1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <linux/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <linux/skbuff_ref.h> 128 #include <net/net_namespace.h> 129 #include <net/request_sock.h> 130 #include <net/sock.h> 131 #include <net/proto_memory.h> 132 #include <linux/net_tstamp.h> 133 #include <net/xfrm.h> 134 #include <linux/ipsec.h> 135 #include <net/cls_cgroup.h> 136 #include <net/netprio_cgroup.h> 137 #include <linux/sock_diag.h> 138 139 #include <linux/filter.h> 140 #include <net/sock_reuseport.h> 141 #include <net/bpf_sk_storage.h> 142 143 #include <trace/events/sock.h> 144 145 #include <net/tcp.h> 146 #include <net/busy_poll.h> 147 #include <net/phonet/phonet.h> 148 149 #include <linux/ethtool.h> 150 151 #include "dev.h" 152 153 static DEFINE_MUTEX(proto_list_mutex); 154 static LIST_HEAD(proto_list); 155 156 static void sock_def_write_space_wfree(struct sock *sk); 157 static void sock_def_write_space(struct sock *sk); 158 159 /** 160 * sk_ns_capable - General socket capability test 161 * @sk: Socket to use a capability on or through 162 * @user_ns: The user namespace of the capability to use 163 * @cap: The capability to use 164 * 165 * Test to see if the opener of the socket had when the socket was 166 * created and the current process has the capability @cap in the user 167 * namespace @user_ns. 168 */ 169 bool sk_ns_capable(const struct sock *sk, 170 struct user_namespace *user_ns, int cap) 171 { 172 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 173 ns_capable(user_ns, cap); 174 } 175 EXPORT_SYMBOL(sk_ns_capable); 176 177 /** 178 * sk_capable - Socket global capability test 179 * @sk: Socket to use a capability on or through 180 * @cap: The global capability to use 181 * 182 * Test to see if the opener of the socket had when the socket was 183 * created and the current process has the capability @cap in all user 184 * namespaces. 185 */ 186 bool sk_capable(const struct sock *sk, int cap) 187 { 188 return sk_ns_capable(sk, &init_user_ns, cap); 189 } 190 EXPORT_SYMBOL(sk_capable); 191 192 /** 193 * sk_net_capable - Network namespace socket capability test 194 * @sk: Socket to use a capability on or through 195 * @cap: The capability to use 196 * 197 * Test to see if the opener of the socket had when the socket was created 198 * and the current process has the capability @cap over the network namespace 199 * the socket is a member of. 200 */ 201 bool sk_net_capable(const struct sock *sk, int cap) 202 { 203 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 204 } 205 EXPORT_SYMBOL(sk_net_capable); 206 207 /* 208 * Each address family might have different locking rules, so we have 209 * one slock key per address family and separate keys for internal and 210 * userspace sockets. 211 */ 212 static struct lock_class_key af_family_keys[AF_MAX]; 213 static struct lock_class_key af_family_kern_keys[AF_MAX]; 214 static struct lock_class_key af_family_slock_keys[AF_MAX]; 215 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 216 217 /* 218 * Make lock validator output more readable. (we pre-construct these 219 * strings build-time, so that runtime initialization of socket 220 * locks is fast): 221 */ 222 223 #define _sock_locks(x) \ 224 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 225 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 226 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 227 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 228 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 229 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 230 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 231 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 232 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 233 x "27" , x "28" , x "AF_CAN" , \ 234 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 235 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 236 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 237 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 238 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 239 x "AF_MCTP" , \ 240 x "AF_MAX" 241 242 static const char *const af_family_key_strings[AF_MAX+1] = { 243 _sock_locks("sk_lock-") 244 }; 245 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("slock-") 247 }; 248 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("clock-") 250 }; 251 252 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 253 _sock_locks("k-sk_lock-") 254 }; 255 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 256 _sock_locks("k-slock-") 257 }; 258 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 259 _sock_locks("k-clock-") 260 }; 261 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 262 _sock_locks("rlock-") 263 }; 264 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 265 _sock_locks("wlock-") 266 }; 267 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 268 _sock_locks("elock-") 269 }; 270 271 /* 272 * sk_callback_lock and sk queues locking rules are per-address-family, 273 * so split the lock classes by using a per-AF key: 274 */ 275 static struct lock_class_key af_callback_keys[AF_MAX]; 276 static struct lock_class_key af_rlock_keys[AF_MAX]; 277 static struct lock_class_key af_wlock_keys[AF_MAX]; 278 static struct lock_class_key af_elock_keys[AF_MAX]; 279 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 280 281 /* Run time adjustable parameters. */ 282 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 283 EXPORT_SYMBOL(sysctl_wmem_max); 284 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 285 EXPORT_SYMBOL(sysctl_rmem_max); 286 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 287 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 288 289 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 290 EXPORT_SYMBOL_GPL(memalloc_socks_key); 291 292 /** 293 * sk_set_memalloc - sets %SOCK_MEMALLOC 294 * @sk: socket to set it on 295 * 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 297 * It's the responsibility of the admin to adjust min_free_kbytes 298 * to meet the requirements 299 */ 300 void sk_set_memalloc(struct sock *sk) 301 { 302 sock_set_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation |= __GFP_MEMALLOC; 304 static_branch_inc(&memalloc_socks_key); 305 } 306 EXPORT_SYMBOL_GPL(sk_set_memalloc); 307 308 void sk_clear_memalloc(struct sock *sk) 309 { 310 sock_reset_flag(sk, SOCK_MEMALLOC); 311 sk->sk_allocation &= ~__GFP_MEMALLOC; 312 static_branch_dec(&memalloc_socks_key); 313 314 /* 315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 316 * progress of swapping. SOCK_MEMALLOC may be cleared while 317 * it has rmem allocations due to the last swapfile being deactivated 318 * but there is a risk that the socket is unusable due to exceeding 319 * the rmem limits. Reclaim the reserves and obey rmem limits again. 320 */ 321 sk_mem_reclaim(sk); 322 } 323 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 324 325 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 326 { 327 int ret; 328 unsigned int noreclaim_flag; 329 330 /* these should have been dropped before queueing */ 331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 332 333 noreclaim_flag = memalloc_noreclaim_save(); 334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 335 tcp_v6_do_rcv, 336 tcp_v4_do_rcv, 337 sk, skb); 338 memalloc_noreclaim_restore(noreclaim_flag); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 void sk_error_report(struct sock *sk) 345 { 346 sk->sk_error_report(sk); 347 348 switch (sk->sk_family) { 349 case AF_INET: 350 fallthrough; 351 case AF_INET6: 352 trace_inet_sk_error_report(sk); 353 break; 354 default: 355 break; 356 } 357 } 358 EXPORT_SYMBOL(sk_error_report); 359 360 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 361 { 362 struct __kernel_sock_timeval tv; 363 364 if (timeo == MAX_SCHEDULE_TIMEOUT) { 365 tv.tv_sec = 0; 366 tv.tv_usec = 0; 367 } else { 368 tv.tv_sec = timeo / HZ; 369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 370 } 371 372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 374 *(struct old_timeval32 *)optval = tv32; 375 return sizeof(tv32); 376 } 377 378 if (old_timeval) { 379 struct __kernel_old_timeval old_tv; 380 old_tv.tv_sec = tv.tv_sec; 381 old_tv.tv_usec = tv.tv_usec; 382 *(struct __kernel_old_timeval *)optval = old_tv; 383 return sizeof(old_tv); 384 } 385 386 *(struct __kernel_sock_timeval *)optval = tv; 387 return sizeof(tv); 388 } 389 EXPORT_SYMBOL(sock_get_timeout); 390 391 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 392 sockptr_t optval, int optlen, bool old_timeval) 393 { 394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 395 struct old_timeval32 tv32; 396 397 if (optlen < sizeof(tv32)) 398 return -EINVAL; 399 400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 401 return -EFAULT; 402 tv->tv_sec = tv32.tv_sec; 403 tv->tv_usec = tv32.tv_usec; 404 } else if (old_timeval) { 405 struct __kernel_old_timeval old_tv; 406 407 if (optlen < sizeof(old_tv)) 408 return -EINVAL; 409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 410 return -EFAULT; 411 tv->tv_sec = old_tv.tv_sec; 412 tv->tv_usec = old_tv.tv_usec; 413 } else { 414 if (optlen < sizeof(*tv)) 415 return -EINVAL; 416 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 417 return -EFAULT; 418 } 419 420 return 0; 421 } 422 EXPORT_SYMBOL(sock_copy_user_timeval); 423 424 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 425 bool old_timeval) 426 { 427 struct __kernel_sock_timeval tv; 428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 429 long val; 430 431 if (err) 432 return err; 433 434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 435 return -EDOM; 436 437 if (tv.tv_sec < 0) { 438 static int warned __read_mostly; 439 440 WRITE_ONCE(*timeo_p, 0); 441 if (warned < 10 && net_ratelimit()) { 442 warned++; 443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 444 __func__, current->comm, task_pid_nr(current)); 445 } 446 return 0; 447 } 448 val = MAX_SCHEDULE_TIMEOUT; 449 if ((tv.tv_sec || tv.tv_usec) && 450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 452 USEC_PER_SEC / HZ); 453 WRITE_ONCE(*timeo_p, val); 454 return 0; 455 } 456 457 static bool sk_set_prio_allowed(const struct sock *sk, int val) 458 { 459 return ((val >= TC_PRIO_BESTEFFORT && val <= TC_PRIO_INTERACTIVE) || 460 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 461 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)); 462 } 463 464 static bool sock_needs_netstamp(const struct sock *sk) 465 { 466 switch (sk->sk_family) { 467 case AF_UNSPEC: 468 case AF_UNIX: 469 return false; 470 default: 471 return true; 472 } 473 } 474 475 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 476 { 477 if (sk->sk_flags & flags) { 478 sk->sk_flags &= ~flags; 479 if (sock_needs_netstamp(sk) && 480 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 481 net_disable_timestamp(); 482 } 483 } 484 485 486 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 unsigned long flags; 489 struct sk_buff_head *list = &sk->sk_receive_queue; 490 491 if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { 492 atomic_inc(&sk->sk_drops); 493 trace_sock_rcvqueue_full(sk, skb); 494 return -ENOMEM; 495 } 496 497 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 498 atomic_inc(&sk->sk_drops); 499 return -ENOBUFS; 500 } 501 502 skb->dev = NULL; 503 skb_set_owner_r(skb, sk); 504 505 /* we escape from rcu protected region, make sure we dont leak 506 * a norefcounted dst 507 */ 508 skb_dst_force(skb); 509 510 spin_lock_irqsave(&list->lock, flags); 511 sock_skb_set_dropcount(sk, skb); 512 __skb_queue_tail(list, skb); 513 spin_unlock_irqrestore(&list->lock, flags); 514 515 if (!sock_flag(sk, SOCK_DEAD)) 516 sk->sk_data_ready(sk); 517 return 0; 518 } 519 EXPORT_SYMBOL(__sock_queue_rcv_skb); 520 521 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 522 enum skb_drop_reason *reason) 523 { 524 enum skb_drop_reason drop_reason; 525 int err; 526 527 err = sk_filter(sk, skb); 528 if (err) { 529 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 530 goto out; 531 } 532 err = __sock_queue_rcv_skb(sk, skb); 533 switch (err) { 534 case -ENOMEM: 535 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 536 break; 537 case -ENOBUFS: 538 drop_reason = SKB_DROP_REASON_PROTO_MEM; 539 break; 540 default: 541 drop_reason = SKB_NOT_DROPPED_YET; 542 break; 543 } 544 out: 545 if (reason) 546 *reason = drop_reason; 547 return err; 548 } 549 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 550 551 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 552 const int nested, unsigned int trim_cap, bool refcounted) 553 { 554 int rc = NET_RX_SUCCESS; 555 556 if (sk_filter_trim_cap(sk, skb, trim_cap)) 557 goto discard_and_relse; 558 559 skb->dev = NULL; 560 561 if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { 562 atomic_inc(&sk->sk_drops); 563 goto discard_and_relse; 564 } 565 if (nested) 566 bh_lock_sock_nested(sk); 567 else 568 bh_lock_sock(sk); 569 if (!sock_owned_by_user(sk)) { 570 /* 571 * trylock + unlock semantics: 572 */ 573 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 574 575 rc = sk_backlog_rcv(sk, skb); 576 577 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 578 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 579 bh_unlock_sock(sk); 580 atomic_inc(&sk->sk_drops); 581 goto discard_and_relse; 582 } 583 584 bh_unlock_sock(sk); 585 out: 586 if (refcounted) 587 sock_put(sk); 588 return rc; 589 discard_and_relse: 590 kfree_skb(skb); 591 goto out; 592 } 593 EXPORT_SYMBOL(__sk_receive_skb); 594 595 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 596 u32)); 597 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 598 u32)); 599 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 600 { 601 struct dst_entry *dst = __sk_dst_get(sk); 602 603 if (dst && dst->obsolete && 604 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 605 dst, cookie) == NULL) { 606 sk_tx_queue_clear(sk); 607 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 608 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 609 dst_release(dst); 610 return NULL; 611 } 612 613 return dst; 614 } 615 EXPORT_SYMBOL(__sk_dst_check); 616 617 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 618 { 619 struct dst_entry *dst = sk_dst_get(sk); 620 621 if (dst && dst->obsolete && 622 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 623 dst, cookie) == NULL) { 624 sk_dst_reset(sk); 625 dst_release(dst); 626 return NULL; 627 } 628 629 return dst; 630 } 631 EXPORT_SYMBOL(sk_dst_check); 632 633 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 634 { 635 int ret = -ENOPROTOOPT; 636 #ifdef CONFIG_NETDEVICES 637 struct net *net = sock_net(sk); 638 639 /* Sorry... */ 640 ret = -EPERM; 641 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 642 goto out; 643 644 ret = -EINVAL; 645 if (ifindex < 0) 646 goto out; 647 648 /* Paired with all READ_ONCE() done locklessly. */ 649 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 650 651 if (sk->sk_prot->rehash) 652 sk->sk_prot->rehash(sk); 653 sk_dst_reset(sk); 654 655 ret = 0; 656 657 out: 658 #endif 659 660 return ret; 661 } 662 663 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 664 { 665 int ret; 666 667 if (lock_sk) 668 lock_sock(sk); 669 ret = sock_bindtoindex_locked(sk, ifindex); 670 if (lock_sk) 671 release_sock(sk); 672 673 return ret; 674 } 675 EXPORT_SYMBOL(sock_bindtoindex); 676 677 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 678 { 679 int ret = -ENOPROTOOPT; 680 #ifdef CONFIG_NETDEVICES 681 struct net *net = sock_net(sk); 682 char devname[IFNAMSIZ]; 683 int index; 684 685 ret = -EINVAL; 686 if (optlen < 0) 687 goto out; 688 689 /* Bind this socket to a particular device like "eth0", 690 * as specified in the passed interface name. If the 691 * name is "" or the option length is zero the socket 692 * is not bound. 693 */ 694 if (optlen > IFNAMSIZ - 1) 695 optlen = IFNAMSIZ - 1; 696 memset(devname, 0, sizeof(devname)); 697 698 ret = -EFAULT; 699 if (copy_from_sockptr(devname, optval, optlen)) 700 goto out; 701 702 index = 0; 703 if (devname[0] != '\0') { 704 struct net_device *dev; 705 706 rcu_read_lock(); 707 dev = dev_get_by_name_rcu(net, devname); 708 if (dev) 709 index = dev->ifindex; 710 rcu_read_unlock(); 711 ret = -ENODEV; 712 if (!dev) 713 goto out; 714 } 715 716 sockopt_lock_sock(sk); 717 ret = sock_bindtoindex_locked(sk, index); 718 sockopt_release_sock(sk); 719 out: 720 #endif 721 722 return ret; 723 } 724 725 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 726 sockptr_t optlen, int len) 727 { 728 int ret = -ENOPROTOOPT; 729 #ifdef CONFIG_NETDEVICES 730 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 731 struct net *net = sock_net(sk); 732 char devname[IFNAMSIZ]; 733 734 if (bound_dev_if == 0) { 735 len = 0; 736 goto zero; 737 } 738 739 ret = -EINVAL; 740 if (len < IFNAMSIZ) 741 goto out; 742 743 ret = netdev_get_name(net, devname, bound_dev_if); 744 if (ret) 745 goto out; 746 747 len = strlen(devname) + 1; 748 749 ret = -EFAULT; 750 if (copy_to_sockptr(optval, devname, len)) 751 goto out; 752 753 zero: 754 ret = -EFAULT; 755 if (copy_to_sockptr(optlen, &len, sizeof(int))) 756 goto out; 757 758 ret = 0; 759 760 out: 761 #endif 762 763 return ret; 764 } 765 766 bool sk_mc_loop(const struct sock *sk) 767 { 768 if (dev_recursion_level()) 769 return false; 770 if (!sk) 771 return true; 772 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 773 switch (READ_ONCE(sk->sk_family)) { 774 case AF_INET: 775 return inet_test_bit(MC_LOOP, sk); 776 #if IS_ENABLED(CONFIG_IPV6) 777 case AF_INET6: 778 return inet6_test_bit(MC6_LOOP, sk); 779 #endif 780 } 781 WARN_ON_ONCE(1); 782 return true; 783 } 784 EXPORT_SYMBOL(sk_mc_loop); 785 786 void sock_set_reuseaddr(struct sock *sk) 787 { 788 lock_sock(sk); 789 sk->sk_reuse = SK_CAN_REUSE; 790 release_sock(sk); 791 } 792 EXPORT_SYMBOL(sock_set_reuseaddr); 793 794 void sock_set_reuseport(struct sock *sk) 795 { 796 lock_sock(sk); 797 sk->sk_reuseport = true; 798 release_sock(sk); 799 } 800 EXPORT_SYMBOL(sock_set_reuseport); 801 802 void sock_no_linger(struct sock *sk) 803 { 804 lock_sock(sk); 805 WRITE_ONCE(sk->sk_lingertime, 0); 806 sock_set_flag(sk, SOCK_LINGER); 807 release_sock(sk); 808 } 809 EXPORT_SYMBOL(sock_no_linger); 810 811 void sock_set_priority(struct sock *sk, u32 priority) 812 { 813 WRITE_ONCE(sk->sk_priority, priority); 814 } 815 EXPORT_SYMBOL(sock_set_priority); 816 817 void sock_set_sndtimeo(struct sock *sk, s64 secs) 818 { 819 lock_sock(sk); 820 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 821 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 822 else 823 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 824 release_sock(sk); 825 } 826 EXPORT_SYMBOL(sock_set_sndtimeo); 827 828 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 829 { 830 sock_valbool_flag(sk, SOCK_RCVTSTAMP, val); 831 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns); 832 if (val) { 833 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 834 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 835 } 836 } 837 838 void sock_enable_timestamps(struct sock *sk) 839 { 840 lock_sock(sk); 841 __sock_set_timestamps(sk, true, false, true); 842 release_sock(sk); 843 } 844 EXPORT_SYMBOL(sock_enable_timestamps); 845 846 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 847 { 848 switch (optname) { 849 case SO_TIMESTAMP_OLD: 850 __sock_set_timestamps(sk, valbool, false, false); 851 break; 852 case SO_TIMESTAMP_NEW: 853 __sock_set_timestamps(sk, valbool, true, false); 854 break; 855 case SO_TIMESTAMPNS_OLD: 856 __sock_set_timestamps(sk, valbool, false, true); 857 break; 858 case SO_TIMESTAMPNS_NEW: 859 __sock_set_timestamps(sk, valbool, true, true); 860 break; 861 } 862 } 863 864 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 865 { 866 struct net *net = sock_net(sk); 867 struct net_device *dev = NULL; 868 bool match = false; 869 int *vclock_index; 870 int i, num; 871 872 if (sk->sk_bound_dev_if) 873 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 874 875 if (!dev) { 876 pr_err("%s: sock not bind to device\n", __func__); 877 return -EOPNOTSUPP; 878 } 879 880 num = ethtool_get_phc_vclocks(dev, &vclock_index); 881 dev_put(dev); 882 883 for (i = 0; i < num; i++) { 884 if (*(vclock_index + i) == phc_index) { 885 match = true; 886 break; 887 } 888 } 889 890 if (num > 0) 891 kfree(vclock_index); 892 893 if (!match) 894 return -EINVAL; 895 896 WRITE_ONCE(sk->sk_bind_phc, phc_index); 897 898 return 0; 899 } 900 901 int sock_set_timestamping(struct sock *sk, int optname, 902 struct so_timestamping timestamping) 903 { 904 int val = timestamping.flags; 905 int ret; 906 907 if (val & ~SOF_TIMESTAMPING_MASK) 908 return -EINVAL; 909 910 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 911 !(val & SOF_TIMESTAMPING_OPT_ID)) 912 return -EINVAL; 913 914 if (val & SOF_TIMESTAMPING_OPT_ID && 915 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 916 if (sk_is_tcp(sk)) { 917 if ((1 << sk->sk_state) & 918 (TCPF_CLOSE | TCPF_LISTEN)) 919 return -EINVAL; 920 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 921 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 922 else 923 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 924 } else { 925 atomic_set(&sk->sk_tskey, 0); 926 } 927 } 928 929 if (val & SOF_TIMESTAMPING_OPT_STATS && 930 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 931 return -EINVAL; 932 933 if (val & SOF_TIMESTAMPING_BIND_PHC) { 934 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 935 if (ret) 936 return ret; 937 } 938 939 WRITE_ONCE(sk->sk_tsflags, val); 940 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 941 sock_valbool_flag(sk, SOCK_TIMESTAMPING_ANY, !!(val & TSFLAGS_ANY)); 942 943 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 944 sock_enable_timestamp(sk, 945 SOCK_TIMESTAMPING_RX_SOFTWARE); 946 else 947 sock_disable_timestamp(sk, 948 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 949 return 0; 950 } 951 952 #if defined(CONFIG_CGROUP_BPF) 953 void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) 954 { 955 struct bpf_sock_ops_kern sock_ops; 956 957 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 958 sock_ops.op = op; 959 sock_ops.is_fullsock = 1; 960 sock_ops.sk = sk; 961 bpf_skops_init_skb(&sock_ops, skb, 0); 962 __cgroup_bpf_run_filter_sock_ops(sk, &sock_ops, CGROUP_SOCK_OPS); 963 } 964 #endif 965 966 void sock_set_keepalive(struct sock *sk) 967 { 968 lock_sock(sk); 969 if (sk->sk_prot->keepalive) 970 sk->sk_prot->keepalive(sk, true); 971 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 972 release_sock(sk); 973 } 974 EXPORT_SYMBOL(sock_set_keepalive); 975 976 static void __sock_set_rcvbuf(struct sock *sk, int val) 977 { 978 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 979 * as a negative value. 980 */ 981 val = min_t(int, val, INT_MAX / 2); 982 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 983 984 /* We double it on the way in to account for "struct sk_buff" etc. 985 * overhead. Applications assume that the SO_RCVBUF setting they make 986 * will allow that much actual data to be received on that socket. 987 * 988 * Applications are unaware that "struct sk_buff" and other overheads 989 * allocate from the receive buffer during socket buffer allocation. 990 * 991 * And after considering the possible alternatives, returning the value 992 * we actually used in getsockopt is the most desirable behavior. 993 */ 994 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 995 } 996 997 void sock_set_rcvbuf(struct sock *sk, int val) 998 { 999 lock_sock(sk); 1000 __sock_set_rcvbuf(sk, val); 1001 release_sock(sk); 1002 } 1003 EXPORT_SYMBOL(sock_set_rcvbuf); 1004 1005 static void __sock_set_mark(struct sock *sk, u32 val) 1006 { 1007 if (val != sk->sk_mark) { 1008 WRITE_ONCE(sk->sk_mark, val); 1009 sk_dst_reset(sk); 1010 } 1011 } 1012 1013 void sock_set_mark(struct sock *sk, u32 val) 1014 { 1015 lock_sock(sk); 1016 __sock_set_mark(sk, val); 1017 release_sock(sk); 1018 } 1019 EXPORT_SYMBOL(sock_set_mark); 1020 1021 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1022 { 1023 /* Round down bytes to multiple of pages */ 1024 bytes = round_down(bytes, PAGE_SIZE); 1025 1026 WARN_ON(bytes > sk->sk_reserved_mem); 1027 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1028 sk_mem_reclaim(sk); 1029 } 1030 1031 static int sock_reserve_memory(struct sock *sk, int bytes) 1032 { 1033 long allocated; 1034 bool charged; 1035 int pages; 1036 1037 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1038 return -EOPNOTSUPP; 1039 1040 if (!bytes) 1041 return 0; 1042 1043 pages = sk_mem_pages(bytes); 1044 1045 /* pre-charge to memcg */ 1046 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1047 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1048 if (!charged) 1049 return -ENOMEM; 1050 1051 /* pre-charge to forward_alloc */ 1052 sk_memory_allocated_add(sk, pages); 1053 allocated = sk_memory_allocated(sk); 1054 /* If the system goes into memory pressure with this 1055 * precharge, give up and return error. 1056 */ 1057 if (allocated > sk_prot_mem_limits(sk, 1)) { 1058 sk_memory_allocated_sub(sk, pages); 1059 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1060 return -ENOMEM; 1061 } 1062 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1063 1064 WRITE_ONCE(sk->sk_reserved_mem, 1065 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1066 1067 return 0; 1068 } 1069 1070 #ifdef CONFIG_PAGE_POOL 1071 1072 /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED 1073 * in 1 syscall. The limit exists to limit the amount of memory the kernel 1074 * allocates to copy these tokens, and to prevent looping over the frags for 1075 * too long. 1076 */ 1077 #define MAX_DONTNEED_TOKENS 128 1078 #define MAX_DONTNEED_FRAGS 1024 1079 1080 static noinline_for_stack int 1081 sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) 1082 { 1083 unsigned int num_tokens, i, j, k, netmem_num = 0; 1084 struct dmabuf_token *tokens; 1085 int ret = 0, num_frags = 0; 1086 netmem_ref netmems[16]; 1087 1088 if (!sk_is_tcp(sk)) 1089 return -EBADF; 1090 1091 if (optlen % sizeof(*tokens) || 1092 optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) 1093 return -EINVAL; 1094 1095 num_tokens = optlen / sizeof(*tokens); 1096 tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); 1097 if (!tokens) 1098 return -ENOMEM; 1099 1100 if (copy_from_sockptr(tokens, optval, optlen)) { 1101 kvfree(tokens); 1102 return -EFAULT; 1103 } 1104 1105 xa_lock_bh(&sk->sk_user_frags); 1106 for (i = 0; i < num_tokens; i++) { 1107 for (j = 0; j < tokens[i].token_count; j++) { 1108 if (++num_frags > MAX_DONTNEED_FRAGS) 1109 goto frag_limit_reached; 1110 1111 netmem_ref netmem = (__force netmem_ref)__xa_erase( 1112 &sk->sk_user_frags, tokens[i].token_start + j); 1113 1114 if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) 1115 continue; 1116 1117 netmems[netmem_num++] = netmem; 1118 if (netmem_num == ARRAY_SIZE(netmems)) { 1119 xa_unlock_bh(&sk->sk_user_frags); 1120 for (k = 0; k < netmem_num; k++) 1121 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1122 netmem_num = 0; 1123 xa_lock_bh(&sk->sk_user_frags); 1124 } 1125 ret++; 1126 } 1127 } 1128 1129 frag_limit_reached: 1130 xa_unlock_bh(&sk->sk_user_frags); 1131 for (k = 0; k < netmem_num; k++) 1132 WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); 1133 1134 kvfree(tokens); 1135 return ret; 1136 } 1137 #endif 1138 1139 void sockopt_lock_sock(struct sock *sk) 1140 { 1141 /* When current->bpf_ctx is set, the setsockopt is called from 1142 * a bpf prog. bpf has ensured the sk lock has been 1143 * acquired before calling setsockopt(). 1144 */ 1145 if (has_current_bpf_ctx()) 1146 return; 1147 1148 lock_sock(sk); 1149 } 1150 EXPORT_SYMBOL(sockopt_lock_sock); 1151 1152 void sockopt_release_sock(struct sock *sk) 1153 { 1154 if (has_current_bpf_ctx()) 1155 return; 1156 1157 release_sock(sk); 1158 } 1159 EXPORT_SYMBOL(sockopt_release_sock); 1160 1161 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1162 { 1163 return has_current_bpf_ctx() || ns_capable(ns, cap); 1164 } 1165 EXPORT_SYMBOL(sockopt_ns_capable); 1166 1167 bool sockopt_capable(int cap) 1168 { 1169 return has_current_bpf_ctx() || capable(cap); 1170 } 1171 EXPORT_SYMBOL(sockopt_capable); 1172 1173 static int sockopt_validate_clockid(__kernel_clockid_t value) 1174 { 1175 switch (value) { 1176 case CLOCK_REALTIME: 1177 case CLOCK_MONOTONIC: 1178 case CLOCK_TAI: 1179 return 0; 1180 } 1181 return -EINVAL; 1182 } 1183 1184 /* 1185 * This is meant for all protocols to use and covers goings on 1186 * at the socket level. Everything here is generic. 1187 */ 1188 1189 int sk_setsockopt(struct sock *sk, int level, int optname, 1190 sockptr_t optval, unsigned int optlen) 1191 { 1192 struct so_timestamping timestamping; 1193 struct socket *sock = sk->sk_socket; 1194 struct sock_txtime sk_txtime; 1195 int val; 1196 int valbool; 1197 struct linger ling; 1198 int ret = 0; 1199 1200 /* 1201 * Options without arguments 1202 */ 1203 1204 if (optname == SO_BINDTODEVICE) 1205 return sock_setbindtodevice(sk, optval, optlen); 1206 1207 if (optlen < sizeof(int)) 1208 return -EINVAL; 1209 1210 if (copy_from_sockptr(&val, optval, sizeof(val))) 1211 return -EFAULT; 1212 1213 valbool = val ? 1 : 0; 1214 1215 /* handle options which do not require locking the socket. */ 1216 switch (optname) { 1217 case SO_PRIORITY: 1218 if (sk_set_prio_allowed(sk, val)) { 1219 sock_set_priority(sk, val); 1220 return 0; 1221 } 1222 return -EPERM; 1223 case SO_TYPE: 1224 case SO_PROTOCOL: 1225 case SO_DOMAIN: 1226 case SO_ERROR: 1227 return -ENOPROTOOPT; 1228 #ifdef CONFIG_NET_RX_BUSY_POLL 1229 case SO_BUSY_POLL: 1230 if (val < 0) 1231 return -EINVAL; 1232 WRITE_ONCE(sk->sk_ll_usec, val); 1233 return 0; 1234 case SO_PREFER_BUSY_POLL: 1235 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1236 return -EPERM; 1237 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1238 return 0; 1239 case SO_BUSY_POLL_BUDGET: 1240 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1241 !sockopt_capable(CAP_NET_ADMIN)) 1242 return -EPERM; 1243 if (val < 0 || val > U16_MAX) 1244 return -EINVAL; 1245 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1246 return 0; 1247 #endif 1248 case SO_MAX_PACING_RATE: 1249 { 1250 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1251 unsigned long pacing_rate; 1252 1253 if (sizeof(ulval) != sizeof(val) && 1254 optlen >= sizeof(ulval) && 1255 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1256 return -EFAULT; 1257 } 1258 if (ulval != ~0UL) 1259 cmpxchg(&sk->sk_pacing_status, 1260 SK_PACING_NONE, 1261 SK_PACING_NEEDED); 1262 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1263 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1264 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1265 if (ulval < pacing_rate) 1266 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1267 return 0; 1268 } 1269 case SO_TXREHASH: 1270 if (!sk_is_tcp(sk)) 1271 return -EOPNOTSUPP; 1272 if (val < -1 || val > 1) 1273 return -EINVAL; 1274 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1275 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1276 /* Paired with READ_ONCE() in tcp_rtx_synack() 1277 * and sk_getsockopt(). 1278 */ 1279 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1280 return 0; 1281 case SO_PEEK_OFF: 1282 { 1283 int (*set_peek_off)(struct sock *sk, int val); 1284 1285 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1286 if (set_peek_off) 1287 ret = set_peek_off(sk, val); 1288 else 1289 ret = -EOPNOTSUPP; 1290 return ret; 1291 } 1292 #ifdef CONFIG_PAGE_POOL 1293 case SO_DEVMEM_DONTNEED: 1294 return sock_devmem_dontneed(sk, optval, optlen); 1295 #endif 1296 } 1297 1298 sockopt_lock_sock(sk); 1299 1300 switch (optname) { 1301 case SO_DEBUG: 1302 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1303 ret = -EACCES; 1304 else 1305 sock_valbool_flag(sk, SOCK_DBG, valbool); 1306 break; 1307 case SO_REUSEADDR: 1308 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1309 break; 1310 case SO_REUSEPORT: 1311 if (valbool && !sk_is_inet(sk)) 1312 ret = -EOPNOTSUPP; 1313 else 1314 sk->sk_reuseport = valbool; 1315 break; 1316 case SO_DONTROUTE: 1317 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1318 sk_dst_reset(sk); 1319 break; 1320 case SO_BROADCAST: 1321 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1322 break; 1323 case SO_SNDBUF: 1324 /* Don't error on this BSD doesn't and if you think 1325 * about it this is right. Otherwise apps have to 1326 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1327 * are treated in BSD as hints 1328 */ 1329 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1330 set_sndbuf: 1331 /* Ensure val * 2 fits into an int, to prevent max_t() 1332 * from treating it as a negative value. 1333 */ 1334 val = min_t(int, val, INT_MAX / 2); 1335 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1336 WRITE_ONCE(sk->sk_sndbuf, 1337 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1338 /* Wake up sending tasks if we upped the value. */ 1339 sk->sk_write_space(sk); 1340 break; 1341 1342 case SO_SNDBUFFORCE: 1343 if (!sockopt_capable(CAP_NET_ADMIN)) { 1344 ret = -EPERM; 1345 break; 1346 } 1347 1348 /* No negative values (to prevent underflow, as val will be 1349 * multiplied by 2). 1350 */ 1351 if (val < 0) 1352 val = 0; 1353 goto set_sndbuf; 1354 1355 case SO_RCVBUF: 1356 /* Don't error on this BSD doesn't and if you think 1357 * about it this is right. Otherwise apps have to 1358 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1359 * are treated in BSD as hints 1360 */ 1361 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1362 break; 1363 1364 case SO_RCVBUFFORCE: 1365 if (!sockopt_capable(CAP_NET_ADMIN)) { 1366 ret = -EPERM; 1367 break; 1368 } 1369 1370 /* No negative values (to prevent underflow, as val will be 1371 * multiplied by 2). 1372 */ 1373 __sock_set_rcvbuf(sk, max(val, 0)); 1374 break; 1375 1376 case SO_KEEPALIVE: 1377 if (sk->sk_prot->keepalive) 1378 sk->sk_prot->keepalive(sk, valbool); 1379 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1380 break; 1381 1382 case SO_OOBINLINE: 1383 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1384 break; 1385 1386 case SO_NO_CHECK: 1387 sk->sk_no_check_tx = valbool; 1388 break; 1389 1390 case SO_LINGER: 1391 if (optlen < sizeof(ling)) { 1392 ret = -EINVAL; /* 1003.1g */ 1393 break; 1394 } 1395 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1396 ret = -EFAULT; 1397 break; 1398 } 1399 if (!ling.l_onoff) { 1400 sock_reset_flag(sk, SOCK_LINGER); 1401 } else { 1402 unsigned long t_sec = ling.l_linger; 1403 1404 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1405 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1406 else 1407 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1408 sock_set_flag(sk, SOCK_LINGER); 1409 } 1410 break; 1411 1412 case SO_BSDCOMPAT: 1413 break; 1414 1415 case SO_TIMESTAMP_OLD: 1416 case SO_TIMESTAMP_NEW: 1417 case SO_TIMESTAMPNS_OLD: 1418 case SO_TIMESTAMPNS_NEW: 1419 sock_set_timestamp(sk, optname, valbool); 1420 break; 1421 1422 case SO_TIMESTAMPING_NEW: 1423 case SO_TIMESTAMPING_OLD: 1424 if (optlen == sizeof(timestamping)) { 1425 if (copy_from_sockptr(×tamping, optval, 1426 sizeof(timestamping))) { 1427 ret = -EFAULT; 1428 break; 1429 } 1430 } else { 1431 memset(×tamping, 0, sizeof(timestamping)); 1432 timestamping.flags = val; 1433 } 1434 ret = sock_set_timestamping(sk, optname, timestamping); 1435 break; 1436 1437 case SO_RCVLOWAT: 1438 { 1439 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1440 1441 if (val < 0) 1442 val = INT_MAX; 1443 if (sock) 1444 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1445 if (set_rcvlowat) 1446 ret = set_rcvlowat(sk, val); 1447 else 1448 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1449 break; 1450 } 1451 case SO_RCVTIMEO_OLD: 1452 case SO_RCVTIMEO_NEW: 1453 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1454 optlen, optname == SO_RCVTIMEO_OLD); 1455 break; 1456 1457 case SO_SNDTIMEO_OLD: 1458 case SO_SNDTIMEO_NEW: 1459 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1460 optlen, optname == SO_SNDTIMEO_OLD); 1461 break; 1462 1463 case SO_ATTACH_FILTER: { 1464 struct sock_fprog fprog; 1465 1466 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1467 if (!ret) 1468 ret = sk_attach_filter(&fprog, sk); 1469 break; 1470 } 1471 case SO_ATTACH_BPF: 1472 ret = -EINVAL; 1473 if (optlen == sizeof(u32)) { 1474 u32 ufd; 1475 1476 ret = -EFAULT; 1477 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1478 break; 1479 1480 ret = sk_attach_bpf(ufd, sk); 1481 } 1482 break; 1483 1484 case SO_ATTACH_REUSEPORT_CBPF: { 1485 struct sock_fprog fprog; 1486 1487 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1488 if (!ret) 1489 ret = sk_reuseport_attach_filter(&fprog, sk); 1490 break; 1491 } 1492 case SO_ATTACH_REUSEPORT_EBPF: 1493 ret = -EINVAL; 1494 if (optlen == sizeof(u32)) { 1495 u32 ufd; 1496 1497 ret = -EFAULT; 1498 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1499 break; 1500 1501 ret = sk_reuseport_attach_bpf(ufd, sk); 1502 } 1503 break; 1504 1505 case SO_DETACH_REUSEPORT_BPF: 1506 ret = reuseport_detach_prog(sk); 1507 break; 1508 1509 case SO_DETACH_FILTER: 1510 ret = sk_detach_filter(sk); 1511 break; 1512 1513 case SO_LOCK_FILTER: 1514 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1515 ret = -EPERM; 1516 else 1517 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1518 break; 1519 1520 case SO_MARK: 1521 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1522 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1523 ret = -EPERM; 1524 break; 1525 } 1526 1527 __sock_set_mark(sk, val); 1528 break; 1529 case SO_RCVMARK: 1530 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1531 break; 1532 1533 case SO_RCVPRIORITY: 1534 sock_valbool_flag(sk, SOCK_RCVPRIORITY, valbool); 1535 break; 1536 1537 case SO_RXQ_OVFL: 1538 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1539 break; 1540 1541 case SO_WIFI_STATUS: 1542 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1543 break; 1544 1545 case SO_NOFCS: 1546 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1547 break; 1548 1549 case SO_SELECT_ERR_QUEUE: 1550 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1551 break; 1552 1553 case SO_PASSCRED: 1554 if (sk_may_scm_recv(sk)) 1555 sk->sk_scm_credentials = valbool; 1556 else 1557 ret = -EOPNOTSUPP; 1558 break; 1559 1560 case SO_PASSSEC: 1561 if (IS_ENABLED(CONFIG_SECURITY_NETWORK) && sk_may_scm_recv(sk)) 1562 sk->sk_scm_security = valbool; 1563 else 1564 ret = -EOPNOTSUPP; 1565 break; 1566 1567 case SO_PASSPIDFD: 1568 if (sk_is_unix(sk)) 1569 sk->sk_scm_pidfd = valbool; 1570 else 1571 ret = -EOPNOTSUPP; 1572 break; 1573 1574 case SO_PASSRIGHTS: 1575 if (sk_is_unix(sk)) 1576 sk->sk_scm_rights = valbool; 1577 else 1578 ret = -EOPNOTSUPP; 1579 break; 1580 1581 case SO_INCOMING_CPU: 1582 reuseport_update_incoming_cpu(sk, val); 1583 break; 1584 1585 case SO_CNX_ADVICE: 1586 if (val == 1) 1587 dst_negative_advice(sk); 1588 break; 1589 1590 case SO_ZEROCOPY: 1591 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1592 if (!(sk_is_tcp(sk) || 1593 (sk->sk_type == SOCK_DGRAM && 1594 sk->sk_protocol == IPPROTO_UDP))) 1595 ret = -EOPNOTSUPP; 1596 } else if (sk->sk_family != PF_RDS) { 1597 ret = -EOPNOTSUPP; 1598 } 1599 if (!ret) { 1600 if (val < 0 || val > 1) 1601 ret = -EINVAL; 1602 else 1603 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1604 } 1605 break; 1606 1607 case SO_TXTIME: 1608 if (optlen != sizeof(struct sock_txtime)) { 1609 ret = -EINVAL; 1610 break; 1611 } else if (copy_from_sockptr(&sk_txtime, optval, 1612 sizeof(struct sock_txtime))) { 1613 ret = -EFAULT; 1614 break; 1615 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1616 ret = -EINVAL; 1617 break; 1618 } 1619 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1620 * scheduler has enough safe guards. 1621 */ 1622 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1623 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1624 ret = -EPERM; 1625 break; 1626 } 1627 1628 ret = sockopt_validate_clockid(sk_txtime.clockid); 1629 if (ret) 1630 break; 1631 1632 sock_valbool_flag(sk, SOCK_TXTIME, true); 1633 sk->sk_clockid = sk_txtime.clockid; 1634 sk->sk_txtime_deadline_mode = 1635 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1636 sk->sk_txtime_report_errors = 1637 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1638 break; 1639 1640 case SO_BINDTOIFINDEX: 1641 ret = sock_bindtoindex_locked(sk, val); 1642 break; 1643 1644 case SO_BUF_LOCK: 1645 if (val & ~SOCK_BUF_LOCK_MASK) { 1646 ret = -EINVAL; 1647 break; 1648 } 1649 sk->sk_userlocks = val | (sk->sk_userlocks & 1650 ~SOCK_BUF_LOCK_MASK); 1651 break; 1652 1653 case SO_RESERVE_MEM: 1654 { 1655 int delta; 1656 1657 if (val < 0) { 1658 ret = -EINVAL; 1659 break; 1660 } 1661 1662 delta = val - sk->sk_reserved_mem; 1663 if (delta < 0) 1664 sock_release_reserved_memory(sk, -delta); 1665 else 1666 ret = sock_reserve_memory(sk, delta); 1667 break; 1668 } 1669 1670 default: 1671 ret = -ENOPROTOOPT; 1672 break; 1673 } 1674 sockopt_release_sock(sk); 1675 return ret; 1676 } 1677 1678 int sock_setsockopt(struct socket *sock, int level, int optname, 1679 sockptr_t optval, unsigned int optlen) 1680 { 1681 return sk_setsockopt(sock->sk, level, optname, 1682 optval, optlen); 1683 } 1684 EXPORT_SYMBOL(sock_setsockopt); 1685 1686 static const struct cred *sk_get_peer_cred(struct sock *sk) 1687 { 1688 const struct cred *cred; 1689 1690 spin_lock(&sk->sk_peer_lock); 1691 cred = get_cred(sk->sk_peer_cred); 1692 spin_unlock(&sk->sk_peer_lock); 1693 1694 return cred; 1695 } 1696 1697 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1698 struct ucred *ucred) 1699 { 1700 ucred->pid = pid_vnr(pid); 1701 ucred->uid = ucred->gid = -1; 1702 if (cred) { 1703 struct user_namespace *current_ns = current_user_ns(); 1704 1705 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1706 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1707 } 1708 } 1709 1710 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1711 { 1712 struct user_namespace *user_ns = current_user_ns(); 1713 int i; 1714 1715 for (i = 0; i < src->ngroups; i++) { 1716 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1717 1718 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1719 return -EFAULT; 1720 } 1721 1722 return 0; 1723 } 1724 1725 int sk_getsockopt(struct sock *sk, int level, int optname, 1726 sockptr_t optval, sockptr_t optlen) 1727 { 1728 struct socket *sock = sk->sk_socket; 1729 1730 union { 1731 int val; 1732 u64 val64; 1733 unsigned long ulval; 1734 struct linger ling; 1735 struct old_timeval32 tm32; 1736 struct __kernel_old_timeval tm; 1737 struct __kernel_sock_timeval stm; 1738 struct sock_txtime txtime; 1739 struct so_timestamping timestamping; 1740 } v; 1741 1742 int lv = sizeof(int); 1743 int len; 1744 1745 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1746 return -EFAULT; 1747 if (len < 0) 1748 return -EINVAL; 1749 1750 memset(&v, 0, sizeof(v)); 1751 1752 switch (optname) { 1753 case SO_DEBUG: 1754 v.val = sock_flag(sk, SOCK_DBG); 1755 break; 1756 1757 case SO_DONTROUTE: 1758 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1759 break; 1760 1761 case SO_BROADCAST: 1762 v.val = sock_flag(sk, SOCK_BROADCAST); 1763 break; 1764 1765 case SO_SNDBUF: 1766 v.val = READ_ONCE(sk->sk_sndbuf); 1767 break; 1768 1769 case SO_RCVBUF: 1770 v.val = READ_ONCE(sk->sk_rcvbuf); 1771 break; 1772 1773 case SO_REUSEADDR: 1774 v.val = sk->sk_reuse; 1775 break; 1776 1777 case SO_REUSEPORT: 1778 v.val = sk->sk_reuseport; 1779 break; 1780 1781 case SO_KEEPALIVE: 1782 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1783 break; 1784 1785 case SO_TYPE: 1786 v.val = sk->sk_type; 1787 break; 1788 1789 case SO_PROTOCOL: 1790 v.val = sk->sk_protocol; 1791 break; 1792 1793 case SO_DOMAIN: 1794 v.val = sk->sk_family; 1795 break; 1796 1797 case SO_ERROR: 1798 v.val = -sock_error(sk); 1799 if (v.val == 0) 1800 v.val = xchg(&sk->sk_err_soft, 0); 1801 break; 1802 1803 case SO_OOBINLINE: 1804 v.val = sock_flag(sk, SOCK_URGINLINE); 1805 break; 1806 1807 case SO_NO_CHECK: 1808 v.val = sk->sk_no_check_tx; 1809 break; 1810 1811 case SO_PRIORITY: 1812 v.val = READ_ONCE(sk->sk_priority); 1813 break; 1814 1815 case SO_LINGER: 1816 lv = sizeof(v.ling); 1817 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1818 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1819 break; 1820 1821 case SO_BSDCOMPAT: 1822 break; 1823 1824 case SO_TIMESTAMP_OLD: 1825 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1826 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1827 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1828 break; 1829 1830 case SO_TIMESTAMPNS_OLD: 1831 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1832 break; 1833 1834 case SO_TIMESTAMP_NEW: 1835 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1836 break; 1837 1838 case SO_TIMESTAMPNS_NEW: 1839 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1840 break; 1841 1842 case SO_TIMESTAMPING_OLD: 1843 case SO_TIMESTAMPING_NEW: 1844 lv = sizeof(v.timestamping); 1845 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1846 * returning the flags when they were set through the same option. 1847 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1848 */ 1849 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1850 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1851 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1852 } 1853 break; 1854 1855 case SO_RCVTIMEO_OLD: 1856 case SO_RCVTIMEO_NEW: 1857 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1858 SO_RCVTIMEO_OLD == optname); 1859 break; 1860 1861 case SO_SNDTIMEO_OLD: 1862 case SO_SNDTIMEO_NEW: 1863 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1864 SO_SNDTIMEO_OLD == optname); 1865 break; 1866 1867 case SO_RCVLOWAT: 1868 v.val = READ_ONCE(sk->sk_rcvlowat); 1869 break; 1870 1871 case SO_SNDLOWAT: 1872 v.val = 1; 1873 break; 1874 1875 case SO_PASSCRED: 1876 if (!sk_may_scm_recv(sk)) 1877 return -EOPNOTSUPP; 1878 1879 v.val = sk->sk_scm_credentials; 1880 break; 1881 1882 case SO_PASSPIDFD: 1883 if (!sk_is_unix(sk)) 1884 return -EOPNOTSUPP; 1885 1886 v.val = sk->sk_scm_pidfd; 1887 break; 1888 1889 case SO_PASSRIGHTS: 1890 if (!sk_is_unix(sk)) 1891 return -EOPNOTSUPP; 1892 1893 v.val = sk->sk_scm_rights; 1894 break; 1895 1896 case SO_PEERCRED: 1897 { 1898 struct ucred peercred; 1899 if (len > sizeof(peercred)) 1900 len = sizeof(peercred); 1901 1902 spin_lock(&sk->sk_peer_lock); 1903 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1904 spin_unlock(&sk->sk_peer_lock); 1905 1906 if (copy_to_sockptr(optval, &peercred, len)) 1907 return -EFAULT; 1908 goto lenout; 1909 } 1910 1911 case SO_PEERPIDFD: 1912 { 1913 struct pid *peer_pid; 1914 struct file *pidfd_file = NULL; 1915 int pidfd; 1916 1917 if (len > sizeof(pidfd)) 1918 len = sizeof(pidfd); 1919 1920 spin_lock(&sk->sk_peer_lock); 1921 peer_pid = get_pid(sk->sk_peer_pid); 1922 spin_unlock(&sk->sk_peer_lock); 1923 1924 if (!peer_pid) 1925 return -ENODATA; 1926 1927 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1928 put_pid(peer_pid); 1929 if (pidfd < 0) 1930 return pidfd; 1931 1932 if (copy_to_sockptr(optval, &pidfd, len) || 1933 copy_to_sockptr(optlen, &len, sizeof(int))) { 1934 put_unused_fd(pidfd); 1935 fput(pidfd_file); 1936 1937 return -EFAULT; 1938 } 1939 1940 fd_install(pidfd, pidfd_file); 1941 return 0; 1942 } 1943 1944 case SO_PEERGROUPS: 1945 { 1946 const struct cred *cred; 1947 int ret, n; 1948 1949 cred = sk_get_peer_cred(sk); 1950 if (!cred) 1951 return -ENODATA; 1952 1953 n = cred->group_info->ngroups; 1954 if (len < n * sizeof(gid_t)) { 1955 len = n * sizeof(gid_t); 1956 put_cred(cred); 1957 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1958 } 1959 len = n * sizeof(gid_t); 1960 1961 ret = groups_to_user(optval, cred->group_info); 1962 put_cred(cred); 1963 if (ret) 1964 return ret; 1965 goto lenout; 1966 } 1967 1968 case SO_PEERNAME: 1969 { 1970 struct sockaddr_storage address; 1971 1972 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1973 if (lv < 0) 1974 return -ENOTCONN; 1975 if (lv < len) 1976 return -EINVAL; 1977 if (copy_to_sockptr(optval, &address, len)) 1978 return -EFAULT; 1979 goto lenout; 1980 } 1981 1982 /* Dubious BSD thing... Probably nobody even uses it, but 1983 * the UNIX standard wants it for whatever reason... -DaveM 1984 */ 1985 case SO_ACCEPTCONN: 1986 v.val = sk->sk_state == TCP_LISTEN; 1987 break; 1988 1989 case SO_PASSSEC: 1990 if (!IS_ENABLED(CONFIG_SECURITY_NETWORK) || !sk_may_scm_recv(sk)) 1991 return -EOPNOTSUPP; 1992 1993 v.val = sk->sk_scm_security; 1994 break; 1995 1996 case SO_PEERSEC: 1997 return security_socket_getpeersec_stream(sock, 1998 optval, optlen, len); 1999 2000 case SO_MARK: 2001 v.val = READ_ONCE(sk->sk_mark); 2002 break; 2003 2004 case SO_RCVMARK: 2005 v.val = sock_flag(sk, SOCK_RCVMARK); 2006 break; 2007 2008 case SO_RCVPRIORITY: 2009 v.val = sock_flag(sk, SOCK_RCVPRIORITY); 2010 break; 2011 2012 case SO_RXQ_OVFL: 2013 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 2014 break; 2015 2016 case SO_WIFI_STATUS: 2017 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 2018 break; 2019 2020 case SO_PEEK_OFF: 2021 if (!READ_ONCE(sock->ops)->set_peek_off) 2022 return -EOPNOTSUPP; 2023 2024 v.val = READ_ONCE(sk->sk_peek_off); 2025 break; 2026 case SO_NOFCS: 2027 v.val = sock_flag(sk, SOCK_NOFCS); 2028 break; 2029 2030 case SO_BINDTODEVICE: 2031 return sock_getbindtodevice(sk, optval, optlen, len); 2032 2033 case SO_GET_FILTER: 2034 len = sk_get_filter(sk, optval, len); 2035 if (len < 0) 2036 return len; 2037 2038 goto lenout; 2039 2040 case SO_LOCK_FILTER: 2041 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 2042 break; 2043 2044 case SO_BPF_EXTENSIONS: 2045 v.val = bpf_tell_extensions(); 2046 break; 2047 2048 case SO_SELECT_ERR_QUEUE: 2049 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 2050 break; 2051 2052 #ifdef CONFIG_NET_RX_BUSY_POLL 2053 case SO_BUSY_POLL: 2054 v.val = READ_ONCE(sk->sk_ll_usec); 2055 break; 2056 case SO_PREFER_BUSY_POLL: 2057 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 2058 break; 2059 #endif 2060 2061 case SO_MAX_PACING_RATE: 2062 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 2063 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 2064 lv = sizeof(v.ulval); 2065 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 2066 } else { 2067 /* 32bit version */ 2068 v.val = min_t(unsigned long, ~0U, 2069 READ_ONCE(sk->sk_max_pacing_rate)); 2070 } 2071 break; 2072 2073 case SO_INCOMING_CPU: 2074 v.val = READ_ONCE(sk->sk_incoming_cpu); 2075 break; 2076 2077 case SO_MEMINFO: 2078 { 2079 u32 meminfo[SK_MEMINFO_VARS]; 2080 2081 sk_get_meminfo(sk, meminfo); 2082 2083 len = min_t(unsigned int, len, sizeof(meminfo)); 2084 if (copy_to_sockptr(optval, &meminfo, len)) 2085 return -EFAULT; 2086 2087 goto lenout; 2088 } 2089 2090 #ifdef CONFIG_NET_RX_BUSY_POLL 2091 case SO_INCOMING_NAPI_ID: 2092 v.val = READ_ONCE(sk->sk_napi_id); 2093 2094 /* aggregate non-NAPI IDs down to 0 */ 2095 if (!napi_id_valid(v.val)) 2096 v.val = 0; 2097 2098 break; 2099 #endif 2100 2101 case SO_COOKIE: 2102 lv = sizeof(u64); 2103 if (len < lv) 2104 return -EINVAL; 2105 v.val64 = sock_gen_cookie(sk); 2106 break; 2107 2108 case SO_ZEROCOPY: 2109 v.val = sock_flag(sk, SOCK_ZEROCOPY); 2110 break; 2111 2112 case SO_TXTIME: 2113 lv = sizeof(v.txtime); 2114 v.txtime.clockid = sk->sk_clockid; 2115 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 2116 SOF_TXTIME_DEADLINE_MODE : 0; 2117 v.txtime.flags |= sk->sk_txtime_report_errors ? 2118 SOF_TXTIME_REPORT_ERRORS : 0; 2119 break; 2120 2121 case SO_BINDTOIFINDEX: 2122 v.val = READ_ONCE(sk->sk_bound_dev_if); 2123 break; 2124 2125 case SO_NETNS_COOKIE: 2126 lv = sizeof(u64); 2127 if (len != lv) 2128 return -EINVAL; 2129 v.val64 = sock_net(sk)->net_cookie; 2130 break; 2131 2132 case SO_BUF_LOCK: 2133 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 2134 break; 2135 2136 case SO_RESERVE_MEM: 2137 v.val = READ_ONCE(sk->sk_reserved_mem); 2138 break; 2139 2140 case SO_TXREHASH: 2141 if (!sk_is_tcp(sk)) 2142 return -EOPNOTSUPP; 2143 2144 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 2145 v.val = READ_ONCE(sk->sk_txrehash); 2146 break; 2147 2148 default: 2149 /* We implement the SO_SNDLOWAT etc to not be settable 2150 * (1003.1g 7). 2151 */ 2152 return -ENOPROTOOPT; 2153 } 2154 2155 if (len > lv) 2156 len = lv; 2157 if (copy_to_sockptr(optval, &v, len)) 2158 return -EFAULT; 2159 lenout: 2160 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2161 return -EFAULT; 2162 return 0; 2163 } 2164 2165 /* 2166 * Initialize an sk_lock. 2167 * 2168 * (We also register the sk_lock with the lock validator.) 2169 */ 2170 static inline void sock_lock_init(struct sock *sk) 2171 { 2172 sk_owner_clear(sk); 2173 2174 if (sk->sk_kern_sock) 2175 sock_lock_init_class_and_name( 2176 sk, 2177 af_family_kern_slock_key_strings[sk->sk_family], 2178 af_family_kern_slock_keys + sk->sk_family, 2179 af_family_kern_key_strings[sk->sk_family], 2180 af_family_kern_keys + sk->sk_family); 2181 else 2182 sock_lock_init_class_and_name( 2183 sk, 2184 af_family_slock_key_strings[sk->sk_family], 2185 af_family_slock_keys + sk->sk_family, 2186 af_family_key_strings[sk->sk_family], 2187 af_family_keys + sk->sk_family); 2188 } 2189 2190 /* 2191 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2192 * even temporarily, because of RCU lookups. sk_node should also be left as is. 2193 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2194 */ 2195 static void sock_copy(struct sock *nsk, const struct sock *osk) 2196 { 2197 const struct proto *prot = READ_ONCE(osk->sk_prot); 2198 #ifdef CONFIG_SECURITY_NETWORK 2199 void *sptr = nsk->sk_security; 2200 #endif 2201 2202 /* If we move sk_tx_queue_mapping out of the private section, 2203 * we must check if sk_tx_queue_clear() is called after 2204 * sock_copy() in sk_clone_lock(). 2205 */ 2206 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2207 offsetof(struct sock, sk_dontcopy_begin) || 2208 offsetof(struct sock, sk_tx_queue_mapping) >= 2209 offsetof(struct sock, sk_dontcopy_end)); 2210 2211 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2212 2213 unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2214 prot->obj_size - offsetof(struct sock, sk_dontcopy_end), 2215 /* alloc is larger than struct, see sk_prot_alloc() */); 2216 2217 #ifdef CONFIG_SECURITY_NETWORK 2218 nsk->sk_security = sptr; 2219 security_sk_clone(osk, nsk); 2220 #endif 2221 } 2222 2223 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2224 int family) 2225 { 2226 struct sock *sk; 2227 struct kmem_cache *slab; 2228 2229 slab = prot->slab; 2230 if (slab != NULL) { 2231 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2232 if (!sk) 2233 return sk; 2234 if (want_init_on_alloc(priority)) 2235 sk_prot_clear_nulls(sk, prot->obj_size); 2236 } else 2237 sk = kmalloc(prot->obj_size, priority); 2238 2239 if (sk != NULL) { 2240 if (security_sk_alloc(sk, family, priority)) 2241 goto out_free; 2242 2243 if (!try_module_get(prot->owner)) 2244 goto out_free_sec; 2245 } 2246 2247 return sk; 2248 2249 out_free_sec: 2250 security_sk_free(sk); 2251 out_free: 2252 if (slab != NULL) 2253 kmem_cache_free(slab, sk); 2254 else 2255 kfree(sk); 2256 return NULL; 2257 } 2258 2259 static void sk_prot_free(struct proto *prot, struct sock *sk) 2260 { 2261 struct kmem_cache *slab; 2262 struct module *owner; 2263 2264 owner = prot->owner; 2265 slab = prot->slab; 2266 2267 cgroup_sk_free(&sk->sk_cgrp_data); 2268 mem_cgroup_sk_free(sk); 2269 security_sk_free(sk); 2270 2271 sk_owner_put(sk); 2272 2273 if (slab != NULL) 2274 kmem_cache_free(slab, sk); 2275 else 2276 kfree(sk); 2277 module_put(owner); 2278 } 2279 2280 /** 2281 * sk_alloc - All socket objects are allocated here 2282 * @net: the applicable net namespace 2283 * @family: protocol family 2284 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2285 * @prot: struct proto associated with this new sock instance 2286 * @kern: is this to be a kernel socket? 2287 */ 2288 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2289 struct proto *prot, int kern) 2290 { 2291 struct sock *sk; 2292 2293 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2294 if (sk) { 2295 sk->sk_family = family; 2296 /* 2297 * See comment in struct sock definition to understand 2298 * why we need sk_prot_creator -acme 2299 */ 2300 sk->sk_prot = sk->sk_prot_creator = prot; 2301 sk->sk_kern_sock = kern; 2302 sock_lock_init(sk); 2303 sk->sk_net_refcnt = kern ? 0 : 1; 2304 if (likely(sk->sk_net_refcnt)) { 2305 get_net_track(net, &sk->ns_tracker, priority); 2306 sock_inuse_add(net, 1); 2307 } else { 2308 net_passive_inc(net); 2309 __netns_tracker_alloc(net, &sk->ns_tracker, 2310 false, priority); 2311 } 2312 2313 sock_net_set(sk, net); 2314 refcount_set(&sk->sk_wmem_alloc, 1); 2315 2316 mem_cgroup_sk_alloc(sk); 2317 cgroup_sk_alloc(&sk->sk_cgrp_data); 2318 sock_update_classid(&sk->sk_cgrp_data); 2319 sock_update_netprioidx(&sk->sk_cgrp_data); 2320 sk_tx_queue_clear(sk); 2321 } 2322 2323 return sk; 2324 } 2325 EXPORT_SYMBOL(sk_alloc); 2326 2327 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2328 * grace period. This is the case for UDP sockets and TCP listeners. 2329 */ 2330 static void __sk_destruct(struct rcu_head *head) 2331 { 2332 struct sock *sk = container_of(head, struct sock, sk_rcu); 2333 struct net *net = sock_net(sk); 2334 struct sk_filter *filter; 2335 2336 if (sk->sk_destruct) 2337 sk->sk_destruct(sk); 2338 2339 filter = rcu_dereference_check(sk->sk_filter, 2340 refcount_read(&sk->sk_wmem_alloc) == 0); 2341 if (filter) { 2342 sk_filter_uncharge(sk, filter); 2343 RCU_INIT_POINTER(sk->sk_filter, NULL); 2344 } 2345 2346 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2347 2348 #ifdef CONFIG_BPF_SYSCALL 2349 bpf_sk_storage_free(sk); 2350 #endif 2351 2352 if (atomic_read(&sk->sk_omem_alloc)) 2353 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2354 __func__, atomic_read(&sk->sk_omem_alloc)); 2355 2356 if (sk->sk_frag.page) { 2357 put_page(sk->sk_frag.page); 2358 sk->sk_frag.page = NULL; 2359 } 2360 2361 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2362 put_cred(sk->sk_peer_cred); 2363 put_pid(sk->sk_peer_pid); 2364 2365 if (likely(sk->sk_net_refcnt)) { 2366 put_net_track(net, &sk->ns_tracker); 2367 } else { 2368 __netns_tracker_free(net, &sk->ns_tracker, false); 2369 net_passive_dec(net); 2370 } 2371 sk_prot_free(sk->sk_prot_creator, sk); 2372 } 2373 2374 void sk_net_refcnt_upgrade(struct sock *sk) 2375 { 2376 struct net *net = sock_net(sk); 2377 2378 WARN_ON_ONCE(sk->sk_net_refcnt); 2379 __netns_tracker_free(net, &sk->ns_tracker, false); 2380 net_passive_dec(net); 2381 sk->sk_net_refcnt = 1; 2382 get_net_track(net, &sk->ns_tracker, GFP_KERNEL); 2383 sock_inuse_add(net, 1); 2384 } 2385 EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade); 2386 2387 void sk_destruct(struct sock *sk) 2388 { 2389 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2390 2391 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2392 reuseport_detach_sock(sk); 2393 use_call_rcu = true; 2394 } 2395 2396 if (use_call_rcu) 2397 call_rcu(&sk->sk_rcu, __sk_destruct); 2398 else 2399 __sk_destruct(&sk->sk_rcu); 2400 } 2401 2402 static void __sk_free(struct sock *sk) 2403 { 2404 if (likely(sk->sk_net_refcnt)) 2405 sock_inuse_add(sock_net(sk), -1); 2406 2407 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2408 sock_diag_broadcast_destroy(sk); 2409 else 2410 sk_destruct(sk); 2411 } 2412 2413 void sk_free(struct sock *sk) 2414 { 2415 /* 2416 * We subtract one from sk_wmem_alloc and can know if 2417 * some packets are still in some tx queue. 2418 * If not null, sock_wfree() will call __sk_free(sk) later 2419 */ 2420 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2421 __sk_free(sk); 2422 } 2423 EXPORT_SYMBOL(sk_free); 2424 2425 static void sk_init_common(struct sock *sk) 2426 { 2427 skb_queue_head_init(&sk->sk_receive_queue); 2428 skb_queue_head_init(&sk->sk_write_queue); 2429 skb_queue_head_init(&sk->sk_error_queue); 2430 2431 rwlock_init(&sk->sk_callback_lock); 2432 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2433 af_rlock_keys + sk->sk_family, 2434 af_family_rlock_key_strings[sk->sk_family]); 2435 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2436 af_wlock_keys + sk->sk_family, 2437 af_family_wlock_key_strings[sk->sk_family]); 2438 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2439 af_elock_keys + sk->sk_family, 2440 af_family_elock_key_strings[sk->sk_family]); 2441 if (sk->sk_kern_sock) 2442 lockdep_set_class_and_name(&sk->sk_callback_lock, 2443 af_kern_callback_keys + sk->sk_family, 2444 af_family_kern_clock_key_strings[sk->sk_family]); 2445 else 2446 lockdep_set_class_and_name(&sk->sk_callback_lock, 2447 af_callback_keys + sk->sk_family, 2448 af_family_clock_key_strings[sk->sk_family]); 2449 } 2450 2451 /** 2452 * sk_clone_lock - clone a socket, and lock its clone 2453 * @sk: the socket to clone 2454 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2455 * 2456 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2457 */ 2458 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2459 { 2460 struct proto *prot = READ_ONCE(sk->sk_prot); 2461 struct sk_filter *filter; 2462 bool is_charged = true; 2463 struct sock *newsk; 2464 2465 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2466 if (!newsk) 2467 goto out; 2468 2469 sock_copy(newsk, sk); 2470 2471 newsk->sk_prot_creator = prot; 2472 2473 /* SANITY */ 2474 if (likely(newsk->sk_net_refcnt)) { 2475 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2476 sock_inuse_add(sock_net(newsk), 1); 2477 } else { 2478 /* Kernel sockets are not elevating the struct net refcount. 2479 * Instead, use a tracker to more easily detect if a layer 2480 * is not properly dismantling its kernel sockets at netns 2481 * destroy time. 2482 */ 2483 net_passive_inc(sock_net(newsk)); 2484 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2485 false, priority); 2486 } 2487 sk_node_init(&newsk->sk_node); 2488 sock_lock_init(newsk); 2489 bh_lock_sock(newsk); 2490 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2491 newsk->sk_backlog.len = 0; 2492 2493 atomic_set(&newsk->sk_rmem_alloc, 0); 2494 2495 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2496 refcount_set(&newsk->sk_wmem_alloc, 1); 2497 2498 atomic_set(&newsk->sk_omem_alloc, 0); 2499 sk_init_common(newsk); 2500 2501 newsk->sk_dst_cache = NULL; 2502 newsk->sk_dst_pending_confirm = 0; 2503 newsk->sk_wmem_queued = 0; 2504 newsk->sk_forward_alloc = 0; 2505 newsk->sk_reserved_mem = 0; 2506 atomic_set(&newsk->sk_drops, 0); 2507 newsk->sk_send_head = NULL; 2508 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2509 atomic_set(&newsk->sk_zckey, 0); 2510 2511 sock_reset_flag(newsk, SOCK_DONE); 2512 2513 /* sk->sk_memcg will be populated at accept() time */ 2514 newsk->sk_memcg = NULL; 2515 2516 cgroup_sk_clone(&newsk->sk_cgrp_data); 2517 2518 rcu_read_lock(); 2519 filter = rcu_dereference(sk->sk_filter); 2520 if (filter != NULL) 2521 /* though it's an empty new sock, the charging may fail 2522 * if sysctl_optmem_max was changed between creation of 2523 * original socket and cloning 2524 */ 2525 is_charged = sk_filter_charge(newsk, filter); 2526 RCU_INIT_POINTER(newsk->sk_filter, filter); 2527 rcu_read_unlock(); 2528 2529 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2530 /* We need to make sure that we don't uncharge the new 2531 * socket if we couldn't charge it in the first place 2532 * as otherwise we uncharge the parent's filter. 2533 */ 2534 if (!is_charged) 2535 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2536 2537 goto free; 2538 } 2539 2540 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2541 2542 if (bpf_sk_storage_clone(sk, newsk)) 2543 goto free; 2544 2545 /* Clear sk_user_data if parent had the pointer tagged 2546 * as not suitable for copying when cloning. 2547 */ 2548 if (sk_user_data_is_nocopy(newsk)) 2549 newsk->sk_user_data = NULL; 2550 2551 newsk->sk_err = 0; 2552 newsk->sk_err_soft = 0; 2553 newsk->sk_priority = 0; 2554 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2555 2556 /* Before updating sk_refcnt, we must commit prior changes to memory 2557 * (Documentation/RCU/rculist_nulls.rst for details) 2558 */ 2559 smp_wmb(); 2560 refcount_set(&newsk->sk_refcnt, 2); 2561 2562 sk_set_socket(newsk, NULL); 2563 sk_tx_queue_clear(newsk); 2564 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2565 2566 if (newsk->sk_prot->sockets_allocated) 2567 sk_sockets_allocated_inc(newsk); 2568 2569 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2570 net_enable_timestamp(); 2571 out: 2572 return newsk; 2573 free: 2574 /* It is still raw copy of parent, so invalidate 2575 * destructor and make plain sk_free() 2576 */ 2577 newsk->sk_destruct = NULL; 2578 bh_unlock_sock(newsk); 2579 sk_free(newsk); 2580 newsk = NULL; 2581 goto out; 2582 } 2583 EXPORT_SYMBOL_GPL(sk_clone_lock); 2584 2585 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2586 { 2587 bool is_ipv6 = false; 2588 u32 max_size; 2589 2590 #if IS_ENABLED(CONFIG_IPV6) 2591 is_ipv6 = (sk->sk_family == AF_INET6 && 2592 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2593 #endif 2594 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2595 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2596 READ_ONCE(dst->dev->gso_ipv4_max_size); 2597 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2598 max_size = GSO_LEGACY_MAX_SIZE; 2599 2600 return max_size - (MAX_TCP_HEADER + 1); 2601 } 2602 2603 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2604 { 2605 u32 max_segs = 1; 2606 2607 sk->sk_route_caps = dst->dev->features; 2608 if (sk_is_tcp(sk)) { 2609 struct inet_connection_sock *icsk = inet_csk(sk); 2610 2611 sk->sk_route_caps |= NETIF_F_GSO; 2612 icsk->icsk_ack.dst_quick_ack = dst_metric(dst, RTAX_QUICKACK); 2613 } 2614 if (sk->sk_route_caps & NETIF_F_GSO) 2615 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2616 if (unlikely(sk->sk_gso_disabled)) 2617 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2618 if (sk_can_gso(sk)) { 2619 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2620 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2621 } else { 2622 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2623 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2624 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2625 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2626 } 2627 } 2628 sk->sk_gso_max_segs = max_segs; 2629 sk_dst_set(sk, dst); 2630 } 2631 EXPORT_SYMBOL_GPL(sk_setup_caps); 2632 2633 /* 2634 * Simple resource managers for sockets. 2635 */ 2636 2637 2638 /* 2639 * Write buffer destructor automatically called from kfree_skb. 2640 */ 2641 void sock_wfree(struct sk_buff *skb) 2642 { 2643 struct sock *sk = skb->sk; 2644 unsigned int len = skb->truesize; 2645 bool free; 2646 2647 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2648 if (sock_flag(sk, SOCK_RCU_FREE) && 2649 sk->sk_write_space == sock_def_write_space) { 2650 rcu_read_lock(); 2651 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2652 sock_def_write_space_wfree(sk); 2653 rcu_read_unlock(); 2654 if (unlikely(free)) 2655 __sk_free(sk); 2656 return; 2657 } 2658 2659 /* 2660 * Keep a reference on sk_wmem_alloc, this will be released 2661 * after sk_write_space() call 2662 */ 2663 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2664 sk->sk_write_space(sk); 2665 len = 1; 2666 } 2667 /* 2668 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2669 * could not do because of in-flight packets 2670 */ 2671 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2672 __sk_free(sk); 2673 } 2674 EXPORT_SYMBOL(sock_wfree); 2675 2676 /* This variant of sock_wfree() is used by TCP, 2677 * since it sets SOCK_USE_WRITE_QUEUE. 2678 */ 2679 void __sock_wfree(struct sk_buff *skb) 2680 { 2681 struct sock *sk = skb->sk; 2682 2683 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2684 __sk_free(sk); 2685 } 2686 2687 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2688 { 2689 skb_orphan(skb); 2690 #ifdef CONFIG_INET 2691 if (unlikely(!sk_fullsock(sk))) 2692 return skb_set_owner_edemux(skb, sk); 2693 #endif 2694 skb->sk = sk; 2695 skb->destructor = sock_wfree; 2696 skb_set_hash_from_sk(skb, sk); 2697 /* 2698 * We used to take a refcount on sk, but following operation 2699 * is enough to guarantee sk_free() won't free this sock until 2700 * all in-flight packets are completed 2701 */ 2702 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2703 } 2704 EXPORT_SYMBOL(skb_set_owner_w); 2705 2706 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2707 { 2708 /* Drivers depend on in-order delivery for crypto offload, 2709 * partial orphan breaks out-of-order-OK logic. 2710 */ 2711 if (skb_is_decrypted(skb)) 2712 return false; 2713 2714 return (skb->destructor == sock_wfree || 2715 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2716 } 2717 2718 /* This helper is used by netem, as it can hold packets in its 2719 * delay queue. We want to allow the owner socket to send more 2720 * packets, as if they were already TX completed by a typical driver. 2721 * But we also want to keep skb->sk set because some packet schedulers 2722 * rely on it (sch_fq for example). 2723 */ 2724 void skb_orphan_partial(struct sk_buff *skb) 2725 { 2726 if (skb_is_tcp_pure_ack(skb)) 2727 return; 2728 2729 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2730 return; 2731 2732 skb_orphan(skb); 2733 } 2734 EXPORT_SYMBOL(skb_orphan_partial); 2735 2736 /* 2737 * Read buffer destructor automatically called from kfree_skb. 2738 */ 2739 void sock_rfree(struct sk_buff *skb) 2740 { 2741 struct sock *sk = skb->sk; 2742 unsigned int len = skb->truesize; 2743 2744 atomic_sub(len, &sk->sk_rmem_alloc); 2745 sk_mem_uncharge(sk, len); 2746 } 2747 EXPORT_SYMBOL(sock_rfree); 2748 2749 /* 2750 * Buffer destructor for skbs that are not used directly in read or write 2751 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2752 */ 2753 void sock_efree(struct sk_buff *skb) 2754 { 2755 sock_put(skb->sk); 2756 } 2757 EXPORT_SYMBOL(sock_efree); 2758 2759 /* Buffer destructor for prefetch/receive path where reference count may 2760 * not be held, e.g. for listen sockets. 2761 */ 2762 #ifdef CONFIG_INET 2763 void sock_pfree(struct sk_buff *skb) 2764 { 2765 struct sock *sk = skb->sk; 2766 2767 if (!sk_is_refcounted(sk)) 2768 return; 2769 2770 if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { 2771 inet_reqsk(sk)->rsk_listener = NULL; 2772 reqsk_free(inet_reqsk(sk)); 2773 return; 2774 } 2775 2776 sock_gen_put(sk); 2777 } 2778 EXPORT_SYMBOL(sock_pfree); 2779 #endif /* CONFIG_INET */ 2780 2781 kuid_t sock_i_uid(struct sock *sk) 2782 { 2783 kuid_t uid; 2784 2785 read_lock_bh(&sk->sk_callback_lock); 2786 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2787 read_unlock_bh(&sk->sk_callback_lock); 2788 return uid; 2789 } 2790 EXPORT_SYMBOL(sock_i_uid); 2791 2792 unsigned long __sock_i_ino(struct sock *sk) 2793 { 2794 unsigned long ino; 2795 2796 read_lock(&sk->sk_callback_lock); 2797 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2798 read_unlock(&sk->sk_callback_lock); 2799 return ino; 2800 } 2801 EXPORT_SYMBOL(__sock_i_ino); 2802 2803 unsigned long sock_i_ino(struct sock *sk) 2804 { 2805 unsigned long ino; 2806 2807 local_bh_disable(); 2808 ino = __sock_i_ino(sk); 2809 local_bh_enable(); 2810 return ino; 2811 } 2812 EXPORT_SYMBOL(sock_i_ino); 2813 2814 /* 2815 * Allocate a skb from the socket's send buffer. 2816 */ 2817 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2818 gfp_t priority) 2819 { 2820 if (force || 2821 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2822 struct sk_buff *skb = alloc_skb(size, priority); 2823 2824 if (skb) { 2825 skb_set_owner_w(skb, sk); 2826 return skb; 2827 } 2828 } 2829 return NULL; 2830 } 2831 EXPORT_SYMBOL(sock_wmalloc); 2832 2833 static void sock_ofree(struct sk_buff *skb) 2834 { 2835 struct sock *sk = skb->sk; 2836 2837 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2838 } 2839 2840 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2841 gfp_t priority) 2842 { 2843 struct sk_buff *skb; 2844 2845 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2846 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2847 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2848 return NULL; 2849 2850 skb = alloc_skb(size, priority); 2851 if (!skb) 2852 return NULL; 2853 2854 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2855 skb->sk = sk; 2856 skb->destructor = sock_ofree; 2857 return skb; 2858 } 2859 2860 /* 2861 * Allocate a memory block from the socket's option memory buffer. 2862 */ 2863 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2864 { 2865 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2866 2867 if ((unsigned int)size <= optmem_max && 2868 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2869 void *mem; 2870 /* First do the add, to avoid the race if kmalloc 2871 * might sleep. 2872 */ 2873 atomic_add(size, &sk->sk_omem_alloc); 2874 mem = kmalloc(size, priority); 2875 if (mem) 2876 return mem; 2877 atomic_sub(size, &sk->sk_omem_alloc); 2878 } 2879 return NULL; 2880 } 2881 EXPORT_SYMBOL(sock_kmalloc); 2882 2883 /* 2884 * Duplicate the input "src" memory block using the socket's 2885 * option memory buffer. 2886 */ 2887 void *sock_kmemdup(struct sock *sk, const void *src, 2888 int size, gfp_t priority) 2889 { 2890 void *mem; 2891 2892 mem = sock_kmalloc(sk, size, priority); 2893 if (mem) 2894 memcpy(mem, src, size); 2895 return mem; 2896 } 2897 EXPORT_SYMBOL(sock_kmemdup); 2898 2899 /* Free an option memory block. Note, we actually want the inline 2900 * here as this allows gcc to detect the nullify and fold away the 2901 * condition entirely. 2902 */ 2903 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2904 const bool nullify) 2905 { 2906 if (WARN_ON_ONCE(!mem)) 2907 return; 2908 if (nullify) 2909 kfree_sensitive(mem); 2910 else 2911 kfree(mem); 2912 atomic_sub(size, &sk->sk_omem_alloc); 2913 } 2914 2915 void sock_kfree_s(struct sock *sk, void *mem, int size) 2916 { 2917 __sock_kfree_s(sk, mem, size, false); 2918 } 2919 EXPORT_SYMBOL(sock_kfree_s); 2920 2921 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2922 { 2923 __sock_kfree_s(sk, mem, size, true); 2924 } 2925 EXPORT_SYMBOL(sock_kzfree_s); 2926 2927 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2928 I think, these locks should be removed for datagram sockets. 2929 */ 2930 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2931 { 2932 DEFINE_WAIT(wait); 2933 2934 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2935 for (;;) { 2936 if (!timeo) 2937 break; 2938 if (signal_pending(current)) 2939 break; 2940 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2941 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2942 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2943 break; 2944 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2945 break; 2946 if (READ_ONCE(sk->sk_err)) 2947 break; 2948 timeo = schedule_timeout(timeo); 2949 } 2950 finish_wait(sk_sleep(sk), &wait); 2951 return timeo; 2952 } 2953 2954 2955 /* 2956 * Generic send/receive buffer handlers 2957 */ 2958 2959 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2960 unsigned long data_len, int noblock, 2961 int *errcode, int max_page_order) 2962 { 2963 struct sk_buff *skb; 2964 long timeo; 2965 int err; 2966 2967 timeo = sock_sndtimeo(sk, noblock); 2968 for (;;) { 2969 err = sock_error(sk); 2970 if (err != 0) 2971 goto failure; 2972 2973 err = -EPIPE; 2974 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2975 goto failure; 2976 2977 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2978 break; 2979 2980 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2981 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2982 err = -EAGAIN; 2983 if (!timeo) 2984 goto failure; 2985 if (signal_pending(current)) 2986 goto interrupted; 2987 timeo = sock_wait_for_wmem(sk, timeo); 2988 } 2989 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2990 errcode, sk->sk_allocation); 2991 if (skb) 2992 skb_set_owner_w(skb, sk); 2993 return skb; 2994 2995 interrupted: 2996 err = sock_intr_errno(timeo); 2997 failure: 2998 *errcode = err; 2999 return NULL; 3000 } 3001 EXPORT_SYMBOL(sock_alloc_send_pskb); 3002 3003 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 3004 struct sockcm_cookie *sockc) 3005 { 3006 u32 tsflags; 3007 3008 BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31)); 3009 3010 switch (cmsg->cmsg_type) { 3011 case SO_MARK: 3012 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 3013 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3014 return -EPERM; 3015 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 3016 return -EINVAL; 3017 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 3018 break; 3019 case SO_TIMESTAMPING_OLD: 3020 case SO_TIMESTAMPING_NEW: 3021 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 3022 return -EINVAL; 3023 3024 tsflags = *(u32 *)CMSG_DATA(cmsg); 3025 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 3026 return -EINVAL; 3027 3028 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 3029 sockc->tsflags |= tsflags; 3030 break; 3031 case SCM_TXTIME: 3032 if (!sock_flag(sk, SOCK_TXTIME)) 3033 return -EINVAL; 3034 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 3035 return -EINVAL; 3036 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 3037 break; 3038 case SCM_TS_OPT_ID: 3039 if (sk_is_tcp(sk)) 3040 return -EINVAL; 3041 tsflags = READ_ONCE(sk->sk_tsflags); 3042 if (!(tsflags & SOF_TIMESTAMPING_OPT_ID)) 3043 return -EINVAL; 3044 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 3045 return -EINVAL; 3046 sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg); 3047 sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID; 3048 break; 3049 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 3050 case SCM_RIGHTS: 3051 case SCM_CREDENTIALS: 3052 break; 3053 case SO_PRIORITY: 3054 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 3055 return -EINVAL; 3056 if (!sk_set_prio_allowed(sk, *(u32 *)CMSG_DATA(cmsg))) 3057 return -EPERM; 3058 sockc->priority = *(u32 *)CMSG_DATA(cmsg); 3059 break; 3060 case SCM_DEVMEM_DMABUF: 3061 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 3062 return -EINVAL; 3063 sockc->dmabuf_id = *(u32 *)CMSG_DATA(cmsg); 3064 break; 3065 default: 3066 return -EINVAL; 3067 } 3068 return 0; 3069 } 3070 EXPORT_SYMBOL(__sock_cmsg_send); 3071 3072 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 3073 struct sockcm_cookie *sockc) 3074 { 3075 struct cmsghdr *cmsg; 3076 int ret; 3077 3078 for_each_cmsghdr(cmsg, msg) { 3079 if (!CMSG_OK(msg, cmsg)) 3080 return -EINVAL; 3081 if (cmsg->cmsg_level != SOL_SOCKET) 3082 continue; 3083 ret = __sock_cmsg_send(sk, cmsg, sockc); 3084 if (ret) 3085 return ret; 3086 } 3087 return 0; 3088 } 3089 EXPORT_SYMBOL(sock_cmsg_send); 3090 3091 static void sk_enter_memory_pressure(struct sock *sk) 3092 { 3093 if (!sk->sk_prot->enter_memory_pressure) 3094 return; 3095 3096 sk->sk_prot->enter_memory_pressure(sk); 3097 } 3098 3099 static void sk_leave_memory_pressure(struct sock *sk) 3100 { 3101 if (sk->sk_prot->leave_memory_pressure) { 3102 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 3103 tcp_leave_memory_pressure, sk); 3104 } else { 3105 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 3106 3107 if (memory_pressure && READ_ONCE(*memory_pressure)) 3108 WRITE_ONCE(*memory_pressure, 0); 3109 } 3110 } 3111 3112 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 3113 3114 /** 3115 * skb_page_frag_refill - check that a page_frag contains enough room 3116 * @sz: minimum size of the fragment we want to get 3117 * @pfrag: pointer to page_frag 3118 * @gfp: priority for memory allocation 3119 * 3120 * Note: While this allocator tries to use high order pages, there is 3121 * no guarantee that allocations succeed. Therefore, @sz MUST be 3122 * less or equal than PAGE_SIZE. 3123 */ 3124 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 3125 { 3126 if (pfrag->page) { 3127 if (page_ref_count(pfrag->page) == 1) { 3128 pfrag->offset = 0; 3129 return true; 3130 } 3131 if (pfrag->offset + sz <= pfrag->size) 3132 return true; 3133 put_page(pfrag->page); 3134 } 3135 3136 pfrag->offset = 0; 3137 if (SKB_FRAG_PAGE_ORDER && 3138 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 3139 /* Avoid direct reclaim but allow kswapd to wake */ 3140 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 3141 __GFP_COMP | __GFP_NOWARN | 3142 __GFP_NORETRY, 3143 SKB_FRAG_PAGE_ORDER); 3144 if (likely(pfrag->page)) { 3145 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 3146 return true; 3147 } 3148 } 3149 pfrag->page = alloc_page(gfp); 3150 if (likely(pfrag->page)) { 3151 pfrag->size = PAGE_SIZE; 3152 return true; 3153 } 3154 return false; 3155 } 3156 EXPORT_SYMBOL(skb_page_frag_refill); 3157 3158 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 3159 { 3160 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 3161 return true; 3162 3163 sk_enter_memory_pressure(sk); 3164 sk_stream_moderate_sndbuf(sk); 3165 return false; 3166 } 3167 EXPORT_SYMBOL(sk_page_frag_refill); 3168 3169 void __lock_sock(struct sock *sk) 3170 __releases(&sk->sk_lock.slock) 3171 __acquires(&sk->sk_lock.slock) 3172 { 3173 DEFINE_WAIT(wait); 3174 3175 for (;;) { 3176 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 3177 TASK_UNINTERRUPTIBLE); 3178 spin_unlock_bh(&sk->sk_lock.slock); 3179 schedule(); 3180 spin_lock_bh(&sk->sk_lock.slock); 3181 if (!sock_owned_by_user(sk)) 3182 break; 3183 } 3184 finish_wait(&sk->sk_lock.wq, &wait); 3185 } 3186 3187 void __release_sock(struct sock *sk) 3188 __releases(&sk->sk_lock.slock) 3189 __acquires(&sk->sk_lock.slock) 3190 { 3191 struct sk_buff *skb, *next; 3192 3193 while ((skb = sk->sk_backlog.head) != NULL) { 3194 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 3195 3196 spin_unlock_bh(&sk->sk_lock.slock); 3197 3198 do { 3199 next = skb->next; 3200 prefetch(next); 3201 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 3202 skb_mark_not_on_list(skb); 3203 sk_backlog_rcv(sk, skb); 3204 3205 cond_resched(); 3206 3207 skb = next; 3208 } while (skb != NULL); 3209 3210 spin_lock_bh(&sk->sk_lock.slock); 3211 } 3212 3213 /* 3214 * Doing the zeroing here guarantee we can not loop forever 3215 * while a wild producer attempts to flood us. 3216 */ 3217 sk->sk_backlog.len = 0; 3218 } 3219 3220 void __sk_flush_backlog(struct sock *sk) 3221 { 3222 spin_lock_bh(&sk->sk_lock.slock); 3223 __release_sock(sk); 3224 3225 if (sk->sk_prot->release_cb) 3226 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3227 tcp_release_cb, sk); 3228 3229 spin_unlock_bh(&sk->sk_lock.slock); 3230 } 3231 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3232 3233 /** 3234 * sk_wait_data - wait for data to arrive at sk_receive_queue 3235 * @sk: sock to wait on 3236 * @timeo: for how long 3237 * @skb: last skb seen on sk_receive_queue 3238 * 3239 * Now socket state including sk->sk_err is changed only under lock, 3240 * hence we may omit checks after joining wait queue. 3241 * We check receive queue before schedule() only as optimization; 3242 * it is very likely that release_sock() added new data. 3243 */ 3244 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3245 { 3246 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3247 int rc; 3248 3249 add_wait_queue(sk_sleep(sk), &wait); 3250 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3251 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3252 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3253 remove_wait_queue(sk_sleep(sk), &wait); 3254 return rc; 3255 } 3256 EXPORT_SYMBOL(sk_wait_data); 3257 3258 /** 3259 * __sk_mem_raise_allocated - increase memory_allocated 3260 * @sk: socket 3261 * @size: memory size to allocate 3262 * @amt: pages to allocate 3263 * @kind: allocation type 3264 * 3265 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3266 * 3267 * Unlike the globally shared limits among the sockets under same protocol, 3268 * consuming the budget of a memcg won't have direct effect on other ones. 3269 * So be optimistic about memcg's tolerance, and leave the callers to decide 3270 * whether or not to raise allocated through sk_under_memory_pressure() or 3271 * its variants. 3272 */ 3273 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3274 { 3275 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3276 struct proto *prot = sk->sk_prot; 3277 bool charged = false; 3278 long allocated; 3279 3280 sk_memory_allocated_add(sk, amt); 3281 allocated = sk_memory_allocated(sk); 3282 3283 if (memcg) { 3284 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3285 goto suppress_allocation; 3286 charged = true; 3287 } 3288 3289 /* Under limit. */ 3290 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3291 sk_leave_memory_pressure(sk); 3292 return 1; 3293 } 3294 3295 /* Under pressure. */ 3296 if (allocated > sk_prot_mem_limits(sk, 1)) 3297 sk_enter_memory_pressure(sk); 3298 3299 /* Over hard limit. */ 3300 if (allocated > sk_prot_mem_limits(sk, 2)) 3301 goto suppress_allocation; 3302 3303 /* Guarantee minimum buffer size under pressure (either global 3304 * or memcg) to make sure features described in RFC 7323 (TCP 3305 * Extensions for High Performance) work properly. 3306 * 3307 * This rule does NOT stand when exceeds global or memcg's hard 3308 * limit, or else a DoS attack can be taken place by spawning 3309 * lots of sockets whose usage are under minimum buffer size. 3310 */ 3311 if (kind == SK_MEM_RECV) { 3312 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3313 return 1; 3314 3315 } else { /* SK_MEM_SEND */ 3316 int wmem0 = sk_get_wmem0(sk, prot); 3317 3318 if (sk->sk_type == SOCK_STREAM) { 3319 if (sk->sk_wmem_queued < wmem0) 3320 return 1; 3321 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3322 return 1; 3323 } 3324 } 3325 3326 if (sk_has_memory_pressure(sk)) { 3327 u64 alloc; 3328 3329 /* The following 'average' heuristic is within the 3330 * scope of global accounting, so it only makes 3331 * sense for global memory pressure. 3332 */ 3333 if (!sk_under_global_memory_pressure(sk)) 3334 return 1; 3335 3336 /* Try to be fair among all the sockets under global 3337 * pressure by allowing the ones that below average 3338 * usage to raise. 3339 */ 3340 alloc = sk_sockets_allocated_read_positive(sk); 3341 if (sk_prot_mem_limits(sk, 2) > alloc * 3342 sk_mem_pages(sk->sk_wmem_queued + 3343 atomic_read(&sk->sk_rmem_alloc) + 3344 sk->sk_forward_alloc)) 3345 return 1; 3346 } 3347 3348 suppress_allocation: 3349 3350 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3351 sk_stream_moderate_sndbuf(sk); 3352 3353 /* Fail only if socket is _under_ its sndbuf. 3354 * In this case we cannot block, so that we have to fail. 3355 */ 3356 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3357 /* Force charge with __GFP_NOFAIL */ 3358 if (memcg && !charged) { 3359 mem_cgroup_charge_skmem(memcg, amt, 3360 gfp_memcg_charge() | __GFP_NOFAIL); 3361 } 3362 return 1; 3363 } 3364 } 3365 3366 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3367 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3368 3369 sk_memory_allocated_sub(sk, amt); 3370 3371 if (charged) 3372 mem_cgroup_uncharge_skmem(memcg, amt); 3373 3374 return 0; 3375 } 3376 3377 /** 3378 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3379 * @sk: socket 3380 * @size: memory size to allocate 3381 * @kind: allocation type 3382 * 3383 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3384 * rmem allocation. This function assumes that protocols which have 3385 * memory_pressure use sk_wmem_queued as write buffer accounting. 3386 */ 3387 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3388 { 3389 int ret, amt = sk_mem_pages(size); 3390 3391 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3392 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3393 if (!ret) 3394 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3395 return ret; 3396 } 3397 EXPORT_SYMBOL(__sk_mem_schedule); 3398 3399 /** 3400 * __sk_mem_reduce_allocated - reclaim memory_allocated 3401 * @sk: socket 3402 * @amount: number of quanta 3403 * 3404 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3405 */ 3406 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3407 { 3408 sk_memory_allocated_sub(sk, amount); 3409 3410 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3411 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3412 3413 if (sk_under_global_memory_pressure(sk) && 3414 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3415 sk_leave_memory_pressure(sk); 3416 } 3417 3418 /** 3419 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3420 * @sk: socket 3421 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3422 */ 3423 void __sk_mem_reclaim(struct sock *sk, int amount) 3424 { 3425 amount >>= PAGE_SHIFT; 3426 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3427 __sk_mem_reduce_allocated(sk, amount); 3428 } 3429 EXPORT_SYMBOL(__sk_mem_reclaim); 3430 3431 int sk_set_peek_off(struct sock *sk, int val) 3432 { 3433 WRITE_ONCE(sk->sk_peek_off, val); 3434 return 0; 3435 } 3436 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3437 3438 /* 3439 * Set of default routines for initialising struct proto_ops when 3440 * the protocol does not support a particular function. In certain 3441 * cases where it makes no sense for a protocol to have a "do nothing" 3442 * function, some default processing is provided. 3443 */ 3444 3445 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3446 { 3447 return -EOPNOTSUPP; 3448 } 3449 EXPORT_SYMBOL(sock_no_bind); 3450 3451 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3452 int len, int flags) 3453 { 3454 return -EOPNOTSUPP; 3455 } 3456 EXPORT_SYMBOL(sock_no_connect); 3457 3458 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3459 { 3460 return -EOPNOTSUPP; 3461 } 3462 EXPORT_SYMBOL(sock_no_socketpair); 3463 3464 int sock_no_accept(struct socket *sock, struct socket *newsock, 3465 struct proto_accept_arg *arg) 3466 { 3467 return -EOPNOTSUPP; 3468 } 3469 EXPORT_SYMBOL(sock_no_accept); 3470 3471 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3472 int peer) 3473 { 3474 return -EOPNOTSUPP; 3475 } 3476 EXPORT_SYMBOL(sock_no_getname); 3477 3478 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3479 { 3480 return -EOPNOTSUPP; 3481 } 3482 EXPORT_SYMBOL(sock_no_ioctl); 3483 3484 int sock_no_listen(struct socket *sock, int backlog) 3485 { 3486 return -EOPNOTSUPP; 3487 } 3488 EXPORT_SYMBOL(sock_no_listen); 3489 3490 int sock_no_shutdown(struct socket *sock, int how) 3491 { 3492 return -EOPNOTSUPP; 3493 } 3494 EXPORT_SYMBOL(sock_no_shutdown); 3495 3496 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3497 { 3498 return -EOPNOTSUPP; 3499 } 3500 EXPORT_SYMBOL(sock_no_sendmsg); 3501 3502 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3503 { 3504 return -EOPNOTSUPP; 3505 } 3506 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3507 3508 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3509 int flags) 3510 { 3511 return -EOPNOTSUPP; 3512 } 3513 EXPORT_SYMBOL(sock_no_recvmsg); 3514 3515 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3516 { 3517 /* Mirror missing mmap method error code */ 3518 return -ENODEV; 3519 } 3520 EXPORT_SYMBOL(sock_no_mmap); 3521 3522 /* 3523 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3524 * various sock-based usage counts. 3525 */ 3526 void __receive_sock(struct file *file) 3527 { 3528 struct socket *sock; 3529 3530 sock = sock_from_file(file); 3531 if (sock) { 3532 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3533 sock_update_classid(&sock->sk->sk_cgrp_data); 3534 } 3535 } 3536 3537 /* 3538 * Default Socket Callbacks 3539 */ 3540 3541 static void sock_def_wakeup(struct sock *sk) 3542 { 3543 struct socket_wq *wq; 3544 3545 rcu_read_lock(); 3546 wq = rcu_dereference(sk->sk_wq); 3547 if (skwq_has_sleeper(wq)) 3548 wake_up_interruptible_all(&wq->wait); 3549 rcu_read_unlock(); 3550 } 3551 3552 static void sock_def_error_report(struct sock *sk) 3553 { 3554 struct socket_wq *wq; 3555 3556 rcu_read_lock(); 3557 wq = rcu_dereference(sk->sk_wq); 3558 if (skwq_has_sleeper(wq)) 3559 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3560 sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); 3561 rcu_read_unlock(); 3562 } 3563 3564 void sock_def_readable(struct sock *sk) 3565 { 3566 struct socket_wq *wq; 3567 3568 trace_sk_data_ready(sk); 3569 3570 rcu_read_lock(); 3571 wq = rcu_dereference(sk->sk_wq); 3572 if (skwq_has_sleeper(wq)) 3573 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3574 EPOLLRDNORM | EPOLLRDBAND); 3575 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 3576 rcu_read_unlock(); 3577 } 3578 3579 static void sock_def_write_space(struct sock *sk) 3580 { 3581 struct socket_wq *wq; 3582 3583 rcu_read_lock(); 3584 3585 /* Do not wake up a writer until he can make "significant" 3586 * progress. --DaveM 3587 */ 3588 if (sock_writeable(sk)) { 3589 wq = rcu_dereference(sk->sk_wq); 3590 if (skwq_has_sleeper(wq)) 3591 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3592 EPOLLWRNORM | EPOLLWRBAND); 3593 3594 /* Should agree with poll, otherwise some programs break */ 3595 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3596 } 3597 3598 rcu_read_unlock(); 3599 } 3600 3601 /* An optimised version of sock_def_write_space(), should only be called 3602 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3603 * ->sk_wmem_alloc. 3604 */ 3605 static void sock_def_write_space_wfree(struct sock *sk) 3606 { 3607 /* Do not wake up a writer until he can make "significant" 3608 * progress. --DaveM 3609 */ 3610 if (sock_writeable(sk)) { 3611 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3612 3613 /* rely on refcount_sub from sock_wfree() */ 3614 smp_mb__after_atomic(); 3615 if (wq && waitqueue_active(&wq->wait)) 3616 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3617 EPOLLWRNORM | EPOLLWRBAND); 3618 3619 /* Should agree with poll, otherwise some programs break */ 3620 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 3621 } 3622 } 3623 3624 static void sock_def_destruct(struct sock *sk) 3625 { 3626 } 3627 3628 void sk_send_sigurg(struct sock *sk) 3629 { 3630 if (sk->sk_socket && sk->sk_socket->file) 3631 if (send_sigurg(sk->sk_socket->file)) 3632 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3633 } 3634 EXPORT_SYMBOL(sk_send_sigurg); 3635 3636 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3637 unsigned long expires) 3638 { 3639 if (!mod_timer(timer, expires)) 3640 sock_hold(sk); 3641 } 3642 EXPORT_SYMBOL(sk_reset_timer); 3643 3644 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3645 { 3646 if (timer_delete(timer)) 3647 __sock_put(sk); 3648 } 3649 EXPORT_SYMBOL(sk_stop_timer); 3650 3651 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3652 { 3653 if (timer_delete_sync(timer)) 3654 __sock_put(sk); 3655 } 3656 EXPORT_SYMBOL(sk_stop_timer_sync); 3657 3658 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3659 { 3660 sk_init_common(sk); 3661 sk->sk_send_head = NULL; 3662 3663 timer_setup(&sk->sk_timer, NULL, 0); 3664 3665 sk->sk_allocation = GFP_KERNEL; 3666 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3667 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3668 sk->sk_state = TCP_CLOSE; 3669 sk->sk_use_task_frag = true; 3670 sk_set_socket(sk, sock); 3671 3672 sock_set_flag(sk, SOCK_ZAPPED); 3673 3674 if (sock) { 3675 sk->sk_type = sock->type; 3676 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3677 sock->sk = sk; 3678 } else { 3679 RCU_INIT_POINTER(sk->sk_wq, NULL); 3680 } 3681 sk->sk_uid = uid; 3682 3683 sk->sk_state_change = sock_def_wakeup; 3684 sk->sk_data_ready = sock_def_readable; 3685 sk->sk_write_space = sock_def_write_space; 3686 sk->sk_error_report = sock_def_error_report; 3687 sk->sk_destruct = sock_def_destruct; 3688 3689 sk->sk_frag.page = NULL; 3690 sk->sk_frag.offset = 0; 3691 sk->sk_peek_off = -1; 3692 3693 sk->sk_peer_pid = NULL; 3694 sk->sk_peer_cred = NULL; 3695 spin_lock_init(&sk->sk_peer_lock); 3696 3697 sk->sk_write_pending = 0; 3698 sk->sk_rcvlowat = 1; 3699 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3700 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3701 3702 sk->sk_stamp = SK_DEFAULT_STAMP; 3703 #if BITS_PER_LONG==32 3704 seqlock_init(&sk->sk_stamp_seq); 3705 #endif 3706 atomic_set(&sk->sk_zckey, 0); 3707 3708 #ifdef CONFIG_NET_RX_BUSY_POLL 3709 sk->sk_napi_id = 0; 3710 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3711 #endif 3712 3713 sk->sk_max_pacing_rate = ~0UL; 3714 sk->sk_pacing_rate = ~0UL; 3715 WRITE_ONCE(sk->sk_pacing_shift, 10); 3716 sk->sk_incoming_cpu = -1; 3717 3718 sk_rx_queue_clear(sk); 3719 /* 3720 * Before updating sk_refcnt, we must commit prior changes to memory 3721 * (Documentation/RCU/rculist_nulls.rst for details) 3722 */ 3723 smp_wmb(); 3724 refcount_set(&sk->sk_refcnt, 1); 3725 atomic_set(&sk->sk_drops, 0); 3726 } 3727 EXPORT_SYMBOL(sock_init_data_uid); 3728 3729 void sock_init_data(struct socket *sock, struct sock *sk) 3730 { 3731 kuid_t uid = sock ? 3732 SOCK_INODE(sock)->i_uid : 3733 make_kuid(sock_net(sk)->user_ns, 0); 3734 3735 sock_init_data_uid(sock, sk, uid); 3736 } 3737 EXPORT_SYMBOL(sock_init_data); 3738 3739 void lock_sock_nested(struct sock *sk, int subclass) 3740 { 3741 /* The sk_lock has mutex_lock() semantics here. */ 3742 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3743 3744 might_sleep(); 3745 spin_lock_bh(&sk->sk_lock.slock); 3746 if (sock_owned_by_user_nocheck(sk)) 3747 __lock_sock(sk); 3748 sk->sk_lock.owned = 1; 3749 spin_unlock_bh(&sk->sk_lock.slock); 3750 } 3751 EXPORT_SYMBOL(lock_sock_nested); 3752 3753 void release_sock(struct sock *sk) 3754 { 3755 spin_lock_bh(&sk->sk_lock.slock); 3756 if (sk->sk_backlog.tail) 3757 __release_sock(sk); 3758 3759 if (sk->sk_prot->release_cb) 3760 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3761 tcp_release_cb, sk); 3762 3763 sock_release_ownership(sk); 3764 if (waitqueue_active(&sk->sk_lock.wq)) 3765 wake_up(&sk->sk_lock.wq); 3766 spin_unlock_bh(&sk->sk_lock.slock); 3767 } 3768 EXPORT_SYMBOL(release_sock); 3769 3770 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3771 { 3772 might_sleep(); 3773 spin_lock_bh(&sk->sk_lock.slock); 3774 3775 if (!sock_owned_by_user_nocheck(sk)) { 3776 /* 3777 * Fast path return with bottom halves disabled and 3778 * sock::sk_lock.slock held. 3779 * 3780 * The 'mutex' is not contended and holding 3781 * sock::sk_lock.slock prevents all other lockers to 3782 * proceed so the corresponding unlock_sock_fast() can 3783 * avoid the slow path of release_sock() completely and 3784 * just release slock. 3785 * 3786 * From a semantical POV this is equivalent to 'acquiring' 3787 * the 'mutex', hence the corresponding lockdep 3788 * mutex_release() has to happen in the fast path of 3789 * unlock_sock_fast(). 3790 */ 3791 return false; 3792 } 3793 3794 __lock_sock(sk); 3795 sk->sk_lock.owned = 1; 3796 __acquire(&sk->sk_lock.slock); 3797 spin_unlock_bh(&sk->sk_lock.slock); 3798 return true; 3799 } 3800 EXPORT_SYMBOL(__lock_sock_fast); 3801 3802 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3803 bool timeval, bool time32) 3804 { 3805 struct sock *sk = sock->sk; 3806 struct timespec64 ts; 3807 3808 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3809 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3810 if (ts.tv_sec == -1) 3811 return -ENOENT; 3812 if (ts.tv_sec == 0) { 3813 ktime_t kt = ktime_get_real(); 3814 sock_write_timestamp(sk, kt); 3815 ts = ktime_to_timespec64(kt); 3816 } 3817 3818 if (timeval) 3819 ts.tv_nsec /= 1000; 3820 3821 #ifdef CONFIG_COMPAT_32BIT_TIME 3822 if (time32) 3823 return put_old_timespec32(&ts, userstamp); 3824 #endif 3825 #ifdef CONFIG_SPARC64 3826 /* beware of padding in sparc64 timeval */ 3827 if (timeval && !in_compat_syscall()) { 3828 struct __kernel_old_timeval __user tv = { 3829 .tv_sec = ts.tv_sec, 3830 .tv_usec = ts.tv_nsec, 3831 }; 3832 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3833 return -EFAULT; 3834 return 0; 3835 } 3836 #endif 3837 return put_timespec64(&ts, userstamp); 3838 } 3839 EXPORT_SYMBOL(sock_gettstamp); 3840 3841 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3842 { 3843 if (!sock_flag(sk, flag)) { 3844 unsigned long previous_flags = sk->sk_flags; 3845 3846 sock_set_flag(sk, flag); 3847 /* 3848 * we just set one of the two flags which require net 3849 * time stamping, but time stamping might have been on 3850 * already because of the other one 3851 */ 3852 if (sock_needs_netstamp(sk) && 3853 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3854 net_enable_timestamp(); 3855 } 3856 } 3857 3858 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3859 int level, int type) 3860 { 3861 struct sock_exterr_skb *serr; 3862 struct sk_buff *skb; 3863 int copied, err; 3864 3865 err = -EAGAIN; 3866 skb = sock_dequeue_err_skb(sk); 3867 if (skb == NULL) 3868 goto out; 3869 3870 copied = skb->len; 3871 if (copied > len) { 3872 msg->msg_flags |= MSG_TRUNC; 3873 copied = len; 3874 } 3875 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3876 if (err) 3877 goto out_free_skb; 3878 3879 sock_recv_timestamp(msg, sk, skb); 3880 3881 serr = SKB_EXT_ERR(skb); 3882 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3883 3884 msg->msg_flags |= MSG_ERRQUEUE; 3885 err = copied; 3886 3887 out_free_skb: 3888 kfree_skb(skb); 3889 out: 3890 return err; 3891 } 3892 EXPORT_SYMBOL(sock_recv_errqueue); 3893 3894 /* 3895 * Get a socket option on an socket. 3896 * 3897 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3898 * asynchronous errors should be reported by getsockopt. We assume 3899 * this means if you specify SO_ERROR (otherwise what is the point of it). 3900 */ 3901 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3902 char __user *optval, int __user *optlen) 3903 { 3904 struct sock *sk = sock->sk; 3905 3906 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3907 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3908 } 3909 EXPORT_SYMBOL(sock_common_getsockopt); 3910 3911 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3912 int flags) 3913 { 3914 struct sock *sk = sock->sk; 3915 int addr_len = 0; 3916 int err; 3917 3918 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3919 if (err >= 0) 3920 msg->msg_namelen = addr_len; 3921 return err; 3922 } 3923 EXPORT_SYMBOL(sock_common_recvmsg); 3924 3925 /* 3926 * Set socket options on an inet socket. 3927 */ 3928 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3929 sockptr_t optval, unsigned int optlen) 3930 { 3931 struct sock *sk = sock->sk; 3932 3933 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3934 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3935 } 3936 EXPORT_SYMBOL(sock_common_setsockopt); 3937 3938 void sk_common_release(struct sock *sk) 3939 { 3940 if (sk->sk_prot->destroy) 3941 sk->sk_prot->destroy(sk); 3942 3943 /* 3944 * Observation: when sk_common_release is called, processes have 3945 * no access to socket. But net still has. 3946 * Step one, detach it from networking: 3947 * 3948 * A. Remove from hash tables. 3949 */ 3950 3951 sk->sk_prot->unhash(sk); 3952 3953 /* 3954 * In this point socket cannot receive new packets, but it is possible 3955 * that some packets are in flight because some CPU runs receiver and 3956 * did hash table lookup before we unhashed socket. They will achieve 3957 * receive queue and will be purged by socket destructor. 3958 * 3959 * Also we still have packets pending on receive queue and probably, 3960 * our own packets waiting in device queues. sock_destroy will drain 3961 * receive queue, but transmitted packets will delay socket destruction 3962 * until the last reference will be released. 3963 */ 3964 3965 sock_orphan(sk); 3966 3967 xfrm_sk_free_policy(sk); 3968 3969 sock_put(sk); 3970 } 3971 EXPORT_SYMBOL(sk_common_release); 3972 3973 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3974 { 3975 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3976 3977 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3978 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3979 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3980 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3981 mem[SK_MEMINFO_FWD_ALLOC] = READ_ONCE(sk->sk_forward_alloc); 3982 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3983 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3984 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3985 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3986 } 3987 3988 #ifdef CONFIG_PROC_FS 3989 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3990 3991 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3992 { 3993 int cpu, idx = prot->inuse_idx; 3994 int res = 0; 3995 3996 for_each_possible_cpu(cpu) 3997 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3998 3999 return res >= 0 ? res : 0; 4000 } 4001 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 4002 4003 int sock_inuse_get(struct net *net) 4004 { 4005 int cpu, res = 0; 4006 4007 for_each_possible_cpu(cpu) 4008 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 4009 4010 return res; 4011 } 4012 4013 EXPORT_SYMBOL_GPL(sock_inuse_get); 4014 4015 static int __net_init sock_inuse_init_net(struct net *net) 4016 { 4017 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 4018 if (net->core.prot_inuse == NULL) 4019 return -ENOMEM; 4020 return 0; 4021 } 4022 4023 static void __net_exit sock_inuse_exit_net(struct net *net) 4024 { 4025 free_percpu(net->core.prot_inuse); 4026 } 4027 4028 static struct pernet_operations net_inuse_ops = { 4029 .init = sock_inuse_init_net, 4030 .exit = sock_inuse_exit_net, 4031 }; 4032 4033 static __init int net_inuse_init(void) 4034 { 4035 if (register_pernet_subsys(&net_inuse_ops)) 4036 panic("Cannot initialize net inuse counters"); 4037 4038 return 0; 4039 } 4040 4041 core_initcall(net_inuse_init); 4042 4043 static int assign_proto_idx(struct proto *prot) 4044 { 4045 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 4046 4047 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR)) { 4048 pr_err("PROTO_INUSE_NR exhausted\n"); 4049 return -ENOSPC; 4050 } 4051 4052 set_bit(prot->inuse_idx, proto_inuse_idx); 4053 return 0; 4054 } 4055 4056 static void release_proto_idx(struct proto *prot) 4057 { 4058 if (prot->inuse_idx != PROTO_INUSE_NR) 4059 clear_bit(prot->inuse_idx, proto_inuse_idx); 4060 } 4061 #else 4062 static inline int assign_proto_idx(struct proto *prot) 4063 { 4064 return 0; 4065 } 4066 4067 static inline void release_proto_idx(struct proto *prot) 4068 { 4069 } 4070 4071 #endif 4072 4073 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 4074 { 4075 if (!twsk_prot) 4076 return; 4077 kfree(twsk_prot->twsk_slab_name); 4078 twsk_prot->twsk_slab_name = NULL; 4079 kmem_cache_destroy(twsk_prot->twsk_slab); 4080 twsk_prot->twsk_slab = NULL; 4081 } 4082 4083 static int tw_prot_init(const struct proto *prot) 4084 { 4085 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 4086 4087 if (!twsk_prot) 4088 return 0; 4089 4090 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 4091 prot->name); 4092 if (!twsk_prot->twsk_slab_name) 4093 return -ENOMEM; 4094 4095 twsk_prot->twsk_slab = 4096 kmem_cache_create(twsk_prot->twsk_slab_name, 4097 twsk_prot->twsk_obj_size, 0, 4098 SLAB_ACCOUNT | prot->slab_flags, 4099 NULL); 4100 if (!twsk_prot->twsk_slab) { 4101 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 4102 prot->name); 4103 return -ENOMEM; 4104 } 4105 4106 return 0; 4107 } 4108 4109 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 4110 { 4111 if (!rsk_prot) 4112 return; 4113 kfree(rsk_prot->slab_name); 4114 rsk_prot->slab_name = NULL; 4115 kmem_cache_destroy(rsk_prot->slab); 4116 rsk_prot->slab = NULL; 4117 } 4118 4119 static int req_prot_init(const struct proto *prot) 4120 { 4121 struct request_sock_ops *rsk_prot = prot->rsk_prot; 4122 4123 if (!rsk_prot) 4124 return 0; 4125 4126 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 4127 prot->name); 4128 if (!rsk_prot->slab_name) 4129 return -ENOMEM; 4130 4131 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 4132 rsk_prot->obj_size, 0, 4133 SLAB_ACCOUNT | prot->slab_flags, 4134 NULL); 4135 4136 if (!rsk_prot->slab) { 4137 pr_crit("%s: Can't create request sock SLAB cache!\n", 4138 prot->name); 4139 return -ENOMEM; 4140 } 4141 return 0; 4142 } 4143 4144 int proto_register(struct proto *prot, int alloc_slab) 4145 { 4146 int ret = -ENOBUFS; 4147 4148 if (prot->memory_allocated && !prot->sysctl_mem) { 4149 pr_err("%s: missing sysctl_mem\n", prot->name); 4150 return -EINVAL; 4151 } 4152 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 4153 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 4154 return -EINVAL; 4155 } 4156 if (alloc_slab) { 4157 prot->slab = kmem_cache_create_usercopy(prot->name, 4158 prot->obj_size, 0, 4159 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 4160 prot->slab_flags, 4161 prot->useroffset, prot->usersize, 4162 NULL); 4163 4164 if (prot->slab == NULL) { 4165 pr_crit("%s: Can't create sock SLAB cache!\n", 4166 prot->name); 4167 goto out; 4168 } 4169 4170 if (req_prot_init(prot)) 4171 goto out_free_request_sock_slab; 4172 4173 if (tw_prot_init(prot)) 4174 goto out_free_timewait_sock_slab; 4175 } 4176 4177 mutex_lock(&proto_list_mutex); 4178 ret = assign_proto_idx(prot); 4179 if (ret) { 4180 mutex_unlock(&proto_list_mutex); 4181 goto out_free_timewait_sock_slab; 4182 } 4183 list_add(&prot->node, &proto_list); 4184 mutex_unlock(&proto_list_mutex); 4185 return ret; 4186 4187 out_free_timewait_sock_slab: 4188 if (alloc_slab) 4189 tw_prot_cleanup(prot->twsk_prot); 4190 out_free_request_sock_slab: 4191 if (alloc_slab) { 4192 req_prot_cleanup(prot->rsk_prot); 4193 4194 kmem_cache_destroy(prot->slab); 4195 prot->slab = NULL; 4196 } 4197 out: 4198 return ret; 4199 } 4200 EXPORT_SYMBOL(proto_register); 4201 4202 void proto_unregister(struct proto *prot) 4203 { 4204 mutex_lock(&proto_list_mutex); 4205 release_proto_idx(prot); 4206 list_del(&prot->node); 4207 mutex_unlock(&proto_list_mutex); 4208 4209 kmem_cache_destroy(prot->slab); 4210 prot->slab = NULL; 4211 4212 req_prot_cleanup(prot->rsk_prot); 4213 tw_prot_cleanup(prot->twsk_prot); 4214 } 4215 EXPORT_SYMBOL(proto_unregister); 4216 4217 int sock_load_diag_module(int family, int protocol) 4218 { 4219 if (!protocol) { 4220 if (!sock_is_registered(family)) 4221 return -ENOENT; 4222 4223 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 4224 NETLINK_SOCK_DIAG, family); 4225 } 4226 4227 #ifdef CONFIG_INET 4228 if (family == AF_INET && 4229 protocol != IPPROTO_RAW && 4230 protocol < MAX_INET_PROTOS && 4231 !rcu_access_pointer(inet_protos[protocol])) 4232 return -ENOENT; 4233 #endif 4234 4235 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4236 NETLINK_SOCK_DIAG, family, protocol); 4237 } 4238 EXPORT_SYMBOL(sock_load_diag_module); 4239 4240 #ifdef CONFIG_PROC_FS 4241 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4242 __acquires(proto_list_mutex) 4243 { 4244 mutex_lock(&proto_list_mutex); 4245 return seq_list_start_head(&proto_list, *pos); 4246 } 4247 4248 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4249 { 4250 return seq_list_next(v, &proto_list, pos); 4251 } 4252 4253 static void proto_seq_stop(struct seq_file *seq, void *v) 4254 __releases(proto_list_mutex) 4255 { 4256 mutex_unlock(&proto_list_mutex); 4257 } 4258 4259 static char proto_method_implemented(const void *method) 4260 { 4261 return method == NULL ? 'n' : 'y'; 4262 } 4263 static long sock_prot_memory_allocated(struct proto *proto) 4264 { 4265 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4266 } 4267 4268 static const char *sock_prot_memory_pressure(struct proto *proto) 4269 { 4270 return proto->memory_pressure != NULL ? 4271 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4272 } 4273 4274 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4275 { 4276 4277 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4278 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4279 proto->name, 4280 proto->obj_size, 4281 sock_prot_inuse_get(seq_file_net(seq), proto), 4282 sock_prot_memory_allocated(proto), 4283 sock_prot_memory_pressure(proto), 4284 proto->max_header, 4285 proto->slab == NULL ? "no" : "yes", 4286 module_name(proto->owner), 4287 proto_method_implemented(proto->close), 4288 proto_method_implemented(proto->connect), 4289 proto_method_implemented(proto->disconnect), 4290 proto_method_implemented(proto->accept), 4291 proto_method_implemented(proto->ioctl), 4292 proto_method_implemented(proto->init), 4293 proto_method_implemented(proto->destroy), 4294 proto_method_implemented(proto->shutdown), 4295 proto_method_implemented(proto->setsockopt), 4296 proto_method_implemented(proto->getsockopt), 4297 proto_method_implemented(proto->sendmsg), 4298 proto_method_implemented(proto->recvmsg), 4299 proto_method_implemented(proto->bind), 4300 proto_method_implemented(proto->backlog_rcv), 4301 proto_method_implemented(proto->hash), 4302 proto_method_implemented(proto->unhash), 4303 proto_method_implemented(proto->get_port), 4304 proto_method_implemented(proto->enter_memory_pressure)); 4305 } 4306 4307 static int proto_seq_show(struct seq_file *seq, void *v) 4308 { 4309 if (v == &proto_list) 4310 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4311 "protocol", 4312 "size", 4313 "sockets", 4314 "memory", 4315 "press", 4316 "maxhdr", 4317 "slab", 4318 "module", 4319 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4320 else 4321 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4322 return 0; 4323 } 4324 4325 static const struct seq_operations proto_seq_ops = { 4326 .start = proto_seq_start, 4327 .next = proto_seq_next, 4328 .stop = proto_seq_stop, 4329 .show = proto_seq_show, 4330 }; 4331 4332 static __net_init int proto_init_net(struct net *net) 4333 { 4334 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4335 sizeof(struct seq_net_private))) 4336 return -ENOMEM; 4337 4338 return 0; 4339 } 4340 4341 static __net_exit void proto_exit_net(struct net *net) 4342 { 4343 remove_proc_entry("protocols", net->proc_net); 4344 } 4345 4346 4347 static __net_initdata struct pernet_operations proto_net_ops = { 4348 .init = proto_init_net, 4349 .exit = proto_exit_net, 4350 }; 4351 4352 static int __init proto_init(void) 4353 { 4354 return register_pernet_subsys(&proto_net_ops); 4355 } 4356 4357 subsys_initcall(proto_init); 4358 4359 #endif /* PROC_FS */ 4360 4361 #ifdef CONFIG_NET_RX_BUSY_POLL 4362 bool sk_busy_loop_end(void *p, unsigned long start_time) 4363 { 4364 struct sock *sk = p; 4365 4366 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4367 return true; 4368 4369 if (sk_is_udp(sk) && 4370 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4371 return true; 4372 4373 return sk_busy_loop_timeout(sk, start_time); 4374 } 4375 EXPORT_SYMBOL(sk_busy_loop_end); 4376 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4377 4378 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4379 { 4380 if (!sk->sk_prot->bind_add) 4381 return -EOPNOTSUPP; 4382 return sk->sk_prot->bind_add(sk, addr, addr_len); 4383 } 4384 EXPORT_SYMBOL(sock_bind_add); 4385 4386 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4387 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4388 void __user *arg, void *karg, size_t size) 4389 { 4390 int ret; 4391 4392 if (copy_from_user(karg, arg, size)) 4393 return -EFAULT; 4394 4395 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4396 if (ret) 4397 return ret; 4398 4399 if (copy_to_user(arg, karg, size)) 4400 return -EFAULT; 4401 4402 return 0; 4403 } 4404 EXPORT_SYMBOL(sock_ioctl_inout); 4405 4406 /* This is the most common ioctl prep function, where the result (4 bytes) is 4407 * copied back to userspace if the ioctl() returns successfully. No input is 4408 * copied from userspace as input argument. 4409 */ 4410 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4411 { 4412 int ret, karg = 0; 4413 4414 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4415 if (ret) 4416 return ret; 4417 4418 return put_user(karg, (int __user *)arg); 4419 } 4420 4421 /* A wrapper around sock ioctls, which copies the data from userspace 4422 * (depending on the protocol/ioctl), and copies back the result to userspace. 4423 * The main motivation for this function is to pass kernel memory to the 4424 * protocol ioctl callbacks, instead of userspace memory. 4425 */ 4426 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4427 { 4428 int rc = 1; 4429 4430 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4431 rc = ipmr_sk_ioctl(sk, cmd, arg); 4432 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4433 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4434 else if (sk_is_phonet(sk)) 4435 rc = phonet_sk_ioctl(sk, cmd, arg); 4436 4437 /* If ioctl was processed, returns its value */ 4438 if (rc <= 0) 4439 return rc; 4440 4441 /* Otherwise call the default handler */ 4442 return sock_ioctl_out(sk, cmd, arg); 4443 } 4444 EXPORT_SYMBOL(sk_ioctl); 4445 4446 static int __init sock_struct_check(void) 4447 { 4448 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); 4449 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); 4450 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); 4451 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); 4452 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); 4453 4454 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); 4455 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); 4456 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); 4457 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); 4458 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); 4459 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); 4460 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); 4461 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); 4462 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); 4463 4464 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); 4465 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); 4466 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); 4467 4468 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); 4469 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); 4470 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); 4471 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); 4472 4473 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4474 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); 4475 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); 4476 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); 4477 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); 4478 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); 4479 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); 4480 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); 4481 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); 4482 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); 4483 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); 4484 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); 4485 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); 4486 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); 4487 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); 4488 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); 4489 4490 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); 4491 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); 4492 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); 4493 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); 4494 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); 4495 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); 4496 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); 4497 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); 4498 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); 4499 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); 4500 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); 4501 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); 4502 CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); 4503 return 0; 4504 } 4505 4506 core_initcall(sock_struct_check); 4507