1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 iov_iter_advance(from, copied); 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 struct scatterlist *sge; 373 u32 copy, buf_size; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 if (!bytes) 401 break; 402 msg->sg.copybreak = 0; 403 sk_msg_iter_var_next(i); 404 } while (i != msg->sg.end); 405 out: 406 msg->sg.curr = i; 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 410 411 /* Receive sk_msg from psock->ingress_msg to @msg. */ 412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 413 int len, int flags) 414 { 415 struct iov_iter *iter = &msg->msg_iter; 416 int peek = flags & MSG_PEEK; 417 struct sk_msg *msg_rx; 418 int i, copied = 0; 419 420 msg_rx = sk_psock_peek_msg(psock); 421 while (copied != len) { 422 struct scatterlist *sge; 423 424 if (unlikely(!msg_rx)) 425 break; 426 427 i = msg_rx->sg.start; 428 do { 429 struct page *page; 430 int copy; 431 432 sge = sk_msg_elem(msg_rx, i); 433 copy = sge->length; 434 page = sg_page(sge); 435 if (copied + copy > len) 436 copy = len - copied; 437 copy = copy_page_to_iter(page, sge->offset, copy, iter); 438 if (!copy) 439 return copied ? copied : -EFAULT; 440 441 copied += copy; 442 if (likely(!peek)) { 443 sge->offset += copy; 444 sge->length -= copy; 445 if (!msg_rx->skb) 446 sk_mem_uncharge(sk, copy); 447 msg_rx->sg.size -= copy; 448 449 if (!sge->length) { 450 sk_msg_iter_var_next(i); 451 if (!msg_rx->skb) 452 put_page(page); 453 } 454 } else { 455 /* Lets not optimize peek case if copy_page_to_iter 456 * didn't copy the entire length lets just break. 457 */ 458 if (copy != sge->length) 459 return copied; 460 sk_msg_iter_var_next(i); 461 } 462 463 if (copied == len) 464 break; 465 } while (i != msg_rx->sg.end); 466 467 if (unlikely(peek)) { 468 msg_rx = sk_psock_next_msg(psock, msg_rx); 469 if (!msg_rx) 470 break; 471 continue; 472 } 473 474 msg_rx->sg.start = i; 475 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 476 msg_rx = sk_psock_dequeue_msg(psock); 477 kfree_sk_msg(msg_rx); 478 } 479 msg_rx = sk_psock_peek_msg(psock); 480 } 481 482 return copied; 483 } 484 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 485 486 bool sk_msg_is_readable(struct sock *sk) 487 { 488 struct sk_psock *psock; 489 bool empty = true; 490 491 rcu_read_lock(); 492 psock = sk_psock(sk); 493 if (likely(psock)) 494 empty = list_empty(&psock->ingress_msg); 495 rcu_read_unlock(); 496 return !empty; 497 } 498 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 499 500 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 501 struct sk_buff *skb) 502 { 503 struct sk_msg *msg; 504 505 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 506 return NULL; 507 508 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 509 return NULL; 510 511 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 512 if (unlikely(!msg)) 513 return NULL; 514 515 sk_msg_init(msg); 516 return msg; 517 } 518 519 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 520 u32 off, u32 len, 521 struct sk_psock *psock, 522 struct sock *sk, 523 struct sk_msg *msg) 524 { 525 int num_sge, copied; 526 527 /* skb linearize may fail with ENOMEM, but lets simply try again 528 * later if this happens. Under memory pressure we don't want to 529 * drop the skb. We need to linearize the skb so that the mapping 530 * in skb_to_sgvec can not error. 531 */ 532 if (skb_linearize(skb)) 533 return -EAGAIN; 534 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 535 if (unlikely(num_sge < 0)) 536 return num_sge; 537 538 copied = len; 539 msg->sg.start = 0; 540 msg->sg.size = copied; 541 msg->sg.end = num_sge; 542 msg->skb = skb; 543 544 sk_psock_queue_msg(psock, msg); 545 sk_psock_data_ready(sk, psock); 546 return copied; 547 } 548 549 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 550 u32 off, u32 len); 551 552 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 553 u32 off, u32 len) 554 { 555 struct sock *sk = psock->sk; 556 struct sk_msg *msg; 557 int err; 558 559 /* If we are receiving on the same sock skb->sk is already assigned, 560 * skip memory accounting and owner transition seeing it already set 561 * correctly. 562 */ 563 if (unlikely(skb->sk == sk)) 564 return sk_psock_skb_ingress_self(psock, skb, off, len); 565 msg = sk_psock_create_ingress_msg(sk, skb); 566 if (!msg) 567 return -EAGAIN; 568 569 /* This will transition ownership of the data from the socket where 570 * the BPF program was run initiating the redirect to the socket 571 * we will eventually receive this data on. The data will be released 572 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 573 * into user buffers. 574 */ 575 skb_set_owner_r(skb, sk); 576 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 577 if (err < 0) 578 kfree(msg); 579 return err; 580 } 581 582 /* Puts an skb on the ingress queue of the socket already assigned to the 583 * skb. In this case we do not need to check memory limits or skb_set_owner_r 584 * because the skb is already accounted for here. 585 */ 586 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 587 u32 off, u32 len) 588 { 589 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 590 struct sock *sk = psock->sk; 591 int err; 592 593 if (unlikely(!msg)) 594 return -EAGAIN; 595 sk_msg_init(msg); 596 skb_set_owner_r(skb, sk); 597 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 598 if (err < 0) 599 kfree(msg); 600 return err; 601 } 602 603 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 604 u32 off, u32 len, bool ingress) 605 { 606 if (!ingress) { 607 if (!sock_writeable(psock->sk)) 608 return -EAGAIN; 609 return skb_send_sock(psock->sk, skb, off, len); 610 } 611 return sk_psock_skb_ingress(psock, skb, off, len); 612 } 613 614 static void sk_psock_skb_state(struct sk_psock *psock, 615 struct sk_psock_work_state *state, 616 struct sk_buff *skb, 617 int len, int off) 618 { 619 spin_lock_bh(&psock->ingress_lock); 620 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 621 state->skb = skb; 622 state->len = len; 623 state->off = off; 624 } else { 625 sock_drop(psock->sk, skb); 626 } 627 spin_unlock_bh(&psock->ingress_lock); 628 } 629 630 static void sk_psock_backlog(struct work_struct *work) 631 { 632 struct sk_psock *psock = container_of(work, struct sk_psock, work); 633 struct sk_psock_work_state *state = &psock->work_state; 634 struct sk_buff *skb = NULL; 635 bool ingress; 636 u32 len, off; 637 int ret; 638 639 mutex_lock(&psock->work_mutex); 640 if (unlikely(state->skb)) { 641 spin_lock_bh(&psock->ingress_lock); 642 skb = state->skb; 643 len = state->len; 644 off = state->off; 645 state->skb = NULL; 646 spin_unlock_bh(&psock->ingress_lock); 647 } 648 if (skb) 649 goto start; 650 651 while ((skb = skb_dequeue(&psock->ingress_skb))) { 652 len = skb->len; 653 off = 0; 654 if (skb_bpf_strparser(skb)) { 655 struct strp_msg *stm = strp_msg(skb); 656 657 off = stm->offset; 658 len = stm->full_len; 659 } 660 start: 661 ingress = skb_bpf_ingress(skb); 662 skb_bpf_redirect_clear(skb); 663 do { 664 ret = -EIO; 665 if (!sock_flag(psock->sk, SOCK_DEAD)) 666 ret = sk_psock_handle_skb(psock, skb, off, 667 len, ingress); 668 if (ret <= 0) { 669 if (ret == -EAGAIN) { 670 sk_psock_skb_state(psock, state, skb, 671 len, off); 672 goto end; 673 } 674 /* Hard errors break pipe and stop xmit. */ 675 sk_psock_report_error(psock, ret ? -ret : EPIPE); 676 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 677 sock_drop(psock->sk, skb); 678 goto end; 679 } 680 off += ret; 681 len -= ret; 682 } while (len); 683 684 if (!ingress) 685 kfree_skb(skb); 686 } 687 end: 688 mutex_unlock(&psock->work_mutex); 689 } 690 691 struct sk_psock *sk_psock_init(struct sock *sk, int node) 692 { 693 struct sk_psock *psock; 694 struct proto *prot; 695 696 write_lock_bh(&sk->sk_callback_lock); 697 698 if (sk->sk_user_data) { 699 psock = ERR_PTR(-EBUSY); 700 goto out; 701 } 702 703 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 704 if (!psock) { 705 psock = ERR_PTR(-ENOMEM); 706 goto out; 707 } 708 709 prot = READ_ONCE(sk->sk_prot); 710 psock->sk = sk; 711 psock->eval = __SK_NONE; 712 psock->sk_proto = prot; 713 psock->saved_unhash = prot->unhash; 714 psock->saved_close = prot->close; 715 psock->saved_write_space = sk->sk_write_space; 716 717 INIT_LIST_HEAD(&psock->link); 718 spin_lock_init(&psock->link_lock); 719 720 INIT_WORK(&psock->work, sk_psock_backlog); 721 mutex_init(&psock->work_mutex); 722 INIT_LIST_HEAD(&psock->ingress_msg); 723 spin_lock_init(&psock->ingress_lock); 724 skb_queue_head_init(&psock->ingress_skb); 725 726 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 727 refcount_set(&psock->refcnt, 1); 728 729 rcu_assign_sk_user_data_nocopy(sk, psock); 730 sock_hold(sk); 731 732 out: 733 write_unlock_bh(&sk->sk_callback_lock); 734 return psock; 735 } 736 EXPORT_SYMBOL_GPL(sk_psock_init); 737 738 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 739 { 740 struct sk_psock_link *link; 741 742 spin_lock_bh(&psock->link_lock); 743 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 744 list); 745 if (link) 746 list_del(&link->list); 747 spin_unlock_bh(&psock->link_lock); 748 return link; 749 } 750 751 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 752 { 753 struct sk_msg *msg, *tmp; 754 755 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 756 list_del(&msg->list); 757 sk_msg_free(psock->sk, msg); 758 kfree(msg); 759 } 760 } 761 762 static void __sk_psock_zap_ingress(struct sk_psock *psock) 763 { 764 struct sk_buff *skb; 765 766 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 767 skb_bpf_redirect_clear(skb); 768 sock_drop(psock->sk, skb); 769 } 770 kfree_skb(psock->work_state.skb); 771 /* We null the skb here to ensure that calls to sk_psock_backlog 772 * do not pick up the free'd skb. 773 */ 774 psock->work_state.skb = NULL; 775 __sk_psock_purge_ingress_msg(psock); 776 } 777 778 static void sk_psock_link_destroy(struct sk_psock *psock) 779 { 780 struct sk_psock_link *link, *tmp; 781 782 list_for_each_entry_safe(link, tmp, &psock->link, list) { 783 list_del(&link->list); 784 sk_psock_free_link(link); 785 } 786 } 787 788 void sk_psock_stop(struct sk_psock *psock, bool wait) 789 { 790 spin_lock_bh(&psock->ingress_lock); 791 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 792 sk_psock_cork_free(psock); 793 __sk_psock_zap_ingress(psock); 794 spin_unlock_bh(&psock->ingress_lock); 795 796 if (wait) 797 cancel_work_sync(&psock->work); 798 } 799 800 static void sk_psock_done_strp(struct sk_psock *psock); 801 802 static void sk_psock_destroy(struct work_struct *work) 803 { 804 struct sk_psock *psock = container_of(to_rcu_work(work), 805 struct sk_psock, rwork); 806 /* No sk_callback_lock since already detached. */ 807 808 sk_psock_done_strp(psock); 809 810 cancel_work_sync(&psock->work); 811 mutex_destroy(&psock->work_mutex); 812 813 psock_progs_drop(&psock->progs); 814 815 sk_psock_link_destroy(psock); 816 sk_psock_cork_free(psock); 817 818 if (psock->sk_redir) 819 sock_put(psock->sk_redir); 820 sock_put(psock->sk); 821 kfree(psock); 822 } 823 824 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 825 { 826 write_lock_bh(&sk->sk_callback_lock); 827 sk_psock_restore_proto(sk, psock); 828 rcu_assign_sk_user_data(sk, NULL); 829 if (psock->progs.stream_parser) 830 sk_psock_stop_strp(sk, psock); 831 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 832 sk_psock_stop_verdict(sk, psock); 833 write_unlock_bh(&sk->sk_callback_lock); 834 835 sk_psock_stop(psock, false); 836 837 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 838 queue_rcu_work(system_wq, &psock->rwork); 839 } 840 EXPORT_SYMBOL_GPL(sk_psock_drop); 841 842 static int sk_psock_map_verd(int verdict, bool redir) 843 { 844 switch (verdict) { 845 case SK_PASS: 846 return redir ? __SK_REDIRECT : __SK_PASS; 847 case SK_DROP: 848 default: 849 break; 850 } 851 852 return __SK_DROP; 853 } 854 855 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 856 struct sk_msg *msg) 857 { 858 struct bpf_prog *prog; 859 int ret; 860 861 rcu_read_lock(); 862 prog = READ_ONCE(psock->progs.msg_parser); 863 if (unlikely(!prog)) { 864 ret = __SK_PASS; 865 goto out; 866 } 867 868 sk_msg_compute_data_pointers(msg); 869 msg->sk = sk; 870 ret = bpf_prog_run_pin_on_cpu(prog, msg); 871 ret = sk_psock_map_verd(ret, msg->sk_redir); 872 psock->apply_bytes = msg->apply_bytes; 873 if (ret == __SK_REDIRECT) { 874 if (psock->sk_redir) 875 sock_put(psock->sk_redir); 876 psock->sk_redir = msg->sk_redir; 877 if (!psock->sk_redir) { 878 ret = __SK_DROP; 879 goto out; 880 } 881 sock_hold(psock->sk_redir); 882 } 883 out: 884 rcu_read_unlock(); 885 return ret; 886 } 887 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 888 889 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 890 { 891 struct sk_psock *psock_other; 892 struct sock *sk_other; 893 894 sk_other = skb_bpf_redirect_fetch(skb); 895 /* This error is a buggy BPF program, it returned a redirect 896 * return code, but then didn't set a redirect interface. 897 */ 898 if (unlikely(!sk_other)) { 899 skb_bpf_redirect_clear(skb); 900 sock_drop(from->sk, skb); 901 return -EIO; 902 } 903 psock_other = sk_psock(sk_other); 904 /* This error indicates the socket is being torn down or had another 905 * error that caused the pipe to break. We can't send a packet on 906 * a socket that is in this state so we drop the skb. 907 */ 908 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 909 skb_bpf_redirect_clear(skb); 910 sock_drop(from->sk, skb); 911 return -EIO; 912 } 913 spin_lock_bh(&psock_other->ingress_lock); 914 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 915 spin_unlock_bh(&psock_other->ingress_lock); 916 skb_bpf_redirect_clear(skb); 917 sock_drop(from->sk, skb); 918 return -EIO; 919 } 920 921 skb_queue_tail(&psock_other->ingress_skb, skb); 922 schedule_work(&psock_other->work); 923 spin_unlock_bh(&psock_other->ingress_lock); 924 return 0; 925 } 926 927 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 928 struct sk_psock *from, int verdict) 929 { 930 switch (verdict) { 931 case __SK_REDIRECT: 932 sk_psock_skb_redirect(from, skb); 933 break; 934 case __SK_PASS: 935 case __SK_DROP: 936 default: 937 break; 938 } 939 } 940 941 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 942 { 943 struct bpf_prog *prog; 944 int ret = __SK_PASS; 945 946 rcu_read_lock(); 947 prog = READ_ONCE(psock->progs.stream_verdict); 948 if (likely(prog)) { 949 skb->sk = psock->sk; 950 skb_dst_drop(skb); 951 skb_bpf_redirect_clear(skb); 952 ret = bpf_prog_run_pin_on_cpu(prog, skb); 953 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 954 skb->sk = NULL; 955 } 956 sk_psock_tls_verdict_apply(skb, psock, ret); 957 rcu_read_unlock(); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 961 962 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 963 int verdict) 964 { 965 struct sock *sk_other; 966 int err = 0; 967 u32 len, off; 968 969 switch (verdict) { 970 case __SK_PASS: 971 err = -EIO; 972 sk_other = psock->sk; 973 if (sock_flag(sk_other, SOCK_DEAD) || 974 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 975 skb_bpf_redirect_clear(skb); 976 goto out_free; 977 } 978 979 skb_bpf_set_ingress(skb); 980 981 /* If the queue is empty then we can submit directly 982 * into the msg queue. If its not empty we have to 983 * queue work otherwise we may get OOO data. Otherwise, 984 * if sk_psock_skb_ingress errors will be handled by 985 * retrying later from workqueue. 986 */ 987 if (skb_queue_empty(&psock->ingress_skb)) { 988 len = skb->len; 989 off = 0; 990 if (skb_bpf_strparser(skb)) { 991 struct strp_msg *stm = strp_msg(skb); 992 993 off = stm->offset; 994 len = stm->full_len; 995 } 996 err = sk_psock_skb_ingress_self(psock, skb, off, len); 997 } 998 if (err < 0) { 999 spin_lock_bh(&psock->ingress_lock); 1000 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1001 skb_queue_tail(&psock->ingress_skb, skb); 1002 schedule_work(&psock->work); 1003 err = 0; 1004 } 1005 spin_unlock_bh(&psock->ingress_lock); 1006 if (err < 0) { 1007 skb_bpf_redirect_clear(skb); 1008 goto out_free; 1009 } 1010 } 1011 break; 1012 case __SK_REDIRECT: 1013 err = sk_psock_skb_redirect(psock, skb); 1014 break; 1015 case __SK_DROP: 1016 default: 1017 out_free: 1018 sock_drop(psock->sk, skb); 1019 } 1020 1021 return err; 1022 } 1023 1024 static void sk_psock_write_space(struct sock *sk) 1025 { 1026 struct sk_psock *psock; 1027 void (*write_space)(struct sock *sk) = NULL; 1028 1029 rcu_read_lock(); 1030 psock = sk_psock(sk); 1031 if (likely(psock)) { 1032 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1033 schedule_work(&psock->work); 1034 write_space = psock->saved_write_space; 1035 } 1036 rcu_read_unlock(); 1037 if (write_space) 1038 write_space(sk); 1039 } 1040 1041 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1042 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1043 { 1044 struct sk_psock *psock; 1045 struct bpf_prog *prog; 1046 int ret = __SK_DROP; 1047 struct sock *sk; 1048 1049 rcu_read_lock(); 1050 sk = strp->sk; 1051 psock = sk_psock(sk); 1052 if (unlikely(!psock)) { 1053 sock_drop(sk, skb); 1054 goto out; 1055 } 1056 prog = READ_ONCE(psock->progs.stream_verdict); 1057 if (likely(prog)) { 1058 skb->sk = sk; 1059 skb_dst_drop(skb); 1060 skb_bpf_redirect_clear(skb); 1061 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1062 if (ret == SK_PASS) 1063 skb_bpf_set_strparser(skb); 1064 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1065 skb->sk = NULL; 1066 } 1067 sk_psock_verdict_apply(psock, skb, ret); 1068 out: 1069 rcu_read_unlock(); 1070 } 1071 1072 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1073 { 1074 return err; 1075 } 1076 1077 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1078 { 1079 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1080 struct bpf_prog *prog; 1081 int ret = skb->len; 1082 1083 rcu_read_lock(); 1084 prog = READ_ONCE(psock->progs.stream_parser); 1085 if (likely(prog)) { 1086 skb->sk = psock->sk; 1087 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1088 skb->sk = NULL; 1089 } 1090 rcu_read_unlock(); 1091 return ret; 1092 } 1093 1094 /* Called with socket lock held. */ 1095 static void sk_psock_strp_data_ready(struct sock *sk) 1096 { 1097 struct sk_psock *psock; 1098 1099 rcu_read_lock(); 1100 psock = sk_psock(sk); 1101 if (likely(psock)) { 1102 if (tls_sw_has_ctx_rx(sk)) { 1103 psock->saved_data_ready(sk); 1104 } else { 1105 write_lock_bh(&sk->sk_callback_lock); 1106 strp_data_ready(&psock->strp); 1107 write_unlock_bh(&sk->sk_callback_lock); 1108 } 1109 } 1110 rcu_read_unlock(); 1111 } 1112 1113 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1114 { 1115 static const struct strp_callbacks cb = { 1116 .rcv_msg = sk_psock_strp_read, 1117 .read_sock_done = sk_psock_strp_read_done, 1118 .parse_msg = sk_psock_strp_parse, 1119 }; 1120 1121 return strp_init(&psock->strp, sk, &cb); 1122 } 1123 1124 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1125 { 1126 if (psock->saved_data_ready) 1127 return; 1128 1129 psock->saved_data_ready = sk->sk_data_ready; 1130 sk->sk_data_ready = sk_psock_strp_data_ready; 1131 sk->sk_write_space = sk_psock_write_space; 1132 } 1133 1134 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1135 { 1136 psock_set_prog(&psock->progs.stream_parser, NULL); 1137 1138 if (!psock->saved_data_ready) 1139 return; 1140 1141 sk->sk_data_ready = psock->saved_data_ready; 1142 psock->saved_data_ready = NULL; 1143 strp_stop(&psock->strp); 1144 } 1145 1146 static void sk_psock_done_strp(struct sk_psock *psock) 1147 { 1148 /* Parser has been stopped */ 1149 if (psock->progs.stream_parser) 1150 strp_done(&psock->strp); 1151 } 1152 #else 1153 static void sk_psock_done_strp(struct sk_psock *psock) 1154 { 1155 } 1156 #endif /* CONFIG_BPF_STREAM_PARSER */ 1157 1158 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1159 unsigned int offset, size_t orig_len) 1160 { 1161 struct sock *sk = (struct sock *)desc->arg.data; 1162 struct sk_psock *psock; 1163 struct bpf_prog *prog; 1164 int ret = __SK_DROP; 1165 int len = orig_len; 1166 1167 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1168 skb = skb_clone(skb, GFP_ATOMIC); 1169 if (!skb) { 1170 desc->error = -ENOMEM; 1171 return 0; 1172 } 1173 1174 rcu_read_lock(); 1175 psock = sk_psock(sk); 1176 if (unlikely(!psock)) { 1177 len = 0; 1178 sock_drop(sk, skb); 1179 goto out; 1180 } 1181 prog = READ_ONCE(psock->progs.stream_verdict); 1182 if (!prog) 1183 prog = READ_ONCE(psock->progs.skb_verdict); 1184 if (likely(prog)) { 1185 skb->sk = sk; 1186 skb_dst_drop(skb); 1187 skb_bpf_redirect_clear(skb); 1188 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1189 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1190 skb->sk = NULL; 1191 } 1192 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1193 len = 0; 1194 out: 1195 rcu_read_unlock(); 1196 return len; 1197 } 1198 1199 static void sk_psock_verdict_data_ready(struct sock *sk) 1200 { 1201 struct socket *sock = sk->sk_socket; 1202 read_descriptor_t desc; 1203 1204 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1205 return; 1206 1207 desc.arg.data = sk; 1208 desc.error = 0; 1209 desc.count = 1; 1210 1211 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1212 } 1213 1214 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1215 { 1216 if (psock->saved_data_ready) 1217 return; 1218 1219 psock->saved_data_ready = sk->sk_data_ready; 1220 sk->sk_data_ready = sk_psock_verdict_data_ready; 1221 sk->sk_write_space = sk_psock_write_space; 1222 } 1223 1224 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1225 { 1226 psock_set_prog(&psock->progs.stream_verdict, NULL); 1227 psock_set_prog(&psock->progs.skb_verdict, NULL); 1228 1229 if (!psock->saved_data_ready) 1230 return; 1231 1232 sk->sk_data_ready = psock->saved_data_ready; 1233 psock->saved_data_ready = NULL; 1234 } 1235