_sock(sk); 1136 } 1137 EXPORT_SYMBOL(sockopt_release_sock); 1138 1139 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1140 { 1141 return has_current_bpf_ctx() || ns_capable(ns, cap); 1142 } 1143 EXPORT_SYMBOL(sockopt_ns_capable); 1144 1145 bool sockopt_capable(int cap) 1146 { 1147 return has_current_bpf_ctx() || capable(cap); 1148 } 1149 EXPORT_SYMBOL(sockopt_capable); 1150 1151 static int sockopt_validate_clockid(__kernel_clockid_t value) 1152 { 1153 switch (value) { 1154 case CLOCK_REALTIME: 1155 case CLOCK_MONOTONIC: 1156 case CLOCK_TAI: 1157 return 0; 1158 } 1159 return -EINVAL; 1160 } 1161 1162 /* 1163 * This is meant for all protocols to use and covers goings on 1164 * at the socket level. Everything here is generic. 1165 */ 1166 1167 int sk_setsockopt(struct sock *sk, int level, int optname, 1168 sockptr_t optval, unsigned int optlen) 1169 { 1170 struct so_timestamping timestamping; 1171 struct socket *sock = sk->sk_socket; 1172 struct sock_txtime sk_txtime; 1173 int val; 1174 int valbool; 1175 struct linger ling; 1176 int ret = 0; 1177 1178 /* 1179 * Options without arguments 1180 */ 1181 1182 if (optname == SO_BINDTODEVICE) 1183 return sock_setbindtodevice(sk, optval, optlen); 1184 1185 if (optlen < sizeof(int)) 1186 return -EINVAL; 1187 1188 if (copy_from_sockptr(&val, optval, sizeof(val))) 1189 return -EFAULT; 1190 1191 valbool = val ? 1 : 0; 1192 1193 /* handle options which do not require locking the socket. */ 1194 switch (optname) { 1195 case SO_PRIORITY: 1196 if ((val >= 0 && val <= 6) || 1197 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1198 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1199 sock_set_priority(sk, val); 1200 return 0; 1201 } 1202 return -EPERM; 1203 case SO_PASSSEC: 1204 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1205 return 0; 1206 case SO_PASSCRED: 1207 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1208 return 0; 1209 case SO_PASSPIDFD: 1210 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1211 return 0; 1212 case SO_TYPE: 1213 case SO_PROTOCOL: 1214 case SO_DOMAIN: 1215 case SO_ERROR: 1216 return -ENOPROTOOPT; 1217 #ifdef CONFIG_NET_RX_BUSY_POLL 1218 case SO_BUSY_POLL: 1219 if (val < 0) 1220 return -EINVAL; 1221 WRITE_ONCE(sk->sk_ll_usec, val); 1222 return 0; 1223 case SO_PREFER_BUSY_POLL: 1224 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1225 return -EPERM; 1226 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1227 return 0; 1228 case SO_BUSY_POLL_BUDGET: 1229 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1230 !sockopt_capable(CAP_NET_ADMIN)) 1231 return -EPERM; 1232 if (val < 0 || val > U16_MAX) 1233 return -EINVAL; 1234 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1235 return 0; 1236 #endif 1237 case SO_MAX_PACING_RATE: 1238 { 1239 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1240 unsigned long pacing_rate; 1241 1242 if (sizeof(ulval) != sizeof(val) && 1243 optlen >= sizeof(ulval) && 1244 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1245 return -EFAULT; 1246 } 1247 if (ulval != ~0UL) 1248 cmpxchg(&sk->sk_pacing_status, 1249 SK_PACING_NONE, 1250 SK_PACING_NEEDED); 1251 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1252 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1253 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1254 if (ulval < pacing_rate) 1255 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1256 return 0; 1257 } 1258 case SO_TXREHASH: 1259 if (val < -1 || val > 1) 1260 return -EINVAL; 1261 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1262 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1263 /* Paired with READ_ONCE() in tcp_rtx_synack() 1264 * and sk_getsockopt(). 1265 */ 1266 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1267 return 0; 1268 case SO_PEEK_OFF: 1269 { 1270 int (*set_peek_off)(struct sock *sk, int val); 1271 1272 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1273 if (set_peek_off) 1274 ret = set_peek_off(sk, val); 1275 else 1276 ret = -EOPNOTSUPP; 1277 return ret; 1278 } 1279 #ifdef CONFIG_PAGE_POOL 1280 case SO_DEVMEM_DONTNEED: 1281 return sock_devmem_dontneed(sk, optval, optlen); 1282 #endif 1283 } 1284 1285 sockopt_lock_sock(sk); 1286 1287 switch (optname) { 1288 case SO_DEBUG: 1289 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1290 ret = -EACCES; 1291 else 1292 sock_valbool_flag(sk, SOCK_DBG, valbool); 1293 break; 1294 case SO_REUSEADDR: 1295 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1296 break; 1297 case SO_REUSEPORT: 1298 if (valbool && !sk_is_inet(sk)) 1299 ret = -EOPNOTSUPP; 1300 else 1301 sk->sk_reuseport = valbool; 1302 break; 1303 case SO_DONTROUTE: 1304 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1305 sk_dst_reset(sk); 1306 break; 1307 case SO_BROADCAST: 1308 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1309 break; 1310 case SO_SNDBUF: 1311 /* Don't error on this BSD doesn't and if you think 1312 * about it this is right. Otherwise apps have to 1313 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1314 * are treated in BSD as hints 1315 */ 1316 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1317 set_sndbuf: 1318 /* Ensure val * 2 fits into an int, to prevent max_t() 1319 * from treating it as a negative value. 1320 */ 1321 val = min_t(int, val, INT_MAX / 2); 1322 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1323 WRITE_ONCE(sk->sk_sndbuf, 1324 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1325 /* Wake up sending tasks if we upped the value. */ 1326 sk->sk_write_space(sk); 1327 break; 1328 1329 case SO_SNDBUFFORCE: 1330 if (!sockopt_capable(CAP_NET_ADMIN)) { 1331 ret = -EPERM; 1332 break; 1333 } 1334 1335 /* No negative values (to prevent underflow, as val will be 1336 * multiplied by 2). 1337 */ 1338 if (val < 0) 1339 val = 0; 1340 goto set_sndbuf; 1341 1342 case SO_RCVBUF: 1343 /* Don't error on this BSD doesn't and if you think 1344 * about it this is right. Otherwise apps have to 1345 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1346 * are treated in BSD as hints 1347 */ 1348 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1349 break; 1350 1351 case SO_RCVBUFFORCE: 1352 if (!sockopt_capable(CAP_NET_ADMIN)) { 1353 ret = -EPERM; 1354 break; 1355 } 1356 1357 /* No negative values (to prevent underflow, as val will be 1358 * multiplied by 2). 1359 */ 1360 __sock_set_rcvbuf(sk, max(val, 0)); 1361 break; 1362 1363 case SO_KEEPALIVE: 1364 if (sk->sk_prot->keepalive) 1365 sk->sk_prot->keepalive(sk, valbool); 1366 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1367 break; 1368 1369 case SO_OOBINLINE: 1370 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1371 break; 1372 1373 case SO_NO_CHECK: 1374 sk->sk_no_check_tx = valbool; 1375 break; 1376 1377 case SO_LINGER: 1378 if (optlen < sizeof(ling)) { 1379 ret = -EINVAL; /* 1003.1g */ 1380 break; 1381 } 1382 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1383 ret = -EFAULT; 1384 break; 1385 } 1386 if (!ling.l_onoff) { 1387 sock_reset_flag(sk, SOCK_LINGER); 1388 } else { 1389 unsigned long t_sec = ling.l_linger; 1390 1391 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1392 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1393 else 1394 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1395 sock_set_flag(sk, SOCK_LINGER); 1396 } 1397 break; 1398 1399 case SO_BSDCOMPAT: 1400 break; 1401 1402 case SO_TIMESTAMP_OLD: 1403 case SO_TIMESTAMP_NEW: 1404 case SO_TIMESTAMPNS_OLD: 1405 case SO_TIMESTAMPNS_NEW: 1406 sock_set_timestamp(sk, optname, valbool); 1407 break; 1408 1409 case SO_TIMESTAMPING_NEW: 1410 case SO_TIMESTAMPING_OLD: 1411 if (optlen == sizeof(timestamping)) { 1412 if (copy_from_sockptr(×tamping, optval, 1413 sizeof(timestamping))) { 1414 ret = -EFAULT; 1415 break; 1416 } 1417 } else { 1418 memset(×tamping, 0, sizeof(timestamping)); 1419 timestamping.flags = val; 1420 } 1421 ret = sock_set_timestamping(sk, optname, timestamping); 1422 break; 1423 1424 case SO_RCVLOWAT: 1425 { 1426 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1427 1428 if (val < 0) 1429 val = INT_MAX; 1430 if (sock) 1431 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1432 if (set_rcvlowat) 1433 ret = set_rcvlowat(sk, val); 1434 else 1435 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1436 break; 1437 } 1438 case SO_RCVTIMEO_OLD: 1439 case SO_RCVTIMEO_NEW: 1440 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1441 optlen, optname == SO_RCVTIMEO_OLD); 1442 break; 1443 1444 case SO_SNDTIMEO_OLD: 1445 case SO_SNDTIMEO_NEW: 1446 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1447 optlen, optname == SO_SNDTIMEO_OLD); 1448 break; 1449 1450 case SO_ATTACH_FILTER: { 1451 struct sock_fprog fprog; 1452 1453 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1454 if (!ret) 1455 ret = sk_attach_filter(&fprog, sk); 1456 break; 1457 } 1458 case SO_ATTACH_BPF: 1459 ret = -EINVAL; 1460 if (optlen == sizeof(u32)) { 1461 u32 ufd; 1462 1463 ret = -EFAULT; 1464 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1465 break; 1466 1467 ret = sk_attach_bpf(ufd, sk); 1468 } 1469 break; 1470 1471 case SO_ATTACH_REUSEPORT_CBPF: { 1472 struct sock_fprog fprog; 1473 1474 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1475 if (!ret) 1476 ret = sk_reuseport_attach_filter(&fprog, sk); 1477 break; 1478 } 1479 case SO_ATTACH_REUSEPORT_EBPF: 1480 ret = -EINVAL; 1481 if (optlen == sizeof(u32)) { 1482 u32 ufd; 1483 1484 ret = -EFAULT; 1485 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1486 break; 1487 1488 ret = sk_reuseport_attach_bpf(ufd, sk); 1489 } 1490 break; 1491 1492 case SO_DETACH_REUSEPORT_BPF: 1493 ret = reuseport_detach_prog(sk); 1494 break; 1495 1496 case SO_DETACH_FILTER: 1497 ret = sk_detach_filter(sk); 1498 break; 1499 1500 case SO_LOCK_FILTER: 1501 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1502 ret = -EPERM; 1503 else 1504 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1505 break; 1506 1507 case SO_MARK: 1508 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1509 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1510 ret = -EPERM; 1511 break; 1512 } 1513 1514 __sock_set_mark(sk, val); 1515 break; 1516 case SO_RCVMARK: 1517 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1518 break; 1519 1520 case SO_RXQ_OVFL: 1521 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1522 break; 1523 1524 case SO_WIFI_STATUS: 1525 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1526 break; 1527 1528 case SO_NOFCS: 1529 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1530 break; 1531 1532 case SO_SELECT_ERR_QUEUE: 1533 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1534 break; 1535 1536 1537 case SO_INCOMING_CPU: 1538 reuseport_update_incoming_cpu(sk, val); 1539 break; 1540 1541 case SO_CNX_ADVICE: 1542 if (val == 1) 1543 dst_negative_advice(sk); 1544 break; 1545 1546 case SO_ZEROCOPY: 1547 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1548 if (!(sk_is_tcp(sk) || 1549 (sk->sk_type == SOCK_DGRAM && 1550 sk->sk_protocol == IPPROTO_UDP))) 1551 ret = -EOPNOTSUPP; 1552 } else if (sk->sk_family != PF_RDS) { 1553 ret = -EOPNOTSUPP; 1554 } 1555 if (!ret) { 1556 if (val < 0 || val > 1) 1557 ret = -EINVAL; 1558 else 1559 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1560 } 1561 break; 1562 1563 case SO_TXTIME: 1564 if (optlen != sizeof(struct sock_txtime)) { 1565 ret = -EINVAL; 1566 break; 1567 } else if (copy_from_sockptr(&sk_txtime, optval, 1568 sizeof(struct sock_txtime))) { 1569 ret = -EFAULT; 1570 break; 1571 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1572 ret = -EINVAL; 1573 break; 1574 } 1575 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1576 * scheduler has enough safe guards. 1577 */ 1578 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1579 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1580 ret = -EPERM; 1581 break; 1582 } 1583 1584 ret = sockopt_validate_clockid(sk_txtime.clockid); 1585 if (ret) 1586 break; 1587 1588 sock_valbool_flag(sk, SOCK_TXTIME, true); 1589 sk->sk_clockid = sk_txtime.clockid; 1590 sk->sk_txtime_deadline_mode = 1591 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1592 sk->sk_txtime_report_errors = 1593 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1594 break; 1595 1596 case SO_BINDTOIFINDEX: 1597 ret = sock_bindtoindex_locked(sk, val); 1598 break; 1599 1600 case SO_BUF_LOCK: 1601 if (val & ~SOCK_BUF_LOCK_MASK) { 1602 ret = -EINVAL; 1603 break; 1604 } 1605 sk->sk_userlocks = val | (sk->sk_userlocks & 1606 ~SOCK_BUF_LOCK_MASK); 1607 break; 1608 1609 case SO_RESERVE_MEM: 1610 { 1611 int delta; 1612 1613 if (val < 0) { 1614 ret = -EINVAL; 1615 break; 1616 } 1617 1618 delta = val - sk->sk_reserved_mem; 1619 if (delta < 0) 1620 sock_release_reserved_memory(sk, -delta); 1621 else 1622 ret = sock_reserve_memory(sk, delta); 1623 break; 1624 } 1625 1626 default: 1627 ret = -ENOPROTOOPT; 1628 break; 1629 } 1630 sockopt_release_sock(sk); 1631 return ret; 1632 } 1633 1634 int sock_setsockopt(struct socket *sock, int level, int optname, 1635 sockptr_t optval, unsigned int optlen) 1636 { 1637 return sk_setsockopt(sock->sk, level, optname, 1638 optval, optlen); 1639 } 1640 EXPORT_SYMBOL(sock_setsockopt); 1641 1642 static const struct cred *sk_get_peer_cred(struct sock *sk) 1643 { 1644 const struct cred *cred; 1645 1646 spin_lock(&sk->sk_peer_lock); 1647 cred = get_cred(sk->sk_peer_cred); 1648 spin_unlock(&sk->sk_peer_lock); 1649 1650 return cred; 1651 } 1652 1653 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1654 struct ucred *ucred) 1655 { 1656 ucred->pid = pid_vnr(pid); 1657 ucred->uid = ucred->gid = -1; 1658 if (cred) { 1659 struct user_namespace *current_ns = current_user_ns(); 1660 1661 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1662 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1663 } 1664 } 1665 1666 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1667 { 1668 struct user_namespace *user_ns = current_user_ns(); 1669 int i; 1670 1671 for (i = 0; i < src->ngroups; i++) { 1672 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1673 1674 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1675 return -EFAULT; 1676 } 1677 1678 return 0; 1679 } 1680 1681 int sk_getsockopt(struct sock *sk, int level, int optname, 1682 sockptr_t optval, sockptr_t optlen) 1683 { 1684 struct socket *sock = sk->sk_socket; 1685 1686 union { 1687 int val; 1688 u64 val64; 1689 unsigned long ulval; 1690 struct linger ling; 1691 struct old_timeval32 tm32; 1692 struct __kernel_old_timeval tm; 1693 struct __kernel_sock_timeval stm; 1694 struct sock_txtime txtime; 1695 struct so_timestamping timestamping; 1696 } v; 1697 1698 int lv = sizeof(int); 1699 int len; 1700 1701 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1702 return -EFAULT; 1703 if (len < 0) 1704 return -EINVAL; 1705 1706 memset(&v, 0, sizeof(v)); 1707 1708 switch (optname) { 1709 case SO_DEBUG: 1710 v.val = sock_flag(sk, SOCK_DBG); 1711 break; 1712 1713 case SO_DONTROUTE: 1714 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1715 break; 1716 1717 case SO_BROADCAST: 1718 v.val = sock_flag(sk, SOCK_BROADCAST); 1719 break; 1720 1721 case SO_SNDBUF: 1722 v.val = READ_ONCE(sk->sk_sndbuf); 1723 break; 1724 1725 case SO_RCVBUF: 1726 v.val = READ_ONCE(sk->sk_rcvbuf); 1727 break; 1728 1729 case SO_REUSEADDR: 1730 v.val = sk->sk_reuse; 1731 break; 1732 1733 case SO_REUSEPORT: 1734 v.val = sk->sk_reuseport; 1735 break; 1736 1737 case SO_KEEPALIVE: 1738 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1739 break; 1740 1741 case SO_TYPE: 1742 v.val = sk->sk_type; 1743 break; 1744 1745 case SO_PROTOCOL: 1746 v.val = sk->sk_protocol; 1747 break; 1748 1749 case SO_DOMAIN: 1750 v.val = sk->sk_family; 1751 break; 1752 1753 case SO_ERROR: 1754 v.val = -sock_error(sk); 1755 if (v.val == 0) 1756 v.val = xchg(&sk->sk_err_soft, 0); 1757 break; 1758 1759 case SO_OOBINLINE: 1760 v.val = sock_flag(sk, SOCK_URGINLINE); 1761 break; 1762 1763 case SO_NO_CHECK: 1764 v.val = sk->sk_no_check_tx; 1765 break; 1766 1767 case SO_PRIORITY: 1768 v.val = READ_ONCE(sk->sk_priority); 1769 break; 1770 1771 case SO_LINGER: 1772 lv = sizeof(v.ling); 1773 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1774 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1775 break; 1776 1777 case SO_BSDCOMPAT: 1778 break; 1779 1780 case SO_TIMESTAMP_OLD: 1781 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1782 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1783 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1784 break; 1785 1786 case SO_TIMESTAMPNS_OLD: 1787 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1788 break; 1789 1790 case SO_TIMESTAMP_NEW: 1791 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1792 break; 1793 1794 case SO_TIMESTAMPNS_NEW: 1795 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1796 break; 1797 1798 case SO_TIMESTAMPING_OLD: 1799 case SO_TIMESTAMPING_NEW: 1800 lv = sizeof(v.timestamping); 1801 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1802 * returning the flags when they were set through the same option. 1803 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1804 */ 1805 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1806 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1807 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1808 } 1809 break; 1810 1811 case SO_RCVTIMEO_OLD: 1812 case SO_RCVTIMEO_NEW: 1813 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1814 SO_RCVTIMEO_OLD == optname); 1815 break; 1816 1817 case SO_SNDTIMEO_OLD: 1818 case SO_SNDTIMEO_NEW: 1819 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1820 SO_SNDTIMEO_OLD == optname); 1821 break; 1822 1823 case SO_RCVLOWAT: 1824 v.val = READ_ONCE(sk->sk_rcvlowat); 1825 break; 1826 1827 case SO_SNDLOWAT: 1828 v.val = 1; 1829 break; 1830 1831 case SO_PASSCRED: 1832 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1833 break; 1834 1835 case SO_PASSPIDFD: 1836 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1837 break; 1838 1839 case SO_PEERCRED: 1840 { 1841 struct ucred peercred; 1842 if (len > sizeof(peercred)) 1843 len = sizeof(peercred); 1844 1845 spin_lock(&sk->sk_peer_lock); 1846 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1847 spin_unlock(&sk->sk_peer_lock); 1848 1849 if (copy_to_sockptr(optval, &peercred, len)) 1850 return -EFAULT; 1851 goto lenout; 1852 } 1853 1854 case SO_PEERPIDFD: 1855 { 1856 struct pid *peer_pid; 1857 struct file *pidfd_file = NULL; 1858 int pidfd; 1859 1860 if (len > sizeof(pidfd)) 1861 len = sizeof(pidfd); 1862 1863 spin_lock(&sk->sk_peer_lock); 1864 peer_pid = get_pid(sk->sk_peer_pid); 1865 spin_unlock(&sk->sk_peer_lock); 1866 1867 if (!peer_pid) 1868 return -ENODATA; 1869 1870 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1871 put_pid(peer_pid); 1872 if (pidfd < 0) 1873 return pidfd; 1874 1875 if (copy_to_sockptr(optval, &pidfd, len) || 1876 copy_to_sockptr(optlen, &len, sizeof(int))) { 1877 put_unused_fd(pidfd); 1878 fput(pidfd_file); 1879 1880 return -EFAULT; 1881 } 1882 1883 fd_install(pidfd, pidfd_file); 1884 return 0; 1885 } 1886 1887 case SO_PEERGROUPS: 1888 { 1889 const struct cred *cred; 1890 int ret, n; 1891 1892 cred = sk_get_peer_cred(sk); 1893 if (!cred) 1894 return -ENODATA; 1895 1896 n = cred->group_info->ngroups; 1897 if (len < n * sizeof(gid_t)) { 1898 len = n * sizeof(gid_t); 1899 put_cred(cred); 1900 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1901 } 1902 len = n * sizeof(gid_t); 1903 1904 ret = groups_to_user(optval, cred->group_info); 1905 put_cred(cred); 1906 if (ret) 1907 return ret; 1908 goto lenout; 1909 } 1910 1911 case SO_PEERNAME: 1912 { 1913 struct sockaddr_storage address; 1914 1915 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1916 if (lv < 0) 1917 return -ENOTCONN; 1918 if (lv < len) 1919 return -EINVAL; 1920 if (copy_to_sockptr(optval, &address, len)) 1921 return -EFAULT; 1922 goto lenout; 1923 } 1924 1925 /* Dubious BSD thing... Probably nobody even uses it, but 1926 * the UNIX standard wants it for whatever reason... -DaveM 1927 */ 1928 case SO_ACCEPTCONN: 1929 v.val = sk->sk_state == TCP_LISTEN; 1930 break; 1931 1932 case SO_PASSSEC: 1933 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1934 break; 1935 1936 case SO_PEERSEC: 1937 return security_socket_getpeersec_stream(sock, 1938 optval, optlen, len); 1939 1940 case SO_MARK: 1941 v.val = READ_ONCE(sk->sk_mark); 1942 break; 1943 1944 case SO_RCVMARK: 1945 v.val = sock_flag(sk, SOCK_RCVMARK); 1946 break; 1947 1948 case SO_RXQ_OVFL: 1949 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1950 break; 1951 1952 case SO_WIFI_STATUS: 1953 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1954 break; 1955 1956 case SO_PEEK_OFF: 1957 if (!READ_ONCE(sock->ops)->set_peek_off) 1958 return -EOPNOTSUPP; 1959 1960 v.val = READ_ONCE(sk->sk_peek_off); 1961 break; 1962 case SO_NOFCS: 1963 v.val = sock_flag(sk, SOCK_NOFCS); 1964 break; 1965 1966 case SO_BINDTODEVICE: 1967 return sock_getbindtodevice(sk, optval, optlen, len); 1968 1969 case SO_GET_FILTER: 1970 len = sk_get_filter(sk, optval, len); 1971 if (len < 0) 1972 return len; 1973 1974 goto lenout; 1975 1976 case SO_LOCK_FILTER: 1977 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1978 break; 1979 1980 case SO_BPF_EXTENSIONS: 1981 v.val = bpf_tell_extensions(); 1982 break; 1983 1984 case SO_SELECT_ERR_QUEUE: 1985 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1986 break; 1987 1988 #ifdef CONFIG_NET_RX_BUSY_POLL 1989 case SO_BUSY_POLL: 1990 v.val = READ_ONCE(sk->sk_ll_usec); 1991 break; 1992 case SO_PREFER_BUSY_POLL: 1993 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1994 break; 1995 #endif 1996 1997 case SO_MAX_PACING_RATE: 1998 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1999 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 2000 lv = sizeof(v.ulval); 2001 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 2002 } else { 2003 /* 32bit version */ 2004 v.val = min_t(unsigned long, ~0U, 2005 READ_ONCE(sk->sk_max_pacing_rate)); 2006 } 2007 break; 2008 2009 case SO_INCOMING_CPU: 2010 v.val = READ_ONCE(sk->sk_incoming_cpu); 2011 break; 2012 2013 case SO_MEMINFO: 2014 { 2015 u32 meminfo[SK_MEMINFO_VARS]; 2016 2017 sk_get_meminfo(sk, meminfo); 2018 2019 len = min_t(unsigned int, len, sizeof(meminfo)); 2020 if (copy_to_sockptr(optval, &meminfo, len)) 2021 return -EFAULT; 2022 2023 goto lenout; 2024 } 2025 2026 #ifdef CONFIG_NET_RX_BUSY_POLL 2027 case SO_INCOMING_NAPI_ID: 2028 v.val = READ_ONCE(sk->sk_napi_id); 2029 2030 /* aggregate non-NAPI IDs down to 0 */ 2031 if (v.val < MIN_NAPI_ID) 2032 v.val = 0; 2033 2034 break; 2035 #endif 2036 2037 case SO_COOKIE: 2038 lv = sizeof(u64); 2039 if (len < lv) 2040 return -EINVAL; 2041 v.val64 = sock_gen_cookie(sk); 2042 break; 2043 2044 case SO_ZEROCOPY: 2045 v.val = sock_flag(sk, SOCK_ZEROCOPY); 2046 break; 2047 2048 case SO_TXTIME: 2049 lv = sizeof(v.txtime); 2050 v.txtime.clockid = sk->sk_clockid; 2051 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 2052 SOF_TXTIME_DEADLINE_MODE : 0; 2053 v.txtime.flags |= sk->sk_txtime_report_errors ? 2054 SOF_TXTIME_REPORT_ERRORS : 0; 2055 break; 2056 2057 case SO_BINDTOIFINDEX: 2058 v.val = READ_ONCE(sk->sk_bound_dev_if); 2059 break; 2060 2061 case SO_NETNS_COOKIE: 2062 lv = sizeof(u64); 2063 if (len != lv) 2064 return -EINVAL; 2065 v.val64 = sock_net(sk)->net_cookie; 2066 break; 2067 2068 case SO_BUF_LOCK: 2069 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 2070 break; 2071 2072 case SO_RESERVE_MEM: 2073 v.val = READ_ONCE(sk->sk_reserved_mem); 2074 break; 2075 2076 case SO_TXREHASH: 2077 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 2078 v.val = READ_ONCE(sk->sk_txrehash); 2079 break; 2080 2081 default: 2082 /* We implement the SO_SNDLOWAT etc to not be settable 2083 * (1003.1g 7). 2084 */ 2085 return -ENOPROTOOPT; 2086 } 2087 2088 if (len > lv) 2089 len = lv; 2090 if (copy_to_sockptr(optval, &v, len)) 2091 return -EFAULT; 2092 lenout: 2093 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2094 return -EFAULT; 2095 return 0; 2096 } 2097 2098 /* 2099 * Initialize an sk_lock. 2100 * 2101 * (We also register the sk_lock with the lock validator.) 2102 */ 2103 static inline void sock_lock_init(struct sock *sk) 2104 { 2105 if (sk->sk_kern_sock) 2106 sock_lock_init_class_and_name( 2107 sk, 2108 af_family_kern_slock_key_strings[sk->sk_family], 2109 af_family_kern_slock_keys + sk->sk_family, 2110 af_family_kern_key_strings[sk->sk_family], 2111 af_family_kern_keys + sk->sk_family); 2112 else 2113 sock_lock_init_class_and_name( 2114 sk, 2115 af_family_slock_key_strings[sk->sk_family], 2116 af_family_slock_keys + sk->sk_family, 2117 af_family_key_strings[sk->sk_family], 2118 af_family_keys + sk->sk_family); 2119 } 2120 2121 /* 2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2123 * even temporarily, because of RCU lookups. sk_node should also be left as is. 2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2125 */ 2126 static void sock_copy(struct sock *nsk, const struct sock *osk) 2127 { 2128 const struct proto *prot = READ_ONCE(osk->sk_prot); 2129 #ifdef CONFIG_SECURITY_NETWORK 2130 void *sptr = nsk->sk_security; 2131 #endif 2132 2133 /* If we move sk_tx_queue_mapping out of the private section, 2134 * we must check if sk_tx_queue_clear() is called after 2135 * sock_copy() in sk_clone_lock(). 2136 */ 2137 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2138 offsetof(struct sock, sk_dontcopy_begin) || 2139 offsetof(struct sock, sk_tx_queue_mapping) >= 2140 offsetof(struct sock, sk_dontcopy_end)); 2141 2142 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2143 2144 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2145 prot->obj_size - offsetof(struct sock, sk_dontcopy_end), 2146 /* alloc is larger than struct, see sk_prot_alloc() */); 2147 2148 #ifdef CONFIG_SECURITY_NETWORK 2149 nsk->sk_security = sptr; 2150 security_sk_clone(osk, nsk); 2151 #endif 2152 } 2153 2154 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2155 int family) 2156 { 2157 struct sock *sk; 2158 struct kmem_cache *slab; 2159 2160 slab = prot->slab; 2161 if (slab != NULL) { 2162 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2163 if (!sk) 2164 return sk; 2165 if (want_init_on_alloc(priority)) 2166 sk_prot_clear_nulls(sk, prot->obj_size); 2167 } else 2168 sk = kmalloc(prot->obj_size, priority); 2169 2170 if (sk != NULL) { 2171 if (security_sk_alloc(sk, family, priority)) 2172 goto out_free; 2173 2174 if (!try_module_get(prot->owner)) 2175 goto out_free_sec; 2176 } 2177 2178 return sk; 2179 2180 out_free_sec: 2181 security_sk_free(sk); 2182 out_free: 2183 if (slab != NULL) 2184 kmem_cache_free(slab, sk); 2185 else 2186 kfree(sk); 2187 return NULL; 2188 } 2189 2190 static void sk_prot_free(struct proto *prot, struct sock *sk) 2191 { 2192 struct kmem_cache *slab; 2193 struct module *owner; 2194 2195 owner = prot->owner; 2196 slab = prot->slab; 2197 2198 cgroup_sk_free(&sk->sk_cgrp_data); 2199 mem_cgroup_sk_free(sk); 2200 security_sk_free(sk); 2201 if (slab != NULL) 2202 kmem_cache_free(slab, sk); 2203 else 2204 kfree(sk); 2205 module_put(owner); 2206 } 2207 2208 /** 2209 * sk_alloc - All socket objects are allocated here 2210 * @net: the applicable net namespace 2211 * @family: protocol family 2212 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2213 * @prot: struct proto associated with this new sock instance 2214 * @kern: is this to be a kernel socket? 2215 */ 2216 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2217 struct proto *prot, int kern) 2218 { 2219 struct sock *sk; 2220 2221 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2222 if (sk) { 2223 sk->sk_family = family; 2224 /* 2225 * See comment in struct sock definition to understand 2226 * why we need sk_prot_creator -acme 2227 */ 2228 sk->sk_prot = sk->sk_prot_creator = prot; 2229 sk->sk_kern_sock = kern; 2230 sock_lock_init(sk); 2231 sk->sk_net_refcnt = kern ? 0 : 1; 2232 if (likely(sk->sk_net_refcnt)) { 2233 get_net_track(net, &sk->ns_tracker, priority); 2234 sock_inuse_add(net, 1); 2235 } else { 2236 __netns_tracker_alloc(net, &sk->ns_tracker, 2237 false, priority); 2238 } 2239 2240 sock_net_set(sk, net); 2241 refcount_set(&sk->sk_wmem_alloc, 1); 2242 2243 mem_cgroup_sk_alloc(sk); 2244 cgroup_sk_alloc(&sk->sk_cgrp_data); 2245 sock_update_classid(&sk->sk_cgrp_data); 2246 sock_update_netprioidx(&sk->sk_cgrp_data); 2247 sk_tx_queue_clear(sk); 2248 } 2249 2250 return sk; 2251 } 2252 EXPORT_SYMBOL(sk_alloc); 2253 2254 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2255 * grace period. This is the case for UDP sockets and TCP listeners. 2256 */ 2257 static void __sk_destruct(struct rcu_head *head) 2258 { 2259 struct sock *sk = container_of(head, struct sock, sk_rcu); 2260 struct sk_filter *filter; 2261 2262 if (sk->sk_destruct) 2263 sk->sk_destruct(sk); 2264 2265 filter = rcu_dereference_check(sk->sk_filter, 2266 refcount_read(&sk->sk_wmem_alloc) == 0); 2267 if (filter) { 2268 sk_filter_uncharge(sk, filter); 2269 RCU_INIT_POINTER(sk->sk_filter, NULL); 2270 } 2271 2272 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2273 2274 #ifdef CONFIG_BPF_SYSCALL 2275 bpf_sk_storage_free(sk); 2276 #endif 2277 2278 if (atomic_read(&sk->sk_omem_alloc)) 2279 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2280 __func__, atomic_read(&sk->sk_omem_alloc)); 2281 2282 if (sk->sk_frag.page) { 2283 put_page(sk->sk_frag.page); 2284 sk->sk_frag.page = NULL; 2285 } 2286 2287 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2288 put_cred(sk->sk_peer_cred); 2289 put_pid(sk->sk_peer_pid); 2290 2291 if (likely(sk->sk_net_refcnt)) 2292 put_net_track(sock_net(sk), &sk->ns_tracker); 2293 else 2294 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2295 2296 sk_prot_free(sk->sk_prot_creator, sk); 2297 } 2298 2299 void sk_destruct(struct sock *sk) 2300 { 2301 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2302 2303 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2304 reuseport_detach_sock(sk); 2305 use_call_rcu = true; 2306 } 2307 2308 if (use_call_rcu) 2309 call_rcu(&sk->sk_rcu, __sk_destruct); 2310 else 2311 __sk_destruct(&sk->sk_rcu); 2312 } 2313 2314 static void __sk_free(struct sock *sk) 2315 { 2316 if (likely(sk->sk_net_refcnt)) 2317 sock_inuse_add(sock_net(sk), -1); 2318 2319 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2320 sock_diag_broadcast_destroy(sk); 2321 else 2322 sk_destruct(sk); 2323 } 2324 2325 void sk_free(struct sock *sk) 2326 { 2327 /* 2328 * We subtract one from sk_wmem_alloc and can know if 2329 * some packets are still in some tx queue. 2330 * If not null, sock_wfree() will call __sk_free(sk) later 2331 */ 2332 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2333 __sk_free(sk); 2334 } 2335 EXPORT_SYMBOL(sk_free); 2336 2337 static void sk_init_common(struct sock *sk) 2338 { 2339 skb_queue_head_init(&sk->sk_receive_queue); 2340 skb_queue_head_init(&sk->sk_write_queue); 2341 skb_queue_head_init(&sk->sk_error_queue); 2342 2343 rwlock_init(&sk->sk_callback_lock); 2344 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2345 af_rlock_keys + sk->sk_family, 2346 af_family_rlock_key_strings[sk->sk_family]); 2347 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2348 af_wlock_keys + sk->sk_family, 2349 af_family_wlock_key_strings[sk->sk_family]); 2350 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2351 af_elock_keys + sk->sk_family, 2352 af_family_elock_key_strings[sk->sk_family]); 2353 if (sk->sk_kern_sock) 2354 lockdep_set_class_and_name(&sk->sk_callback_lock, 2355 af_kern_callback_keys + sk->sk_family, 2356 af_family_kern_clock_key_strings[sk->sk_family]); 2357 else 2358 lockdep_set_class_and_name(&sk->sk_callback_lock, 2359 af_callback_keys + sk->sk_family, 2360 af_family_clock_key_strings[sk->sk_family]); 2361 } 2362 2363 /** 2364 * sk_clone_lock - clone a socket, and lock its clone 2365 * @sk: the socket to clone 2366 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2367 * 2368 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2369 */ 2370 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2371 { 2372 struct proto *prot = READ_ONCE(sk->sk_prot); 2373 struct sk_filter *filter; 2374 bool is_charged = true; 2375 struct sock *newsk; 2376 2377 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2378 if (!newsk) 2379 goto out; 2380 2381 sock_copy(newsk, sk); 2382 2383 newsk->sk_prot_creator = prot; 2384 2385 /* SANITY */ 2386 if (likely(newsk->sk_net_refcnt)) { 2387 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2388 sock_inuse_add(sock_net(newsk), 1); 2389 } else { 2390 /* Kernel sockets are not elevating the struct net refcount. 2391 * Instead, use a tracker to more easily detect if a layer 2392 * is not properly dismantling its kernel sockets at netns 2393 * destroy time. 2394 */ 2395 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2396 false, priority); 2397 } 2398 sk_node_init(&newsk->sk_node); 2399 sock_lock_init(newsk); 2400 bh_lock_sock(newsk); 2401 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2402 newsk->sk_backlog.len = 0; 2403 2404 atomic_set(&newsk->sk_rmem_alloc, 0); 2405 2406 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2407 refcount_set(&newsk->sk_wmem_alloc, 1); 2408 2409 atomic_set(&newsk->sk_omem_alloc, 0); 2410 sk_init_common(newsk); 2411 2412 newsk->sk_dst_cache = NULL; 2413 newsk->sk_dst_pending_confirm = 0; 2414 newsk->sk_wmem_queued = 0; 2415 newsk->sk_forward_alloc = 0; 2416 newsk->sk_reserved_mem = 0; 2417 atomic_set(&newsk->sk_drops, 0); 2418 newsk->sk_send_head = NULL; 2419 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2420 atomic_set(&newsk->sk_zckey, 0); 2421 2422 sock_reset_flag(newsk, SOCK_DONE); 2423 2424 /* sk->sk_memcg will be populated at accept() time */ 2425 newsk->sk_memcg = NULL; 2426 2427 cgroup_sk_clone(&newsk->sk_cgrp_data); 2428 2429 rcu_read_lock(); 2430 filter = rcu_dereference(sk->sk_filter); 2431 if (filter != NULL) 2432 /* though it's an empty new sock, the charging may fail 2433 * if sysctl_optmem_max was changed between creation of 2434 * original socket and cloning 2435 */ 2436 is_charged = sk_filter_charge(newsk, filter); 2437 RCU_INIT_POINTER(newsk->sk_filter, filter); 2438 rcu_read_unlock(); 2439 2440 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2441 /* We need to make sure that we don't uncharge the new 2442 * socket if we couldn't charge it in the first place 2443 * as otherwise we uncharge the parent's filter. 2444 */ 2445 if (!is_charged) 2446 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2447 sk_free_unlock_clone(newsk); 2448 newsk = NULL; 2449 goto out; 2450 } 2451 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2452 2453 if (bpf_sk_storage_clone(sk, newsk)) { 2454 sk_free_unlock_clone(newsk); 2455 newsk = NULL; 2456 goto out; 2457 } 2458 2459 /* Clear sk_user_data if parent had the pointer tagged 2460 * as not suitable for copying when cloning. 2461 */ 2462 if (sk_user_data_is_nocopy(newsk)) 2463 newsk->sk_user_data = NULL; 2464 2465 newsk->sk_err = 0; 2466 newsk->sk_err_soft = 0; 2467 newsk->sk_priority = 0; 2468 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2469 2470 /* Before updating sk_refcnt, we must commit prior changes to memory 2471 * (Documentation/RCU/rculist_nulls.rst for details) 2472 */ 2473 smp_wmb(); 2474 refcount_set(&newsk->sk_refcnt, 2); 2475 2476 sk_set_socket(newsk, NULL); 2477 sk_tx_queue_clear(newsk); 2478 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2479 2480 if (newsk->sk_prot->sockets_allocated) 2481 sk_sockets_allocated_inc(newsk); 2482 2483 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2484 net_enable_timestamp(); 2485 out: 2486 return newsk; 2487 } 2488 EXPORT_SYMBOL_GPL(sk_clone_lock); 2489 2490 void sk_free_unlock_clone(struct sock *sk) 2491 { 2492 /* It is still raw copy of parent, so invalidate 2493 * destructor and make plain sk_free() */ 2494 sk->sk_destruct = NULL; 2495 bh_unlock_sock(sk); 2496 sk_free(sk); 2497 } 2498 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2499 2500 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2501 { 2502 bool is_ipv6 = false; 2503 u32 max_size; 2504 2505 #if IS_ENABLED(CONFIG_IPV6) 2506 is_ipv6 = (sk->sk_family == AF_INET6 && 2507 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2508 #endif 2509 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2510 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2511 READ_ONCE(dst->dev->gso_ipv4_max_size); 2512 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2513 max_size = GSO_LEGACY_MAX_SIZE; 2514 2515 return max_size - (MAX_TCP_HEADER + 1); 2516 } 2517 2518 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2519 { 2520 u32 max_segs = 1; 2521 2522 sk->sk_route_caps = dst->dev->features; 2523 if (sk_is_tcp(sk)) 2524 sk->sk_route_caps |= NETIF_F_GSO; 2525 if (sk->sk_route_caps & NETIF_F_GSO) 2526 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2527 if (unlikely(sk->sk_gso_disabled)) 2528 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2529 if (sk_can_gso(sk)) { 2530 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2531 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2532 } else { 2533 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2534 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2535 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2536 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2537 } 2538 } 2539 sk->sk_gso_max_segs = max_segs; 2540 sk_dst_set(sk, dst); 2541 } 2542 EXPORT_SYMBOL_GPL(sk_setup_caps); 2543 2544 /* 2545 * Simple resource managers for sockets. 2546 */ 2547 2548 2549 /* 2550 * Write buffer destructor automatically called from kfree_skb. 2551 */ 2552 void sock_wfree(struct sk_buff *skb) 2553 { 2554 struct sock *sk = skb->sk; 2555 unsigned int len = skb->truesize; 2556 bool free; 2557 2558 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2559 if (sock_flag(sk, SOCK_RCU_FREE) && 2560 sk->sk_write_space == sock_def_write_space) { 2561 rcu_read_lock(); 2562 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2563 sock_def_write_space_wfree(sk); 2564 rcu_read_unlock(); 2565 if (unlikely(free)) 2566 __sk_free(sk); 2567 return; 2568 } 2569 2570 /* 2571 * Keep a reference on sk_wmem_alloc, this will be released 2572 * after sk_write_space() call 2573 */ 2574 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2575 sk->sk_write_space(sk); 2576 len = 1; 2577 } 2578 /* 2579 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2580 * could not do because of in-flight packets 2581 */ 2582 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2583 __sk_free(sk); 2584 } 2585 EXPORT_SYMBOL(sock_wfree); 2586 2587 /* This variant of sock_wfree() is used by TCP, 2588 * since it sets SOCK_USE_WRITE_QUEUE. 2589 */ 2590 void __sock_wfree(struct sk_buff *skb) 2591 { 2592 struct sock *sk = skb->sk; 2593 2594 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2595 __sk_free(sk); 2596 } 2597 2598 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2599 { 2600 skb_orphan(skb); 2601 #ifdef CONFIG_INET 2602 if (unlikely(!sk_fullsock(sk))) 2603 return skb_set_owner_edemux(skb, sk); 2604 #endif 2605 skb->sk = sk; 2606 skb->destructor = sock_wfree; 2607 skb_set_hash_from_sk(skb, sk); 2608 /* 2609 * We used to take a refcount on sk, but following operation 2610 * is enough to guarantee sk_free() won't free this sock until 2611 * all in-flight packets are completed 2612 */ 2613 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2614 } 2615 EXPORT_SYMBOL(skb_set_owner_w); 2616 2617 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2618 { 2619 /* Drivers depend on in-order delivery for crypto offload, 2620 * partial orphan breaks out-of-order-OK logic. 2621 */ 2622 if (skb_is_decrypted(skb)) 2623 return false; 2624 2625 return (skb->destructor == sock_wfree || 2626 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2627 } 2628 2629 /* This helper is used by netem, as it can hold packets in its 2630 * delay queue. We want to allow the owner socket to send more 2631 * packets, as if they were already TX completed by a typical driver. 2632 * But we also want to keep skb->sk set because some packet schedulers 2633 * rely on it (sch_fq for example). 2634 */ 2635 void skb_orphan_partial(struct sk_buff *skb) 2636 { 2637 if (skb_is_tcp_pure_ack(skb)) 2638 return; 2639 2640 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2641 return; 2642 2643 skb_orphan(skb); 2644 } 2645 EXPORT_SYMBOL(skb_orphan_partial); 2646 2647 /* 2648 * Read buffer destructor automatically called from kfree_skb. 2649 */ 2650 void sock_rfree(struct sk_buff *skb) 2651 { 2652 struct sock *sk = skb->sk; 2653 unsigned int len = skb->truesize; 2654 2655 atomic_sub(len, &sk->sk_rmem_alloc); 2656 sk_mem_uncharge(sk, len); 2657 } 2658 EXPORT_SYMBOL(sock_rfree); 2659 2660 /* 2661 * Buffer destructor for skbs that are not used directly in read or write 2662 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2663 */ 2664 void sock_efree(struct sk_buff *skb) 2665 { 2666 sock_put(skb->sk); 2667 } 2668 EXPORT_SYMBOL(sock_efree); 2669 2670 /* Buffer destructor for prefetch/receive path where reference count may 2671 * not be held, e.g. for listen sockets. 2672 */ 2673 #ifdef CONFIG_INET 2674 void sock_pfree(struct sk_buff *skb) 2675 { 2676 struct sock *sk = skb->sk; 2677 2678 if (!sk_is_refcounted(sk)) 2679 return; 2680 2681 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { 2682 inet_reqsk(sk)->rsk_listener = NULL; 2683 reqsk_free(inet_reqsk(sk)); 2684 return; 2685 } 2686 2687 sock_gen_put(sk); 2688 } 2689 EXPORT_SYMBOL(sock_pfree); 2690 #endif /* CONFIG_INET */ 2691 2692 kuid_t sock_i_uid(struct sock *sk) 2693 { 2694 kuid_t uid; 2695 2696 read_lock_bh(&sk->sk_callback_lock); 2697 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2698 read_unlock_bh(&sk->sk_callback_lock); 2699 return uid; 2700 } 2701 EXPORT_SYMBOL(sock_i_uid); 2702 2703 unsigned long __sock_i_ino(struct sock *sk) 2704 { 2705 unsigned long ino; 2706 2707 read_lock(&sk->sk_callback_lock); 2708 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2709 read_unlock(&sk->sk_callback_lock); 2710 return ino; 2711 } 2712 EXPORT_SYMBOL(__sock_i_ino); 2713 2714 unsigned long sock_i_ino(struct sock *sk) 2715 { 2716 unsigned long ino; 2717 2718 local_bh_disable(); 2719 ino = __sock_i_ino(sk); 2720 local_bh_enable(); 2721 return ino; 2722 } 2723 EXPORT_SYMBOL(sock_i_ino); 2724 2725 /* 2726 * Allocate a skb from the socket's send buffer. 2727 */ 2728 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2729 gfp_t priority) 2730 { 2731 if (force || 2732 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2733 struct sk_buff *skb = alloc_skb(size, priority); 2734 2735 if (skb) { 2736 skb_set_owner_w(skb, sk); 2737 return skb; 2738 } 2739 } 2740 return NULL; 2741 } 2742 EXPORT_SYMBOL(sock_wmalloc); 2743 2744 static void sock_ofree(struct sk_buff *skb) 2745 { 2746 struct sock *sk = skb->sk; 2747 2748 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2749 } 2750 2751 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2752 gfp_t priority) 2753 { 2754 struct sk_buff *skb; 2755 2756 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2757 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2758 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2759 return NULL; 2760 2761 skb = alloc_skb(size, priority); 2762 if (!skb) 2763 return NULL; 2764 2765 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2766 skb->sk = sk; 2767 skb->destructor = sock_ofree; 2768 return skb; 2769 } 2770 2771 /* 2772 * Allocate a memory block from the socket's option memory buffer. 2773 */ 2774 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2775 { 2776 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2777 2778 if ((unsigned int)size <= optmem_max && 2779 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2780 void *mem; 2781 /* First do the add, to avoid the race if kmalloc 2782 * might sleep. 2783 */ 2784 atomic_add(size, &sk->sk_omem_alloc); 2785 mem = kmalloc(size, priority); 2786 if (mem) 2787 return mem; 2788 atomic_sub(size, &sk->sk_omem_alloc); 2789 } 2790 return NULL; 2791 } 2792 EXPORT_SYMBOL(sock_kmalloc); 2793 2794 /* Free an option memory block. Note, we actually want the inline 2795 * here as this allows gcc to detect the nullify and fold away the 2796 * condition entirely. 2797 */ 2798 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2799 const bool nullify) 2800 { 2801 if (WARN_ON_ONCE(!mem)) 2802 return; 2803 if (nullify) 2804 kfree_sensitive(mem); 2805 else 2806 kfree(mem); 2807 atomic_sub(size, &sk->sk_omem_alloc); 2808 } 2809 2810 void sock_kfree_s(struct sock *sk, void *mem, int size) 2811 { 2812 __sock_kfree_s(sk, mem, size, false); 2813 } 2814 EXPORT_SYMBOL(sock_kfree_s); 2815 2816 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2817 { 2818 __sock_kfree_s(sk, mem, size, true); 2819 } 2820 EXPORT_SYMBOL(sock_kzfree_s); 2821 2822 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2823 I think, these locks should be removed for datagram sockets. 2824 */ 2825 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2826 { 2827 DEFINE_WAIT(wait); 2828 2829 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2830 for (;;) { 2831 if (!timeo) 2832 break; 2833 if (signal_pending(current)) 2834 break; 2835 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2836 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2837 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2838 break; 2839 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2840 break; 2841 if (READ_ONCE(sk->sk_err)) 2842 break; 2843 timeo = schedule_timeout(timeo); 2844 } 2845 finish_wait(sk_sleep(sk), &wait); 2846 return timeo; 2847 } 2848 2849 2850 /* 2851 * Generic send/receive buffer handlers 2852 */ 2853 2854 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2855 unsigned long data_len, int noblock, 2856 int *errcode, int max_page_order) 2857 { 2858 struct sk_buff *skb; 2859 long timeo; 2860 int err; 2861 2862 timeo = sock_sndtimeo(sk, noblock); 2863 for (;;) { 2864 err = sock_error(sk); 2865 if (err != 0) 2866 goto failure; 2867 2868 err = -EPIPE; 2869 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2870 goto failure; 2871 2872 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2873 break; 2874 2875 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2876 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2877 err = -EAGAIN; 2878 if (!timeo) 2879 goto failure; 2880 if (signal_pending(current)) 2881 goto interrupted; 2882 timeo = sock_wait_for_wmem(sk, timeo); 2883 } 2884 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2885 errcode, sk->sk_allocation); 2886 if (skb) 2887 skb_set_owner_w(skb, sk); 2888 return skb; 2889 2890 interrupted: 2891 err = sock_intr_errno(timeo); 2892 failure: 2893 *errcode = err; 2894 return NULL; 2895 } 2896 EXPORT_SYMBOL(sock_alloc_send_pskb); 2897 2898 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2899 struct sockcm_cookie *sockc) 2900 { 2901 u32 tsflags; 2902 2903 BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); 2904 2905 switch (cmsg->cmsg_type) { 2906 case SO_MARK: 2907 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2908 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2909 return -EPERM; 2910 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2911 return -EINVAL; 2912 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2913 break; 2914 case SO_TIMESTAMPING_OLD: 2915 case SO_TIMESTAMPING_NEW: 2916 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2917 return -EINVAL; 2918 2919 tsflags = *(u32 *)CMSG_DATA(cmsg); 2920 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2921 return -EINVAL; 2922 2923 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2924 sockc->tsflags |= tsflags; 2925 break; 2926 case SCM_TXTIME: 2927 if (!sock_flag(sk, SOCK_TXTIME)) 2928 return -EINVAL; 2929 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2930 return -EINVAL; 2931 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2932 break; 2933 case SCM_TS_OPT_ID: 2934 if (sk_is_tcp(sk)) 2935 return -EINVAL; 2936 tsflags = READ_ONCE(sk->sk_tsflags); 2937 if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) 2938 return -EINVAL; 2939 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2940 return -EINVAL; 2941 sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); 2942 sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; 2943 break; 2944 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2945 case SCM_RIGHTS: 2946 case SCM_CREDENTIALS: 2947 break; 2948 default: 2949 return -EINVAL; 2950 } 2951 return 0; 2952 } 2953 EXPORT_SYMBOL(__sock_cmsg_send); 2954 2955 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2956 struct sockcm_cookie *sockc) 2957 { 2958 struct cmsghdr *cmsg; 2959 int ret; 2960 2961 for_each_cmsghdr(cmsg, msg) { 2962 if (!CMSG_OK(msg, cmsg)) 2963 return -EINVAL; 2964 if (cmsg->cmsg_level != SOL_SOCKET) 2965 continue; 2966 ret = __sock_cmsg_send(sk, cmsg, sockc); 2967 if (ret) 2968 return ret; 2969 } 2970 return 0; 2971 } 2972 EXPORT_SYMBOL(sock_cmsg_send); 2973 2974 static void sk_enter_memory_pressure(struct sock *sk) 2975 { 2976 if (!sk->sk_prot->enter_memory_pressure) 2977 return; 2978 2979 sk->sk_prot->enter_memory_pressure(sk); 2980 } 2981 2982 static void sk_leave_memory_pressure(struct sock *sk) 2983 { 2984 if (sk->sk_prot->leave_memory_pressure) { 2985 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2986 tcp_leave_memory_pressure, sk); 2987 } else { 2988 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2989 2990 if (memory_pressure && READ_ONCE(*memory_pressure)) 2991 WRITE_ONCE(*memory_pressure, 0); 2992 } 2993 } 2994 2995 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2996 2997 /** 2998 * skb_page_frag_refill - check that a page_frag contains enough room 2999 * @sz: minimum size of the fragment we want to get 3000 * @pfrag: pointer to page_frag 3001 * @gfp: priority for memory allocation 3002 * 3003 * Note: While this allocator tries to use high order pages, there is 3004 * no guarantee that allocations succeed. Therefore, @sz MUST be 3005 * less or equal than PAGE_SIZE. 3006 */ 3007 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 3008 { 3009 if (pfrag->page) { 3010 if (page_ref_count(pfrag->page) == 1) { 3011 pfrag->offset = 0; 3012 return true; 3013 } 3014 if (pfrag->offset + sz <= pfrag->size) 3015 return true; 3016 put_page(pfrag->page); 3017 } 3018 3019 pfrag->offset = 0; 3020 if (SKB_FRAG_PAGE_ORDER && 3021 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 3022 /* Avoid direct reclaim but allow kswapd to wake */ 3023 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 3024 __GFP_COMP | __GFP_NOWARN | 3025 __GFP_NORETRY, 3026 SKB_FRAG_PAGE_ORDER); 3027 if (likely(pfrag->page)) { 3028 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 3029 return true; 3030 } 3031 } 3032 pfrag->page = alloc_page(gfp); 3033 if (likely(pfrag->page)) { 3034 pfrag->size = PAGE_SIZE; 3035 return true; 3036 } 3037 return false; 3038 } 3039 EXPORT_SYMBOL(skb_page_frag_refill); 3040 3041 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 3042 { 3043 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 3044 return true; 3045 3046 sk_enter_memory_pressure(sk); 3047 sk_stream_moderate_sndbuf(sk); 3048 return false; 3049 } 3050 EXPORT_SYMBOL(sk_page_frag_refill); 3051 3052 void __lock_sock(struct sock *sk) 3053 __releases(&sk->sk_lock.slock) 3054 __acquires(&sk->sk_lock.slock) 3055 { 3056 DEFINE_WAIT(wait); 3057 3058 for (;;) { 3059 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 3060 TASK_UNINTERRUPTIBLE); 3061 spin_unlock_bh(&sk->sk_lock.slock); 3062 schedule(); 3063 spin_lock_bh(&sk->sk_lock.slock); 3064 if (!sock_owned_by_user(sk)) 3065 break; 3066 } 3067 finish_wait(&sk->sk_lock.wq, &wait); 3068 } 3069 3070 void __release_sock(struct sock *sk) 3071 __releases(&sk->sk_lock.slock) 3072 __acquires(&sk->sk_lock.slock) 3073 { 3074 struct sk_buff *skb, *next; 3075 3076 while ((skb = sk->sk_backlog.head) != NULL) { 3077 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 3078 3079 spin_unlock_bh(&sk->sk_lock.slock); 3080 3081 do { 3082 next = skb->next; 3083 prefetch(next); 3084 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 3085 skb_mark_not_on_list(skb); 3086 sk_backlog_rcv(sk, skb); 3087 3088 cond_resched(); 3089 3090 skb = next; 3091 } while (skb != NULL); 3092 3093 spin_lock_bh(&sk->sk_lock.slock); 3094 } 3095 3096 /* 3097 * Doing the zeroing here guarantee we can not loop forever 3098 * while a wild producer attempts to flood us. 3099 */ 3100 sk->sk_backlog.len = 0; 3101 } 3102 3103 void __sk_flush_backlog(struct sock *sk) 3104 { 3105 spin_lock_bh(&sk->sk_lock.slock); 3106 __release_sock(sk); 3107 3108 if (sk->sk_prot->release_cb) 3109 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3110 tcp_release_cb, sk); 3111 3112 spin_unlock_bh(&sk->sk_lock.slock); 3113 } 3114 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3115 3116 /** 3117 * sk_wait_data - wait for data to arrive at sk_receive_queue 3118 * @sk: sock to wait on 3119 * @timeo: for how long 3120 * @skb: last skb seen on sk_receive_queue 3121 * 3122 * Now socket state including sk->sk_err is changed only under lock, 3123 * hence we may omit checks after joining wait queue. 3124 * We check receive queue before schedule() only as optimization; 3125 * it is very likely that release_sock() added new data. 3126 */ 3127 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3128 { 3129 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3130 int rc; 3131 3132 add_wait_queue(sk_sleep(sk), &wait); 3133 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3134 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3135 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3136 remove_wait_queue(sk_sleep(sk), &wait); 3137 return rc; 3138 } 3139 EXPORT_SYMBOL(sk_wait_data); 3140 3141 /** 3142 * __sk_mem_raise_allocated - increase memory_allocated 3143 * @sk: socket 3144 * @size: memory size to allocate 3145 * @amt: pages to allocate 3146 * @kind: allocation type 3147 * 3148 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3149 * 3150 * Unlike the globally shared limits among the sockets under same protocol, 3151 * consuming the budget of a memcg won't have direct effect on other ones. 3152 * So be optimistic about memcg's tolerance, and leave the callers to decide 3153 * whether or not to raise allocated through sk_under_memory_pressure() or 3154 * its variants. 3155 */ 3156 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3157 { 3158 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3159 struct proto *prot = sk->sk_prot; 3160 bool charged = false; 3161 long allocated; 3162 3163 sk_memory_allocated_add(sk, amt); 3164 allocated = sk_memory_allocated(sk); 3165 3166 if (memcg) { 3167 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3168 goto suppress_allocation; 3169 charged = true; 3170 } 3171 3172 /* Under limit. */ 3173 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3174 sk_leave_memory_pressure(sk); 3175 return 1; 3176 } 3177 3178 /* Under pressure. */ 3179 if (allocated > sk_prot_mem_limits(sk, 1)) 3180 sk_enter_memory_pressure(sk); 3181 3182 /* Over hard limit. */ 3183 if (allocated > sk_prot_mem_limits(sk, 2)) 3184 goto suppress_allocation; 3185 3186 /* Guarantee minimum buffer size under pressure (either global 3187 * or memcg) to make sure features described in RFC 7323 (TCP 3188 * Extensions for High Performance) work properly. 3189 * 3190 * This rule does NOT stand when exceeds global or memcg's hard 3191 * limit, or else a DoS attack can be taken place by spawning 3192 * lots of sockets whose usage are under minimum buffer size. 3193 */ 3194 if (kind == SK_MEM_RECV) { 3195 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3196 return 1; 3197 3198 } else { /* SK_MEM_SEND */ 3199 int wmem0 = sk_get_wmem0(sk, prot); 3200 3201 if (sk->sk_type == SOCK_STREAM) { 3202 if (sk->sk_wmem_queued < wmem0) 3203 return 1; 3204 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3205 return 1; 3206 } 3207 } 3208 3209 if (sk_has_memory_pressure(sk)) { 3210 u64 alloc; 3211 3212 /* The following 'average' heuristic is within the 3213 * scope of global accounting, so it only makes 3214 * sense for global memory pressure. 3215 */ 3216 if (!sk_under_global_memory_pressure(sk)) 3217 return 1; 3218 3219 /* Try to be fair among all the sockets under global 3220 * pressure by allowing the ones that below average 3221 * usage to raise. 3222 */ 3223 alloc = sk_sockets_allocated_read_positive(sk); 3224 if (sk_prot_mem_limits(sk, 2) > alloc * 3225 sk_mem_pages(sk->sk_wmem_queued + 3226 atomic_read(&sk->sk_rmem_alloc) + 3227 sk->sk_forward_alloc)) 3228 return 1; 3229 } 3230 3231 suppress_allocation: 3232 3233 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3234 sk_stream_moderate_sndbuf(sk); 3235 3236 /* Fail only if socket is _under_ its sndbuf. 3237 * In this case we cannot block, so that we have to fail. 3238 */ 3239 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3240 /* Force charge with __GFP_NOFAIL */ 3241 if (memcg && !charged) { 3242 mem_cgroup_charge_skmem(memcg, amt, 3243 gfp_memcg_charge() | __GFP_NOFAIL); 3244 } 3245 return 1; 3246 } 3247 } 3248 3249 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3250 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3251 3252 sk_memory_allocated_sub(sk, amt); 3253 3254 if (charged) 3255 mem_cgroup_uncharge_skmem(memcg, amt); 3256 3257 return 0; 3258 } 3259 3260 /** 3261 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3262 * @sk: socket 3263 * @size: memory size to allocate 3264 * @kind: allocation type 3265 * 3266 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3267 * rmem allocation. This function assumes that protocols which have 3268 * memory_pressure use sk_wmem_queued as write buffer accounting. 3269 */ 3270 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3271 { 3272 int ret, amt = sk_mem_pages(size); 3273 3274 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3275 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3276 if (!ret) 3277 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3278 return ret; 3279 } 3280 EXPORT_SYMBOL(__sk_mem_schedule); 3281 3282 /** 3283 * __sk_mem_reduce_allocated - reclaim memory_allocated 3284 * @sk: socket 3285 * @amount: number of quanta 3286 * 3287 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3288 */ 3289 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3290 { 3291 sk_memory_allocated_sub(sk, amount); 3292 3293 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3294 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3295 3296 if (sk_under_global_memory_pressure(sk) && 3297 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3298 sk_leave_memory_pressure(sk); 3299 } 3300 3301 /** 3302 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3303 * @sk: socket 3304 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3305 */ 3306 void __sk_mem_reclaim(struct sock *sk, int amount) 3307 { 3308 amount >>= PAGE_SHIFT; 3309 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3310 __sk_mem_reduce_allocated(sk, amount); 3311 } 3312 EXPORT_SYMBOL(__sk_mem_reclaim); 3313 3314 int sk_set_peek_off(struct sock *sk, int val) 3315 { 3316 WRITE_ONCE(sk->sk_peek_off, val); 3317 return 0; 3318 } 3319 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3320 3321 /* 3322 * Set of default routines for initialising struct proto_ops when 3323 * the protocol does not support a particular function. In certain 3324 * cases where it makes no sense for a protocol to have a "do nothing" 3325 * function, some default processing is provided. 3326 */ 3327 3328 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3329 { 3330 return -EOPNOTSUPP; 3331 } 3332 EXPORT_SYMBOL(sock_no_bind); 3333 3334 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3335 int len, int flags) 3336 { 3337 return -EOPNOTSUPP; 3338 } 3339 EXPORT_SYMBOL(sock_no_connect); 3340 3341 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3342 { 3343 return -EOPNOTSUPP; 3344 } 3345 EXPORT_SYMBOL(sock_no_socketpair); 3346 3347 int sock_no_accept(struct socket *sock, struct socket *newsock, 3348 struct proto_accept_arg *arg) 3349 { 3350 return -EOPNOTSUPP; 3351 } 3352 EXPORT_SYMBOL(sock_no_accept); 3353 3354 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3355 int peer) 3356 { 3357 return -EOPNOTSUPP; 3358 } 3359 EXPORT_SYMBOL(sock_no_getname); 3360 3361 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3362 { 3363 return -EOPNOTSUPP; 3364 } 3365 EXPORT_SYMBOL(sock_no_ioctl); 3366 3367 int sock_no_listen(struct socket *sock, int backlog) 3368 { 3369 return -EOPNOTSUPP; 3370 } 3371 EXPORT_SYMBOL(sock_no_listen); 3372 3373 int sock_no_shutdown(struct socket *sock, int how) 3374 { 3375 return -EOPNOTSUPP; 3376 } 3377 EXPORT_SYMBOL(sock_no_shutdown); 3378 3379 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3380 { 3381 return -EOPNOTSUPP; 3382 } 3383 EXPORT_SYMBOL(sock_no_sendmsg); 3384 3385 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3386 { 3387 return -EOPNOTSUPP; 3388 } 3389 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3390 3391 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3392 int flags) 3393 { 3394 return -EOPNOTSUPP; 3395 } 3396 EXPORT_SYMBOL(sock_no_recvmsg); 3397 3398 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3399 { 3400 /* Mirror missing mmap method error code */ 3401 return -ENODEV; 3402 } 3403 EXPORT_SYMBOL(sock_no_mmap); 3404 3405 /* 3406 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3407 * various sock-based usage counts. 3408 */ 3409 void __receive_sock(struct file *file) 3410 { 3411 struct socket *sock; 3412 3413 sock = sock_from_file(file); 3414 if (sock) { 3415 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3416 sock_update_classid(&sock->sk->sk_cgrp_data); 3417 } 3418 } 3419 3420 /* 3421 * Default Socket Callbacks 3422 */ 3423 3424 static void sock_def_wakeup(struct sock *sk) 3425 { 3426 struct socket_wq *wq; 3427 3428 rcu_read_lock(); 3429 wq = rcu_dereference(sk->sk_wq); 3430 if (skwq_has_sleeper(wq)) 3431 wake_up_interruptible_all(&wq->wait); 3432 rcu_read_unlock(); 3433 } 3434 3435 static void sock_def_error_report(struct sock *sk) 3436 { 3437 struct socket_wq *wq; 3438 3439 rcu_read_lock(); 3440 wq = rcu_dereference(sk->sk_wq); 3441 if (skwq_has_sleeper(wq)) 3442 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3443 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); 3444 rcu_read_unlock(); 3445 } 3446 3447 void sock_def_readable(struct sock *sk) 3448 { 3449 struct socket_wq *wq; 3450 3451 trace_sk_data_ready(sk); 3452 3453 rcu_read_lock(); 3454 wq = rcu_dereference(sk->sk_wq); 3455 if (skwq_has_sleeper(wq)) 3456 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3457 EPOLLRDNORM | EPOLLRDBAND); 3458 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 3459 rcu_read_unlock(); 3460 } 3461 3462 static void sock_def_write_space(struct sock *sk) 3463 { 3464 struct socket_wq *wq; 3465 3466 rcu_read_lock(); 3467 3468 /* Do not wake up a writer until he can make "significant" 3469 * progress. --DaveM 3470 */ 3471 if (sock_writeable(sk)) { 3472 wq = rcu_dereference(sk->sk_wq); 3473 if (skwq_has_sleeper(wq)) 3474 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3475 EPOLLWRNORM | EPOLLWRBAND); 3476 3477 /* Should agree with poll, otherwise some programs break */ 3478 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3479 } 3480 3481 rcu_read_unlock(); 3482 } 3483 3484 /* An optimised version of sock_def_write_space(), should only be called 3485 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3486 * ->sk_wmem_alloc. 3487 */ 3488 static void sock_def_write_space_wfree(struct sock *sk) 3489 { 3490 /* Do not wake up a writer until he can make "significant" 3491 * progress. --DaveM 3492 */ 3493 if (sock_writeable(sk)) { 3494 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3495 3496 /* rely on refcount_sub from sock_wfree() */ 3497 smp_mb__after_atomic(); 3498 if (wq && waitqueue_active(&wq->wait)) 3499 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3500 EPOLLWRNORM | EPOLLWRBAND); 3501 3502 /* Should agree with poll, otherwise some programs break */ 3503 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3504 } 3505 } 3506 3507 static void sock_def_destruct(struct sock *sk) 3508 { 3509 } 3510 3511 void sk_send_sigurg(struct sock *sk) 3512 { 3513 if (sk->sk_socket && sk->sk_socket->file) 3514 if (send_sigurg(sk->sk_socket->file)) 3515 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3516 } 3517 EXPORT_SYMBOL(sk_send_sigurg); 3518 3519 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3520 unsigned long expires) 3521 { 3522 if (!mod_timer(timer, expires)) 3523 sock_hold(sk); 3524 } 3525 EXPORT_SYMBOL(sk_reset_timer); 3526 3527 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3528 { 3529 if (del_timer(timer)) 3530 __sock_put(sk); 3531 } 3532 EXPORT_SYMBOL(sk_stop_timer); 3533 3534 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3535 { 3536 if (del_timer_sync(timer)) 3537 __sock_put(sk); 3538 } 3539 EXPORT_SYMBOL(sk_stop_timer_sync); 3540 3541 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3542 { 3543 sk_init_common(sk); 3544 sk->sk_send_head = NULL; 3545 3546 timer_setup(&sk->sk_timer, NULL, 0); 3547 3548 sk->sk_allocation = GFP_KERNEL; 3549 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3550 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3551 sk->sk_state = TCP_CLOSE; 3552 sk->sk_use_task_frag = true; 3553 sk_set_socket(sk, sock); 3554 3555 sock_set_flag(sk, SOCK_ZAPPED); 3556 3557 if (sock) { 3558 sk->sk_type = sock->type; 3559 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3560 sock->sk = sk; 3561 } else { 3562 RCU_INIT_POINTER(sk->sk_wq, NULL); 3563 } 3564 sk->sk_uid = uid; 3565 3566 sk->sk_state_change = sock_def_wakeup; 3567 sk->sk_data_ready = sock_def_readable; 3568 sk->sk_write_space = sock_def_write_space; 3569 sk->sk_error_report = sock_def_error_report; 3570 sk->sk_destruct = sock_def_destruct; 3571 3572 sk->sk_frag.page = NULL; 3573 sk->sk_frag.offset = 0; 3574 sk->sk_peek_off = -1; 3575 3576 sk->sk_peer_pid = NULL; 3577 sk->sk_peer_cred = NULL; 3578 spin_lock_init(&sk->sk_peer_lock); 3579 3580 sk->sk_write_pending = 0; 3581 sk->sk_rcvlowat = 1; 3582 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3583 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3584 3585 sk->sk_stamp = SK_DEFAULT_STAMP; 3586 #if BITS_PER_LONG==32 3587 seqlock_init(&sk->sk_stamp_seq); 3588 #endif 3589 atomic_set(&sk->sk_zckey, 0); 3590 3591 #ifdef CONFIG_NET_RX_BUSY_POLL 3592 sk->sk_napi_id = 0; 3593 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3594 #endif 3595 3596 sk->sk_max_pacing_rate = ~0UL; 3597 sk->sk_pacing_rate = ~0UL; 3598 WRITE_ONCE(sk->sk_pacing_shift, 10); 3599 sk->sk_incoming_cpu = -1; 3600 3601 sk_rx_queue_clear(sk); 3602 /* 3603 * Before updating sk_refcnt, we must commit prior changes to memory 3604 * (Documentation/RCU/rculist_nulls.rst for details) 3605 */ 3606 smp_wmb(); 3607 refcount_set(&sk->sk_refcnt, 1); 3608 atomic_set(&sk->sk_drops, 0); 3609 } 3610 EXPORT_SYMBOL(sock_init_data_uid); 3611 3612 void sock_init_data(struct socket *sock, struct sock *sk) 3613 { 3614 kuid_t uid = sock ? 3615 SOCK_INODE(sock)->i_uid : 3616 make_kuid(sock_net(sk)->user_ns, 0); 3617 3618 sock_init_data_uid(sock, sk, uid); 3619 } 3620 EXPORT_SYMBOL(sock_init_data); 3621 3622 void lock_sock_nested(struct sock *sk, int subclass) 3623 { 3624 /* The sk_lock has mutex_lock() semantics here. */ 3625 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3626 3627 might_sleep(); 3628 spin_lock_bh(&sk->sk_lock.slock); 3629 if (sock_owned_by_user_nocheck(sk)) 3630 __lock_sock(sk); 3631 sk->sk_lock.owned = 1; 3632 spin_unlock_bh(&sk->sk_lock.slock); 3633 } 3634 EXPORT_SYMBOL(lock_sock_nested); 3635 3636 void release_sock(struct sock *sk) 3637 { 3638 spin_lock_bh(&sk->sk_lock.slock); 3639 if (sk->sk_backlog.tail) 3640 __release_sock(sk); 3641 3642 if (sk->sk_prot->release_cb) 3643 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3644 tcp_release_cb, sk); 3645 3646 sock_release_ownership(sk); 3647 if (waitqueue_active(&sk->sk_lock.wq)) 3648 wake_up(&sk->sk_lock.wq); 3649 spin_unlock_bh(&sk->sk_lock.slock); 3650 } 3651 EXPORT_SYMBOL(release_sock); 3652 3653 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3654 { 3655 might_sleep(); 3656 spin_lock_bh(&sk->sk_lock.slock); 3657 3658 if (!sock_owned_by_user_nocheck(sk)) { 3659 /* 3660 * Fast path return with bottom halves disabled and 3661 * sock::sk_lock.slock held. 3662 * 3663 * The 'mutex' is not contended and holding 3664 * sock::sk_lock.slock prevents all other lockers to 3665 * proceed so the corresponding unlock_sock_fast() can 3666 * avoid the slow path of release_sock() completely and 3667 * just release slock. 3668 * 3669 * From a semantical POV this is equivalent to 'acquiring' 3670 * the 'mutex', hence the corresponding lockdep 3671 * mutex_release() has to happen in the fast path of 3672 * unlock_sock_fast(). 3673 */ 3674 return false; 3675 } 3676 3677 __lock_sock(sk); 3678 sk->sk_lock.owned = 1; 3679 __acquire(&sk->sk_lock.slock); 3680 spin_unlock_bh(&sk->sk_lock.slock); 3681 return true; 3682 } 3683 EXPORT_SYMBOL(__lock_sock_fast); 3684 3685 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3686 bool timeval, bool time32) 3687 { 3688 struct sock *sk = sock->sk; 3689 struct timespec64 ts; 3690 3691 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3692 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3693 if (ts.tv_sec == -1) 3694 return -ENOENT; 3695 if (ts.tv_sec == 0) { 3696 ktime_t kt = ktime_get_real(); 3697 sock_write_timestamp(sk, kt); 3698 ts = ktime_to_timespec64(kt); 3699 } 3700 3701 if (timeval) 3702 ts.tv_nsec /= 1000; 3703 3704 #ifdef CONFIG_COMPAT_32BIT_TIME 3705 if (time32) 3706 return put_old_timespec32(&ts, userstamp); 3707 #endif 3708 #ifdef CONFIG_SPARC64 3709 /* beware of padding in sparc64 timeval */ 3710 if (timeval && !in_compat_syscall()) { 3711 struct __kernel_old_timeval __user tv = { 3712 .tv_sec = ts.tv_sec, 3713 .tv_usec = ts.tv_nsec, 3714 }; 3715 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3716 return -EFAULT; 3717 return 0; 3718 } 3719 #endif 3720 return put_timespec64(&ts, userstamp); 3721 } 3722 EXPORT_SYMBOL(sock_gettstamp); 3723 3724 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3725 { 3726 if (!sock_flag(sk, flag)) { 3727 unsigned long previous_flags = sk->sk_flags; 3728 3729 sock_set_flag(sk, flag); 3730 /* 3731 * we just set one of the two flags which require net 3732 * time stamping, but time stamping might have been on 3733 * already because of the other one 3734 */ 3735 if (sock_needs_netstamp(sk) && 3736 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3737 net_enable_timestamp(); 3738 } 3739 } 3740 3741 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3742 int level, int type) 3743 { 3744 struct sock_exterr_skb *serr; 3745 struct sk_buff *skb; 3746 int copied, err; 3747 3748 err = -EAGAIN; 3749 skb = sock_dequeue_err_skb(sk); 3750 if (skb == NULL) 3751 goto out; 3752 3753 copied = skb->len; 3754 if (copied > len) { 3755 msg->msg_flags |= MSG_TRUNC; 3756 copied = len; 3757 } 3758 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3759 if (err) 3760 goto out_free_skb; 3761 3762 sock_recv_timestamp(msg, sk, skb); 3763 3764 serr = SKB_EXT_ERR(skb); 3765 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3766 3767 msg->msg_flags |= MSG_ERRQUEUE; 3768 err = copied; 3769 3770 out_free_skb: 3771 kfree_skb(skb); 3772 out: 3773 return err; 3774 } 3775 EXPORT_SYMBOL(sock_recv_errqueue); 3776 3777 /* 3778 * Get a socket option on an socket. 3779 * 3780 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3781 * asynchronous errors should be reported by getsockopt. We assume 3782 * this means if you specify SO_ERROR (otherwise what is the point of it). 3783 */ 3784 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3785 char __user *optval, int __user *optlen) 3786 { 3787 struct sock *sk = sock->sk; 3788 3789 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3790 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3791 } 3792 EXPORT_SYMBOL(sock_common_getsockopt); 3793 3794 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3795 int flags) 3796 { 3797 struct sock *sk = sock->sk; 3798 int addr_len = 0; 3799 int err; 3800 3801 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3802 if (err >= 0) 3803 msg->msg_namelen = addr_len; 3804 return err; 3805 } 3806 EXPORT_SYMBOL(sock_common_recvmsg); 3807 3808 /* 3809 * Set socket options on an inet socket. 3810 */ 3811 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3812 sockptr_t optval, unsigned int optlen) 3813 { 3814 struct sock *sk = sock->sk; 3815 3816 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3817 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3818 } 3819 EXPORT_SYMBOL(sock_common_setsockopt); 3820 3821 void sk_common_release(struct sock *sk) 3822 { 3823 if (sk->sk_prot->destroy) 3824 sk->sk_prot->destroy(sk); 3825 3826 /* 3827 * Observation: when sk_common_release is called, processes have 3828 * no access to socket. But net still has. 3829 * Step one, detach it from networking: 3830 * 3831 * A. Remove from hash tables. 3832 */ 3833 3834 sk->sk_prot->unhash(sk); 3835 3836 /* 3837 * In this point socket cannot receive new packets, but it is possible 3838 * that some packets are in flight because some CPU runs receiver and 3839 * did hash table lookup before we unhashed socket. They will achieve 3840 * receive queue and will be purged by socket destructor. 3841 * 3842 * Also we still have packets pending on receive queue and probably, 3843 * our own packets waiting in device queues. sock_destroy will drain 3844 * receive queue, but transmitted packets will delay socket destruction 3845 * until the last reference will be released. 3846 */ 3847 3848 sock_orphan(sk); 3849 3850 xfrm_sk_free_policy(sk); 3851 3852 sock_put(sk); 3853 } 3854 EXPORT_SYMBOL(sk_common_release); 3855 3856 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3857 { 3858 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3859 3860 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3861 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3862 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3863 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3864 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3865 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3866 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3867 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3868 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3869 } 3870 3871 #ifdef CONFIG_PROC_FS 3872 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3873 3874 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3875 { 3876 int cpu, idx = prot->inuse_idx; 3877 int res = 0; 3878 3879 for_each_possible_cpu(cpu) 3880 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3881 3882 return res >= 0 ? res : 0; 3883 } 3884 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3885 3886 int sock_inuse_get(struct net *net) 3887 { 3888 int cpu, res = 0; 3889 3890 for_each_possible_cpu(cpu) 3891 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3892 3893 return res; 3894 } 3895 3896 EXPORT_SYMBOL_GPL(sock_inuse_get); 3897 3898 static int __net_init sock_inuse_init_net(struct net *net) 3899 { 3900 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3901 if (net->core.prot_inuse == NULL) 3902 return -ENOMEM; 3903 return 0; 3904 } 3905 3906 static void __net_exit sock_inuse_exit_net(struct net *net) 3907 { 3908 free_percpu(net->core.prot_inuse); 3909 } 3910 3911 static struct pernet_operations net_inuse_ops = { 3912 .init = sock_inuse_init_net, 3913 .exit = sock_inuse_exit_net, 3914 }; 3915 3916 static __init int net_inuse_init(void) 3917 { 3918 if (register_pernet_subsys(&net_inuse_ops)) 3919 panic("Cannot initialize net inuse counters"); 3920 3921 return 0; 3922 } 3923 3924 core_initcall(net_inuse_init); 3925 3926 static int assign_proto_idx(struct proto *prot) 3927 { 3928 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3929 3930 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3931 pr_err("PROTO_INUSE_NR exhausted\n"); 3932 return -ENOSPC; 3933 } 3934 3935 set_bit(prot->inuse_idx, proto_inuse_idx); 3936 return 0; 3937 } 3938 3939 static void release_proto_idx(struct proto *prot) 3940 { 3941 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3942 clear_bit(prot->inuse_idx, proto_inuse_idx); 3943 } 3944 #else 3945 static inline int assign_proto_idx(struct proto *prot) 3946 { 3947 return 0; 3948 } 3949 3950 static inline void release_proto_idx(struct proto *prot) 3951 { 3952 } 3953 3954 #endif 3955 3956 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3957 { 3958 if (!twsk_prot) 3959 return; 3960 kfree(twsk_prot->twsk_slab_name); 3961 twsk_prot->twsk_slab_name = NULL; 3962 kmem_cache_destroy(twsk_prot->twsk_slab); 3963 twsk_prot->twsk_slab = NULL; 3964 } 3965 3966 static int tw_prot_init(const struct proto *prot) 3967 { 3968 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3969 3970 if (!twsk_prot) 3971 return 0; 3972 3973 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3974 prot->name); 3975 if (!twsk_prot->twsk_slab_name) 3976 return -ENOMEM; 3977 3978 twsk_prot->twsk_slab = 3979 kmem_cache_create(twsk_prot->twsk_slab_name, 3980 twsk_prot->twsk_obj_size, 0, 3981 SLAB_ACCOUNT | prot->slab_flags, 3982 NULL); 3983 if (!twsk_prot->twsk_slab) { 3984 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3985 prot->name); 3986 return -ENOMEM; 3987 } 3988 3989 return 0; 3990 } 3991 3992 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3993 { 3994 if (!rsk_prot) 3995 return; 3996 kfree(rsk_prot->slab_name); 3997 rsk_prot->slab_name = NULL; 3998 kmem_cache_destroy(rsk_prot->slab); 3999 rsk_prot->slab = NULL; 4000 } 4001 4002 static int req_prot_init(const struct proto *prot) 4003 { 4004 struct request_sock_ops *rsk_prot = prot->rsk_prot; 4005 4006 if (!rsk_prot) 4007 return 0; 4008 4009 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 4010 prot->name); 4011 if (!rsk_prot->slab_name) 4012 return -ENOMEM; 4013 4014 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 4015 rsk_prot->obj_size, 0, 4016 SLAB_ACCOUNT | prot->slab_flags, 4017 NULL); 4018 4019 if (!rsk_prot->slab) { 4020 pr_crit("%s: Can't create request sock SLAB cache!\n", 4021 prot->name); 4022 return -ENOMEM; 4023 } 4024 return 0; 4025 } 4026 4027 int proto_register(struct proto *prot, int alloc_slab) 4028 { 4029 int ret = -ENOBUFS; 4030 4031 if (prot->memory_allocated && !prot->sysctl_mem) { 4032 pr_err("%s: missing sysctl_mem\n", prot->name); 4033 return -EINVAL; 4034 } 4035 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 4036 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 4037 return -EINVAL; 4038 } 4039 if (alloc_slab) { 4040 prot->slab = kmem_cache_create_usercopy(prot->name, 4041 prot->obj_size, 0, 4042 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 4043 prot->slab_flags, 4044 prot->useroffset, prot->usersize, 4045 NULL); 4046 4047 if (prot->slab == NULL) { 4048 pr_crit("%s: Can't create sock SLAB cache!\n", 4049 prot->name); 4050 goto out; 4051 } 4052 4053 if (req_prot_init(prot)) 4054 goto out_free_request_sock_slab; 4055 4056 if (tw_prot_init(prot)) 4057 goto out_free_timewait_sock_slab; 4058 } 4059 4060 mutex_lock(&proto_list_mutex); 4061 ret = assign_proto_idx(prot); 4062 if (ret) { 4063 mutex_unlock(&proto_list_mutex); 4064 goto out_free_timewait_sock_slab; 4065 } 4066 list_add(&prot->node, &proto_list); 4067 mutex_unlock(&proto_list_mutex); 4068 return ret; 4069 4070 out_free_timewait_sock_slab: 4071 if (alloc_slab) 4072 tw_prot_cleanup(prot->twsk_prot); 4073 out_free_request_sock_slab: 4074 if (alloc_slab) { 4075 req_prot_cleanup(prot->rsk_prot); 4076 4077 kmem_cache_destroy(prot->slab); 4078 prot->slab = NULL; 4079 } 4080 out: 4081 return ret; 4082 } 4083 EXPORT_SYMBOL(proto_register); 4084 4085 void proto_unregister(struct proto *prot) 4086 { 4087 mutex_lock(&proto_list_mutex); 4088 release_proto_idx(prot); 4089 list_del(&prot->node); 4090 mutex_unlock(&proto_list_mutex); 4091 4092 kmem_cache_destroy(prot->slab); 4093 prot->slab = NULL; 4094 4095 req_prot_cleanup(prot->rsk_prot); 4096 tw_prot_cleanup(prot->twsk_prot); 4097 } 4098 EXPORT_SYMBOL(proto_unregister); 4099 4100 int sock_load_diag_module(int family, int protocol) 4101 { 4102 if (!protocol) { 4103 if (!sock_is_registered(family)) 4104 return -ENOENT; 4105 4106 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 4107 NETLINK_SOCK_DIAG, family); 4108 } 4109 4110 #ifdef CONFIG_INET 4111 if (family == AF_INET && 4112 protocol != IPPROTO_RAW && 4113 protocol < MAX_INET_PROTOS && 4114 !rcu_access_pointer(inet_protos[protocol])) 4115 return -ENOENT; 4116 #endif 4117 4118 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4119 NETLINK_SOCK_DIAG, family, protocol); 4120 } 4121 EXPORT_SYMBOL(sock_load_diag_module); 4122 4123 #ifdef CONFIG_PROC_FS 4124 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4125 __acquires(proto_list_mutex) 4126 { 4127 mutex_lock(&proto_list_mutex); 4128 return seq_list_start_head(&proto_list, *pos); 4129 } 4130 4131 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4132 { 4133 return seq_list_next(v, &proto_list, pos); 4134 } 4135 4136 static void proto_seq_stop(struct seq_file *seq, void *v) 4137 __releases(proto_list_mutex) 4138 { 4139 mutex_unlock(&proto_list_mutex); 4140 } 4141 4142 static char proto_method_implemented(const void *method) 4143 { 4144 return method == NULL ? 'n' : 'y'; 4145 } 4146 static long sock_prot_memory_allocated(struct proto *proto) 4147 { 4148 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4149 } 4150 4151 static const char *sock_prot_memory_pressure(struct proto *proto) 4152 { 4153 return proto->memory_pressure != NULL ? 4154 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4155 } 4156 4157 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4158 { 4159 4160 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4161 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4162 proto->name, 4163 proto->obj_size, 4164 sock_prot_inuse_get(seq_file_net(seq), proto), 4165 sock_prot_memory_allocated(proto), 4166 sock_prot_memory_pressure(proto), 4167 proto->max_header, 4168 proto->slab == NULL ? "no" : "yes", 4169 module_name(proto->owner), 4170 proto_method_implemented(proto->close), 4171 proto_method_implemented(proto->connect), 4172 proto_method_implemented(proto->disconnect), 4173 proto_method_implemented(proto->accept), 4174 proto_method_implemented(proto->ioctl), 4175 proto_method_implemented(proto->init), 4176 proto_method_implemented(proto->destroy), 4177 proto_method_implemented(proto->shutdown), 4178 proto_method_implemented(proto->setsockopt), 4179 proto_method_implemented(proto->getsockopt), 4180 proto_method_implemented(proto->sendmsg), 4181 proto_method_implemented(proto->recvmsg), 4182 proto_method_implemented(proto->bind), 4183 proto_method_implemented(proto->backlog_rcv), 4184 proto_method_implemented(proto->hash), 4185 proto_method_implemented(proto->unhash), 4186 proto_method_implemented(proto->get_port), 4187 proto_method_implemented(proto->enter_memory_pressure)); 4188 } 4189 4190 static int proto_seq_show(struct seq_file *seq, void *v) 4191 { 4192 if (v == &proto_list) 4193 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4194 "protocol", 4195 "size", 4196 "sockets", 4197 "memory", 4198 "press", 4199 "maxhdr", 4200 "slab", 4201 "module", 4202 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4203 else 4204 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4205 return 0; 4206 } 4207 4208 static const struct seq_operations proto_seq_ops = { 4209 .start = proto_seq_start, 4210 .next = proto_seq_next, 4211 .stop = proto_seq_stop, 4212 .show = proto_seq_show, 4213 }; 4214 4215 static __net_init int proto_init_net(struct net *net) 4216 { 4217 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4218 sizeof(struct seq_net_private))) 4219 return -ENOMEM; 4220 4221 return 0; 4222 } 4223 4224 static __net_exit void proto_exit_net(struct net *net) 4225 { 4226 remove_proc_entry("protocols", net->proc_net); 4227 } 4228 4229 4230 static __net_initdata struct pernet_operations proto_net_ops = { 4231 .init = proto_init_net, 4232 .exit = proto_exit_net, 4233 }; 4234 4235 static int __init proto_init(void) 4236 { 4237 return register_pernet_subsys(&proto_net_ops); 4238 } 4239 4240 subsys_initcall(proto_init); 4241 4242 #endif /* PROC_FS */ 4243 4244 #ifdef CONFIG_NET_RX_BUSY_POLL 4245 bool sk_busy_loop_end(void *p, unsigned long start_time) 4246 { 4247 struct sock *sk = p; 4248 4249 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4250 return true; 4251 4252 if (sk_is_udp(sk) && 4253 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4254 return true; 4255 4256 return sk_busy_loop_timeout(sk, start_time); 4257 } 4258 EXPORT_SYMBOL(sk_busy_loop_end); 4259 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4260 4261 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4262 { 4263 if (!sk->sk_prot->bind_add) 4264 return -EOPNOTSUPP; 4265 return sk->sk_prot->bind_add(sk, addr, addr_len); 4266 } 4267 EXPORT_SYMBOL(sock_bind_add); 4268 4269 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4270 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4271 void __user *arg, void *karg, size_t size) 4272 { 4273 int ret; 4274 4275 if (copy_from_user(karg, arg, size)) 4276 return -EFAULT; 4277 4278 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4279 if (ret) 4280 return ret; 4281 4282 if (copy_to_user(arg, karg, size)) 4283 return -EFAULT; 4284 4285 return 0; 4286 } 4287 EXPORT_SYMBOL(sock_ioctl_inout); 4288 4289 /* This is the most common ioctl prep function, where the result (4 bytes) is 4290 * copied back to userspace if the ioctl() returns successfully. No input is 4291 * copied from userspace as input argument. 4292 */ 4293 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4294 { 4295 int ret, karg = 0; 4296 4297 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4298 if (ret) 4299 return ret; 4300 4301 return put_user(karg, (int __user *)arg); 4302 } 4303 4304 /* A wrapper around sock ioctls, which copies the data from userspace 4305 * (depending on the protocol/ioctl), and copies back the result to userspace. 4306 * The main motivation for this function is to pass kernel memory to the 4307 * protocol ioctl callbacks, instead of userspace memory. 4308 */ 4309 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4310 { 4311 int rc = 1; 4312 4313 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4314 rc = ipmr_sk_ioctl(sk, cmd, arg); 4315 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4316 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4317 else if (sk_is_phonet(sk)) 4318 rc = phonet_sk_ioctl(sk, cmd, arg); 4319 4320 /* If ioctl was processed, returns its value */ 4321 if (rc <= 0) 4322 return rc; 4323 4324 /* Otherwise call the default handler */ 4325 return sock_ioctl_out(sk, cmd, arg); 4326 } 4327 EXPORT_SYMBOL(sk_ioctl); 4328 4329 static int __init sock_struct_check(void) 4330 { 4331 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); 4332 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); 4333 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); 4334 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); 4335 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); 4336 4337 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); 4338 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); 4339 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); 4340 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); 4341 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); 4342 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); 4343 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); 4344 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); 4345 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); 4346 4347 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); 4348 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); 4349 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); 4350 4351 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); 4352 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); 4353 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); 4354 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); 4355 4356 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4357 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4358 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); 4359 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); 4360 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); 4361 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); 4362 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); 4363 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); 4364 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); 4365 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); 4366 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); 4367 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); 4368 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); 4369 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); 4370 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); 4371 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); 4372 4373 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); 4374 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); 4375 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); 4376 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); 4377 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); 4378 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); 4379 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); 4380 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); 4381 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); 4382 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); 4383 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); 4384 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); 4385 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); 4386 return 0; 4387 } 4388 4389 core_initcall(sock_struct_check); 4390