xref: /linux/net/core/skmsg.c (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14 	if (msg->sg.end > msg->sg.start &&
15 	    elem_first_coalesce < msg->sg.end)
16 		return true;
17 
18 	if (msg->sg.end < msg->sg.start &&
19 	    (elem_first_coalesce > msg->sg.start ||
20 	     elem_first_coalesce < msg->sg.end))
21 		return true;
22 
23 	return false;
24 }
25 
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 		 int elem_first_coalesce)
28 {
29 	struct page_frag *pfrag = sk_page_frag(sk);
30 	int ret = 0;
31 
32 	len -= msg->sg.size;
33 	while (len > 0) {
34 		struct scatterlist *sge;
35 		u32 orig_offset;
36 		int use, i;
37 
38 		if (!sk_page_frag_refill(sk, pfrag))
39 			return -ENOMEM;
40 
41 		orig_offset = pfrag->offset;
42 		use = min_t(int, len, pfrag->size - orig_offset);
43 		if (!sk_wmem_schedule(sk, use))
44 			return -ENOMEM;
45 
46 		i = msg->sg.end;
47 		sk_msg_iter_var_prev(i);
48 		sge = &msg->sg.data[i];
49 
50 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
51 		    sg_page(sge) == pfrag->page &&
52 		    sge->offset + sge->length == orig_offset) {
53 			sge->length += use;
54 		} else {
55 			if (sk_msg_full(msg)) {
56 				ret = -ENOSPC;
57 				break;
58 			}
59 
60 			sge = &msg->sg.data[msg->sg.end];
61 			sg_unmark_end(sge);
62 			sg_set_page(sge, pfrag->page, use, orig_offset);
63 			get_page(pfrag->page);
64 			sk_msg_iter_next(msg, end);
65 		}
66 
67 		sk_mem_charge(sk, use);
68 		msg->sg.size += use;
69 		pfrag->offset += use;
70 		len -= use;
71 	}
72 
73 	return ret;
74 }
75 EXPORT_SYMBOL_GPL(sk_msg_alloc);
76 
77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
78 		 u32 off, u32 len)
79 {
80 	int i = src->sg.start;
81 	struct scatterlist *sge = sk_msg_elem(src, i);
82 	struct scatterlist *sgd = NULL;
83 	u32 sge_len, sge_off;
84 
85 	while (off) {
86 		if (sge->length > off)
87 			break;
88 		off -= sge->length;
89 		sk_msg_iter_var_next(i);
90 		if (i == src->sg.end && off)
91 			return -ENOSPC;
92 		sge = sk_msg_elem(src, i);
93 	}
94 
95 	while (len) {
96 		sge_len = sge->length - off;
97 		if (sge_len > len)
98 			sge_len = len;
99 
100 		if (dst->sg.end)
101 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
102 
103 		if (sgd &&
104 		    (sg_page(sge) == sg_page(sgd)) &&
105 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
106 			sgd->length += sge_len;
107 			dst->sg.size += sge_len;
108 		} else if (!sk_msg_full(dst)) {
109 			sge_off = sge->offset + off;
110 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
111 		} else {
112 			return -ENOSPC;
113 		}
114 
115 		off = 0;
116 		len -= sge_len;
117 		sk_mem_charge(sk, sge_len);
118 		sk_msg_iter_var_next(i);
119 		if (i == src->sg.end && len)
120 			return -ENOSPC;
121 		sge = sk_msg_elem(src, i);
122 	}
123 
124 	return 0;
125 }
126 EXPORT_SYMBOL_GPL(sk_msg_clone);
127 
128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
129 {
130 	int i = msg->sg.start;
131 
132 	do {
133 		struct scatterlist *sge = sk_msg_elem(msg, i);
134 
135 		if (bytes < sge->length) {
136 			sge->length -= bytes;
137 			sge->offset += bytes;
138 			sk_mem_uncharge(sk, bytes);
139 			break;
140 		}
141 
142 		sk_mem_uncharge(sk, sge->length);
143 		bytes -= sge->length;
144 		sge->length = 0;
145 		sge->offset = 0;
146 		sk_msg_iter_var_next(i);
147 	} while (bytes && i != msg->sg.end);
148 	msg->sg.start = i;
149 }
150 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
151 
152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
153 {
154 	int i = msg->sg.start;
155 
156 	do {
157 		struct scatterlist *sge = &msg->sg.data[i];
158 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
159 
160 		sk_mem_uncharge(sk, uncharge);
161 		bytes -= uncharge;
162 		sk_msg_iter_var_next(i);
163 	} while (i != msg->sg.end);
164 }
165 EXPORT_SYMBOL_GPL(sk_msg_return);
166 
167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
168 			    bool charge)
169 {
170 	struct scatterlist *sge = sk_msg_elem(msg, i);
171 	u32 len = sge->length;
172 
173 	/* When the skb owns the memory we free it from consume_skb path. */
174 	if (!msg->skb) {
175 		if (charge)
176 			sk_mem_uncharge(sk, len);
177 		put_page(sg_page(sge));
178 	}
179 	memset(sge, 0, sizeof(*sge));
180 	return len;
181 }
182 
183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
184 			 bool charge)
185 {
186 	struct scatterlist *sge = sk_msg_elem(msg, i);
187 	int freed = 0;
188 
189 	while (msg->sg.size) {
190 		msg->sg.size -= sge->length;
191 		freed += sk_msg_free_elem(sk, msg, i, charge);
192 		sk_msg_iter_var_next(i);
193 		sk_msg_check_to_free(msg, i, msg->sg.size);
194 		sge = sk_msg_elem(msg, i);
195 	}
196 	consume_skb(msg->skb);
197 	sk_msg_init(msg);
198 	return freed;
199 }
200 
201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
202 {
203 	return __sk_msg_free(sk, msg, msg->sg.start, false);
204 }
205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
206 
207 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
208 {
209 	return __sk_msg_free(sk, msg, msg->sg.start, true);
210 }
211 EXPORT_SYMBOL_GPL(sk_msg_free);
212 
213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
214 				  u32 bytes, bool charge)
215 {
216 	struct scatterlist *sge;
217 	u32 i = msg->sg.start;
218 
219 	while (bytes) {
220 		sge = sk_msg_elem(msg, i);
221 		if (!sge->length)
222 			break;
223 		if (bytes < sge->length) {
224 			if (charge)
225 				sk_mem_uncharge(sk, bytes);
226 			sge->length -= bytes;
227 			sge->offset += bytes;
228 			msg->sg.size -= bytes;
229 			break;
230 		}
231 
232 		msg->sg.size -= sge->length;
233 		bytes -= sge->length;
234 		sk_msg_free_elem(sk, msg, i, charge);
235 		sk_msg_iter_var_next(i);
236 		sk_msg_check_to_free(msg, i, bytes);
237 	}
238 	msg->sg.start = i;
239 }
240 
241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
242 {
243 	__sk_msg_free_partial(sk, msg, bytes, true);
244 }
245 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
246 
247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
248 				  u32 bytes)
249 {
250 	__sk_msg_free_partial(sk, msg, bytes, false);
251 }
252 
253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
254 {
255 	int trim = msg->sg.size - len;
256 	u32 i = msg->sg.end;
257 
258 	if (trim <= 0) {
259 		WARN_ON(trim < 0);
260 		return;
261 	}
262 
263 	sk_msg_iter_var_prev(i);
264 	msg->sg.size = len;
265 	while (msg->sg.data[i].length &&
266 	       trim >= msg->sg.data[i].length) {
267 		trim -= msg->sg.data[i].length;
268 		sk_msg_free_elem(sk, msg, i, true);
269 		sk_msg_iter_var_prev(i);
270 		if (!trim)
271 			goto out;
272 	}
273 
274 	msg->sg.data[i].length -= trim;
275 	sk_mem_uncharge(sk, trim);
276 	/* Adjust copybreak if it falls into the trimmed part of last buf */
277 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
278 		msg->sg.copybreak = msg->sg.data[i].length;
279 out:
280 	sk_msg_iter_var_next(i);
281 	msg->sg.end = i;
282 
283 	/* If we trim data a full sg elem before curr pointer update
284 	 * copybreak and current so that any future copy operations
285 	 * start at new copy location.
286 	 * However trimed data that has not yet been used in a copy op
287 	 * does not require an update.
288 	 */
289 	if (!msg->sg.size) {
290 		msg->sg.curr = msg->sg.start;
291 		msg->sg.copybreak = 0;
292 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
293 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
294 		sk_msg_iter_var_prev(i);
295 		msg->sg.curr = i;
296 		msg->sg.copybreak = msg->sg.data[i].length;
297 	}
298 }
299 EXPORT_SYMBOL_GPL(sk_msg_trim);
300 
301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
302 			      struct sk_msg *msg, u32 bytes)
303 {
304 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
305 	const int to_max_pages = MAX_MSG_FRAGS;
306 	struct page *pages[MAX_MSG_FRAGS];
307 	ssize_t orig, copied, use, offset;
308 
309 	orig = msg->sg.size;
310 	while (bytes > 0) {
311 		i = 0;
312 		maxpages = to_max_pages - num_elems;
313 		if (maxpages == 0) {
314 			ret = -EFAULT;
315 			goto out;
316 		}
317 
318 		copied = iov_iter_get_pages(from, pages, bytes, maxpages,
319 					    &offset);
320 		if (copied <= 0) {
321 			ret = -EFAULT;
322 			goto out;
323 		}
324 
325 		iov_iter_advance(from, copied);
326 		bytes -= copied;
327 		msg->sg.size += copied;
328 
329 		while (copied) {
330 			use = min_t(int, copied, PAGE_SIZE - offset);
331 			sg_set_page(&msg->sg.data[msg->sg.end],
332 				    pages[i], use, offset);
333 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
334 			sk_mem_charge(sk, use);
335 
336 			offset = 0;
337 			copied -= use;
338 			sk_msg_iter_next(msg, end);
339 			num_elems++;
340 			i++;
341 		}
342 		/* When zerocopy is mixed with sk_msg_*copy* operations we
343 		 * may have a copybreak set in this case clear and prefer
344 		 * zerocopy remainder when possible.
345 		 */
346 		msg->sg.copybreak = 0;
347 		msg->sg.curr = msg->sg.end;
348 	}
349 out:
350 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
351 	 * also needs to be cleared.
352 	 */
353 	if (ret)
354 		iov_iter_revert(from, msg->sg.size - orig);
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
358 
359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
360 			     struct sk_msg *msg, u32 bytes)
361 {
362 	int ret = -ENOSPC, i = msg->sg.curr;
363 	struct scatterlist *sge;
364 	u32 copy, buf_size;
365 	void *to;
366 
367 	do {
368 		sge = sk_msg_elem(msg, i);
369 		/* This is possible if a trim operation shrunk the buffer */
370 		if (msg->sg.copybreak >= sge->length) {
371 			msg->sg.copybreak = 0;
372 			sk_msg_iter_var_next(i);
373 			if (i == msg->sg.end)
374 				break;
375 			sge = sk_msg_elem(msg, i);
376 		}
377 
378 		buf_size = sge->length - msg->sg.copybreak;
379 		copy = (buf_size > bytes) ? bytes : buf_size;
380 		to = sg_virt(sge) + msg->sg.copybreak;
381 		msg->sg.copybreak += copy;
382 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
383 			ret = copy_from_iter_nocache(to, copy, from);
384 		else
385 			ret = copy_from_iter(to, copy, from);
386 		if (ret != copy) {
387 			ret = -EFAULT;
388 			goto out;
389 		}
390 		bytes -= copy;
391 		if (!bytes)
392 			break;
393 		msg->sg.copybreak = 0;
394 		sk_msg_iter_var_next(i);
395 	} while (i != msg->sg.end);
396 out:
397 	msg->sg.curr = i;
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
401 
402 int sk_msg_wait_data(struct sock *sk, struct sk_psock *psock, long timeo)
403 {
404 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
405 	int ret = 0;
406 
407 	if (sk->sk_shutdown & RCV_SHUTDOWN)
408 		return 1;
409 
410 	if (!timeo)
411 		return ret;
412 
413 	add_wait_queue(sk_sleep(sk), &wait);
414 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
415 	ret = sk_wait_event(sk, &timeo,
416 			    !list_empty(&psock->ingress_msg) ||
417 			    !skb_queue_empty(&sk->sk_receive_queue), &wait);
418 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
419 	remove_wait_queue(sk_sleep(sk), &wait);
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(sk_msg_wait_data);
423 
424 /* Receive sk_msg from psock->ingress_msg to @msg. */
425 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
426 		   int len, int flags)
427 {
428 	struct iov_iter *iter = &msg->msg_iter;
429 	int peek = flags & MSG_PEEK;
430 	struct sk_msg *msg_rx;
431 	int i, copied = 0;
432 
433 	msg_rx = sk_psock_peek_msg(psock);
434 	while (copied != len) {
435 		struct scatterlist *sge;
436 
437 		if (unlikely(!msg_rx))
438 			break;
439 
440 		i = msg_rx->sg.start;
441 		do {
442 			struct page *page;
443 			int copy;
444 
445 			sge = sk_msg_elem(msg_rx, i);
446 			copy = sge->length;
447 			page = sg_page(sge);
448 			if (copied + copy > len)
449 				copy = len - copied;
450 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
451 			if (!copy)
452 				return copied ? copied : -EFAULT;
453 
454 			copied += copy;
455 			if (likely(!peek)) {
456 				sge->offset += copy;
457 				sge->length -= copy;
458 				if (!msg_rx->skb)
459 					sk_mem_uncharge(sk, copy);
460 				msg_rx->sg.size -= copy;
461 
462 				if (!sge->length) {
463 					sk_msg_iter_var_next(i);
464 					if (!msg_rx->skb)
465 						put_page(page);
466 				}
467 			} else {
468 				/* Lets not optimize peek case if copy_page_to_iter
469 				 * didn't copy the entire length lets just break.
470 				 */
471 				if (copy != sge->length)
472 					return copied;
473 				sk_msg_iter_var_next(i);
474 			}
475 
476 			if (copied == len)
477 				break;
478 		} while (i != msg_rx->sg.end);
479 
480 		if (unlikely(peek)) {
481 			msg_rx = sk_psock_next_msg(psock, msg_rx);
482 			if (!msg_rx)
483 				break;
484 			continue;
485 		}
486 
487 		msg_rx->sg.start = i;
488 		if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) {
489 			msg_rx = sk_psock_dequeue_msg(psock);
490 			kfree_sk_msg(msg_rx);
491 		}
492 		msg_rx = sk_psock_peek_msg(psock);
493 	}
494 
495 	return copied;
496 }
497 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
498 
499 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
500 						  struct sk_buff *skb)
501 {
502 	struct sk_msg *msg;
503 
504 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
505 		return NULL;
506 
507 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
508 		return NULL;
509 
510 	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
511 	if (unlikely(!msg))
512 		return NULL;
513 
514 	sk_msg_init(msg);
515 	return msg;
516 }
517 
518 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
519 					struct sk_psock *psock,
520 					struct sock *sk,
521 					struct sk_msg *msg)
522 {
523 	int num_sge, copied;
524 
525 	/* skb linearize may fail with ENOMEM, but lets simply try again
526 	 * later if this happens. Under memory pressure we don't want to
527 	 * drop the skb. We need to linearize the skb so that the mapping
528 	 * in skb_to_sgvec can not error.
529 	 */
530 	if (skb_linearize(skb))
531 		return -EAGAIN;
532 	num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
533 	if (unlikely(num_sge < 0)) {
534 		kfree(msg);
535 		return num_sge;
536 	}
537 
538 	copied = skb->len;
539 	msg->sg.start = 0;
540 	msg->sg.size = copied;
541 	msg->sg.end = num_sge;
542 	msg->skb = skb;
543 
544 	sk_psock_queue_msg(psock, msg);
545 	sk_psock_data_ready(sk, psock);
546 	return copied;
547 }
548 
549 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
550 
551 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
552 {
553 	struct sock *sk = psock->sk;
554 	struct sk_msg *msg;
555 
556 	/* If we are receiving on the same sock skb->sk is already assigned,
557 	 * skip memory accounting and owner transition seeing it already set
558 	 * correctly.
559 	 */
560 	if (unlikely(skb->sk == sk))
561 		return sk_psock_skb_ingress_self(psock, skb);
562 	msg = sk_psock_create_ingress_msg(sk, skb);
563 	if (!msg)
564 		return -EAGAIN;
565 
566 	/* This will transition ownership of the data from the socket where
567 	 * the BPF program was run initiating the redirect to the socket
568 	 * we will eventually receive this data on. The data will be released
569 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
570 	 * into user buffers.
571 	 */
572 	skb_set_owner_r(skb, sk);
573 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
574 }
575 
576 /* Puts an skb on the ingress queue of the socket already assigned to the
577  * skb. In this case we do not need to check memory limits or skb_set_owner_r
578  * because the skb is already accounted for here.
579  */
580 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
581 {
582 	struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
583 	struct sock *sk = psock->sk;
584 
585 	if (unlikely(!msg))
586 		return -EAGAIN;
587 	sk_msg_init(msg);
588 	skb_set_owner_r(skb, sk);
589 	return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
590 }
591 
592 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
593 			       u32 off, u32 len, bool ingress)
594 {
595 	if (!ingress) {
596 		if (!sock_writeable(psock->sk))
597 			return -EAGAIN;
598 		return skb_send_sock(psock->sk, skb, off, len);
599 	}
600 	return sk_psock_skb_ingress(psock, skb);
601 }
602 
603 static void sk_psock_backlog(struct work_struct *work)
604 {
605 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
606 	struct sk_psock_work_state *state = &psock->work_state;
607 	struct sk_buff *skb;
608 	bool ingress;
609 	u32 len, off;
610 	int ret;
611 
612 	mutex_lock(&psock->work_mutex);
613 	if (state->skb) {
614 		skb = state->skb;
615 		len = state->len;
616 		off = state->off;
617 		state->skb = NULL;
618 		goto start;
619 	}
620 
621 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
622 		len = skb->len;
623 		off = 0;
624 start:
625 		ingress = skb_bpf_ingress(skb);
626 		skb_bpf_redirect_clear(skb);
627 		do {
628 			ret = -EIO;
629 			if (!sock_flag(psock->sk, SOCK_DEAD))
630 				ret = sk_psock_handle_skb(psock, skb, off,
631 							  len, ingress);
632 			if (ret <= 0) {
633 				if (ret == -EAGAIN) {
634 					state->skb = skb;
635 					state->len = len;
636 					state->off = off;
637 					goto end;
638 				}
639 				/* Hard errors break pipe and stop xmit. */
640 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
641 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
642 				kfree_skb(skb);
643 				goto end;
644 			}
645 			off += ret;
646 			len -= ret;
647 		} while (len);
648 
649 		if (!ingress)
650 			kfree_skb(skb);
651 	}
652 end:
653 	mutex_unlock(&psock->work_mutex);
654 }
655 
656 struct sk_psock *sk_psock_init(struct sock *sk, int node)
657 {
658 	struct sk_psock *psock;
659 	struct proto *prot;
660 
661 	write_lock_bh(&sk->sk_callback_lock);
662 
663 	if (sk->sk_user_data) {
664 		psock = ERR_PTR(-EBUSY);
665 		goto out;
666 	}
667 
668 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
669 	if (!psock) {
670 		psock = ERR_PTR(-ENOMEM);
671 		goto out;
672 	}
673 
674 	prot = READ_ONCE(sk->sk_prot);
675 	psock->sk = sk;
676 	psock->eval = __SK_NONE;
677 	psock->sk_proto = prot;
678 	psock->saved_unhash = prot->unhash;
679 	psock->saved_close = prot->close;
680 	psock->saved_write_space = sk->sk_write_space;
681 
682 	INIT_LIST_HEAD(&psock->link);
683 	spin_lock_init(&psock->link_lock);
684 
685 	INIT_WORK(&psock->work, sk_psock_backlog);
686 	mutex_init(&psock->work_mutex);
687 	INIT_LIST_HEAD(&psock->ingress_msg);
688 	spin_lock_init(&psock->ingress_lock);
689 	skb_queue_head_init(&psock->ingress_skb);
690 
691 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
692 	refcount_set(&psock->refcnt, 1);
693 
694 	rcu_assign_sk_user_data_nocopy(sk, psock);
695 	sock_hold(sk);
696 
697 out:
698 	write_unlock_bh(&sk->sk_callback_lock);
699 	return psock;
700 }
701 EXPORT_SYMBOL_GPL(sk_psock_init);
702 
703 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
704 {
705 	struct sk_psock_link *link;
706 
707 	spin_lock_bh(&psock->link_lock);
708 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
709 					list);
710 	if (link)
711 		list_del(&link->list);
712 	spin_unlock_bh(&psock->link_lock);
713 	return link;
714 }
715 
716 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
717 {
718 	struct sk_msg *msg, *tmp;
719 
720 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
721 		list_del(&msg->list);
722 		sk_msg_free(psock->sk, msg);
723 		kfree(msg);
724 	}
725 }
726 
727 static void __sk_psock_zap_ingress(struct sk_psock *psock)
728 {
729 	struct sk_buff *skb;
730 
731 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
732 		skb_bpf_redirect_clear(skb);
733 		kfree_skb(skb);
734 	}
735 	__sk_psock_purge_ingress_msg(psock);
736 }
737 
738 static void sk_psock_link_destroy(struct sk_psock *psock)
739 {
740 	struct sk_psock_link *link, *tmp;
741 
742 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
743 		list_del(&link->list);
744 		sk_psock_free_link(link);
745 	}
746 }
747 
748 void sk_psock_stop(struct sk_psock *psock, bool wait)
749 {
750 	spin_lock_bh(&psock->ingress_lock);
751 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
752 	sk_psock_cork_free(psock);
753 	__sk_psock_zap_ingress(psock);
754 	spin_unlock_bh(&psock->ingress_lock);
755 
756 	if (wait)
757 		cancel_work_sync(&psock->work);
758 }
759 
760 static void sk_psock_done_strp(struct sk_psock *psock);
761 
762 static void sk_psock_destroy(struct work_struct *work)
763 {
764 	struct sk_psock *psock = container_of(to_rcu_work(work),
765 					      struct sk_psock, rwork);
766 	/* No sk_callback_lock since already detached. */
767 
768 	sk_psock_done_strp(psock);
769 
770 	cancel_work_sync(&psock->work);
771 	mutex_destroy(&psock->work_mutex);
772 
773 	psock_progs_drop(&psock->progs);
774 
775 	sk_psock_link_destroy(psock);
776 	sk_psock_cork_free(psock);
777 
778 	if (psock->sk_redir)
779 		sock_put(psock->sk_redir);
780 	sock_put(psock->sk);
781 	kfree(psock);
782 }
783 
784 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
785 {
786 	sk_psock_stop(psock, false);
787 
788 	write_lock_bh(&sk->sk_callback_lock);
789 	sk_psock_restore_proto(sk, psock);
790 	rcu_assign_sk_user_data(sk, NULL);
791 	if (psock->progs.stream_parser)
792 		sk_psock_stop_strp(sk, psock);
793 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
794 		sk_psock_stop_verdict(sk, psock);
795 	write_unlock_bh(&sk->sk_callback_lock);
796 
797 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
798 	queue_rcu_work(system_wq, &psock->rwork);
799 }
800 EXPORT_SYMBOL_GPL(sk_psock_drop);
801 
802 static int sk_psock_map_verd(int verdict, bool redir)
803 {
804 	switch (verdict) {
805 	case SK_PASS:
806 		return redir ? __SK_REDIRECT : __SK_PASS;
807 	case SK_DROP:
808 	default:
809 		break;
810 	}
811 
812 	return __SK_DROP;
813 }
814 
815 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
816 			 struct sk_msg *msg)
817 {
818 	struct bpf_prog *prog;
819 	int ret;
820 
821 	rcu_read_lock();
822 	prog = READ_ONCE(psock->progs.msg_parser);
823 	if (unlikely(!prog)) {
824 		ret = __SK_PASS;
825 		goto out;
826 	}
827 
828 	sk_msg_compute_data_pointers(msg);
829 	msg->sk = sk;
830 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
831 	ret = sk_psock_map_verd(ret, msg->sk_redir);
832 	psock->apply_bytes = msg->apply_bytes;
833 	if (ret == __SK_REDIRECT) {
834 		if (psock->sk_redir)
835 			sock_put(psock->sk_redir);
836 		psock->sk_redir = msg->sk_redir;
837 		if (!psock->sk_redir) {
838 			ret = __SK_DROP;
839 			goto out;
840 		}
841 		sock_hold(psock->sk_redir);
842 	}
843 out:
844 	rcu_read_unlock();
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
848 
849 static void sk_psock_skb_redirect(struct sk_buff *skb)
850 {
851 	struct sk_psock *psock_other;
852 	struct sock *sk_other;
853 
854 	sk_other = skb_bpf_redirect_fetch(skb);
855 	/* This error is a buggy BPF program, it returned a redirect
856 	 * return code, but then didn't set a redirect interface.
857 	 */
858 	if (unlikely(!sk_other)) {
859 		kfree_skb(skb);
860 		return;
861 	}
862 	psock_other = sk_psock(sk_other);
863 	/* This error indicates the socket is being torn down or had another
864 	 * error that caused the pipe to break. We can't send a packet on
865 	 * a socket that is in this state so we drop the skb.
866 	 */
867 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
868 		kfree_skb(skb);
869 		return;
870 	}
871 	spin_lock_bh(&psock_other->ingress_lock);
872 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
873 		spin_unlock_bh(&psock_other->ingress_lock);
874 		kfree_skb(skb);
875 		return;
876 	}
877 
878 	skb_queue_tail(&psock_other->ingress_skb, skb);
879 	schedule_work(&psock_other->work);
880 	spin_unlock_bh(&psock_other->ingress_lock);
881 }
882 
883 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict)
884 {
885 	switch (verdict) {
886 	case __SK_REDIRECT:
887 		sk_psock_skb_redirect(skb);
888 		break;
889 	case __SK_PASS:
890 	case __SK_DROP:
891 	default:
892 		break;
893 	}
894 }
895 
896 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
897 {
898 	struct bpf_prog *prog;
899 	int ret = __SK_PASS;
900 
901 	rcu_read_lock();
902 	prog = READ_ONCE(psock->progs.stream_verdict);
903 	if (likely(prog)) {
904 		skb->sk = psock->sk;
905 		skb_dst_drop(skb);
906 		skb_bpf_redirect_clear(skb);
907 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
908 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
909 		skb->sk = NULL;
910 	}
911 	sk_psock_tls_verdict_apply(skb, psock->sk, ret);
912 	rcu_read_unlock();
913 	return ret;
914 }
915 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
916 
917 static void sk_psock_verdict_apply(struct sk_psock *psock,
918 				   struct sk_buff *skb, int verdict)
919 {
920 	struct sock *sk_other;
921 	int err = -EIO;
922 
923 	switch (verdict) {
924 	case __SK_PASS:
925 		sk_other = psock->sk;
926 		if (sock_flag(sk_other, SOCK_DEAD) ||
927 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
928 			goto out_free;
929 		}
930 
931 		skb_bpf_set_ingress(skb);
932 
933 		/* If the queue is empty then we can submit directly
934 		 * into the msg queue. If its not empty we have to
935 		 * queue work otherwise we may get OOO data. Otherwise,
936 		 * if sk_psock_skb_ingress errors will be handled by
937 		 * retrying later from workqueue.
938 		 */
939 		if (skb_queue_empty(&psock->ingress_skb)) {
940 			err = sk_psock_skb_ingress_self(psock, skb);
941 		}
942 		if (err < 0) {
943 			spin_lock_bh(&psock->ingress_lock);
944 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
945 				skb_queue_tail(&psock->ingress_skb, skb);
946 				schedule_work(&psock->work);
947 			}
948 			spin_unlock_bh(&psock->ingress_lock);
949 		}
950 		break;
951 	case __SK_REDIRECT:
952 		sk_psock_skb_redirect(skb);
953 		break;
954 	case __SK_DROP:
955 	default:
956 out_free:
957 		kfree_skb(skb);
958 	}
959 }
960 
961 static void sk_psock_write_space(struct sock *sk)
962 {
963 	struct sk_psock *psock;
964 	void (*write_space)(struct sock *sk) = NULL;
965 
966 	rcu_read_lock();
967 	psock = sk_psock(sk);
968 	if (likely(psock)) {
969 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
970 			schedule_work(&psock->work);
971 		write_space = psock->saved_write_space;
972 	}
973 	rcu_read_unlock();
974 	if (write_space)
975 		write_space(sk);
976 }
977 
978 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
979 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
980 {
981 	struct sk_psock *psock;
982 	struct bpf_prog *prog;
983 	int ret = __SK_DROP;
984 	struct sock *sk;
985 
986 	rcu_read_lock();
987 	sk = strp->sk;
988 	psock = sk_psock(sk);
989 	if (unlikely(!psock)) {
990 		kfree_skb(skb);
991 		goto out;
992 	}
993 	prog = READ_ONCE(psock->progs.stream_verdict);
994 	if (likely(prog)) {
995 		skb->sk = sk;
996 		skb_dst_drop(skb);
997 		skb_bpf_redirect_clear(skb);
998 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
999 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1000 		skb->sk = NULL;
1001 	}
1002 	sk_psock_verdict_apply(psock, skb, ret);
1003 out:
1004 	rcu_read_unlock();
1005 }
1006 
1007 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1008 {
1009 	return err;
1010 }
1011 
1012 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1013 {
1014 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1015 	struct bpf_prog *prog;
1016 	int ret = skb->len;
1017 
1018 	rcu_read_lock();
1019 	prog = READ_ONCE(psock->progs.stream_parser);
1020 	if (likely(prog)) {
1021 		skb->sk = psock->sk;
1022 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1023 		skb->sk = NULL;
1024 	}
1025 	rcu_read_unlock();
1026 	return ret;
1027 }
1028 
1029 /* Called with socket lock held. */
1030 static void sk_psock_strp_data_ready(struct sock *sk)
1031 {
1032 	struct sk_psock *psock;
1033 
1034 	rcu_read_lock();
1035 	psock = sk_psock(sk);
1036 	if (likely(psock)) {
1037 		if (tls_sw_has_ctx_rx(sk)) {
1038 			psock->saved_data_ready(sk);
1039 		} else {
1040 			write_lock_bh(&sk->sk_callback_lock);
1041 			strp_data_ready(&psock->strp);
1042 			write_unlock_bh(&sk->sk_callback_lock);
1043 		}
1044 	}
1045 	rcu_read_unlock();
1046 }
1047 
1048 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1049 {
1050 	static const struct strp_callbacks cb = {
1051 		.rcv_msg	= sk_psock_strp_read,
1052 		.read_sock_done	= sk_psock_strp_read_done,
1053 		.parse_msg	= sk_psock_strp_parse,
1054 	};
1055 
1056 	return strp_init(&psock->strp, sk, &cb);
1057 }
1058 
1059 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1060 {
1061 	if (psock->saved_data_ready)
1062 		return;
1063 
1064 	psock->saved_data_ready = sk->sk_data_ready;
1065 	sk->sk_data_ready = sk_psock_strp_data_ready;
1066 	sk->sk_write_space = sk_psock_write_space;
1067 }
1068 
1069 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1070 {
1071 	if (!psock->saved_data_ready)
1072 		return;
1073 
1074 	sk->sk_data_ready = psock->saved_data_ready;
1075 	psock->saved_data_ready = NULL;
1076 	strp_stop(&psock->strp);
1077 }
1078 
1079 static void sk_psock_done_strp(struct sk_psock *psock)
1080 {
1081 	/* Parser has been stopped */
1082 	if (psock->progs.stream_parser)
1083 		strp_done(&psock->strp);
1084 }
1085 #else
1086 static void sk_psock_done_strp(struct sk_psock *psock)
1087 {
1088 }
1089 #endif /* CONFIG_BPF_STREAM_PARSER */
1090 
1091 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
1092 				 unsigned int offset, size_t orig_len)
1093 {
1094 	struct sock *sk = (struct sock *)desc->arg.data;
1095 	struct sk_psock *psock;
1096 	struct bpf_prog *prog;
1097 	int ret = __SK_DROP;
1098 	int len = skb->len;
1099 
1100 	/* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
1101 	skb = skb_clone(skb, GFP_ATOMIC);
1102 	if (!skb) {
1103 		desc->error = -ENOMEM;
1104 		return 0;
1105 	}
1106 
1107 	rcu_read_lock();
1108 	psock = sk_psock(sk);
1109 	if (unlikely(!psock)) {
1110 		len = 0;
1111 		kfree_skb(skb);
1112 		goto out;
1113 	}
1114 	prog = READ_ONCE(psock->progs.stream_verdict);
1115 	if (!prog)
1116 		prog = READ_ONCE(psock->progs.skb_verdict);
1117 	if (likely(prog)) {
1118 		skb->sk = sk;
1119 		skb_dst_drop(skb);
1120 		skb_bpf_redirect_clear(skb);
1121 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1122 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1123 		skb->sk = NULL;
1124 	}
1125 	sk_psock_verdict_apply(psock, skb, ret);
1126 out:
1127 	rcu_read_unlock();
1128 	return len;
1129 }
1130 
1131 static void sk_psock_verdict_data_ready(struct sock *sk)
1132 {
1133 	struct socket *sock = sk->sk_socket;
1134 	read_descriptor_t desc;
1135 
1136 	if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1137 		return;
1138 
1139 	desc.arg.data = sk;
1140 	desc.error = 0;
1141 	desc.count = 1;
1142 
1143 	sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1144 }
1145 
1146 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1147 {
1148 	if (psock->saved_data_ready)
1149 		return;
1150 
1151 	psock->saved_data_ready = sk->sk_data_ready;
1152 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1153 	sk->sk_write_space = sk_psock_write_space;
1154 }
1155 
1156 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1157 {
1158 	if (!psock->saved_data_ready)
1159 		return;
1160 
1161 	sk->sk_data_ready = psock->saved_data_ready;
1162 	psock->saved_data_ready = NULL;
1163 }
1164