xref: /linux/net/core/skbuff.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /**
108  *	skb_panic - private function for out-of-line support
109  *	@skb:	buffer
110  *	@sz:	size
111  *	@addr:	address
112  *	@msg:	skb_over_panic or skb_under_panic
113  *
114  *	Out-of-line support for skb_put() and skb_push().
115  *	Called via the wrapper skb_over_panic() or skb_under_panic().
116  *	Keep out of line to prevent kernel bloat.
117  *	__builtin_return_address is not used because it is not always reliable.
118  */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 		      const char msg[])
121 {
122 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 		 msg, addr, skb->len, sz, skb->head, skb->data,
124 		 (unsigned long)skb->tail, (unsigned long)skb->end,
125 		 skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 	skb_panic(skb, sz, addr, __func__);
137 }
138 
139 /*
140  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141  * the caller if emergency pfmemalloc reserves are being used. If it is and
142  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143  * may be used. Otherwise, the packet data may be discarded until enough
144  * memory is free
145  */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148 
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 			       unsigned long ip, bool *pfmemalloc)
151 {
152 	void *obj;
153 	bool ret_pfmemalloc = false;
154 
155 	/*
156 	 * Try a regular allocation, when that fails and we're not entitled
157 	 * to the reserves, fail.
158 	 */
159 	obj = kmalloc_node_track_caller(size,
160 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 					node);
162 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 		goto out;
164 
165 	/* Try again but now we are using pfmemalloc reserves */
166 	ret_pfmemalloc = true;
167 	obj = kmalloc_node_track_caller(size, flags, node);
168 
169 out:
170 	if (pfmemalloc)
171 		*pfmemalloc = ret_pfmemalloc;
172 
173 	return obj;
174 }
175 
176 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
177  *	'private' fields and also do memory statistics to find all the
178  *	[BEEP] leaks.
179  *
180  */
181 
182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 	struct sk_buff *skb;
185 
186 	/* Get the HEAD */
187 	skb = kmem_cache_alloc_node(skbuff_head_cache,
188 				    gfp_mask & ~__GFP_DMA, node);
189 	if (!skb)
190 		goto out;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->head = NULL;
199 	skb->truesize = sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 
202 	skb->mac_header = (typeof(skb->mac_header))~0U;
203 out:
204 	return skb;
205 }
206 
207 /**
208  *	__alloc_skb	-	allocate a network buffer
209  *	@size: size to allocate
210  *	@gfp_mask: allocation mask
211  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
212  *		instead of head cache and allocate a cloned (child) skb.
213  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
214  *		allocations in case the data is required for writeback
215  *	@node: numa node to allocate memory on
216  *
217  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
218  *	tail room of at least size bytes. The object has a reference count
219  *	of one. The return is the buffer. On a failure the return is %NULL.
220  *
221  *	Buffers may only be allocated from interrupts using a @gfp_mask of
222  *	%GFP_ATOMIC.
223  */
224 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
225 			    int flags, int node)
226 {
227 	struct kmem_cache *cache;
228 	struct skb_shared_info *shinfo;
229 	struct sk_buff *skb;
230 	u8 *data;
231 	bool pfmemalloc;
232 
233 	cache = (flags & SKB_ALLOC_FCLONE)
234 		? skbuff_fclone_cache : skbuff_head_cache;
235 
236 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
237 		gfp_mask |= __GFP_MEMALLOC;
238 
239 	/* Get the HEAD */
240 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
241 	if (!skb)
242 		goto out;
243 	prefetchw(skb);
244 
245 	/* We do our best to align skb_shared_info on a separate cache
246 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
247 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
248 	 * Both skb->head and skb_shared_info are cache line aligned.
249 	 */
250 	size = SKB_DATA_ALIGN(size);
251 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
252 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
253 	if (!data)
254 		goto nodata;
255 	/* kmalloc(size) might give us more room than requested.
256 	 * Put skb_shared_info exactly at the end of allocated zone,
257 	 * to allow max possible filling before reallocation.
258 	 */
259 	size = SKB_WITH_OVERHEAD(ksize(data));
260 	prefetchw(data + size);
261 
262 	/*
263 	 * Only clear those fields we need to clear, not those that we will
264 	 * actually initialise below. Hence, don't put any more fields after
265 	 * the tail pointer in struct sk_buff!
266 	 */
267 	memset(skb, 0, offsetof(struct sk_buff, tail));
268 	/* Account for allocated memory : skb + skb->head */
269 	skb->truesize = SKB_TRUESIZE(size);
270 	skb->pfmemalloc = pfmemalloc;
271 	atomic_set(&skb->users, 1);
272 	skb->head = data;
273 	skb->data = data;
274 	skb_reset_tail_pointer(skb);
275 	skb->end = skb->tail + size;
276 	skb->mac_header = (typeof(skb->mac_header))~0U;
277 	skb->transport_header = (typeof(skb->transport_header))~0U;
278 
279 	/* make sure we initialize shinfo sequentially */
280 	shinfo = skb_shinfo(skb);
281 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 	atomic_set(&shinfo->dataref, 1);
283 	kmemcheck_annotate_variable(shinfo->destructor_arg);
284 
285 	if (flags & SKB_ALLOC_FCLONE) {
286 		struct sk_buff *child = skb + 1;
287 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
288 
289 		kmemcheck_annotate_bitfield(child, flags1);
290 		kmemcheck_annotate_bitfield(child, flags2);
291 		skb->fclone = SKB_FCLONE_ORIG;
292 		atomic_set(fclone_ref, 1);
293 
294 		child->fclone = SKB_FCLONE_UNAVAILABLE;
295 		child->pfmemalloc = pfmemalloc;
296 	}
297 out:
298 	return skb;
299 nodata:
300 	kmem_cache_free(cache, skb);
301 	skb = NULL;
302 	goto out;
303 }
304 EXPORT_SYMBOL(__alloc_skb);
305 
306 /**
307  * build_skb - build a network buffer
308  * @data: data buffer provided by caller
309  * @frag_size: size of fragment, or 0 if head was kmalloced
310  *
311  * Allocate a new &sk_buff. Caller provides space holding head and
312  * skb_shared_info. @data must have been allocated by kmalloc()
313  * The return is the new skb buffer.
314  * On a failure the return is %NULL, and @data is not freed.
315  * Notes :
316  *  Before IO, driver allocates only data buffer where NIC put incoming frame
317  *  Driver should add room at head (NET_SKB_PAD) and
318  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
319  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
320  *  before giving packet to stack.
321  *  RX rings only contains data buffers, not full skbs.
322  */
323 struct sk_buff *build_skb(void *data, unsigned int frag_size)
324 {
325 	struct skb_shared_info *shinfo;
326 	struct sk_buff *skb;
327 	unsigned int size = frag_size ? : ksize(data);
328 
329 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
330 	if (!skb)
331 		return NULL;
332 
333 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
334 
335 	memset(skb, 0, offsetof(struct sk_buff, tail));
336 	skb->truesize = SKB_TRUESIZE(size);
337 	skb->head_frag = frag_size != 0;
338 	atomic_set(&skb->users, 1);
339 	skb->head = data;
340 	skb->data = data;
341 	skb_reset_tail_pointer(skb);
342 	skb->end = skb->tail + size;
343 	skb->mac_header = (typeof(skb->mac_header))~0U;
344 	skb->transport_header = (typeof(skb->transport_header))~0U;
345 
346 	/* make sure we initialize shinfo sequentially */
347 	shinfo = skb_shinfo(skb);
348 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
349 	atomic_set(&shinfo->dataref, 1);
350 	kmemcheck_annotate_variable(shinfo->destructor_arg);
351 
352 	return skb;
353 }
354 EXPORT_SYMBOL(build_skb);
355 
356 struct netdev_alloc_cache {
357 	struct page_frag	frag;
358 	/* we maintain a pagecount bias, so that we dont dirty cache line
359 	 * containing page->_count every time we allocate a fragment.
360 	 */
361 	unsigned int		pagecnt_bias;
362 };
363 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
364 
365 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
366 {
367 	struct netdev_alloc_cache *nc;
368 	void *data = NULL;
369 	int order;
370 	unsigned long flags;
371 
372 	local_irq_save(flags);
373 	nc = &__get_cpu_var(netdev_alloc_cache);
374 	if (unlikely(!nc->frag.page)) {
375 refill:
376 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
377 			gfp_t gfp = gfp_mask;
378 
379 			if (order)
380 				gfp |= __GFP_COMP | __GFP_NOWARN;
381 			nc->frag.page = alloc_pages(gfp, order);
382 			if (likely(nc->frag.page))
383 				break;
384 			if (--order < 0)
385 				goto end;
386 		}
387 		nc->frag.size = PAGE_SIZE << order;
388 recycle:
389 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
390 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
391 		nc->frag.offset = 0;
392 	}
393 
394 	if (nc->frag.offset + fragsz > nc->frag.size) {
395 		/* avoid unnecessary locked operations if possible */
396 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
397 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
398 			goto recycle;
399 		goto refill;
400 	}
401 
402 	data = page_address(nc->frag.page) + nc->frag.offset;
403 	nc->frag.offset += fragsz;
404 	nc->pagecnt_bias--;
405 end:
406 	local_irq_restore(flags);
407 	return data;
408 }
409 
410 /**
411  * netdev_alloc_frag - allocate a page fragment
412  * @fragsz: fragment size
413  *
414  * Allocates a frag from a page for receive buffer.
415  * Uses GFP_ATOMIC allocations.
416  */
417 void *netdev_alloc_frag(unsigned int fragsz)
418 {
419 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
420 }
421 EXPORT_SYMBOL(netdev_alloc_frag);
422 
423 /**
424  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
425  *	@dev: network device to receive on
426  *	@length: length to allocate
427  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
428  *
429  *	Allocate a new &sk_buff and assign it a usage count of one. The
430  *	buffer has unspecified headroom built in. Users should allocate
431  *	the headroom they think they need without accounting for the
432  *	built in space. The built in space is used for optimisations.
433  *
434  *	%NULL is returned if there is no free memory.
435  */
436 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
437 				   unsigned int length, gfp_t gfp_mask)
438 {
439 	struct sk_buff *skb = NULL;
440 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
441 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
442 
443 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
444 		void *data;
445 
446 		if (sk_memalloc_socks())
447 			gfp_mask |= __GFP_MEMALLOC;
448 
449 		data = __netdev_alloc_frag(fragsz, gfp_mask);
450 
451 		if (likely(data)) {
452 			skb = build_skb(data, fragsz);
453 			if (unlikely(!skb))
454 				put_page(virt_to_head_page(data));
455 		}
456 	} else {
457 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
458 				  SKB_ALLOC_RX, NUMA_NO_NODE);
459 	}
460 	if (likely(skb)) {
461 		skb_reserve(skb, NET_SKB_PAD);
462 		skb->dev = dev;
463 	}
464 	return skb;
465 }
466 EXPORT_SYMBOL(__netdev_alloc_skb);
467 
468 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
469 		     int size, unsigned int truesize)
470 {
471 	skb_fill_page_desc(skb, i, page, off, size);
472 	skb->len += size;
473 	skb->data_len += size;
474 	skb->truesize += truesize;
475 }
476 EXPORT_SYMBOL(skb_add_rx_frag);
477 
478 static void skb_drop_list(struct sk_buff **listp)
479 {
480 	kfree_skb_list(*listp);
481 	*listp = NULL;
482 }
483 
484 static inline void skb_drop_fraglist(struct sk_buff *skb)
485 {
486 	skb_drop_list(&skb_shinfo(skb)->frag_list);
487 }
488 
489 static void skb_clone_fraglist(struct sk_buff *skb)
490 {
491 	struct sk_buff *list;
492 
493 	skb_walk_frags(skb, list)
494 		skb_get(list);
495 }
496 
497 static void skb_free_head(struct sk_buff *skb)
498 {
499 	if (skb->head_frag)
500 		put_page(virt_to_head_page(skb->head));
501 	else
502 		kfree(skb->head);
503 }
504 
505 static void skb_release_data(struct sk_buff *skb)
506 {
507 	if (!skb->cloned ||
508 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
509 			       &skb_shinfo(skb)->dataref)) {
510 		if (skb_shinfo(skb)->nr_frags) {
511 			int i;
512 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
513 				skb_frag_unref(skb, i);
514 		}
515 
516 		/*
517 		 * If skb buf is from userspace, we need to notify the caller
518 		 * the lower device DMA has done;
519 		 */
520 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
521 			struct ubuf_info *uarg;
522 
523 			uarg = skb_shinfo(skb)->destructor_arg;
524 			if (uarg->callback)
525 				uarg->callback(uarg, true);
526 		}
527 
528 		if (skb_has_frag_list(skb))
529 			skb_drop_fraglist(skb);
530 
531 		skb_free_head(skb);
532 	}
533 }
534 
535 /*
536  *	Free an skbuff by memory without cleaning the state.
537  */
538 static void kfree_skbmem(struct sk_buff *skb)
539 {
540 	struct sk_buff *other;
541 	atomic_t *fclone_ref;
542 
543 	switch (skb->fclone) {
544 	case SKB_FCLONE_UNAVAILABLE:
545 		kmem_cache_free(skbuff_head_cache, skb);
546 		break;
547 
548 	case SKB_FCLONE_ORIG:
549 		fclone_ref = (atomic_t *) (skb + 2);
550 		if (atomic_dec_and_test(fclone_ref))
551 			kmem_cache_free(skbuff_fclone_cache, skb);
552 		break;
553 
554 	case SKB_FCLONE_CLONE:
555 		fclone_ref = (atomic_t *) (skb + 1);
556 		other = skb - 1;
557 
558 		/* The clone portion is available for
559 		 * fast-cloning again.
560 		 */
561 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
562 
563 		if (atomic_dec_and_test(fclone_ref))
564 			kmem_cache_free(skbuff_fclone_cache, other);
565 		break;
566 	}
567 }
568 
569 static void skb_release_head_state(struct sk_buff *skb)
570 {
571 	skb_dst_drop(skb);
572 #ifdef CONFIG_XFRM
573 	secpath_put(skb->sp);
574 #endif
575 	if (skb->destructor) {
576 		WARN_ON(in_irq());
577 		skb->destructor(skb);
578 	}
579 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
580 	nf_conntrack_put(skb->nfct);
581 #endif
582 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
583 	nf_conntrack_put_reasm(skb->nfct_reasm);
584 #endif
585 #ifdef CONFIG_BRIDGE_NETFILTER
586 	nf_bridge_put(skb->nf_bridge);
587 #endif
588 /* XXX: IS this still necessary? - JHS */
589 #ifdef CONFIG_NET_SCHED
590 	skb->tc_index = 0;
591 #ifdef CONFIG_NET_CLS_ACT
592 	skb->tc_verd = 0;
593 #endif
594 #endif
595 }
596 
597 /* Free everything but the sk_buff shell. */
598 static void skb_release_all(struct sk_buff *skb)
599 {
600 	skb_release_head_state(skb);
601 	if (likely(skb->head))
602 		skb_release_data(skb);
603 }
604 
605 /**
606  *	__kfree_skb - private function
607  *	@skb: buffer
608  *
609  *	Free an sk_buff. Release anything attached to the buffer.
610  *	Clean the state. This is an internal helper function. Users should
611  *	always call kfree_skb
612  */
613 
614 void __kfree_skb(struct sk_buff *skb)
615 {
616 	skb_release_all(skb);
617 	kfree_skbmem(skb);
618 }
619 EXPORT_SYMBOL(__kfree_skb);
620 
621 /**
622  *	kfree_skb - free an sk_buff
623  *	@skb: buffer to free
624  *
625  *	Drop a reference to the buffer and free it if the usage count has
626  *	hit zero.
627  */
628 void kfree_skb(struct sk_buff *skb)
629 {
630 	if (unlikely(!skb))
631 		return;
632 	if (likely(atomic_read(&skb->users) == 1))
633 		smp_rmb();
634 	else if (likely(!atomic_dec_and_test(&skb->users)))
635 		return;
636 	trace_kfree_skb(skb, __builtin_return_address(0));
637 	__kfree_skb(skb);
638 }
639 EXPORT_SYMBOL(kfree_skb);
640 
641 void kfree_skb_list(struct sk_buff *segs)
642 {
643 	while (segs) {
644 		struct sk_buff *next = segs->next;
645 
646 		kfree_skb(segs);
647 		segs = next;
648 	}
649 }
650 EXPORT_SYMBOL(kfree_skb_list);
651 
652 /**
653  *	skb_tx_error - report an sk_buff xmit error
654  *	@skb: buffer that triggered an error
655  *
656  *	Report xmit error if a device callback is tracking this skb.
657  *	skb must be freed afterwards.
658  */
659 void skb_tx_error(struct sk_buff *skb)
660 {
661 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
662 		struct ubuf_info *uarg;
663 
664 		uarg = skb_shinfo(skb)->destructor_arg;
665 		if (uarg->callback)
666 			uarg->callback(uarg, false);
667 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
668 	}
669 }
670 EXPORT_SYMBOL(skb_tx_error);
671 
672 /**
673  *	consume_skb - free an skbuff
674  *	@skb: buffer to free
675  *
676  *	Drop a ref to the buffer and free it if the usage count has hit zero
677  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
678  *	is being dropped after a failure and notes that
679  */
680 void consume_skb(struct sk_buff *skb)
681 {
682 	if (unlikely(!skb))
683 		return;
684 	if (likely(atomic_read(&skb->users) == 1))
685 		smp_rmb();
686 	else if (likely(!atomic_dec_and_test(&skb->users)))
687 		return;
688 	trace_consume_skb(skb);
689 	__kfree_skb(skb);
690 }
691 EXPORT_SYMBOL(consume_skb);
692 
693 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
694 {
695 	new->tstamp		= old->tstamp;
696 	new->dev		= old->dev;
697 	new->transport_header	= old->transport_header;
698 	new->network_header	= old->network_header;
699 	new->mac_header		= old->mac_header;
700 	new->inner_protocol	= old->inner_protocol;
701 	new->inner_transport_header = old->inner_transport_header;
702 	new->inner_network_header = old->inner_network_header;
703 	new->inner_mac_header = old->inner_mac_header;
704 	skb_dst_copy(new, old);
705 	new->rxhash		= old->rxhash;
706 	new->ooo_okay		= old->ooo_okay;
707 	new->l4_rxhash		= old->l4_rxhash;
708 	new->no_fcs		= old->no_fcs;
709 	new->encapsulation	= old->encapsulation;
710 #ifdef CONFIG_XFRM
711 	new->sp			= secpath_get(old->sp);
712 #endif
713 	memcpy(new->cb, old->cb, sizeof(old->cb));
714 	new->csum		= old->csum;
715 	new->local_df		= old->local_df;
716 	new->pkt_type		= old->pkt_type;
717 	new->ip_summed		= old->ip_summed;
718 	skb_copy_queue_mapping(new, old);
719 	new->priority		= old->priority;
720 #if IS_ENABLED(CONFIG_IP_VS)
721 	new->ipvs_property	= old->ipvs_property;
722 #endif
723 	new->pfmemalloc		= old->pfmemalloc;
724 	new->protocol		= old->protocol;
725 	new->mark		= old->mark;
726 	new->skb_iif		= old->skb_iif;
727 	__nf_copy(new, old);
728 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
729 	new->nf_trace		= old->nf_trace;
730 #endif
731 #ifdef CONFIG_NET_SCHED
732 	new->tc_index		= old->tc_index;
733 #ifdef CONFIG_NET_CLS_ACT
734 	new->tc_verd		= old->tc_verd;
735 #endif
736 #endif
737 	new->vlan_proto		= old->vlan_proto;
738 	new->vlan_tci		= old->vlan_tci;
739 
740 	skb_copy_secmark(new, old);
741 
742 #ifdef CONFIG_NET_LL_RX_POLL
743 	new->napi_id	= old->napi_id;
744 #endif
745 }
746 
747 /*
748  * You should not add any new code to this function.  Add it to
749  * __copy_skb_header above instead.
750  */
751 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
752 {
753 #define C(x) n->x = skb->x
754 
755 	n->next = n->prev = NULL;
756 	n->sk = NULL;
757 	__copy_skb_header(n, skb);
758 
759 	C(len);
760 	C(data_len);
761 	C(mac_len);
762 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
763 	n->cloned = 1;
764 	n->nohdr = 0;
765 	n->destructor = NULL;
766 	C(tail);
767 	C(end);
768 	C(head);
769 	C(head_frag);
770 	C(data);
771 	C(truesize);
772 	atomic_set(&n->users, 1);
773 
774 	atomic_inc(&(skb_shinfo(skb)->dataref));
775 	skb->cloned = 1;
776 
777 	return n;
778 #undef C
779 }
780 
781 /**
782  *	skb_morph	-	morph one skb into another
783  *	@dst: the skb to receive the contents
784  *	@src: the skb to supply the contents
785  *
786  *	This is identical to skb_clone except that the target skb is
787  *	supplied by the user.
788  *
789  *	The target skb is returned upon exit.
790  */
791 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
792 {
793 	skb_release_all(dst);
794 	return __skb_clone(dst, src);
795 }
796 EXPORT_SYMBOL_GPL(skb_morph);
797 
798 /**
799  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
800  *	@skb: the skb to modify
801  *	@gfp_mask: allocation priority
802  *
803  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
804  *	It will copy all frags into kernel and drop the reference
805  *	to userspace pages.
806  *
807  *	If this function is called from an interrupt gfp_mask() must be
808  *	%GFP_ATOMIC.
809  *
810  *	Returns 0 on success or a negative error code on failure
811  *	to allocate kernel memory to copy to.
812  */
813 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
814 {
815 	int i;
816 	int num_frags = skb_shinfo(skb)->nr_frags;
817 	struct page *page, *head = NULL;
818 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
819 
820 	for (i = 0; i < num_frags; i++) {
821 		u8 *vaddr;
822 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
823 
824 		page = alloc_page(gfp_mask);
825 		if (!page) {
826 			while (head) {
827 				struct page *next = (struct page *)head->private;
828 				put_page(head);
829 				head = next;
830 			}
831 			return -ENOMEM;
832 		}
833 		vaddr = kmap_atomic(skb_frag_page(f));
834 		memcpy(page_address(page),
835 		       vaddr + f->page_offset, skb_frag_size(f));
836 		kunmap_atomic(vaddr);
837 		page->private = (unsigned long)head;
838 		head = page;
839 	}
840 
841 	/* skb frags release userspace buffers */
842 	for (i = 0; i < num_frags; i++)
843 		skb_frag_unref(skb, i);
844 
845 	uarg->callback(uarg, false);
846 
847 	/* skb frags point to kernel buffers */
848 	for (i = num_frags - 1; i >= 0; i--) {
849 		__skb_fill_page_desc(skb, i, head, 0,
850 				     skb_shinfo(skb)->frags[i].size);
851 		head = (struct page *)head->private;
852 	}
853 
854 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
855 	return 0;
856 }
857 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
858 
859 /**
860  *	skb_clone	-	duplicate an sk_buff
861  *	@skb: buffer to clone
862  *	@gfp_mask: allocation priority
863  *
864  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
865  *	copies share the same packet data but not structure. The new
866  *	buffer has a reference count of 1. If the allocation fails the
867  *	function returns %NULL otherwise the new buffer is returned.
868  *
869  *	If this function is called from an interrupt gfp_mask() must be
870  *	%GFP_ATOMIC.
871  */
872 
873 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
874 {
875 	struct sk_buff *n;
876 
877 	if (skb_orphan_frags(skb, gfp_mask))
878 		return NULL;
879 
880 	n = skb + 1;
881 	if (skb->fclone == SKB_FCLONE_ORIG &&
882 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
883 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
884 		n->fclone = SKB_FCLONE_CLONE;
885 		atomic_inc(fclone_ref);
886 	} else {
887 		if (skb_pfmemalloc(skb))
888 			gfp_mask |= __GFP_MEMALLOC;
889 
890 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
891 		if (!n)
892 			return NULL;
893 
894 		kmemcheck_annotate_bitfield(n, flags1);
895 		kmemcheck_annotate_bitfield(n, flags2);
896 		n->fclone = SKB_FCLONE_UNAVAILABLE;
897 	}
898 
899 	return __skb_clone(n, skb);
900 }
901 EXPORT_SYMBOL(skb_clone);
902 
903 static void skb_headers_offset_update(struct sk_buff *skb, int off)
904 {
905 	/* {transport,network,mac}_header and tail are relative to skb->head */
906 	skb->transport_header += off;
907 	skb->network_header   += off;
908 	if (skb_mac_header_was_set(skb))
909 		skb->mac_header += off;
910 	skb->inner_transport_header += off;
911 	skb->inner_network_header += off;
912 	skb->inner_mac_header += off;
913 }
914 
915 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
916 {
917 	__copy_skb_header(new, old);
918 
919 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
920 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
921 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
922 }
923 
924 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
925 {
926 	if (skb_pfmemalloc(skb))
927 		return SKB_ALLOC_RX;
928 	return 0;
929 }
930 
931 /**
932  *	skb_copy	-	create private copy of an sk_buff
933  *	@skb: buffer to copy
934  *	@gfp_mask: allocation priority
935  *
936  *	Make a copy of both an &sk_buff and its data. This is used when the
937  *	caller wishes to modify the data and needs a private copy of the
938  *	data to alter. Returns %NULL on failure or the pointer to the buffer
939  *	on success. The returned buffer has a reference count of 1.
940  *
941  *	As by-product this function converts non-linear &sk_buff to linear
942  *	one, so that &sk_buff becomes completely private and caller is allowed
943  *	to modify all the data of returned buffer. This means that this
944  *	function is not recommended for use in circumstances when only
945  *	header is going to be modified. Use pskb_copy() instead.
946  */
947 
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
949 {
950 	int headerlen = skb_headroom(skb);
951 	unsigned int size = skb_end_offset(skb) + skb->data_len;
952 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
953 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
954 
955 	if (!n)
956 		return NULL;
957 
958 	/* Set the data pointer */
959 	skb_reserve(n, headerlen);
960 	/* Set the tail pointer and length */
961 	skb_put(n, skb->len);
962 
963 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
964 		BUG();
965 
966 	copy_skb_header(n, skb);
967 	return n;
968 }
969 EXPORT_SYMBOL(skb_copy);
970 
971 /**
972  *	__pskb_copy	-	create copy of an sk_buff with private head.
973  *	@skb: buffer to copy
974  *	@headroom: headroom of new skb
975  *	@gfp_mask: allocation priority
976  *
977  *	Make a copy of both an &sk_buff and part of its data, located
978  *	in header. Fragmented data remain shared. This is used when
979  *	the caller wishes to modify only header of &sk_buff and needs
980  *	private copy of the header to alter. Returns %NULL on failure
981  *	or the pointer to the buffer on success.
982  *	The returned buffer has a reference count of 1.
983  */
984 
985 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
986 {
987 	unsigned int size = skb_headlen(skb) + headroom;
988 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
989 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
990 
991 	if (!n)
992 		goto out;
993 
994 	/* Set the data pointer */
995 	skb_reserve(n, headroom);
996 	/* Set the tail pointer and length */
997 	skb_put(n, skb_headlen(skb));
998 	/* Copy the bytes */
999 	skb_copy_from_linear_data(skb, n->data, n->len);
1000 
1001 	n->truesize += skb->data_len;
1002 	n->data_len  = skb->data_len;
1003 	n->len	     = skb->len;
1004 
1005 	if (skb_shinfo(skb)->nr_frags) {
1006 		int i;
1007 
1008 		if (skb_orphan_frags(skb, gfp_mask)) {
1009 			kfree_skb(n);
1010 			n = NULL;
1011 			goto out;
1012 		}
1013 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1014 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1015 			skb_frag_ref(skb, i);
1016 		}
1017 		skb_shinfo(n)->nr_frags = i;
1018 	}
1019 
1020 	if (skb_has_frag_list(skb)) {
1021 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1022 		skb_clone_fraglist(n);
1023 	}
1024 
1025 	copy_skb_header(n, skb);
1026 out:
1027 	return n;
1028 }
1029 EXPORT_SYMBOL(__pskb_copy);
1030 
1031 /**
1032  *	pskb_expand_head - reallocate header of &sk_buff
1033  *	@skb: buffer to reallocate
1034  *	@nhead: room to add at head
1035  *	@ntail: room to add at tail
1036  *	@gfp_mask: allocation priority
1037  *
1038  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1039  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1040  *	reference count of 1. Returns zero in the case of success or error,
1041  *	if expansion failed. In the last case, &sk_buff is not changed.
1042  *
1043  *	All the pointers pointing into skb header may change and must be
1044  *	reloaded after call to this function.
1045  */
1046 
1047 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1048 		     gfp_t gfp_mask)
1049 {
1050 	int i;
1051 	u8 *data;
1052 	int size = nhead + skb_end_offset(skb) + ntail;
1053 	long off;
1054 
1055 	BUG_ON(nhead < 0);
1056 
1057 	if (skb_shared(skb))
1058 		BUG();
1059 
1060 	size = SKB_DATA_ALIGN(size);
1061 
1062 	if (skb_pfmemalloc(skb))
1063 		gfp_mask |= __GFP_MEMALLOC;
1064 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1065 			       gfp_mask, NUMA_NO_NODE, NULL);
1066 	if (!data)
1067 		goto nodata;
1068 	size = SKB_WITH_OVERHEAD(ksize(data));
1069 
1070 	/* Copy only real data... and, alas, header. This should be
1071 	 * optimized for the cases when header is void.
1072 	 */
1073 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1074 
1075 	memcpy((struct skb_shared_info *)(data + size),
1076 	       skb_shinfo(skb),
1077 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1078 
1079 	/*
1080 	 * if shinfo is shared we must drop the old head gracefully, but if it
1081 	 * is not we can just drop the old head and let the existing refcount
1082 	 * be since all we did is relocate the values
1083 	 */
1084 	if (skb_cloned(skb)) {
1085 		/* copy this zero copy skb frags */
1086 		if (skb_orphan_frags(skb, gfp_mask))
1087 			goto nofrags;
1088 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1089 			skb_frag_ref(skb, i);
1090 
1091 		if (skb_has_frag_list(skb))
1092 			skb_clone_fraglist(skb);
1093 
1094 		skb_release_data(skb);
1095 	} else {
1096 		skb_free_head(skb);
1097 	}
1098 	off = (data + nhead) - skb->head;
1099 
1100 	skb->head     = data;
1101 	skb->head_frag = 0;
1102 	skb->data    += off;
1103 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1104 	skb->end      = size;
1105 	off           = nhead;
1106 #else
1107 	skb->end      = skb->head + size;
1108 #endif
1109 	skb->tail	      += off;
1110 	skb_headers_offset_update(skb, nhead);
1111 	/* Only adjust this if it actually is csum_start rather than csum */
1112 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1113 		skb->csum_start += nhead;
1114 	skb->cloned   = 0;
1115 	skb->hdr_len  = 0;
1116 	skb->nohdr    = 0;
1117 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1118 	return 0;
1119 
1120 nofrags:
1121 	kfree(data);
1122 nodata:
1123 	return -ENOMEM;
1124 }
1125 EXPORT_SYMBOL(pskb_expand_head);
1126 
1127 /* Make private copy of skb with writable head and some headroom */
1128 
1129 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1130 {
1131 	struct sk_buff *skb2;
1132 	int delta = headroom - skb_headroom(skb);
1133 
1134 	if (delta <= 0)
1135 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1136 	else {
1137 		skb2 = skb_clone(skb, GFP_ATOMIC);
1138 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1139 					     GFP_ATOMIC)) {
1140 			kfree_skb(skb2);
1141 			skb2 = NULL;
1142 		}
1143 	}
1144 	return skb2;
1145 }
1146 EXPORT_SYMBOL(skb_realloc_headroom);
1147 
1148 /**
1149  *	skb_copy_expand	-	copy and expand sk_buff
1150  *	@skb: buffer to copy
1151  *	@newheadroom: new free bytes at head
1152  *	@newtailroom: new free bytes at tail
1153  *	@gfp_mask: allocation priority
1154  *
1155  *	Make a copy of both an &sk_buff and its data and while doing so
1156  *	allocate additional space.
1157  *
1158  *	This is used when the caller wishes to modify the data and needs a
1159  *	private copy of the data to alter as well as more space for new fields.
1160  *	Returns %NULL on failure or the pointer to the buffer
1161  *	on success. The returned buffer has a reference count of 1.
1162  *
1163  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1164  *	is called from an interrupt.
1165  */
1166 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1167 				int newheadroom, int newtailroom,
1168 				gfp_t gfp_mask)
1169 {
1170 	/*
1171 	 *	Allocate the copy buffer
1172 	 */
1173 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1174 					gfp_mask, skb_alloc_rx_flag(skb),
1175 					NUMA_NO_NODE);
1176 	int oldheadroom = skb_headroom(skb);
1177 	int head_copy_len, head_copy_off;
1178 	int off;
1179 
1180 	if (!n)
1181 		return NULL;
1182 
1183 	skb_reserve(n, newheadroom);
1184 
1185 	/* Set the tail pointer and length */
1186 	skb_put(n, skb->len);
1187 
1188 	head_copy_len = oldheadroom;
1189 	head_copy_off = 0;
1190 	if (newheadroom <= head_copy_len)
1191 		head_copy_len = newheadroom;
1192 	else
1193 		head_copy_off = newheadroom - head_copy_len;
1194 
1195 	/* Copy the linear header and data. */
1196 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1197 			  skb->len + head_copy_len))
1198 		BUG();
1199 
1200 	copy_skb_header(n, skb);
1201 
1202 	off                  = newheadroom - oldheadroom;
1203 	if (n->ip_summed == CHECKSUM_PARTIAL)
1204 		n->csum_start += off;
1205 
1206 	skb_headers_offset_update(n, off);
1207 
1208 	return n;
1209 }
1210 EXPORT_SYMBOL(skb_copy_expand);
1211 
1212 /**
1213  *	skb_pad			-	zero pad the tail of an skb
1214  *	@skb: buffer to pad
1215  *	@pad: space to pad
1216  *
1217  *	Ensure that a buffer is followed by a padding area that is zero
1218  *	filled. Used by network drivers which may DMA or transfer data
1219  *	beyond the buffer end onto the wire.
1220  *
1221  *	May return error in out of memory cases. The skb is freed on error.
1222  */
1223 
1224 int skb_pad(struct sk_buff *skb, int pad)
1225 {
1226 	int err;
1227 	int ntail;
1228 
1229 	/* If the skbuff is non linear tailroom is always zero.. */
1230 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1231 		memset(skb->data+skb->len, 0, pad);
1232 		return 0;
1233 	}
1234 
1235 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1236 	if (likely(skb_cloned(skb) || ntail > 0)) {
1237 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1238 		if (unlikely(err))
1239 			goto free_skb;
1240 	}
1241 
1242 	/* FIXME: The use of this function with non-linear skb's really needs
1243 	 * to be audited.
1244 	 */
1245 	err = skb_linearize(skb);
1246 	if (unlikely(err))
1247 		goto free_skb;
1248 
1249 	memset(skb->data + skb->len, 0, pad);
1250 	return 0;
1251 
1252 free_skb:
1253 	kfree_skb(skb);
1254 	return err;
1255 }
1256 EXPORT_SYMBOL(skb_pad);
1257 
1258 /**
1259  *	skb_put - add data to a buffer
1260  *	@skb: buffer to use
1261  *	@len: amount of data to add
1262  *
1263  *	This function extends the used data area of the buffer. If this would
1264  *	exceed the total buffer size the kernel will panic. A pointer to the
1265  *	first byte of the extra data is returned.
1266  */
1267 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1268 {
1269 	unsigned char *tmp = skb_tail_pointer(skb);
1270 	SKB_LINEAR_ASSERT(skb);
1271 	skb->tail += len;
1272 	skb->len  += len;
1273 	if (unlikely(skb->tail > skb->end))
1274 		skb_over_panic(skb, len, __builtin_return_address(0));
1275 	return tmp;
1276 }
1277 EXPORT_SYMBOL(skb_put);
1278 
1279 /**
1280  *	skb_push - add data to the start of a buffer
1281  *	@skb: buffer to use
1282  *	@len: amount of data to add
1283  *
1284  *	This function extends the used data area of the buffer at the buffer
1285  *	start. If this would exceed the total buffer headroom the kernel will
1286  *	panic. A pointer to the first byte of the extra data is returned.
1287  */
1288 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1289 {
1290 	skb->data -= len;
1291 	skb->len  += len;
1292 	if (unlikely(skb->data<skb->head))
1293 		skb_under_panic(skb, len, __builtin_return_address(0));
1294 	return skb->data;
1295 }
1296 EXPORT_SYMBOL(skb_push);
1297 
1298 /**
1299  *	skb_pull - remove data from the start of a buffer
1300  *	@skb: buffer to use
1301  *	@len: amount of data to remove
1302  *
1303  *	This function removes data from the start of a buffer, returning
1304  *	the memory to the headroom. A pointer to the next data in the buffer
1305  *	is returned. Once the data has been pulled future pushes will overwrite
1306  *	the old data.
1307  */
1308 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1309 {
1310 	return skb_pull_inline(skb, len);
1311 }
1312 EXPORT_SYMBOL(skb_pull);
1313 
1314 /**
1315  *	skb_trim - remove end from a buffer
1316  *	@skb: buffer to alter
1317  *	@len: new length
1318  *
1319  *	Cut the length of a buffer down by removing data from the tail. If
1320  *	the buffer is already under the length specified it is not modified.
1321  *	The skb must be linear.
1322  */
1323 void skb_trim(struct sk_buff *skb, unsigned int len)
1324 {
1325 	if (skb->len > len)
1326 		__skb_trim(skb, len);
1327 }
1328 EXPORT_SYMBOL(skb_trim);
1329 
1330 /* Trims skb to length len. It can change skb pointers.
1331  */
1332 
1333 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1334 {
1335 	struct sk_buff **fragp;
1336 	struct sk_buff *frag;
1337 	int offset = skb_headlen(skb);
1338 	int nfrags = skb_shinfo(skb)->nr_frags;
1339 	int i;
1340 	int err;
1341 
1342 	if (skb_cloned(skb) &&
1343 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1344 		return err;
1345 
1346 	i = 0;
1347 	if (offset >= len)
1348 		goto drop_pages;
1349 
1350 	for (; i < nfrags; i++) {
1351 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1352 
1353 		if (end < len) {
1354 			offset = end;
1355 			continue;
1356 		}
1357 
1358 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1359 
1360 drop_pages:
1361 		skb_shinfo(skb)->nr_frags = i;
1362 
1363 		for (; i < nfrags; i++)
1364 			skb_frag_unref(skb, i);
1365 
1366 		if (skb_has_frag_list(skb))
1367 			skb_drop_fraglist(skb);
1368 		goto done;
1369 	}
1370 
1371 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1372 	     fragp = &frag->next) {
1373 		int end = offset + frag->len;
1374 
1375 		if (skb_shared(frag)) {
1376 			struct sk_buff *nfrag;
1377 
1378 			nfrag = skb_clone(frag, GFP_ATOMIC);
1379 			if (unlikely(!nfrag))
1380 				return -ENOMEM;
1381 
1382 			nfrag->next = frag->next;
1383 			consume_skb(frag);
1384 			frag = nfrag;
1385 			*fragp = frag;
1386 		}
1387 
1388 		if (end < len) {
1389 			offset = end;
1390 			continue;
1391 		}
1392 
1393 		if (end > len &&
1394 		    unlikely((err = pskb_trim(frag, len - offset))))
1395 			return err;
1396 
1397 		if (frag->next)
1398 			skb_drop_list(&frag->next);
1399 		break;
1400 	}
1401 
1402 done:
1403 	if (len > skb_headlen(skb)) {
1404 		skb->data_len -= skb->len - len;
1405 		skb->len       = len;
1406 	} else {
1407 		skb->len       = len;
1408 		skb->data_len  = 0;
1409 		skb_set_tail_pointer(skb, len);
1410 	}
1411 
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL(___pskb_trim);
1415 
1416 /**
1417  *	__pskb_pull_tail - advance tail of skb header
1418  *	@skb: buffer to reallocate
1419  *	@delta: number of bytes to advance tail
1420  *
1421  *	The function makes a sense only on a fragmented &sk_buff,
1422  *	it expands header moving its tail forward and copying necessary
1423  *	data from fragmented part.
1424  *
1425  *	&sk_buff MUST have reference count of 1.
1426  *
1427  *	Returns %NULL (and &sk_buff does not change) if pull failed
1428  *	or value of new tail of skb in the case of success.
1429  *
1430  *	All the pointers pointing into skb header may change and must be
1431  *	reloaded after call to this function.
1432  */
1433 
1434 /* Moves tail of skb head forward, copying data from fragmented part,
1435  * when it is necessary.
1436  * 1. It may fail due to malloc failure.
1437  * 2. It may change skb pointers.
1438  *
1439  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1440  */
1441 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1442 {
1443 	/* If skb has not enough free space at tail, get new one
1444 	 * plus 128 bytes for future expansions. If we have enough
1445 	 * room at tail, reallocate without expansion only if skb is cloned.
1446 	 */
1447 	int i, k, eat = (skb->tail + delta) - skb->end;
1448 
1449 	if (eat > 0 || skb_cloned(skb)) {
1450 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1451 				     GFP_ATOMIC))
1452 			return NULL;
1453 	}
1454 
1455 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1456 		BUG();
1457 
1458 	/* Optimization: no fragments, no reasons to preestimate
1459 	 * size of pulled pages. Superb.
1460 	 */
1461 	if (!skb_has_frag_list(skb))
1462 		goto pull_pages;
1463 
1464 	/* Estimate size of pulled pages. */
1465 	eat = delta;
1466 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1467 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1468 
1469 		if (size >= eat)
1470 			goto pull_pages;
1471 		eat -= size;
1472 	}
1473 
1474 	/* If we need update frag list, we are in troubles.
1475 	 * Certainly, it possible to add an offset to skb data,
1476 	 * but taking into account that pulling is expected to
1477 	 * be very rare operation, it is worth to fight against
1478 	 * further bloating skb head and crucify ourselves here instead.
1479 	 * Pure masohism, indeed. 8)8)
1480 	 */
1481 	if (eat) {
1482 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1483 		struct sk_buff *clone = NULL;
1484 		struct sk_buff *insp = NULL;
1485 
1486 		do {
1487 			BUG_ON(!list);
1488 
1489 			if (list->len <= eat) {
1490 				/* Eaten as whole. */
1491 				eat -= list->len;
1492 				list = list->next;
1493 				insp = list;
1494 			} else {
1495 				/* Eaten partially. */
1496 
1497 				if (skb_shared(list)) {
1498 					/* Sucks! We need to fork list. :-( */
1499 					clone = skb_clone(list, GFP_ATOMIC);
1500 					if (!clone)
1501 						return NULL;
1502 					insp = list->next;
1503 					list = clone;
1504 				} else {
1505 					/* This may be pulled without
1506 					 * problems. */
1507 					insp = list;
1508 				}
1509 				if (!pskb_pull(list, eat)) {
1510 					kfree_skb(clone);
1511 					return NULL;
1512 				}
1513 				break;
1514 			}
1515 		} while (eat);
1516 
1517 		/* Free pulled out fragments. */
1518 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1519 			skb_shinfo(skb)->frag_list = list->next;
1520 			kfree_skb(list);
1521 		}
1522 		/* And insert new clone at head. */
1523 		if (clone) {
1524 			clone->next = list;
1525 			skb_shinfo(skb)->frag_list = clone;
1526 		}
1527 	}
1528 	/* Success! Now we may commit changes to skb data. */
1529 
1530 pull_pages:
1531 	eat = delta;
1532 	k = 0;
1533 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1534 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1535 
1536 		if (size <= eat) {
1537 			skb_frag_unref(skb, i);
1538 			eat -= size;
1539 		} else {
1540 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1541 			if (eat) {
1542 				skb_shinfo(skb)->frags[k].page_offset += eat;
1543 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1544 				eat = 0;
1545 			}
1546 			k++;
1547 		}
1548 	}
1549 	skb_shinfo(skb)->nr_frags = k;
1550 
1551 	skb->tail     += delta;
1552 	skb->data_len -= delta;
1553 
1554 	return skb_tail_pointer(skb);
1555 }
1556 EXPORT_SYMBOL(__pskb_pull_tail);
1557 
1558 /**
1559  *	skb_copy_bits - copy bits from skb to kernel buffer
1560  *	@skb: source skb
1561  *	@offset: offset in source
1562  *	@to: destination buffer
1563  *	@len: number of bytes to copy
1564  *
1565  *	Copy the specified number of bytes from the source skb to the
1566  *	destination buffer.
1567  *
1568  *	CAUTION ! :
1569  *		If its prototype is ever changed,
1570  *		check arch/{*}/net/{*}.S files,
1571  *		since it is called from BPF assembly code.
1572  */
1573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1574 {
1575 	int start = skb_headlen(skb);
1576 	struct sk_buff *frag_iter;
1577 	int i, copy;
1578 
1579 	if (offset > (int)skb->len - len)
1580 		goto fault;
1581 
1582 	/* Copy header. */
1583 	if ((copy = start - offset) > 0) {
1584 		if (copy > len)
1585 			copy = len;
1586 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1587 		if ((len -= copy) == 0)
1588 			return 0;
1589 		offset += copy;
1590 		to     += copy;
1591 	}
1592 
1593 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1594 		int end;
1595 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1596 
1597 		WARN_ON(start > offset + len);
1598 
1599 		end = start + skb_frag_size(f);
1600 		if ((copy = end - offset) > 0) {
1601 			u8 *vaddr;
1602 
1603 			if (copy > len)
1604 				copy = len;
1605 
1606 			vaddr = kmap_atomic(skb_frag_page(f));
1607 			memcpy(to,
1608 			       vaddr + f->page_offset + offset - start,
1609 			       copy);
1610 			kunmap_atomic(vaddr);
1611 
1612 			if ((len -= copy) == 0)
1613 				return 0;
1614 			offset += copy;
1615 			to     += copy;
1616 		}
1617 		start = end;
1618 	}
1619 
1620 	skb_walk_frags(skb, frag_iter) {
1621 		int end;
1622 
1623 		WARN_ON(start > offset + len);
1624 
1625 		end = start + frag_iter->len;
1626 		if ((copy = end - offset) > 0) {
1627 			if (copy > len)
1628 				copy = len;
1629 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1630 				goto fault;
1631 			if ((len -= copy) == 0)
1632 				return 0;
1633 			offset += copy;
1634 			to     += copy;
1635 		}
1636 		start = end;
1637 	}
1638 
1639 	if (!len)
1640 		return 0;
1641 
1642 fault:
1643 	return -EFAULT;
1644 }
1645 EXPORT_SYMBOL(skb_copy_bits);
1646 
1647 /*
1648  * Callback from splice_to_pipe(), if we need to release some pages
1649  * at the end of the spd in case we error'ed out in filling the pipe.
1650  */
1651 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1652 {
1653 	put_page(spd->pages[i]);
1654 }
1655 
1656 static struct page *linear_to_page(struct page *page, unsigned int *len,
1657 				   unsigned int *offset,
1658 				   struct sock *sk)
1659 {
1660 	struct page_frag *pfrag = sk_page_frag(sk);
1661 
1662 	if (!sk_page_frag_refill(sk, pfrag))
1663 		return NULL;
1664 
1665 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1666 
1667 	memcpy(page_address(pfrag->page) + pfrag->offset,
1668 	       page_address(page) + *offset, *len);
1669 	*offset = pfrag->offset;
1670 	pfrag->offset += *len;
1671 
1672 	return pfrag->page;
1673 }
1674 
1675 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1676 			     struct page *page,
1677 			     unsigned int offset)
1678 {
1679 	return	spd->nr_pages &&
1680 		spd->pages[spd->nr_pages - 1] == page &&
1681 		(spd->partial[spd->nr_pages - 1].offset +
1682 		 spd->partial[spd->nr_pages - 1].len == offset);
1683 }
1684 
1685 /*
1686  * Fill page/offset/length into spd, if it can hold more pages.
1687  */
1688 static bool spd_fill_page(struct splice_pipe_desc *spd,
1689 			  struct pipe_inode_info *pipe, struct page *page,
1690 			  unsigned int *len, unsigned int offset,
1691 			  bool linear,
1692 			  struct sock *sk)
1693 {
1694 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1695 		return true;
1696 
1697 	if (linear) {
1698 		page = linear_to_page(page, len, &offset, sk);
1699 		if (!page)
1700 			return true;
1701 	}
1702 	if (spd_can_coalesce(spd, page, offset)) {
1703 		spd->partial[spd->nr_pages - 1].len += *len;
1704 		return false;
1705 	}
1706 	get_page(page);
1707 	spd->pages[spd->nr_pages] = page;
1708 	spd->partial[spd->nr_pages].len = *len;
1709 	spd->partial[spd->nr_pages].offset = offset;
1710 	spd->nr_pages++;
1711 
1712 	return false;
1713 }
1714 
1715 static bool __splice_segment(struct page *page, unsigned int poff,
1716 			     unsigned int plen, unsigned int *off,
1717 			     unsigned int *len,
1718 			     struct splice_pipe_desc *spd, bool linear,
1719 			     struct sock *sk,
1720 			     struct pipe_inode_info *pipe)
1721 {
1722 	if (!*len)
1723 		return true;
1724 
1725 	/* skip this segment if already processed */
1726 	if (*off >= plen) {
1727 		*off -= plen;
1728 		return false;
1729 	}
1730 
1731 	/* ignore any bits we already processed */
1732 	poff += *off;
1733 	plen -= *off;
1734 	*off = 0;
1735 
1736 	do {
1737 		unsigned int flen = min(*len, plen);
1738 
1739 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1740 				  linear, sk))
1741 			return true;
1742 		poff += flen;
1743 		plen -= flen;
1744 		*len -= flen;
1745 	} while (*len && plen);
1746 
1747 	return false;
1748 }
1749 
1750 /*
1751  * Map linear and fragment data from the skb to spd. It reports true if the
1752  * pipe is full or if we already spliced the requested length.
1753  */
1754 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1755 			      unsigned int *offset, unsigned int *len,
1756 			      struct splice_pipe_desc *spd, struct sock *sk)
1757 {
1758 	int seg;
1759 
1760 	/* map the linear part :
1761 	 * If skb->head_frag is set, this 'linear' part is backed by a
1762 	 * fragment, and if the head is not shared with any clones then
1763 	 * we can avoid a copy since we own the head portion of this page.
1764 	 */
1765 	if (__splice_segment(virt_to_page(skb->data),
1766 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1767 			     skb_headlen(skb),
1768 			     offset, len, spd,
1769 			     skb_head_is_locked(skb),
1770 			     sk, pipe))
1771 		return true;
1772 
1773 	/*
1774 	 * then map the fragments
1775 	 */
1776 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1777 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1778 
1779 		if (__splice_segment(skb_frag_page(f),
1780 				     f->page_offset, skb_frag_size(f),
1781 				     offset, len, spd, false, sk, pipe))
1782 			return true;
1783 	}
1784 
1785 	return false;
1786 }
1787 
1788 /*
1789  * Map data from the skb to a pipe. Should handle both the linear part,
1790  * the fragments, and the frag list. It does NOT handle frag lists within
1791  * the frag list, if such a thing exists. We'd probably need to recurse to
1792  * handle that cleanly.
1793  */
1794 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1795 		    struct pipe_inode_info *pipe, unsigned int tlen,
1796 		    unsigned int flags)
1797 {
1798 	struct partial_page partial[MAX_SKB_FRAGS];
1799 	struct page *pages[MAX_SKB_FRAGS];
1800 	struct splice_pipe_desc spd = {
1801 		.pages = pages,
1802 		.partial = partial,
1803 		.nr_pages_max = MAX_SKB_FRAGS,
1804 		.flags = flags,
1805 		.ops = &sock_pipe_buf_ops,
1806 		.spd_release = sock_spd_release,
1807 	};
1808 	struct sk_buff *frag_iter;
1809 	struct sock *sk = skb->sk;
1810 	int ret = 0;
1811 
1812 	/*
1813 	 * __skb_splice_bits() only fails if the output has no room left,
1814 	 * so no point in going over the frag_list for the error case.
1815 	 */
1816 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1817 		goto done;
1818 	else if (!tlen)
1819 		goto done;
1820 
1821 	/*
1822 	 * now see if we have a frag_list to map
1823 	 */
1824 	skb_walk_frags(skb, frag_iter) {
1825 		if (!tlen)
1826 			break;
1827 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1828 			break;
1829 	}
1830 
1831 done:
1832 	if (spd.nr_pages) {
1833 		/*
1834 		 * Drop the socket lock, otherwise we have reverse
1835 		 * locking dependencies between sk_lock and i_mutex
1836 		 * here as compared to sendfile(). We enter here
1837 		 * with the socket lock held, and splice_to_pipe() will
1838 		 * grab the pipe inode lock. For sendfile() emulation,
1839 		 * we call into ->sendpage() with the i_mutex lock held
1840 		 * and networking will grab the socket lock.
1841 		 */
1842 		release_sock(sk);
1843 		ret = splice_to_pipe(pipe, &spd);
1844 		lock_sock(sk);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 /**
1851  *	skb_store_bits - store bits from kernel buffer to skb
1852  *	@skb: destination buffer
1853  *	@offset: offset in destination
1854  *	@from: source buffer
1855  *	@len: number of bytes to copy
1856  *
1857  *	Copy the specified number of bytes from the source buffer to the
1858  *	destination skb.  This function handles all the messy bits of
1859  *	traversing fragment lists and such.
1860  */
1861 
1862 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1863 {
1864 	int start = skb_headlen(skb);
1865 	struct sk_buff *frag_iter;
1866 	int i, copy;
1867 
1868 	if (offset > (int)skb->len - len)
1869 		goto fault;
1870 
1871 	if ((copy = start - offset) > 0) {
1872 		if (copy > len)
1873 			copy = len;
1874 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1875 		if ((len -= copy) == 0)
1876 			return 0;
1877 		offset += copy;
1878 		from += copy;
1879 	}
1880 
1881 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1882 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1883 		int end;
1884 
1885 		WARN_ON(start > offset + len);
1886 
1887 		end = start + skb_frag_size(frag);
1888 		if ((copy = end - offset) > 0) {
1889 			u8 *vaddr;
1890 
1891 			if (copy > len)
1892 				copy = len;
1893 
1894 			vaddr = kmap_atomic(skb_frag_page(frag));
1895 			memcpy(vaddr + frag->page_offset + offset - start,
1896 			       from, copy);
1897 			kunmap_atomic(vaddr);
1898 
1899 			if ((len -= copy) == 0)
1900 				return 0;
1901 			offset += copy;
1902 			from += copy;
1903 		}
1904 		start = end;
1905 	}
1906 
1907 	skb_walk_frags(skb, frag_iter) {
1908 		int end;
1909 
1910 		WARN_ON(start > offset + len);
1911 
1912 		end = start + frag_iter->len;
1913 		if ((copy = end - offset) > 0) {
1914 			if (copy > len)
1915 				copy = len;
1916 			if (skb_store_bits(frag_iter, offset - start,
1917 					   from, copy))
1918 				goto fault;
1919 			if ((len -= copy) == 0)
1920 				return 0;
1921 			offset += copy;
1922 			from += copy;
1923 		}
1924 		start = end;
1925 	}
1926 	if (!len)
1927 		return 0;
1928 
1929 fault:
1930 	return -EFAULT;
1931 }
1932 EXPORT_SYMBOL(skb_store_bits);
1933 
1934 /* Checksum skb data. */
1935 
1936 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1937 			  int len, __wsum csum)
1938 {
1939 	int start = skb_headlen(skb);
1940 	int i, copy = start - offset;
1941 	struct sk_buff *frag_iter;
1942 	int pos = 0;
1943 
1944 	/* Checksum header. */
1945 	if (copy > 0) {
1946 		if (copy > len)
1947 			copy = len;
1948 		csum = csum_partial(skb->data + offset, copy, csum);
1949 		if ((len -= copy) == 0)
1950 			return csum;
1951 		offset += copy;
1952 		pos	= copy;
1953 	}
1954 
1955 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1956 		int end;
1957 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1958 
1959 		WARN_ON(start > offset + len);
1960 
1961 		end = start + skb_frag_size(frag);
1962 		if ((copy = end - offset) > 0) {
1963 			__wsum csum2;
1964 			u8 *vaddr;
1965 
1966 			if (copy > len)
1967 				copy = len;
1968 			vaddr = kmap_atomic(skb_frag_page(frag));
1969 			csum2 = csum_partial(vaddr + frag->page_offset +
1970 					     offset - start, copy, 0);
1971 			kunmap_atomic(vaddr);
1972 			csum = csum_block_add(csum, csum2, pos);
1973 			if (!(len -= copy))
1974 				return csum;
1975 			offset += copy;
1976 			pos    += copy;
1977 		}
1978 		start = end;
1979 	}
1980 
1981 	skb_walk_frags(skb, frag_iter) {
1982 		int end;
1983 
1984 		WARN_ON(start > offset + len);
1985 
1986 		end = start + frag_iter->len;
1987 		if ((copy = end - offset) > 0) {
1988 			__wsum csum2;
1989 			if (copy > len)
1990 				copy = len;
1991 			csum2 = skb_checksum(frag_iter, offset - start,
1992 					     copy, 0);
1993 			csum = csum_block_add(csum, csum2, pos);
1994 			if ((len -= copy) == 0)
1995 				return csum;
1996 			offset += copy;
1997 			pos    += copy;
1998 		}
1999 		start = end;
2000 	}
2001 	BUG_ON(len);
2002 
2003 	return csum;
2004 }
2005 EXPORT_SYMBOL(skb_checksum);
2006 
2007 /* Both of above in one bottle. */
2008 
2009 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2010 				    u8 *to, int len, __wsum csum)
2011 {
2012 	int start = skb_headlen(skb);
2013 	int i, copy = start - offset;
2014 	struct sk_buff *frag_iter;
2015 	int pos = 0;
2016 
2017 	/* Copy header. */
2018 	if (copy > 0) {
2019 		if (copy > len)
2020 			copy = len;
2021 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2022 						 copy, csum);
2023 		if ((len -= copy) == 0)
2024 			return csum;
2025 		offset += copy;
2026 		to     += copy;
2027 		pos	= copy;
2028 	}
2029 
2030 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 		int end;
2032 
2033 		WARN_ON(start > offset + len);
2034 
2035 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2036 		if ((copy = end - offset) > 0) {
2037 			__wsum csum2;
2038 			u8 *vaddr;
2039 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2040 
2041 			if (copy > len)
2042 				copy = len;
2043 			vaddr = kmap_atomic(skb_frag_page(frag));
2044 			csum2 = csum_partial_copy_nocheck(vaddr +
2045 							  frag->page_offset +
2046 							  offset - start, to,
2047 							  copy, 0);
2048 			kunmap_atomic(vaddr);
2049 			csum = csum_block_add(csum, csum2, pos);
2050 			if (!(len -= copy))
2051 				return csum;
2052 			offset += copy;
2053 			to     += copy;
2054 			pos    += copy;
2055 		}
2056 		start = end;
2057 	}
2058 
2059 	skb_walk_frags(skb, frag_iter) {
2060 		__wsum csum2;
2061 		int end;
2062 
2063 		WARN_ON(start > offset + len);
2064 
2065 		end = start + frag_iter->len;
2066 		if ((copy = end - offset) > 0) {
2067 			if (copy > len)
2068 				copy = len;
2069 			csum2 = skb_copy_and_csum_bits(frag_iter,
2070 						       offset - start,
2071 						       to, copy, 0);
2072 			csum = csum_block_add(csum, csum2, pos);
2073 			if ((len -= copy) == 0)
2074 				return csum;
2075 			offset += copy;
2076 			to     += copy;
2077 			pos    += copy;
2078 		}
2079 		start = end;
2080 	}
2081 	BUG_ON(len);
2082 	return csum;
2083 }
2084 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2085 
2086 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2087 {
2088 	__wsum csum;
2089 	long csstart;
2090 
2091 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2092 		csstart = skb_checksum_start_offset(skb);
2093 	else
2094 		csstart = skb_headlen(skb);
2095 
2096 	BUG_ON(csstart > skb_headlen(skb));
2097 
2098 	skb_copy_from_linear_data(skb, to, csstart);
2099 
2100 	csum = 0;
2101 	if (csstart != skb->len)
2102 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2103 					      skb->len - csstart, 0);
2104 
2105 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2106 		long csstuff = csstart + skb->csum_offset;
2107 
2108 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2109 	}
2110 }
2111 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2112 
2113 /**
2114  *	skb_dequeue - remove from the head of the queue
2115  *	@list: list to dequeue from
2116  *
2117  *	Remove the head of the list. The list lock is taken so the function
2118  *	may be used safely with other locking list functions. The head item is
2119  *	returned or %NULL if the list is empty.
2120  */
2121 
2122 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2123 {
2124 	unsigned long flags;
2125 	struct sk_buff *result;
2126 
2127 	spin_lock_irqsave(&list->lock, flags);
2128 	result = __skb_dequeue(list);
2129 	spin_unlock_irqrestore(&list->lock, flags);
2130 	return result;
2131 }
2132 EXPORT_SYMBOL(skb_dequeue);
2133 
2134 /**
2135  *	skb_dequeue_tail - remove from the tail of the queue
2136  *	@list: list to dequeue from
2137  *
2138  *	Remove the tail of the list. The list lock is taken so the function
2139  *	may be used safely with other locking list functions. The tail item is
2140  *	returned or %NULL if the list is empty.
2141  */
2142 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2143 {
2144 	unsigned long flags;
2145 	struct sk_buff *result;
2146 
2147 	spin_lock_irqsave(&list->lock, flags);
2148 	result = __skb_dequeue_tail(list);
2149 	spin_unlock_irqrestore(&list->lock, flags);
2150 	return result;
2151 }
2152 EXPORT_SYMBOL(skb_dequeue_tail);
2153 
2154 /**
2155  *	skb_queue_purge - empty a list
2156  *	@list: list to empty
2157  *
2158  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2159  *	the list and one reference dropped. This function takes the list
2160  *	lock and is atomic with respect to other list locking functions.
2161  */
2162 void skb_queue_purge(struct sk_buff_head *list)
2163 {
2164 	struct sk_buff *skb;
2165 	while ((skb = skb_dequeue(list)) != NULL)
2166 		kfree_skb(skb);
2167 }
2168 EXPORT_SYMBOL(skb_queue_purge);
2169 
2170 /**
2171  *	skb_queue_head - queue a buffer at the list head
2172  *	@list: list to use
2173  *	@newsk: buffer to queue
2174  *
2175  *	Queue a buffer at the start of the list. This function takes the
2176  *	list lock and can be used safely with other locking &sk_buff functions
2177  *	safely.
2178  *
2179  *	A buffer cannot be placed on two lists at the same time.
2180  */
2181 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2182 {
2183 	unsigned long flags;
2184 
2185 	spin_lock_irqsave(&list->lock, flags);
2186 	__skb_queue_head(list, newsk);
2187 	spin_unlock_irqrestore(&list->lock, flags);
2188 }
2189 EXPORT_SYMBOL(skb_queue_head);
2190 
2191 /**
2192  *	skb_queue_tail - queue a buffer at the list tail
2193  *	@list: list to use
2194  *	@newsk: buffer to queue
2195  *
2196  *	Queue a buffer at the tail of the list. This function takes the
2197  *	list lock and can be used safely with other locking &sk_buff functions
2198  *	safely.
2199  *
2200  *	A buffer cannot be placed on two lists at the same time.
2201  */
2202 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2203 {
2204 	unsigned long flags;
2205 
2206 	spin_lock_irqsave(&list->lock, flags);
2207 	__skb_queue_tail(list, newsk);
2208 	spin_unlock_irqrestore(&list->lock, flags);
2209 }
2210 EXPORT_SYMBOL(skb_queue_tail);
2211 
2212 /**
2213  *	skb_unlink	-	remove a buffer from a list
2214  *	@skb: buffer to remove
2215  *	@list: list to use
2216  *
2217  *	Remove a packet from a list. The list locks are taken and this
2218  *	function is atomic with respect to other list locked calls
2219  *
2220  *	You must know what list the SKB is on.
2221  */
2222 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2223 {
2224 	unsigned long flags;
2225 
2226 	spin_lock_irqsave(&list->lock, flags);
2227 	__skb_unlink(skb, list);
2228 	spin_unlock_irqrestore(&list->lock, flags);
2229 }
2230 EXPORT_SYMBOL(skb_unlink);
2231 
2232 /**
2233  *	skb_append	-	append a buffer
2234  *	@old: buffer to insert after
2235  *	@newsk: buffer to insert
2236  *	@list: list to use
2237  *
2238  *	Place a packet after a given packet in a list. The list locks are taken
2239  *	and this function is atomic with respect to other list locked calls.
2240  *	A buffer cannot be placed on two lists at the same time.
2241  */
2242 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2243 {
2244 	unsigned long flags;
2245 
2246 	spin_lock_irqsave(&list->lock, flags);
2247 	__skb_queue_after(list, old, newsk);
2248 	spin_unlock_irqrestore(&list->lock, flags);
2249 }
2250 EXPORT_SYMBOL(skb_append);
2251 
2252 /**
2253  *	skb_insert	-	insert a buffer
2254  *	@old: buffer to insert before
2255  *	@newsk: buffer to insert
2256  *	@list: list to use
2257  *
2258  *	Place a packet before a given packet in a list. The list locks are
2259  * 	taken and this function is atomic with respect to other list locked
2260  *	calls.
2261  *
2262  *	A buffer cannot be placed on two lists at the same time.
2263  */
2264 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2265 {
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(&list->lock, flags);
2269 	__skb_insert(newsk, old->prev, old, list);
2270 	spin_unlock_irqrestore(&list->lock, flags);
2271 }
2272 EXPORT_SYMBOL(skb_insert);
2273 
2274 static inline void skb_split_inside_header(struct sk_buff *skb,
2275 					   struct sk_buff* skb1,
2276 					   const u32 len, const int pos)
2277 {
2278 	int i;
2279 
2280 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2281 					 pos - len);
2282 	/* And move data appendix as is. */
2283 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2284 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2285 
2286 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2287 	skb_shinfo(skb)->nr_frags  = 0;
2288 	skb1->data_len		   = skb->data_len;
2289 	skb1->len		   += skb1->data_len;
2290 	skb->data_len		   = 0;
2291 	skb->len		   = len;
2292 	skb_set_tail_pointer(skb, len);
2293 }
2294 
2295 static inline void skb_split_no_header(struct sk_buff *skb,
2296 				       struct sk_buff* skb1,
2297 				       const u32 len, int pos)
2298 {
2299 	int i, k = 0;
2300 	const int nfrags = skb_shinfo(skb)->nr_frags;
2301 
2302 	skb_shinfo(skb)->nr_frags = 0;
2303 	skb1->len		  = skb1->data_len = skb->len - len;
2304 	skb->len		  = len;
2305 	skb->data_len		  = len - pos;
2306 
2307 	for (i = 0; i < nfrags; i++) {
2308 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2309 
2310 		if (pos + size > len) {
2311 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2312 
2313 			if (pos < len) {
2314 				/* Split frag.
2315 				 * We have two variants in this case:
2316 				 * 1. Move all the frag to the second
2317 				 *    part, if it is possible. F.e.
2318 				 *    this approach is mandatory for TUX,
2319 				 *    where splitting is expensive.
2320 				 * 2. Split is accurately. We make this.
2321 				 */
2322 				skb_frag_ref(skb, i);
2323 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2324 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2325 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2326 				skb_shinfo(skb)->nr_frags++;
2327 			}
2328 			k++;
2329 		} else
2330 			skb_shinfo(skb)->nr_frags++;
2331 		pos += size;
2332 	}
2333 	skb_shinfo(skb1)->nr_frags = k;
2334 }
2335 
2336 /**
2337  * skb_split - Split fragmented skb to two parts at length len.
2338  * @skb: the buffer to split
2339  * @skb1: the buffer to receive the second part
2340  * @len: new length for skb
2341  */
2342 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2343 {
2344 	int pos = skb_headlen(skb);
2345 
2346 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2347 	if (len < pos)	/* Split line is inside header. */
2348 		skb_split_inside_header(skb, skb1, len, pos);
2349 	else		/* Second chunk has no header, nothing to copy. */
2350 		skb_split_no_header(skb, skb1, len, pos);
2351 }
2352 EXPORT_SYMBOL(skb_split);
2353 
2354 /* Shifting from/to a cloned skb is a no-go.
2355  *
2356  * Caller cannot keep skb_shinfo related pointers past calling here!
2357  */
2358 static int skb_prepare_for_shift(struct sk_buff *skb)
2359 {
2360 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2361 }
2362 
2363 /**
2364  * skb_shift - Shifts paged data partially from skb to another
2365  * @tgt: buffer into which tail data gets added
2366  * @skb: buffer from which the paged data comes from
2367  * @shiftlen: shift up to this many bytes
2368  *
2369  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2370  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2371  * It's up to caller to free skb if everything was shifted.
2372  *
2373  * If @tgt runs out of frags, the whole operation is aborted.
2374  *
2375  * Skb cannot include anything else but paged data while tgt is allowed
2376  * to have non-paged data as well.
2377  *
2378  * TODO: full sized shift could be optimized but that would need
2379  * specialized skb free'er to handle frags without up-to-date nr_frags.
2380  */
2381 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2382 {
2383 	int from, to, merge, todo;
2384 	struct skb_frag_struct *fragfrom, *fragto;
2385 
2386 	BUG_ON(shiftlen > skb->len);
2387 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2388 
2389 	todo = shiftlen;
2390 	from = 0;
2391 	to = skb_shinfo(tgt)->nr_frags;
2392 	fragfrom = &skb_shinfo(skb)->frags[from];
2393 
2394 	/* Actual merge is delayed until the point when we know we can
2395 	 * commit all, so that we don't have to undo partial changes
2396 	 */
2397 	if (!to ||
2398 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2399 			      fragfrom->page_offset)) {
2400 		merge = -1;
2401 	} else {
2402 		merge = to - 1;
2403 
2404 		todo -= skb_frag_size(fragfrom);
2405 		if (todo < 0) {
2406 			if (skb_prepare_for_shift(skb) ||
2407 			    skb_prepare_for_shift(tgt))
2408 				return 0;
2409 
2410 			/* All previous frag pointers might be stale! */
2411 			fragfrom = &skb_shinfo(skb)->frags[from];
2412 			fragto = &skb_shinfo(tgt)->frags[merge];
2413 
2414 			skb_frag_size_add(fragto, shiftlen);
2415 			skb_frag_size_sub(fragfrom, shiftlen);
2416 			fragfrom->page_offset += shiftlen;
2417 
2418 			goto onlymerged;
2419 		}
2420 
2421 		from++;
2422 	}
2423 
2424 	/* Skip full, not-fitting skb to avoid expensive operations */
2425 	if ((shiftlen == skb->len) &&
2426 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2427 		return 0;
2428 
2429 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2430 		return 0;
2431 
2432 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2433 		if (to == MAX_SKB_FRAGS)
2434 			return 0;
2435 
2436 		fragfrom = &skb_shinfo(skb)->frags[from];
2437 		fragto = &skb_shinfo(tgt)->frags[to];
2438 
2439 		if (todo >= skb_frag_size(fragfrom)) {
2440 			*fragto = *fragfrom;
2441 			todo -= skb_frag_size(fragfrom);
2442 			from++;
2443 			to++;
2444 
2445 		} else {
2446 			__skb_frag_ref(fragfrom);
2447 			fragto->page = fragfrom->page;
2448 			fragto->page_offset = fragfrom->page_offset;
2449 			skb_frag_size_set(fragto, todo);
2450 
2451 			fragfrom->page_offset += todo;
2452 			skb_frag_size_sub(fragfrom, todo);
2453 			todo = 0;
2454 
2455 			to++;
2456 			break;
2457 		}
2458 	}
2459 
2460 	/* Ready to "commit" this state change to tgt */
2461 	skb_shinfo(tgt)->nr_frags = to;
2462 
2463 	if (merge >= 0) {
2464 		fragfrom = &skb_shinfo(skb)->frags[0];
2465 		fragto = &skb_shinfo(tgt)->frags[merge];
2466 
2467 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2468 		__skb_frag_unref(fragfrom);
2469 	}
2470 
2471 	/* Reposition in the original skb */
2472 	to = 0;
2473 	while (from < skb_shinfo(skb)->nr_frags)
2474 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2475 	skb_shinfo(skb)->nr_frags = to;
2476 
2477 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2478 
2479 onlymerged:
2480 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2481 	 * the other hand might need it if it needs to be resent
2482 	 */
2483 	tgt->ip_summed = CHECKSUM_PARTIAL;
2484 	skb->ip_summed = CHECKSUM_PARTIAL;
2485 
2486 	/* Yak, is it really working this way? Some helper please? */
2487 	skb->len -= shiftlen;
2488 	skb->data_len -= shiftlen;
2489 	skb->truesize -= shiftlen;
2490 	tgt->len += shiftlen;
2491 	tgt->data_len += shiftlen;
2492 	tgt->truesize += shiftlen;
2493 
2494 	return shiftlen;
2495 }
2496 
2497 /**
2498  * skb_prepare_seq_read - Prepare a sequential read of skb data
2499  * @skb: the buffer to read
2500  * @from: lower offset of data to be read
2501  * @to: upper offset of data to be read
2502  * @st: state variable
2503  *
2504  * Initializes the specified state variable. Must be called before
2505  * invoking skb_seq_read() for the first time.
2506  */
2507 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2508 			  unsigned int to, struct skb_seq_state *st)
2509 {
2510 	st->lower_offset = from;
2511 	st->upper_offset = to;
2512 	st->root_skb = st->cur_skb = skb;
2513 	st->frag_idx = st->stepped_offset = 0;
2514 	st->frag_data = NULL;
2515 }
2516 EXPORT_SYMBOL(skb_prepare_seq_read);
2517 
2518 /**
2519  * skb_seq_read - Sequentially read skb data
2520  * @consumed: number of bytes consumed by the caller so far
2521  * @data: destination pointer for data to be returned
2522  * @st: state variable
2523  *
2524  * Reads a block of skb data at &consumed relative to the
2525  * lower offset specified to skb_prepare_seq_read(). Assigns
2526  * the head of the data block to &data and returns the length
2527  * of the block or 0 if the end of the skb data or the upper
2528  * offset has been reached.
2529  *
2530  * The caller is not required to consume all of the data
2531  * returned, i.e. &consumed is typically set to the number
2532  * of bytes already consumed and the next call to
2533  * skb_seq_read() will return the remaining part of the block.
2534  *
2535  * Note 1: The size of each block of data returned can be arbitrary,
2536  *       this limitation is the cost for zerocopy seqeuental
2537  *       reads of potentially non linear data.
2538  *
2539  * Note 2: Fragment lists within fragments are not implemented
2540  *       at the moment, state->root_skb could be replaced with
2541  *       a stack for this purpose.
2542  */
2543 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2544 			  struct skb_seq_state *st)
2545 {
2546 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2547 	skb_frag_t *frag;
2548 
2549 	if (unlikely(abs_offset >= st->upper_offset)) {
2550 		if (st->frag_data) {
2551 			kunmap_atomic(st->frag_data);
2552 			st->frag_data = NULL;
2553 		}
2554 		return 0;
2555 	}
2556 
2557 next_skb:
2558 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2559 
2560 	if (abs_offset < block_limit && !st->frag_data) {
2561 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2562 		return block_limit - abs_offset;
2563 	}
2564 
2565 	if (st->frag_idx == 0 && !st->frag_data)
2566 		st->stepped_offset += skb_headlen(st->cur_skb);
2567 
2568 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2569 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2570 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2571 
2572 		if (abs_offset < block_limit) {
2573 			if (!st->frag_data)
2574 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2575 
2576 			*data = (u8 *) st->frag_data + frag->page_offset +
2577 				(abs_offset - st->stepped_offset);
2578 
2579 			return block_limit - abs_offset;
2580 		}
2581 
2582 		if (st->frag_data) {
2583 			kunmap_atomic(st->frag_data);
2584 			st->frag_data = NULL;
2585 		}
2586 
2587 		st->frag_idx++;
2588 		st->stepped_offset += skb_frag_size(frag);
2589 	}
2590 
2591 	if (st->frag_data) {
2592 		kunmap_atomic(st->frag_data);
2593 		st->frag_data = NULL;
2594 	}
2595 
2596 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2597 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2598 		st->frag_idx = 0;
2599 		goto next_skb;
2600 	} else if (st->cur_skb->next) {
2601 		st->cur_skb = st->cur_skb->next;
2602 		st->frag_idx = 0;
2603 		goto next_skb;
2604 	}
2605 
2606 	return 0;
2607 }
2608 EXPORT_SYMBOL(skb_seq_read);
2609 
2610 /**
2611  * skb_abort_seq_read - Abort a sequential read of skb data
2612  * @st: state variable
2613  *
2614  * Must be called if skb_seq_read() was not called until it
2615  * returned 0.
2616  */
2617 void skb_abort_seq_read(struct skb_seq_state *st)
2618 {
2619 	if (st->frag_data)
2620 		kunmap_atomic(st->frag_data);
2621 }
2622 EXPORT_SYMBOL(skb_abort_seq_read);
2623 
2624 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2625 
2626 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2627 					  struct ts_config *conf,
2628 					  struct ts_state *state)
2629 {
2630 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2631 }
2632 
2633 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2634 {
2635 	skb_abort_seq_read(TS_SKB_CB(state));
2636 }
2637 
2638 /**
2639  * skb_find_text - Find a text pattern in skb data
2640  * @skb: the buffer to look in
2641  * @from: search offset
2642  * @to: search limit
2643  * @config: textsearch configuration
2644  * @state: uninitialized textsearch state variable
2645  *
2646  * Finds a pattern in the skb data according to the specified
2647  * textsearch configuration. Use textsearch_next() to retrieve
2648  * subsequent occurrences of the pattern. Returns the offset
2649  * to the first occurrence or UINT_MAX if no match was found.
2650  */
2651 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2652 			   unsigned int to, struct ts_config *config,
2653 			   struct ts_state *state)
2654 {
2655 	unsigned int ret;
2656 
2657 	config->get_next_block = skb_ts_get_next_block;
2658 	config->finish = skb_ts_finish;
2659 
2660 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2661 
2662 	ret = textsearch_find(config, state);
2663 	return (ret <= to - from ? ret : UINT_MAX);
2664 }
2665 EXPORT_SYMBOL(skb_find_text);
2666 
2667 /**
2668  * skb_append_datato_frags - append the user data to a skb
2669  * @sk: sock  structure
2670  * @skb: skb structure to be appened with user data.
2671  * @getfrag: call back function to be used for getting the user data
2672  * @from: pointer to user message iov
2673  * @length: length of the iov message
2674  *
2675  * Description: This procedure append the user data in the fragment part
2676  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2677  */
2678 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2679 			int (*getfrag)(void *from, char *to, int offset,
2680 					int len, int odd, struct sk_buff *skb),
2681 			void *from, int length)
2682 {
2683 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2684 	int copy;
2685 	int offset = 0;
2686 	int ret;
2687 	struct page_frag *pfrag = &current->task_frag;
2688 
2689 	do {
2690 		/* Return error if we don't have space for new frag */
2691 		if (frg_cnt >= MAX_SKB_FRAGS)
2692 			return -EMSGSIZE;
2693 
2694 		if (!sk_page_frag_refill(sk, pfrag))
2695 			return -ENOMEM;
2696 
2697 		/* copy the user data to page */
2698 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2699 
2700 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2701 			      offset, copy, 0, skb);
2702 		if (ret < 0)
2703 			return -EFAULT;
2704 
2705 		/* copy was successful so update the size parameters */
2706 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2707 				   copy);
2708 		frg_cnt++;
2709 		pfrag->offset += copy;
2710 		get_page(pfrag->page);
2711 
2712 		skb->truesize += copy;
2713 		atomic_add(copy, &sk->sk_wmem_alloc);
2714 		skb->len += copy;
2715 		skb->data_len += copy;
2716 		offset += copy;
2717 		length -= copy;
2718 
2719 	} while (length > 0);
2720 
2721 	return 0;
2722 }
2723 EXPORT_SYMBOL(skb_append_datato_frags);
2724 
2725 /**
2726  *	skb_pull_rcsum - pull skb and update receive checksum
2727  *	@skb: buffer to update
2728  *	@len: length of data pulled
2729  *
2730  *	This function performs an skb_pull on the packet and updates
2731  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2732  *	receive path processing instead of skb_pull unless you know
2733  *	that the checksum difference is zero (e.g., a valid IP header)
2734  *	or you are setting ip_summed to CHECKSUM_NONE.
2735  */
2736 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2737 {
2738 	BUG_ON(len > skb->len);
2739 	skb->len -= len;
2740 	BUG_ON(skb->len < skb->data_len);
2741 	skb_postpull_rcsum(skb, skb->data, len);
2742 	return skb->data += len;
2743 }
2744 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2745 
2746 /**
2747  *	skb_segment - Perform protocol segmentation on skb.
2748  *	@skb: buffer to segment
2749  *	@features: features for the output path (see dev->features)
2750  *
2751  *	This function performs segmentation on the given skb.  It returns
2752  *	a pointer to the first in a list of new skbs for the segments.
2753  *	In case of error it returns ERR_PTR(err).
2754  */
2755 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2756 {
2757 	struct sk_buff *segs = NULL;
2758 	struct sk_buff *tail = NULL;
2759 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2760 	unsigned int mss = skb_shinfo(skb)->gso_size;
2761 	unsigned int doffset = skb->data - skb_mac_header(skb);
2762 	unsigned int offset = doffset;
2763 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2764 	unsigned int headroom;
2765 	unsigned int len;
2766 	__be16 proto;
2767 	bool csum;
2768 	int sg = !!(features & NETIF_F_SG);
2769 	int nfrags = skb_shinfo(skb)->nr_frags;
2770 	int err = -ENOMEM;
2771 	int i = 0;
2772 	int pos;
2773 
2774 	proto = skb_network_protocol(skb);
2775 	if (unlikely(!proto))
2776 		return ERR_PTR(-EINVAL);
2777 
2778 	csum = !!can_checksum_protocol(features, proto);
2779 	__skb_push(skb, doffset);
2780 	headroom = skb_headroom(skb);
2781 	pos = skb_headlen(skb);
2782 
2783 	do {
2784 		struct sk_buff *nskb;
2785 		skb_frag_t *frag;
2786 		int hsize;
2787 		int size;
2788 
2789 		len = skb->len - offset;
2790 		if (len > mss)
2791 			len = mss;
2792 
2793 		hsize = skb_headlen(skb) - offset;
2794 		if (hsize < 0)
2795 			hsize = 0;
2796 		if (hsize > len || !sg)
2797 			hsize = len;
2798 
2799 		if (!hsize && i >= nfrags) {
2800 			BUG_ON(fskb->len != len);
2801 
2802 			pos += len;
2803 			nskb = skb_clone(fskb, GFP_ATOMIC);
2804 			fskb = fskb->next;
2805 
2806 			if (unlikely(!nskb))
2807 				goto err;
2808 
2809 			hsize = skb_end_offset(nskb);
2810 			if (skb_cow_head(nskb, doffset + headroom)) {
2811 				kfree_skb(nskb);
2812 				goto err;
2813 			}
2814 
2815 			nskb->truesize += skb_end_offset(nskb) - hsize;
2816 			skb_release_head_state(nskb);
2817 			__skb_push(nskb, doffset);
2818 		} else {
2819 			nskb = __alloc_skb(hsize + doffset + headroom,
2820 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2821 					   NUMA_NO_NODE);
2822 
2823 			if (unlikely(!nskb))
2824 				goto err;
2825 
2826 			skb_reserve(nskb, headroom);
2827 			__skb_put(nskb, doffset);
2828 		}
2829 
2830 		if (segs)
2831 			tail->next = nskb;
2832 		else
2833 			segs = nskb;
2834 		tail = nskb;
2835 
2836 		__copy_skb_header(nskb, skb);
2837 		nskb->mac_len = skb->mac_len;
2838 
2839 		/* nskb and skb might have different headroom */
2840 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2841 			nskb->csum_start += skb_headroom(nskb) - headroom;
2842 
2843 		skb_reset_mac_header(nskb);
2844 		skb_set_network_header(nskb, skb->mac_len);
2845 		nskb->transport_header = (nskb->network_header +
2846 					  skb_network_header_len(skb));
2847 
2848 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2849 						 nskb->data - tnl_hlen,
2850 						 doffset + tnl_hlen);
2851 
2852 		if (fskb != skb_shinfo(skb)->frag_list)
2853 			goto perform_csum_check;
2854 
2855 		if (!sg) {
2856 			nskb->ip_summed = CHECKSUM_NONE;
2857 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2858 							    skb_put(nskb, len),
2859 							    len, 0);
2860 			continue;
2861 		}
2862 
2863 		frag = skb_shinfo(nskb)->frags;
2864 
2865 		skb_copy_from_linear_data_offset(skb, offset,
2866 						 skb_put(nskb, hsize), hsize);
2867 
2868 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2869 
2870 		while (pos < offset + len && i < nfrags) {
2871 			*frag = skb_shinfo(skb)->frags[i];
2872 			__skb_frag_ref(frag);
2873 			size = skb_frag_size(frag);
2874 
2875 			if (pos < offset) {
2876 				frag->page_offset += offset - pos;
2877 				skb_frag_size_sub(frag, offset - pos);
2878 			}
2879 
2880 			skb_shinfo(nskb)->nr_frags++;
2881 
2882 			if (pos + size <= offset + len) {
2883 				i++;
2884 				pos += size;
2885 			} else {
2886 				skb_frag_size_sub(frag, pos + size - (offset + len));
2887 				goto skip_fraglist;
2888 			}
2889 
2890 			frag++;
2891 		}
2892 
2893 		if (pos < offset + len) {
2894 			struct sk_buff *fskb2 = fskb;
2895 
2896 			BUG_ON(pos + fskb->len != offset + len);
2897 
2898 			pos += fskb->len;
2899 			fskb = fskb->next;
2900 
2901 			if (fskb2->next) {
2902 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2903 				if (!fskb2)
2904 					goto err;
2905 			} else
2906 				skb_get(fskb2);
2907 
2908 			SKB_FRAG_ASSERT(nskb);
2909 			skb_shinfo(nskb)->frag_list = fskb2;
2910 		}
2911 
2912 skip_fraglist:
2913 		nskb->data_len = len - hsize;
2914 		nskb->len += nskb->data_len;
2915 		nskb->truesize += nskb->data_len;
2916 
2917 perform_csum_check:
2918 		if (!csum) {
2919 			nskb->csum = skb_checksum(nskb, doffset,
2920 						  nskb->len - doffset, 0);
2921 			nskb->ip_summed = CHECKSUM_NONE;
2922 		}
2923 	} while ((offset += len) < skb->len);
2924 
2925 	return segs;
2926 
2927 err:
2928 	while ((skb = segs)) {
2929 		segs = skb->next;
2930 		kfree_skb(skb);
2931 	}
2932 	return ERR_PTR(err);
2933 }
2934 EXPORT_SYMBOL_GPL(skb_segment);
2935 
2936 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2937 {
2938 	struct sk_buff *p = *head;
2939 	struct sk_buff *nskb;
2940 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2941 	struct skb_shared_info *pinfo = skb_shinfo(p);
2942 	unsigned int headroom;
2943 	unsigned int len = skb_gro_len(skb);
2944 	unsigned int offset = skb_gro_offset(skb);
2945 	unsigned int headlen = skb_headlen(skb);
2946 	unsigned int delta_truesize;
2947 
2948 	if (p->len + len >= 65536)
2949 		return -E2BIG;
2950 
2951 	if (pinfo->frag_list)
2952 		goto merge;
2953 	else if (headlen <= offset) {
2954 		skb_frag_t *frag;
2955 		skb_frag_t *frag2;
2956 		int i = skbinfo->nr_frags;
2957 		int nr_frags = pinfo->nr_frags + i;
2958 
2959 		offset -= headlen;
2960 
2961 		if (nr_frags > MAX_SKB_FRAGS)
2962 			return -E2BIG;
2963 
2964 		pinfo->nr_frags = nr_frags;
2965 		skbinfo->nr_frags = 0;
2966 
2967 		frag = pinfo->frags + nr_frags;
2968 		frag2 = skbinfo->frags + i;
2969 		do {
2970 			*--frag = *--frag2;
2971 		} while (--i);
2972 
2973 		frag->page_offset += offset;
2974 		skb_frag_size_sub(frag, offset);
2975 
2976 		/* all fragments truesize : remove (head size + sk_buff) */
2977 		delta_truesize = skb->truesize -
2978 				 SKB_TRUESIZE(skb_end_offset(skb));
2979 
2980 		skb->truesize -= skb->data_len;
2981 		skb->len -= skb->data_len;
2982 		skb->data_len = 0;
2983 
2984 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2985 		goto done;
2986 	} else if (skb->head_frag) {
2987 		int nr_frags = pinfo->nr_frags;
2988 		skb_frag_t *frag = pinfo->frags + nr_frags;
2989 		struct page *page = virt_to_head_page(skb->head);
2990 		unsigned int first_size = headlen - offset;
2991 		unsigned int first_offset;
2992 
2993 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2994 			return -E2BIG;
2995 
2996 		first_offset = skb->data -
2997 			       (unsigned char *)page_address(page) +
2998 			       offset;
2999 
3000 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3001 
3002 		frag->page.p	  = page;
3003 		frag->page_offset = first_offset;
3004 		skb_frag_size_set(frag, first_size);
3005 
3006 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3007 		/* We dont need to clear skbinfo->nr_frags here */
3008 
3009 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3010 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3011 		goto done;
3012 	} else if (skb_gro_len(p) != pinfo->gso_size)
3013 		return -E2BIG;
3014 
3015 	headroom = skb_headroom(p);
3016 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3017 	if (unlikely(!nskb))
3018 		return -ENOMEM;
3019 
3020 	__copy_skb_header(nskb, p);
3021 	nskb->mac_len = p->mac_len;
3022 
3023 	skb_reserve(nskb, headroom);
3024 	__skb_put(nskb, skb_gro_offset(p));
3025 
3026 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3027 	skb_set_network_header(nskb, skb_network_offset(p));
3028 	skb_set_transport_header(nskb, skb_transport_offset(p));
3029 
3030 	__skb_pull(p, skb_gro_offset(p));
3031 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3032 	       p->data - skb_mac_header(p));
3033 
3034 	skb_shinfo(nskb)->frag_list = p;
3035 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3036 	pinfo->gso_size = 0;
3037 	skb_header_release(p);
3038 	NAPI_GRO_CB(nskb)->last = p;
3039 
3040 	nskb->data_len += p->len;
3041 	nskb->truesize += p->truesize;
3042 	nskb->len += p->len;
3043 
3044 	*head = nskb;
3045 	nskb->next = p->next;
3046 	p->next = NULL;
3047 
3048 	p = nskb;
3049 
3050 merge:
3051 	delta_truesize = skb->truesize;
3052 	if (offset > headlen) {
3053 		unsigned int eat = offset - headlen;
3054 
3055 		skbinfo->frags[0].page_offset += eat;
3056 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3057 		skb->data_len -= eat;
3058 		skb->len -= eat;
3059 		offset = headlen;
3060 	}
3061 
3062 	__skb_pull(skb, offset);
3063 
3064 	NAPI_GRO_CB(p)->last->next = skb;
3065 	NAPI_GRO_CB(p)->last = skb;
3066 	skb_header_release(skb);
3067 
3068 done:
3069 	NAPI_GRO_CB(p)->count++;
3070 	p->data_len += len;
3071 	p->truesize += delta_truesize;
3072 	p->len += len;
3073 
3074 	NAPI_GRO_CB(skb)->same_flow = 1;
3075 	return 0;
3076 }
3077 EXPORT_SYMBOL_GPL(skb_gro_receive);
3078 
3079 void __init skb_init(void)
3080 {
3081 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3082 					      sizeof(struct sk_buff),
3083 					      0,
3084 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3085 					      NULL);
3086 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3087 						(2*sizeof(struct sk_buff)) +
3088 						sizeof(atomic_t),
3089 						0,
3090 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3091 						NULL);
3092 }
3093 
3094 /**
3095  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3096  *	@skb: Socket buffer containing the buffers to be mapped
3097  *	@sg: The scatter-gather list to map into
3098  *	@offset: The offset into the buffer's contents to start mapping
3099  *	@len: Length of buffer space to be mapped
3100  *
3101  *	Fill the specified scatter-gather list with mappings/pointers into a
3102  *	region of the buffer space attached to a socket buffer.
3103  */
3104 static int
3105 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3106 {
3107 	int start = skb_headlen(skb);
3108 	int i, copy = start - offset;
3109 	struct sk_buff *frag_iter;
3110 	int elt = 0;
3111 
3112 	if (copy > 0) {
3113 		if (copy > len)
3114 			copy = len;
3115 		sg_set_buf(sg, skb->data + offset, copy);
3116 		elt++;
3117 		if ((len -= copy) == 0)
3118 			return elt;
3119 		offset += copy;
3120 	}
3121 
3122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3123 		int end;
3124 
3125 		WARN_ON(start > offset + len);
3126 
3127 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3128 		if ((copy = end - offset) > 0) {
3129 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3130 
3131 			if (copy > len)
3132 				copy = len;
3133 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3134 					frag->page_offset+offset-start);
3135 			elt++;
3136 			if (!(len -= copy))
3137 				return elt;
3138 			offset += copy;
3139 		}
3140 		start = end;
3141 	}
3142 
3143 	skb_walk_frags(skb, frag_iter) {
3144 		int end;
3145 
3146 		WARN_ON(start > offset + len);
3147 
3148 		end = start + frag_iter->len;
3149 		if ((copy = end - offset) > 0) {
3150 			if (copy > len)
3151 				copy = len;
3152 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3153 					      copy);
3154 			if ((len -= copy) == 0)
3155 				return elt;
3156 			offset += copy;
3157 		}
3158 		start = end;
3159 	}
3160 	BUG_ON(len);
3161 	return elt;
3162 }
3163 
3164 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3165 {
3166 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3167 
3168 	sg_mark_end(&sg[nsg - 1]);
3169 
3170 	return nsg;
3171 }
3172 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3173 
3174 /**
3175  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3176  *	@skb: The socket buffer to check.
3177  *	@tailbits: Amount of trailing space to be added
3178  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3179  *
3180  *	Make sure that the data buffers attached to a socket buffer are
3181  *	writable. If they are not, private copies are made of the data buffers
3182  *	and the socket buffer is set to use these instead.
3183  *
3184  *	If @tailbits is given, make sure that there is space to write @tailbits
3185  *	bytes of data beyond current end of socket buffer.  @trailer will be
3186  *	set to point to the skb in which this space begins.
3187  *
3188  *	The number of scatterlist elements required to completely map the
3189  *	COW'd and extended socket buffer will be returned.
3190  */
3191 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3192 {
3193 	int copyflag;
3194 	int elt;
3195 	struct sk_buff *skb1, **skb_p;
3196 
3197 	/* If skb is cloned or its head is paged, reallocate
3198 	 * head pulling out all the pages (pages are considered not writable
3199 	 * at the moment even if they are anonymous).
3200 	 */
3201 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3202 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3203 		return -ENOMEM;
3204 
3205 	/* Easy case. Most of packets will go this way. */
3206 	if (!skb_has_frag_list(skb)) {
3207 		/* A little of trouble, not enough of space for trailer.
3208 		 * This should not happen, when stack is tuned to generate
3209 		 * good frames. OK, on miss we reallocate and reserve even more
3210 		 * space, 128 bytes is fair. */
3211 
3212 		if (skb_tailroom(skb) < tailbits &&
3213 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3214 			return -ENOMEM;
3215 
3216 		/* Voila! */
3217 		*trailer = skb;
3218 		return 1;
3219 	}
3220 
3221 	/* Misery. We are in troubles, going to mincer fragments... */
3222 
3223 	elt = 1;
3224 	skb_p = &skb_shinfo(skb)->frag_list;
3225 	copyflag = 0;
3226 
3227 	while ((skb1 = *skb_p) != NULL) {
3228 		int ntail = 0;
3229 
3230 		/* The fragment is partially pulled by someone,
3231 		 * this can happen on input. Copy it and everything
3232 		 * after it. */
3233 
3234 		if (skb_shared(skb1))
3235 			copyflag = 1;
3236 
3237 		/* If the skb is the last, worry about trailer. */
3238 
3239 		if (skb1->next == NULL && tailbits) {
3240 			if (skb_shinfo(skb1)->nr_frags ||
3241 			    skb_has_frag_list(skb1) ||
3242 			    skb_tailroom(skb1) < tailbits)
3243 				ntail = tailbits + 128;
3244 		}
3245 
3246 		if (copyflag ||
3247 		    skb_cloned(skb1) ||
3248 		    ntail ||
3249 		    skb_shinfo(skb1)->nr_frags ||
3250 		    skb_has_frag_list(skb1)) {
3251 			struct sk_buff *skb2;
3252 
3253 			/* Fuck, we are miserable poor guys... */
3254 			if (ntail == 0)
3255 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3256 			else
3257 				skb2 = skb_copy_expand(skb1,
3258 						       skb_headroom(skb1),
3259 						       ntail,
3260 						       GFP_ATOMIC);
3261 			if (unlikely(skb2 == NULL))
3262 				return -ENOMEM;
3263 
3264 			if (skb1->sk)
3265 				skb_set_owner_w(skb2, skb1->sk);
3266 
3267 			/* Looking around. Are we still alive?
3268 			 * OK, link new skb, drop old one */
3269 
3270 			skb2->next = skb1->next;
3271 			*skb_p = skb2;
3272 			kfree_skb(skb1);
3273 			skb1 = skb2;
3274 		}
3275 		elt++;
3276 		*trailer = skb1;
3277 		skb_p = &skb1->next;
3278 	}
3279 
3280 	return elt;
3281 }
3282 EXPORT_SYMBOL_GPL(skb_cow_data);
3283 
3284 static void sock_rmem_free(struct sk_buff *skb)
3285 {
3286 	struct sock *sk = skb->sk;
3287 
3288 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3289 }
3290 
3291 /*
3292  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3293  */
3294 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3295 {
3296 	int len = skb->len;
3297 
3298 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3299 	    (unsigned int)sk->sk_rcvbuf)
3300 		return -ENOMEM;
3301 
3302 	skb_orphan(skb);
3303 	skb->sk = sk;
3304 	skb->destructor = sock_rmem_free;
3305 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3306 
3307 	/* before exiting rcu section, make sure dst is refcounted */
3308 	skb_dst_force(skb);
3309 
3310 	skb_queue_tail(&sk->sk_error_queue, skb);
3311 	if (!sock_flag(sk, SOCK_DEAD))
3312 		sk->sk_data_ready(sk, len);
3313 	return 0;
3314 }
3315 EXPORT_SYMBOL(sock_queue_err_skb);
3316 
3317 void skb_tstamp_tx(struct sk_buff *orig_skb,
3318 		struct skb_shared_hwtstamps *hwtstamps)
3319 {
3320 	struct sock *sk = orig_skb->sk;
3321 	struct sock_exterr_skb *serr;
3322 	struct sk_buff *skb;
3323 	int err;
3324 
3325 	if (!sk)
3326 		return;
3327 
3328 	if (hwtstamps) {
3329 		*skb_hwtstamps(orig_skb) =
3330 			*hwtstamps;
3331 	} else {
3332 		/*
3333 		 * no hardware time stamps available,
3334 		 * so keep the shared tx_flags and only
3335 		 * store software time stamp
3336 		 */
3337 		orig_skb->tstamp = ktime_get_real();
3338 	}
3339 
3340 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3341 	if (!skb)
3342 		return;
3343 
3344 	serr = SKB_EXT_ERR(skb);
3345 	memset(serr, 0, sizeof(*serr));
3346 	serr->ee.ee_errno = ENOMSG;
3347 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3348 
3349 	err = sock_queue_err_skb(sk, skb);
3350 
3351 	if (err)
3352 		kfree_skb(skb);
3353 }
3354 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3355 
3356 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3357 {
3358 	struct sock *sk = skb->sk;
3359 	struct sock_exterr_skb *serr;
3360 	int err;
3361 
3362 	skb->wifi_acked_valid = 1;
3363 	skb->wifi_acked = acked;
3364 
3365 	serr = SKB_EXT_ERR(skb);
3366 	memset(serr, 0, sizeof(*serr));
3367 	serr->ee.ee_errno = ENOMSG;
3368 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3369 
3370 	err = sock_queue_err_skb(sk, skb);
3371 	if (err)
3372 		kfree_skb(skb);
3373 }
3374 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3375 
3376 
3377 /**
3378  * skb_partial_csum_set - set up and verify partial csum values for packet
3379  * @skb: the skb to set
3380  * @start: the number of bytes after skb->data to start checksumming.
3381  * @off: the offset from start to place the checksum.
3382  *
3383  * For untrusted partially-checksummed packets, we need to make sure the values
3384  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3385  *
3386  * This function checks and sets those values and skb->ip_summed: if this
3387  * returns false you should drop the packet.
3388  */
3389 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3390 {
3391 	if (unlikely(start > skb_headlen(skb)) ||
3392 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3393 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3394 				     start, off, skb_headlen(skb));
3395 		return false;
3396 	}
3397 	skb->ip_summed = CHECKSUM_PARTIAL;
3398 	skb->csum_start = skb_headroom(skb) + start;
3399 	skb->csum_offset = off;
3400 	skb_set_transport_header(skb, start);
3401 	return true;
3402 }
3403 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3404 
3405 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3406 {
3407 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3408 			     skb->dev->name);
3409 }
3410 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3411 
3412 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3413 {
3414 	if (head_stolen) {
3415 		skb_release_head_state(skb);
3416 		kmem_cache_free(skbuff_head_cache, skb);
3417 	} else {
3418 		__kfree_skb(skb);
3419 	}
3420 }
3421 EXPORT_SYMBOL(kfree_skb_partial);
3422 
3423 /**
3424  * skb_try_coalesce - try to merge skb to prior one
3425  * @to: prior buffer
3426  * @from: buffer to add
3427  * @fragstolen: pointer to boolean
3428  * @delta_truesize: how much more was allocated than was requested
3429  */
3430 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3431 		      bool *fragstolen, int *delta_truesize)
3432 {
3433 	int i, delta, len = from->len;
3434 
3435 	*fragstolen = false;
3436 
3437 	if (skb_cloned(to))
3438 		return false;
3439 
3440 	if (len <= skb_tailroom(to)) {
3441 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3442 		*delta_truesize = 0;
3443 		return true;
3444 	}
3445 
3446 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3447 		return false;
3448 
3449 	if (skb_headlen(from) != 0) {
3450 		struct page *page;
3451 		unsigned int offset;
3452 
3453 		if (skb_shinfo(to)->nr_frags +
3454 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3455 			return false;
3456 
3457 		if (skb_head_is_locked(from))
3458 			return false;
3459 
3460 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3461 
3462 		page = virt_to_head_page(from->head);
3463 		offset = from->data - (unsigned char *)page_address(page);
3464 
3465 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3466 				   page, offset, skb_headlen(from));
3467 		*fragstolen = true;
3468 	} else {
3469 		if (skb_shinfo(to)->nr_frags +
3470 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3471 			return false;
3472 
3473 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3474 	}
3475 
3476 	WARN_ON_ONCE(delta < len);
3477 
3478 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3479 	       skb_shinfo(from)->frags,
3480 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3481 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3482 
3483 	if (!skb_cloned(from))
3484 		skb_shinfo(from)->nr_frags = 0;
3485 
3486 	/* if the skb is not cloned this does nothing
3487 	 * since we set nr_frags to 0.
3488 	 */
3489 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3490 		skb_frag_ref(from, i);
3491 
3492 	to->truesize += delta;
3493 	to->len += len;
3494 	to->data_len += len;
3495 
3496 	*delta_truesize = delta;
3497 	return true;
3498 }
3499 EXPORT_SYMBOL(skb_try_coalesce);
3500 
3501 /**
3502  * skb_scrub_packet - scrub an skb before sending it to another netns
3503  *
3504  * @skb: buffer to clean
3505  *
3506  * skb_scrub_packet can be used to clean an skb before injecting it in
3507  * another namespace. We have to clear all information in the skb that
3508  * could impact namespace isolation.
3509  */
3510 void skb_scrub_packet(struct sk_buff *skb)
3511 {
3512 	skb_orphan(skb);
3513 	skb->tstamp.tv64 = 0;
3514 	skb->pkt_type = PACKET_HOST;
3515 	skb->skb_iif = 0;
3516 	skb_dst_drop(skb);
3517 	skb->mark = 0;
3518 	secpath_reset(skb);
3519 	nf_reset(skb);
3520 	nf_reset_trace(skb);
3521 }
3522 EXPORT_SYMBOL_GPL(skb_scrub_packet);
3523