xref: /linux/net/core/sock.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117 
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <net/xfrm.h>
124 #include <linux/ipsec.h>
125 
126 #include <linux/filter.h>
127 
128 #ifdef CONFIG_INET
129 #include <net/tcp.h>
130 #endif
131 
132 /*
133  * Each address family might have different locking rules, so we have
134  * one slock key per address family:
135  */
136 static struct lock_class_key af_family_keys[AF_MAX];
137 static struct lock_class_key af_family_slock_keys[AF_MAX];
138 
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
157 };
158 static const char *af_family_slock_key_strings[AF_MAX+1] = {
159   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
160   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
161   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
162   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
163   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
164   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
165   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
166   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
167   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
168   "slock-27"       , "slock-28"          , "slock-29"          ,
169   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_MAX"
170 };
171 #endif
172 
173 /*
174  * sk_callback_lock locking rules are per-address-family,
175  * so split the lock classes by using a per-AF key:
176  */
177 static struct lock_class_key af_callback_keys[AF_MAX];
178 
179 /* Take into consideration the size of the struct sk_buff overhead in the
180  * determination of these values, since that is non-constant across
181  * platforms.  This makes socket queueing behavior and performance
182  * not depend upon such differences.
183  */
184 #define _SK_MEM_PACKETS		256
185 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
186 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
187 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188 
189 /* Run time adjustable parameters. */
190 __u32 sysctl_wmem_max = SK_WMEM_MAX;
191 __u32 sysctl_rmem_max = SK_RMEM_MAX;
192 __u32 sysctl_wmem_default = SK_WMEM_MAX;
193 __u32 sysctl_rmem_default = SK_RMEM_MAX;
194 
195 /* Maximal space eaten by iovec or ancilliary data plus some space */
196 int sysctl_optmem_max = sizeof(unsigned long)*(2*UIO_MAXIOV + 512);
197 
198 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
199 {
200 	struct timeval tv;
201 
202 	if (optlen < sizeof(tv))
203 		return -EINVAL;
204 	if (copy_from_user(&tv, optval, sizeof(tv)))
205 		return -EFAULT;
206 
207 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
208 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
209 		return 0;
210 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
211 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
212 	return 0;
213 }
214 
215 static void sock_warn_obsolete_bsdism(const char *name)
216 {
217 	static int warned;
218 	static char warncomm[TASK_COMM_LEN];
219 	if (strcmp(warncomm, current->comm) && warned < 5) {
220 		strcpy(warncomm,  current->comm);
221 		printk(KERN_WARNING "process `%s' is using obsolete "
222 		       "%s SO_BSDCOMPAT\n", warncomm, name);
223 		warned++;
224 	}
225 }
226 
227 static void sock_disable_timestamp(struct sock *sk)
228 {
229 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
230 		sock_reset_flag(sk, SOCK_TIMESTAMP);
231 		net_disable_timestamp();
232 	}
233 }
234 
235 
236 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
237 {
238 	int err = 0;
239 	int skb_len;
240 
241 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
242 	   number of warnings when compiling with -W --ANK
243 	 */
244 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
245 	    (unsigned)sk->sk_rcvbuf) {
246 		err = -ENOMEM;
247 		goto out;
248 	}
249 
250 	/* It would be deadlock, if sock_queue_rcv_skb is used
251 	   with socket lock! We assume that users of this
252 	   function are lock free.
253 	*/
254 	err = sk_filter(sk, skb, 1);
255 	if (err)
256 		goto out;
257 
258 	skb->dev = NULL;
259 	skb_set_owner_r(skb, sk);
260 
261 	/* Cache the SKB length before we tack it onto the receive
262 	 * queue.  Once it is added it no longer belongs to us and
263 	 * may be freed by other threads of control pulling packets
264 	 * from the queue.
265 	 */
266 	skb_len = skb->len;
267 
268 	skb_queue_tail(&sk->sk_receive_queue, skb);
269 
270 	if (!sock_flag(sk, SOCK_DEAD))
271 		sk->sk_data_ready(sk, skb_len);
272 out:
273 	return err;
274 }
275 EXPORT_SYMBOL(sock_queue_rcv_skb);
276 
277 int sk_receive_skb(struct sock *sk, struct sk_buff *skb)
278 {
279 	int rc = NET_RX_SUCCESS;
280 
281 	if (sk_filter(sk, skb, 0))
282 		goto discard_and_relse;
283 
284 	skb->dev = NULL;
285 
286 	bh_lock_sock(sk);
287 	if (!sock_owned_by_user(sk)) {
288 		/*
289 		 * trylock + unlock semantics:
290 		 */
291 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
292 
293 		rc = sk->sk_backlog_rcv(sk, skb);
294 
295 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
296 	} else
297 		sk_add_backlog(sk, skb);
298 	bh_unlock_sock(sk);
299 out:
300 	sock_put(sk);
301 	return rc;
302 discard_and_relse:
303 	kfree_skb(skb);
304 	goto out;
305 }
306 EXPORT_SYMBOL(sk_receive_skb);
307 
308 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
309 {
310 	struct dst_entry *dst = sk->sk_dst_cache;
311 
312 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
313 		sk->sk_dst_cache = NULL;
314 		dst_release(dst);
315 		return NULL;
316 	}
317 
318 	return dst;
319 }
320 EXPORT_SYMBOL(__sk_dst_check);
321 
322 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
323 {
324 	struct dst_entry *dst = sk_dst_get(sk);
325 
326 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 		sk_dst_reset(sk);
328 		dst_release(dst);
329 		return NULL;
330 	}
331 
332 	return dst;
333 }
334 EXPORT_SYMBOL(sk_dst_check);
335 
336 /*
337  *	This is meant for all protocols to use and covers goings on
338  *	at the socket level. Everything here is generic.
339  */
340 
341 int sock_setsockopt(struct socket *sock, int level, int optname,
342 		    char __user *optval, int optlen)
343 {
344 	struct sock *sk=sock->sk;
345 	struct sk_filter *filter;
346 	int val;
347 	int valbool;
348 	struct linger ling;
349 	int ret = 0;
350 
351 	/*
352 	 *	Options without arguments
353 	 */
354 
355 #ifdef SO_DONTLINGER		/* Compatibility item... */
356 	if (optname == SO_DONTLINGER) {
357 		lock_sock(sk);
358 		sock_reset_flag(sk, SOCK_LINGER);
359 		release_sock(sk);
360 		return 0;
361 	}
362 #endif
363 
364   	if(optlen<sizeof(int))
365   		return(-EINVAL);
366 
367 	if (get_user(val, (int __user *)optval))
368 		return -EFAULT;
369 
370   	valbool = val?1:0;
371 
372 	lock_sock(sk);
373 
374   	switch(optname)
375   	{
376 		case SO_DEBUG:
377 			if(val && !capable(CAP_NET_ADMIN))
378 			{
379 				ret = -EACCES;
380 			}
381 			else if (valbool)
382 				sock_set_flag(sk, SOCK_DBG);
383 			else
384 				sock_reset_flag(sk, SOCK_DBG);
385 			break;
386 		case SO_REUSEADDR:
387 			sk->sk_reuse = valbool;
388 			break;
389 		case SO_TYPE:
390 		case SO_ERROR:
391 			ret = -ENOPROTOOPT;
392 		  	break;
393 		case SO_DONTROUTE:
394 			if (valbool)
395 				sock_set_flag(sk, SOCK_LOCALROUTE);
396 			else
397 				sock_reset_flag(sk, SOCK_LOCALROUTE);
398 			break;
399 		case SO_BROADCAST:
400 			sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
401 			break;
402 		case SO_SNDBUF:
403 			/* Don't error on this BSD doesn't and if you think
404 			   about it this is right. Otherwise apps have to
405 			   play 'guess the biggest size' games. RCVBUF/SNDBUF
406 			   are treated in BSD as hints */
407 
408 			if (val > sysctl_wmem_max)
409 				val = sysctl_wmem_max;
410 set_sndbuf:
411 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
412 			if ((val * 2) < SOCK_MIN_SNDBUF)
413 				sk->sk_sndbuf = SOCK_MIN_SNDBUF;
414 			else
415 				sk->sk_sndbuf = val * 2;
416 
417 			/*
418 			 *	Wake up sending tasks if we
419 			 *	upped the value.
420 			 */
421 			sk->sk_write_space(sk);
422 			break;
423 
424 		case SO_SNDBUFFORCE:
425 			if (!capable(CAP_NET_ADMIN)) {
426 				ret = -EPERM;
427 				break;
428 			}
429 			goto set_sndbuf;
430 
431 		case SO_RCVBUF:
432 			/* Don't error on this BSD doesn't and if you think
433 			   about it this is right. Otherwise apps have to
434 			   play 'guess the biggest size' games. RCVBUF/SNDBUF
435 			   are treated in BSD as hints */
436 
437 			if (val > sysctl_rmem_max)
438 				val = sysctl_rmem_max;
439 set_rcvbuf:
440 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
441 			/*
442 			 * We double it on the way in to account for
443 			 * "struct sk_buff" etc. overhead.   Applications
444 			 * assume that the SO_RCVBUF setting they make will
445 			 * allow that much actual data to be received on that
446 			 * socket.
447 			 *
448 			 * Applications are unaware that "struct sk_buff" and
449 			 * other overheads allocate from the receive buffer
450 			 * during socket buffer allocation.
451 			 *
452 			 * And after considering the possible alternatives,
453 			 * returning the value we actually used in getsockopt
454 			 * is the most desirable behavior.
455 			 */
456 			if ((val * 2) < SOCK_MIN_RCVBUF)
457 				sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
458 			else
459 				sk->sk_rcvbuf = val * 2;
460 			break;
461 
462 		case SO_RCVBUFFORCE:
463 			if (!capable(CAP_NET_ADMIN)) {
464 				ret = -EPERM;
465 				break;
466 			}
467 			goto set_rcvbuf;
468 
469 		case SO_KEEPALIVE:
470 #ifdef CONFIG_INET
471 			if (sk->sk_protocol == IPPROTO_TCP)
472 				tcp_set_keepalive(sk, valbool);
473 #endif
474 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
475 			break;
476 
477 	 	case SO_OOBINLINE:
478 			sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
479 			break;
480 
481 	 	case SO_NO_CHECK:
482 			sk->sk_no_check = valbool;
483 			break;
484 
485 		case SO_PRIORITY:
486 			if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
487 				sk->sk_priority = val;
488 			else
489 				ret = -EPERM;
490 			break;
491 
492 		case SO_LINGER:
493 			if(optlen<sizeof(ling)) {
494 				ret = -EINVAL;	/* 1003.1g */
495 				break;
496 			}
497 			if (copy_from_user(&ling,optval,sizeof(ling))) {
498 				ret = -EFAULT;
499 				break;
500 			}
501 			if (!ling.l_onoff)
502 				sock_reset_flag(sk, SOCK_LINGER);
503 			else {
504 #if (BITS_PER_LONG == 32)
505 				if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
506 					sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
507 				else
508 #endif
509 					sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
510 				sock_set_flag(sk, SOCK_LINGER);
511 			}
512 			break;
513 
514 		case SO_BSDCOMPAT:
515 			sock_warn_obsolete_bsdism("setsockopt");
516 			break;
517 
518 		case SO_PASSCRED:
519 			if (valbool)
520 				set_bit(SOCK_PASSCRED, &sock->flags);
521 			else
522 				clear_bit(SOCK_PASSCRED, &sock->flags);
523 			break;
524 
525 		case SO_TIMESTAMP:
526 			if (valbool)  {
527 				sock_set_flag(sk, SOCK_RCVTSTAMP);
528 				sock_enable_timestamp(sk);
529 			} else
530 				sock_reset_flag(sk, SOCK_RCVTSTAMP);
531 			break;
532 
533 		case SO_RCVLOWAT:
534 			if (val < 0)
535 				val = INT_MAX;
536 			sk->sk_rcvlowat = val ? : 1;
537 			break;
538 
539 		case SO_RCVTIMEO:
540 			ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
541 			break;
542 
543 		case SO_SNDTIMEO:
544 			ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
545 			break;
546 
547 #ifdef CONFIG_NETDEVICES
548 		case SO_BINDTODEVICE:
549 		{
550 			char devname[IFNAMSIZ];
551 
552 			/* Sorry... */
553 			if (!capable(CAP_NET_RAW)) {
554 				ret = -EPERM;
555 				break;
556 			}
557 
558 			/* Bind this socket to a particular device like "eth0",
559 			 * as specified in the passed interface name. If the
560 			 * name is "" or the option length is zero the socket
561 			 * is not bound.
562 			 */
563 
564 			if (!valbool) {
565 				sk->sk_bound_dev_if = 0;
566 			} else {
567 				if (optlen > IFNAMSIZ - 1)
568 					optlen = IFNAMSIZ - 1;
569 				memset(devname, 0, sizeof(devname));
570 				if (copy_from_user(devname, optval, optlen)) {
571 					ret = -EFAULT;
572 					break;
573 				}
574 
575 				/* Remove any cached route for this socket. */
576 				sk_dst_reset(sk);
577 
578 				if (devname[0] == '\0') {
579 					sk->sk_bound_dev_if = 0;
580 				} else {
581 					struct net_device *dev = dev_get_by_name(devname);
582 					if (!dev) {
583 						ret = -ENODEV;
584 						break;
585 					}
586 					sk->sk_bound_dev_if = dev->ifindex;
587 					dev_put(dev);
588 				}
589 			}
590 			break;
591 		}
592 #endif
593 
594 
595 		case SO_ATTACH_FILTER:
596 			ret = -EINVAL;
597 			if (optlen == sizeof(struct sock_fprog)) {
598 				struct sock_fprog fprog;
599 
600 				ret = -EFAULT;
601 				if (copy_from_user(&fprog, optval, sizeof(fprog)))
602 					break;
603 
604 				ret = sk_attach_filter(&fprog, sk);
605 			}
606 			break;
607 
608 		case SO_DETACH_FILTER:
609 			spin_lock_bh(&sk->sk_lock.slock);
610 			filter = sk->sk_filter;
611                         if (filter) {
612 				sk->sk_filter = NULL;
613 				spin_unlock_bh(&sk->sk_lock.slock);
614 				sk_filter_release(sk, filter);
615 				break;
616 			}
617 			spin_unlock_bh(&sk->sk_lock.slock);
618 			ret = -ENONET;
619 			break;
620 
621 		case SO_PASSSEC:
622 			if (valbool)
623 				set_bit(SOCK_PASSSEC, &sock->flags);
624 			else
625 				clear_bit(SOCK_PASSSEC, &sock->flags);
626 			break;
627 
628 		/* We implement the SO_SNDLOWAT etc to
629 		   not be settable (1003.1g 5.3) */
630 		default:
631 		  	ret = -ENOPROTOOPT;
632 			break;
633   	}
634 	release_sock(sk);
635 	return ret;
636 }
637 
638 
639 int sock_getsockopt(struct socket *sock, int level, int optname,
640 		    char __user *optval, int __user *optlen)
641 {
642 	struct sock *sk = sock->sk;
643 
644 	union
645 	{
646   		int val;
647   		struct linger ling;
648 		struct timeval tm;
649 	} v;
650 
651 	unsigned int lv = sizeof(int);
652 	int len;
653 
654   	if(get_user(len,optlen))
655   		return -EFAULT;
656 	if(len < 0)
657 		return -EINVAL;
658 
659   	switch(optname)
660   	{
661 		case SO_DEBUG:
662 			v.val = sock_flag(sk, SOCK_DBG);
663 			break;
664 
665 		case SO_DONTROUTE:
666 			v.val = sock_flag(sk, SOCK_LOCALROUTE);
667 			break;
668 
669 		case SO_BROADCAST:
670 			v.val = !!sock_flag(sk, SOCK_BROADCAST);
671 			break;
672 
673 		case SO_SNDBUF:
674 			v.val = sk->sk_sndbuf;
675 			break;
676 
677 		case SO_RCVBUF:
678 			v.val = sk->sk_rcvbuf;
679 			break;
680 
681 		case SO_REUSEADDR:
682 			v.val = sk->sk_reuse;
683 			break;
684 
685 		case SO_KEEPALIVE:
686 			v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
687 			break;
688 
689 		case SO_TYPE:
690 			v.val = sk->sk_type;
691 			break;
692 
693 		case SO_ERROR:
694 			v.val = -sock_error(sk);
695 			if(v.val==0)
696 				v.val = xchg(&sk->sk_err_soft, 0);
697 			break;
698 
699 		case SO_OOBINLINE:
700 			v.val = !!sock_flag(sk, SOCK_URGINLINE);
701 			break;
702 
703 		case SO_NO_CHECK:
704 			v.val = sk->sk_no_check;
705 			break;
706 
707 		case SO_PRIORITY:
708 			v.val = sk->sk_priority;
709 			break;
710 
711 		case SO_LINGER:
712 			lv		= sizeof(v.ling);
713 			v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
714  			v.ling.l_linger	= sk->sk_lingertime / HZ;
715 			break;
716 
717 		case SO_BSDCOMPAT:
718 			sock_warn_obsolete_bsdism("getsockopt");
719 			break;
720 
721 		case SO_TIMESTAMP:
722 			v.val = sock_flag(sk, SOCK_RCVTSTAMP);
723 			break;
724 
725 		case SO_RCVTIMEO:
726 			lv=sizeof(struct timeval);
727 			if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
728 				v.tm.tv_sec = 0;
729 				v.tm.tv_usec = 0;
730 			} else {
731 				v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
732 				v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
733 			}
734 			break;
735 
736 		case SO_SNDTIMEO:
737 			lv=sizeof(struct timeval);
738 			if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
739 				v.tm.tv_sec = 0;
740 				v.tm.tv_usec = 0;
741 			} else {
742 				v.tm.tv_sec = sk->sk_sndtimeo / HZ;
743 				v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
744 			}
745 			break;
746 
747 		case SO_RCVLOWAT:
748 			v.val = sk->sk_rcvlowat;
749 			break;
750 
751 		case SO_SNDLOWAT:
752 			v.val=1;
753 			break;
754 
755 		case SO_PASSCRED:
756 			v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
757 			break;
758 
759 		case SO_PEERCRED:
760 			if (len > sizeof(sk->sk_peercred))
761 				len = sizeof(sk->sk_peercred);
762 			if (copy_to_user(optval, &sk->sk_peercred, len))
763 				return -EFAULT;
764 			goto lenout;
765 
766 		case SO_PEERNAME:
767 		{
768 			char address[128];
769 
770 			if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
771 				return -ENOTCONN;
772 			if (lv < len)
773 				return -EINVAL;
774 			if (copy_to_user(optval, address, len))
775 				return -EFAULT;
776 			goto lenout;
777 		}
778 
779 		/* Dubious BSD thing... Probably nobody even uses it, but
780 		 * the UNIX standard wants it for whatever reason... -DaveM
781 		 */
782 		case SO_ACCEPTCONN:
783 			v.val = sk->sk_state == TCP_LISTEN;
784 			break;
785 
786 		case SO_PASSSEC:
787 			v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
788 			break;
789 
790 		case SO_PEERSEC:
791 			return security_socket_getpeersec_stream(sock, optval, optlen, len);
792 
793 		default:
794 			return(-ENOPROTOOPT);
795 	}
796 	if (len > lv)
797 		len = lv;
798 	if (copy_to_user(optval, &v, len))
799 		return -EFAULT;
800 lenout:
801   	if (put_user(len, optlen))
802   		return -EFAULT;
803   	return 0;
804 }
805 
806 /*
807  * Initialize an sk_lock.
808  *
809  * (We also register the sk_lock with the lock validator.)
810  */
811 static void inline sock_lock_init(struct sock *sk)
812 {
813 	spin_lock_init(&sk->sk_lock.slock);
814 	sk->sk_lock.owner = NULL;
815 	init_waitqueue_head(&sk->sk_lock.wq);
816 	/*
817 	 * Make sure we are not reinitializing a held lock:
818 	 */
819 	debug_check_no_locks_freed((void *)&sk->sk_lock, sizeof(sk->sk_lock));
820 
821 	/*
822 	 * Mark both the sk_lock and the sk_lock.slock as a
823 	 * per-address-family lock class:
824 	 */
825 	lockdep_set_class_and_name(&sk->sk_lock.slock,
826 				   af_family_slock_keys + sk->sk_family,
827 				   af_family_slock_key_strings[sk->sk_family]);
828 	lockdep_init_map(&sk->sk_lock.dep_map,
829 			 af_family_key_strings[sk->sk_family],
830 			 af_family_keys + sk->sk_family);
831 }
832 
833 /**
834  *	sk_alloc - All socket objects are allocated here
835  *	@family: protocol family
836  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
837  *	@prot: struct proto associated with this new sock instance
838  *	@zero_it: if we should zero the newly allocated sock
839  */
840 struct sock *sk_alloc(int family, gfp_t priority,
841 		      struct proto *prot, int zero_it)
842 {
843 	struct sock *sk = NULL;
844 	kmem_cache_t *slab = prot->slab;
845 
846 	if (slab != NULL)
847 		sk = kmem_cache_alloc(slab, priority);
848 	else
849 		sk = kmalloc(prot->obj_size, priority);
850 
851 	if (sk) {
852 		if (zero_it) {
853 			memset(sk, 0, prot->obj_size);
854 			sk->sk_family = family;
855 			/*
856 			 * See comment in struct sock definition to understand
857 			 * why we need sk_prot_creator -acme
858 			 */
859 			sk->sk_prot = sk->sk_prot_creator = prot;
860 			sock_lock_init(sk);
861 		}
862 
863 		if (security_sk_alloc(sk, family, priority))
864 			goto out_free;
865 
866 		if (!try_module_get(prot->owner))
867 			goto out_free;
868 	}
869 	return sk;
870 
871 out_free:
872 	if (slab != NULL)
873 		kmem_cache_free(slab, sk);
874 	else
875 		kfree(sk);
876 	return NULL;
877 }
878 
879 void sk_free(struct sock *sk)
880 {
881 	struct sk_filter *filter;
882 	struct module *owner = sk->sk_prot_creator->owner;
883 
884 	if (sk->sk_destruct)
885 		sk->sk_destruct(sk);
886 
887 	filter = sk->sk_filter;
888 	if (filter) {
889 		sk_filter_release(sk, filter);
890 		sk->sk_filter = NULL;
891 	}
892 
893 	sock_disable_timestamp(sk);
894 
895 	if (atomic_read(&sk->sk_omem_alloc))
896 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
897 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
898 
899 	security_sk_free(sk);
900 	if (sk->sk_prot_creator->slab != NULL)
901 		kmem_cache_free(sk->sk_prot_creator->slab, sk);
902 	else
903 		kfree(sk);
904 	module_put(owner);
905 }
906 
907 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
908 {
909 	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
910 
911 	if (newsk != NULL) {
912 		struct sk_filter *filter;
913 
914 		memcpy(newsk, sk, sk->sk_prot->obj_size);
915 
916 		/* SANITY */
917 		sk_node_init(&newsk->sk_node);
918 		sock_lock_init(newsk);
919 		bh_lock_sock(newsk);
920 
921 		atomic_set(&newsk->sk_rmem_alloc, 0);
922 		atomic_set(&newsk->sk_wmem_alloc, 0);
923 		atomic_set(&newsk->sk_omem_alloc, 0);
924 		skb_queue_head_init(&newsk->sk_receive_queue);
925 		skb_queue_head_init(&newsk->sk_write_queue);
926 #ifdef CONFIG_NET_DMA
927 		skb_queue_head_init(&newsk->sk_async_wait_queue);
928 #endif
929 
930 		rwlock_init(&newsk->sk_dst_lock);
931 		rwlock_init(&newsk->sk_callback_lock);
932 		lockdep_set_class(&newsk->sk_callback_lock,
933 				   af_callback_keys + newsk->sk_family);
934 
935 		newsk->sk_dst_cache	= NULL;
936 		newsk->sk_wmem_queued	= 0;
937 		newsk->sk_forward_alloc = 0;
938 		newsk->sk_send_head	= NULL;
939 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
940 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
941 
942 		sock_reset_flag(newsk, SOCK_DONE);
943 		skb_queue_head_init(&newsk->sk_error_queue);
944 
945 		filter = newsk->sk_filter;
946 		if (filter != NULL)
947 			sk_filter_charge(newsk, filter);
948 
949 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
950 			/* It is still raw copy of parent, so invalidate
951 			 * destructor and make plain sk_free() */
952 			newsk->sk_destruct = NULL;
953 			sk_free(newsk);
954 			newsk = NULL;
955 			goto out;
956 		}
957 
958 		newsk->sk_err	   = 0;
959 		newsk->sk_priority = 0;
960 		atomic_set(&newsk->sk_refcnt, 2);
961 
962 		/*
963 		 * Increment the counter in the same struct proto as the master
964 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
965 		 * is the same as sk->sk_prot->socks, as this field was copied
966 		 * with memcpy).
967 		 *
968 		 * This _changes_ the previous behaviour, where
969 		 * tcp_create_openreq_child always was incrementing the
970 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
971 		 * to be taken into account in all callers. -acme
972 		 */
973 		sk_refcnt_debug_inc(newsk);
974 		newsk->sk_socket = NULL;
975 		newsk->sk_sleep	 = NULL;
976 
977 		if (newsk->sk_prot->sockets_allocated)
978 			atomic_inc(newsk->sk_prot->sockets_allocated);
979 	}
980 out:
981 	return newsk;
982 }
983 
984 EXPORT_SYMBOL_GPL(sk_clone);
985 
986 void __init sk_init(void)
987 {
988 	if (num_physpages <= 4096) {
989 		sysctl_wmem_max = 32767;
990 		sysctl_rmem_max = 32767;
991 		sysctl_wmem_default = 32767;
992 		sysctl_rmem_default = 32767;
993 	} else if (num_physpages >= 131072) {
994 		sysctl_wmem_max = 131071;
995 		sysctl_rmem_max = 131071;
996 	}
997 }
998 
999 /*
1000  *	Simple resource managers for sockets.
1001  */
1002 
1003 
1004 /*
1005  * Write buffer destructor automatically called from kfree_skb.
1006  */
1007 void sock_wfree(struct sk_buff *skb)
1008 {
1009 	struct sock *sk = skb->sk;
1010 
1011 	/* In case it might be waiting for more memory. */
1012 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1013 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1014 		sk->sk_write_space(sk);
1015 	sock_put(sk);
1016 }
1017 
1018 /*
1019  * Read buffer destructor automatically called from kfree_skb.
1020  */
1021 void sock_rfree(struct sk_buff *skb)
1022 {
1023 	struct sock *sk = skb->sk;
1024 
1025 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1026 }
1027 
1028 
1029 int sock_i_uid(struct sock *sk)
1030 {
1031 	int uid;
1032 
1033 	read_lock(&sk->sk_callback_lock);
1034 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1035 	read_unlock(&sk->sk_callback_lock);
1036 	return uid;
1037 }
1038 
1039 unsigned long sock_i_ino(struct sock *sk)
1040 {
1041 	unsigned long ino;
1042 
1043 	read_lock(&sk->sk_callback_lock);
1044 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1045 	read_unlock(&sk->sk_callback_lock);
1046 	return ino;
1047 }
1048 
1049 /*
1050  * Allocate a skb from the socket's send buffer.
1051  */
1052 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1053 			     gfp_t priority)
1054 {
1055 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1056 		struct sk_buff * skb = alloc_skb(size, priority);
1057 		if (skb) {
1058 			skb_set_owner_w(skb, sk);
1059 			return skb;
1060 		}
1061 	}
1062 	return NULL;
1063 }
1064 
1065 /*
1066  * Allocate a skb from the socket's receive buffer.
1067  */
1068 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1069 			     gfp_t priority)
1070 {
1071 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1072 		struct sk_buff *skb = alloc_skb(size, priority);
1073 		if (skb) {
1074 			skb_set_owner_r(skb, sk);
1075 			return skb;
1076 		}
1077 	}
1078 	return NULL;
1079 }
1080 
1081 /*
1082  * Allocate a memory block from the socket's option memory buffer.
1083  */
1084 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1085 {
1086 	if ((unsigned)size <= sysctl_optmem_max &&
1087 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1088 		void *mem;
1089 		/* First do the add, to avoid the race if kmalloc
1090  		 * might sleep.
1091 		 */
1092 		atomic_add(size, &sk->sk_omem_alloc);
1093 		mem = kmalloc(size, priority);
1094 		if (mem)
1095 			return mem;
1096 		atomic_sub(size, &sk->sk_omem_alloc);
1097 	}
1098 	return NULL;
1099 }
1100 
1101 /*
1102  * Free an option memory block.
1103  */
1104 void sock_kfree_s(struct sock *sk, void *mem, int size)
1105 {
1106 	kfree(mem);
1107 	atomic_sub(size, &sk->sk_omem_alloc);
1108 }
1109 
1110 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1111    I think, these locks should be removed for datagram sockets.
1112  */
1113 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1114 {
1115 	DEFINE_WAIT(wait);
1116 
1117 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1118 	for (;;) {
1119 		if (!timeo)
1120 			break;
1121 		if (signal_pending(current))
1122 			break;
1123 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1124 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1125 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1126 			break;
1127 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1128 			break;
1129 		if (sk->sk_err)
1130 			break;
1131 		timeo = schedule_timeout(timeo);
1132 	}
1133 	finish_wait(sk->sk_sleep, &wait);
1134 	return timeo;
1135 }
1136 
1137 
1138 /*
1139  *	Generic send/receive buffer handlers
1140  */
1141 
1142 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1143 					    unsigned long header_len,
1144 					    unsigned long data_len,
1145 					    int noblock, int *errcode)
1146 {
1147 	struct sk_buff *skb;
1148 	gfp_t gfp_mask;
1149 	long timeo;
1150 	int err;
1151 
1152 	gfp_mask = sk->sk_allocation;
1153 	if (gfp_mask & __GFP_WAIT)
1154 		gfp_mask |= __GFP_REPEAT;
1155 
1156 	timeo = sock_sndtimeo(sk, noblock);
1157 	while (1) {
1158 		err = sock_error(sk);
1159 		if (err != 0)
1160 			goto failure;
1161 
1162 		err = -EPIPE;
1163 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1164 			goto failure;
1165 
1166 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1167 			skb = alloc_skb(header_len, sk->sk_allocation);
1168 			if (skb) {
1169 				int npages;
1170 				int i;
1171 
1172 				/* No pages, we're done... */
1173 				if (!data_len)
1174 					break;
1175 
1176 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1177 				skb->truesize += data_len;
1178 				skb_shinfo(skb)->nr_frags = npages;
1179 				for (i = 0; i < npages; i++) {
1180 					struct page *page;
1181 					skb_frag_t *frag;
1182 
1183 					page = alloc_pages(sk->sk_allocation, 0);
1184 					if (!page) {
1185 						err = -ENOBUFS;
1186 						skb_shinfo(skb)->nr_frags = i;
1187 						kfree_skb(skb);
1188 						goto failure;
1189 					}
1190 
1191 					frag = &skb_shinfo(skb)->frags[i];
1192 					frag->page = page;
1193 					frag->page_offset = 0;
1194 					frag->size = (data_len >= PAGE_SIZE ?
1195 						      PAGE_SIZE :
1196 						      data_len);
1197 					data_len -= PAGE_SIZE;
1198 				}
1199 
1200 				/* Full success... */
1201 				break;
1202 			}
1203 			err = -ENOBUFS;
1204 			goto failure;
1205 		}
1206 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1207 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1208 		err = -EAGAIN;
1209 		if (!timeo)
1210 			goto failure;
1211 		if (signal_pending(current))
1212 			goto interrupted;
1213 		timeo = sock_wait_for_wmem(sk, timeo);
1214 	}
1215 
1216 	skb_set_owner_w(skb, sk);
1217 	return skb;
1218 
1219 interrupted:
1220 	err = sock_intr_errno(timeo);
1221 failure:
1222 	*errcode = err;
1223 	return NULL;
1224 }
1225 
1226 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1227 				    int noblock, int *errcode)
1228 {
1229 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1230 }
1231 
1232 static void __lock_sock(struct sock *sk)
1233 {
1234 	DEFINE_WAIT(wait);
1235 
1236 	for(;;) {
1237 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1238 					TASK_UNINTERRUPTIBLE);
1239 		spin_unlock_bh(&sk->sk_lock.slock);
1240 		schedule();
1241 		spin_lock_bh(&sk->sk_lock.slock);
1242 		if(!sock_owned_by_user(sk))
1243 			break;
1244 	}
1245 	finish_wait(&sk->sk_lock.wq, &wait);
1246 }
1247 
1248 static void __release_sock(struct sock *sk)
1249 {
1250 	struct sk_buff *skb = sk->sk_backlog.head;
1251 
1252 	do {
1253 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1254 		bh_unlock_sock(sk);
1255 
1256 		do {
1257 			struct sk_buff *next = skb->next;
1258 
1259 			skb->next = NULL;
1260 			sk->sk_backlog_rcv(sk, skb);
1261 
1262 			/*
1263 			 * We are in process context here with softirqs
1264 			 * disabled, use cond_resched_softirq() to preempt.
1265 			 * This is safe to do because we've taken the backlog
1266 			 * queue private:
1267 			 */
1268 			cond_resched_softirq();
1269 
1270 			skb = next;
1271 		} while (skb != NULL);
1272 
1273 		bh_lock_sock(sk);
1274 	} while((skb = sk->sk_backlog.head) != NULL);
1275 }
1276 
1277 /**
1278  * sk_wait_data - wait for data to arrive at sk_receive_queue
1279  * @sk:    sock to wait on
1280  * @timeo: for how long
1281  *
1282  * Now socket state including sk->sk_err is changed only under lock,
1283  * hence we may omit checks after joining wait queue.
1284  * We check receive queue before schedule() only as optimization;
1285  * it is very likely that release_sock() added new data.
1286  */
1287 int sk_wait_data(struct sock *sk, long *timeo)
1288 {
1289 	int rc;
1290 	DEFINE_WAIT(wait);
1291 
1292 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1293 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1294 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1295 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1296 	finish_wait(sk->sk_sleep, &wait);
1297 	return rc;
1298 }
1299 
1300 EXPORT_SYMBOL(sk_wait_data);
1301 
1302 /*
1303  * Set of default routines for initialising struct proto_ops when
1304  * the protocol does not support a particular function. In certain
1305  * cases where it makes no sense for a protocol to have a "do nothing"
1306  * function, some default processing is provided.
1307  */
1308 
1309 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1310 {
1311 	return -EOPNOTSUPP;
1312 }
1313 
1314 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1315 		    int len, int flags)
1316 {
1317 	return -EOPNOTSUPP;
1318 }
1319 
1320 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1321 {
1322 	return -EOPNOTSUPP;
1323 }
1324 
1325 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1326 {
1327 	return -EOPNOTSUPP;
1328 }
1329 
1330 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1331 		    int *len, int peer)
1332 {
1333 	return -EOPNOTSUPP;
1334 }
1335 
1336 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1337 {
1338 	return 0;
1339 }
1340 
1341 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1342 {
1343 	return -EOPNOTSUPP;
1344 }
1345 
1346 int sock_no_listen(struct socket *sock, int backlog)
1347 {
1348 	return -EOPNOTSUPP;
1349 }
1350 
1351 int sock_no_shutdown(struct socket *sock, int how)
1352 {
1353 	return -EOPNOTSUPP;
1354 }
1355 
1356 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1357 		    char __user *optval, int optlen)
1358 {
1359 	return -EOPNOTSUPP;
1360 }
1361 
1362 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1363 		    char __user *optval, int __user *optlen)
1364 {
1365 	return -EOPNOTSUPP;
1366 }
1367 
1368 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1369 		    size_t len)
1370 {
1371 	return -EOPNOTSUPP;
1372 }
1373 
1374 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1375 		    size_t len, int flags)
1376 {
1377 	return -EOPNOTSUPP;
1378 }
1379 
1380 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1381 {
1382 	/* Mirror missing mmap method error code */
1383 	return -ENODEV;
1384 }
1385 
1386 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1387 {
1388 	ssize_t res;
1389 	struct msghdr msg = {.msg_flags = flags};
1390 	struct kvec iov;
1391 	char *kaddr = kmap(page);
1392 	iov.iov_base = kaddr + offset;
1393 	iov.iov_len = size;
1394 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1395 	kunmap(page);
1396 	return res;
1397 }
1398 
1399 /*
1400  *	Default Socket Callbacks
1401  */
1402 
1403 static void sock_def_wakeup(struct sock *sk)
1404 {
1405 	read_lock(&sk->sk_callback_lock);
1406 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1407 		wake_up_interruptible_all(sk->sk_sleep);
1408 	read_unlock(&sk->sk_callback_lock);
1409 }
1410 
1411 static void sock_def_error_report(struct sock *sk)
1412 {
1413 	read_lock(&sk->sk_callback_lock);
1414 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1415 		wake_up_interruptible(sk->sk_sleep);
1416 	sk_wake_async(sk,0,POLL_ERR);
1417 	read_unlock(&sk->sk_callback_lock);
1418 }
1419 
1420 static void sock_def_readable(struct sock *sk, int len)
1421 {
1422 	read_lock(&sk->sk_callback_lock);
1423 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1424 		wake_up_interruptible(sk->sk_sleep);
1425 	sk_wake_async(sk,1,POLL_IN);
1426 	read_unlock(&sk->sk_callback_lock);
1427 }
1428 
1429 static void sock_def_write_space(struct sock *sk)
1430 {
1431 	read_lock(&sk->sk_callback_lock);
1432 
1433 	/* Do not wake up a writer until he can make "significant"
1434 	 * progress.  --DaveM
1435 	 */
1436 	if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1437 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1438 			wake_up_interruptible(sk->sk_sleep);
1439 
1440 		/* Should agree with poll, otherwise some programs break */
1441 		if (sock_writeable(sk))
1442 			sk_wake_async(sk, 2, POLL_OUT);
1443 	}
1444 
1445 	read_unlock(&sk->sk_callback_lock);
1446 }
1447 
1448 static void sock_def_destruct(struct sock *sk)
1449 {
1450 	kfree(sk->sk_protinfo);
1451 }
1452 
1453 void sk_send_sigurg(struct sock *sk)
1454 {
1455 	if (sk->sk_socket && sk->sk_socket->file)
1456 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1457 			sk_wake_async(sk, 3, POLL_PRI);
1458 }
1459 
1460 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1461 		    unsigned long expires)
1462 {
1463 	if (!mod_timer(timer, expires))
1464 		sock_hold(sk);
1465 }
1466 
1467 EXPORT_SYMBOL(sk_reset_timer);
1468 
1469 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1470 {
1471 	if (timer_pending(timer) && del_timer(timer))
1472 		__sock_put(sk);
1473 }
1474 
1475 EXPORT_SYMBOL(sk_stop_timer);
1476 
1477 void sock_init_data(struct socket *sock, struct sock *sk)
1478 {
1479 	skb_queue_head_init(&sk->sk_receive_queue);
1480 	skb_queue_head_init(&sk->sk_write_queue);
1481 	skb_queue_head_init(&sk->sk_error_queue);
1482 #ifdef CONFIG_NET_DMA
1483 	skb_queue_head_init(&sk->sk_async_wait_queue);
1484 #endif
1485 
1486 	sk->sk_send_head	=	NULL;
1487 
1488 	init_timer(&sk->sk_timer);
1489 
1490 	sk->sk_allocation	=	GFP_KERNEL;
1491 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1492 	sk->sk_sndbuf		=	sysctl_wmem_default;
1493 	sk->sk_state		=	TCP_CLOSE;
1494 	sk->sk_socket		=	sock;
1495 
1496 	sock_set_flag(sk, SOCK_ZAPPED);
1497 
1498 	if(sock)
1499 	{
1500 		sk->sk_type	=	sock->type;
1501 		sk->sk_sleep	=	&sock->wait;
1502 		sock->sk	=	sk;
1503 	} else
1504 		sk->sk_sleep	=	NULL;
1505 
1506 	rwlock_init(&sk->sk_dst_lock);
1507 	rwlock_init(&sk->sk_callback_lock);
1508 	lockdep_set_class(&sk->sk_callback_lock,
1509 			   af_callback_keys + sk->sk_family);
1510 
1511 	sk->sk_state_change	=	sock_def_wakeup;
1512 	sk->sk_data_ready	=	sock_def_readable;
1513 	sk->sk_write_space	=	sock_def_write_space;
1514 	sk->sk_error_report	=	sock_def_error_report;
1515 	sk->sk_destruct		=	sock_def_destruct;
1516 
1517 	sk->sk_sndmsg_page	=	NULL;
1518 	sk->sk_sndmsg_off	=	0;
1519 
1520 	sk->sk_peercred.pid 	=	0;
1521 	sk->sk_peercred.uid	=	-1;
1522 	sk->sk_peercred.gid	=	-1;
1523 	sk->sk_write_pending	=	0;
1524 	sk->sk_rcvlowat		=	1;
1525 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1526 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1527 
1528 	sk->sk_stamp.tv_sec     = -1L;
1529 	sk->sk_stamp.tv_usec    = -1L;
1530 
1531 	atomic_set(&sk->sk_refcnt, 1);
1532 }
1533 
1534 void fastcall lock_sock(struct sock *sk)
1535 {
1536 	might_sleep();
1537 	spin_lock_bh(&sk->sk_lock.slock);
1538 	if (sk->sk_lock.owner)
1539 		__lock_sock(sk);
1540 	sk->sk_lock.owner = (void *)1;
1541 	spin_unlock(&sk->sk_lock.slock);
1542 	/*
1543 	 * The sk_lock has mutex_lock() semantics here:
1544 	 */
1545 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1546 	local_bh_enable();
1547 }
1548 
1549 EXPORT_SYMBOL(lock_sock);
1550 
1551 void fastcall release_sock(struct sock *sk)
1552 {
1553 	/*
1554 	 * The sk_lock has mutex_unlock() semantics:
1555 	 */
1556 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1557 
1558 	spin_lock_bh(&sk->sk_lock.slock);
1559 	if (sk->sk_backlog.tail)
1560 		__release_sock(sk);
1561 	sk->sk_lock.owner = NULL;
1562 	if (waitqueue_active(&sk->sk_lock.wq))
1563 		wake_up(&sk->sk_lock.wq);
1564 	spin_unlock_bh(&sk->sk_lock.slock);
1565 }
1566 EXPORT_SYMBOL(release_sock);
1567 
1568 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1569 {
1570 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1571 		sock_enable_timestamp(sk);
1572 	if (sk->sk_stamp.tv_sec == -1)
1573 		return -ENOENT;
1574 	if (sk->sk_stamp.tv_sec == 0)
1575 		do_gettimeofday(&sk->sk_stamp);
1576 	return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ?
1577 		-EFAULT : 0;
1578 }
1579 EXPORT_SYMBOL(sock_get_timestamp);
1580 
1581 void sock_enable_timestamp(struct sock *sk)
1582 {
1583 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1584 		sock_set_flag(sk, SOCK_TIMESTAMP);
1585 		net_enable_timestamp();
1586 	}
1587 }
1588 EXPORT_SYMBOL(sock_enable_timestamp);
1589 
1590 /*
1591  *	Get a socket option on an socket.
1592  *
1593  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1594  *	asynchronous errors should be reported by getsockopt. We assume
1595  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1596  */
1597 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1598 			   char __user *optval, int __user *optlen)
1599 {
1600 	struct sock *sk = sock->sk;
1601 
1602 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1603 }
1604 
1605 EXPORT_SYMBOL(sock_common_getsockopt);
1606 
1607 #ifdef CONFIG_COMPAT
1608 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1609 				  char __user *optval, int __user *optlen)
1610 {
1611 	struct sock *sk = sock->sk;
1612 
1613 	if (sk->sk_prot->compat_setsockopt != NULL)
1614 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1615 						      optval, optlen);
1616 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1617 }
1618 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1619 #endif
1620 
1621 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1622 			struct msghdr *msg, size_t size, int flags)
1623 {
1624 	struct sock *sk = sock->sk;
1625 	int addr_len = 0;
1626 	int err;
1627 
1628 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1629 				   flags & ~MSG_DONTWAIT, &addr_len);
1630 	if (err >= 0)
1631 		msg->msg_namelen = addr_len;
1632 	return err;
1633 }
1634 
1635 EXPORT_SYMBOL(sock_common_recvmsg);
1636 
1637 /*
1638  *	Set socket options on an inet socket.
1639  */
1640 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1641 			   char __user *optval, int optlen)
1642 {
1643 	struct sock *sk = sock->sk;
1644 
1645 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1646 }
1647 
1648 EXPORT_SYMBOL(sock_common_setsockopt);
1649 
1650 #ifdef CONFIG_COMPAT
1651 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1652 				  char __user *optval, int optlen)
1653 {
1654 	struct sock *sk = sock->sk;
1655 
1656 	if (sk->sk_prot->compat_setsockopt != NULL)
1657 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1658 						      optval, optlen);
1659 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1660 }
1661 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1662 #endif
1663 
1664 void sk_common_release(struct sock *sk)
1665 {
1666 	if (sk->sk_prot->destroy)
1667 		sk->sk_prot->destroy(sk);
1668 
1669 	/*
1670 	 * Observation: when sock_common_release is called, processes have
1671 	 * no access to socket. But net still has.
1672 	 * Step one, detach it from networking:
1673 	 *
1674 	 * A. Remove from hash tables.
1675 	 */
1676 
1677 	sk->sk_prot->unhash(sk);
1678 
1679 	/*
1680 	 * In this point socket cannot receive new packets, but it is possible
1681 	 * that some packets are in flight because some CPU runs receiver and
1682 	 * did hash table lookup before we unhashed socket. They will achieve
1683 	 * receive queue and will be purged by socket destructor.
1684 	 *
1685 	 * Also we still have packets pending on receive queue and probably,
1686 	 * our own packets waiting in device queues. sock_destroy will drain
1687 	 * receive queue, but transmitted packets will delay socket destruction
1688 	 * until the last reference will be released.
1689 	 */
1690 
1691 	sock_orphan(sk);
1692 
1693 	xfrm_sk_free_policy(sk);
1694 
1695 	sk_refcnt_debug_release(sk);
1696 	sock_put(sk);
1697 }
1698 
1699 EXPORT_SYMBOL(sk_common_release);
1700 
1701 static DEFINE_RWLOCK(proto_list_lock);
1702 static LIST_HEAD(proto_list);
1703 
1704 int proto_register(struct proto *prot, int alloc_slab)
1705 {
1706 	char *request_sock_slab_name = NULL;
1707 	char *timewait_sock_slab_name;
1708 	int rc = -ENOBUFS;
1709 
1710 	if (alloc_slab) {
1711 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1712 					       SLAB_HWCACHE_ALIGN, NULL, NULL);
1713 
1714 		if (prot->slab == NULL) {
1715 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1716 			       prot->name);
1717 			goto out;
1718 		}
1719 
1720 		if (prot->rsk_prot != NULL) {
1721 			static const char mask[] = "request_sock_%s";
1722 
1723 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1724 			if (request_sock_slab_name == NULL)
1725 				goto out_free_sock_slab;
1726 
1727 			sprintf(request_sock_slab_name, mask, prot->name);
1728 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1729 								 prot->rsk_prot->obj_size, 0,
1730 								 SLAB_HWCACHE_ALIGN, NULL, NULL);
1731 
1732 			if (prot->rsk_prot->slab == NULL) {
1733 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1734 				       prot->name);
1735 				goto out_free_request_sock_slab_name;
1736 			}
1737 		}
1738 
1739 		if (prot->twsk_prot != NULL) {
1740 			static const char mask[] = "tw_sock_%s";
1741 
1742 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1743 
1744 			if (timewait_sock_slab_name == NULL)
1745 				goto out_free_request_sock_slab;
1746 
1747 			sprintf(timewait_sock_slab_name, mask, prot->name);
1748 			prot->twsk_prot->twsk_slab =
1749 				kmem_cache_create(timewait_sock_slab_name,
1750 						  prot->twsk_prot->twsk_obj_size,
1751 						  0, SLAB_HWCACHE_ALIGN,
1752 						  NULL, NULL);
1753 			if (prot->twsk_prot->twsk_slab == NULL)
1754 				goto out_free_timewait_sock_slab_name;
1755 		}
1756 	}
1757 
1758 	write_lock(&proto_list_lock);
1759 	list_add(&prot->node, &proto_list);
1760 	write_unlock(&proto_list_lock);
1761 	rc = 0;
1762 out:
1763 	return rc;
1764 out_free_timewait_sock_slab_name:
1765 	kfree(timewait_sock_slab_name);
1766 out_free_request_sock_slab:
1767 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1768 		kmem_cache_destroy(prot->rsk_prot->slab);
1769 		prot->rsk_prot->slab = NULL;
1770 	}
1771 out_free_request_sock_slab_name:
1772 	kfree(request_sock_slab_name);
1773 out_free_sock_slab:
1774 	kmem_cache_destroy(prot->slab);
1775 	prot->slab = NULL;
1776 	goto out;
1777 }
1778 
1779 EXPORT_SYMBOL(proto_register);
1780 
1781 void proto_unregister(struct proto *prot)
1782 {
1783 	write_lock(&proto_list_lock);
1784 	list_del(&prot->node);
1785 	write_unlock(&proto_list_lock);
1786 
1787 	if (prot->slab != NULL) {
1788 		kmem_cache_destroy(prot->slab);
1789 		prot->slab = NULL;
1790 	}
1791 
1792 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1793 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1794 
1795 		kmem_cache_destroy(prot->rsk_prot->slab);
1796 		kfree(name);
1797 		prot->rsk_prot->slab = NULL;
1798 	}
1799 
1800 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1801 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1802 
1803 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1804 		kfree(name);
1805 		prot->twsk_prot->twsk_slab = NULL;
1806 	}
1807 }
1808 
1809 EXPORT_SYMBOL(proto_unregister);
1810 
1811 #ifdef CONFIG_PROC_FS
1812 static inline struct proto *__proto_head(void)
1813 {
1814 	return list_entry(proto_list.next, struct proto, node);
1815 }
1816 
1817 static inline struct proto *proto_head(void)
1818 {
1819 	return list_empty(&proto_list) ? NULL : __proto_head();
1820 }
1821 
1822 static inline struct proto *proto_next(struct proto *proto)
1823 {
1824 	return proto->node.next == &proto_list ? NULL :
1825 		list_entry(proto->node.next, struct proto, node);
1826 }
1827 
1828 static inline struct proto *proto_get_idx(loff_t pos)
1829 {
1830 	struct proto *proto;
1831 	loff_t i = 0;
1832 
1833 	list_for_each_entry(proto, &proto_list, node)
1834 		if (i++ == pos)
1835 			goto out;
1836 
1837 	proto = NULL;
1838 out:
1839 	return proto;
1840 }
1841 
1842 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1843 {
1844 	read_lock(&proto_list_lock);
1845 	return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1846 }
1847 
1848 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1849 {
1850 	++*pos;
1851 	return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1852 }
1853 
1854 static void proto_seq_stop(struct seq_file *seq, void *v)
1855 {
1856 	read_unlock(&proto_list_lock);
1857 }
1858 
1859 static char proto_method_implemented(const void *method)
1860 {
1861 	return method == NULL ? 'n' : 'y';
1862 }
1863 
1864 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1865 {
1866 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1867 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1868 		   proto->name,
1869 		   proto->obj_size,
1870 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1871 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1872 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1873 		   proto->max_header,
1874 		   proto->slab == NULL ? "no" : "yes",
1875 		   module_name(proto->owner),
1876 		   proto_method_implemented(proto->close),
1877 		   proto_method_implemented(proto->connect),
1878 		   proto_method_implemented(proto->disconnect),
1879 		   proto_method_implemented(proto->accept),
1880 		   proto_method_implemented(proto->ioctl),
1881 		   proto_method_implemented(proto->init),
1882 		   proto_method_implemented(proto->destroy),
1883 		   proto_method_implemented(proto->shutdown),
1884 		   proto_method_implemented(proto->setsockopt),
1885 		   proto_method_implemented(proto->getsockopt),
1886 		   proto_method_implemented(proto->sendmsg),
1887 		   proto_method_implemented(proto->recvmsg),
1888 		   proto_method_implemented(proto->sendpage),
1889 		   proto_method_implemented(proto->bind),
1890 		   proto_method_implemented(proto->backlog_rcv),
1891 		   proto_method_implemented(proto->hash),
1892 		   proto_method_implemented(proto->unhash),
1893 		   proto_method_implemented(proto->get_port),
1894 		   proto_method_implemented(proto->enter_memory_pressure));
1895 }
1896 
1897 static int proto_seq_show(struct seq_file *seq, void *v)
1898 {
1899 	if (v == SEQ_START_TOKEN)
1900 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1901 			   "protocol",
1902 			   "size",
1903 			   "sockets",
1904 			   "memory",
1905 			   "press",
1906 			   "maxhdr",
1907 			   "slab",
1908 			   "module",
1909 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1910 	else
1911 		proto_seq_printf(seq, v);
1912 	return 0;
1913 }
1914 
1915 static struct seq_operations proto_seq_ops = {
1916 	.start  = proto_seq_start,
1917 	.next   = proto_seq_next,
1918 	.stop   = proto_seq_stop,
1919 	.show   = proto_seq_show,
1920 };
1921 
1922 static int proto_seq_open(struct inode *inode, struct file *file)
1923 {
1924 	return seq_open(file, &proto_seq_ops);
1925 }
1926 
1927 static struct file_operations proto_seq_fops = {
1928 	.owner		= THIS_MODULE,
1929 	.open		= proto_seq_open,
1930 	.read		= seq_read,
1931 	.llseek		= seq_lseek,
1932 	.release	= seq_release,
1933 };
1934 
1935 static int __init proto_init(void)
1936 {
1937 	/* register /proc/net/protocols */
1938 	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1939 }
1940 
1941 subsys_initcall(proto_init);
1942 
1943 #endif /* PROC_FS */
1944 
1945 EXPORT_SYMBOL(sk_alloc);
1946 EXPORT_SYMBOL(sk_free);
1947 EXPORT_SYMBOL(sk_send_sigurg);
1948 EXPORT_SYMBOL(sock_alloc_send_skb);
1949 EXPORT_SYMBOL(sock_init_data);
1950 EXPORT_SYMBOL(sock_kfree_s);
1951 EXPORT_SYMBOL(sock_kmalloc);
1952 EXPORT_SYMBOL(sock_no_accept);
1953 EXPORT_SYMBOL(sock_no_bind);
1954 EXPORT_SYMBOL(sock_no_connect);
1955 EXPORT_SYMBOL(sock_no_getname);
1956 EXPORT_SYMBOL(sock_no_getsockopt);
1957 EXPORT_SYMBOL(sock_no_ioctl);
1958 EXPORT_SYMBOL(sock_no_listen);
1959 EXPORT_SYMBOL(sock_no_mmap);
1960 EXPORT_SYMBOL(sock_no_poll);
1961 EXPORT_SYMBOL(sock_no_recvmsg);
1962 EXPORT_SYMBOL(sock_no_sendmsg);
1963 EXPORT_SYMBOL(sock_no_sendpage);
1964 EXPORT_SYMBOL(sock_no_setsockopt);
1965 EXPORT_SYMBOL(sock_no_shutdown);
1966 EXPORT_SYMBOL(sock_no_socketpair);
1967 EXPORT_SYMBOL(sock_rfree);
1968 EXPORT_SYMBOL(sock_setsockopt);
1969 EXPORT_SYMBOL(sock_wfree);
1970 EXPORT_SYMBOL(sock_wmalloc);
1971 EXPORT_SYMBOL(sock_i_uid);
1972 EXPORT_SYMBOL(sock_i_ino);
1973 EXPORT_SYMBOL(sysctl_optmem_max);
1974 #ifdef CONFIG_SYSCTL
1975 EXPORT_SYMBOL(sysctl_rmem_max);
1976 EXPORT_SYMBOL(sysctl_wmem_max);
1977 #endif
1978