1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 int size; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 size = sizeof(old_tv); 358 } else { 359 *(struct __kernel_sock_timeval *)optval = tv; 360 size = sizeof(tv); 361 } 362 363 return size; 364 } 365 366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 367 { 368 struct __kernel_sock_timeval tv; 369 370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 371 struct old_timeval32 tv32; 372 373 if (optlen < sizeof(tv32)) 374 return -EINVAL; 375 376 if (copy_from_user(&tv32, optval, sizeof(tv32))) 377 return -EFAULT; 378 tv.tv_sec = tv32.tv_sec; 379 tv.tv_usec = tv32.tv_usec; 380 } else if (old_timeval) { 381 struct __kernel_old_timeval old_tv; 382 383 if (optlen < sizeof(old_tv)) 384 return -EINVAL; 385 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 386 return -EFAULT; 387 tv.tv_sec = old_tv.tv_sec; 388 tv.tv_usec = old_tv.tv_usec; 389 } else { 390 if (optlen < sizeof(tv)) 391 return -EINVAL; 392 if (copy_from_user(&tv, optval, sizeof(tv))) 393 return -EFAULT; 394 } 395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 396 return -EDOM; 397 398 if (tv.tv_sec < 0) { 399 static int warned __read_mostly; 400 401 *timeo_p = 0; 402 if (warned < 10 && net_ratelimit()) { 403 warned++; 404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 405 __func__, current->comm, task_pid_nr(current)); 406 } 407 return 0; 408 } 409 *timeo_p = MAX_SCHEDULE_TIMEOUT; 410 if (tv.tv_sec == 0 && tv.tv_usec == 0) 411 return 0; 412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 414 return 0; 415 } 416 417 static void sock_warn_obsolete_bsdism(const char *name) 418 { 419 static int warned; 420 static char warncomm[TASK_COMM_LEN]; 421 if (strcmp(warncomm, current->comm) && warned < 5) { 422 strcpy(warncomm, current->comm); 423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 424 warncomm, name); 425 warned++; 426 } 427 } 428 429 static bool sock_needs_netstamp(const struct sock *sk) 430 { 431 switch (sk->sk_family) { 432 case AF_UNSPEC: 433 case AF_UNIX: 434 return false; 435 default: 436 return true; 437 } 438 } 439 440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 441 { 442 if (sk->sk_flags & flags) { 443 sk->sk_flags &= ~flags; 444 if (sock_needs_netstamp(sk) && 445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 446 net_disable_timestamp(); 447 } 448 } 449 450 451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 452 { 453 unsigned long flags; 454 struct sk_buff_head *list = &sk->sk_receive_queue; 455 456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 457 atomic_inc(&sk->sk_drops); 458 trace_sock_rcvqueue_full(sk, skb); 459 return -ENOMEM; 460 } 461 462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 463 atomic_inc(&sk->sk_drops); 464 return -ENOBUFS; 465 } 466 467 skb->dev = NULL; 468 skb_set_owner_r(skb, sk); 469 470 /* we escape from rcu protected region, make sure we dont leak 471 * a norefcounted dst 472 */ 473 skb_dst_force(skb); 474 475 spin_lock_irqsave(&list->lock, flags); 476 sock_skb_set_dropcount(sk, skb); 477 __skb_queue_tail(list, skb); 478 spin_unlock_irqrestore(&list->lock, flags); 479 480 if (!sock_flag(sk, SOCK_DEAD)) 481 sk->sk_data_ready(sk); 482 return 0; 483 } 484 EXPORT_SYMBOL(__sock_queue_rcv_skb); 485 486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 int err; 489 490 err = sk_filter(sk, skb); 491 if (err) 492 return err; 493 494 return __sock_queue_rcv_skb(sk, skb); 495 } 496 EXPORT_SYMBOL(sock_queue_rcv_skb); 497 498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 499 const int nested, unsigned int trim_cap, bool refcounted) 500 { 501 int rc = NET_RX_SUCCESS; 502 503 if (sk_filter_trim_cap(sk, skb, trim_cap)) 504 goto discard_and_relse; 505 506 skb->dev = NULL; 507 508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 509 atomic_inc(&sk->sk_drops); 510 goto discard_and_relse; 511 } 512 if (nested) 513 bh_lock_sock_nested(sk); 514 else 515 bh_lock_sock(sk); 516 if (!sock_owned_by_user(sk)) { 517 /* 518 * trylock + unlock semantics: 519 */ 520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 521 522 rc = sk_backlog_rcv(sk, skb); 523 524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 526 bh_unlock_sock(sk); 527 atomic_inc(&sk->sk_drops); 528 goto discard_and_relse; 529 } 530 531 bh_unlock_sock(sk); 532 out: 533 if (refcounted) 534 sock_put(sk); 535 return rc; 536 discard_and_relse: 537 kfree_skb(skb); 538 goto out; 539 } 540 EXPORT_SYMBOL(__sk_receive_skb); 541 542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 543 { 544 struct dst_entry *dst = __sk_dst_get(sk); 545 546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 547 sk_tx_queue_clear(sk); 548 sk->sk_dst_pending_confirm = 0; 549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(__sk_dst_check); 557 558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 559 { 560 struct dst_entry *dst = sk_dst_get(sk); 561 562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 563 sk_dst_reset(sk); 564 dst_release(dst); 565 return NULL; 566 } 567 568 return dst; 569 } 570 EXPORT_SYMBOL(sk_dst_check); 571 572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 573 { 574 int ret = -ENOPROTOOPT; 575 #ifdef CONFIG_NETDEVICES 576 struct net *net = sock_net(sk); 577 578 /* Sorry... */ 579 ret = -EPERM; 580 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 581 goto out; 582 583 ret = -EINVAL; 584 if (ifindex < 0) 585 goto out; 586 587 sk->sk_bound_dev_if = ifindex; 588 if (sk->sk_prot->rehash) 589 sk->sk_prot->rehash(sk); 590 sk_dst_reset(sk); 591 592 ret = 0; 593 594 out: 595 #endif 596 597 return ret; 598 } 599 600 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 601 int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_user(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 lock_sock(sk); 641 ret = sock_setbindtodevice_locked(sk, index); 642 release_sock(sk); 643 644 out: 645 #endif 646 647 return ret; 648 } 649 650 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 651 int __user *optlen, int len) 652 { 653 int ret = -ENOPROTOOPT; 654 #ifdef CONFIG_NETDEVICES 655 struct net *net = sock_net(sk); 656 char devname[IFNAMSIZ]; 657 658 if (sk->sk_bound_dev_if == 0) { 659 len = 0; 660 goto zero; 661 } 662 663 ret = -EINVAL; 664 if (len < IFNAMSIZ) 665 goto out; 666 667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 668 if (ret) 669 goto out; 670 671 len = strlen(devname) + 1; 672 673 ret = -EFAULT; 674 if (copy_to_user(optval, devname, len)) 675 goto out; 676 677 zero: 678 ret = -EFAULT; 679 if (put_user(len, optlen)) 680 goto out; 681 682 ret = 0; 683 684 out: 685 #endif 686 687 return ret; 688 } 689 690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 691 { 692 if (valbool) 693 sock_set_flag(sk, bit); 694 else 695 sock_reset_flag(sk, bit); 696 } 697 698 bool sk_mc_loop(struct sock *sk) 699 { 700 if (dev_recursion_level()) 701 return false; 702 if (!sk) 703 return true; 704 switch (sk->sk_family) { 705 case AF_INET: 706 return inet_sk(sk)->mc_loop; 707 #if IS_ENABLED(CONFIG_IPV6) 708 case AF_INET6: 709 return inet6_sk(sk)->mc_loop; 710 #endif 711 } 712 WARN_ON(1); 713 return true; 714 } 715 EXPORT_SYMBOL(sk_mc_loop); 716 717 /* 718 * This is meant for all protocols to use and covers goings on 719 * at the socket level. Everything here is generic. 720 */ 721 722 int sock_setsockopt(struct socket *sock, int level, int optname, 723 char __user *optval, unsigned int optlen) 724 { 725 struct sock_txtime sk_txtime; 726 struct sock *sk = sock->sk; 727 int val; 728 int valbool; 729 struct linger ling; 730 int ret = 0; 731 732 /* 733 * Options without arguments 734 */ 735 736 if (optname == SO_BINDTODEVICE) 737 return sock_setbindtodevice(sk, optval, optlen); 738 739 if (optlen < sizeof(int)) 740 return -EINVAL; 741 742 if (get_user(val, (int __user *)optval)) 743 return -EFAULT; 744 745 valbool = val ? 1 : 0; 746 747 lock_sock(sk); 748 749 switch (optname) { 750 case SO_DEBUG: 751 if (val && !capable(CAP_NET_ADMIN)) 752 ret = -EACCES; 753 else 754 sock_valbool_flag(sk, SOCK_DBG, valbool); 755 break; 756 case SO_REUSEADDR: 757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 758 break; 759 case SO_REUSEPORT: 760 sk->sk_reuseport = valbool; 761 break; 762 case SO_TYPE: 763 case SO_PROTOCOL: 764 case SO_DOMAIN: 765 case SO_ERROR: 766 ret = -ENOPROTOOPT; 767 break; 768 case SO_DONTROUTE: 769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 770 sk_dst_reset(sk); 771 break; 772 case SO_BROADCAST: 773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 774 break; 775 case SO_SNDBUF: 776 /* Don't error on this BSD doesn't and if you think 777 * about it this is right. Otherwise apps have to 778 * play 'guess the biggest size' games. RCVBUF/SNDBUF 779 * are treated in BSD as hints 780 */ 781 val = min_t(u32, val, sysctl_wmem_max); 782 set_sndbuf: 783 /* Ensure val * 2 fits into an int, to prevent max_t() 784 * from treating it as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 789 /* Wake up sending tasks if we upped the value. */ 790 sk->sk_write_space(sk); 791 break; 792 793 case SO_SNDBUFFORCE: 794 if (!capable(CAP_NET_ADMIN)) { 795 ret = -EPERM; 796 break; 797 } 798 799 /* No negative values (to prevent underflow, as val will be 800 * multiplied by 2). 801 */ 802 if (val < 0) 803 val = 0; 804 goto set_sndbuf; 805 806 case SO_RCVBUF: 807 /* Don't error on this BSD doesn't and if you think 808 * about it this is right. Otherwise apps have to 809 * play 'guess the biggest size' games. RCVBUF/SNDBUF 810 * are treated in BSD as hints 811 */ 812 val = min_t(u32, val, sysctl_rmem_max); 813 set_rcvbuf: 814 /* Ensure val * 2 fits into an int, to prevent max_t() 815 * from treating it as a negative value. 816 */ 817 val = min_t(int, val, INT_MAX / 2); 818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 819 /* 820 * We double it on the way in to account for 821 * "struct sk_buff" etc. overhead. Applications 822 * assume that the SO_RCVBUF setting they make will 823 * allow that much actual data to be received on that 824 * socket. 825 * 826 * Applications are unaware that "struct sk_buff" and 827 * other overheads allocate from the receive buffer 828 * during socket buffer allocation. 829 * 830 * And after considering the possible alternatives, 831 * returning the value we actually used in getsockopt 832 * is the most desirable behavior. 833 */ 834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 sk->sk_rcvlowat = val ? : 1; 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_FILTER: 1043 ret = sk_detach_filter(sk); 1044 break; 1045 1046 case SO_LOCK_FILTER: 1047 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1048 ret = -EPERM; 1049 else 1050 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1051 break; 1052 1053 case SO_PASSSEC: 1054 if (valbool) 1055 set_bit(SOCK_PASSSEC, &sock->flags); 1056 else 1057 clear_bit(SOCK_PASSSEC, &sock->flags); 1058 break; 1059 case SO_MARK: 1060 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1061 ret = -EPERM; 1062 } else if (val != sk->sk_mark) { 1063 sk->sk_mark = val; 1064 sk_dst_reset(sk); 1065 } 1066 break; 1067 1068 case SO_RXQ_OVFL: 1069 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1070 break; 1071 1072 case SO_WIFI_STATUS: 1073 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1074 break; 1075 1076 case SO_PEEK_OFF: 1077 if (sock->ops->set_peek_off) 1078 ret = sock->ops->set_peek_off(sk, val); 1079 else 1080 ret = -EOPNOTSUPP; 1081 break; 1082 1083 case SO_NOFCS: 1084 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1085 break; 1086 1087 case SO_SELECT_ERR_QUEUE: 1088 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1089 break; 1090 1091 #ifdef CONFIG_NET_RX_BUSY_POLL 1092 case SO_BUSY_POLL: 1093 /* allow unprivileged users to decrease the value */ 1094 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1095 ret = -EPERM; 1096 else { 1097 if (val < 0) 1098 ret = -EINVAL; 1099 else 1100 sk->sk_ll_usec = val; 1101 } 1102 break; 1103 #endif 1104 1105 case SO_MAX_PACING_RATE: 1106 { 1107 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1108 1109 if (sizeof(ulval) != sizeof(val) && 1110 optlen >= sizeof(ulval) && 1111 get_user(ulval, (unsigned long __user *)optval)) { 1112 ret = -EFAULT; 1113 break; 1114 } 1115 if (ulval != ~0UL) 1116 cmpxchg(&sk->sk_pacing_status, 1117 SK_PACING_NONE, 1118 SK_PACING_NEEDED); 1119 sk->sk_max_pacing_rate = ulval; 1120 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1121 break; 1122 } 1123 case SO_INCOMING_CPU: 1124 sk->sk_incoming_cpu = val; 1125 break; 1126 1127 case SO_CNX_ADVICE: 1128 if (val == 1) 1129 dst_negative_advice(sk); 1130 break; 1131 1132 case SO_ZEROCOPY: 1133 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1134 if (!((sk->sk_type == SOCK_STREAM && 1135 sk->sk_protocol == IPPROTO_TCP) || 1136 (sk->sk_type == SOCK_DGRAM && 1137 sk->sk_protocol == IPPROTO_UDP))) 1138 ret = -ENOTSUPP; 1139 } else if (sk->sk_family != PF_RDS) { 1140 ret = -ENOTSUPP; 1141 } 1142 if (!ret) { 1143 if (val < 0 || val > 1) 1144 ret = -EINVAL; 1145 else 1146 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1147 } 1148 break; 1149 1150 case SO_TXTIME: 1151 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1152 ret = -EPERM; 1153 } else if (optlen != sizeof(struct sock_txtime)) { 1154 ret = -EINVAL; 1155 } else if (copy_from_user(&sk_txtime, optval, 1156 sizeof(struct sock_txtime))) { 1157 ret = -EFAULT; 1158 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1159 ret = -EINVAL; 1160 } else { 1161 sock_valbool_flag(sk, SOCK_TXTIME, true); 1162 sk->sk_clockid = sk_txtime.clockid; 1163 sk->sk_txtime_deadline_mode = 1164 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1165 sk->sk_txtime_report_errors = 1166 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1167 } 1168 break; 1169 1170 case SO_BINDTOIFINDEX: 1171 ret = sock_setbindtodevice_locked(sk, val); 1172 break; 1173 1174 default: 1175 ret = -ENOPROTOOPT; 1176 break; 1177 } 1178 release_sock(sk); 1179 return ret; 1180 } 1181 EXPORT_SYMBOL(sock_setsockopt); 1182 1183 1184 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1185 struct ucred *ucred) 1186 { 1187 ucred->pid = pid_vnr(pid); 1188 ucred->uid = ucred->gid = -1; 1189 if (cred) { 1190 struct user_namespace *current_ns = current_user_ns(); 1191 1192 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1193 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1194 } 1195 } 1196 1197 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1198 { 1199 struct user_namespace *user_ns = current_user_ns(); 1200 int i; 1201 1202 for (i = 0; i < src->ngroups; i++) 1203 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1204 return -EFAULT; 1205 1206 return 0; 1207 } 1208 1209 int sock_getsockopt(struct socket *sock, int level, int optname, 1210 char __user *optval, int __user *optlen) 1211 { 1212 struct sock *sk = sock->sk; 1213 1214 union { 1215 int val; 1216 u64 val64; 1217 unsigned long ulval; 1218 struct linger ling; 1219 struct old_timeval32 tm32; 1220 struct __kernel_old_timeval tm; 1221 struct __kernel_sock_timeval stm; 1222 struct sock_txtime txtime; 1223 } v; 1224 1225 int lv = sizeof(int); 1226 int len; 1227 1228 if (get_user(len, optlen)) 1229 return -EFAULT; 1230 if (len < 0) 1231 return -EINVAL; 1232 1233 memset(&v, 0, sizeof(v)); 1234 1235 switch (optname) { 1236 case SO_DEBUG: 1237 v.val = sock_flag(sk, SOCK_DBG); 1238 break; 1239 1240 case SO_DONTROUTE: 1241 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1242 break; 1243 1244 case SO_BROADCAST: 1245 v.val = sock_flag(sk, SOCK_BROADCAST); 1246 break; 1247 1248 case SO_SNDBUF: 1249 v.val = sk->sk_sndbuf; 1250 break; 1251 1252 case SO_RCVBUF: 1253 v.val = sk->sk_rcvbuf; 1254 break; 1255 1256 case SO_REUSEADDR: 1257 v.val = sk->sk_reuse; 1258 break; 1259 1260 case SO_REUSEPORT: 1261 v.val = sk->sk_reuseport; 1262 break; 1263 1264 case SO_KEEPALIVE: 1265 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1266 break; 1267 1268 case SO_TYPE: 1269 v.val = sk->sk_type; 1270 break; 1271 1272 case SO_PROTOCOL: 1273 v.val = sk->sk_protocol; 1274 break; 1275 1276 case SO_DOMAIN: 1277 v.val = sk->sk_family; 1278 break; 1279 1280 case SO_ERROR: 1281 v.val = -sock_error(sk); 1282 if (v.val == 0) 1283 v.val = xchg(&sk->sk_err_soft, 0); 1284 break; 1285 1286 case SO_OOBINLINE: 1287 v.val = sock_flag(sk, SOCK_URGINLINE); 1288 break; 1289 1290 case SO_NO_CHECK: 1291 v.val = sk->sk_no_check_tx; 1292 break; 1293 1294 case SO_PRIORITY: 1295 v.val = sk->sk_priority; 1296 break; 1297 1298 case SO_LINGER: 1299 lv = sizeof(v.ling); 1300 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1301 v.ling.l_linger = sk->sk_lingertime / HZ; 1302 break; 1303 1304 case SO_BSDCOMPAT: 1305 sock_warn_obsolete_bsdism("getsockopt"); 1306 break; 1307 1308 case SO_TIMESTAMP_OLD: 1309 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1310 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1311 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1312 break; 1313 1314 case SO_TIMESTAMPNS_OLD: 1315 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1316 break; 1317 1318 case SO_TIMESTAMP_NEW: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMPNS_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPING_OLD: 1327 v.val = sk->sk_tsflags; 1328 break; 1329 1330 case SO_RCVTIMEO_OLD: 1331 case SO_RCVTIMEO_NEW: 1332 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1333 break; 1334 1335 case SO_SNDTIMEO_OLD: 1336 case SO_SNDTIMEO_NEW: 1337 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1338 break; 1339 1340 case SO_RCVLOWAT: 1341 v.val = sk->sk_rcvlowat; 1342 break; 1343 1344 case SO_SNDLOWAT: 1345 v.val = 1; 1346 break; 1347 1348 case SO_PASSCRED: 1349 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1350 break; 1351 1352 case SO_PEERCRED: 1353 { 1354 struct ucred peercred; 1355 if (len > sizeof(peercred)) 1356 len = sizeof(peercred); 1357 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1358 if (copy_to_user(optval, &peercred, len)) 1359 return -EFAULT; 1360 goto lenout; 1361 } 1362 1363 case SO_PEERGROUPS: 1364 { 1365 int ret, n; 1366 1367 if (!sk->sk_peer_cred) 1368 return -ENODATA; 1369 1370 n = sk->sk_peer_cred->group_info->ngroups; 1371 if (len < n * sizeof(gid_t)) { 1372 len = n * sizeof(gid_t); 1373 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1374 } 1375 len = n * sizeof(gid_t); 1376 1377 ret = groups_to_user((gid_t __user *)optval, 1378 sk->sk_peer_cred->group_info); 1379 if (ret) 1380 return ret; 1381 goto lenout; 1382 } 1383 1384 case SO_PEERNAME: 1385 { 1386 char address[128]; 1387 1388 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1389 if (lv < 0) 1390 return -ENOTCONN; 1391 if (lv < len) 1392 return -EINVAL; 1393 if (copy_to_user(optval, address, len)) 1394 return -EFAULT; 1395 goto lenout; 1396 } 1397 1398 /* Dubious BSD thing... Probably nobody even uses it, but 1399 * the UNIX standard wants it for whatever reason... -DaveM 1400 */ 1401 case SO_ACCEPTCONN: 1402 v.val = sk->sk_state == TCP_LISTEN; 1403 break; 1404 1405 case SO_PASSSEC: 1406 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1407 break; 1408 1409 case SO_PEERSEC: 1410 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1411 1412 case SO_MARK: 1413 v.val = sk->sk_mark; 1414 break; 1415 1416 case SO_RXQ_OVFL: 1417 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1418 break; 1419 1420 case SO_WIFI_STATUS: 1421 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1422 break; 1423 1424 case SO_PEEK_OFF: 1425 if (!sock->ops->set_peek_off) 1426 return -EOPNOTSUPP; 1427 1428 v.val = sk->sk_peek_off; 1429 break; 1430 case SO_NOFCS: 1431 v.val = sock_flag(sk, SOCK_NOFCS); 1432 break; 1433 1434 case SO_BINDTODEVICE: 1435 return sock_getbindtodevice(sk, optval, optlen, len); 1436 1437 case SO_GET_FILTER: 1438 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1439 if (len < 0) 1440 return len; 1441 1442 goto lenout; 1443 1444 case SO_LOCK_FILTER: 1445 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1446 break; 1447 1448 case SO_BPF_EXTENSIONS: 1449 v.val = bpf_tell_extensions(); 1450 break; 1451 1452 case SO_SELECT_ERR_QUEUE: 1453 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1454 break; 1455 1456 #ifdef CONFIG_NET_RX_BUSY_POLL 1457 case SO_BUSY_POLL: 1458 v.val = sk->sk_ll_usec; 1459 break; 1460 #endif 1461 1462 case SO_MAX_PACING_RATE: 1463 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1464 lv = sizeof(v.ulval); 1465 v.ulval = sk->sk_max_pacing_rate; 1466 } else { 1467 /* 32bit version */ 1468 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1469 } 1470 break; 1471 1472 case SO_INCOMING_CPU: 1473 v.val = sk->sk_incoming_cpu; 1474 break; 1475 1476 case SO_MEMINFO: 1477 { 1478 u32 meminfo[SK_MEMINFO_VARS]; 1479 1480 if (get_user(len, optlen)) 1481 return -EFAULT; 1482 1483 sk_get_meminfo(sk, meminfo); 1484 1485 len = min_t(unsigned int, len, sizeof(meminfo)); 1486 if (copy_to_user(optval, &meminfo, len)) 1487 return -EFAULT; 1488 1489 goto lenout; 1490 } 1491 1492 #ifdef CONFIG_NET_RX_BUSY_POLL 1493 case SO_INCOMING_NAPI_ID: 1494 v.val = READ_ONCE(sk->sk_napi_id); 1495 1496 /* aggregate non-NAPI IDs down to 0 */ 1497 if (v.val < MIN_NAPI_ID) 1498 v.val = 0; 1499 1500 break; 1501 #endif 1502 1503 case SO_COOKIE: 1504 lv = sizeof(u64); 1505 if (len < lv) 1506 return -EINVAL; 1507 v.val64 = sock_gen_cookie(sk); 1508 break; 1509 1510 case SO_ZEROCOPY: 1511 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1512 break; 1513 1514 case SO_TXTIME: 1515 lv = sizeof(v.txtime); 1516 v.txtime.clockid = sk->sk_clockid; 1517 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1518 SOF_TXTIME_DEADLINE_MODE : 0; 1519 v.txtime.flags |= sk->sk_txtime_report_errors ? 1520 SOF_TXTIME_REPORT_ERRORS : 0; 1521 break; 1522 1523 case SO_BINDTOIFINDEX: 1524 v.val = sk->sk_bound_dev_if; 1525 break; 1526 1527 default: 1528 /* We implement the SO_SNDLOWAT etc to not be settable 1529 * (1003.1g 7). 1530 */ 1531 return -ENOPROTOOPT; 1532 } 1533 1534 if (len > lv) 1535 len = lv; 1536 if (copy_to_user(optval, &v, len)) 1537 return -EFAULT; 1538 lenout: 1539 if (put_user(len, optlen)) 1540 return -EFAULT; 1541 return 0; 1542 } 1543 1544 /* 1545 * Initialize an sk_lock. 1546 * 1547 * (We also register the sk_lock with the lock validator.) 1548 */ 1549 static inline void sock_lock_init(struct sock *sk) 1550 { 1551 if (sk->sk_kern_sock) 1552 sock_lock_init_class_and_name( 1553 sk, 1554 af_family_kern_slock_key_strings[sk->sk_family], 1555 af_family_kern_slock_keys + sk->sk_family, 1556 af_family_kern_key_strings[sk->sk_family], 1557 af_family_kern_keys + sk->sk_family); 1558 else 1559 sock_lock_init_class_and_name( 1560 sk, 1561 af_family_slock_key_strings[sk->sk_family], 1562 af_family_slock_keys + sk->sk_family, 1563 af_family_key_strings[sk->sk_family], 1564 af_family_keys + sk->sk_family); 1565 } 1566 1567 /* 1568 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1569 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1570 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1571 */ 1572 static void sock_copy(struct sock *nsk, const struct sock *osk) 1573 { 1574 #ifdef CONFIG_SECURITY_NETWORK 1575 void *sptr = nsk->sk_security; 1576 #endif 1577 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1578 1579 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1580 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1581 1582 #ifdef CONFIG_SECURITY_NETWORK 1583 nsk->sk_security = sptr; 1584 security_sk_clone(osk, nsk); 1585 #endif 1586 } 1587 1588 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1589 int family) 1590 { 1591 struct sock *sk; 1592 struct kmem_cache *slab; 1593 1594 slab = prot->slab; 1595 if (slab != NULL) { 1596 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1597 if (!sk) 1598 return sk; 1599 if (priority & __GFP_ZERO) 1600 sk_prot_clear_nulls(sk, prot->obj_size); 1601 } else 1602 sk = kmalloc(prot->obj_size, priority); 1603 1604 if (sk != NULL) { 1605 if (security_sk_alloc(sk, family, priority)) 1606 goto out_free; 1607 1608 if (!try_module_get(prot->owner)) 1609 goto out_free_sec; 1610 sk_tx_queue_clear(sk); 1611 } 1612 1613 return sk; 1614 1615 out_free_sec: 1616 security_sk_free(sk); 1617 out_free: 1618 if (slab != NULL) 1619 kmem_cache_free(slab, sk); 1620 else 1621 kfree(sk); 1622 return NULL; 1623 } 1624 1625 static void sk_prot_free(struct proto *prot, struct sock *sk) 1626 { 1627 struct kmem_cache *slab; 1628 struct module *owner; 1629 1630 owner = prot->owner; 1631 slab = prot->slab; 1632 1633 cgroup_sk_free(&sk->sk_cgrp_data); 1634 mem_cgroup_sk_free(sk); 1635 security_sk_free(sk); 1636 if (slab != NULL) 1637 kmem_cache_free(slab, sk); 1638 else 1639 kfree(sk); 1640 module_put(owner); 1641 } 1642 1643 /** 1644 * sk_alloc - All socket objects are allocated here 1645 * @net: the applicable net namespace 1646 * @family: protocol family 1647 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1648 * @prot: struct proto associated with this new sock instance 1649 * @kern: is this to be a kernel socket? 1650 */ 1651 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1652 struct proto *prot, int kern) 1653 { 1654 struct sock *sk; 1655 1656 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1657 if (sk) { 1658 sk->sk_family = family; 1659 /* 1660 * See comment in struct sock definition to understand 1661 * why we need sk_prot_creator -acme 1662 */ 1663 sk->sk_prot = sk->sk_prot_creator = prot; 1664 sk->sk_kern_sock = kern; 1665 sock_lock_init(sk); 1666 sk->sk_net_refcnt = kern ? 0 : 1; 1667 if (likely(sk->sk_net_refcnt)) { 1668 get_net(net); 1669 sock_inuse_add(net, 1); 1670 } 1671 1672 sock_net_set(sk, net); 1673 refcount_set(&sk->sk_wmem_alloc, 1); 1674 1675 mem_cgroup_sk_alloc(sk); 1676 cgroup_sk_alloc(&sk->sk_cgrp_data); 1677 sock_update_classid(&sk->sk_cgrp_data); 1678 sock_update_netprioidx(&sk->sk_cgrp_data); 1679 } 1680 1681 return sk; 1682 } 1683 EXPORT_SYMBOL(sk_alloc); 1684 1685 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1686 * grace period. This is the case for UDP sockets and TCP listeners. 1687 */ 1688 static void __sk_destruct(struct rcu_head *head) 1689 { 1690 struct sock *sk = container_of(head, struct sock, sk_rcu); 1691 struct sk_filter *filter; 1692 1693 if (sk->sk_destruct) 1694 sk->sk_destruct(sk); 1695 1696 filter = rcu_dereference_check(sk->sk_filter, 1697 refcount_read(&sk->sk_wmem_alloc) == 0); 1698 if (filter) { 1699 sk_filter_uncharge(sk, filter); 1700 RCU_INIT_POINTER(sk->sk_filter, NULL); 1701 } 1702 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1703 reuseport_detach_sock(sk); 1704 1705 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1706 1707 #ifdef CONFIG_BPF_SYSCALL 1708 bpf_sk_storage_free(sk); 1709 #endif 1710 1711 if (atomic_read(&sk->sk_omem_alloc)) 1712 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1713 __func__, atomic_read(&sk->sk_omem_alloc)); 1714 1715 if (sk->sk_frag.page) { 1716 put_page(sk->sk_frag.page); 1717 sk->sk_frag.page = NULL; 1718 } 1719 1720 if (sk->sk_peer_cred) 1721 put_cred(sk->sk_peer_cred); 1722 put_pid(sk->sk_peer_pid); 1723 if (likely(sk->sk_net_refcnt)) 1724 put_net(sock_net(sk)); 1725 sk_prot_free(sk->sk_prot_creator, sk); 1726 } 1727 1728 void sk_destruct(struct sock *sk) 1729 { 1730 if (sock_flag(sk, SOCK_RCU_FREE)) 1731 call_rcu(&sk->sk_rcu, __sk_destruct); 1732 else 1733 __sk_destruct(&sk->sk_rcu); 1734 } 1735 1736 static void __sk_free(struct sock *sk) 1737 { 1738 if (likely(sk->sk_net_refcnt)) 1739 sock_inuse_add(sock_net(sk), -1); 1740 1741 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1742 sock_diag_broadcast_destroy(sk); 1743 else 1744 sk_destruct(sk); 1745 } 1746 1747 void sk_free(struct sock *sk) 1748 { 1749 /* 1750 * We subtract one from sk_wmem_alloc and can know if 1751 * some packets are still in some tx queue. 1752 * If not null, sock_wfree() will call __sk_free(sk) later 1753 */ 1754 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1755 __sk_free(sk); 1756 } 1757 EXPORT_SYMBOL(sk_free); 1758 1759 static void sk_init_common(struct sock *sk) 1760 { 1761 skb_queue_head_init(&sk->sk_receive_queue); 1762 skb_queue_head_init(&sk->sk_write_queue); 1763 skb_queue_head_init(&sk->sk_error_queue); 1764 1765 rwlock_init(&sk->sk_callback_lock); 1766 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1767 af_rlock_keys + sk->sk_family, 1768 af_family_rlock_key_strings[sk->sk_family]); 1769 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1770 af_wlock_keys + sk->sk_family, 1771 af_family_wlock_key_strings[sk->sk_family]); 1772 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1773 af_elock_keys + sk->sk_family, 1774 af_family_elock_key_strings[sk->sk_family]); 1775 lockdep_set_class_and_name(&sk->sk_callback_lock, 1776 af_callback_keys + sk->sk_family, 1777 af_family_clock_key_strings[sk->sk_family]); 1778 } 1779 1780 /** 1781 * sk_clone_lock - clone a socket, and lock its clone 1782 * @sk: the socket to clone 1783 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1784 * 1785 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1786 */ 1787 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1788 { 1789 struct sock *newsk; 1790 bool is_charged = true; 1791 1792 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1793 if (newsk != NULL) { 1794 struct sk_filter *filter; 1795 1796 sock_copy(newsk, sk); 1797 1798 newsk->sk_prot_creator = sk->sk_prot; 1799 1800 /* SANITY */ 1801 if (likely(newsk->sk_net_refcnt)) 1802 get_net(sock_net(newsk)); 1803 sk_node_init(&newsk->sk_node); 1804 sock_lock_init(newsk); 1805 bh_lock_sock(newsk); 1806 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1807 newsk->sk_backlog.len = 0; 1808 1809 atomic_set(&newsk->sk_rmem_alloc, 0); 1810 /* 1811 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1812 */ 1813 refcount_set(&newsk->sk_wmem_alloc, 1); 1814 atomic_set(&newsk->sk_omem_alloc, 0); 1815 sk_init_common(newsk); 1816 1817 newsk->sk_dst_cache = NULL; 1818 newsk->sk_dst_pending_confirm = 0; 1819 newsk->sk_wmem_queued = 0; 1820 newsk->sk_forward_alloc = 0; 1821 atomic_set(&newsk->sk_drops, 0); 1822 newsk->sk_send_head = NULL; 1823 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1824 atomic_set(&newsk->sk_zckey, 0); 1825 1826 sock_reset_flag(newsk, SOCK_DONE); 1827 mem_cgroup_sk_alloc(newsk); 1828 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1829 1830 rcu_read_lock(); 1831 filter = rcu_dereference(sk->sk_filter); 1832 if (filter != NULL) 1833 /* though it's an empty new sock, the charging may fail 1834 * if sysctl_optmem_max was changed between creation of 1835 * original socket and cloning 1836 */ 1837 is_charged = sk_filter_charge(newsk, filter); 1838 RCU_INIT_POINTER(newsk->sk_filter, filter); 1839 rcu_read_unlock(); 1840 1841 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1842 /* We need to make sure that we don't uncharge the new 1843 * socket if we couldn't charge it in the first place 1844 * as otherwise we uncharge the parent's filter. 1845 */ 1846 if (!is_charged) 1847 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1848 sk_free_unlock_clone(newsk); 1849 newsk = NULL; 1850 goto out; 1851 } 1852 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1853 #ifdef CONFIG_BPF_SYSCALL 1854 RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); 1855 #endif 1856 1857 newsk->sk_err = 0; 1858 newsk->sk_err_soft = 0; 1859 newsk->sk_priority = 0; 1860 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1861 if (likely(newsk->sk_net_refcnt)) 1862 sock_inuse_add(sock_net(newsk), 1); 1863 1864 /* 1865 * Before updating sk_refcnt, we must commit prior changes to memory 1866 * (Documentation/RCU/rculist_nulls.txt for details) 1867 */ 1868 smp_wmb(); 1869 refcount_set(&newsk->sk_refcnt, 2); 1870 1871 /* 1872 * Increment the counter in the same struct proto as the master 1873 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1874 * is the same as sk->sk_prot->socks, as this field was copied 1875 * with memcpy). 1876 * 1877 * This _changes_ the previous behaviour, where 1878 * tcp_create_openreq_child always was incrementing the 1879 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1880 * to be taken into account in all callers. -acme 1881 */ 1882 sk_refcnt_debug_inc(newsk); 1883 sk_set_socket(newsk, NULL); 1884 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1885 1886 if (newsk->sk_prot->sockets_allocated) 1887 sk_sockets_allocated_inc(newsk); 1888 1889 if (sock_needs_netstamp(sk) && 1890 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1891 net_enable_timestamp(); 1892 } 1893 out: 1894 return newsk; 1895 } 1896 EXPORT_SYMBOL_GPL(sk_clone_lock); 1897 1898 void sk_free_unlock_clone(struct sock *sk) 1899 { 1900 /* It is still raw copy of parent, so invalidate 1901 * destructor and make plain sk_free() */ 1902 sk->sk_destruct = NULL; 1903 bh_unlock_sock(sk); 1904 sk_free(sk); 1905 } 1906 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1907 1908 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1909 { 1910 u32 max_segs = 1; 1911 1912 sk_dst_set(sk, dst); 1913 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1914 if (sk->sk_route_caps & NETIF_F_GSO) 1915 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1916 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1917 if (sk_can_gso(sk)) { 1918 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1919 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1920 } else { 1921 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1922 sk->sk_gso_max_size = dst->dev->gso_max_size; 1923 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1924 } 1925 } 1926 sk->sk_gso_max_segs = max_segs; 1927 } 1928 EXPORT_SYMBOL_GPL(sk_setup_caps); 1929 1930 /* 1931 * Simple resource managers for sockets. 1932 */ 1933 1934 1935 /* 1936 * Write buffer destructor automatically called from kfree_skb. 1937 */ 1938 void sock_wfree(struct sk_buff *skb) 1939 { 1940 struct sock *sk = skb->sk; 1941 unsigned int len = skb->truesize; 1942 1943 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1944 /* 1945 * Keep a reference on sk_wmem_alloc, this will be released 1946 * after sk_write_space() call 1947 */ 1948 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1949 sk->sk_write_space(sk); 1950 len = 1; 1951 } 1952 /* 1953 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1954 * could not do because of in-flight packets 1955 */ 1956 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1957 __sk_free(sk); 1958 } 1959 EXPORT_SYMBOL(sock_wfree); 1960 1961 /* This variant of sock_wfree() is used by TCP, 1962 * since it sets SOCK_USE_WRITE_QUEUE. 1963 */ 1964 void __sock_wfree(struct sk_buff *skb) 1965 { 1966 struct sock *sk = skb->sk; 1967 1968 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1969 __sk_free(sk); 1970 } 1971 1972 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1973 { 1974 skb_orphan(skb); 1975 skb->sk = sk; 1976 #ifdef CONFIG_INET 1977 if (unlikely(!sk_fullsock(sk))) { 1978 skb->destructor = sock_edemux; 1979 sock_hold(sk); 1980 return; 1981 } 1982 #endif 1983 skb->destructor = sock_wfree; 1984 skb_set_hash_from_sk(skb, sk); 1985 /* 1986 * We used to take a refcount on sk, but following operation 1987 * is enough to guarantee sk_free() wont free this sock until 1988 * all in-flight packets are completed 1989 */ 1990 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1991 } 1992 EXPORT_SYMBOL(skb_set_owner_w); 1993 1994 /* This helper is used by netem, as it can hold packets in its 1995 * delay queue. We want to allow the owner socket to send more 1996 * packets, as if they were already TX completed by a typical driver. 1997 * But we also want to keep skb->sk set because some packet schedulers 1998 * rely on it (sch_fq for example). 1999 */ 2000 void skb_orphan_partial(struct sk_buff *skb) 2001 { 2002 if (skb_is_tcp_pure_ack(skb)) 2003 return; 2004 2005 if (skb->destructor == sock_wfree 2006 #ifdef CONFIG_INET 2007 || skb->destructor == tcp_wfree 2008 #endif 2009 ) { 2010 struct sock *sk = skb->sk; 2011 2012 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2013 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2014 skb->destructor = sock_efree; 2015 } 2016 } else { 2017 skb_orphan(skb); 2018 } 2019 } 2020 EXPORT_SYMBOL(skb_orphan_partial); 2021 2022 /* 2023 * Read buffer destructor automatically called from kfree_skb. 2024 */ 2025 void sock_rfree(struct sk_buff *skb) 2026 { 2027 struct sock *sk = skb->sk; 2028 unsigned int len = skb->truesize; 2029 2030 atomic_sub(len, &sk->sk_rmem_alloc); 2031 sk_mem_uncharge(sk, len); 2032 } 2033 EXPORT_SYMBOL(sock_rfree); 2034 2035 /* 2036 * Buffer destructor for skbs that are not used directly in read or write 2037 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2038 */ 2039 void sock_efree(struct sk_buff *skb) 2040 { 2041 sock_put(skb->sk); 2042 } 2043 EXPORT_SYMBOL(sock_efree); 2044 2045 kuid_t sock_i_uid(struct sock *sk) 2046 { 2047 kuid_t uid; 2048 2049 read_lock_bh(&sk->sk_callback_lock); 2050 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2051 read_unlock_bh(&sk->sk_callback_lock); 2052 return uid; 2053 } 2054 EXPORT_SYMBOL(sock_i_uid); 2055 2056 unsigned long sock_i_ino(struct sock *sk) 2057 { 2058 unsigned long ino; 2059 2060 read_lock_bh(&sk->sk_callback_lock); 2061 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2062 read_unlock_bh(&sk->sk_callback_lock); 2063 return ino; 2064 } 2065 EXPORT_SYMBOL(sock_i_ino); 2066 2067 /* 2068 * Allocate a skb from the socket's send buffer. 2069 */ 2070 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2071 gfp_t priority) 2072 { 2073 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2074 struct sk_buff *skb = alloc_skb(size, priority); 2075 if (skb) { 2076 skb_set_owner_w(skb, sk); 2077 return skb; 2078 } 2079 } 2080 return NULL; 2081 } 2082 EXPORT_SYMBOL(sock_wmalloc); 2083 2084 static void sock_ofree(struct sk_buff *skb) 2085 { 2086 struct sock *sk = skb->sk; 2087 2088 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2089 } 2090 2091 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2092 gfp_t priority) 2093 { 2094 struct sk_buff *skb; 2095 2096 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2097 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2098 sysctl_optmem_max) 2099 return NULL; 2100 2101 skb = alloc_skb(size, priority); 2102 if (!skb) 2103 return NULL; 2104 2105 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2106 skb->sk = sk; 2107 skb->destructor = sock_ofree; 2108 return skb; 2109 } 2110 2111 /* 2112 * Allocate a memory block from the socket's option memory buffer. 2113 */ 2114 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2115 { 2116 if ((unsigned int)size <= sysctl_optmem_max && 2117 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2118 void *mem; 2119 /* First do the add, to avoid the race if kmalloc 2120 * might sleep. 2121 */ 2122 atomic_add(size, &sk->sk_omem_alloc); 2123 mem = kmalloc(size, priority); 2124 if (mem) 2125 return mem; 2126 atomic_sub(size, &sk->sk_omem_alloc); 2127 } 2128 return NULL; 2129 } 2130 EXPORT_SYMBOL(sock_kmalloc); 2131 2132 /* Free an option memory block. Note, we actually want the inline 2133 * here as this allows gcc to detect the nullify and fold away the 2134 * condition entirely. 2135 */ 2136 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2137 const bool nullify) 2138 { 2139 if (WARN_ON_ONCE(!mem)) 2140 return; 2141 if (nullify) 2142 kzfree(mem); 2143 else 2144 kfree(mem); 2145 atomic_sub(size, &sk->sk_omem_alloc); 2146 } 2147 2148 void sock_kfree_s(struct sock *sk, void *mem, int size) 2149 { 2150 __sock_kfree_s(sk, mem, size, false); 2151 } 2152 EXPORT_SYMBOL(sock_kfree_s); 2153 2154 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2155 { 2156 __sock_kfree_s(sk, mem, size, true); 2157 } 2158 EXPORT_SYMBOL(sock_kzfree_s); 2159 2160 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2161 I think, these locks should be removed for datagram sockets. 2162 */ 2163 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2164 { 2165 DEFINE_WAIT(wait); 2166 2167 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2168 for (;;) { 2169 if (!timeo) 2170 break; 2171 if (signal_pending(current)) 2172 break; 2173 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2174 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2175 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2176 break; 2177 if (sk->sk_shutdown & SEND_SHUTDOWN) 2178 break; 2179 if (sk->sk_err) 2180 break; 2181 timeo = schedule_timeout(timeo); 2182 } 2183 finish_wait(sk_sleep(sk), &wait); 2184 return timeo; 2185 } 2186 2187 2188 /* 2189 * Generic send/receive buffer handlers 2190 */ 2191 2192 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2193 unsigned long data_len, int noblock, 2194 int *errcode, int max_page_order) 2195 { 2196 struct sk_buff *skb; 2197 long timeo; 2198 int err; 2199 2200 timeo = sock_sndtimeo(sk, noblock); 2201 for (;;) { 2202 err = sock_error(sk); 2203 if (err != 0) 2204 goto failure; 2205 2206 err = -EPIPE; 2207 if (sk->sk_shutdown & SEND_SHUTDOWN) 2208 goto failure; 2209 2210 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2211 break; 2212 2213 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2214 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2215 err = -EAGAIN; 2216 if (!timeo) 2217 goto failure; 2218 if (signal_pending(current)) 2219 goto interrupted; 2220 timeo = sock_wait_for_wmem(sk, timeo); 2221 } 2222 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2223 errcode, sk->sk_allocation); 2224 if (skb) 2225 skb_set_owner_w(skb, sk); 2226 return skb; 2227 2228 interrupted: 2229 err = sock_intr_errno(timeo); 2230 failure: 2231 *errcode = err; 2232 return NULL; 2233 } 2234 EXPORT_SYMBOL(sock_alloc_send_pskb); 2235 2236 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2237 int noblock, int *errcode) 2238 { 2239 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2240 } 2241 EXPORT_SYMBOL(sock_alloc_send_skb); 2242 2243 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2244 struct sockcm_cookie *sockc) 2245 { 2246 u32 tsflags; 2247 2248 switch (cmsg->cmsg_type) { 2249 case SO_MARK: 2250 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2251 return -EPERM; 2252 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2253 return -EINVAL; 2254 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2255 break; 2256 case SO_TIMESTAMPING_OLD: 2257 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2258 return -EINVAL; 2259 2260 tsflags = *(u32 *)CMSG_DATA(cmsg); 2261 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2262 return -EINVAL; 2263 2264 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2265 sockc->tsflags |= tsflags; 2266 break; 2267 case SCM_TXTIME: 2268 if (!sock_flag(sk, SOCK_TXTIME)) 2269 return -EINVAL; 2270 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2271 return -EINVAL; 2272 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2273 break; 2274 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2275 case SCM_RIGHTS: 2276 case SCM_CREDENTIALS: 2277 break; 2278 default: 2279 return -EINVAL; 2280 } 2281 return 0; 2282 } 2283 EXPORT_SYMBOL(__sock_cmsg_send); 2284 2285 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2286 struct sockcm_cookie *sockc) 2287 { 2288 struct cmsghdr *cmsg; 2289 int ret; 2290 2291 for_each_cmsghdr(cmsg, msg) { 2292 if (!CMSG_OK(msg, cmsg)) 2293 return -EINVAL; 2294 if (cmsg->cmsg_level != SOL_SOCKET) 2295 continue; 2296 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2297 if (ret) 2298 return ret; 2299 } 2300 return 0; 2301 } 2302 EXPORT_SYMBOL(sock_cmsg_send); 2303 2304 static void sk_enter_memory_pressure(struct sock *sk) 2305 { 2306 if (!sk->sk_prot->enter_memory_pressure) 2307 return; 2308 2309 sk->sk_prot->enter_memory_pressure(sk); 2310 } 2311 2312 static void sk_leave_memory_pressure(struct sock *sk) 2313 { 2314 if (sk->sk_prot->leave_memory_pressure) { 2315 sk->sk_prot->leave_memory_pressure(sk); 2316 } else { 2317 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2318 2319 if (memory_pressure && *memory_pressure) 2320 *memory_pressure = 0; 2321 } 2322 } 2323 2324 /* On 32bit arches, an skb frag is limited to 2^15 */ 2325 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2326 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2327 2328 /** 2329 * skb_page_frag_refill - check that a page_frag contains enough room 2330 * @sz: minimum size of the fragment we want to get 2331 * @pfrag: pointer to page_frag 2332 * @gfp: priority for memory allocation 2333 * 2334 * Note: While this allocator tries to use high order pages, there is 2335 * no guarantee that allocations succeed. Therefore, @sz MUST be 2336 * less or equal than PAGE_SIZE. 2337 */ 2338 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2339 { 2340 if (pfrag->page) { 2341 if (page_ref_count(pfrag->page) == 1) { 2342 pfrag->offset = 0; 2343 return true; 2344 } 2345 if (pfrag->offset + sz <= pfrag->size) 2346 return true; 2347 put_page(pfrag->page); 2348 } 2349 2350 pfrag->offset = 0; 2351 if (SKB_FRAG_PAGE_ORDER && 2352 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2353 /* Avoid direct reclaim but allow kswapd to wake */ 2354 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2355 __GFP_COMP | __GFP_NOWARN | 2356 __GFP_NORETRY, 2357 SKB_FRAG_PAGE_ORDER); 2358 if (likely(pfrag->page)) { 2359 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2360 return true; 2361 } 2362 } 2363 pfrag->page = alloc_page(gfp); 2364 if (likely(pfrag->page)) { 2365 pfrag->size = PAGE_SIZE; 2366 return true; 2367 } 2368 return false; 2369 } 2370 EXPORT_SYMBOL(skb_page_frag_refill); 2371 2372 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2373 { 2374 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2375 return true; 2376 2377 sk_enter_memory_pressure(sk); 2378 sk_stream_moderate_sndbuf(sk); 2379 return false; 2380 } 2381 EXPORT_SYMBOL(sk_page_frag_refill); 2382 2383 static void __lock_sock(struct sock *sk) 2384 __releases(&sk->sk_lock.slock) 2385 __acquires(&sk->sk_lock.slock) 2386 { 2387 DEFINE_WAIT(wait); 2388 2389 for (;;) { 2390 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2391 TASK_UNINTERRUPTIBLE); 2392 spin_unlock_bh(&sk->sk_lock.slock); 2393 schedule(); 2394 spin_lock_bh(&sk->sk_lock.slock); 2395 if (!sock_owned_by_user(sk)) 2396 break; 2397 } 2398 finish_wait(&sk->sk_lock.wq, &wait); 2399 } 2400 2401 void __release_sock(struct sock *sk) 2402 __releases(&sk->sk_lock.slock) 2403 __acquires(&sk->sk_lock.slock) 2404 { 2405 struct sk_buff *skb, *next; 2406 2407 while ((skb = sk->sk_backlog.head) != NULL) { 2408 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2409 2410 spin_unlock_bh(&sk->sk_lock.slock); 2411 2412 do { 2413 next = skb->next; 2414 prefetch(next); 2415 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2416 skb_mark_not_on_list(skb); 2417 sk_backlog_rcv(sk, skb); 2418 2419 cond_resched(); 2420 2421 skb = next; 2422 } while (skb != NULL); 2423 2424 spin_lock_bh(&sk->sk_lock.slock); 2425 } 2426 2427 /* 2428 * Doing the zeroing here guarantee we can not loop forever 2429 * while a wild producer attempts to flood us. 2430 */ 2431 sk->sk_backlog.len = 0; 2432 } 2433 2434 void __sk_flush_backlog(struct sock *sk) 2435 { 2436 spin_lock_bh(&sk->sk_lock.slock); 2437 __release_sock(sk); 2438 spin_unlock_bh(&sk->sk_lock.slock); 2439 } 2440 2441 /** 2442 * sk_wait_data - wait for data to arrive at sk_receive_queue 2443 * @sk: sock to wait on 2444 * @timeo: for how long 2445 * @skb: last skb seen on sk_receive_queue 2446 * 2447 * Now socket state including sk->sk_err is changed only under lock, 2448 * hence we may omit checks after joining wait queue. 2449 * We check receive queue before schedule() only as optimization; 2450 * it is very likely that release_sock() added new data. 2451 */ 2452 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2453 { 2454 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2455 int rc; 2456 2457 add_wait_queue(sk_sleep(sk), &wait); 2458 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2459 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2460 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2461 remove_wait_queue(sk_sleep(sk), &wait); 2462 return rc; 2463 } 2464 EXPORT_SYMBOL(sk_wait_data); 2465 2466 /** 2467 * __sk_mem_raise_allocated - increase memory_allocated 2468 * @sk: socket 2469 * @size: memory size to allocate 2470 * @amt: pages to allocate 2471 * @kind: allocation type 2472 * 2473 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2474 */ 2475 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2476 { 2477 struct proto *prot = sk->sk_prot; 2478 long allocated = sk_memory_allocated_add(sk, amt); 2479 bool charged = true; 2480 2481 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2482 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2483 goto suppress_allocation; 2484 2485 /* Under limit. */ 2486 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2487 sk_leave_memory_pressure(sk); 2488 return 1; 2489 } 2490 2491 /* Under pressure. */ 2492 if (allocated > sk_prot_mem_limits(sk, 1)) 2493 sk_enter_memory_pressure(sk); 2494 2495 /* Over hard limit. */ 2496 if (allocated > sk_prot_mem_limits(sk, 2)) 2497 goto suppress_allocation; 2498 2499 /* guarantee minimum buffer size under pressure */ 2500 if (kind == SK_MEM_RECV) { 2501 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2502 return 1; 2503 2504 } else { /* SK_MEM_SEND */ 2505 int wmem0 = sk_get_wmem0(sk, prot); 2506 2507 if (sk->sk_type == SOCK_STREAM) { 2508 if (sk->sk_wmem_queued < wmem0) 2509 return 1; 2510 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2511 return 1; 2512 } 2513 } 2514 2515 if (sk_has_memory_pressure(sk)) { 2516 u64 alloc; 2517 2518 if (!sk_under_memory_pressure(sk)) 2519 return 1; 2520 alloc = sk_sockets_allocated_read_positive(sk); 2521 if (sk_prot_mem_limits(sk, 2) > alloc * 2522 sk_mem_pages(sk->sk_wmem_queued + 2523 atomic_read(&sk->sk_rmem_alloc) + 2524 sk->sk_forward_alloc)) 2525 return 1; 2526 } 2527 2528 suppress_allocation: 2529 2530 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2531 sk_stream_moderate_sndbuf(sk); 2532 2533 /* Fail only if socket is _under_ its sndbuf. 2534 * In this case we cannot block, so that we have to fail. 2535 */ 2536 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2537 return 1; 2538 } 2539 2540 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2541 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2542 2543 sk_memory_allocated_sub(sk, amt); 2544 2545 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2546 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2547 2548 return 0; 2549 } 2550 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2551 2552 /** 2553 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2554 * @sk: socket 2555 * @size: memory size to allocate 2556 * @kind: allocation type 2557 * 2558 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2559 * rmem allocation. This function assumes that protocols which have 2560 * memory_pressure use sk_wmem_queued as write buffer accounting. 2561 */ 2562 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2563 { 2564 int ret, amt = sk_mem_pages(size); 2565 2566 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2567 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2568 if (!ret) 2569 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2570 return ret; 2571 } 2572 EXPORT_SYMBOL(__sk_mem_schedule); 2573 2574 /** 2575 * __sk_mem_reduce_allocated - reclaim memory_allocated 2576 * @sk: socket 2577 * @amount: number of quanta 2578 * 2579 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2580 */ 2581 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2582 { 2583 sk_memory_allocated_sub(sk, amount); 2584 2585 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2586 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2587 2588 if (sk_under_memory_pressure(sk) && 2589 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2590 sk_leave_memory_pressure(sk); 2591 } 2592 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2593 2594 /** 2595 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2596 * @sk: socket 2597 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2598 */ 2599 void __sk_mem_reclaim(struct sock *sk, int amount) 2600 { 2601 amount >>= SK_MEM_QUANTUM_SHIFT; 2602 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2603 __sk_mem_reduce_allocated(sk, amount); 2604 } 2605 EXPORT_SYMBOL(__sk_mem_reclaim); 2606 2607 int sk_set_peek_off(struct sock *sk, int val) 2608 { 2609 sk->sk_peek_off = val; 2610 return 0; 2611 } 2612 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2613 2614 /* 2615 * Set of default routines for initialising struct proto_ops when 2616 * the protocol does not support a particular function. In certain 2617 * cases where it makes no sense for a protocol to have a "do nothing" 2618 * function, some default processing is provided. 2619 */ 2620 2621 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2622 { 2623 return -EOPNOTSUPP; 2624 } 2625 EXPORT_SYMBOL(sock_no_bind); 2626 2627 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2628 int len, int flags) 2629 { 2630 return -EOPNOTSUPP; 2631 } 2632 EXPORT_SYMBOL(sock_no_connect); 2633 2634 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2635 { 2636 return -EOPNOTSUPP; 2637 } 2638 EXPORT_SYMBOL(sock_no_socketpair); 2639 2640 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2641 bool kern) 2642 { 2643 return -EOPNOTSUPP; 2644 } 2645 EXPORT_SYMBOL(sock_no_accept); 2646 2647 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2648 int peer) 2649 { 2650 return -EOPNOTSUPP; 2651 } 2652 EXPORT_SYMBOL(sock_no_getname); 2653 2654 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2655 { 2656 return -EOPNOTSUPP; 2657 } 2658 EXPORT_SYMBOL(sock_no_ioctl); 2659 2660 int sock_no_listen(struct socket *sock, int backlog) 2661 { 2662 return -EOPNOTSUPP; 2663 } 2664 EXPORT_SYMBOL(sock_no_listen); 2665 2666 int sock_no_shutdown(struct socket *sock, int how) 2667 { 2668 return -EOPNOTSUPP; 2669 } 2670 EXPORT_SYMBOL(sock_no_shutdown); 2671 2672 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2673 char __user *optval, unsigned int optlen) 2674 { 2675 return -EOPNOTSUPP; 2676 } 2677 EXPORT_SYMBOL(sock_no_setsockopt); 2678 2679 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2680 char __user *optval, int __user *optlen) 2681 { 2682 return -EOPNOTSUPP; 2683 } 2684 EXPORT_SYMBOL(sock_no_getsockopt); 2685 2686 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2687 { 2688 return -EOPNOTSUPP; 2689 } 2690 EXPORT_SYMBOL(sock_no_sendmsg); 2691 2692 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2693 { 2694 return -EOPNOTSUPP; 2695 } 2696 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2697 2698 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2699 int flags) 2700 { 2701 return -EOPNOTSUPP; 2702 } 2703 EXPORT_SYMBOL(sock_no_recvmsg); 2704 2705 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2706 { 2707 /* Mirror missing mmap method error code */ 2708 return -ENODEV; 2709 } 2710 EXPORT_SYMBOL(sock_no_mmap); 2711 2712 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2713 { 2714 ssize_t res; 2715 struct msghdr msg = {.msg_flags = flags}; 2716 struct kvec iov; 2717 char *kaddr = kmap(page); 2718 iov.iov_base = kaddr + offset; 2719 iov.iov_len = size; 2720 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2721 kunmap(page); 2722 return res; 2723 } 2724 EXPORT_SYMBOL(sock_no_sendpage); 2725 2726 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2727 int offset, size_t size, int flags) 2728 { 2729 ssize_t res; 2730 struct msghdr msg = {.msg_flags = flags}; 2731 struct kvec iov; 2732 char *kaddr = kmap(page); 2733 2734 iov.iov_base = kaddr + offset; 2735 iov.iov_len = size; 2736 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2737 kunmap(page); 2738 return res; 2739 } 2740 EXPORT_SYMBOL(sock_no_sendpage_locked); 2741 2742 /* 2743 * Default Socket Callbacks 2744 */ 2745 2746 static void sock_def_wakeup(struct sock *sk) 2747 { 2748 struct socket_wq *wq; 2749 2750 rcu_read_lock(); 2751 wq = rcu_dereference(sk->sk_wq); 2752 if (skwq_has_sleeper(wq)) 2753 wake_up_interruptible_all(&wq->wait); 2754 rcu_read_unlock(); 2755 } 2756 2757 static void sock_def_error_report(struct sock *sk) 2758 { 2759 struct socket_wq *wq; 2760 2761 rcu_read_lock(); 2762 wq = rcu_dereference(sk->sk_wq); 2763 if (skwq_has_sleeper(wq)) 2764 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2765 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2766 rcu_read_unlock(); 2767 } 2768 2769 static void sock_def_readable(struct sock *sk) 2770 { 2771 struct socket_wq *wq; 2772 2773 rcu_read_lock(); 2774 wq = rcu_dereference(sk->sk_wq); 2775 if (skwq_has_sleeper(wq)) 2776 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2777 EPOLLRDNORM | EPOLLRDBAND); 2778 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2779 rcu_read_unlock(); 2780 } 2781 2782 static void sock_def_write_space(struct sock *sk) 2783 { 2784 struct socket_wq *wq; 2785 2786 rcu_read_lock(); 2787 2788 /* Do not wake up a writer until he can make "significant" 2789 * progress. --DaveM 2790 */ 2791 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2792 wq = rcu_dereference(sk->sk_wq); 2793 if (skwq_has_sleeper(wq)) 2794 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2795 EPOLLWRNORM | EPOLLWRBAND); 2796 2797 /* Should agree with poll, otherwise some programs break */ 2798 if (sock_writeable(sk)) 2799 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2800 } 2801 2802 rcu_read_unlock(); 2803 } 2804 2805 static void sock_def_destruct(struct sock *sk) 2806 { 2807 } 2808 2809 void sk_send_sigurg(struct sock *sk) 2810 { 2811 if (sk->sk_socket && sk->sk_socket->file) 2812 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2813 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2814 } 2815 EXPORT_SYMBOL(sk_send_sigurg); 2816 2817 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2818 unsigned long expires) 2819 { 2820 if (!mod_timer(timer, expires)) 2821 sock_hold(sk); 2822 } 2823 EXPORT_SYMBOL(sk_reset_timer); 2824 2825 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2826 { 2827 if (del_timer(timer)) 2828 __sock_put(sk); 2829 } 2830 EXPORT_SYMBOL(sk_stop_timer); 2831 2832 void sock_init_data(struct socket *sock, struct sock *sk) 2833 { 2834 sk_init_common(sk); 2835 sk->sk_send_head = NULL; 2836 2837 timer_setup(&sk->sk_timer, NULL, 0); 2838 2839 sk->sk_allocation = GFP_KERNEL; 2840 sk->sk_rcvbuf = sysctl_rmem_default; 2841 sk->sk_sndbuf = sysctl_wmem_default; 2842 sk->sk_state = TCP_CLOSE; 2843 sk_set_socket(sk, sock); 2844 2845 sock_set_flag(sk, SOCK_ZAPPED); 2846 2847 if (sock) { 2848 sk->sk_type = sock->type; 2849 RCU_INIT_POINTER(sk->sk_wq, sock->wq); 2850 sock->sk = sk; 2851 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2852 } else { 2853 RCU_INIT_POINTER(sk->sk_wq, NULL); 2854 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2855 } 2856 2857 rwlock_init(&sk->sk_callback_lock); 2858 if (sk->sk_kern_sock) 2859 lockdep_set_class_and_name( 2860 &sk->sk_callback_lock, 2861 af_kern_callback_keys + sk->sk_family, 2862 af_family_kern_clock_key_strings[sk->sk_family]); 2863 else 2864 lockdep_set_class_and_name( 2865 &sk->sk_callback_lock, 2866 af_callback_keys + sk->sk_family, 2867 af_family_clock_key_strings[sk->sk_family]); 2868 2869 sk->sk_state_change = sock_def_wakeup; 2870 sk->sk_data_ready = sock_def_readable; 2871 sk->sk_write_space = sock_def_write_space; 2872 sk->sk_error_report = sock_def_error_report; 2873 sk->sk_destruct = sock_def_destruct; 2874 2875 sk->sk_frag.page = NULL; 2876 sk->sk_frag.offset = 0; 2877 sk->sk_peek_off = -1; 2878 2879 sk->sk_peer_pid = NULL; 2880 sk->sk_peer_cred = NULL; 2881 sk->sk_write_pending = 0; 2882 sk->sk_rcvlowat = 1; 2883 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2884 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2885 2886 sk->sk_stamp = SK_DEFAULT_STAMP; 2887 #if BITS_PER_LONG==32 2888 seqlock_init(&sk->sk_stamp_seq); 2889 #endif 2890 atomic_set(&sk->sk_zckey, 0); 2891 2892 #ifdef CONFIG_NET_RX_BUSY_POLL 2893 sk->sk_napi_id = 0; 2894 sk->sk_ll_usec = sysctl_net_busy_read; 2895 #endif 2896 2897 sk->sk_max_pacing_rate = ~0UL; 2898 sk->sk_pacing_rate = ~0UL; 2899 sk->sk_pacing_shift = 10; 2900 sk->sk_incoming_cpu = -1; 2901 2902 sk_rx_queue_clear(sk); 2903 /* 2904 * Before updating sk_refcnt, we must commit prior changes to memory 2905 * (Documentation/RCU/rculist_nulls.txt for details) 2906 */ 2907 smp_wmb(); 2908 refcount_set(&sk->sk_refcnt, 1); 2909 atomic_set(&sk->sk_drops, 0); 2910 } 2911 EXPORT_SYMBOL(sock_init_data); 2912 2913 void lock_sock_nested(struct sock *sk, int subclass) 2914 { 2915 might_sleep(); 2916 spin_lock_bh(&sk->sk_lock.slock); 2917 if (sk->sk_lock.owned) 2918 __lock_sock(sk); 2919 sk->sk_lock.owned = 1; 2920 spin_unlock(&sk->sk_lock.slock); 2921 /* 2922 * The sk_lock has mutex_lock() semantics here: 2923 */ 2924 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2925 local_bh_enable(); 2926 } 2927 EXPORT_SYMBOL(lock_sock_nested); 2928 2929 void release_sock(struct sock *sk) 2930 { 2931 spin_lock_bh(&sk->sk_lock.slock); 2932 if (sk->sk_backlog.tail) 2933 __release_sock(sk); 2934 2935 /* Warning : release_cb() might need to release sk ownership, 2936 * ie call sock_release_ownership(sk) before us. 2937 */ 2938 if (sk->sk_prot->release_cb) 2939 sk->sk_prot->release_cb(sk); 2940 2941 sock_release_ownership(sk); 2942 if (waitqueue_active(&sk->sk_lock.wq)) 2943 wake_up(&sk->sk_lock.wq); 2944 spin_unlock_bh(&sk->sk_lock.slock); 2945 } 2946 EXPORT_SYMBOL(release_sock); 2947 2948 /** 2949 * lock_sock_fast - fast version of lock_sock 2950 * @sk: socket 2951 * 2952 * This version should be used for very small section, where process wont block 2953 * return false if fast path is taken: 2954 * 2955 * sk_lock.slock locked, owned = 0, BH disabled 2956 * 2957 * return true if slow path is taken: 2958 * 2959 * sk_lock.slock unlocked, owned = 1, BH enabled 2960 */ 2961 bool lock_sock_fast(struct sock *sk) 2962 { 2963 might_sleep(); 2964 spin_lock_bh(&sk->sk_lock.slock); 2965 2966 if (!sk->sk_lock.owned) 2967 /* 2968 * Note : We must disable BH 2969 */ 2970 return false; 2971 2972 __lock_sock(sk); 2973 sk->sk_lock.owned = 1; 2974 spin_unlock(&sk->sk_lock.slock); 2975 /* 2976 * The sk_lock has mutex_lock() semantics here: 2977 */ 2978 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2979 local_bh_enable(); 2980 return true; 2981 } 2982 EXPORT_SYMBOL(lock_sock_fast); 2983 2984 int sock_gettstamp(struct socket *sock, void __user *userstamp, 2985 bool timeval, bool time32) 2986 { 2987 struct sock *sk = sock->sk; 2988 struct timespec64 ts; 2989 2990 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2991 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 2992 if (ts.tv_sec == -1) 2993 return -ENOENT; 2994 if (ts.tv_sec == 0) { 2995 ktime_t kt = ktime_get_real(); 2996 sock_write_timestamp(sk, kt);; 2997 ts = ktime_to_timespec64(kt); 2998 } 2999 3000 if (timeval) 3001 ts.tv_nsec /= 1000; 3002 3003 #ifdef CONFIG_COMPAT_32BIT_TIME 3004 if (time32) 3005 return put_old_timespec32(&ts, userstamp); 3006 #endif 3007 #ifdef CONFIG_SPARC64 3008 /* beware of padding in sparc64 timeval */ 3009 if (timeval && !in_compat_syscall()) { 3010 struct __kernel_old_timeval __user tv = { 3011 .tv_sec = ts.tv_sec, 3012 .tv_usec = ts.tv_nsec, 3013 }; 3014 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3015 return -EFAULT; 3016 return 0; 3017 } 3018 #endif 3019 return put_timespec64(&ts, userstamp); 3020 } 3021 EXPORT_SYMBOL(sock_gettstamp); 3022 3023 void sock_enable_timestamp(struct sock *sk, int flag) 3024 { 3025 if (!sock_flag(sk, flag)) { 3026 unsigned long previous_flags = sk->sk_flags; 3027 3028 sock_set_flag(sk, flag); 3029 /* 3030 * we just set one of the two flags which require net 3031 * time stamping, but time stamping might have been on 3032 * already because of the other one 3033 */ 3034 if (sock_needs_netstamp(sk) && 3035 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3036 net_enable_timestamp(); 3037 } 3038 } 3039 3040 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3041 int level, int type) 3042 { 3043 struct sock_exterr_skb *serr; 3044 struct sk_buff *skb; 3045 int copied, err; 3046 3047 err = -EAGAIN; 3048 skb = sock_dequeue_err_skb(sk); 3049 if (skb == NULL) 3050 goto out; 3051 3052 copied = skb->len; 3053 if (copied > len) { 3054 msg->msg_flags |= MSG_TRUNC; 3055 copied = len; 3056 } 3057 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3058 if (err) 3059 goto out_free_skb; 3060 3061 sock_recv_timestamp(msg, sk, skb); 3062 3063 serr = SKB_EXT_ERR(skb); 3064 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3065 3066 msg->msg_flags |= MSG_ERRQUEUE; 3067 err = copied; 3068 3069 out_free_skb: 3070 kfree_skb(skb); 3071 out: 3072 return err; 3073 } 3074 EXPORT_SYMBOL(sock_recv_errqueue); 3075 3076 /* 3077 * Get a socket option on an socket. 3078 * 3079 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3080 * asynchronous errors should be reported by getsockopt. We assume 3081 * this means if you specify SO_ERROR (otherwise whats the point of it). 3082 */ 3083 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3084 char __user *optval, int __user *optlen) 3085 { 3086 struct sock *sk = sock->sk; 3087 3088 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3089 } 3090 EXPORT_SYMBOL(sock_common_getsockopt); 3091 3092 #ifdef CONFIG_COMPAT 3093 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3094 char __user *optval, int __user *optlen) 3095 { 3096 struct sock *sk = sock->sk; 3097 3098 if (sk->sk_prot->compat_getsockopt != NULL) 3099 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3100 optval, optlen); 3101 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3102 } 3103 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3104 #endif 3105 3106 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3107 int flags) 3108 { 3109 struct sock *sk = sock->sk; 3110 int addr_len = 0; 3111 int err; 3112 3113 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3114 flags & ~MSG_DONTWAIT, &addr_len); 3115 if (err >= 0) 3116 msg->msg_namelen = addr_len; 3117 return err; 3118 } 3119 EXPORT_SYMBOL(sock_common_recvmsg); 3120 3121 /* 3122 * Set socket options on an inet socket. 3123 */ 3124 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3125 char __user *optval, unsigned int optlen) 3126 { 3127 struct sock *sk = sock->sk; 3128 3129 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3130 } 3131 EXPORT_SYMBOL(sock_common_setsockopt); 3132 3133 #ifdef CONFIG_COMPAT 3134 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3135 char __user *optval, unsigned int optlen) 3136 { 3137 struct sock *sk = sock->sk; 3138 3139 if (sk->sk_prot->compat_setsockopt != NULL) 3140 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3141 optval, optlen); 3142 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3143 } 3144 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3145 #endif 3146 3147 void sk_common_release(struct sock *sk) 3148 { 3149 if (sk->sk_prot->destroy) 3150 sk->sk_prot->destroy(sk); 3151 3152 /* 3153 * Observation: when sock_common_release is called, processes have 3154 * no access to socket. But net still has. 3155 * Step one, detach it from networking: 3156 * 3157 * A. Remove from hash tables. 3158 */ 3159 3160 sk->sk_prot->unhash(sk); 3161 3162 /* 3163 * In this point socket cannot receive new packets, but it is possible 3164 * that some packets are in flight because some CPU runs receiver and 3165 * did hash table lookup before we unhashed socket. They will achieve 3166 * receive queue and will be purged by socket destructor. 3167 * 3168 * Also we still have packets pending on receive queue and probably, 3169 * our own packets waiting in device queues. sock_destroy will drain 3170 * receive queue, but transmitted packets will delay socket destruction 3171 * until the last reference will be released. 3172 */ 3173 3174 sock_orphan(sk); 3175 3176 xfrm_sk_free_policy(sk); 3177 3178 sk_refcnt_debug_release(sk); 3179 3180 sock_put(sk); 3181 } 3182 EXPORT_SYMBOL(sk_common_release); 3183 3184 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3185 { 3186 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3187 3188 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3189 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3190 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3191 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3192 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3193 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3194 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3195 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3196 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3197 } 3198 3199 #ifdef CONFIG_PROC_FS 3200 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3201 struct prot_inuse { 3202 int val[PROTO_INUSE_NR]; 3203 }; 3204 3205 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3206 3207 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3208 { 3209 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3210 } 3211 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3212 3213 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3214 { 3215 int cpu, idx = prot->inuse_idx; 3216 int res = 0; 3217 3218 for_each_possible_cpu(cpu) 3219 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3220 3221 return res >= 0 ? res : 0; 3222 } 3223 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3224 3225 static void sock_inuse_add(struct net *net, int val) 3226 { 3227 this_cpu_add(*net->core.sock_inuse, val); 3228 } 3229 3230 int sock_inuse_get(struct net *net) 3231 { 3232 int cpu, res = 0; 3233 3234 for_each_possible_cpu(cpu) 3235 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3236 3237 return res; 3238 } 3239 3240 EXPORT_SYMBOL_GPL(sock_inuse_get); 3241 3242 static int __net_init sock_inuse_init_net(struct net *net) 3243 { 3244 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3245 if (net->core.prot_inuse == NULL) 3246 return -ENOMEM; 3247 3248 net->core.sock_inuse = alloc_percpu(int); 3249 if (net->core.sock_inuse == NULL) 3250 goto out; 3251 3252 return 0; 3253 3254 out: 3255 free_percpu(net->core.prot_inuse); 3256 return -ENOMEM; 3257 } 3258 3259 static void __net_exit sock_inuse_exit_net(struct net *net) 3260 { 3261 free_percpu(net->core.prot_inuse); 3262 free_percpu(net->core.sock_inuse); 3263 } 3264 3265 static struct pernet_operations net_inuse_ops = { 3266 .init = sock_inuse_init_net, 3267 .exit = sock_inuse_exit_net, 3268 }; 3269 3270 static __init int net_inuse_init(void) 3271 { 3272 if (register_pernet_subsys(&net_inuse_ops)) 3273 panic("Cannot initialize net inuse counters"); 3274 3275 return 0; 3276 } 3277 3278 core_initcall(net_inuse_init); 3279 3280 static void assign_proto_idx(struct proto *prot) 3281 { 3282 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3283 3284 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3285 pr_err("PROTO_INUSE_NR exhausted\n"); 3286 return; 3287 } 3288 3289 set_bit(prot->inuse_idx, proto_inuse_idx); 3290 } 3291 3292 static void release_proto_idx(struct proto *prot) 3293 { 3294 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3295 clear_bit(prot->inuse_idx, proto_inuse_idx); 3296 } 3297 #else 3298 static inline void assign_proto_idx(struct proto *prot) 3299 { 3300 } 3301 3302 static inline void release_proto_idx(struct proto *prot) 3303 { 3304 } 3305 3306 static void sock_inuse_add(struct net *net, int val) 3307 { 3308 } 3309 #endif 3310 3311 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3312 { 3313 if (!rsk_prot) 3314 return; 3315 kfree(rsk_prot->slab_name); 3316 rsk_prot->slab_name = NULL; 3317 kmem_cache_destroy(rsk_prot->slab); 3318 rsk_prot->slab = NULL; 3319 } 3320 3321 static int req_prot_init(const struct proto *prot) 3322 { 3323 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3324 3325 if (!rsk_prot) 3326 return 0; 3327 3328 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3329 prot->name); 3330 if (!rsk_prot->slab_name) 3331 return -ENOMEM; 3332 3333 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3334 rsk_prot->obj_size, 0, 3335 SLAB_ACCOUNT | prot->slab_flags, 3336 NULL); 3337 3338 if (!rsk_prot->slab) { 3339 pr_crit("%s: Can't create request sock SLAB cache!\n", 3340 prot->name); 3341 return -ENOMEM; 3342 } 3343 return 0; 3344 } 3345 3346 int proto_register(struct proto *prot, int alloc_slab) 3347 { 3348 if (alloc_slab) { 3349 prot->slab = kmem_cache_create_usercopy(prot->name, 3350 prot->obj_size, 0, 3351 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3352 prot->slab_flags, 3353 prot->useroffset, prot->usersize, 3354 NULL); 3355 3356 if (prot->slab == NULL) { 3357 pr_crit("%s: Can't create sock SLAB cache!\n", 3358 prot->name); 3359 goto out; 3360 } 3361 3362 if (req_prot_init(prot)) 3363 goto out_free_request_sock_slab; 3364 3365 if (prot->twsk_prot != NULL) { 3366 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3367 3368 if (prot->twsk_prot->twsk_slab_name == NULL) 3369 goto out_free_request_sock_slab; 3370 3371 prot->twsk_prot->twsk_slab = 3372 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3373 prot->twsk_prot->twsk_obj_size, 3374 0, 3375 SLAB_ACCOUNT | 3376 prot->slab_flags, 3377 NULL); 3378 if (prot->twsk_prot->twsk_slab == NULL) 3379 goto out_free_timewait_sock_slab_name; 3380 } 3381 } 3382 3383 mutex_lock(&proto_list_mutex); 3384 list_add(&prot->node, &proto_list); 3385 assign_proto_idx(prot); 3386 mutex_unlock(&proto_list_mutex); 3387 return 0; 3388 3389 out_free_timewait_sock_slab_name: 3390 kfree(prot->twsk_prot->twsk_slab_name); 3391 out_free_request_sock_slab: 3392 req_prot_cleanup(prot->rsk_prot); 3393 3394 kmem_cache_destroy(prot->slab); 3395 prot->slab = NULL; 3396 out: 3397 return -ENOBUFS; 3398 } 3399 EXPORT_SYMBOL(proto_register); 3400 3401 void proto_unregister(struct proto *prot) 3402 { 3403 mutex_lock(&proto_list_mutex); 3404 release_proto_idx(prot); 3405 list_del(&prot->node); 3406 mutex_unlock(&proto_list_mutex); 3407 3408 kmem_cache_destroy(prot->slab); 3409 prot->slab = NULL; 3410 3411 req_prot_cleanup(prot->rsk_prot); 3412 3413 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3414 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3415 kfree(prot->twsk_prot->twsk_slab_name); 3416 prot->twsk_prot->twsk_slab = NULL; 3417 } 3418 } 3419 EXPORT_SYMBOL(proto_unregister); 3420 3421 int sock_load_diag_module(int family, int protocol) 3422 { 3423 if (!protocol) { 3424 if (!sock_is_registered(family)) 3425 return -ENOENT; 3426 3427 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3428 NETLINK_SOCK_DIAG, family); 3429 } 3430 3431 #ifdef CONFIG_INET 3432 if (family == AF_INET && 3433 protocol != IPPROTO_RAW && 3434 !rcu_access_pointer(inet_protos[protocol])) 3435 return -ENOENT; 3436 #endif 3437 3438 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3439 NETLINK_SOCK_DIAG, family, protocol); 3440 } 3441 EXPORT_SYMBOL(sock_load_diag_module); 3442 3443 #ifdef CONFIG_PROC_FS 3444 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3445 __acquires(proto_list_mutex) 3446 { 3447 mutex_lock(&proto_list_mutex); 3448 return seq_list_start_head(&proto_list, *pos); 3449 } 3450 3451 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3452 { 3453 return seq_list_next(v, &proto_list, pos); 3454 } 3455 3456 static void proto_seq_stop(struct seq_file *seq, void *v) 3457 __releases(proto_list_mutex) 3458 { 3459 mutex_unlock(&proto_list_mutex); 3460 } 3461 3462 static char proto_method_implemented(const void *method) 3463 { 3464 return method == NULL ? 'n' : 'y'; 3465 } 3466 static long sock_prot_memory_allocated(struct proto *proto) 3467 { 3468 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3469 } 3470 3471 static char *sock_prot_memory_pressure(struct proto *proto) 3472 { 3473 return proto->memory_pressure != NULL ? 3474 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3475 } 3476 3477 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3478 { 3479 3480 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3481 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3482 proto->name, 3483 proto->obj_size, 3484 sock_prot_inuse_get(seq_file_net(seq), proto), 3485 sock_prot_memory_allocated(proto), 3486 sock_prot_memory_pressure(proto), 3487 proto->max_header, 3488 proto->slab == NULL ? "no" : "yes", 3489 module_name(proto->owner), 3490 proto_method_implemented(proto->close), 3491 proto_method_implemented(proto->connect), 3492 proto_method_implemented(proto->disconnect), 3493 proto_method_implemented(proto->accept), 3494 proto_method_implemented(proto->ioctl), 3495 proto_method_implemented(proto->init), 3496 proto_method_implemented(proto->destroy), 3497 proto_method_implemented(proto->shutdown), 3498 proto_method_implemented(proto->setsockopt), 3499 proto_method_implemented(proto->getsockopt), 3500 proto_method_implemented(proto->sendmsg), 3501 proto_method_implemented(proto->recvmsg), 3502 proto_method_implemented(proto->sendpage), 3503 proto_method_implemented(proto->bind), 3504 proto_method_implemented(proto->backlog_rcv), 3505 proto_method_implemented(proto->hash), 3506 proto_method_implemented(proto->unhash), 3507 proto_method_implemented(proto->get_port), 3508 proto_method_implemented(proto->enter_memory_pressure)); 3509 } 3510 3511 static int proto_seq_show(struct seq_file *seq, void *v) 3512 { 3513 if (v == &proto_list) 3514 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3515 "protocol", 3516 "size", 3517 "sockets", 3518 "memory", 3519 "press", 3520 "maxhdr", 3521 "slab", 3522 "module", 3523 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3524 else 3525 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3526 return 0; 3527 } 3528 3529 static const struct seq_operations proto_seq_ops = { 3530 .start = proto_seq_start, 3531 .next = proto_seq_next, 3532 .stop = proto_seq_stop, 3533 .show = proto_seq_show, 3534 }; 3535 3536 static __net_init int proto_init_net(struct net *net) 3537 { 3538 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3539 sizeof(struct seq_net_private))) 3540 return -ENOMEM; 3541 3542 return 0; 3543 } 3544 3545 static __net_exit void proto_exit_net(struct net *net) 3546 { 3547 remove_proc_entry("protocols", net->proc_net); 3548 } 3549 3550 3551 static __net_initdata struct pernet_operations proto_net_ops = { 3552 .init = proto_init_net, 3553 .exit = proto_exit_net, 3554 }; 3555 3556 static int __init proto_init(void) 3557 { 3558 return register_pernet_subsys(&proto_net_ops); 3559 } 3560 3561 subsys_initcall(proto_init); 3562 3563 #endif /* PROC_FS */ 3564 3565 #ifdef CONFIG_NET_RX_BUSY_POLL 3566 bool sk_busy_loop_end(void *p, unsigned long start_time) 3567 { 3568 struct sock *sk = p; 3569 3570 return !skb_queue_empty(&sk->sk_receive_queue) || 3571 sk_busy_loop_timeout(sk, start_time); 3572 } 3573 EXPORT_SYMBOL(sk_busy_loop_end); 3574 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3575