xref: /linux/net/core/skmsg.c (revision 846d479224537185768276dd4a84c1bda2bbcd4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14 	if (msg->sg.end > msg->sg.start &&
15 	    elem_first_coalesce < msg->sg.end)
16 		return true;
17 
18 	if (msg->sg.end < msg->sg.start &&
19 	    (elem_first_coalesce > msg->sg.start ||
20 	     elem_first_coalesce < msg->sg.end))
21 		return true;
22 
23 	return false;
24 }
25 
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 		 int elem_first_coalesce)
28 {
29 	struct page_frag *pfrag = sk_page_frag(sk);
30 	u32 osize = msg->sg.size;
31 	int ret = 0;
32 
33 	len -= msg->sg.size;
34 	while (len > 0) {
35 		struct scatterlist *sge;
36 		u32 orig_offset;
37 		int use, i;
38 
39 		if (!sk_page_frag_refill(sk, pfrag)) {
40 			ret = -ENOMEM;
41 			goto msg_trim;
42 		}
43 
44 		orig_offset = pfrag->offset;
45 		use = min_t(int, len, pfrag->size - orig_offset);
46 		if (!sk_wmem_schedule(sk, use)) {
47 			ret = -ENOMEM;
48 			goto msg_trim;
49 		}
50 
51 		i = msg->sg.end;
52 		sk_msg_iter_var_prev(i);
53 		sge = &msg->sg.data[i];
54 
55 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56 		    sg_page(sge) == pfrag->page &&
57 		    sge->offset + sge->length == orig_offset) {
58 			sge->length += use;
59 		} else {
60 			if (sk_msg_full(msg)) {
61 				ret = -ENOSPC;
62 				break;
63 			}
64 
65 			sge = &msg->sg.data[msg->sg.end];
66 			sg_unmark_end(sge);
67 			sg_set_page(sge, pfrag->page, use, orig_offset);
68 			get_page(pfrag->page);
69 			sk_msg_iter_next(msg, end);
70 		}
71 
72 		sk_mem_charge(sk, use);
73 		msg->sg.size += use;
74 		pfrag->offset += use;
75 		len -= use;
76 	}
77 
78 	return ret;
79 
80 msg_trim:
81 	sk_msg_trim(sk, msg, osize);
82 	return ret;
83 }
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
85 
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
87 		 u32 off, u32 len)
88 {
89 	int i = src->sg.start;
90 	struct scatterlist *sge = sk_msg_elem(src, i);
91 	struct scatterlist *sgd = NULL;
92 	u32 sge_len, sge_off;
93 
94 	while (off) {
95 		if (sge->length > off)
96 			break;
97 		off -= sge->length;
98 		sk_msg_iter_var_next(i);
99 		if (i == src->sg.end && off)
100 			return -ENOSPC;
101 		sge = sk_msg_elem(src, i);
102 	}
103 
104 	while (len) {
105 		sge_len = sge->length - off;
106 		if (sge_len > len)
107 			sge_len = len;
108 
109 		if (dst->sg.end)
110 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
111 
112 		if (sgd &&
113 		    (sg_page(sge) == sg_page(sgd)) &&
114 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115 			sgd->length += sge_len;
116 			dst->sg.size += sge_len;
117 		} else if (!sk_msg_full(dst)) {
118 			sge_off = sge->offset + off;
119 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
120 		} else {
121 			return -ENOSPC;
122 		}
123 
124 		off = 0;
125 		len -= sge_len;
126 		sk_mem_charge(sk, sge_len);
127 		sk_msg_iter_var_next(i);
128 		if (i == src->sg.end && len)
129 			return -ENOSPC;
130 		sge = sk_msg_elem(src, i);
131 	}
132 
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
136 
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
138 {
139 	int i = msg->sg.start;
140 
141 	do {
142 		struct scatterlist *sge = sk_msg_elem(msg, i);
143 
144 		if (bytes < sge->length) {
145 			sge->length -= bytes;
146 			sge->offset += bytes;
147 			sk_mem_uncharge(sk, bytes);
148 			break;
149 		}
150 
151 		sk_mem_uncharge(sk, sge->length);
152 		bytes -= sge->length;
153 		sge->length = 0;
154 		sge->offset = 0;
155 		sk_msg_iter_var_next(i);
156 	} while (bytes && i != msg->sg.end);
157 	msg->sg.start = i;
158 }
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
160 
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
162 {
163 	int i = msg->sg.start;
164 
165 	do {
166 		struct scatterlist *sge = &msg->sg.data[i];
167 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
168 
169 		sk_mem_uncharge(sk, uncharge);
170 		bytes -= uncharge;
171 		sk_msg_iter_var_next(i);
172 	} while (i != msg->sg.end);
173 }
174 EXPORT_SYMBOL_GPL(sk_msg_return);
175 
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
177 			    bool charge)
178 {
179 	struct scatterlist *sge = sk_msg_elem(msg, i);
180 	u32 len = sge->length;
181 
182 	/* When the skb owns the memory we free it from consume_skb path. */
183 	if (!msg->skb) {
184 		if (charge)
185 			sk_mem_uncharge(sk, len);
186 		put_page(sg_page(sge));
187 	}
188 	memset(sge, 0, sizeof(*sge));
189 	return len;
190 }
191 
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
193 			 bool charge)
194 {
195 	struct scatterlist *sge = sk_msg_elem(msg, i);
196 	int freed = 0;
197 
198 	while (msg->sg.size) {
199 		msg->sg.size -= sge->length;
200 		freed += sk_msg_free_elem(sk, msg, i, charge);
201 		sk_msg_iter_var_next(i);
202 		sk_msg_check_to_free(msg, i, msg->sg.size);
203 		sge = sk_msg_elem(msg, i);
204 	}
205 	consume_skb(msg->skb);
206 	sk_msg_init(msg);
207 	return freed;
208 }
209 
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
211 {
212 	return __sk_msg_free(sk, msg, msg->sg.start, false);
213 }
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
215 
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
217 {
218 	return __sk_msg_free(sk, msg, msg->sg.start, true);
219 }
220 EXPORT_SYMBOL_GPL(sk_msg_free);
221 
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223 				  u32 bytes, bool charge)
224 {
225 	struct scatterlist *sge;
226 	u32 i = msg->sg.start;
227 
228 	while (bytes) {
229 		sge = sk_msg_elem(msg, i);
230 		if (!sge->length)
231 			break;
232 		if (bytes < sge->length) {
233 			if (charge)
234 				sk_mem_uncharge(sk, bytes);
235 			sge->length -= bytes;
236 			sge->offset += bytes;
237 			msg->sg.size -= bytes;
238 			break;
239 		}
240 
241 		msg->sg.size -= sge->length;
242 		bytes -= sge->length;
243 		sk_msg_free_elem(sk, msg, i, charge);
244 		sk_msg_iter_var_next(i);
245 		sk_msg_check_to_free(msg, i, bytes);
246 	}
247 	msg->sg.start = i;
248 }
249 
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
251 {
252 	__sk_msg_free_partial(sk, msg, bytes, true);
253 }
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
255 
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
257 				  u32 bytes)
258 {
259 	__sk_msg_free_partial(sk, msg, bytes, false);
260 }
261 
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
263 {
264 	int trim = msg->sg.size - len;
265 	u32 i = msg->sg.end;
266 
267 	if (trim <= 0) {
268 		WARN_ON(trim < 0);
269 		return;
270 	}
271 
272 	sk_msg_iter_var_prev(i);
273 	msg->sg.size = len;
274 	while (msg->sg.data[i].length &&
275 	       trim >= msg->sg.data[i].length) {
276 		trim -= msg->sg.data[i].length;
277 		sk_msg_free_elem(sk, msg, i, true);
278 		sk_msg_iter_var_prev(i);
279 		if (!trim)
280 			goto out;
281 	}
282 
283 	msg->sg.data[i].length -= trim;
284 	sk_mem_uncharge(sk, trim);
285 	/* Adjust copybreak if it falls into the trimmed part of last buf */
286 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287 		msg->sg.copybreak = msg->sg.data[i].length;
288 out:
289 	sk_msg_iter_var_next(i);
290 	msg->sg.end = i;
291 
292 	/* If we trim data a full sg elem before curr pointer update
293 	 * copybreak and current so that any future copy operations
294 	 * start at new copy location.
295 	 * However trimed data that has not yet been used in a copy op
296 	 * does not require an update.
297 	 */
298 	if (!msg->sg.size) {
299 		msg->sg.curr = msg->sg.start;
300 		msg->sg.copybreak = 0;
301 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303 		sk_msg_iter_var_prev(i);
304 		msg->sg.curr = i;
305 		msg->sg.copybreak = msg->sg.data[i].length;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
309 
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311 			      struct sk_msg *msg, u32 bytes)
312 {
313 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314 	const int to_max_pages = MAX_MSG_FRAGS;
315 	struct page *pages[MAX_MSG_FRAGS];
316 	ssize_t orig, copied, use, offset;
317 
318 	orig = msg->sg.size;
319 	while (bytes > 0) {
320 		i = 0;
321 		maxpages = to_max_pages - num_elems;
322 		if (maxpages == 0) {
323 			ret = -EFAULT;
324 			goto out;
325 		}
326 
327 		copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
328 					    &offset);
329 		if (copied <= 0) {
330 			ret = -EFAULT;
331 			goto out;
332 		}
333 
334 		bytes -= copied;
335 		msg->sg.size += copied;
336 
337 		while (copied) {
338 			use = min_t(int, copied, PAGE_SIZE - offset);
339 			sg_set_page(&msg->sg.data[msg->sg.end],
340 				    pages[i], use, offset);
341 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
342 			sk_mem_charge(sk, use);
343 
344 			offset = 0;
345 			copied -= use;
346 			sk_msg_iter_next(msg, end);
347 			num_elems++;
348 			i++;
349 		}
350 		/* When zerocopy is mixed with sk_msg_*copy* operations we
351 		 * may have a copybreak set in this case clear and prefer
352 		 * zerocopy remainder when possible.
353 		 */
354 		msg->sg.copybreak = 0;
355 		msg->sg.curr = msg->sg.end;
356 	}
357 out:
358 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
359 	 * also needs to be cleared.
360 	 */
361 	if (ret)
362 		iov_iter_revert(from, msg->sg.size - orig);
363 	return ret;
364 }
365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
366 
367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
368 			     struct sk_msg *msg, u32 bytes)
369 {
370 	int ret = -ENOSPC, i = msg->sg.curr;
371 	struct scatterlist *sge;
372 	u32 copy, buf_size;
373 	void *to;
374 
375 	do {
376 		sge = sk_msg_elem(msg, i);
377 		/* This is possible if a trim operation shrunk the buffer */
378 		if (msg->sg.copybreak >= sge->length) {
379 			msg->sg.copybreak = 0;
380 			sk_msg_iter_var_next(i);
381 			if (i == msg->sg.end)
382 				break;
383 			sge = sk_msg_elem(msg, i);
384 		}
385 
386 		buf_size = sge->length - msg->sg.copybreak;
387 		copy = (buf_size > bytes) ? bytes : buf_size;
388 		to = sg_virt(sge) + msg->sg.copybreak;
389 		msg->sg.copybreak += copy;
390 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
391 			ret = copy_from_iter_nocache(to, copy, from);
392 		else
393 			ret = copy_from_iter(to, copy, from);
394 		if (ret != copy) {
395 			ret = -EFAULT;
396 			goto out;
397 		}
398 		bytes -= copy;
399 		if (!bytes)
400 			break;
401 		msg->sg.copybreak = 0;
402 		sk_msg_iter_var_next(i);
403 	} while (i != msg->sg.end);
404 out:
405 	msg->sg.curr = i;
406 	return ret;
407 }
408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
409 
410 /* Receive sk_msg from psock->ingress_msg to @msg. */
411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
412 		   int len, int flags)
413 {
414 	struct iov_iter *iter = &msg->msg_iter;
415 	int peek = flags & MSG_PEEK;
416 	struct sk_msg *msg_rx;
417 	int i, copied = 0;
418 
419 	msg_rx = sk_psock_peek_msg(psock);
420 	while (copied != len) {
421 		struct scatterlist *sge;
422 
423 		if (unlikely(!msg_rx))
424 			break;
425 
426 		i = msg_rx->sg.start;
427 		do {
428 			struct page *page;
429 			int copy;
430 
431 			sge = sk_msg_elem(msg_rx, i);
432 			copy = sge->length;
433 			page = sg_page(sge);
434 			if (copied + copy > len)
435 				copy = len - copied;
436 			copy = copy_page_to_iter(page, sge->offset, copy, iter);
437 			if (!copy) {
438 				copied = copied ? copied : -EFAULT;
439 				goto out;
440 			}
441 
442 			copied += copy;
443 			if (likely(!peek)) {
444 				sge->offset += copy;
445 				sge->length -= copy;
446 				if (!msg_rx->skb)
447 					sk_mem_uncharge(sk, copy);
448 				msg_rx->sg.size -= copy;
449 
450 				if (!sge->length) {
451 					sk_msg_iter_var_next(i);
452 					if (!msg_rx->skb)
453 						put_page(page);
454 				}
455 			} else {
456 				/* Lets not optimize peek case if copy_page_to_iter
457 				 * didn't copy the entire length lets just break.
458 				 */
459 				if (copy != sge->length)
460 					goto out;
461 				sk_msg_iter_var_next(i);
462 			}
463 
464 			if (copied == len)
465 				break;
466 		} while ((i != msg_rx->sg.end) && !sg_is_last(sge));
467 
468 		if (unlikely(peek)) {
469 			msg_rx = sk_psock_next_msg(psock, msg_rx);
470 			if (!msg_rx)
471 				break;
472 			continue;
473 		}
474 
475 		msg_rx->sg.start = i;
476 		if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
477 			msg_rx = sk_psock_dequeue_msg(psock);
478 			kfree_sk_msg(msg_rx);
479 		}
480 		msg_rx = sk_psock_peek_msg(psock);
481 	}
482 out:
483 	if (psock->work_state.skb && copied > 0)
484 		schedule_work(&psock->work);
485 	return copied;
486 }
487 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
488 
489 bool sk_msg_is_readable(struct sock *sk)
490 {
491 	struct sk_psock *psock;
492 	bool empty = true;
493 
494 	rcu_read_lock();
495 	psock = sk_psock(sk);
496 	if (likely(psock))
497 		empty = list_empty(&psock->ingress_msg);
498 	rcu_read_unlock();
499 	return !empty;
500 }
501 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
502 
503 static struct sk_msg *alloc_sk_msg(void)
504 {
505 	struct sk_msg *msg;
506 
507 	msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
508 	if (unlikely(!msg))
509 		return NULL;
510 	sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
511 	return msg;
512 }
513 
514 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
515 						  struct sk_buff *skb)
516 {
517 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
518 		return NULL;
519 
520 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
521 		return NULL;
522 
523 	return alloc_sk_msg();
524 }
525 
526 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
527 					u32 off, u32 len,
528 					struct sk_psock *psock,
529 					struct sock *sk,
530 					struct sk_msg *msg)
531 {
532 	int num_sge, copied;
533 
534 	num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
535 	if (num_sge < 0) {
536 		/* skb linearize may fail with ENOMEM, but lets simply try again
537 		 * later if this happens. Under memory pressure we don't want to
538 		 * drop the skb. We need to linearize the skb so that the mapping
539 		 * in skb_to_sgvec can not error.
540 		 */
541 		if (skb_linearize(skb))
542 			return -EAGAIN;
543 
544 		num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
545 		if (unlikely(num_sge < 0))
546 			return num_sge;
547 	}
548 
549 	copied = len;
550 	msg->sg.start = 0;
551 	msg->sg.size = copied;
552 	msg->sg.end = num_sge;
553 	msg->skb = skb;
554 
555 	sk_psock_queue_msg(psock, msg);
556 	sk_psock_data_ready(sk, psock);
557 	return copied;
558 }
559 
560 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
561 				     u32 off, u32 len);
562 
563 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
564 				u32 off, u32 len)
565 {
566 	struct sock *sk = psock->sk;
567 	struct sk_msg *msg;
568 	int err;
569 
570 	/* If we are receiving on the same sock skb->sk is already assigned,
571 	 * skip memory accounting and owner transition seeing it already set
572 	 * correctly.
573 	 */
574 	if (unlikely(skb->sk == sk))
575 		return sk_psock_skb_ingress_self(psock, skb, off, len);
576 	msg = sk_psock_create_ingress_msg(sk, skb);
577 	if (!msg)
578 		return -EAGAIN;
579 
580 	/* This will transition ownership of the data from the socket where
581 	 * the BPF program was run initiating the redirect to the socket
582 	 * we will eventually receive this data on. The data will be released
583 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
584 	 * into user buffers.
585 	 */
586 	skb_set_owner_r(skb, sk);
587 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
588 	if (err < 0)
589 		kfree(msg);
590 	return err;
591 }
592 
593 /* Puts an skb on the ingress queue of the socket already assigned to the
594  * skb. In this case we do not need to check memory limits or skb_set_owner_r
595  * because the skb is already accounted for here.
596  */
597 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
598 				     u32 off, u32 len)
599 {
600 	struct sk_msg *msg = alloc_sk_msg();
601 	struct sock *sk = psock->sk;
602 	int err;
603 
604 	if (unlikely(!msg))
605 		return -EAGAIN;
606 	skb_set_owner_r(skb, sk);
607 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
608 	if (err < 0)
609 		kfree(msg);
610 	return err;
611 }
612 
613 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
614 			       u32 off, u32 len, bool ingress)
615 {
616 	if (!ingress) {
617 		if (!sock_writeable(psock->sk))
618 			return -EAGAIN;
619 		return skb_send_sock(psock->sk, skb, off, len);
620 	}
621 	return sk_psock_skb_ingress(psock, skb, off, len);
622 }
623 
624 static void sk_psock_skb_state(struct sk_psock *psock,
625 			       struct sk_psock_work_state *state,
626 			       struct sk_buff *skb,
627 			       int len, int off)
628 {
629 	spin_lock_bh(&psock->ingress_lock);
630 	if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
631 		state->skb = skb;
632 		state->len = len;
633 		state->off = off;
634 	} else {
635 		sock_drop(psock->sk, skb);
636 	}
637 	spin_unlock_bh(&psock->ingress_lock);
638 }
639 
640 static void sk_psock_backlog(struct work_struct *work)
641 {
642 	struct sk_psock *psock = container_of(work, struct sk_psock, work);
643 	struct sk_psock_work_state *state = &psock->work_state;
644 	struct sk_buff *skb = NULL;
645 	bool ingress;
646 	u32 len, off;
647 	int ret;
648 
649 	mutex_lock(&psock->work_mutex);
650 	if (unlikely(state->skb)) {
651 		spin_lock_bh(&psock->ingress_lock);
652 		skb = state->skb;
653 		len = state->len;
654 		off = state->off;
655 		state->skb = NULL;
656 		spin_unlock_bh(&psock->ingress_lock);
657 	}
658 	if (skb)
659 		goto start;
660 
661 	while ((skb = skb_dequeue(&psock->ingress_skb))) {
662 		len = skb->len;
663 		off = 0;
664 		if (skb_bpf_strparser(skb)) {
665 			struct strp_msg *stm = strp_msg(skb);
666 
667 			off = stm->offset;
668 			len = stm->full_len;
669 		}
670 start:
671 		ingress = skb_bpf_ingress(skb);
672 		skb_bpf_redirect_clear(skb);
673 		do {
674 			ret = -EIO;
675 			if (!sock_flag(psock->sk, SOCK_DEAD))
676 				ret = sk_psock_handle_skb(psock, skb, off,
677 							  len, ingress);
678 			if (ret <= 0) {
679 				if (ret == -EAGAIN) {
680 					sk_psock_skb_state(psock, state, skb,
681 							   len, off);
682 					goto end;
683 				}
684 				/* Hard errors break pipe and stop xmit. */
685 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
686 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
687 				sock_drop(psock->sk, skb);
688 				goto end;
689 			}
690 			off += ret;
691 			len -= ret;
692 		} while (len);
693 
694 		if (!ingress)
695 			kfree_skb(skb);
696 	}
697 end:
698 	mutex_unlock(&psock->work_mutex);
699 }
700 
701 struct sk_psock *sk_psock_init(struct sock *sk, int node)
702 {
703 	struct sk_psock *psock;
704 	struct proto *prot;
705 
706 	write_lock_bh(&sk->sk_callback_lock);
707 
708 	if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
709 		psock = ERR_PTR(-EINVAL);
710 		goto out;
711 	}
712 
713 	if (sk->sk_user_data) {
714 		psock = ERR_PTR(-EBUSY);
715 		goto out;
716 	}
717 
718 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
719 	if (!psock) {
720 		psock = ERR_PTR(-ENOMEM);
721 		goto out;
722 	}
723 
724 	prot = READ_ONCE(sk->sk_prot);
725 	psock->sk = sk;
726 	psock->eval = __SK_NONE;
727 	psock->sk_proto = prot;
728 	psock->saved_unhash = prot->unhash;
729 	psock->saved_destroy = prot->destroy;
730 	psock->saved_close = prot->close;
731 	psock->saved_write_space = sk->sk_write_space;
732 
733 	INIT_LIST_HEAD(&psock->link);
734 	spin_lock_init(&psock->link_lock);
735 
736 	INIT_WORK(&psock->work, sk_psock_backlog);
737 	mutex_init(&psock->work_mutex);
738 	INIT_LIST_HEAD(&psock->ingress_msg);
739 	spin_lock_init(&psock->ingress_lock);
740 	skb_queue_head_init(&psock->ingress_skb);
741 
742 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
743 	refcount_set(&psock->refcnt, 1);
744 
745 	__rcu_assign_sk_user_data_with_flags(sk, psock,
746 					     SK_USER_DATA_NOCOPY |
747 					     SK_USER_DATA_PSOCK);
748 	sock_hold(sk);
749 
750 out:
751 	write_unlock_bh(&sk->sk_callback_lock);
752 	return psock;
753 }
754 EXPORT_SYMBOL_GPL(sk_psock_init);
755 
756 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
757 {
758 	struct sk_psock_link *link;
759 
760 	spin_lock_bh(&psock->link_lock);
761 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
762 					list);
763 	if (link)
764 		list_del(&link->list);
765 	spin_unlock_bh(&psock->link_lock);
766 	return link;
767 }
768 
769 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
770 {
771 	struct sk_msg *msg, *tmp;
772 
773 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
774 		list_del(&msg->list);
775 		sk_msg_free(psock->sk, msg);
776 		kfree(msg);
777 	}
778 }
779 
780 static void __sk_psock_zap_ingress(struct sk_psock *psock)
781 {
782 	struct sk_buff *skb;
783 
784 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
785 		skb_bpf_redirect_clear(skb);
786 		sock_drop(psock->sk, skb);
787 	}
788 	kfree_skb(psock->work_state.skb);
789 	/* We null the skb here to ensure that calls to sk_psock_backlog
790 	 * do not pick up the free'd skb.
791 	 */
792 	psock->work_state.skb = NULL;
793 	__sk_psock_purge_ingress_msg(psock);
794 }
795 
796 static void sk_psock_link_destroy(struct sk_psock *psock)
797 {
798 	struct sk_psock_link *link, *tmp;
799 
800 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
801 		list_del(&link->list);
802 		sk_psock_free_link(link);
803 	}
804 }
805 
806 void sk_psock_stop(struct sk_psock *psock, bool wait)
807 {
808 	spin_lock_bh(&psock->ingress_lock);
809 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
810 	sk_psock_cork_free(psock);
811 	__sk_psock_zap_ingress(psock);
812 	spin_unlock_bh(&psock->ingress_lock);
813 
814 	if (wait)
815 		cancel_work_sync(&psock->work);
816 }
817 
818 static void sk_psock_done_strp(struct sk_psock *psock);
819 
820 static void sk_psock_destroy(struct work_struct *work)
821 {
822 	struct sk_psock *psock = container_of(to_rcu_work(work),
823 					      struct sk_psock, rwork);
824 	/* No sk_callback_lock since already detached. */
825 
826 	sk_psock_done_strp(psock);
827 
828 	cancel_work_sync(&psock->work);
829 	mutex_destroy(&psock->work_mutex);
830 
831 	psock_progs_drop(&psock->progs);
832 
833 	sk_psock_link_destroy(psock);
834 	sk_psock_cork_free(psock);
835 
836 	if (psock->sk_redir)
837 		sock_put(psock->sk_redir);
838 	sock_put(psock->sk);
839 	kfree(psock);
840 }
841 
842 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
843 {
844 	write_lock_bh(&sk->sk_callback_lock);
845 	sk_psock_restore_proto(sk, psock);
846 	rcu_assign_sk_user_data(sk, NULL);
847 	if (psock->progs.stream_parser)
848 		sk_psock_stop_strp(sk, psock);
849 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
850 		sk_psock_stop_verdict(sk, psock);
851 	write_unlock_bh(&sk->sk_callback_lock);
852 
853 	sk_psock_stop(psock, false);
854 
855 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
856 	queue_rcu_work(system_wq, &psock->rwork);
857 }
858 EXPORT_SYMBOL_GPL(sk_psock_drop);
859 
860 static int sk_psock_map_verd(int verdict, bool redir)
861 {
862 	switch (verdict) {
863 	case SK_PASS:
864 		return redir ? __SK_REDIRECT : __SK_PASS;
865 	case SK_DROP:
866 	default:
867 		break;
868 	}
869 
870 	return __SK_DROP;
871 }
872 
873 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
874 			 struct sk_msg *msg)
875 {
876 	struct bpf_prog *prog;
877 	int ret;
878 
879 	rcu_read_lock();
880 	prog = READ_ONCE(psock->progs.msg_parser);
881 	if (unlikely(!prog)) {
882 		ret = __SK_PASS;
883 		goto out;
884 	}
885 
886 	sk_msg_compute_data_pointers(msg);
887 	msg->sk = sk;
888 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
889 	ret = sk_psock_map_verd(ret, msg->sk_redir);
890 	psock->apply_bytes = msg->apply_bytes;
891 	if (ret == __SK_REDIRECT) {
892 		if (psock->sk_redir)
893 			sock_put(psock->sk_redir);
894 		psock->sk_redir = msg->sk_redir;
895 		if (!psock->sk_redir) {
896 			ret = __SK_DROP;
897 			goto out;
898 		}
899 		sock_hold(psock->sk_redir);
900 	}
901 out:
902 	rcu_read_unlock();
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
906 
907 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
908 {
909 	struct sk_psock *psock_other;
910 	struct sock *sk_other;
911 
912 	sk_other = skb_bpf_redirect_fetch(skb);
913 	/* This error is a buggy BPF program, it returned a redirect
914 	 * return code, but then didn't set a redirect interface.
915 	 */
916 	if (unlikely(!sk_other)) {
917 		skb_bpf_redirect_clear(skb);
918 		sock_drop(from->sk, skb);
919 		return -EIO;
920 	}
921 	psock_other = sk_psock(sk_other);
922 	/* This error indicates the socket is being torn down or had another
923 	 * error that caused the pipe to break. We can't send a packet on
924 	 * a socket that is in this state so we drop the skb.
925 	 */
926 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
927 		skb_bpf_redirect_clear(skb);
928 		sock_drop(from->sk, skb);
929 		return -EIO;
930 	}
931 	spin_lock_bh(&psock_other->ingress_lock);
932 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
933 		spin_unlock_bh(&psock_other->ingress_lock);
934 		skb_bpf_redirect_clear(skb);
935 		sock_drop(from->sk, skb);
936 		return -EIO;
937 	}
938 
939 	skb_queue_tail(&psock_other->ingress_skb, skb);
940 	schedule_work(&psock_other->work);
941 	spin_unlock_bh(&psock_other->ingress_lock);
942 	return 0;
943 }
944 
945 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
946 				       struct sk_psock *from, int verdict)
947 {
948 	switch (verdict) {
949 	case __SK_REDIRECT:
950 		sk_psock_skb_redirect(from, skb);
951 		break;
952 	case __SK_PASS:
953 	case __SK_DROP:
954 	default:
955 		break;
956 	}
957 }
958 
959 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
960 {
961 	struct bpf_prog *prog;
962 	int ret = __SK_PASS;
963 
964 	rcu_read_lock();
965 	prog = READ_ONCE(psock->progs.stream_verdict);
966 	if (likely(prog)) {
967 		skb->sk = psock->sk;
968 		skb_dst_drop(skb);
969 		skb_bpf_redirect_clear(skb);
970 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
971 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
972 		skb->sk = NULL;
973 	}
974 	sk_psock_tls_verdict_apply(skb, psock, ret);
975 	rcu_read_unlock();
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
979 
980 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
981 				  int verdict)
982 {
983 	struct sock *sk_other;
984 	int err = 0;
985 	u32 len, off;
986 
987 	switch (verdict) {
988 	case __SK_PASS:
989 		err = -EIO;
990 		sk_other = psock->sk;
991 		if (sock_flag(sk_other, SOCK_DEAD) ||
992 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
993 			skb_bpf_redirect_clear(skb);
994 			goto out_free;
995 		}
996 
997 		skb_bpf_set_ingress(skb);
998 
999 		/* If the queue is empty then we can submit directly
1000 		 * into the msg queue. If its not empty we have to
1001 		 * queue work otherwise we may get OOO data. Otherwise,
1002 		 * if sk_psock_skb_ingress errors will be handled by
1003 		 * retrying later from workqueue.
1004 		 */
1005 		if (skb_queue_empty(&psock->ingress_skb)) {
1006 			len = skb->len;
1007 			off = 0;
1008 			if (skb_bpf_strparser(skb)) {
1009 				struct strp_msg *stm = strp_msg(skb);
1010 
1011 				off = stm->offset;
1012 				len = stm->full_len;
1013 			}
1014 			err = sk_psock_skb_ingress_self(psock, skb, off, len);
1015 		}
1016 		if (err < 0) {
1017 			spin_lock_bh(&psock->ingress_lock);
1018 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1019 				skb_queue_tail(&psock->ingress_skb, skb);
1020 				schedule_work(&psock->work);
1021 				err = 0;
1022 			}
1023 			spin_unlock_bh(&psock->ingress_lock);
1024 			if (err < 0) {
1025 				skb_bpf_redirect_clear(skb);
1026 				goto out_free;
1027 			}
1028 		}
1029 		break;
1030 	case __SK_REDIRECT:
1031 		err = sk_psock_skb_redirect(psock, skb);
1032 		break;
1033 	case __SK_DROP:
1034 	default:
1035 out_free:
1036 		sock_drop(psock->sk, skb);
1037 	}
1038 
1039 	return err;
1040 }
1041 
1042 static void sk_psock_write_space(struct sock *sk)
1043 {
1044 	struct sk_psock *psock;
1045 	void (*write_space)(struct sock *sk) = NULL;
1046 
1047 	rcu_read_lock();
1048 	psock = sk_psock(sk);
1049 	if (likely(psock)) {
1050 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1051 			schedule_work(&psock->work);
1052 		write_space = psock->saved_write_space;
1053 	}
1054 	rcu_read_unlock();
1055 	if (write_space)
1056 		write_space(sk);
1057 }
1058 
1059 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1060 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1061 {
1062 	struct sk_psock *psock;
1063 	struct bpf_prog *prog;
1064 	int ret = __SK_DROP;
1065 	struct sock *sk;
1066 
1067 	rcu_read_lock();
1068 	sk = strp->sk;
1069 	psock = sk_psock(sk);
1070 	if (unlikely(!psock)) {
1071 		sock_drop(sk, skb);
1072 		goto out;
1073 	}
1074 	prog = READ_ONCE(psock->progs.stream_verdict);
1075 	if (likely(prog)) {
1076 		skb->sk = sk;
1077 		skb_dst_drop(skb);
1078 		skb_bpf_redirect_clear(skb);
1079 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1080 		if (ret == SK_PASS)
1081 			skb_bpf_set_strparser(skb);
1082 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1083 		skb->sk = NULL;
1084 	}
1085 	sk_psock_verdict_apply(psock, skb, ret);
1086 out:
1087 	rcu_read_unlock();
1088 }
1089 
1090 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1091 {
1092 	return err;
1093 }
1094 
1095 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1096 {
1097 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1098 	struct bpf_prog *prog;
1099 	int ret = skb->len;
1100 
1101 	rcu_read_lock();
1102 	prog = READ_ONCE(psock->progs.stream_parser);
1103 	if (likely(prog)) {
1104 		skb->sk = psock->sk;
1105 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1106 		skb->sk = NULL;
1107 	}
1108 	rcu_read_unlock();
1109 	return ret;
1110 }
1111 
1112 /* Called with socket lock held. */
1113 static void sk_psock_strp_data_ready(struct sock *sk)
1114 {
1115 	struct sk_psock *psock;
1116 
1117 	rcu_read_lock();
1118 	psock = sk_psock(sk);
1119 	if (likely(psock)) {
1120 		if (tls_sw_has_ctx_rx(sk)) {
1121 			psock->saved_data_ready(sk);
1122 		} else {
1123 			write_lock_bh(&sk->sk_callback_lock);
1124 			strp_data_ready(&psock->strp);
1125 			write_unlock_bh(&sk->sk_callback_lock);
1126 		}
1127 	}
1128 	rcu_read_unlock();
1129 }
1130 
1131 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1132 {
1133 	static const struct strp_callbacks cb = {
1134 		.rcv_msg	= sk_psock_strp_read,
1135 		.read_sock_done	= sk_psock_strp_read_done,
1136 		.parse_msg	= sk_psock_strp_parse,
1137 	};
1138 
1139 	return strp_init(&psock->strp, sk, &cb);
1140 }
1141 
1142 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1143 {
1144 	if (psock->saved_data_ready)
1145 		return;
1146 
1147 	psock->saved_data_ready = sk->sk_data_ready;
1148 	sk->sk_data_ready = sk_psock_strp_data_ready;
1149 	sk->sk_write_space = sk_psock_write_space;
1150 }
1151 
1152 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1153 {
1154 	psock_set_prog(&psock->progs.stream_parser, NULL);
1155 
1156 	if (!psock->saved_data_ready)
1157 		return;
1158 
1159 	sk->sk_data_ready = psock->saved_data_ready;
1160 	psock->saved_data_ready = NULL;
1161 	strp_stop(&psock->strp);
1162 }
1163 
1164 static void sk_psock_done_strp(struct sk_psock *psock)
1165 {
1166 	/* Parser has been stopped */
1167 	if (psock->progs.stream_parser)
1168 		strp_done(&psock->strp);
1169 }
1170 #else
1171 static void sk_psock_done_strp(struct sk_psock *psock)
1172 {
1173 }
1174 #endif /* CONFIG_BPF_STREAM_PARSER */
1175 
1176 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1177 {
1178 	struct sk_psock *psock;
1179 	struct bpf_prog *prog;
1180 	int ret = __SK_DROP;
1181 	int len = skb->len;
1182 
1183 	skb_get(skb);
1184 
1185 	rcu_read_lock();
1186 	psock = sk_psock(sk);
1187 	if (unlikely(!psock)) {
1188 		len = 0;
1189 		sock_drop(sk, skb);
1190 		goto out;
1191 	}
1192 	prog = READ_ONCE(psock->progs.stream_verdict);
1193 	if (!prog)
1194 		prog = READ_ONCE(psock->progs.skb_verdict);
1195 	if (likely(prog)) {
1196 		skb_dst_drop(skb);
1197 		skb_bpf_redirect_clear(skb);
1198 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1199 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1200 	}
1201 	ret = sk_psock_verdict_apply(psock, skb, ret);
1202 	if (ret < 0)
1203 		len = ret;
1204 out:
1205 	rcu_read_unlock();
1206 	return len;
1207 }
1208 
1209 static void sk_psock_verdict_data_ready(struct sock *sk)
1210 {
1211 	struct socket *sock = sk->sk_socket;
1212 
1213 	if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1214 		return;
1215 	sock->ops->read_skb(sk, sk_psock_verdict_recv);
1216 }
1217 
1218 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1219 {
1220 	if (psock->saved_data_ready)
1221 		return;
1222 
1223 	psock->saved_data_ready = sk->sk_data_ready;
1224 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1225 	sk->sk_write_space = sk_psock_write_space;
1226 }
1227 
1228 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1229 {
1230 	psock_set_prog(&psock->progs.stream_verdict, NULL);
1231 	psock_set_prog(&psock->progs.skb_verdict, NULL);
1232 
1233 	if (!psock->saved_data_ready)
1234 		return;
1235 
1236 	sk->sk_data_ready = psock->saved_data_ready;
1237 	psock->saved_data_ready = NULL;
1238 }
1239