1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 int ret = 0; 31 32 len -= msg->sg.size; 33 while (len > 0) { 34 struct scatterlist *sge; 35 u32 orig_offset; 36 int use, i; 37 38 if (!sk_page_frag_refill(sk, pfrag)) 39 return -ENOMEM; 40 41 orig_offset = pfrag->offset; 42 use = min_t(int, len, pfrag->size - orig_offset); 43 if (!sk_wmem_schedule(sk, use)) 44 return -ENOMEM; 45 46 i = msg->sg.end; 47 sk_msg_iter_var_prev(i); 48 sge = &msg->sg.data[i]; 49 50 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 51 sg_page(sge) == pfrag->page && 52 sge->offset + sge->length == orig_offset) { 53 sge->length += use; 54 } else { 55 if (sk_msg_full(msg)) { 56 ret = -ENOSPC; 57 break; 58 } 59 60 sge = &msg->sg.data[msg->sg.end]; 61 sg_unmark_end(sge); 62 sg_set_page(sge, pfrag->page, use, orig_offset); 63 get_page(pfrag->page); 64 sk_msg_iter_next(msg, end); 65 } 66 67 sk_mem_charge(sk, use); 68 msg->sg.size += use; 69 pfrag->offset += use; 70 len -= use; 71 } 72 73 return ret; 74 } 75 EXPORT_SYMBOL_GPL(sk_msg_alloc); 76 77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 78 u32 off, u32 len) 79 { 80 int i = src->sg.start; 81 struct scatterlist *sge = sk_msg_elem(src, i); 82 struct scatterlist *sgd = NULL; 83 u32 sge_len, sge_off; 84 85 while (off) { 86 if (sge->length > off) 87 break; 88 off -= sge->length; 89 sk_msg_iter_var_next(i); 90 if (i == src->sg.end && off) 91 return -ENOSPC; 92 sge = sk_msg_elem(src, i); 93 } 94 95 while (len) { 96 sge_len = sge->length - off; 97 if (sge_len > len) 98 sge_len = len; 99 100 if (dst->sg.end) 101 sgd = sk_msg_elem(dst, dst->sg.end - 1); 102 103 if (sgd && 104 (sg_page(sge) == sg_page(sgd)) && 105 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 106 sgd->length += sge_len; 107 dst->sg.size += sge_len; 108 } else if (!sk_msg_full(dst)) { 109 sge_off = sge->offset + off; 110 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 111 } else { 112 return -ENOSPC; 113 } 114 115 off = 0; 116 len -= sge_len; 117 sk_mem_charge(sk, sge_len); 118 sk_msg_iter_var_next(i); 119 if (i == src->sg.end && len) 120 return -ENOSPC; 121 sge = sk_msg_elem(src, i); 122 } 123 124 return 0; 125 } 126 EXPORT_SYMBOL_GPL(sk_msg_clone); 127 128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 129 { 130 int i = msg->sg.start; 131 132 do { 133 struct scatterlist *sge = sk_msg_elem(msg, i); 134 135 if (bytes < sge->length) { 136 sge->length -= bytes; 137 sge->offset += bytes; 138 sk_mem_uncharge(sk, bytes); 139 break; 140 } 141 142 sk_mem_uncharge(sk, sge->length); 143 bytes -= sge->length; 144 sge->length = 0; 145 sge->offset = 0; 146 sk_msg_iter_var_next(i); 147 } while (bytes && i != msg->sg.end); 148 msg->sg.start = i; 149 } 150 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 151 152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 153 { 154 int i = msg->sg.start; 155 156 do { 157 struct scatterlist *sge = &msg->sg.data[i]; 158 int uncharge = (bytes < sge->length) ? bytes : sge->length; 159 160 sk_mem_uncharge(sk, uncharge); 161 bytes -= uncharge; 162 sk_msg_iter_var_next(i); 163 } while (i != msg->sg.end); 164 } 165 EXPORT_SYMBOL_GPL(sk_msg_return); 166 167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 168 bool charge) 169 { 170 struct scatterlist *sge = sk_msg_elem(msg, i); 171 u32 len = sge->length; 172 173 /* When the skb owns the memory we free it from consume_skb path. */ 174 if (!msg->skb) { 175 if (charge) 176 sk_mem_uncharge(sk, len); 177 put_page(sg_page(sge)); 178 } 179 memset(sge, 0, sizeof(*sge)); 180 return len; 181 } 182 183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 184 bool charge) 185 { 186 struct scatterlist *sge = sk_msg_elem(msg, i); 187 int freed = 0; 188 189 while (msg->sg.size) { 190 msg->sg.size -= sge->length; 191 freed += sk_msg_free_elem(sk, msg, i, charge); 192 sk_msg_iter_var_next(i); 193 sk_msg_check_to_free(msg, i, msg->sg.size); 194 sge = sk_msg_elem(msg, i); 195 } 196 consume_skb(msg->skb); 197 sk_msg_init(msg); 198 return freed; 199 } 200 201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 202 { 203 return __sk_msg_free(sk, msg, msg->sg.start, false); 204 } 205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 206 207 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 208 { 209 return __sk_msg_free(sk, msg, msg->sg.start, true); 210 } 211 EXPORT_SYMBOL_GPL(sk_msg_free); 212 213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 214 u32 bytes, bool charge) 215 { 216 struct scatterlist *sge; 217 u32 i = msg->sg.start; 218 219 while (bytes) { 220 sge = sk_msg_elem(msg, i); 221 if (!sge->length) 222 break; 223 if (bytes < sge->length) { 224 if (charge) 225 sk_mem_uncharge(sk, bytes); 226 sge->length -= bytes; 227 sge->offset += bytes; 228 msg->sg.size -= bytes; 229 break; 230 } 231 232 msg->sg.size -= sge->length; 233 bytes -= sge->length; 234 sk_msg_free_elem(sk, msg, i, charge); 235 sk_msg_iter_var_next(i); 236 sk_msg_check_to_free(msg, i, bytes); 237 } 238 msg->sg.start = i; 239 } 240 241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 242 { 243 __sk_msg_free_partial(sk, msg, bytes, true); 244 } 245 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 246 247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 248 u32 bytes) 249 { 250 __sk_msg_free_partial(sk, msg, bytes, false); 251 } 252 253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 254 { 255 int trim = msg->sg.size - len; 256 u32 i = msg->sg.end; 257 258 if (trim <= 0) { 259 WARN_ON(trim < 0); 260 return; 261 } 262 263 sk_msg_iter_var_prev(i); 264 msg->sg.size = len; 265 while (msg->sg.data[i].length && 266 trim >= msg->sg.data[i].length) { 267 trim -= msg->sg.data[i].length; 268 sk_msg_free_elem(sk, msg, i, true); 269 sk_msg_iter_var_prev(i); 270 if (!trim) 271 goto out; 272 } 273 274 msg->sg.data[i].length -= trim; 275 sk_mem_uncharge(sk, trim); 276 /* Adjust copybreak if it falls into the trimmed part of last buf */ 277 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 278 msg->sg.copybreak = msg->sg.data[i].length; 279 out: 280 sk_msg_iter_var_next(i); 281 msg->sg.end = i; 282 283 /* If we trim data a full sg elem before curr pointer update 284 * copybreak and current so that any future copy operations 285 * start at new copy location. 286 * However trimed data that has not yet been used in a copy op 287 * does not require an update. 288 */ 289 if (!msg->sg.size) { 290 msg->sg.curr = msg->sg.start; 291 msg->sg.copybreak = 0; 292 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 293 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 294 sk_msg_iter_var_prev(i); 295 msg->sg.curr = i; 296 msg->sg.copybreak = msg->sg.data[i].length; 297 } 298 } 299 EXPORT_SYMBOL_GPL(sk_msg_trim); 300 301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 302 struct sk_msg *msg, u32 bytes) 303 { 304 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 305 const int to_max_pages = MAX_MSG_FRAGS; 306 struct page *pages[MAX_MSG_FRAGS]; 307 ssize_t orig, copied, use, offset; 308 309 orig = msg->sg.size; 310 while (bytes > 0) { 311 i = 0; 312 maxpages = to_max_pages - num_elems; 313 if (maxpages == 0) { 314 ret = -EFAULT; 315 goto out; 316 } 317 318 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 319 &offset); 320 if (copied <= 0) { 321 ret = -EFAULT; 322 goto out; 323 } 324 325 iov_iter_advance(from, copied); 326 bytes -= copied; 327 msg->sg.size += copied; 328 329 while (copied) { 330 use = min_t(int, copied, PAGE_SIZE - offset); 331 sg_set_page(&msg->sg.data[msg->sg.end], 332 pages[i], use, offset); 333 sg_unmark_end(&msg->sg.data[msg->sg.end]); 334 sk_mem_charge(sk, use); 335 336 offset = 0; 337 copied -= use; 338 sk_msg_iter_next(msg, end); 339 num_elems++; 340 i++; 341 } 342 /* When zerocopy is mixed with sk_msg_*copy* operations we 343 * may have a copybreak set in this case clear and prefer 344 * zerocopy remainder when possible. 345 */ 346 msg->sg.copybreak = 0; 347 msg->sg.curr = msg->sg.end; 348 } 349 out: 350 /* Revert iov_iter updates, msg will need to use 'trim' later if it 351 * also needs to be cleared. 352 */ 353 if (ret) 354 iov_iter_revert(from, msg->sg.size - orig); 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 358 359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 360 struct sk_msg *msg, u32 bytes) 361 { 362 int ret = -ENOSPC, i = msg->sg.curr; 363 struct scatterlist *sge; 364 u32 copy, buf_size; 365 void *to; 366 367 do { 368 sge = sk_msg_elem(msg, i); 369 /* This is possible if a trim operation shrunk the buffer */ 370 if (msg->sg.copybreak >= sge->length) { 371 msg->sg.copybreak = 0; 372 sk_msg_iter_var_next(i); 373 if (i == msg->sg.end) 374 break; 375 sge = sk_msg_elem(msg, i); 376 } 377 378 buf_size = sge->length - msg->sg.copybreak; 379 copy = (buf_size > bytes) ? bytes : buf_size; 380 to = sg_virt(sge) + msg->sg.copybreak; 381 msg->sg.copybreak += copy; 382 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 383 ret = copy_from_iter_nocache(to, copy, from); 384 else 385 ret = copy_from_iter(to, copy, from); 386 if (ret != copy) { 387 ret = -EFAULT; 388 goto out; 389 } 390 bytes -= copy; 391 if (!bytes) 392 break; 393 msg->sg.copybreak = 0; 394 sk_msg_iter_var_next(i); 395 } while (i != msg->sg.end); 396 out: 397 msg->sg.curr = i; 398 return ret; 399 } 400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 401 402 int sk_msg_wait_data(struct sock *sk, struct sk_psock *psock, int flags, 403 long timeo, int *err) 404 { 405 DEFINE_WAIT_FUNC(wait, woken_wake_function); 406 int ret = 0; 407 408 if (sk->sk_shutdown & RCV_SHUTDOWN) 409 return 1; 410 411 if (!timeo) 412 return ret; 413 414 add_wait_queue(sk_sleep(sk), &wait); 415 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 416 ret = sk_wait_event(sk, &timeo, 417 !list_empty(&psock->ingress_msg) || 418 !skb_queue_empty(&sk->sk_receive_queue), &wait); 419 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 420 remove_wait_queue(sk_sleep(sk), &wait); 421 return ret; 422 } 423 EXPORT_SYMBOL_GPL(sk_msg_wait_data); 424 425 /* Receive sk_msg from psock->ingress_msg to @msg. */ 426 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 427 int len, int flags) 428 { 429 struct iov_iter *iter = &msg->msg_iter; 430 int peek = flags & MSG_PEEK; 431 struct sk_msg *msg_rx; 432 int i, copied = 0; 433 434 msg_rx = sk_psock_peek_msg(psock); 435 while (copied != len) { 436 struct scatterlist *sge; 437 438 if (unlikely(!msg_rx)) 439 break; 440 441 i = msg_rx->sg.start; 442 do { 443 struct page *page; 444 int copy; 445 446 sge = sk_msg_elem(msg_rx, i); 447 copy = sge->length; 448 page = sg_page(sge); 449 if (copied + copy > len) 450 copy = len - copied; 451 copy = copy_page_to_iter(page, sge->offset, copy, iter); 452 if (!copy) 453 return copied ? copied : -EFAULT; 454 455 copied += copy; 456 if (likely(!peek)) { 457 sge->offset += copy; 458 sge->length -= copy; 459 if (!msg_rx->skb) 460 sk_mem_uncharge(sk, copy); 461 msg_rx->sg.size -= copy; 462 463 if (!sge->length) { 464 sk_msg_iter_var_next(i); 465 if (!msg_rx->skb) 466 put_page(page); 467 } 468 } else { 469 /* Lets not optimize peek case if copy_page_to_iter 470 * didn't copy the entire length lets just break. 471 */ 472 if (copy != sge->length) 473 return copied; 474 sk_msg_iter_var_next(i); 475 } 476 477 if (copied == len) 478 break; 479 } while (i != msg_rx->sg.end); 480 481 if (unlikely(peek)) { 482 msg_rx = sk_psock_next_msg(psock, msg_rx); 483 if (!msg_rx) 484 break; 485 continue; 486 } 487 488 msg_rx->sg.start = i; 489 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 490 msg_rx = sk_psock_dequeue_msg(psock); 491 kfree_sk_msg(msg_rx); 492 } 493 msg_rx = sk_psock_peek_msg(psock); 494 } 495 496 return copied; 497 } 498 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 499 500 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 501 struct sk_buff *skb) 502 { 503 struct sk_msg *msg; 504 505 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 506 return NULL; 507 508 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 509 return NULL; 510 511 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 512 if (unlikely(!msg)) 513 return NULL; 514 515 sk_msg_init(msg); 516 return msg; 517 } 518 519 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 520 struct sk_psock *psock, 521 struct sock *sk, 522 struct sk_msg *msg) 523 { 524 int num_sge, copied; 525 526 /* skb linearize may fail with ENOMEM, but lets simply try again 527 * later if this happens. Under memory pressure we don't want to 528 * drop the skb. We need to linearize the skb so that the mapping 529 * in skb_to_sgvec can not error. 530 */ 531 if (skb_linearize(skb)) 532 return -EAGAIN; 533 num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len); 534 if (unlikely(num_sge < 0)) { 535 kfree(msg); 536 return num_sge; 537 } 538 539 copied = skb->len; 540 msg->sg.start = 0; 541 msg->sg.size = copied; 542 msg->sg.end = num_sge; 543 msg->skb = skb; 544 545 sk_psock_queue_msg(psock, msg); 546 sk_psock_data_ready(sk, psock); 547 return copied; 548 } 549 550 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb); 551 552 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb) 553 { 554 struct sock *sk = psock->sk; 555 struct sk_msg *msg; 556 557 /* If we are receiving on the same sock skb->sk is already assigned, 558 * skip memory accounting and owner transition seeing it already set 559 * correctly. 560 */ 561 if (unlikely(skb->sk == sk)) 562 return sk_psock_skb_ingress_self(psock, skb); 563 msg = sk_psock_create_ingress_msg(sk, skb); 564 if (!msg) 565 return -EAGAIN; 566 567 /* This will transition ownership of the data from the socket where 568 * the BPF program was run initiating the redirect to the socket 569 * we will eventually receive this data on. The data will be released 570 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 571 * into user buffers. 572 */ 573 skb_set_owner_r(skb, sk); 574 return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 575 } 576 577 /* Puts an skb on the ingress queue of the socket already assigned to the 578 * skb. In this case we do not need to check memory limits or skb_set_owner_r 579 * because the skb is already accounted for here. 580 */ 581 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb) 582 { 583 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC); 584 struct sock *sk = psock->sk; 585 586 if (unlikely(!msg)) 587 return -EAGAIN; 588 sk_msg_init(msg); 589 skb_set_owner_r(skb, sk); 590 return sk_psock_skb_ingress_enqueue(skb, psock, sk, msg); 591 } 592 593 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 594 u32 off, u32 len, bool ingress) 595 { 596 if (!ingress) { 597 if (!sock_writeable(psock->sk)) 598 return -EAGAIN; 599 return skb_send_sock(psock->sk, skb, off, len); 600 } 601 return sk_psock_skb_ingress(psock, skb); 602 } 603 604 static void sk_psock_backlog(struct work_struct *work) 605 { 606 struct sk_psock *psock = container_of(work, struct sk_psock, work); 607 struct sk_psock_work_state *state = &psock->work_state; 608 struct sk_buff *skb; 609 bool ingress; 610 u32 len, off; 611 int ret; 612 613 mutex_lock(&psock->work_mutex); 614 if (state->skb) { 615 skb = state->skb; 616 len = state->len; 617 off = state->off; 618 state->skb = NULL; 619 goto start; 620 } 621 622 while ((skb = skb_dequeue(&psock->ingress_skb))) { 623 len = skb->len; 624 off = 0; 625 start: 626 ingress = skb_bpf_ingress(skb); 627 skb_bpf_redirect_clear(skb); 628 do { 629 ret = -EIO; 630 if (!sock_flag(psock->sk, SOCK_DEAD)) 631 ret = sk_psock_handle_skb(psock, skb, off, 632 len, ingress); 633 if (ret <= 0) { 634 if (ret == -EAGAIN) { 635 state->skb = skb; 636 state->len = len; 637 state->off = off; 638 goto end; 639 } 640 /* Hard errors break pipe and stop xmit. */ 641 sk_psock_report_error(psock, ret ? -ret : EPIPE); 642 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 643 kfree_skb(skb); 644 goto end; 645 } 646 off += ret; 647 len -= ret; 648 } while (len); 649 650 if (!ingress) 651 kfree_skb(skb); 652 } 653 end: 654 mutex_unlock(&psock->work_mutex); 655 } 656 657 struct sk_psock *sk_psock_init(struct sock *sk, int node) 658 { 659 struct sk_psock *psock; 660 struct proto *prot; 661 662 write_lock_bh(&sk->sk_callback_lock); 663 664 if (sk->sk_user_data) { 665 psock = ERR_PTR(-EBUSY); 666 goto out; 667 } 668 669 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 670 if (!psock) { 671 psock = ERR_PTR(-ENOMEM); 672 goto out; 673 } 674 675 prot = READ_ONCE(sk->sk_prot); 676 psock->sk = sk; 677 psock->eval = __SK_NONE; 678 psock->sk_proto = prot; 679 psock->saved_unhash = prot->unhash; 680 psock->saved_close = prot->close; 681 psock->saved_write_space = sk->sk_write_space; 682 683 INIT_LIST_HEAD(&psock->link); 684 spin_lock_init(&psock->link_lock); 685 686 INIT_WORK(&psock->work, sk_psock_backlog); 687 mutex_init(&psock->work_mutex); 688 INIT_LIST_HEAD(&psock->ingress_msg); 689 spin_lock_init(&psock->ingress_lock); 690 skb_queue_head_init(&psock->ingress_skb); 691 692 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 693 refcount_set(&psock->refcnt, 1); 694 695 rcu_assign_sk_user_data_nocopy(sk, psock); 696 sock_hold(sk); 697 698 out: 699 write_unlock_bh(&sk->sk_callback_lock); 700 return psock; 701 } 702 EXPORT_SYMBOL_GPL(sk_psock_init); 703 704 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 705 { 706 struct sk_psock_link *link; 707 708 spin_lock_bh(&psock->link_lock); 709 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 710 list); 711 if (link) 712 list_del(&link->list); 713 spin_unlock_bh(&psock->link_lock); 714 return link; 715 } 716 717 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 718 { 719 struct sk_msg *msg, *tmp; 720 721 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 722 list_del(&msg->list); 723 sk_msg_free(psock->sk, msg); 724 kfree(msg); 725 } 726 } 727 728 static void __sk_psock_zap_ingress(struct sk_psock *psock) 729 { 730 struct sk_buff *skb; 731 732 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 733 skb_bpf_redirect_clear(skb); 734 kfree_skb(skb); 735 } 736 __sk_psock_purge_ingress_msg(psock); 737 } 738 739 static void sk_psock_link_destroy(struct sk_psock *psock) 740 { 741 struct sk_psock_link *link, *tmp; 742 743 list_for_each_entry_safe(link, tmp, &psock->link, list) { 744 list_del(&link->list); 745 sk_psock_free_link(link); 746 } 747 } 748 749 void sk_psock_stop(struct sk_psock *psock, bool wait) 750 { 751 spin_lock_bh(&psock->ingress_lock); 752 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 753 sk_psock_cork_free(psock); 754 __sk_psock_zap_ingress(psock); 755 spin_unlock_bh(&psock->ingress_lock); 756 757 if (wait) 758 cancel_work_sync(&psock->work); 759 } 760 761 static void sk_psock_done_strp(struct sk_psock *psock); 762 763 static void sk_psock_destroy(struct work_struct *work) 764 { 765 struct sk_psock *psock = container_of(to_rcu_work(work), 766 struct sk_psock, rwork); 767 /* No sk_callback_lock since already detached. */ 768 769 sk_psock_done_strp(psock); 770 771 cancel_work_sync(&psock->work); 772 mutex_destroy(&psock->work_mutex); 773 774 psock_progs_drop(&psock->progs); 775 776 sk_psock_link_destroy(psock); 777 sk_psock_cork_free(psock); 778 779 if (psock->sk_redir) 780 sock_put(psock->sk_redir); 781 sock_put(psock->sk); 782 kfree(psock); 783 } 784 785 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 786 { 787 sk_psock_stop(psock, false); 788 789 write_lock_bh(&sk->sk_callback_lock); 790 sk_psock_restore_proto(sk, psock); 791 rcu_assign_sk_user_data(sk, NULL); 792 if (psock->progs.stream_parser) 793 sk_psock_stop_strp(sk, psock); 794 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 795 sk_psock_stop_verdict(sk, psock); 796 write_unlock_bh(&sk->sk_callback_lock); 797 798 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 799 queue_rcu_work(system_wq, &psock->rwork); 800 } 801 EXPORT_SYMBOL_GPL(sk_psock_drop); 802 803 static int sk_psock_map_verd(int verdict, bool redir) 804 { 805 switch (verdict) { 806 case SK_PASS: 807 return redir ? __SK_REDIRECT : __SK_PASS; 808 case SK_DROP: 809 default: 810 break; 811 } 812 813 return __SK_DROP; 814 } 815 816 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 817 struct sk_msg *msg) 818 { 819 struct bpf_prog *prog; 820 int ret; 821 822 rcu_read_lock(); 823 prog = READ_ONCE(psock->progs.msg_parser); 824 if (unlikely(!prog)) { 825 ret = __SK_PASS; 826 goto out; 827 } 828 829 sk_msg_compute_data_pointers(msg); 830 msg->sk = sk; 831 ret = bpf_prog_run_pin_on_cpu(prog, msg); 832 ret = sk_psock_map_verd(ret, msg->sk_redir); 833 psock->apply_bytes = msg->apply_bytes; 834 if (ret == __SK_REDIRECT) { 835 if (psock->sk_redir) 836 sock_put(psock->sk_redir); 837 psock->sk_redir = msg->sk_redir; 838 if (!psock->sk_redir) { 839 ret = __SK_DROP; 840 goto out; 841 } 842 sock_hold(psock->sk_redir); 843 } 844 out: 845 rcu_read_unlock(); 846 return ret; 847 } 848 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 849 850 static void sk_psock_skb_redirect(struct sk_buff *skb) 851 { 852 struct sk_psock *psock_other; 853 struct sock *sk_other; 854 855 sk_other = skb_bpf_redirect_fetch(skb); 856 /* This error is a buggy BPF program, it returned a redirect 857 * return code, but then didn't set a redirect interface. 858 */ 859 if (unlikely(!sk_other)) { 860 kfree_skb(skb); 861 return; 862 } 863 psock_other = sk_psock(sk_other); 864 /* This error indicates the socket is being torn down or had another 865 * error that caused the pipe to break. We can't send a packet on 866 * a socket that is in this state so we drop the skb. 867 */ 868 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 869 kfree_skb(skb); 870 return; 871 } 872 spin_lock_bh(&psock_other->ingress_lock); 873 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 874 spin_unlock_bh(&psock_other->ingress_lock); 875 kfree_skb(skb); 876 return; 877 } 878 879 skb_queue_tail(&psock_other->ingress_skb, skb); 880 schedule_work(&psock_other->work); 881 spin_unlock_bh(&psock_other->ingress_lock); 882 } 883 884 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, struct sock *sk, int verdict) 885 { 886 switch (verdict) { 887 case __SK_REDIRECT: 888 sk_psock_skb_redirect(skb); 889 break; 890 case __SK_PASS: 891 case __SK_DROP: 892 default: 893 break; 894 } 895 } 896 897 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 898 { 899 struct bpf_prog *prog; 900 int ret = __SK_PASS; 901 902 rcu_read_lock(); 903 prog = READ_ONCE(psock->progs.stream_verdict); 904 if (likely(prog)) { 905 skb->sk = psock->sk; 906 skb_dst_drop(skb); 907 skb_bpf_redirect_clear(skb); 908 ret = bpf_prog_run_pin_on_cpu(prog, skb); 909 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 910 skb->sk = NULL; 911 } 912 sk_psock_tls_verdict_apply(skb, psock->sk, ret); 913 rcu_read_unlock(); 914 return ret; 915 } 916 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 917 918 static void sk_psock_verdict_apply(struct sk_psock *psock, 919 struct sk_buff *skb, int verdict) 920 { 921 struct sock *sk_other; 922 int err = -EIO; 923 924 switch (verdict) { 925 case __SK_PASS: 926 sk_other = psock->sk; 927 if (sock_flag(sk_other, SOCK_DEAD) || 928 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 929 goto out_free; 930 } 931 932 skb_bpf_set_ingress(skb); 933 934 /* If the queue is empty then we can submit directly 935 * into the msg queue. If its not empty we have to 936 * queue work otherwise we may get OOO data. Otherwise, 937 * if sk_psock_skb_ingress errors will be handled by 938 * retrying later from workqueue. 939 */ 940 if (skb_queue_empty(&psock->ingress_skb)) { 941 err = sk_psock_skb_ingress_self(psock, skb); 942 } 943 if (err < 0) { 944 spin_lock_bh(&psock->ingress_lock); 945 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 946 skb_queue_tail(&psock->ingress_skb, skb); 947 schedule_work(&psock->work); 948 } 949 spin_unlock_bh(&psock->ingress_lock); 950 } 951 break; 952 case __SK_REDIRECT: 953 sk_psock_skb_redirect(skb); 954 break; 955 case __SK_DROP: 956 default: 957 out_free: 958 kfree_skb(skb); 959 } 960 } 961 962 static void sk_psock_write_space(struct sock *sk) 963 { 964 struct sk_psock *psock; 965 void (*write_space)(struct sock *sk) = NULL; 966 967 rcu_read_lock(); 968 psock = sk_psock(sk); 969 if (likely(psock)) { 970 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 971 schedule_work(&psock->work); 972 write_space = psock->saved_write_space; 973 } 974 rcu_read_unlock(); 975 if (write_space) 976 write_space(sk); 977 } 978 979 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 980 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 981 { 982 struct sk_psock *psock; 983 struct bpf_prog *prog; 984 int ret = __SK_DROP; 985 struct sock *sk; 986 987 rcu_read_lock(); 988 sk = strp->sk; 989 psock = sk_psock(sk); 990 if (unlikely(!psock)) { 991 kfree_skb(skb); 992 goto out; 993 } 994 prog = READ_ONCE(psock->progs.stream_verdict); 995 if (likely(prog)) { 996 skb->sk = sk; 997 skb_dst_drop(skb); 998 skb_bpf_redirect_clear(skb); 999 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1000 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1001 skb->sk = NULL; 1002 } 1003 sk_psock_verdict_apply(psock, skb, ret); 1004 out: 1005 rcu_read_unlock(); 1006 } 1007 1008 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1009 { 1010 return err; 1011 } 1012 1013 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1014 { 1015 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1016 struct bpf_prog *prog; 1017 int ret = skb->len; 1018 1019 rcu_read_lock(); 1020 prog = READ_ONCE(psock->progs.stream_parser); 1021 if (likely(prog)) { 1022 skb->sk = psock->sk; 1023 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1024 skb->sk = NULL; 1025 } 1026 rcu_read_unlock(); 1027 return ret; 1028 } 1029 1030 /* Called with socket lock held. */ 1031 static void sk_psock_strp_data_ready(struct sock *sk) 1032 { 1033 struct sk_psock *psock; 1034 1035 rcu_read_lock(); 1036 psock = sk_psock(sk); 1037 if (likely(psock)) { 1038 if (tls_sw_has_ctx_rx(sk)) { 1039 psock->saved_data_ready(sk); 1040 } else { 1041 write_lock_bh(&sk->sk_callback_lock); 1042 strp_data_ready(&psock->strp); 1043 write_unlock_bh(&sk->sk_callback_lock); 1044 } 1045 } 1046 rcu_read_unlock(); 1047 } 1048 1049 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1050 { 1051 static const struct strp_callbacks cb = { 1052 .rcv_msg = sk_psock_strp_read, 1053 .read_sock_done = sk_psock_strp_read_done, 1054 .parse_msg = sk_psock_strp_parse, 1055 }; 1056 1057 return strp_init(&psock->strp, sk, &cb); 1058 } 1059 1060 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1061 { 1062 if (psock->saved_data_ready) 1063 return; 1064 1065 psock->saved_data_ready = sk->sk_data_ready; 1066 sk->sk_data_ready = sk_psock_strp_data_ready; 1067 sk->sk_write_space = sk_psock_write_space; 1068 } 1069 1070 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1071 { 1072 if (!psock->saved_data_ready) 1073 return; 1074 1075 sk->sk_data_ready = psock->saved_data_ready; 1076 psock->saved_data_ready = NULL; 1077 strp_stop(&psock->strp); 1078 } 1079 1080 static void sk_psock_done_strp(struct sk_psock *psock) 1081 { 1082 /* Parser has been stopped */ 1083 if (psock->progs.stream_parser) 1084 strp_done(&psock->strp); 1085 } 1086 #else 1087 static void sk_psock_done_strp(struct sk_psock *psock) 1088 { 1089 } 1090 #endif /* CONFIG_BPF_STREAM_PARSER */ 1091 1092 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb, 1093 unsigned int offset, size_t orig_len) 1094 { 1095 struct sock *sk = (struct sock *)desc->arg.data; 1096 struct sk_psock *psock; 1097 struct bpf_prog *prog; 1098 int ret = __SK_DROP; 1099 int len = skb->len; 1100 1101 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */ 1102 skb = skb_clone(skb, GFP_ATOMIC); 1103 if (!skb) { 1104 desc->error = -ENOMEM; 1105 return 0; 1106 } 1107 1108 rcu_read_lock(); 1109 psock = sk_psock(sk); 1110 if (unlikely(!psock)) { 1111 len = 0; 1112 kfree_skb(skb); 1113 goto out; 1114 } 1115 prog = READ_ONCE(psock->progs.stream_verdict); 1116 if (!prog) 1117 prog = READ_ONCE(psock->progs.skb_verdict); 1118 if (likely(prog)) { 1119 skb->sk = sk; 1120 skb_dst_drop(skb); 1121 skb_bpf_redirect_clear(skb); 1122 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1123 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1124 skb->sk = NULL; 1125 } 1126 sk_psock_verdict_apply(psock, skb, ret); 1127 out: 1128 rcu_read_unlock(); 1129 return len; 1130 } 1131 1132 static void sk_psock_verdict_data_ready(struct sock *sk) 1133 { 1134 struct socket *sock = sk->sk_socket; 1135 read_descriptor_t desc; 1136 1137 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock)) 1138 return; 1139 1140 desc.arg.data = sk; 1141 desc.error = 0; 1142 desc.count = 1; 1143 1144 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv); 1145 } 1146 1147 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1148 { 1149 if (psock->saved_data_ready) 1150 return; 1151 1152 psock->saved_data_ready = sk->sk_data_ready; 1153 sk->sk_data_ready = sk_psock_verdict_data_ready; 1154 sk->sk_write_space = sk_psock_write_space; 1155 } 1156 1157 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1158 { 1159 if (!psock->saved_data_ready) 1160 return; 1161 1162 sk->sk_data_ready = psock->saved_data_ready; 1163 psock->saved_data_ready = NULL; 1164 } 1165