1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 iov_iter_advance(from, copied); 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 struct scatterlist *sge; 373 u32 copy, buf_size; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 if (!bytes) 401 break; 402 msg->sg.copybreak = 0; 403 sk_msg_iter_var_next(i); 404 } while (i != msg->sg.end); 405 out: 406 msg->sg.curr = i; 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 410 411 /* Receive sk_msg from psock->ingress_msg to @msg. */ 412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 413 int len, int flags) 414 { 415 struct iov_iter *iter = &msg->msg_iter; 416 int peek = flags & MSG_PEEK; 417 struct sk_msg *msg_rx; 418 int i, copied = 0; 419 420 msg_rx = sk_psock_peek_msg(psock); 421 while (copied != len) { 422 struct scatterlist *sge; 423 424 if (unlikely(!msg_rx)) 425 break; 426 427 i = msg_rx->sg.start; 428 do { 429 struct page *page; 430 int copy; 431 432 sge = sk_msg_elem(msg_rx, i); 433 copy = sge->length; 434 page = sg_page(sge); 435 if (copied + copy > len) 436 copy = len - copied; 437 copy = copy_page_to_iter(page, sge->offset, copy, iter); 438 if (!copy) 439 return copied ? copied : -EFAULT; 440 441 copied += copy; 442 if (likely(!peek)) { 443 sge->offset += copy; 444 sge->length -= copy; 445 if (!msg_rx->skb) 446 sk_mem_uncharge(sk, copy); 447 msg_rx->sg.size -= copy; 448 449 if (!sge->length) { 450 sk_msg_iter_var_next(i); 451 if (!msg_rx->skb) 452 put_page(page); 453 } 454 } else { 455 /* Lets not optimize peek case if copy_page_to_iter 456 * didn't copy the entire length lets just break. 457 */ 458 if (copy != sge->length) 459 return copied; 460 sk_msg_iter_var_next(i); 461 } 462 463 if (copied == len) 464 break; 465 } while (i != msg_rx->sg.end); 466 467 if (unlikely(peek)) { 468 msg_rx = sk_psock_next_msg(psock, msg_rx); 469 if (!msg_rx) 470 break; 471 continue; 472 } 473 474 msg_rx->sg.start = i; 475 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 476 msg_rx = sk_psock_dequeue_msg(psock); 477 kfree_sk_msg(msg_rx); 478 } 479 msg_rx = sk_psock_peek_msg(psock); 480 } 481 482 return copied; 483 } 484 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 485 486 bool sk_msg_is_readable(struct sock *sk) 487 { 488 struct sk_psock *psock; 489 bool empty = true; 490 491 rcu_read_lock(); 492 psock = sk_psock(sk); 493 if (likely(psock)) 494 empty = list_empty(&psock->ingress_msg); 495 rcu_read_unlock(); 496 return !empty; 497 } 498 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 499 500 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 501 struct sk_buff *skb) 502 { 503 struct sk_msg *msg; 504 505 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 506 return NULL; 507 508 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 509 return NULL; 510 511 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 512 if (unlikely(!msg)) 513 return NULL; 514 515 sk_msg_init(msg); 516 return msg; 517 } 518 519 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 520 u32 off, u32 len, 521 struct sk_psock *psock, 522 struct sock *sk, 523 struct sk_msg *msg) 524 { 525 int num_sge, copied; 526 527 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 528 if (num_sge < 0) { 529 /* skb linearize may fail with ENOMEM, but lets simply try again 530 * later if this happens. Under memory pressure we don't want to 531 * drop the skb. We need to linearize the skb so that the mapping 532 * in skb_to_sgvec can not error. 533 */ 534 if (skb_linearize(skb)) 535 return -EAGAIN; 536 537 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 538 if (unlikely(num_sge < 0)) 539 return num_sge; 540 } 541 542 copied = len; 543 msg->sg.start = 0; 544 msg->sg.size = copied; 545 msg->sg.end = num_sge; 546 msg->skb = skb; 547 548 sk_psock_queue_msg(psock, msg); 549 sk_psock_data_ready(sk, psock); 550 return copied; 551 } 552 553 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 554 u32 off, u32 len); 555 556 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 557 u32 off, u32 len) 558 { 559 struct sock *sk = psock->sk; 560 struct sk_msg *msg; 561 int err; 562 563 /* If we are receiving on the same sock skb->sk is already assigned, 564 * skip memory accounting and owner transition seeing it already set 565 * correctly. 566 */ 567 if (unlikely(skb->sk == sk)) 568 return sk_psock_skb_ingress_self(psock, skb, off, len); 569 msg = sk_psock_create_ingress_msg(sk, skb); 570 if (!msg) 571 return -EAGAIN; 572 573 /* This will transition ownership of the data from the socket where 574 * the BPF program was run initiating the redirect to the socket 575 * we will eventually receive this data on. The data will be released 576 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 577 * into user buffers. 578 */ 579 skb_set_owner_r(skb, sk); 580 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 581 if (err < 0) 582 kfree(msg); 583 return err; 584 } 585 586 /* Puts an skb on the ingress queue of the socket already assigned to the 587 * skb. In this case we do not need to check memory limits or skb_set_owner_r 588 * because the skb is already accounted for here. 589 */ 590 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 591 u32 off, u32 len) 592 { 593 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 594 struct sock *sk = psock->sk; 595 int err; 596 597 if (unlikely(!msg)) 598 return -EAGAIN; 599 sk_msg_init(msg); 600 skb_set_owner_r(skb, sk); 601 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 602 if (err < 0) 603 kfree(msg); 604 return err; 605 } 606 607 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 608 u32 off, u32 len, bool ingress) 609 { 610 if (!ingress) { 611 if (!sock_writeable(psock->sk)) 612 return -EAGAIN; 613 return skb_send_sock(psock->sk, skb, off, len); 614 } 615 return sk_psock_skb_ingress(psock, skb, off, len); 616 } 617 618 static void sk_psock_skb_state(struct sk_psock *psock, 619 struct sk_psock_work_state *state, 620 struct sk_buff *skb, 621 int len, int off) 622 { 623 spin_lock_bh(&psock->ingress_lock); 624 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 625 state->skb = skb; 626 state->len = len; 627 state->off = off; 628 } else { 629 sock_drop(psock->sk, skb); 630 } 631 spin_unlock_bh(&psock->ingress_lock); 632 } 633 634 static void sk_psock_backlog(struct work_struct *work) 635 { 636 struct sk_psock *psock = container_of(work, struct sk_psock, work); 637 struct sk_psock_work_state *state = &psock->work_state; 638 struct sk_buff *skb = NULL; 639 bool ingress; 640 u32 len, off; 641 int ret; 642 643 mutex_lock(&psock->work_mutex); 644 if (unlikely(state->skb)) { 645 spin_lock_bh(&psock->ingress_lock); 646 skb = state->skb; 647 len = state->len; 648 off = state->off; 649 state->skb = NULL; 650 spin_unlock_bh(&psock->ingress_lock); 651 } 652 if (skb) 653 goto start; 654 655 while ((skb = skb_dequeue(&psock->ingress_skb))) { 656 len = skb->len; 657 off = 0; 658 if (skb_bpf_strparser(skb)) { 659 struct strp_msg *stm = strp_msg(skb); 660 661 off = stm->offset; 662 len = stm->full_len; 663 } 664 start: 665 ingress = skb_bpf_ingress(skb); 666 skb_bpf_redirect_clear(skb); 667 do { 668 ret = -EIO; 669 if (!sock_flag(psock->sk, SOCK_DEAD)) 670 ret = sk_psock_handle_skb(psock, skb, off, 671 len, ingress); 672 if (ret <= 0) { 673 if (ret == -EAGAIN) { 674 sk_psock_skb_state(psock, state, skb, 675 len, off); 676 goto end; 677 } 678 /* Hard errors break pipe and stop xmit. */ 679 sk_psock_report_error(psock, ret ? -ret : EPIPE); 680 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 681 sock_drop(psock->sk, skb); 682 goto end; 683 } 684 off += ret; 685 len -= ret; 686 } while (len); 687 688 if (!ingress) 689 kfree_skb(skb); 690 } 691 end: 692 mutex_unlock(&psock->work_mutex); 693 } 694 695 struct sk_psock *sk_psock_init(struct sock *sk, int node) 696 { 697 struct sk_psock *psock; 698 struct proto *prot; 699 700 write_lock_bh(&sk->sk_callback_lock); 701 702 if (sk->sk_user_data) { 703 psock = ERR_PTR(-EBUSY); 704 goto out; 705 } 706 707 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 708 if (!psock) { 709 psock = ERR_PTR(-ENOMEM); 710 goto out; 711 } 712 713 prot = READ_ONCE(sk->sk_prot); 714 psock->sk = sk; 715 psock->eval = __SK_NONE; 716 psock->sk_proto = prot; 717 psock->saved_unhash = prot->unhash; 718 psock->saved_close = prot->close; 719 psock->saved_write_space = sk->sk_write_space; 720 721 INIT_LIST_HEAD(&psock->link); 722 spin_lock_init(&psock->link_lock); 723 724 INIT_WORK(&psock->work, sk_psock_backlog); 725 mutex_init(&psock->work_mutex); 726 INIT_LIST_HEAD(&psock->ingress_msg); 727 spin_lock_init(&psock->ingress_lock); 728 skb_queue_head_init(&psock->ingress_skb); 729 730 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 731 refcount_set(&psock->refcnt, 1); 732 733 rcu_assign_sk_user_data_nocopy(sk, psock); 734 sock_hold(sk); 735 736 out: 737 write_unlock_bh(&sk->sk_callback_lock); 738 return psock; 739 } 740 EXPORT_SYMBOL_GPL(sk_psock_init); 741 742 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 743 { 744 struct sk_psock_link *link; 745 746 spin_lock_bh(&psock->link_lock); 747 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 748 list); 749 if (link) 750 list_del(&link->list); 751 spin_unlock_bh(&psock->link_lock); 752 return link; 753 } 754 755 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 756 { 757 struct sk_msg *msg, *tmp; 758 759 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 760 list_del(&msg->list); 761 sk_msg_free(psock->sk, msg); 762 kfree(msg); 763 } 764 } 765 766 static void __sk_psock_zap_ingress(struct sk_psock *psock) 767 { 768 struct sk_buff *skb; 769 770 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 771 skb_bpf_redirect_clear(skb); 772 sock_drop(psock->sk, skb); 773 } 774 kfree_skb(psock->work_state.skb); 775 /* We null the skb here to ensure that calls to sk_psock_backlog 776 * do not pick up the free'd skb. 777 */ 778 psock->work_state.skb = NULL; 779 __sk_psock_purge_ingress_msg(psock); 780 } 781 782 static void sk_psock_link_destroy(struct sk_psock *psock) 783 { 784 struct sk_psock_link *link, *tmp; 785 786 list_for_each_entry_safe(link, tmp, &psock->link, list) { 787 list_del(&link->list); 788 sk_psock_free_link(link); 789 } 790 } 791 792 void sk_psock_stop(struct sk_psock *psock, bool wait) 793 { 794 spin_lock_bh(&psock->ingress_lock); 795 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 796 sk_psock_cork_free(psock); 797 __sk_psock_zap_ingress(psock); 798 spin_unlock_bh(&psock->ingress_lock); 799 800 if (wait) 801 cancel_work_sync(&psock->work); 802 } 803 804 static void sk_psock_done_strp(struct sk_psock *psock); 805 806 static void sk_psock_destroy(struct work_struct *work) 807 { 808 struct sk_psock *psock = container_of(to_rcu_work(work), 809 struct sk_psock, rwork); 810 /* No sk_callback_lock since already detached. */ 811 812 sk_psock_done_strp(psock); 813 814 cancel_work_sync(&psock->work); 815 mutex_destroy(&psock->work_mutex); 816 817 psock_progs_drop(&psock->progs); 818 819 sk_psock_link_destroy(psock); 820 sk_psock_cork_free(psock); 821 822 if (psock->sk_redir) 823 sock_put(psock->sk_redir); 824 sock_put(psock->sk); 825 kfree(psock); 826 } 827 828 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 829 { 830 write_lock_bh(&sk->sk_callback_lock); 831 sk_psock_restore_proto(sk, psock); 832 rcu_assign_sk_user_data(sk, NULL); 833 if (psock->progs.stream_parser) 834 sk_psock_stop_strp(sk, psock); 835 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 836 sk_psock_stop_verdict(sk, psock); 837 write_unlock_bh(&sk->sk_callback_lock); 838 839 sk_psock_stop(psock, false); 840 841 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 842 queue_rcu_work(system_wq, &psock->rwork); 843 } 844 EXPORT_SYMBOL_GPL(sk_psock_drop); 845 846 static int sk_psock_map_verd(int verdict, bool redir) 847 { 848 switch (verdict) { 849 case SK_PASS: 850 return redir ? __SK_REDIRECT : __SK_PASS; 851 case SK_DROP: 852 default: 853 break; 854 } 855 856 return __SK_DROP; 857 } 858 859 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 860 struct sk_msg *msg) 861 { 862 struct bpf_prog *prog; 863 int ret; 864 865 rcu_read_lock(); 866 prog = READ_ONCE(psock->progs.msg_parser); 867 if (unlikely(!prog)) { 868 ret = __SK_PASS; 869 goto out; 870 } 871 872 sk_msg_compute_data_pointers(msg); 873 msg->sk = sk; 874 ret = bpf_prog_run_pin_on_cpu(prog, msg); 875 ret = sk_psock_map_verd(ret, msg->sk_redir); 876 psock->apply_bytes = msg->apply_bytes; 877 if (ret == __SK_REDIRECT) { 878 if (psock->sk_redir) 879 sock_put(psock->sk_redir); 880 psock->sk_redir = msg->sk_redir; 881 if (!psock->sk_redir) { 882 ret = __SK_DROP; 883 goto out; 884 } 885 sock_hold(psock->sk_redir); 886 } 887 out: 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 892 893 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 894 { 895 struct sk_psock *psock_other; 896 struct sock *sk_other; 897 898 sk_other = skb_bpf_redirect_fetch(skb); 899 /* This error is a buggy BPF program, it returned a redirect 900 * return code, but then didn't set a redirect interface. 901 */ 902 if (unlikely(!sk_other)) { 903 skb_bpf_redirect_clear(skb); 904 sock_drop(from->sk, skb); 905 return -EIO; 906 } 907 psock_other = sk_psock(sk_other); 908 /* This error indicates the socket is being torn down or had another 909 * error that caused the pipe to break. We can't send a packet on 910 * a socket that is in this state so we drop the skb. 911 */ 912 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 913 skb_bpf_redirect_clear(skb); 914 sock_drop(from->sk, skb); 915 return -EIO; 916 } 917 spin_lock_bh(&psock_other->ingress_lock); 918 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 919 spin_unlock_bh(&psock_other->ingress_lock); 920 skb_bpf_redirect_clear(skb); 921 sock_drop(from->sk, skb); 922 return -EIO; 923 } 924 925 skb_queue_tail(&psock_other->ingress_skb, skb); 926 schedule_work(&psock_other->work); 927 spin_unlock_bh(&psock_other->ingress_lock); 928 return 0; 929 } 930 931 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 932 struct sk_psock *from, int verdict) 933 { 934 switch (verdict) { 935 case __SK_REDIRECT: 936 sk_psock_skb_redirect(from, skb); 937 break; 938 case __SK_PASS: 939 case __SK_DROP: 940 default: 941 break; 942 } 943 } 944 945 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 946 { 947 struct bpf_prog *prog; 948 int ret = __SK_PASS; 949 950 rcu_read_lock(); 951 prog = READ_ONCE(psock->progs.stream_verdict); 952 if (likely(prog)) { 953 skb->sk = psock->sk; 954 skb_dst_drop(skb); 955 skb_bpf_redirect_clear(skb); 956 ret = bpf_prog_run_pin_on_cpu(prog, skb); 957 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 958 skb->sk = NULL; 959 } 960 sk_psock_tls_verdict_apply(skb, psock, ret); 961 rcu_read_unlock(); 962 return ret; 963 } 964 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 965 966 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 967 int verdict) 968 { 969 struct sock *sk_other; 970 int err = 0; 971 u32 len, off; 972 973 switch (verdict) { 974 case __SK_PASS: 975 err = -EIO; 976 sk_other = psock->sk; 977 if (sock_flag(sk_other, SOCK_DEAD) || 978 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 979 skb_bpf_redirect_clear(skb); 980 goto out_free; 981 } 982 983 skb_bpf_set_ingress(skb); 984 985 /* If the queue is empty then we can submit directly 986 * into the msg queue. If its not empty we have to 987 * queue work otherwise we may get OOO data. Otherwise, 988 * if sk_psock_skb_ingress errors will be handled by 989 * retrying later from workqueue. 990 */ 991 if (skb_queue_empty(&psock->ingress_skb)) { 992 len = skb->len; 993 off = 0; 994 if (skb_bpf_strparser(skb)) { 995 struct strp_msg *stm = strp_msg(skb); 996 997 off = stm->offset; 998 len = stm->full_len; 999 } 1000 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1001 } 1002 if (err < 0) { 1003 spin_lock_bh(&psock->ingress_lock); 1004 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1005 skb_queue_tail(&psock->ingress_skb, skb); 1006 schedule_work(&psock->work); 1007 err = 0; 1008 } 1009 spin_unlock_bh(&psock->ingress_lock); 1010 if (err < 0) { 1011 skb_bpf_redirect_clear(skb); 1012 goto out_free; 1013 } 1014 } 1015 break; 1016 case __SK_REDIRECT: 1017 err = sk_psock_skb_redirect(psock, skb); 1018 break; 1019 case __SK_DROP: 1020 default: 1021 out_free: 1022 sock_drop(psock->sk, skb); 1023 } 1024 1025 return err; 1026 } 1027 1028 static void sk_psock_write_space(struct sock *sk) 1029 { 1030 struct sk_psock *psock; 1031 void (*write_space)(struct sock *sk) = NULL; 1032 1033 rcu_read_lock(); 1034 psock = sk_psock(sk); 1035 if (likely(psock)) { 1036 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1037 schedule_work(&psock->work); 1038 write_space = psock->saved_write_space; 1039 } 1040 rcu_read_unlock(); 1041 if (write_space) 1042 write_space(sk); 1043 } 1044 1045 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1046 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1047 { 1048 struct sk_psock *psock; 1049 struct bpf_prog *prog; 1050 int ret = __SK_DROP; 1051 struct sock *sk; 1052 1053 rcu_read_lock(); 1054 sk = strp->sk; 1055 psock = sk_psock(sk); 1056 if (unlikely(!psock)) { 1057 sock_drop(sk, skb); 1058 goto out; 1059 } 1060 prog = READ_ONCE(psock->progs.stream_verdict); 1061 if (likely(prog)) { 1062 skb->sk = sk; 1063 skb_dst_drop(skb); 1064 skb_bpf_redirect_clear(skb); 1065 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1066 if (ret == SK_PASS) 1067 skb_bpf_set_strparser(skb); 1068 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1069 skb->sk = NULL; 1070 } 1071 sk_psock_verdict_apply(psock, skb, ret); 1072 out: 1073 rcu_read_unlock(); 1074 } 1075 1076 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1077 { 1078 return err; 1079 } 1080 1081 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1082 { 1083 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1084 struct bpf_prog *prog; 1085 int ret = skb->len; 1086 1087 rcu_read_lock(); 1088 prog = READ_ONCE(psock->progs.stream_parser); 1089 if (likely(prog)) { 1090 skb->sk = psock->sk; 1091 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1092 skb->sk = NULL; 1093 } 1094 rcu_read_unlock(); 1095 return ret; 1096 } 1097 1098 /* Called with socket lock held. */ 1099 static void sk_psock_strp_data_ready(struct sock *sk) 1100 { 1101 struct sk_psock *psock; 1102 1103 rcu_read_lock(); 1104 psock = sk_psock(sk); 1105 if (likely(psock)) { 1106 if (tls_sw_has_ctx_rx(sk)) { 1107 psock->saved_data_ready(sk); 1108 } else { 1109 write_lock_bh(&sk->sk_callback_lock); 1110 strp_data_ready(&psock->strp); 1111 write_unlock_bh(&sk->sk_callback_lock); 1112 } 1113 } 1114 rcu_read_unlock(); 1115 } 1116 1117 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1118 { 1119 static const struct strp_callbacks cb = { 1120 .rcv_msg = sk_psock_strp_read, 1121 .read_sock_done = sk_psock_strp_read_done, 1122 .parse_msg = sk_psock_strp_parse, 1123 }; 1124 1125 return strp_init(&psock->strp, sk, &cb); 1126 } 1127 1128 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1129 { 1130 if (psock->saved_data_ready) 1131 return; 1132 1133 psock->saved_data_ready = sk->sk_data_ready; 1134 sk->sk_data_ready = sk_psock_strp_data_ready; 1135 sk->sk_write_space = sk_psock_write_space; 1136 } 1137 1138 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1139 { 1140 psock_set_prog(&psock->progs.stream_parser, NULL); 1141 1142 if (!psock->saved_data_ready) 1143 return; 1144 1145 sk->sk_data_ready = psock->saved_data_ready; 1146 psock->saved_data_ready = NULL; 1147 strp_stop(&psock->strp); 1148 } 1149 1150 static void sk_psock_done_strp(struct sk_psock *psock) 1151 { 1152 /* Parser has been stopped */ 1153 if (psock->progs.stream_parser) 1154 strp_done(&psock->strp); 1155 } 1156 #else 1157 static void sk_psock_done_strp(struct sk_psock *psock) 1158 { 1159 } 1160 #endif /* CONFIG_BPF_STREAM_PARSER */ 1161 1162 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1163 unsigned int offset, size_t orig_len) 1164 { 1165 struct sock *sk = (struct sock *)desc->arg.data; 1166 struct sk_psock *psock; 1167 struct bpf_prog *prog; 1168 int ret = __SK_DROP; 1169 int len = orig_len; 1170 1171 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1172 skb = skb_clone(skb, GFP_ATOMIC); 1173 if (!skb) { 1174 desc->error = -ENOMEM; 1175 return 0; 1176 } 1177 1178 rcu_read_lock(); 1179 psock = sk_psock(sk); 1180 if (unlikely(!psock)) { 1181 len = 0; 1182 sock_drop(sk, skb); 1183 goto out; 1184 } 1185 prog = READ_ONCE(psock->progs.stream_verdict); 1186 if (!prog) 1187 prog = READ_ONCE(psock->progs.skb_verdict); 1188 if (likely(prog)) { 1189 skb->sk = sk; 1190 skb_dst_drop(skb); 1191 skb_bpf_redirect_clear(skb); 1192 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1193 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1194 skb->sk = NULL; 1195 } 1196 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1197 len = 0; 1198 out: 1199 rcu_read_unlock(); 1200 return len; 1201 } 1202 1203 static void sk_psock_verdict_data_ready(struct sock *sk) 1204 { 1205 struct socket *sock = sk->sk_socket; 1206 read_descriptor_t desc; 1207 1208 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1209 return; 1210 1211 desc.arg.data = sk; 1212 desc.error = 0; 1213 desc.count = 1; 1214 1215 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1216 } 1217 1218 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1219 { 1220 if (psock->saved_data_ready) 1221 return; 1222 1223 psock->saved_data_ready = sk->sk_data_ready; 1224 sk->sk_data_ready = sk_psock_verdict_data_ready; 1225 sk->sk_write_space = sk_psock_write_space; 1226 } 1227 1228 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1229 { 1230 psock_set_prog(&psock->progs.stream_verdict, NULL); 1231 psock_set_prog(&psock->progs.skb_verdict, NULL); 1232 1233 if (!psock->saved_data_ready) 1234 return; 1235 1236 sk->sk_data_ready = psock->saved_data_ready; 1237 psock->saved_data_ready = NULL; 1238 } 1239