1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 #include <trace/events/sock.h> 12 13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 14 { 15 if (msg->sg.end > msg->sg.start && 16 elem_first_coalesce < msg->sg.end) 17 return true; 18 19 if (msg->sg.end < msg->sg.start && 20 (elem_first_coalesce > msg->sg.start || 21 elem_first_coalesce < msg->sg.end)) 22 return true; 23 24 return false; 25 } 26 27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 28 int elem_first_coalesce) 29 { 30 struct page_frag *pfrag = sk_page_frag(sk); 31 u32 osize = msg->sg.size; 32 int ret = 0; 33 34 len -= msg->sg.size; 35 while (len > 0) { 36 struct scatterlist *sge; 37 u32 orig_offset; 38 int use, i; 39 40 if (!sk_page_frag_refill(sk, pfrag)) { 41 ret = -ENOMEM; 42 goto msg_trim; 43 } 44 45 orig_offset = pfrag->offset; 46 use = min_t(int, len, pfrag->size - orig_offset); 47 if (!sk_wmem_schedule(sk, use)) { 48 ret = -ENOMEM; 49 goto msg_trim; 50 } 51 52 i = msg->sg.end; 53 sk_msg_iter_var_prev(i); 54 sge = &msg->sg.data[i]; 55 56 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 57 sg_page(sge) == pfrag->page && 58 sge->offset + sge->length == orig_offset) { 59 sge->length += use; 60 } else { 61 if (sk_msg_full(msg)) { 62 ret = -ENOSPC; 63 break; 64 } 65 66 sge = &msg->sg.data[msg->sg.end]; 67 sg_unmark_end(sge); 68 sg_set_page(sge, pfrag->page, use, orig_offset); 69 get_page(pfrag->page); 70 sk_msg_iter_next(msg, end); 71 } 72 73 sk_mem_charge(sk, use); 74 msg->sg.size += use; 75 pfrag->offset += use; 76 len -= use; 77 } 78 79 return ret; 80 81 msg_trim: 82 sk_msg_trim(sk, msg, osize); 83 return ret; 84 } 85 EXPORT_SYMBOL_GPL(sk_msg_alloc); 86 87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 88 u32 off, u32 len) 89 { 90 int i = src->sg.start; 91 struct scatterlist *sge = sk_msg_elem(src, i); 92 struct scatterlist *sgd = NULL; 93 u32 sge_len, sge_off; 94 95 while (off) { 96 if (sge->length > off) 97 break; 98 off -= sge->length; 99 sk_msg_iter_var_next(i); 100 if (i == src->sg.end && off) 101 return -ENOSPC; 102 sge = sk_msg_elem(src, i); 103 } 104 105 while (len) { 106 sge_len = sge->length - off; 107 if (sge_len > len) 108 sge_len = len; 109 110 if (dst->sg.end) 111 sgd = sk_msg_elem(dst, dst->sg.end - 1); 112 113 if (sgd && 114 (sg_page(sge) == sg_page(sgd)) && 115 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 116 sgd->length += sge_len; 117 dst->sg.size += sge_len; 118 } else if (!sk_msg_full(dst)) { 119 sge_off = sge->offset + off; 120 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 121 } else { 122 return -ENOSPC; 123 } 124 125 off = 0; 126 len -= sge_len; 127 sk_mem_charge(sk, sge_len); 128 sk_msg_iter_var_next(i); 129 if (i == src->sg.end && len) 130 return -ENOSPC; 131 sge = sk_msg_elem(src, i); 132 } 133 134 return 0; 135 } 136 EXPORT_SYMBOL_GPL(sk_msg_clone); 137 138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 139 { 140 int i = msg->sg.start; 141 142 do { 143 struct scatterlist *sge = sk_msg_elem(msg, i); 144 145 if (bytes < sge->length) { 146 sge->length -= bytes; 147 sge->offset += bytes; 148 sk_mem_uncharge(sk, bytes); 149 break; 150 } 151 152 sk_mem_uncharge(sk, sge->length); 153 bytes -= sge->length; 154 sge->length = 0; 155 sge->offset = 0; 156 sk_msg_iter_var_next(i); 157 } while (bytes && i != msg->sg.end); 158 msg->sg.start = i; 159 } 160 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 161 162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 163 { 164 int i = msg->sg.start; 165 166 do { 167 struct scatterlist *sge = &msg->sg.data[i]; 168 int uncharge = (bytes < sge->length) ? bytes : sge->length; 169 170 sk_mem_uncharge(sk, uncharge); 171 bytes -= uncharge; 172 sk_msg_iter_var_next(i); 173 } while (i != msg->sg.end); 174 } 175 EXPORT_SYMBOL_GPL(sk_msg_return); 176 177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 178 bool charge) 179 { 180 struct scatterlist *sge = sk_msg_elem(msg, i); 181 u32 len = sge->length; 182 183 /* When the skb owns the memory we free it from consume_skb path. */ 184 if (!msg->skb) { 185 if (charge) 186 sk_mem_uncharge(sk, len); 187 put_page(sg_page(sge)); 188 } 189 memset(sge, 0, sizeof(*sge)); 190 return len; 191 } 192 193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 194 bool charge) 195 { 196 struct scatterlist *sge = sk_msg_elem(msg, i); 197 int freed = 0; 198 199 while (msg->sg.size) { 200 msg->sg.size -= sge->length; 201 freed += sk_msg_free_elem(sk, msg, i, charge); 202 sk_msg_iter_var_next(i); 203 sk_msg_check_to_free(msg, i, msg->sg.size); 204 sge = sk_msg_elem(msg, i); 205 } 206 consume_skb(msg->skb); 207 sk_msg_init(msg); 208 return freed; 209 } 210 211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 212 { 213 return __sk_msg_free(sk, msg, msg->sg.start, false); 214 } 215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 216 217 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 218 { 219 return __sk_msg_free(sk, msg, msg->sg.start, true); 220 } 221 EXPORT_SYMBOL_GPL(sk_msg_free); 222 223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 224 u32 bytes, bool charge) 225 { 226 struct scatterlist *sge; 227 u32 i = msg->sg.start; 228 229 while (bytes) { 230 sge = sk_msg_elem(msg, i); 231 if (!sge->length) 232 break; 233 if (bytes < sge->length) { 234 if (charge) 235 sk_mem_uncharge(sk, bytes); 236 sge->length -= bytes; 237 sge->offset += bytes; 238 msg->sg.size -= bytes; 239 break; 240 } 241 242 msg->sg.size -= sge->length; 243 bytes -= sge->length; 244 sk_msg_free_elem(sk, msg, i, charge); 245 sk_msg_iter_var_next(i); 246 sk_msg_check_to_free(msg, i, bytes); 247 } 248 msg->sg.start = i; 249 } 250 251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 252 { 253 __sk_msg_free_partial(sk, msg, bytes, true); 254 } 255 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 256 257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 258 u32 bytes) 259 { 260 __sk_msg_free_partial(sk, msg, bytes, false); 261 } 262 263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 264 { 265 int trim = msg->sg.size - len; 266 u32 i = msg->sg.end; 267 268 if (trim <= 0) { 269 WARN_ON(trim < 0); 270 return; 271 } 272 273 sk_msg_iter_var_prev(i); 274 msg->sg.size = len; 275 while (msg->sg.data[i].length && 276 trim >= msg->sg.data[i].length) { 277 trim -= msg->sg.data[i].length; 278 sk_msg_free_elem(sk, msg, i, true); 279 sk_msg_iter_var_prev(i); 280 if (!trim) 281 goto out; 282 } 283 284 msg->sg.data[i].length -= trim; 285 sk_mem_uncharge(sk, trim); 286 /* Adjust copybreak if it falls into the trimmed part of last buf */ 287 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 288 msg->sg.copybreak = msg->sg.data[i].length; 289 out: 290 sk_msg_iter_var_next(i); 291 msg->sg.end = i; 292 293 /* If we trim data a full sg elem before curr pointer update 294 * copybreak and current so that any future copy operations 295 * start at new copy location. 296 * However trimmed data that has not yet been used in a copy op 297 * does not require an update. 298 */ 299 if (!msg->sg.size) { 300 msg->sg.curr = msg->sg.start; 301 msg->sg.copybreak = 0; 302 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 303 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 304 sk_msg_iter_var_prev(i); 305 msg->sg.curr = i; 306 msg->sg.copybreak = msg->sg.data[i].length; 307 } 308 } 309 EXPORT_SYMBOL_GPL(sk_msg_trim); 310 311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 312 struct sk_msg *msg, u32 bytes) 313 { 314 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 315 const int to_max_pages = MAX_MSG_FRAGS; 316 struct page *pages[MAX_MSG_FRAGS]; 317 ssize_t orig, copied, use, offset; 318 319 orig = msg->sg.size; 320 while (bytes > 0) { 321 i = 0; 322 maxpages = to_max_pages - num_elems; 323 if (maxpages == 0) { 324 ret = -EFAULT; 325 goto out; 326 } 327 328 copied = iov_iter_get_pages2(from, pages, bytes, maxpages, 329 &offset); 330 if (copied <= 0) { 331 ret = -EFAULT; 332 goto out; 333 } 334 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 u32 copy, buf_size, copied = 0; 373 struct scatterlist *sge; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 copied += copy; 401 if (!bytes) 402 break; 403 msg->sg.copybreak = 0; 404 sk_msg_iter_var_next(i); 405 } while (i != msg->sg.end); 406 out: 407 msg->sg.curr = i; 408 return (ret < 0) ? ret : copied; 409 } 410 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 411 412 /* Receive sk_msg from psock->ingress_msg to @msg. */ 413 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 414 int len, int flags) 415 { 416 struct iov_iter *iter = &msg->msg_iter; 417 int peek = flags & MSG_PEEK; 418 struct sk_msg *msg_rx; 419 int i, copied = 0; 420 421 msg_rx = sk_psock_peek_msg(psock); 422 while (copied != len) { 423 struct scatterlist *sge; 424 425 if (unlikely(!msg_rx)) 426 break; 427 428 i = msg_rx->sg.start; 429 do { 430 struct page *page; 431 int copy; 432 433 sge = sk_msg_elem(msg_rx, i); 434 copy = sge->length; 435 page = sg_page(sge); 436 if (copied + copy > len) 437 copy = len - copied; 438 if (copy) 439 copy = copy_page_to_iter(page, sge->offset, copy, iter); 440 if (!copy) { 441 copied = copied ? copied : -EFAULT; 442 goto out; 443 } 444 445 copied += copy; 446 if (likely(!peek)) { 447 sge->offset += copy; 448 sge->length -= copy; 449 if (!msg_rx->skb) { 450 sk_mem_uncharge(sk, copy); 451 atomic_sub(copy, &sk->sk_rmem_alloc); 452 } 453 msg_rx->sg.size -= copy; 454 455 if (!sge->length) { 456 sk_msg_iter_var_next(i); 457 if (!msg_rx->skb) 458 put_page(page); 459 } 460 } else { 461 /* Lets not optimize peek case if copy_page_to_iter 462 * didn't copy the entire length lets just break. 463 */ 464 if (copy != sge->length) 465 goto out; 466 sk_msg_iter_var_next(i); 467 } 468 469 if (copied == len) 470 break; 471 } while ((i != msg_rx->sg.end) && !sg_is_last(sge)); 472 473 if (unlikely(peek)) { 474 msg_rx = sk_psock_next_msg(psock, msg_rx); 475 if (!msg_rx) 476 break; 477 continue; 478 } 479 480 msg_rx->sg.start = i; 481 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) { 482 msg_rx = sk_psock_dequeue_msg(psock); 483 kfree_sk_msg(msg_rx); 484 } 485 msg_rx = sk_psock_peek_msg(psock); 486 } 487 out: 488 return copied; 489 } 490 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 491 492 bool sk_msg_is_readable(struct sock *sk) 493 { 494 struct sk_psock *psock; 495 bool empty = true; 496 497 rcu_read_lock(); 498 psock = sk_psock(sk); 499 if (likely(psock)) 500 empty = list_empty(&psock->ingress_msg); 501 rcu_read_unlock(); 502 return !empty; 503 } 504 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 505 506 static struct sk_msg *alloc_sk_msg(gfp_t gfp) 507 { 508 struct sk_msg *msg; 509 510 msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN); 511 if (unlikely(!msg)) 512 return NULL; 513 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS); 514 return msg; 515 } 516 517 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 518 struct sk_buff *skb) 519 { 520 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 521 return NULL; 522 523 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 524 return NULL; 525 526 return alloc_sk_msg(GFP_KERNEL); 527 } 528 529 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 530 u32 off, u32 len, 531 struct sk_psock *psock, 532 struct sock *sk, 533 struct sk_msg *msg, 534 bool take_ref) 535 { 536 int num_sge, copied; 537 538 /* skb_to_sgvec will fail when the total number of fragments in 539 * frag_list and frags exceeds MAX_MSG_FRAGS. For example, the 540 * caller may aggregate multiple skbs. 541 */ 542 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 543 if (num_sge < 0) { 544 /* skb linearize may fail with ENOMEM, but lets simply try again 545 * later if this happens. Under memory pressure we don't want to 546 * drop the skb. We need to linearize the skb so that the mapping 547 * in skb_to_sgvec can not error. 548 * Note that skb_linearize requires the skb not to be shared. 549 */ 550 if (skb_linearize(skb)) 551 return -EAGAIN; 552 553 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 554 if (unlikely(num_sge < 0)) 555 return num_sge; 556 } 557 558 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 559 psock->ingress_bytes += len; 560 #endif 561 copied = len; 562 msg->sg.start = 0; 563 msg->sg.size = copied; 564 msg->sg.end = num_sge; 565 msg->skb = take_ref ? skb_get(skb) : skb; 566 567 sk_psock_queue_msg(psock, msg); 568 sk_psock_data_ready(sk, psock); 569 return copied; 570 } 571 572 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 573 u32 off, u32 len, bool take_ref); 574 575 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 576 u32 off, u32 len) 577 { 578 struct sock *sk = psock->sk; 579 struct sk_msg *msg; 580 int err; 581 582 /* If we are receiving on the same sock skb->sk is already assigned, 583 * skip memory accounting and owner transition seeing it already set 584 * correctly. 585 */ 586 if (unlikely(skb->sk == sk)) 587 return sk_psock_skb_ingress_self(psock, skb, off, len, true); 588 msg = sk_psock_create_ingress_msg(sk, skb); 589 if (!msg) 590 return -EAGAIN; 591 592 /* This will transition ownership of the data from the socket where 593 * the BPF program was run initiating the redirect to the socket 594 * we will eventually receive this data on. The data will be released 595 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 596 * into user buffers. 597 */ 598 skb_set_owner_r(skb, sk); 599 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, true); 600 if (err < 0) 601 kfree(msg); 602 return err; 603 } 604 605 /* Puts an skb on the ingress queue of the socket already assigned to the 606 * skb. In this case we do not need to check memory limits or skb_set_owner_r 607 * because the skb is already accounted for here. 608 */ 609 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 610 u32 off, u32 len, bool take_ref) 611 { 612 struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC); 613 struct sock *sk = psock->sk; 614 int err; 615 616 if (unlikely(!msg)) 617 return -EAGAIN; 618 skb_set_owner_r(skb, sk); 619 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, take_ref); 620 if (err < 0) 621 kfree(msg); 622 return err; 623 } 624 625 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 626 u32 off, u32 len, bool ingress) 627 { 628 if (!ingress) { 629 if (!sock_writeable(psock->sk)) 630 return -EAGAIN; 631 return skb_send_sock(psock->sk, skb, off, len); 632 } 633 634 return sk_psock_skb_ingress(psock, skb, off, len); 635 } 636 637 static void sk_psock_skb_state(struct sk_psock *psock, 638 struct sk_psock_work_state *state, 639 int len, int off) 640 { 641 spin_lock_bh(&psock->ingress_lock); 642 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 643 state->len = len; 644 state->off = off; 645 } 646 spin_unlock_bh(&psock->ingress_lock); 647 } 648 649 static void sk_psock_backlog(struct work_struct *work) 650 { 651 struct delayed_work *dwork = to_delayed_work(work); 652 struct sk_psock *psock = container_of(dwork, struct sk_psock, work); 653 struct sk_psock_work_state *state = &psock->work_state; 654 struct sk_buff *skb = NULL; 655 u32 len = 0, off = 0; 656 bool ingress; 657 int ret; 658 659 /* If sk is quickly removed from the map and then added back, the old 660 * psock should not be scheduled, because there are now two psocks 661 * pointing to the same sk. 662 */ 663 if (!sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 664 return; 665 666 /* Increment the psock refcnt to synchronize with close(fd) path in 667 * sock_map_close(), ensuring we wait for backlog thread completion 668 * before sk_socket freed. If refcnt increment fails, it indicates 669 * sock_map_close() completed with sk_socket potentially already freed. 670 */ 671 if (!sk_psock_get(psock->sk)) 672 return; 673 mutex_lock(&psock->work_mutex); 674 while ((skb = skb_peek(&psock->ingress_skb))) { 675 len = skb->len; 676 off = 0; 677 if (skb_bpf_strparser(skb)) { 678 struct strp_msg *stm = strp_msg(skb); 679 680 off = stm->offset; 681 len = stm->full_len; 682 } 683 684 /* Resume processing from previous partial state */ 685 if (unlikely(state->len)) { 686 len = state->len; 687 off = state->off; 688 } 689 690 ingress = skb_bpf_ingress(skb); 691 skb_bpf_redirect_clear(skb); 692 do { 693 ret = -EIO; 694 if (!sock_flag(psock->sk, SOCK_DEAD)) 695 ret = sk_psock_handle_skb(psock, skb, off, 696 len, ingress); 697 if (ret <= 0) { 698 if (ret == -EAGAIN) { 699 sk_psock_skb_state(psock, state, len, off); 700 /* Restore redir info we cleared before */ 701 skb_bpf_set_redir(skb, psock->sk, ingress); 702 /* Delay slightly to prioritize any 703 * other work that might be here. 704 */ 705 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 706 schedule_delayed_work(&psock->work, 1); 707 goto end; 708 } 709 /* Hard errors break pipe and stop xmit. */ 710 sk_psock_report_error(psock, ret ? -ret : EPIPE); 711 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 712 goto end; 713 } 714 off += ret; 715 len -= ret; 716 } while (len); 717 718 /* The entire skb sent, clear state */ 719 sk_psock_skb_state(psock, state, 0, 0); 720 skb = skb_dequeue(&psock->ingress_skb); 721 kfree_skb(skb); 722 } 723 end: 724 mutex_unlock(&psock->work_mutex); 725 sk_psock_put(psock->sk, psock); 726 } 727 728 struct sk_psock *sk_psock_init(struct sock *sk, int node) 729 { 730 struct sk_psock *psock; 731 struct proto *prot; 732 733 write_lock_bh(&sk->sk_callback_lock); 734 735 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) { 736 psock = ERR_PTR(-EINVAL); 737 goto out; 738 } 739 740 if (sk->sk_user_data) { 741 psock = ERR_PTR(-EBUSY); 742 goto out; 743 } 744 745 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 746 if (!psock) { 747 psock = ERR_PTR(-ENOMEM); 748 goto out; 749 } 750 751 prot = READ_ONCE(sk->sk_prot); 752 psock->sk = sk; 753 psock->eval = __SK_NONE; 754 psock->sk_proto = prot; 755 psock->saved_unhash = prot->unhash; 756 psock->saved_destroy = prot->destroy; 757 psock->saved_close = prot->close; 758 psock->saved_write_space = sk->sk_write_space; 759 760 INIT_LIST_HEAD(&psock->link); 761 spin_lock_init(&psock->link_lock); 762 763 INIT_DELAYED_WORK(&psock->work, sk_psock_backlog); 764 mutex_init(&psock->work_mutex); 765 INIT_LIST_HEAD(&psock->ingress_msg); 766 spin_lock_init(&psock->ingress_lock); 767 skb_queue_head_init(&psock->ingress_skb); 768 769 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 770 refcount_set(&psock->refcnt, 1); 771 772 __rcu_assign_sk_user_data_with_flags(sk, psock, 773 SK_USER_DATA_NOCOPY | 774 SK_USER_DATA_PSOCK); 775 sock_hold(sk); 776 777 out: 778 write_unlock_bh(&sk->sk_callback_lock); 779 return psock; 780 } 781 EXPORT_SYMBOL_GPL(sk_psock_init); 782 783 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 784 { 785 struct sk_psock_link *link; 786 787 spin_lock_bh(&psock->link_lock); 788 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 789 list); 790 if (link) 791 list_del(&link->list); 792 spin_unlock_bh(&psock->link_lock); 793 return link; 794 } 795 796 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 797 { 798 struct sk_msg *msg, *tmp; 799 800 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 801 list_del(&msg->list); 802 if (!msg->skb) 803 atomic_sub(msg->sg.size, &psock->sk->sk_rmem_alloc); 804 sk_msg_free(psock->sk, msg); 805 kfree(msg); 806 } 807 } 808 809 static void __sk_psock_zap_ingress(struct sk_psock *psock) 810 { 811 struct sk_buff *skb; 812 813 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 814 skb_bpf_redirect_clear(skb); 815 sock_drop(psock->sk, skb); 816 } 817 __sk_psock_purge_ingress_msg(psock); 818 } 819 820 static void sk_psock_link_destroy(struct sk_psock *psock) 821 { 822 struct sk_psock_link *link, *tmp; 823 824 list_for_each_entry_safe(link, tmp, &psock->link, list) { 825 list_del(&link->list); 826 sk_psock_free_link(link); 827 } 828 } 829 830 void sk_psock_stop(struct sk_psock *psock) 831 { 832 spin_lock_bh(&psock->ingress_lock); 833 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 834 sk_psock_cork_free(psock); 835 spin_unlock_bh(&psock->ingress_lock); 836 } 837 838 static void sk_psock_done_strp(struct sk_psock *psock); 839 840 static void sk_psock_destroy(struct work_struct *work) 841 { 842 struct sk_psock *psock = container_of(to_rcu_work(work), 843 struct sk_psock, rwork); 844 /* No sk_callback_lock since already detached. */ 845 846 sk_psock_done_strp(psock); 847 848 cancel_delayed_work_sync(&psock->work); 849 __sk_psock_zap_ingress(psock); 850 mutex_destroy(&psock->work_mutex); 851 852 psock_progs_drop(&psock->progs); 853 854 sk_psock_link_destroy(psock); 855 sk_psock_cork_free(psock); 856 857 if (psock->sk_redir) 858 sock_put(psock->sk_redir); 859 if (psock->sk_pair) 860 sock_put(psock->sk_pair); 861 sock_put(psock->sk); 862 kfree(psock); 863 } 864 865 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 866 { 867 write_lock_bh(&sk->sk_callback_lock); 868 sk_psock_restore_proto(sk, psock); 869 rcu_assign_sk_user_data(sk, NULL); 870 if (psock->progs.stream_parser) 871 sk_psock_stop_strp(sk, psock); 872 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 873 sk_psock_stop_verdict(sk, psock); 874 write_unlock_bh(&sk->sk_callback_lock); 875 876 sk_psock_stop(psock); 877 878 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 879 queue_rcu_work(system_wq, &psock->rwork); 880 } 881 EXPORT_SYMBOL_GPL(sk_psock_drop); 882 883 static int sk_psock_map_verd(int verdict, bool redir) 884 { 885 switch (verdict) { 886 case SK_PASS: 887 return redir ? __SK_REDIRECT : __SK_PASS; 888 case SK_DROP: 889 default: 890 break; 891 } 892 893 return __SK_DROP; 894 } 895 896 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 897 struct sk_msg *msg) 898 { 899 struct bpf_prog *prog; 900 int ret; 901 902 rcu_read_lock(); 903 prog = READ_ONCE(psock->progs.msg_parser); 904 if (unlikely(!prog)) { 905 ret = __SK_PASS; 906 goto out; 907 } 908 909 sk_msg_compute_data_pointers(msg); 910 msg->sk = sk; 911 ret = bpf_prog_run_pin_on_cpu(prog, msg); 912 ret = sk_psock_map_verd(ret, msg->sk_redir); 913 psock->apply_bytes = msg->apply_bytes; 914 if (ret == __SK_REDIRECT) { 915 if (psock->sk_redir) { 916 sock_put(psock->sk_redir); 917 psock->sk_redir = NULL; 918 } 919 if (!msg->sk_redir) { 920 ret = __SK_DROP; 921 goto out; 922 } 923 psock->redir_ingress = sk_msg_to_ingress(msg); 924 psock->sk_redir = msg->sk_redir; 925 sock_hold(psock->sk_redir); 926 } 927 out: 928 rcu_read_unlock(); 929 return ret; 930 } 931 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 932 933 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 934 { 935 struct sk_psock *psock_other; 936 struct sock *sk_other; 937 938 sk_other = skb_bpf_redirect_fetch(skb); 939 /* This error is a buggy BPF program, it returned a redirect 940 * return code, but then didn't set a redirect interface. 941 */ 942 if (unlikely(!sk_other)) { 943 skb_bpf_redirect_clear(skb); 944 sock_drop(from->sk, skb); 945 return -EIO; 946 } 947 psock_other = sk_psock(sk_other); 948 /* This error indicates the socket is being torn down or had another 949 * error that caused the pipe to break. We can't send a packet on 950 * a socket that is in this state so we drop the skb. 951 */ 952 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 953 skb_bpf_redirect_clear(skb); 954 sock_drop(from->sk, skb); 955 return -EIO; 956 } 957 spin_lock_bh(&psock_other->ingress_lock); 958 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 959 spin_unlock_bh(&psock_other->ingress_lock); 960 skb_bpf_redirect_clear(skb); 961 sock_drop(from->sk, skb); 962 return -EIO; 963 } 964 965 skb_queue_tail(&psock_other->ingress_skb, skb); 966 schedule_delayed_work(&psock_other->work, 0); 967 spin_unlock_bh(&psock_other->ingress_lock); 968 return 0; 969 } 970 971 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 972 struct sk_psock *from, int verdict) 973 { 974 switch (verdict) { 975 case __SK_REDIRECT: 976 sk_psock_skb_redirect(from, skb); 977 break; 978 case __SK_PASS: 979 case __SK_DROP: 980 default: 981 break; 982 } 983 } 984 985 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 986 { 987 struct bpf_prog *prog; 988 int ret = __SK_PASS; 989 990 rcu_read_lock(); 991 prog = READ_ONCE(psock->progs.stream_verdict); 992 if (likely(prog)) { 993 skb->sk = psock->sk; 994 skb_dst_drop(skb); 995 skb_bpf_redirect_clear(skb); 996 ret = bpf_prog_run_pin_on_cpu(prog, skb); 997 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 998 skb->sk = NULL; 999 } 1000 sk_psock_tls_verdict_apply(skb, psock, ret); 1001 rcu_read_unlock(); 1002 return ret; 1003 } 1004 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 1005 1006 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 1007 int verdict) 1008 { 1009 struct sock *sk_other; 1010 int err = 0; 1011 u32 len, off; 1012 1013 switch (verdict) { 1014 case __SK_PASS: 1015 err = -EIO; 1016 sk_other = psock->sk; 1017 if (sock_flag(sk_other, SOCK_DEAD) || 1018 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1019 goto out_free; 1020 1021 skb_bpf_set_ingress(skb); 1022 1023 /* If the queue is empty then we can submit directly 1024 * into the msg queue. If its not empty we have to 1025 * queue work otherwise we may get OOO data. Otherwise, 1026 * if sk_psock_skb_ingress errors will be handled by 1027 * retrying later from workqueue. 1028 */ 1029 if (skb_queue_empty(&psock->ingress_skb)) { 1030 len = skb->len; 1031 off = 0; 1032 if (skb_bpf_strparser(skb)) { 1033 struct strp_msg *stm = strp_msg(skb); 1034 1035 off = stm->offset; 1036 len = stm->full_len; 1037 } 1038 err = sk_psock_skb_ingress_self(psock, skb, off, len, false); 1039 } 1040 if (err < 0) { 1041 spin_lock_bh(&psock->ingress_lock); 1042 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1043 skb_queue_tail(&psock->ingress_skb, skb); 1044 schedule_delayed_work(&psock->work, 0); 1045 err = 0; 1046 } 1047 spin_unlock_bh(&psock->ingress_lock); 1048 if (err < 0) 1049 goto out_free; 1050 } 1051 break; 1052 case __SK_REDIRECT: 1053 tcp_eat_skb(psock->sk, skb); 1054 err = sk_psock_skb_redirect(psock, skb); 1055 break; 1056 case __SK_DROP: 1057 default: 1058 out_free: 1059 skb_bpf_redirect_clear(skb); 1060 tcp_eat_skb(psock->sk, skb); 1061 sock_drop(psock->sk, skb); 1062 } 1063 1064 return err; 1065 } 1066 1067 static void sk_psock_write_space(struct sock *sk) 1068 { 1069 struct sk_psock *psock; 1070 void (*write_space)(struct sock *sk) = NULL; 1071 1072 rcu_read_lock(); 1073 psock = sk_psock(sk); 1074 if (likely(psock)) { 1075 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1076 schedule_delayed_work(&psock->work, 0); 1077 write_space = psock->saved_write_space; 1078 } 1079 rcu_read_unlock(); 1080 if (write_space) 1081 write_space(sk); 1082 } 1083 1084 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1085 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1086 { 1087 struct sk_psock *psock; 1088 struct bpf_prog *prog; 1089 int ret = __SK_DROP; 1090 struct sock *sk; 1091 1092 rcu_read_lock(); 1093 sk = strp->sk; 1094 psock = sk_psock(sk); 1095 if (unlikely(!psock)) { 1096 sock_drop(sk, skb); 1097 goto out; 1098 } 1099 prog = READ_ONCE(psock->progs.stream_verdict); 1100 if (likely(prog)) { 1101 skb->sk = sk; 1102 skb_dst_drop(skb); 1103 skb_bpf_redirect_clear(skb); 1104 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1105 skb_bpf_set_strparser(skb); 1106 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1107 skb->sk = NULL; 1108 } 1109 sk_psock_verdict_apply(psock, skb, ret); 1110 out: 1111 rcu_read_unlock(); 1112 } 1113 1114 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1115 { 1116 return err; 1117 } 1118 1119 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1120 { 1121 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1122 struct bpf_prog *prog; 1123 int ret = skb->len; 1124 1125 rcu_read_lock(); 1126 prog = READ_ONCE(psock->progs.stream_parser); 1127 if (likely(prog)) { 1128 skb->sk = psock->sk; 1129 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1130 skb->sk = NULL; 1131 } 1132 rcu_read_unlock(); 1133 return ret; 1134 } 1135 1136 /* Called with socket lock held. */ 1137 static void sk_psock_strp_data_ready(struct sock *sk) 1138 { 1139 struct sk_psock *psock; 1140 1141 trace_sk_data_ready(sk); 1142 1143 rcu_read_lock(); 1144 psock = sk_psock(sk); 1145 if (likely(psock)) { 1146 if (tls_sw_has_ctx_rx(sk)) { 1147 psock->saved_data_ready(sk); 1148 } else { 1149 read_lock_bh(&sk->sk_callback_lock); 1150 strp_data_ready(&psock->strp); 1151 read_unlock_bh(&sk->sk_callback_lock); 1152 } 1153 } 1154 rcu_read_unlock(); 1155 } 1156 1157 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1158 { 1159 int ret; 1160 1161 static const struct strp_callbacks cb = { 1162 .rcv_msg = sk_psock_strp_read, 1163 .read_sock_done = sk_psock_strp_read_done, 1164 .parse_msg = sk_psock_strp_parse, 1165 }; 1166 1167 ret = strp_init(&psock->strp, sk, &cb); 1168 if (!ret) 1169 sk_psock_set_state(psock, SK_PSOCK_RX_STRP_ENABLED); 1170 1171 if (sk_is_tcp(sk)) { 1172 psock->strp.cb.read_sock = tcp_bpf_strp_read_sock; 1173 psock->copied_seq = tcp_sk(sk)->copied_seq; 1174 } 1175 return ret; 1176 } 1177 1178 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1179 { 1180 if (psock->saved_data_ready) 1181 return; 1182 1183 psock->saved_data_ready = sk->sk_data_ready; 1184 sk->sk_data_ready = sk_psock_strp_data_ready; 1185 sk->sk_write_space = sk_psock_write_space; 1186 } 1187 1188 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1189 { 1190 psock_set_prog(&psock->progs.stream_parser, NULL); 1191 1192 if (!psock->saved_data_ready) 1193 return; 1194 1195 sk->sk_data_ready = psock->saved_data_ready; 1196 psock->saved_data_ready = NULL; 1197 strp_stop(&psock->strp); 1198 } 1199 1200 static void sk_psock_done_strp(struct sk_psock *psock) 1201 { 1202 /* Parser has been stopped */ 1203 if (sk_psock_test_state(psock, SK_PSOCK_RX_STRP_ENABLED)) 1204 strp_done(&psock->strp); 1205 } 1206 #else 1207 static void sk_psock_done_strp(struct sk_psock *psock) 1208 { 1209 } 1210 #endif /* CONFIG_BPF_STREAM_PARSER */ 1211 1212 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb) 1213 { 1214 struct sk_psock *psock; 1215 struct bpf_prog *prog; 1216 int ret = __SK_DROP; 1217 int len = skb->len; 1218 1219 rcu_read_lock(); 1220 psock = sk_psock(sk); 1221 if (unlikely(!psock)) { 1222 len = 0; 1223 tcp_eat_skb(sk, skb); 1224 sock_drop(sk, skb); 1225 goto out; 1226 } 1227 prog = READ_ONCE(psock->progs.stream_verdict); 1228 if (!prog) 1229 prog = READ_ONCE(psock->progs.skb_verdict); 1230 if (likely(prog)) { 1231 skb_dst_drop(skb); 1232 skb_bpf_redirect_clear(skb); 1233 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1234 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1235 } 1236 ret = sk_psock_verdict_apply(psock, skb, ret); 1237 if (ret < 0) 1238 len = ret; 1239 out: 1240 rcu_read_unlock(); 1241 return len; 1242 } 1243 1244 static void sk_psock_verdict_data_ready(struct sock *sk) 1245 { 1246 struct socket *sock = sk->sk_socket; 1247 const struct proto_ops *ops; 1248 int copied; 1249 1250 trace_sk_data_ready(sk); 1251 1252 if (unlikely(!sock)) 1253 return; 1254 ops = READ_ONCE(sock->ops); 1255 if (!ops || !ops->read_skb) 1256 return; 1257 copied = ops->read_skb(sk, sk_psock_verdict_recv); 1258 if (copied >= 0) { 1259 struct sk_psock *psock; 1260 1261 rcu_read_lock(); 1262 psock = sk_psock(sk); 1263 if (psock) 1264 sk_psock_data_ready(sk, psock); 1265 rcu_read_unlock(); 1266 } 1267 } 1268 1269 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1270 { 1271 if (psock->saved_data_ready) 1272 return; 1273 1274 psock->saved_data_ready = sk->sk_data_ready; 1275 sk->sk_data_ready = sk_psock_verdict_data_ready; 1276 sk->sk_write_space = sk_psock_write_space; 1277 } 1278 1279 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1280 { 1281 psock_set_prog(&psock->progs.stream_verdict, NULL); 1282 psock_set_prog(&psock->progs.skb_verdict, NULL); 1283 1284 if (!psock->saved_data_ready) 1285 return; 1286 1287 sk->sk_data_ready = psock->saved_data_ready; 1288 psock->saved_data_ready = NULL; 1289 } 1290