1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */ 3 4 #include <linux/skmsg.h> 5 #include <linux/skbuff.h> 6 #include <linux/scatterlist.h> 7 8 #include <net/sock.h> 9 #include <net/tcp.h> 10 #include <net/tls.h> 11 12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce) 13 { 14 if (msg->sg.end > msg->sg.start && 15 elem_first_coalesce < msg->sg.end) 16 return true; 17 18 if (msg->sg.end < msg->sg.start && 19 (elem_first_coalesce > msg->sg.start || 20 elem_first_coalesce < msg->sg.end)) 21 return true; 22 23 return false; 24 } 25 26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len, 27 int elem_first_coalesce) 28 { 29 struct page_frag *pfrag = sk_page_frag(sk); 30 u32 osize = msg->sg.size; 31 int ret = 0; 32 33 len -= msg->sg.size; 34 while (len > 0) { 35 struct scatterlist *sge; 36 u32 orig_offset; 37 int use, i; 38 39 if (!sk_page_frag_refill(sk, pfrag)) { 40 ret = -ENOMEM; 41 goto msg_trim; 42 } 43 44 orig_offset = pfrag->offset; 45 use = min_t(int, len, pfrag->size - orig_offset); 46 if (!sk_wmem_schedule(sk, use)) { 47 ret = -ENOMEM; 48 goto msg_trim; 49 } 50 51 i = msg->sg.end; 52 sk_msg_iter_var_prev(i); 53 sge = &msg->sg.data[i]; 54 55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) && 56 sg_page(sge) == pfrag->page && 57 sge->offset + sge->length == orig_offset) { 58 sge->length += use; 59 } else { 60 if (sk_msg_full(msg)) { 61 ret = -ENOSPC; 62 break; 63 } 64 65 sge = &msg->sg.data[msg->sg.end]; 66 sg_unmark_end(sge); 67 sg_set_page(sge, pfrag->page, use, orig_offset); 68 get_page(pfrag->page); 69 sk_msg_iter_next(msg, end); 70 } 71 72 sk_mem_charge(sk, use); 73 msg->sg.size += use; 74 pfrag->offset += use; 75 len -= use; 76 } 77 78 return ret; 79 80 msg_trim: 81 sk_msg_trim(sk, msg, osize); 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(sk_msg_alloc); 85 86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src, 87 u32 off, u32 len) 88 { 89 int i = src->sg.start; 90 struct scatterlist *sge = sk_msg_elem(src, i); 91 struct scatterlist *sgd = NULL; 92 u32 sge_len, sge_off; 93 94 while (off) { 95 if (sge->length > off) 96 break; 97 off -= sge->length; 98 sk_msg_iter_var_next(i); 99 if (i == src->sg.end && off) 100 return -ENOSPC; 101 sge = sk_msg_elem(src, i); 102 } 103 104 while (len) { 105 sge_len = sge->length - off; 106 if (sge_len > len) 107 sge_len = len; 108 109 if (dst->sg.end) 110 sgd = sk_msg_elem(dst, dst->sg.end - 1); 111 112 if (sgd && 113 (sg_page(sge) == sg_page(sgd)) && 114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) { 115 sgd->length += sge_len; 116 dst->sg.size += sge_len; 117 } else if (!sk_msg_full(dst)) { 118 sge_off = sge->offset + off; 119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off); 120 } else { 121 return -ENOSPC; 122 } 123 124 off = 0; 125 len -= sge_len; 126 sk_mem_charge(sk, sge_len); 127 sk_msg_iter_var_next(i); 128 if (i == src->sg.end && len) 129 return -ENOSPC; 130 sge = sk_msg_elem(src, i); 131 } 132 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(sk_msg_clone); 136 137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes) 138 { 139 int i = msg->sg.start; 140 141 do { 142 struct scatterlist *sge = sk_msg_elem(msg, i); 143 144 if (bytes < sge->length) { 145 sge->length -= bytes; 146 sge->offset += bytes; 147 sk_mem_uncharge(sk, bytes); 148 break; 149 } 150 151 sk_mem_uncharge(sk, sge->length); 152 bytes -= sge->length; 153 sge->length = 0; 154 sge->offset = 0; 155 sk_msg_iter_var_next(i); 156 } while (bytes && i != msg->sg.end); 157 msg->sg.start = i; 158 } 159 EXPORT_SYMBOL_GPL(sk_msg_return_zero); 160 161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes) 162 { 163 int i = msg->sg.start; 164 165 do { 166 struct scatterlist *sge = &msg->sg.data[i]; 167 int uncharge = (bytes < sge->length) ? bytes : sge->length; 168 169 sk_mem_uncharge(sk, uncharge); 170 bytes -= uncharge; 171 sk_msg_iter_var_next(i); 172 } while (i != msg->sg.end); 173 } 174 EXPORT_SYMBOL_GPL(sk_msg_return); 175 176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i, 177 bool charge) 178 { 179 struct scatterlist *sge = sk_msg_elem(msg, i); 180 u32 len = sge->length; 181 182 /* When the skb owns the memory we free it from consume_skb path. */ 183 if (!msg->skb) { 184 if (charge) 185 sk_mem_uncharge(sk, len); 186 put_page(sg_page(sge)); 187 } 188 memset(sge, 0, sizeof(*sge)); 189 return len; 190 } 191 192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i, 193 bool charge) 194 { 195 struct scatterlist *sge = sk_msg_elem(msg, i); 196 int freed = 0; 197 198 while (msg->sg.size) { 199 msg->sg.size -= sge->length; 200 freed += sk_msg_free_elem(sk, msg, i, charge); 201 sk_msg_iter_var_next(i); 202 sk_msg_check_to_free(msg, i, msg->sg.size); 203 sge = sk_msg_elem(msg, i); 204 } 205 consume_skb(msg->skb); 206 sk_msg_init(msg); 207 return freed; 208 } 209 210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg) 211 { 212 return __sk_msg_free(sk, msg, msg->sg.start, false); 213 } 214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge); 215 216 int sk_msg_free(struct sock *sk, struct sk_msg *msg) 217 { 218 return __sk_msg_free(sk, msg, msg->sg.start, true); 219 } 220 EXPORT_SYMBOL_GPL(sk_msg_free); 221 222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, 223 u32 bytes, bool charge) 224 { 225 struct scatterlist *sge; 226 u32 i = msg->sg.start; 227 228 while (bytes) { 229 sge = sk_msg_elem(msg, i); 230 if (!sge->length) 231 break; 232 if (bytes < sge->length) { 233 if (charge) 234 sk_mem_uncharge(sk, bytes); 235 sge->length -= bytes; 236 sge->offset += bytes; 237 msg->sg.size -= bytes; 238 break; 239 } 240 241 msg->sg.size -= sge->length; 242 bytes -= sge->length; 243 sk_msg_free_elem(sk, msg, i, charge); 244 sk_msg_iter_var_next(i); 245 sk_msg_check_to_free(msg, i, bytes); 246 } 247 msg->sg.start = i; 248 } 249 250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes) 251 { 252 __sk_msg_free_partial(sk, msg, bytes, true); 253 } 254 EXPORT_SYMBOL_GPL(sk_msg_free_partial); 255 256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg, 257 u32 bytes) 258 { 259 __sk_msg_free_partial(sk, msg, bytes, false); 260 } 261 262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len) 263 { 264 int trim = msg->sg.size - len; 265 u32 i = msg->sg.end; 266 267 if (trim <= 0) { 268 WARN_ON(trim < 0); 269 return; 270 } 271 272 sk_msg_iter_var_prev(i); 273 msg->sg.size = len; 274 while (msg->sg.data[i].length && 275 trim >= msg->sg.data[i].length) { 276 trim -= msg->sg.data[i].length; 277 sk_msg_free_elem(sk, msg, i, true); 278 sk_msg_iter_var_prev(i); 279 if (!trim) 280 goto out; 281 } 282 283 msg->sg.data[i].length -= trim; 284 sk_mem_uncharge(sk, trim); 285 /* Adjust copybreak if it falls into the trimmed part of last buf */ 286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length) 287 msg->sg.copybreak = msg->sg.data[i].length; 288 out: 289 sk_msg_iter_var_next(i); 290 msg->sg.end = i; 291 292 /* If we trim data a full sg elem before curr pointer update 293 * copybreak and current so that any future copy operations 294 * start at new copy location. 295 * However trimed data that has not yet been used in a copy op 296 * does not require an update. 297 */ 298 if (!msg->sg.size) { 299 msg->sg.curr = msg->sg.start; 300 msg->sg.copybreak = 0; 301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >= 302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) { 303 sk_msg_iter_var_prev(i); 304 msg->sg.curr = i; 305 msg->sg.copybreak = msg->sg.data[i].length; 306 } 307 } 308 EXPORT_SYMBOL_GPL(sk_msg_trim); 309 310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 311 struct sk_msg *msg, u32 bytes) 312 { 313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg); 314 const int to_max_pages = MAX_MSG_FRAGS; 315 struct page *pages[MAX_MSG_FRAGS]; 316 ssize_t orig, copied, use, offset; 317 318 orig = msg->sg.size; 319 while (bytes > 0) { 320 i = 0; 321 maxpages = to_max_pages - num_elems; 322 if (maxpages == 0) { 323 ret = -EFAULT; 324 goto out; 325 } 326 327 copied = iov_iter_get_pages(from, pages, bytes, maxpages, 328 &offset); 329 if (copied <= 0) { 330 ret = -EFAULT; 331 goto out; 332 } 333 334 iov_iter_advance(from, copied); 335 bytes -= copied; 336 msg->sg.size += copied; 337 338 while (copied) { 339 use = min_t(int, copied, PAGE_SIZE - offset); 340 sg_set_page(&msg->sg.data[msg->sg.end], 341 pages[i], use, offset); 342 sg_unmark_end(&msg->sg.data[msg->sg.end]); 343 sk_mem_charge(sk, use); 344 345 offset = 0; 346 copied -= use; 347 sk_msg_iter_next(msg, end); 348 num_elems++; 349 i++; 350 } 351 /* When zerocopy is mixed with sk_msg_*copy* operations we 352 * may have a copybreak set in this case clear and prefer 353 * zerocopy remainder when possible. 354 */ 355 msg->sg.copybreak = 0; 356 msg->sg.curr = msg->sg.end; 357 } 358 out: 359 /* Revert iov_iter updates, msg will need to use 'trim' later if it 360 * also needs to be cleared. 361 */ 362 if (ret) 363 iov_iter_revert(from, msg->sg.size - orig); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter); 367 368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from, 369 struct sk_msg *msg, u32 bytes) 370 { 371 int ret = -ENOSPC, i = msg->sg.curr; 372 struct scatterlist *sge; 373 u32 copy, buf_size; 374 void *to; 375 376 do { 377 sge = sk_msg_elem(msg, i); 378 /* This is possible if a trim operation shrunk the buffer */ 379 if (msg->sg.copybreak >= sge->length) { 380 msg->sg.copybreak = 0; 381 sk_msg_iter_var_next(i); 382 if (i == msg->sg.end) 383 break; 384 sge = sk_msg_elem(msg, i); 385 } 386 387 buf_size = sge->length - msg->sg.copybreak; 388 copy = (buf_size > bytes) ? bytes : buf_size; 389 to = sg_virt(sge) + msg->sg.copybreak; 390 msg->sg.copybreak += copy; 391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) 392 ret = copy_from_iter_nocache(to, copy, from); 393 else 394 ret = copy_from_iter(to, copy, from); 395 if (ret != copy) { 396 ret = -EFAULT; 397 goto out; 398 } 399 bytes -= copy; 400 if (!bytes) 401 break; 402 msg->sg.copybreak = 0; 403 sk_msg_iter_var_next(i); 404 } while (i != msg->sg.end); 405 out: 406 msg->sg.curr = i; 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter); 410 411 /* Receive sk_msg from psock->ingress_msg to @msg. */ 412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, 413 int len, int flags) 414 { 415 struct iov_iter *iter = &msg->msg_iter; 416 int peek = flags & MSG_PEEK; 417 struct sk_msg *msg_rx; 418 int i, copied = 0; 419 420 msg_rx = sk_psock_peek_msg(psock); 421 while (copied != len) { 422 struct scatterlist *sge; 423 424 if (unlikely(!msg_rx)) 425 break; 426 427 i = msg_rx->sg.start; 428 do { 429 struct page *page; 430 int copy; 431 432 sge = sk_msg_elem(msg_rx, i); 433 copy = sge->length; 434 page = sg_page(sge); 435 if (copied + copy > len) 436 copy = len - copied; 437 copy = copy_page_to_iter(page, sge->offset, copy, iter); 438 if (!copy) 439 return copied ? copied : -EFAULT; 440 441 copied += copy; 442 if (likely(!peek)) { 443 sge->offset += copy; 444 sge->length -= copy; 445 if (!msg_rx->skb) 446 sk_mem_uncharge(sk, copy); 447 msg_rx->sg.size -= copy; 448 449 if (!sge->length) { 450 sk_msg_iter_var_next(i); 451 if (!msg_rx->skb) 452 put_page(page); 453 } 454 } else { 455 /* Lets not optimize peek case if copy_page_to_iter 456 * didn't copy the entire length lets just break. 457 */ 458 if (copy != sge->length) 459 return copied; 460 sk_msg_iter_var_next(i); 461 } 462 463 if (copied == len) 464 break; 465 } while (i != msg_rx->sg.end); 466 467 if (unlikely(peek)) { 468 msg_rx = sk_psock_next_msg(psock, msg_rx); 469 if (!msg_rx) 470 break; 471 continue; 472 } 473 474 msg_rx->sg.start = i; 475 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) { 476 msg_rx = sk_psock_dequeue_msg(psock); 477 kfree_sk_msg(msg_rx); 478 } 479 msg_rx = sk_psock_peek_msg(psock); 480 } 481 482 return copied; 483 } 484 EXPORT_SYMBOL_GPL(sk_msg_recvmsg); 485 486 bool sk_msg_is_readable(struct sock *sk) 487 { 488 struct sk_psock *psock; 489 bool empty = true; 490 491 rcu_read_lock(); 492 psock = sk_psock(sk); 493 if (likely(psock)) 494 empty = list_empty(&psock->ingress_msg); 495 rcu_read_unlock(); 496 return !empty; 497 } 498 EXPORT_SYMBOL_GPL(sk_msg_is_readable); 499 500 static struct sk_msg *alloc_sk_msg(void) 501 { 502 struct sk_msg *msg; 503 504 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL); 505 if (unlikely(!msg)) 506 return NULL; 507 sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS); 508 return msg; 509 } 510 511 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk, 512 struct sk_buff *skb) 513 { 514 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 515 return NULL; 516 517 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 518 return NULL; 519 520 return alloc_sk_msg(); 521 } 522 523 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb, 524 u32 off, u32 len, 525 struct sk_psock *psock, 526 struct sock *sk, 527 struct sk_msg *msg) 528 { 529 int num_sge, copied; 530 531 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 532 if (num_sge < 0) { 533 /* skb linearize may fail with ENOMEM, but lets simply try again 534 * later if this happens. Under memory pressure we don't want to 535 * drop the skb. We need to linearize the skb so that the mapping 536 * in skb_to_sgvec can not error. 537 */ 538 if (skb_linearize(skb)) 539 return -EAGAIN; 540 541 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len); 542 if (unlikely(num_sge < 0)) 543 return num_sge; 544 } 545 546 copied = len; 547 msg->sg.start = 0; 548 msg->sg.size = copied; 549 msg->sg.end = num_sge; 550 msg->skb = skb; 551 552 sk_psock_queue_msg(psock, msg); 553 sk_psock_data_ready(sk, psock); 554 return copied; 555 } 556 557 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 558 u32 off, u32 len); 559 560 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb, 561 u32 off, u32 len) 562 { 563 struct sock *sk = psock->sk; 564 struct sk_msg *msg; 565 int err; 566 567 /* If we are receiving on the same sock skb->sk is already assigned, 568 * skip memory accounting and owner transition seeing it already set 569 * correctly. 570 */ 571 if (unlikely(skb->sk == sk)) 572 return sk_psock_skb_ingress_self(psock, skb, off, len); 573 msg = sk_psock_create_ingress_msg(sk, skb); 574 if (!msg) 575 return -EAGAIN; 576 577 /* This will transition ownership of the data from the socket where 578 * the BPF program was run initiating the redirect to the socket 579 * we will eventually receive this data on. The data will be released 580 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied 581 * into user buffers. 582 */ 583 skb_set_owner_r(skb, sk); 584 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 585 if (err < 0) 586 kfree(msg); 587 return err; 588 } 589 590 /* Puts an skb on the ingress queue of the socket already assigned to the 591 * skb. In this case we do not need to check memory limits or skb_set_owner_r 592 * because the skb is already accounted for here. 593 */ 594 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb, 595 u32 off, u32 len) 596 { 597 struct sk_msg *msg = alloc_sk_msg(); 598 struct sock *sk = psock->sk; 599 int err; 600 601 if (unlikely(!msg)) 602 return -EAGAIN; 603 skb_set_owner_r(skb, sk); 604 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg); 605 if (err < 0) 606 kfree(msg); 607 return err; 608 } 609 610 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb, 611 u32 off, u32 len, bool ingress) 612 { 613 if (!ingress) { 614 if (!sock_writeable(psock->sk)) 615 return -EAGAIN; 616 return skb_send_sock(psock->sk, skb, off, len); 617 } 618 return sk_psock_skb_ingress(psock, skb, off, len); 619 } 620 621 static void sk_psock_skb_state(struct sk_psock *psock, 622 struct sk_psock_work_state *state, 623 struct sk_buff *skb, 624 int len, int off) 625 { 626 spin_lock_bh(&psock->ingress_lock); 627 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 628 state->skb = skb; 629 state->len = len; 630 state->off = off; 631 } else { 632 sock_drop(psock->sk, skb); 633 } 634 spin_unlock_bh(&psock->ingress_lock); 635 } 636 637 static void sk_psock_backlog(struct work_struct *work) 638 { 639 struct sk_psock *psock = container_of(work, struct sk_psock, work); 640 struct sk_psock_work_state *state = &psock->work_state; 641 struct sk_buff *skb = NULL; 642 bool ingress; 643 u32 len, off; 644 int ret; 645 646 mutex_lock(&psock->work_mutex); 647 if (unlikely(state->skb)) { 648 spin_lock_bh(&psock->ingress_lock); 649 skb = state->skb; 650 len = state->len; 651 off = state->off; 652 state->skb = NULL; 653 spin_unlock_bh(&psock->ingress_lock); 654 } 655 if (skb) 656 goto start; 657 658 while ((skb = skb_dequeue(&psock->ingress_skb))) { 659 len = skb->len; 660 off = 0; 661 if (skb_bpf_strparser(skb)) { 662 struct strp_msg *stm = strp_msg(skb); 663 664 off = stm->offset; 665 len = stm->full_len; 666 } 667 start: 668 ingress = skb_bpf_ingress(skb); 669 skb_bpf_redirect_clear(skb); 670 do { 671 ret = -EIO; 672 if (!sock_flag(psock->sk, SOCK_DEAD)) 673 ret = sk_psock_handle_skb(psock, skb, off, 674 len, ingress); 675 if (ret <= 0) { 676 if (ret == -EAGAIN) { 677 sk_psock_skb_state(psock, state, skb, 678 len, off); 679 goto end; 680 } 681 /* Hard errors break pipe and stop xmit. */ 682 sk_psock_report_error(psock, ret ? -ret : EPIPE); 683 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 684 sock_drop(psock->sk, skb); 685 goto end; 686 } 687 off += ret; 688 len -= ret; 689 } while (len); 690 691 if (!ingress) 692 kfree_skb(skb); 693 } 694 end: 695 mutex_unlock(&psock->work_mutex); 696 } 697 698 struct sk_psock *sk_psock_init(struct sock *sk, int node) 699 { 700 struct sk_psock *psock; 701 struct proto *prot; 702 703 write_lock_bh(&sk->sk_callback_lock); 704 705 if (sk->sk_user_data) { 706 psock = ERR_PTR(-EBUSY); 707 goto out; 708 } 709 710 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node); 711 if (!psock) { 712 psock = ERR_PTR(-ENOMEM); 713 goto out; 714 } 715 716 prot = READ_ONCE(sk->sk_prot); 717 psock->sk = sk; 718 psock->eval = __SK_NONE; 719 psock->sk_proto = prot; 720 psock->saved_unhash = prot->unhash; 721 psock->saved_destroy = prot->destroy; 722 psock->saved_close = prot->close; 723 psock->saved_write_space = sk->sk_write_space; 724 725 INIT_LIST_HEAD(&psock->link); 726 spin_lock_init(&psock->link_lock); 727 728 INIT_WORK(&psock->work, sk_psock_backlog); 729 mutex_init(&psock->work_mutex); 730 INIT_LIST_HEAD(&psock->ingress_msg); 731 spin_lock_init(&psock->ingress_lock); 732 skb_queue_head_init(&psock->ingress_skb); 733 734 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED); 735 refcount_set(&psock->refcnt, 1); 736 737 rcu_assign_sk_user_data_nocopy(sk, psock); 738 sock_hold(sk); 739 740 out: 741 write_unlock_bh(&sk->sk_callback_lock); 742 return psock; 743 } 744 EXPORT_SYMBOL_GPL(sk_psock_init); 745 746 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock) 747 { 748 struct sk_psock_link *link; 749 750 spin_lock_bh(&psock->link_lock); 751 link = list_first_entry_or_null(&psock->link, struct sk_psock_link, 752 list); 753 if (link) 754 list_del(&link->list); 755 spin_unlock_bh(&psock->link_lock); 756 return link; 757 } 758 759 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock) 760 { 761 struct sk_msg *msg, *tmp; 762 763 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) { 764 list_del(&msg->list); 765 sk_msg_free(psock->sk, msg); 766 kfree(msg); 767 } 768 } 769 770 static void __sk_psock_zap_ingress(struct sk_psock *psock) 771 { 772 struct sk_buff *skb; 773 774 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) { 775 skb_bpf_redirect_clear(skb); 776 sock_drop(psock->sk, skb); 777 } 778 kfree_skb(psock->work_state.skb); 779 /* We null the skb here to ensure that calls to sk_psock_backlog 780 * do not pick up the free'd skb. 781 */ 782 psock->work_state.skb = NULL; 783 __sk_psock_purge_ingress_msg(psock); 784 } 785 786 static void sk_psock_link_destroy(struct sk_psock *psock) 787 { 788 struct sk_psock_link *link, *tmp; 789 790 list_for_each_entry_safe(link, tmp, &psock->link, list) { 791 list_del(&link->list); 792 sk_psock_free_link(link); 793 } 794 } 795 796 void sk_psock_stop(struct sk_psock *psock, bool wait) 797 { 798 spin_lock_bh(&psock->ingress_lock); 799 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED); 800 sk_psock_cork_free(psock); 801 __sk_psock_zap_ingress(psock); 802 spin_unlock_bh(&psock->ingress_lock); 803 804 if (wait) 805 cancel_work_sync(&psock->work); 806 } 807 808 static void sk_psock_done_strp(struct sk_psock *psock); 809 810 static void sk_psock_destroy(struct work_struct *work) 811 { 812 struct sk_psock *psock = container_of(to_rcu_work(work), 813 struct sk_psock, rwork); 814 /* No sk_callback_lock since already detached. */ 815 816 sk_psock_done_strp(psock); 817 818 cancel_work_sync(&psock->work); 819 mutex_destroy(&psock->work_mutex); 820 821 psock_progs_drop(&psock->progs); 822 823 sk_psock_link_destroy(psock); 824 sk_psock_cork_free(psock); 825 826 if (psock->sk_redir) 827 sock_put(psock->sk_redir); 828 sock_put(psock->sk); 829 kfree(psock); 830 } 831 832 void sk_psock_drop(struct sock *sk, struct sk_psock *psock) 833 { 834 write_lock_bh(&sk->sk_callback_lock); 835 sk_psock_restore_proto(sk, psock); 836 rcu_assign_sk_user_data(sk, NULL); 837 if (psock->progs.stream_parser) 838 sk_psock_stop_strp(sk, psock); 839 else if (psock->progs.stream_verdict || psock->progs.skb_verdict) 840 sk_psock_stop_verdict(sk, psock); 841 write_unlock_bh(&sk->sk_callback_lock); 842 843 sk_psock_stop(psock, false); 844 845 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy); 846 queue_rcu_work(system_wq, &psock->rwork); 847 } 848 EXPORT_SYMBOL_GPL(sk_psock_drop); 849 850 static int sk_psock_map_verd(int verdict, bool redir) 851 { 852 switch (verdict) { 853 case SK_PASS: 854 return redir ? __SK_REDIRECT : __SK_PASS; 855 case SK_DROP: 856 default: 857 break; 858 } 859 860 return __SK_DROP; 861 } 862 863 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock, 864 struct sk_msg *msg) 865 { 866 struct bpf_prog *prog; 867 int ret; 868 869 rcu_read_lock(); 870 prog = READ_ONCE(psock->progs.msg_parser); 871 if (unlikely(!prog)) { 872 ret = __SK_PASS; 873 goto out; 874 } 875 876 sk_msg_compute_data_pointers(msg); 877 msg->sk = sk; 878 ret = bpf_prog_run_pin_on_cpu(prog, msg); 879 ret = sk_psock_map_verd(ret, msg->sk_redir); 880 psock->apply_bytes = msg->apply_bytes; 881 if (ret == __SK_REDIRECT) { 882 if (psock->sk_redir) 883 sock_put(psock->sk_redir); 884 psock->sk_redir = msg->sk_redir; 885 if (!psock->sk_redir) { 886 ret = __SK_DROP; 887 goto out; 888 } 889 sock_hold(psock->sk_redir); 890 } 891 out: 892 rcu_read_unlock(); 893 return ret; 894 } 895 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict); 896 897 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb) 898 { 899 struct sk_psock *psock_other; 900 struct sock *sk_other; 901 902 sk_other = skb_bpf_redirect_fetch(skb); 903 /* This error is a buggy BPF program, it returned a redirect 904 * return code, but then didn't set a redirect interface. 905 */ 906 if (unlikely(!sk_other)) { 907 skb_bpf_redirect_clear(skb); 908 sock_drop(from->sk, skb); 909 return -EIO; 910 } 911 psock_other = sk_psock(sk_other); 912 /* This error indicates the socket is being torn down or had another 913 * error that caused the pipe to break. We can't send a packet on 914 * a socket that is in this state so we drop the skb. 915 */ 916 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) { 917 skb_bpf_redirect_clear(skb); 918 sock_drop(from->sk, skb); 919 return -EIO; 920 } 921 spin_lock_bh(&psock_other->ingress_lock); 922 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) { 923 spin_unlock_bh(&psock_other->ingress_lock); 924 skb_bpf_redirect_clear(skb); 925 sock_drop(from->sk, skb); 926 return -EIO; 927 } 928 929 skb_queue_tail(&psock_other->ingress_skb, skb); 930 schedule_work(&psock_other->work); 931 spin_unlock_bh(&psock_other->ingress_lock); 932 return 0; 933 } 934 935 static void sk_psock_tls_verdict_apply(struct sk_buff *skb, 936 struct sk_psock *from, int verdict) 937 { 938 switch (verdict) { 939 case __SK_REDIRECT: 940 sk_psock_skb_redirect(from, skb); 941 break; 942 case __SK_PASS: 943 case __SK_DROP: 944 default: 945 break; 946 } 947 } 948 949 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb) 950 { 951 struct bpf_prog *prog; 952 int ret = __SK_PASS; 953 954 rcu_read_lock(); 955 prog = READ_ONCE(psock->progs.stream_verdict); 956 if (likely(prog)) { 957 skb->sk = psock->sk; 958 skb_dst_drop(skb); 959 skb_bpf_redirect_clear(skb); 960 ret = bpf_prog_run_pin_on_cpu(prog, skb); 961 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 962 skb->sk = NULL; 963 } 964 sk_psock_tls_verdict_apply(skb, psock, ret); 965 rcu_read_unlock(); 966 return ret; 967 } 968 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read); 969 970 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb, 971 int verdict) 972 { 973 struct sock *sk_other; 974 int err = 0; 975 u32 len, off; 976 977 switch (verdict) { 978 case __SK_PASS: 979 err = -EIO; 980 sk_other = psock->sk; 981 if (sock_flag(sk_other, SOCK_DEAD) || 982 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 983 skb_bpf_redirect_clear(skb); 984 goto out_free; 985 } 986 987 skb_bpf_set_ingress(skb); 988 989 /* If the queue is empty then we can submit directly 990 * into the msg queue. If its not empty we have to 991 * queue work otherwise we may get OOO data. Otherwise, 992 * if sk_psock_skb_ingress errors will be handled by 993 * retrying later from workqueue. 994 */ 995 if (skb_queue_empty(&psock->ingress_skb)) { 996 len = skb->len; 997 off = 0; 998 if (skb_bpf_strparser(skb)) { 999 struct strp_msg *stm = strp_msg(skb); 1000 1001 off = stm->offset; 1002 len = stm->full_len; 1003 } 1004 err = sk_psock_skb_ingress_self(psock, skb, off, len); 1005 } 1006 if (err < 0) { 1007 spin_lock_bh(&psock->ingress_lock); 1008 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) { 1009 skb_queue_tail(&psock->ingress_skb, skb); 1010 schedule_work(&psock->work); 1011 err = 0; 1012 } 1013 spin_unlock_bh(&psock->ingress_lock); 1014 if (err < 0) { 1015 skb_bpf_redirect_clear(skb); 1016 goto out_free; 1017 } 1018 } 1019 break; 1020 case __SK_REDIRECT: 1021 err = sk_psock_skb_redirect(psock, skb); 1022 break; 1023 case __SK_DROP: 1024 default: 1025 out_free: 1026 sock_drop(psock->sk, skb); 1027 } 1028 1029 return err; 1030 } 1031 1032 static void sk_psock_write_space(struct sock *sk) 1033 { 1034 struct sk_psock *psock; 1035 void (*write_space)(struct sock *sk) = NULL; 1036 1037 rcu_read_lock(); 1038 psock = sk_psock(sk); 1039 if (likely(psock)) { 1040 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) 1041 schedule_work(&psock->work); 1042 write_space = psock->saved_write_space; 1043 } 1044 rcu_read_unlock(); 1045 if (write_space) 1046 write_space(sk); 1047 } 1048 1049 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER) 1050 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb) 1051 { 1052 struct sk_psock *psock; 1053 struct bpf_prog *prog; 1054 int ret = __SK_DROP; 1055 struct sock *sk; 1056 1057 rcu_read_lock(); 1058 sk = strp->sk; 1059 psock = sk_psock(sk); 1060 if (unlikely(!psock)) { 1061 sock_drop(sk, skb); 1062 goto out; 1063 } 1064 prog = READ_ONCE(psock->progs.stream_verdict); 1065 if (likely(prog)) { 1066 skb->sk = sk; 1067 skb_dst_drop(skb); 1068 skb_bpf_redirect_clear(skb); 1069 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1070 if (ret == SK_PASS) 1071 skb_bpf_set_strparser(skb); 1072 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1073 skb->sk = NULL; 1074 } 1075 sk_psock_verdict_apply(psock, skb, ret); 1076 out: 1077 rcu_read_unlock(); 1078 } 1079 1080 static int sk_psock_strp_read_done(struct strparser *strp, int err) 1081 { 1082 return err; 1083 } 1084 1085 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb) 1086 { 1087 struct sk_psock *psock = container_of(strp, struct sk_psock, strp); 1088 struct bpf_prog *prog; 1089 int ret = skb->len; 1090 1091 rcu_read_lock(); 1092 prog = READ_ONCE(psock->progs.stream_parser); 1093 if (likely(prog)) { 1094 skb->sk = psock->sk; 1095 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1096 skb->sk = NULL; 1097 } 1098 rcu_read_unlock(); 1099 return ret; 1100 } 1101 1102 /* Called with socket lock held. */ 1103 static void sk_psock_strp_data_ready(struct sock *sk) 1104 { 1105 struct sk_psock *psock; 1106 1107 rcu_read_lock(); 1108 psock = sk_psock(sk); 1109 if (likely(psock)) { 1110 if (tls_sw_has_ctx_rx(sk)) { 1111 psock->saved_data_ready(sk); 1112 } else { 1113 write_lock_bh(&sk->sk_callback_lock); 1114 strp_data_ready(&psock->strp); 1115 write_unlock_bh(&sk->sk_callback_lock); 1116 } 1117 } 1118 rcu_read_unlock(); 1119 } 1120 1121 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock) 1122 { 1123 static const struct strp_callbacks cb = { 1124 .rcv_msg = sk_psock_strp_read, 1125 .read_sock_done = sk_psock_strp_read_done, 1126 .parse_msg = sk_psock_strp_parse, 1127 }; 1128 1129 return strp_init(&psock->strp, sk, &cb); 1130 } 1131 1132 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock) 1133 { 1134 if (psock->saved_data_ready) 1135 return; 1136 1137 psock->saved_data_ready = sk->sk_data_ready; 1138 sk->sk_data_ready = sk_psock_strp_data_ready; 1139 sk->sk_write_space = sk_psock_write_space; 1140 } 1141 1142 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock) 1143 { 1144 psock_set_prog(&psock->progs.stream_parser, NULL); 1145 1146 if (!psock->saved_data_ready) 1147 return; 1148 1149 sk->sk_data_ready = psock->saved_data_ready; 1150 psock->saved_data_ready = NULL; 1151 strp_stop(&psock->strp); 1152 } 1153 1154 static void sk_psock_done_strp(struct sk_psock *psock) 1155 { 1156 /* Parser has been stopped */ 1157 if (psock->progs.stream_parser) 1158 strp_done(&psock->strp); 1159 } 1160 #else 1161 static void sk_psock_done_strp(struct sk_psock *psock) 1162 { 1163 } 1164 #endif /* CONFIG_BPF_STREAM_PARSER */ 1165 1166 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb) 1167 { 1168 struct sk_psock *psock; 1169 struct bpf_prog *prog; 1170 int ret = __SK_DROP; 1171 int len = skb->len; 1172 1173 skb_get(skb); 1174 1175 rcu_read_lock(); 1176 psock = sk_psock(sk); 1177 if (unlikely(!psock)) { 1178 len = 0; 1179 sock_drop(sk, skb); 1180 goto out; 1181 } 1182 prog = READ_ONCE(psock->progs.stream_verdict); 1183 if (!prog) 1184 prog = READ_ONCE(psock->progs.skb_verdict); 1185 if (likely(prog)) { 1186 skb_dst_drop(skb); 1187 skb_bpf_redirect_clear(skb); 1188 ret = bpf_prog_run_pin_on_cpu(prog, skb); 1189 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb)); 1190 } 1191 if (sk_psock_verdict_apply(psock, skb, ret) < 0) 1192 len = 0; 1193 out: 1194 rcu_read_unlock(); 1195 return len; 1196 } 1197 1198 static void sk_psock_verdict_data_ready(struct sock *sk) 1199 { 1200 struct socket *sock = sk->sk_socket; 1201 1202 if (unlikely(!sock || !sock->ops || !sock->ops->read_skb)) 1203 return; 1204 sock->ops->read_skb(sk, sk_psock_verdict_recv); 1205 } 1206 1207 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock) 1208 { 1209 if (psock->saved_data_ready) 1210 return; 1211 1212 psock->saved_data_ready = sk->sk_data_ready; 1213 sk->sk_data_ready = sk_psock_verdict_data_ready; 1214 sk->sk_write_space = sk_psock_write_space; 1215 } 1216 1217 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock) 1218 { 1219 psock_set_prog(&psock->progs.stream_verdict, NULL); 1220 psock_set_prog(&psock->progs.skb_verdict, NULL); 1221 1222 if (!psock->saved_data_ready) 1223 return; 1224 1225 sk->sk_data_ready = psock->saved_data_ready; 1226 psock->saved_data_ready = NULL; 1227 } 1228