xref: /linux/net/core/skmsg.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3 
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7 
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 #include <trace/events/sock.h>
12 
13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 {
15 	if (msg->sg.end > msg->sg.start &&
16 	    elem_first_coalesce < msg->sg.end)
17 		return true;
18 
19 	if (msg->sg.end < msg->sg.start &&
20 	    (elem_first_coalesce > msg->sg.start ||
21 	     elem_first_coalesce < msg->sg.end))
22 		return true;
23 
24 	return false;
25 }
26 
27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
28 		 int elem_first_coalesce)
29 {
30 	struct page_frag *pfrag = sk_page_frag(sk);
31 	u32 osize = msg->sg.size;
32 	int ret = 0;
33 
34 	len -= msg->sg.size;
35 	while (len > 0) {
36 		struct scatterlist *sge;
37 		u32 orig_offset;
38 		int use, i;
39 
40 		if (!sk_page_frag_refill(sk, pfrag)) {
41 			ret = -ENOMEM;
42 			goto msg_trim;
43 		}
44 
45 		orig_offset = pfrag->offset;
46 		use = min_t(int, len, pfrag->size - orig_offset);
47 		if (!sk_wmem_schedule(sk, use)) {
48 			ret = -ENOMEM;
49 			goto msg_trim;
50 		}
51 
52 		i = msg->sg.end;
53 		sk_msg_iter_var_prev(i);
54 		sge = &msg->sg.data[i];
55 
56 		if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
57 		    sg_page(sge) == pfrag->page &&
58 		    sge->offset + sge->length == orig_offset) {
59 			sge->length += use;
60 		} else {
61 			if (sk_msg_full(msg)) {
62 				ret = -ENOSPC;
63 				break;
64 			}
65 
66 			sge = &msg->sg.data[msg->sg.end];
67 			sg_unmark_end(sge);
68 			sg_set_page(sge, pfrag->page, use, orig_offset);
69 			get_page(pfrag->page);
70 			sk_msg_iter_next(msg, end);
71 		}
72 
73 		sk_mem_charge(sk, use);
74 		msg->sg.size += use;
75 		pfrag->offset += use;
76 		len -= use;
77 	}
78 
79 	return ret;
80 
81 msg_trim:
82 	sk_msg_trim(sk, msg, osize);
83 	return ret;
84 }
85 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 
87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
88 		 u32 off, u32 len)
89 {
90 	int i = src->sg.start;
91 	struct scatterlist *sge = sk_msg_elem(src, i);
92 	struct scatterlist *sgd = NULL;
93 	u32 sge_len, sge_off;
94 
95 	while (off) {
96 		if (sge->length > off)
97 			break;
98 		off -= sge->length;
99 		sk_msg_iter_var_next(i);
100 		if (i == src->sg.end && off)
101 			return -ENOSPC;
102 		sge = sk_msg_elem(src, i);
103 	}
104 
105 	while (len) {
106 		sge_len = sge->length - off;
107 		if (sge_len > len)
108 			sge_len = len;
109 
110 		if (dst->sg.end)
111 			sgd = sk_msg_elem(dst, dst->sg.end - 1);
112 
113 		if (sgd &&
114 		    (sg_page(sge) == sg_page(sgd)) &&
115 		    (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
116 			sgd->length += sge_len;
117 			dst->sg.size += sge_len;
118 		} else if (!sk_msg_full(dst)) {
119 			sge_off = sge->offset + off;
120 			sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
121 		} else {
122 			return -ENOSPC;
123 		}
124 
125 		off = 0;
126 		len -= sge_len;
127 		sk_mem_charge(sk, sge_len);
128 		sk_msg_iter_var_next(i);
129 		if (i == src->sg.end && len)
130 			return -ENOSPC;
131 		sge = sk_msg_elem(src, i);
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 
138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 {
140 	int i = msg->sg.start;
141 
142 	do {
143 		struct scatterlist *sge = sk_msg_elem(msg, i);
144 
145 		if (bytes < sge->length) {
146 			sge->length -= bytes;
147 			sge->offset += bytes;
148 			sk_mem_uncharge(sk, bytes);
149 			break;
150 		}
151 
152 		sk_mem_uncharge(sk, sge->length);
153 		bytes -= sge->length;
154 		sge->length = 0;
155 		sge->offset = 0;
156 		sk_msg_iter_var_next(i);
157 	} while (bytes && i != msg->sg.end);
158 	msg->sg.start = i;
159 }
160 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 
162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 {
164 	int i = msg->sg.start;
165 
166 	do {
167 		struct scatterlist *sge = &msg->sg.data[i];
168 		int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 
170 		sk_mem_uncharge(sk, uncharge);
171 		bytes -= uncharge;
172 		sk_msg_iter_var_next(i);
173 	} while (i != msg->sg.end);
174 }
175 EXPORT_SYMBOL_GPL(sk_msg_return);
176 
177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
178 			    bool charge)
179 {
180 	struct scatterlist *sge = sk_msg_elem(msg, i);
181 	u32 len = sge->length;
182 
183 	/* When the skb owns the memory we free it from consume_skb path. */
184 	if (!msg->skb) {
185 		if (charge)
186 			sk_mem_uncharge(sk, len);
187 		put_page(sg_page(sge));
188 	}
189 	memset(sge, 0, sizeof(*sge));
190 	return len;
191 }
192 
193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
194 			 bool charge)
195 {
196 	struct scatterlist *sge = sk_msg_elem(msg, i);
197 	int freed = 0;
198 
199 	while (msg->sg.size) {
200 		msg->sg.size -= sge->length;
201 		freed += sk_msg_free_elem(sk, msg, i, charge);
202 		sk_msg_iter_var_next(i);
203 		sk_msg_check_to_free(msg, i, msg->sg.size);
204 		sge = sk_msg_elem(msg, i);
205 	}
206 	consume_skb(msg->skb);
207 	sk_msg_init(msg);
208 	return freed;
209 }
210 
211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 {
213 	return __sk_msg_free(sk, msg, msg->sg.start, false);
214 }
215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 
217 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 {
219 	return __sk_msg_free(sk, msg, msg->sg.start, true);
220 }
221 EXPORT_SYMBOL_GPL(sk_msg_free);
222 
223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
224 				  u32 bytes, bool charge)
225 {
226 	struct scatterlist *sge;
227 	u32 i = msg->sg.start;
228 
229 	while (bytes) {
230 		sge = sk_msg_elem(msg, i);
231 		if (!sge->length)
232 			break;
233 		if (bytes < sge->length) {
234 			if (charge)
235 				sk_mem_uncharge(sk, bytes);
236 			sge->length -= bytes;
237 			sge->offset += bytes;
238 			msg->sg.size -= bytes;
239 			break;
240 		}
241 
242 		msg->sg.size -= sge->length;
243 		bytes -= sge->length;
244 		sk_msg_free_elem(sk, msg, i, charge);
245 		sk_msg_iter_var_next(i);
246 		sk_msg_check_to_free(msg, i, bytes);
247 	}
248 	msg->sg.start = i;
249 }
250 
251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 {
253 	__sk_msg_free_partial(sk, msg, bytes, true);
254 }
255 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 
257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
258 				  u32 bytes)
259 {
260 	__sk_msg_free_partial(sk, msg, bytes, false);
261 }
262 
263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 {
265 	int trim = msg->sg.size - len;
266 	u32 i = msg->sg.end;
267 
268 	if (trim <= 0) {
269 		WARN_ON(trim < 0);
270 		return;
271 	}
272 
273 	sk_msg_iter_var_prev(i);
274 	msg->sg.size = len;
275 	while (msg->sg.data[i].length &&
276 	       trim >= msg->sg.data[i].length) {
277 		trim -= msg->sg.data[i].length;
278 		sk_msg_free_elem(sk, msg, i, true);
279 		sk_msg_iter_var_prev(i);
280 		if (!trim)
281 			goto out;
282 	}
283 
284 	msg->sg.data[i].length -= trim;
285 	sk_mem_uncharge(sk, trim);
286 	/* Adjust copybreak if it falls into the trimmed part of last buf */
287 	if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
288 		msg->sg.copybreak = msg->sg.data[i].length;
289 out:
290 	sk_msg_iter_var_next(i);
291 	msg->sg.end = i;
292 
293 	/* If we trim data a full sg elem before curr pointer update
294 	 * copybreak and current so that any future copy operations
295 	 * start at new copy location.
296 	 * However trimmed data that has not yet been used in a copy op
297 	 * does not require an update.
298 	 */
299 	if (!msg->sg.size) {
300 		msg->sg.curr = msg->sg.start;
301 		msg->sg.copybreak = 0;
302 	} else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
303 		   sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
304 		sk_msg_iter_var_prev(i);
305 		msg->sg.curr = i;
306 		msg->sg.copybreak = msg->sg.data[i].length;
307 	}
308 }
309 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 
311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
312 			      struct sk_msg *msg, u32 bytes)
313 {
314 	int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
315 	const int to_max_pages = MAX_MSG_FRAGS;
316 	struct page *pages[MAX_MSG_FRAGS];
317 	ssize_t orig, copied, use, offset;
318 
319 	orig = msg->sg.size;
320 	while (bytes > 0) {
321 		i = 0;
322 		maxpages = to_max_pages - num_elems;
323 		if (maxpages == 0) {
324 			ret = -EFAULT;
325 			goto out;
326 		}
327 
328 		copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
329 					    &offset);
330 		if (copied <= 0) {
331 			ret = -EFAULT;
332 			goto out;
333 		}
334 
335 		bytes -= copied;
336 		msg->sg.size += copied;
337 
338 		while (copied) {
339 			use = min_t(int, copied, PAGE_SIZE - offset);
340 			sg_set_page(&msg->sg.data[msg->sg.end],
341 				    pages[i], use, offset);
342 			sg_unmark_end(&msg->sg.data[msg->sg.end]);
343 			sk_mem_charge(sk, use);
344 
345 			offset = 0;
346 			copied -= use;
347 			sk_msg_iter_next(msg, end);
348 			num_elems++;
349 			i++;
350 		}
351 		/* When zerocopy is mixed with sk_msg_*copy* operations we
352 		 * may have a copybreak set in this case clear and prefer
353 		 * zerocopy remainder when possible.
354 		 */
355 		msg->sg.copybreak = 0;
356 		msg->sg.curr = msg->sg.end;
357 	}
358 out:
359 	/* Revert iov_iter updates, msg will need to use 'trim' later if it
360 	 * also needs to be cleared.
361 	 */
362 	if (ret)
363 		iov_iter_revert(from, msg->sg.size - orig);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367 
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369 			     struct sk_msg *msg, u32 bytes)
370 {
371 	int ret = -ENOSPC, i = msg->sg.curr;
372 	u32 copy, buf_size, copied = 0;
373 	struct scatterlist *sge;
374 	void *to;
375 
376 	do {
377 		sge = sk_msg_elem(msg, i);
378 		/* This is possible if a trim operation shrunk the buffer */
379 		if (msg->sg.copybreak >= sge->length) {
380 			msg->sg.copybreak = 0;
381 			sk_msg_iter_var_next(i);
382 			if (i == msg->sg.end)
383 				break;
384 			sge = sk_msg_elem(msg, i);
385 		}
386 
387 		buf_size = sge->length - msg->sg.copybreak;
388 		copy = (buf_size > bytes) ? bytes : buf_size;
389 		to = sg_virt(sge) + msg->sg.copybreak;
390 		msg->sg.copybreak += copy;
391 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392 			ret = copy_from_iter_nocache(to, copy, from);
393 		else
394 			ret = copy_from_iter(to, copy, from);
395 		if (ret != copy) {
396 			ret = -EFAULT;
397 			goto out;
398 		}
399 		bytes -= copy;
400 		copied += copy;
401 		if (!bytes)
402 			break;
403 		msg->sg.copybreak = 0;
404 		sk_msg_iter_var_next(i);
405 	} while (i != msg->sg.end);
406 out:
407 	msg->sg.curr = i;
408 	return (ret < 0) ? ret : copied;
409 }
410 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
411 
412 int __sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
413 		     int len, int flags, int *copied_from_self)
414 {
415 	struct iov_iter *iter = &msg->msg_iter;
416 	int peek = flags & MSG_PEEK;
417 	struct sk_msg *msg_rx;
418 	int i, copied = 0;
419 	bool from_self;
420 
421 	msg_rx = sk_psock_peek_msg(psock);
422 	if (copied_from_self)
423 		*copied_from_self = 0;
424 
425 	while (copied != len) {
426 		struct scatterlist *sge;
427 
428 		if (unlikely(!msg_rx))
429 			break;
430 
431 		from_self = msg_rx->sk == sk;
432 		i = msg_rx->sg.start;
433 		do {
434 			struct page *page;
435 			int copy;
436 
437 			sge = sk_msg_elem(msg_rx, i);
438 			copy = sge->length;
439 			page = sg_page(sge);
440 			if (copied + copy > len)
441 				copy = len - copied;
442 			if (copy)
443 				copy = copy_page_to_iter(page, sge->offset, copy, iter);
444 			if (!copy) {
445 				copied = copied ? copied : -EFAULT;
446 				goto out;
447 			}
448 
449 			copied += copy;
450 			if (from_self && copied_from_self)
451 				*copied_from_self += copy;
452 
453 			if (likely(!peek)) {
454 				sge->offset += copy;
455 				sge->length -= copy;
456 				if (!msg_rx->skb) {
457 					sk_mem_uncharge(sk, copy);
458 					atomic_sub(copy, &sk->sk_rmem_alloc);
459 				}
460 				msg_rx->sg.size -= copy;
461 				sk_psock_msg_len_add(psock, -copy);
462 
463 				if (!sge->length) {
464 					sk_msg_iter_var_next(i);
465 					if (!msg_rx->skb)
466 						put_page(page);
467 				}
468 			} else {
469 				/* Lets not optimize peek case if copy_page_to_iter
470 				 * didn't copy the entire length lets just break.
471 				 */
472 				if (copy != sge->length)
473 					goto out;
474 				sk_msg_iter_var_next(i);
475 			}
476 
477 			if (copied == len)
478 				break;
479 		} while ((i != msg_rx->sg.end) && !sg_is_last(sge));
480 
481 		if (unlikely(peek)) {
482 			msg_rx = sk_psock_next_msg(psock, msg_rx);
483 			if (!msg_rx)
484 				break;
485 			continue;
486 		}
487 
488 		msg_rx->sg.start = i;
489 		if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
490 			msg_rx = sk_psock_dequeue_msg(psock);
491 			kfree_sk_msg(msg_rx);
492 		}
493 		msg_rx = sk_psock_peek_msg(psock);
494 	}
495 out:
496 	return copied;
497 }
498 
499 /* Receive sk_msg from psock->ingress_msg to @msg. */
500 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
501 		   int len, int flags)
502 {
503 	return __sk_msg_recvmsg(sk, psock, msg, len, flags, NULL);
504 }
505 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
506 
507 bool sk_msg_is_readable(struct sock *sk)
508 {
509 	struct sk_psock *psock;
510 	bool empty = true;
511 
512 	rcu_read_lock();
513 	psock = sk_psock(sk);
514 	if (likely(psock))
515 		empty = list_empty(&psock->ingress_msg);
516 	rcu_read_unlock();
517 	return !empty;
518 }
519 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
520 
521 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
522 {
523 	struct sk_msg *msg;
524 
525 	msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
526 	if (unlikely(!msg))
527 		return NULL;
528 	sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
529 	return msg;
530 }
531 
532 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
533 						  struct sk_buff *skb)
534 {
535 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
536 		return NULL;
537 
538 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
539 		return NULL;
540 
541 	return alloc_sk_msg(GFP_KERNEL);
542 }
543 
544 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
545 					u32 off, u32 len,
546 					struct sk_psock *psock,
547 					struct sock *sk,
548 					struct sk_msg *msg,
549 					bool take_ref)
550 {
551 	int num_sge, copied;
552 
553 	/* skb_to_sgvec will fail when the total number of fragments in
554 	 * frag_list and frags exceeds MAX_MSG_FRAGS. For example, the
555 	 * caller may aggregate multiple skbs.
556 	 */
557 	num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
558 	if (num_sge < 0) {
559 		/* skb linearize may fail with ENOMEM, but lets simply try again
560 		 * later if this happens. Under memory pressure we don't want to
561 		 * drop the skb. We need to linearize the skb so that the mapping
562 		 * in skb_to_sgvec can not error.
563 		 * Note that skb_linearize requires the skb not to be shared.
564 		 */
565 		if (skb_linearize(skb))
566 			return -EAGAIN;
567 
568 		num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
569 		if (unlikely(num_sge < 0))
570 			return num_sge;
571 	}
572 
573 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
574 	psock->ingress_bytes += len;
575 #endif
576 	copied = len;
577 	msg->sg.start = 0;
578 	msg->sg.size = copied;
579 	msg->sg.end = num_sge;
580 	msg->skb = take_ref ? skb_get(skb) : skb;
581 
582 	sk_psock_queue_msg(psock, msg);
583 	sk_psock_data_ready(sk, psock);
584 	return copied;
585 }
586 
587 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
588 				     u32 off, u32 len, bool take_ref);
589 
590 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
591 				u32 off, u32 len)
592 {
593 	struct sock *sk = psock->sk;
594 	struct sk_msg *msg;
595 	int err;
596 
597 	/* If we are receiving on the same sock skb->sk is already assigned,
598 	 * skip memory accounting and owner transition seeing it already set
599 	 * correctly.
600 	 */
601 	if (unlikely(skb->sk == sk))
602 		return sk_psock_skb_ingress_self(psock, skb, off, len, true);
603 	msg = sk_psock_create_ingress_msg(sk, skb);
604 	if (!msg)
605 		return -EAGAIN;
606 
607 	/* This will transition ownership of the data from the socket where
608 	 * the BPF program was run initiating the redirect to the socket
609 	 * we will eventually receive this data on. The data will be released
610 	 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
611 	 * into user buffers.
612 	 */
613 	skb_set_owner_r(skb, sk);
614 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, true);
615 	if (err < 0)
616 		kfree(msg);
617 	return err;
618 }
619 
620 /* Puts an skb on the ingress queue of the socket already assigned to the
621  * skb. In this case we do not need to check memory limits or skb_set_owner_r
622  * because the skb is already accounted for here.
623  */
624 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
625 				     u32 off, u32 len, bool take_ref)
626 {
627 	struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
628 	struct sock *sk = psock->sk;
629 	int err;
630 
631 	if (unlikely(!msg))
632 		return -EAGAIN;
633 	skb_set_owner_r(skb, sk);
634 
635 	/* This is used in tcp_bpf_recvmsg_parser() to determine whether the
636 	 * data originates from the socket's own protocol stack. No need to
637 	 * refcount sk because msg's lifetime is bound to sk via the ingress_msg.
638 	 */
639 	msg->sk = sk;
640 	err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, take_ref);
641 	if (err < 0)
642 		kfree(msg);
643 	return err;
644 }
645 
646 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
647 			       u32 off, u32 len, bool ingress)
648 {
649 	if (!ingress) {
650 		if (!sock_writeable(psock->sk))
651 			return -EAGAIN;
652 		return skb_send_sock(psock->sk, skb, off, len);
653 	}
654 
655 	return sk_psock_skb_ingress(psock, skb, off, len);
656 }
657 
658 static void sk_psock_skb_state(struct sk_psock *psock,
659 			       struct sk_psock_work_state *state,
660 			       int len, int off)
661 {
662 	spin_lock_bh(&psock->ingress_lock);
663 	if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
664 		state->len = len;
665 		state->off = off;
666 	}
667 	spin_unlock_bh(&psock->ingress_lock);
668 }
669 
670 static void sk_psock_backlog(struct work_struct *work)
671 {
672 	struct delayed_work *dwork = to_delayed_work(work);
673 	struct sk_psock *psock = container_of(dwork, struct sk_psock, work);
674 	struct sk_psock_work_state *state = &psock->work_state;
675 	struct sk_buff *skb = NULL;
676 	u32 len = 0, off = 0;
677 	bool ingress;
678 	int ret;
679 
680 	/* If sk is quickly removed from the map and then added back, the old
681 	 * psock should not be scheduled, because there are now two psocks
682 	 * pointing to the same sk.
683 	 */
684 	if (!sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
685 		return;
686 
687 	/* Increment the psock refcnt to synchronize with close(fd) path in
688 	 * sock_map_close(), ensuring we wait for backlog thread completion
689 	 * before sk_socket freed. If refcnt increment fails, it indicates
690 	 * sock_map_close() completed with sk_socket potentially already freed.
691 	 */
692 	if (!sk_psock_get(psock->sk))
693 		return;
694 	mutex_lock(&psock->work_mutex);
695 	while ((skb = skb_peek(&psock->ingress_skb))) {
696 		len = skb->len;
697 		off = 0;
698 		if (skb_bpf_strparser(skb)) {
699 			struct strp_msg *stm = strp_msg(skb);
700 
701 			off = stm->offset;
702 			len = stm->full_len;
703 		}
704 
705 		/* Resume processing from previous partial state */
706 		if (unlikely(state->len)) {
707 			len = state->len;
708 			off = state->off;
709 		}
710 
711 		ingress = skb_bpf_ingress(skb);
712 		skb_bpf_redirect_clear(skb);
713 		do {
714 			ret = -EIO;
715 			if (!sock_flag(psock->sk, SOCK_DEAD))
716 				ret = sk_psock_handle_skb(psock, skb, off,
717 							  len, ingress);
718 			if (ret <= 0) {
719 				if (ret == -EAGAIN) {
720 					sk_psock_skb_state(psock, state, len, off);
721 					/* Restore redir info we cleared before */
722 					skb_bpf_set_redir(skb, psock->sk, ingress);
723 					/* Delay slightly to prioritize any
724 					 * other work that might be here.
725 					 */
726 					if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
727 						schedule_delayed_work(&psock->work, 1);
728 					goto end;
729 				}
730 				/* Hard errors break pipe and stop xmit. */
731 				sk_psock_report_error(psock, ret ? -ret : EPIPE);
732 				sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
733 				goto end;
734 			}
735 			off += ret;
736 			len -= ret;
737 		} while (len);
738 
739 		/* The entire skb sent, clear state */
740 		sk_psock_skb_state(psock, state, 0, 0);
741 		skb = skb_dequeue(&psock->ingress_skb);
742 		kfree_skb(skb);
743 	}
744 end:
745 	mutex_unlock(&psock->work_mutex);
746 	sk_psock_put(psock->sk, psock);
747 }
748 
749 struct sk_psock *sk_psock_init(struct sock *sk, int node)
750 {
751 	struct sk_psock *psock;
752 	struct proto *prot;
753 
754 	write_lock_bh(&sk->sk_callback_lock);
755 
756 	if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
757 		psock = ERR_PTR(-EINVAL);
758 		goto out;
759 	}
760 
761 	if (sk->sk_user_data) {
762 		psock = ERR_PTR(-EBUSY);
763 		goto out;
764 	}
765 
766 	psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
767 	if (!psock) {
768 		psock = ERR_PTR(-ENOMEM);
769 		goto out;
770 	}
771 
772 	prot = READ_ONCE(sk->sk_prot);
773 	psock->sk = sk;
774 	psock->eval = __SK_NONE;
775 	psock->sk_proto = prot;
776 	psock->saved_unhash = prot->unhash;
777 	psock->saved_destroy = prot->destroy;
778 	psock->saved_close = prot->close;
779 	psock->saved_write_space = sk->sk_write_space;
780 
781 	INIT_LIST_HEAD(&psock->link);
782 	spin_lock_init(&psock->link_lock);
783 
784 	INIT_DELAYED_WORK(&psock->work, sk_psock_backlog);
785 	mutex_init(&psock->work_mutex);
786 	INIT_LIST_HEAD(&psock->ingress_msg);
787 	spin_lock_init(&psock->ingress_lock);
788 	skb_queue_head_init(&psock->ingress_skb);
789 
790 	sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
791 	refcount_set(&psock->refcnt, 1);
792 
793 	__rcu_assign_sk_user_data_with_flags(sk, psock,
794 					     SK_USER_DATA_NOCOPY |
795 					     SK_USER_DATA_PSOCK);
796 	sock_hold(sk);
797 
798 out:
799 	write_unlock_bh(&sk->sk_callback_lock);
800 	return psock;
801 }
802 EXPORT_SYMBOL_GPL(sk_psock_init);
803 
804 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
805 {
806 	struct sk_psock_link *link;
807 
808 	spin_lock_bh(&psock->link_lock);
809 	link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
810 					list);
811 	if (link)
812 		list_del(&link->list);
813 	spin_unlock_bh(&psock->link_lock);
814 	return link;
815 }
816 
817 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
818 {
819 	struct sk_msg *msg, *tmp;
820 
821 	list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
822 		list_del(&msg->list);
823 		if (!msg->skb)
824 			atomic_sub(msg->sg.size, &psock->sk->sk_rmem_alloc);
825 		sk_psock_msg_len_add(psock, -msg->sg.size);
826 		sk_msg_free(psock->sk, msg);
827 		kfree(msg);
828 	}
829 	WARN_ON_ONCE(psock->msg_tot_len);
830 }
831 
832 static void __sk_psock_zap_ingress(struct sk_psock *psock)
833 {
834 	struct sk_buff *skb;
835 
836 	while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
837 		skb_bpf_redirect_clear(skb);
838 		sock_drop(psock->sk, skb);
839 	}
840 	__sk_psock_purge_ingress_msg(psock);
841 }
842 
843 static void sk_psock_link_destroy(struct sk_psock *psock)
844 {
845 	struct sk_psock_link *link, *tmp;
846 
847 	list_for_each_entry_safe(link, tmp, &psock->link, list) {
848 		list_del(&link->list);
849 		sk_psock_free_link(link);
850 	}
851 }
852 
853 void sk_psock_stop(struct sk_psock *psock)
854 {
855 	spin_lock_bh(&psock->ingress_lock);
856 	sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
857 	sk_psock_cork_free(psock);
858 	spin_unlock_bh(&psock->ingress_lock);
859 }
860 
861 static void sk_psock_done_strp(struct sk_psock *psock);
862 
863 static void sk_psock_destroy(struct work_struct *work)
864 {
865 	struct sk_psock *psock = container_of(to_rcu_work(work),
866 					      struct sk_psock, rwork);
867 	/* No sk_callback_lock since already detached. */
868 
869 	sk_psock_done_strp(psock);
870 
871 	cancel_delayed_work_sync(&psock->work);
872 	__sk_psock_zap_ingress(psock);
873 	mutex_destroy(&psock->work_mutex);
874 
875 	psock_progs_drop(&psock->progs);
876 
877 	sk_psock_link_destroy(psock);
878 	sk_psock_cork_free(psock);
879 
880 	if (psock->sk_redir)
881 		sock_put(psock->sk_redir);
882 	if (psock->sk_pair)
883 		sock_put(psock->sk_pair);
884 	sock_put(psock->sk);
885 	kfree(psock);
886 }
887 
888 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
889 {
890 	write_lock_bh(&sk->sk_callback_lock);
891 	sk_psock_restore_proto(sk, psock);
892 	rcu_assign_sk_user_data(sk, NULL);
893 	if (psock->progs.stream_parser)
894 		sk_psock_stop_strp(sk, psock);
895 	else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
896 		sk_psock_stop_verdict(sk, psock);
897 	write_unlock_bh(&sk->sk_callback_lock);
898 
899 	sk_psock_stop(psock);
900 
901 	INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
902 	queue_rcu_work(system_percpu_wq, &psock->rwork);
903 }
904 EXPORT_SYMBOL_GPL(sk_psock_drop);
905 
906 static int sk_psock_map_verd(int verdict, bool redir)
907 {
908 	switch (verdict) {
909 	case SK_PASS:
910 		return redir ? __SK_REDIRECT : __SK_PASS;
911 	case SK_DROP:
912 	default:
913 		break;
914 	}
915 
916 	return __SK_DROP;
917 }
918 
919 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
920 			 struct sk_msg *msg)
921 {
922 	struct bpf_prog *prog;
923 	int ret;
924 
925 	rcu_read_lock();
926 	prog = READ_ONCE(psock->progs.msg_parser);
927 	if (unlikely(!prog)) {
928 		ret = __SK_PASS;
929 		goto out;
930 	}
931 
932 	sk_msg_compute_data_pointers(msg);
933 	msg->sk = sk;
934 	ret = bpf_prog_run_pin_on_cpu(prog, msg);
935 	msg->sk = NULL;
936 	ret = sk_psock_map_verd(ret, msg->sk_redir);
937 	psock->apply_bytes = msg->apply_bytes;
938 	if (ret == __SK_REDIRECT) {
939 		if (psock->sk_redir) {
940 			sock_put(psock->sk_redir);
941 			psock->sk_redir = NULL;
942 		}
943 		if (!msg->sk_redir) {
944 			ret = __SK_DROP;
945 			goto out;
946 		}
947 		psock->redir_ingress = sk_msg_to_ingress(msg);
948 		psock->sk_redir = msg->sk_redir;
949 		sock_hold(psock->sk_redir);
950 	}
951 out:
952 	rcu_read_unlock();
953 	return ret;
954 }
955 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
956 
957 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
958 {
959 	struct sk_psock *psock_other;
960 	struct sock *sk_other;
961 
962 	sk_other = skb_bpf_redirect_fetch(skb);
963 	/* This error is a buggy BPF program, it returned a redirect
964 	 * return code, but then didn't set a redirect interface.
965 	 */
966 	if (unlikely(!sk_other)) {
967 		skb_bpf_redirect_clear(skb);
968 		sock_drop(from->sk, skb);
969 		return -EIO;
970 	}
971 	psock_other = sk_psock(sk_other);
972 	/* This error indicates the socket is being torn down or had another
973 	 * error that caused the pipe to break. We can't send a packet on
974 	 * a socket that is in this state so we drop the skb.
975 	 */
976 	if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
977 		skb_bpf_redirect_clear(skb);
978 		sock_drop(from->sk, skb);
979 		return -EIO;
980 	}
981 	spin_lock_bh(&psock_other->ingress_lock);
982 	if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
983 		spin_unlock_bh(&psock_other->ingress_lock);
984 		skb_bpf_redirect_clear(skb);
985 		sock_drop(from->sk, skb);
986 		return -EIO;
987 	}
988 
989 	skb_queue_tail(&psock_other->ingress_skb, skb);
990 	schedule_delayed_work(&psock_other->work, 0);
991 	spin_unlock_bh(&psock_other->ingress_lock);
992 	return 0;
993 }
994 
995 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
996 				       struct sk_psock *from, int verdict)
997 {
998 	switch (verdict) {
999 	case __SK_REDIRECT:
1000 		sk_psock_skb_redirect(from, skb);
1001 		break;
1002 	case __SK_PASS:
1003 	case __SK_DROP:
1004 	default:
1005 		break;
1006 	}
1007 }
1008 
1009 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
1010 {
1011 	struct bpf_prog *prog;
1012 	int ret = __SK_PASS;
1013 
1014 	rcu_read_lock();
1015 	prog = READ_ONCE(psock->progs.stream_verdict);
1016 	if (likely(prog)) {
1017 		skb->sk = psock->sk;
1018 		skb_dst_drop(skb);
1019 		skb_bpf_redirect_clear(skb);
1020 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1021 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1022 		skb->sk = NULL;
1023 	}
1024 	sk_psock_tls_verdict_apply(skb, psock, ret);
1025 	rcu_read_unlock();
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
1029 
1030 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
1031 				  int verdict)
1032 {
1033 	struct sock *sk_other;
1034 	int err = 0;
1035 	u32 len, off;
1036 
1037 	switch (verdict) {
1038 	case __SK_PASS:
1039 		err = -EIO;
1040 		sk_other = psock->sk;
1041 		if (sock_flag(sk_other, SOCK_DEAD) ||
1042 		    !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1043 			goto out_free;
1044 
1045 		skb_bpf_set_ingress(skb);
1046 
1047 		/* If the queue is empty then we can submit directly
1048 		 * into the msg queue. If its not empty we have to
1049 		 * queue work otherwise we may get OOO data. Otherwise,
1050 		 * if sk_psock_skb_ingress errors will be handled by
1051 		 * retrying later from workqueue.
1052 		 */
1053 		if (skb_queue_empty(&psock->ingress_skb)) {
1054 			len = skb->len;
1055 			off = 0;
1056 			if (skb_bpf_strparser(skb)) {
1057 				struct strp_msg *stm = strp_msg(skb);
1058 
1059 				off = stm->offset;
1060 				len = stm->full_len;
1061 			}
1062 			err = sk_psock_skb_ingress_self(psock, skb, off, len, false);
1063 		}
1064 		if (err < 0) {
1065 			spin_lock_bh(&psock->ingress_lock);
1066 			if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1067 				skb_queue_tail(&psock->ingress_skb, skb);
1068 				schedule_delayed_work(&psock->work, 0);
1069 				err = 0;
1070 			}
1071 			spin_unlock_bh(&psock->ingress_lock);
1072 			if (err < 0)
1073 				goto out_free;
1074 		}
1075 		break;
1076 	case __SK_REDIRECT:
1077 		tcp_eat_skb(psock->sk, skb);
1078 		err = sk_psock_skb_redirect(psock, skb);
1079 		break;
1080 	case __SK_DROP:
1081 	default:
1082 out_free:
1083 		skb_bpf_redirect_clear(skb);
1084 		tcp_eat_skb(psock->sk, skb);
1085 		sock_drop(psock->sk, skb);
1086 	}
1087 
1088 	return err;
1089 }
1090 
1091 static void sk_psock_write_space(struct sock *sk)
1092 {
1093 	struct sk_psock *psock;
1094 	void (*write_space)(struct sock *sk) = NULL;
1095 
1096 	rcu_read_lock();
1097 	psock = sk_psock(sk);
1098 	if (likely(psock)) {
1099 		if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1100 			schedule_delayed_work(&psock->work, 0);
1101 		write_space = psock->saved_write_space;
1102 	}
1103 	rcu_read_unlock();
1104 	if (write_space)
1105 		write_space(sk);
1106 }
1107 
1108 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1109 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1110 {
1111 	struct sk_psock *psock;
1112 	struct bpf_prog *prog;
1113 	int ret = __SK_DROP;
1114 	struct sock *sk;
1115 
1116 	rcu_read_lock();
1117 	sk = strp->sk;
1118 	psock = sk_psock(sk);
1119 	if (unlikely(!psock)) {
1120 		sock_drop(sk, skb);
1121 		goto out;
1122 	}
1123 	prog = READ_ONCE(psock->progs.stream_verdict);
1124 	if (likely(prog)) {
1125 		skb->sk = sk;
1126 		skb_dst_drop(skb);
1127 		skb_bpf_redirect_clear(skb);
1128 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1129 		skb_bpf_set_strparser(skb);
1130 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1131 		skb->sk = NULL;
1132 	}
1133 	sk_psock_verdict_apply(psock, skb, ret);
1134 out:
1135 	rcu_read_unlock();
1136 }
1137 
1138 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1139 {
1140 	return err;
1141 }
1142 
1143 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1144 {
1145 	struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1146 	struct bpf_prog *prog;
1147 	int ret = skb->len;
1148 
1149 	rcu_read_lock();
1150 	prog = READ_ONCE(psock->progs.stream_parser);
1151 	if (likely(prog)) {
1152 		skb->sk = psock->sk;
1153 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1154 		skb->sk = NULL;
1155 	}
1156 	rcu_read_unlock();
1157 	return ret;
1158 }
1159 
1160 /* Called with socket lock held. */
1161 static void sk_psock_strp_data_ready(struct sock *sk)
1162 {
1163 	struct sk_psock *psock;
1164 
1165 	trace_sk_data_ready(sk);
1166 
1167 	rcu_read_lock();
1168 	psock = sk_psock(sk);
1169 	if (likely(psock)) {
1170 		if (tls_sw_has_ctx_rx(sk)) {
1171 			psock->saved_data_ready(sk);
1172 		} else {
1173 			read_lock_bh(&sk->sk_callback_lock);
1174 			strp_data_ready(&psock->strp);
1175 			read_unlock_bh(&sk->sk_callback_lock);
1176 		}
1177 	}
1178 	rcu_read_unlock();
1179 }
1180 
1181 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1182 {
1183 	int ret;
1184 
1185 	static const struct strp_callbacks cb = {
1186 		.rcv_msg	= sk_psock_strp_read,
1187 		.read_sock_done	= sk_psock_strp_read_done,
1188 		.parse_msg	= sk_psock_strp_parse,
1189 	};
1190 
1191 	ret = strp_init(&psock->strp, sk, &cb);
1192 	if (!ret)
1193 		sk_psock_set_state(psock, SK_PSOCK_RX_STRP_ENABLED);
1194 
1195 	if (sk_is_tcp(sk)) {
1196 		psock->strp.cb.read_sock = tcp_bpf_strp_read_sock;
1197 		psock->copied_seq = tcp_sk(sk)->copied_seq;
1198 	}
1199 	return ret;
1200 }
1201 
1202 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1203 {
1204 	if (psock->saved_data_ready)
1205 		return;
1206 
1207 	psock->saved_data_ready = sk->sk_data_ready;
1208 	sk->sk_data_ready = sk_psock_strp_data_ready;
1209 	sk->sk_write_space = sk_psock_write_space;
1210 }
1211 
1212 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1213 {
1214 	psock_set_prog(&psock->progs.stream_parser, NULL);
1215 
1216 	if (!psock->saved_data_ready)
1217 		return;
1218 
1219 	sk->sk_data_ready = psock->saved_data_ready;
1220 	psock->saved_data_ready = NULL;
1221 	strp_stop(&psock->strp);
1222 }
1223 
1224 static void sk_psock_done_strp(struct sk_psock *psock)
1225 {
1226 	/* Parser has been stopped */
1227 	if (sk_psock_test_state(psock, SK_PSOCK_RX_STRP_ENABLED))
1228 		strp_done(&psock->strp);
1229 }
1230 #else
1231 static void sk_psock_done_strp(struct sk_psock *psock)
1232 {
1233 }
1234 #endif /* CONFIG_BPF_STREAM_PARSER */
1235 
1236 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1237 {
1238 	struct sk_psock *psock;
1239 	struct bpf_prog *prog;
1240 	int ret = __SK_DROP;
1241 	int len = skb->len;
1242 
1243 	rcu_read_lock();
1244 	psock = sk_psock(sk);
1245 	if (unlikely(!psock)) {
1246 		len = 0;
1247 		tcp_eat_skb(sk, skb);
1248 		sock_drop(sk, skb);
1249 		goto out;
1250 	}
1251 	prog = READ_ONCE(psock->progs.stream_verdict);
1252 	if (!prog)
1253 		prog = READ_ONCE(psock->progs.skb_verdict);
1254 	if (likely(prog)) {
1255 		skb_dst_drop(skb);
1256 		skb_bpf_redirect_clear(skb);
1257 		ret = bpf_prog_run_pin_on_cpu(prog, skb);
1258 		ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1259 	}
1260 	ret = sk_psock_verdict_apply(psock, skb, ret);
1261 	if (ret < 0)
1262 		len = ret;
1263 out:
1264 	rcu_read_unlock();
1265 	return len;
1266 }
1267 
1268 static void sk_psock_verdict_data_ready(struct sock *sk)
1269 {
1270 	struct socket *sock = sk->sk_socket;
1271 	const struct proto_ops *ops;
1272 	int copied;
1273 
1274 	trace_sk_data_ready(sk);
1275 
1276 	if (unlikely(!sock))
1277 		return;
1278 	ops = READ_ONCE(sock->ops);
1279 	if (!ops || !ops->read_skb)
1280 		return;
1281 	copied = ops->read_skb(sk, sk_psock_verdict_recv);
1282 	if (copied >= 0) {
1283 		struct sk_psock *psock;
1284 
1285 		rcu_read_lock();
1286 		psock = sk_psock(sk);
1287 		if (psock)
1288 			sk_psock_data_ready(sk, psock);
1289 		rcu_read_unlock();
1290 	}
1291 }
1292 
1293 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1294 {
1295 	if (psock->saved_data_ready)
1296 		return;
1297 
1298 	psock->saved_data_ready = sk->sk_data_ready;
1299 	sk->sk_data_ready = sk_psock_verdict_data_ready;
1300 	sk->sk_write_space = sk_psock_write_space;
1301 }
1302 
1303 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1304 {
1305 	psock_set_prog(&psock->progs.stream_verdict, NULL);
1306 	psock_set_prog(&psock->progs.skb_verdict, NULL);
1307 
1308 	if (!psock->saved_data_ready)
1309 		return;
1310 
1311 	sk->sk_data_ready = psock->saved_data_ready;
1312 	psock->saved_data_ready = NULL;
1313 }
1314