1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/xfrm.h> 69 70 #include <asm/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 74 struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /** 108 * skb_panic - private function for out-of-line support 109 * @skb: buffer 110 * @sz: size 111 * @addr: address 112 * @msg: skb_over_panic or skb_under_panic 113 * 114 * Out-of-line support for skb_put() and skb_push(). 115 * Called via the wrapper skb_over_panic() or skb_under_panic(). 116 * Keep out of line to prevent kernel bloat. 117 * __builtin_return_address is not used because it is not always reliable. 118 */ 119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 120 const char msg[]) 121 { 122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 123 msg, addr, skb->len, sz, skb->head, skb->data, 124 (unsigned long)skb->tail, (unsigned long)skb->end, 125 skb->dev ? skb->dev->name : "<NULL>"); 126 BUG(); 127 } 128 129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 130 { 131 skb_panic(skb, sz, addr, __func__); 132 } 133 134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 135 { 136 skb_panic(skb, sz, addr, __func__); 137 } 138 139 /* 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 141 * the caller if emergency pfmemalloc reserves are being used. If it is and 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 143 * may be used. Otherwise, the packet data may be discarded until enough 144 * memory is free 145 */ 146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 148 149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 150 unsigned long ip, bool *pfmemalloc) 151 { 152 void *obj; 153 bool ret_pfmemalloc = false; 154 155 /* 156 * Try a regular allocation, when that fails and we're not entitled 157 * to the reserves, fail. 158 */ 159 obj = kmalloc_node_track_caller(size, 160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 161 node); 162 if (obj || !(gfp_pfmemalloc_allowed(flags))) 163 goto out; 164 165 /* Try again but now we are using pfmemalloc reserves */ 166 ret_pfmemalloc = true; 167 obj = kmalloc_node_track_caller(size, flags, node); 168 169 out: 170 if (pfmemalloc) 171 *pfmemalloc = ret_pfmemalloc; 172 173 return obj; 174 } 175 176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 177 * 'private' fields and also do memory statistics to find all the 178 * [BEEP] leaks. 179 * 180 */ 181 182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 183 { 184 struct sk_buff *skb; 185 186 /* Get the HEAD */ 187 skb = kmem_cache_alloc_node(skbuff_head_cache, 188 gfp_mask & ~__GFP_DMA, node); 189 if (!skb) 190 goto out; 191 192 /* 193 * Only clear those fields we need to clear, not those that we will 194 * actually initialise below. Hence, don't put any more fields after 195 * the tail pointer in struct sk_buff! 196 */ 197 memset(skb, 0, offsetof(struct sk_buff, tail)); 198 skb->head = NULL; 199 skb->truesize = sizeof(struct sk_buff); 200 atomic_set(&skb->users, 1); 201 202 skb->mac_header = (typeof(skb->mac_header))~0U; 203 out: 204 return skb; 205 } 206 207 /** 208 * __alloc_skb - allocate a network buffer 209 * @size: size to allocate 210 * @gfp_mask: allocation mask 211 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 212 * instead of head cache and allocate a cloned (child) skb. 213 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 214 * allocations in case the data is required for writeback 215 * @node: numa node to allocate memory on 216 * 217 * Allocate a new &sk_buff. The returned buffer has no headroom and a 218 * tail room of at least size bytes. The object has a reference count 219 * of one. The return is the buffer. On a failure the return is %NULL. 220 * 221 * Buffers may only be allocated from interrupts using a @gfp_mask of 222 * %GFP_ATOMIC. 223 */ 224 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 225 int flags, int node) 226 { 227 struct kmem_cache *cache; 228 struct skb_shared_info *shinfo; 229 struct sk_buff *skb; 230 u8 *data; 231 bool pfmemalloc; 232 233 cache = (flags & SKB_ALLOC_FCLONE) 234 ? skbuff_fclone_cache : skbuff_head_cache; 235 236 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 237 gfp_mask |= __GFP_MEMALLOC; 238 239 /* Get the HEAD */ 240 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 241 if (!skb) 242 goto out; 243 prefetchw(skb); 244 245 /* We do our best to align skb_shared_info on a separate cache 246 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 247 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 248 * Both skb->head and skb_shared_info are cache line aligned. 249 */ 250 size = SKB_DATA_ALIGN(size); 251 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 252 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 253 if (!data) 254 goto nodata; 255 /* kmalloc(size) might give us more room than requested. 256 * Put skb_shared_info exactly at the end of allocated zone, 257 * to allow max possible filling before reallocation. 258 */ 259 size = SKB_WITH_OVERHEAD(ksize(data)); 260 prefetchw(data + size); 261 262 /* 263 * Only clear those fields we need to clear, not those that we will 264 * actually initialise below. Hence, don't put any more fields after 265 * the tail pointer in struct sk_buff! 266 */ 267 memset(skb, 0, offsetof(struct sk_buff, tail)); 268 /* Account for allocated memory : skb + skb->head */ 269 skb->truesize = SKB_TRUESIZE(size); 270 skb->pfmemalloc = pfmemalloc; 271 atomic_set(&skb->users, 1); 272 skb->head = data; 273 skb->data = data; 274 skb_reset_tail_pointer(skb); 275 skb->end = skb->tail + size; 276 skb->mac_header = (typeof(skb->mac_header))~0U; 277 skb->transport_header = (typeof(skb->transport_header))~0U; 278 279 /* make sure we initialize shinfo sequentially */ 280 shinfo = skb_shinfo(skb); 281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 282 atomic_set(&shinfo->dataref, 1); 283 kmemcheck_annotate_variable(shinfo->destructor_arg); 284 285 if (flags & SKB_ALLOC_FCLONE) { 286 struct sk_buff *child = skb + 1; 287 atomic_t *fclone_ref = (atomic_t *) (child + 1); 288 289 kmemcheck_annotate_bitfield(child, flags1); 290 kmemcheck_annotate_bitfield(child, flags2); 291 skb->fclone = SKB_FCLONE_ORIG; 292 atomic_set(fclone_ref, 1); 293 294 child->fclone = SKB_FCLONE_UNAVAILABLE; 295 child->pfmemalloc = pfmemalloc; 296 } 297 out: 298 return skb; 299 nodata: 300 kmem_cache_free(cache, skb); 301 skb = NULL; 302 goto out; 303 } 304 EXPORT_SYMBOL(__alloc_skb); 305 306 /** 307 * build_skb - build a network buffer 308 * @data: data buffer provided by caller 309 * @frag_size: size of fragment, or 0 if head was kmalloced 310 * 311 * Allocate a new &sk_buff. Caller provides space holding head and 312 * skb_shared_info. @data must have been allocated by kmalloc() 313 * The return is the new skb buffer. 314 * On a failure the return is %NULL, and @data is not freed. 315 * Notes : 316 * Before IO, driver allocates only data buffer where NIC put incoming frame 317 * Driver should add room at head (NET_SKB_PAD) and 318 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 319 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 320 * before giving packet to stack. 321 * RX rings only contains data buffers, not full skbs. 322 */ 323 struct sk_buff *build_skb(void *data, unsigned int frag_size) 324 { 325 struct skb_shared_info *shinfo; 326 struct sk_buff *skb; 327 unsigned int size = frag_size ? : ksize(data); 328 329 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 330 if (!skb) 331 return NULL; 332 333 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 334 335 memset(skb, 0, offsetof(struct sk_buff, tail)); 336 skb->truesize = SKB_TRUESIZE(size); 337 skb->head_frag = frag_size != 0; 338 atomic_set(&skb->users, 1); 339 skb->head = data; 340 skb->data = data; 341 skb_reset_tail_pointer(skb); 342 skb->end = skb->tail + size; 343 skb->mac_header = (typeof(skb->mac_header))~0U; 344 skb->transport_header = (typeof(skb->transport_header))~0U; 345 346 /* make sure we initialize shinfo sequentially */ 347 shinfo = skb_shinfo(skb); 348 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 349 atomic_set(&shinfo->dataref, 1); 350 kmemcheck_annotate_variable(shinfo->destructor_arg); 351 352 return skb; 353 } 354 EXPORT_SYMBOL(build_skb); 355 356 struct netdev_alloc_cache { 357 struct page_frag frag; 358 /* we maintain a pagecount bias, so that we dont dirty cache line 359 * containing page->_count every time we allocate a fragment. 360 */ 361 unsigned int pagecnt_bias; 362 }; 363 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 364 365 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 366 { 367 struct netdev_alloc_cache *nc; 368 void *data = NULL; 369 int order; 370 unsigned long flags; 371 372 local_irq_save(flags); 373 nc = &__get_cpu_var(netdev_alloc_cache); 374 if (unlikely(!nc->frag.page)) { 375 refill: 376 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 377 gfp_t gfp = gfp_mask; 378 379 if (order) 380 gfp |= __GFP_COMP | __GFP_NOWARN; 381 nc->frag.page = alloc_pages(gfp, order); 382 if (likely(nc->frag.page)) 383 break; 384 if (--order < 0) 385 goto end; 386 } 387 nc->frag.size = PAGE_SIZE << order; 388 recycle: 389 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 390 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 391 nc->frag.offset = 0; 392 } 393 394 if (nc->frag.offset + fragsz > nc->frag.size) { 395 /* avoid unnecessary locked operations if possible */ 396 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 397 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 398 goto recycle; 399 goto refill; 400 } 401 402 data = page_address(nc->frag.page) + nc->frag.offset; 403 nc->frag.offset += fragsz; 404 nc->pagecnt_bias--; 405 end: 406 local_irq_restore(flags); 407 return data; 408 } 409 410 /** 411 * netdev_alloc_frag - allocate a page fragment 412 * @fragsz: fragment size 413 * 414 * Allocates a frag from a page for receive buffer. 415 * Uses GFP_ATOMIC allocations. 416 */ 417 void *netdev_alloc_frag(unsigned int fragsz) 418 { 419 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 420 } 421 EXPORT_SYMBOL(netdev_alloc_frag); 422 423 /** 424 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 425 * @dev: network device to receive on 426 * @length: length to allocate 427 * @gfp_mask: get_free_pages mask, passed to alloc_skb 428 * 429 * Allocate a new &sk_buff and assign it a usage count of one. The 430 * buffer has unspecified headroom built in. Users should allocate 431 * the headroom they think they need without accounting for the 432 * built in space. The built in space is used for optimisations. 433 * 434 * %NULL is returned if there is no free memory. 435 */ 436 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 437 unsigned int length, gfp_t gfp_mask) 438 { 439 struct sk_buff *skb = NULL; 440 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 441 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 442 443 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 444 void *data; 445 446 if (sk_memalloc_socks()) 447 gfp_mask |= __GFP_MEMALLOC; 448 449 data = __netdev_alloc_frag(fragsz, gfp_mask); 450 451 if (likely(data)) { 452 skb = build_skb(data, fragsz); 453 if (unlikely(!skb)) 454 put_page(virt_to_head_page(data)); 455 } 456 } else { 457 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 458 SKB_ALLOC_RX, NUMA_NO_NODE); 459 } 460 if (likely(skb)) { 461 skb_reserve(skb, NET_SKB_PAD); 462 skb->dev = dev; 463 } 464 return skb; 465 } 466 EXPORT_SYMBOL(__netdev_alloc_skb); 467 468 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 469 int size, unsigned int truesize) 470 { 471 skb_fill_page_desc(skb, i, page, off, size); 472 skb->len += size; 473 skb->data_len += size; 474 skb->truesize += truesize; 475 } 476 EXPORT_SYMBOL(skb_add_rx_frag); 477 478 static void skb_drop_list(struct sk_buff **listp) 479 { 480 kfree_skb_list(*listp); 481 *listp = NULL; 482 } 483 484 static inline void skb_drop_fraglist(struct sk_buff *skb) 485 { 486 skb_drop_list(&skb_shinfo(skb)->frag_list); 487 } 488 489 static void skb_clone_fraglist(struct sk_buff *skb) 490 { 491 struct sk_buff *list; 492 493 skb_walk_frags(skb, list) 494 skb_get(list); 495 } 496 497 static void skb_free_head(struct sk_buff *skb) 498 { 499 if (skb->head_frag) 500 put_page(virt_to_head_page(skb->head)); 501 else 502 kfree(skb->head); 503 } 504 505 static void skb_release_data(struct sk_buff *skb) 506 { 507 if (!skb->cloned || 508 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 509 &skb_shinfo(skb)->dataref)) { 510 if (skb_shinfo(skb)->nr_frags) { 511 int i; 512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 513 skb_frag_unref(skb, i); 514 } 515 516 /* 517 * If skb buf is from userspace, we need to notify the caller 518 * the lower device DMA has done; 519 */ 520 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 521 struct ubuf_info *uarg; 522 523 uarg = skb_shinfo(skb)->destructor_arg; 524 if (uarg->callback) 525 uarg->callback(uarg, true); 526 } 527 528 if (skb_has_frag_list(skb)) 529 skb_drop_fraglist(skb); 530 531 skb_free_head(skb); 532 } 533 } 534 535 /* 536 * Free an skbuff by memory without cleaning the state. 537 */ 538 static void kfree_skbmem(struct sk_buff *skb) 539 { 540 struct sk_buff *other; 541 atomic_t *fclone_ref; 542 543 switch (skb->fclone) { 544 case SKB_FCLONE_UNAVAILABLE: 545 kmem_cache_free(skbuff_head_cache, skb); 546 break; 547 548 case SKB_FCLONE_ORIG: 549 fclone_ref = (atomic_t *) (skb + 2); 550 if (atomic_dec_and_test(fclone_ref)) 551 kmem_cache_free(skbuff_fclone_cache, skb); 552 break; 553 554 case SKB_FCLONE_CLONE: 555 fclone_ref = (atomic_t *) (skb + 1); 556 other = skb - 1; 557 558 /* The clone portion is available for 559 * fast-cloning again. 560 */ 561 skb->fclone = SKB_FCLONE_UNAVAILABLE; 562 563 if (atomic_dec_and_test(fclone_ref)) 564 kmem_cache_free(skbuff_fclone_cache, other); 565 break; 566 } 567 } 568 569 static void skb_release_head_state(struct sk_buff *skb) 570 { 571 skb_dst_drop(skb); 572 #ifdef CONFIG_XFRM 573 secpath_put(skb->sp); 574 #endif 575 if (skb->destructor) { 576 WARN_ON(in_irq()); 577 skb->destructor(skb); 578 } 579 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 580 nf_conntrack_put(skb->nfct); 581 #endif 582 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 583 nf_conntrack_put_reasm(skb->nfct_reasm); 584 #endif 585 #ifdef CONFIG_BRIDGE_NETFILTER 586 nf_bridge_put(skb->nf_bridge); 587 #endif 588 /* XXX: IS this still necessary? - JHS */ 589 #ifdef CONFIG_NET_SCHED 590 skb->tc_index = 0; 591 #ifdef CONFIG_NET_CLS_ACT 592 skb->tc_verd = 0; 593 #endif 594 #endif 595 } 596 597 /* Free everything but the sk_buff shell. */ 598 static void skb_release_all(struct sk_buff *skb) 599 { 600 skb_release_head_state(skb); 601 if (likely(skb->head)) 602 skb_release_data(skb); 603 } 604 605 /** 606 * __kfree_skb - private function 607 * @skb: buffer 608 * 609 * Free an sk_buff. Release anything attached to the buffer. 610 * Clean the state. This is an internal helper function. Users should 611 * always call kfree_skb 612 */ 613 614 void __kfree_skb(struct sk_buff *skb) 615 { 616 skb_release_all(skb); 617 kfree_skbmem(skb); 618 } 619 EXPORT_SYMBOL(__kfree_skb); 620 621 /** 622 * kfree_skb - free an sk_buff 623 * @skb: buffer to free 624 * 625 * Drop a reference to the buffer and free it if the usage count has 626 * hit zero. 627 */ 628 void kfree_skb(struct sk_buff *skb) 629 { 630 if (unlikely(!skb)) 631 return; 632 if (likely(atomic_read(&skb->users) == 1)) 633 smp_rmb(); 634 else if (likely(!atomic_dec_and_test(&skb->users))) 635 return; 636 trace_kfree_skb(skb, __builtin_return_address(0)); 637 __kfree_skb(skb); 638 } 639 EXPORT_SYMBOL(kfree_skb); 640 641 void kfree_skb_list(struct sk_buff *segs) 642 { 643 while (segs) { 644 struct sk_buff *next = segs->next; 645 646 kfree_skb(segs); 647 segs = next; 648 } 649 } 650 EXPORT_SYMBOL(kfree_skb_list); 651 652 /** 653 * skb_tx_error - report an sk_buff xmit error 654 * @skb: buffer that triggered an error 655 * 656 * Report xmit error if a device callback is tracking this skb. 657 * skb must be freed afterwards. 658 */ 659 void skb_tx_error(struct sk_buff *skb) 660 { 661 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 662 struct ubuf_info *uarg; 663 664 uarg = skb_shinfo(skb)->destructor_arg; 665 if (uarg->callback) 666 uarg->callback(uarg, false); 667 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 668 } 669 } 670 EXPORT_SYMBOL(skb_tx_error); 671 672 /** 673 * consume_skb - free an skbuff 674 * @skb: buffer to free 675 * 676 * Drop a ref to the buffer and free it if the usage count has hit zero 677 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 678 * is being dropped after a failure and notes that 679 */ 680 void consume_skb(struct sk_buff *skb) 681 { 682 if (unlikely(!skb)) 683 return; 684 if (likely(atomic_read(&skb->users) == 1)) 685 smp_rmb(); 686 else if (likely(!atomic_dec_and_test(&skb->users))) 687 return; 688 trace_consume_skb(skb); 689 __kfree_skb(skb); 690 } 691 EXPORT_SYMBOL(consume_skb); 692 693 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 694 { 695 new->tstamp = old->tstamp; 696 new->dev = old->dev; 697 new->transport_header = old->transport_header; 698 new->network_header = old->network_header; 699 new->mac_header = old->mac_header; 700 new->inner_protocol = old->inner_protocol; 701 new->inner_transport_header = old->inner_transport_header; 702 new->inner_network_header = old->inner_network_header; 703 new->inner_mac_header = old->inner_mac_header; 704 skb_dst_copy(new, old); 705 new->rxhash = old->rxhash; 706 new->ooo_okay = old->ooo_okay; 707 new->l4_rxhash = old->l4_rxhash; 708 new->no_fcs = old->no_fcs; 709 new->encapsulation = old->encapsulation; 710 #ifdef CONFIG_XFRM 711 new->sp = secpath_get(old->sp); 712 #endif 713 memcpy(new->cb, old->cb, sizeof(old->cb)); 714 new->csum = old->csum; 715 new->local_df = old->local_df; 716 new->pkt_type = old->pkt_type; 717 new->ip_summed = old->ip_summed; 718 skb_copy_queue_mapping(new, old); 719 new->priority = old->priority; 720 #if IS_ENABLED(CONFIG_IP_VS) 721 new->ipvs_property = old->ipvs_property; 722 #endif 723 new->pfmemalloc = old->pfmemalloc; 724 new->protocol = old->protocol; 725 new->mark = old->mark; 726 new->skb_iif = old->skb_iif; 727 __nf_copy(new, old); 728 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 729 new->nf_trace = old->nf_trace; 730 #endif 731 #ifdef CONFIG_NET_SCHED 732 new->tc_index = old->tc_index; 733 #ifdef CONFIG_NET_CLS_ACT 734 new->tc_verd = old->tc_verd; 735 #endif 736 #endif 737 new->vlan_proto = old->vlan_proto; 738 new->vlan_tci = old->vlan_tci; 739 740 skb_copy_secmark(new, old); 741 742 #ifdef CONFIG_NET_LL_RX_POLL 743 new->napi_id = old->napi_id; 744 #endif 745 } 746 747 /* 748 * You should not add any new code to this function. Add it to 749 * __copy_skb_header above instead. 750 */ 751 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 752 { 753 #define C(x) n->x = skb->x 754 755 n->next = n->prev = NULL; 756 n->sk = NULL; 757 __copy_skb_header(n, skb); 758 759 C(len); 760 C(data_len); 761 C(mac_len); 762 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 763 n->cloned = 1; 764 n->nohdr = 0; 765 n->destructor = NULL; 766 C(tail); 767 C(end); 768 C(head); 769 C(head_frag); 770 C(data); 771 C(truesize); 772 atomic_set(&n->users, 1); 773 774 atomic_inc(&(skb_shinfo(skb)->dataref)); 775 skb->cloned = 1; 776 777 return n; 778 #undef C 779 } 780 781 /** 782 * skb_morph - morph one skb into another 783 * @dst: the skb to receive the contents 784 * @src: the skb to supply the contents 785 * 786 * This is identical to skb_clone except that the target skb is 787 * supplied by the user. 788 * 789 * The target skb is returned upon exit. 790 */ 791 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 792 { 793 skb_release_all(dst); 794 return __skb_clone(dst, src); 795 } 796 EXPORT_SYMBOL_GPL(skb_morph); 797 798 /** 799 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 800 * @skb: the skb to modify 801 * @gfp_mask: allocation priority 802 * 803 * This must be called on SKBTX_DEV_ZEROCOPY skb. 804 * It will copy all frags into kernel and drop the reference 805 * to userspace pages. 806 * 807 * If this function is called from an interrupt gfp_mask() must be 808 * %GFP_ATOMIC. 809 * 810 * Returns 0 on success or a negative error code on failure 811 * to allocate kernel memory to copy to. 812 */ 813 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 814 { 815 int i; 816 int num_frags = skb_shinfo(skb)->nr_frags; 817 struct page *page, *head = NULL; 818 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 819 820 for (i = 0; i < num_frags; i++) { 821 u8 *vaddr; 822 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 823 824 page = alloc_page(gfp_mask); 825 if (!page) { 826 while (head) { 827 struct page *next = (struct page *)head->private; 828 put_page(head); 829 head = next; 830 } 831 return -ENOMEM; 832 } 833 vaddr = kmap_atomic(skb_frag_page(f)); 834 memcpy(page_address(page), 835 vaddr + f->page_offset, skb_frag_size(f)); 836 kunmap_atomic(vaddr); 837 page->private = (unsigned long)head; 838 head = page; 839 } 840 841 /* skb frags release userspace buffers */ 842 for (i = 0; i < num_frags; i++) 843 skb_frag_unref(skb, i); 844 845 uarg->callback(uarg, false); 846 847 /* skb frags point to kernel buffers */ 848 for (i = num_frags - 1; i >= 0; i--) { 849 __skb_fill_page_desc(skb, i, head, 0, 850 skb_shinfo(skb)->frags[i].size); 851 head = (struct page *)head->private; 852 } 853 854 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 855 return 0; 856 } 857 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 858 859 /** 860 * skb_clone - duplicate an sk_buff 861 * @skb: buffer to clone 862 * @gfp_mask: allocation priority 863 * 864 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 865 * copies share the same packet data but not structure. The new 866 * buffer has a reference count of 1. If the allocation fails the 867 * function returns %NULL otherwise the new buffer is returned. 868 * 869 * If this function is called from an interrupt gfp_mask() must be 870 * %GFP_ATOMIC. 871 */ 872 873 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 874 { 875 struct sk_buff *n; 876 877 if (skb_orphan_frags(skb, gfp_mask)) 878 return NULL; 879 880 n = skb + 1; 881 if (skb->fclone == SKB_FCLONE_ORIG && 882 n->fclone == SKB_FCLONE_UNAVAILABLE) { 883 atomic_t *fclone_ref = (atomic_t *) (n + 1); 884 n->fclone = SKB_FCLONE_CLONE; 885 atomic_inc(fclone_ref); 886 } else { 887 if (skb_pfmemalloc(skb)) 888 gfp_mask |= __GFP_MEMALLOC; 889 890 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 891 if (!n) 892 return NULL; 893 894 kmemcheck_annotate_bitfield(n, flags1); 895 kmemcheck_annotate_bitfield(n, flags2); 896 n->fclone = SKB_FCLONE_UNAVAILABLE; 897 } 898 899 return __skb_clone(n, skb); 900 } 901 EXPORT_SYMBOL(skb_clone); 902 903 static void skb_headers_offset_update(struct sk_buff *skb, int off) 904 { 905 /* {transport,network,mac}_header and tail are relative to skb->head */ 906 skb->transport_header += off; 907 skb->network_header += off; 908 if (skb_mac_header_was_set(skb)) 909 skb->mac_header += off; 910 skb->inner_transport_header += off; 911 skb->inner_network_header += off; 912 skb->inner_mac_header += off; 913 } 914 915 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 916 { 917 __copy_skb_header(new, old); 918 919 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 920 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 921 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 922 } 923 924 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 925 { 926 if (skb_pfmemalloc(skb)) 927 return SKB_ALLOC_RX; 928 return 0; 929 } 930 931 /** 932 * skb_copy - create private copy of an sk_buff 933 * @skb: buffer to copy 934 * @gfp_mask: allocation priority 935 * 936 * Make a copy of both an &sk_buff and its data. This is used when the 937 * caller wishes to modify the data and needs a private copy of the 938 * data to alter. Returns %NULL on failure or the pointer to the buffer 939 * on success. The returned buffer has a reference count of 1. 940 * 941 * As by-product this function converts non-linear &sk_buff to linear 942 * one, so that &sk_buff becomes completely private and caller is allowed 943 * to modify all the data of returned buffer. This means that this 944 * function is not recommended for use in circumstances when only 945 * header is going to be modified. Use pskb_copy() instead. 946 */ 947 948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 949 { 950 int headerlen = skb_headroom(skb); 951 unsigned int size = skb_end_offset(skb) + skb->data_len; 952 struct sk_buff *n = __alloc_skb(size, gfp_mask, 953 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 954 955 if (!n) 956 return NULL; 957 958 /* Set the data pointer */ 959 skb_reserve(n, headerlen); 960 /* Set the tail pointer and length */ 961 skb_put(n, skb->len); 962 963 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 964 BUG(); 965 966 copy_skb_header(n, skb); 967 return n; 968 } 969 EXPORT_SYMBOL(skb_copy); 970 971 /** 972 * __pskb_copy - create copy of an sk_buff with private head. 973 * @skb: buffer to copy 974 * @headroom: headroom of new skb 975 * @gfp_mask: allocation priority 976 * 977 * Make a copy of both an &sk_buff and part of its data, located 978 * in header. Fragmented data remain shared. This is used when 979 * the caller wishes to modify only header of &sk_buff and needs 980 * private copy of the header to alter. Returns %NULL on failure 981 * or the pointer to the buffer on success. 982 * The returned buffer has a reference count of 1. 983 */ 984 985 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 986 { 987 unsigned int size = skb_headlen(skb) + headroom; 988 struct sk_buff *n = __alloc_skb(size, gfp_mask, 989 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 990 991 if (!n) 992 goto out; 993 994 /* Set the data pointer */ 995 skb_reserve(n, headroom); 996 /* Set the tail pointer and length */ 997 skb_put(n, skb_headlen(skb)); 998 /* Copy the bytes */ 999 skb_copy_from_linear_data(skb, n->data, n->len); 1000 1001 n->truesize += skb->data_len; 1002 n->data_len = skb->data_len; 1003 n->len = skb->len; 1004 1005 if (skb_shinfo(skb)->nr_frags) { 1006 int i; 1007 1008 if (skb_orphan_frags(skb, gfp_mask)) { 1009 kfree_skb(n); 1010 n = NULL; 1011 goto out; 1012 } 1013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1014 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1015 skb_frag_ref(skb, i); 1016 } 1017 skb_shinfo(n)->nr_frags = i; 1018 } 1019 1020 if (skb_has_frag_list(skb)) { 1021 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1022 skb_clone_fraglist(n); 1023 } 1024 1025 copy_skb_header(n, skb); 1026 out: 1027 return n; 1028 } 1029 EXPORT_SYMBOL(__pskb_copy); 1030 1031 /** 1032 * pskb_expand_head - reallocate header of &sk_buff 1033 * @skb: buffer to reallocate 1034 * @nhead: room to add at head 1035 * @ntail: room to add at tail 1036 * @gfp_mask: allocation priority 1037 * 1038 * Expands (or creates identical copy, if &nhead and &ntail are zero) 1039 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 1040 * reference count of 1. Returns zero in the case of success or error, 1041 * if expansion failed. In the last case, &sk_buff is not changed. 1042 * 1043 * All the pointers pointing into skb header may change and must be 1044 * reloaded after call to this function. 1045 */ 1046 1047 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1048 gfp_t gfp_mask) 1049 { 1050 int i; 1051 u8 *data; 1052 int size = nhead + skb_end_offset(skb) + ntail; 1053 long off; 1054 1055 BUG_ON(nhead < 0); 1056 1057 if (skb_shared(skb)) 1058 BUG(); 1059 1060 size = SKB_DATA_ALIGN(size); 1061 1062 if (skb_pfmemalloc(skb)) 1063 gfp_mask |= __GFP_MEMALLOC; 1064 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1065 gfp_mask, NUMA_NO_NODE, NULL); 1066 if (!data) 1067 goto nodata; 1068 size = SKB_WITH_OVERHEAD(ksize(data)); 1069 1070 /* Copy only real data... and, alas, header. This should be 1071 * optimized for the cases when header is void. 1072 */ 1073 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1074 1075 memcpy((struct skb_shared_info *)(data + size), 1076 skb_shinfo(skb), 1077 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1078 1079 /* 1080 * if shinfo is shared we must drop the old head gracefully, but if it 1081 * is not we can just drop the old head and let the existing refcount 1082 * be since all we did is relocate the values 1083 */ 1084 if (skb_cloned(skb)) { 1085 /* copy this zero copy skb frags */ 1086 if (skb_orphan_frags(skb, gfp_mask)) 1087 goto nofrags; 1088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1089 skb_frag_ref(skb, i); 1090 1091 if (skb_has_frag_list(skb)) 1092 skb_clone_fraglist(skb); 1093 1094 skb_release_data(skb); 1095 } else { 1096 skb_free_head(skb); 1097 } 1098 off = (data + nhead) - skb->head; 1099 1100 skb->head = data; 1101 skb->head_frag = 0; 1102 skb->data += off; 1103 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1104 skb->end = size; 1105 off = nhead; 1106 #else 1107 skb->end = skb->head + size; 1108 #endif 1109 skb->tail += off; 1110 skb_headers_offset_update(skb, nhead); 1111 /* Only adjust this if it actually is csum_start rather than csum */ 1112 if (skb->ip_summed == CHECKSUM_PARTIAL) 1113 skb->csum_start += nhead; 1114 skb->cloned = 0; 1115 skb->hdr_len = 0; 1116 skb->nohdr = 0; 1117 atomic_set(&skb_shinfo(skb)->dataref, 1); 1118 return 0; 1119 1120 nofrags: 1121 kfree(data); 1122 nodata: 1123 return -ENOMEM; 1124 } 1125 EXPORT_SYMBOL(pskb_expand_head); 1126 1127 /* Make private copy of skb with writable head and some headroom */ 1128 1129 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1130 { 1131 struct sk_buff *skb2; 1132 int delta = headroom - skb_headroom(skb); 1133 1134 if (delta <= 0) 1135 skb2 = pskb_copy(skb, GFP_ATOMIC); 1136 else { 1137 skb2 = skb_clone(skb, GFP_ATOMIC); 1138 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1139 GFP_ATOMIC)) { 1140 kfree_skb(skb2); 1141 skb2 = NULL; 1142 } 1143 } 1144 return skb2; 1145 } 1146 EXPORT_SYMBOL(skb_realloc_headroom); 1147 1148 /** 1149 * skb_copy_expand - copy and expand sk_buff 1150 * @skb: buffer to copy 1151 * @newheadroom: new free bytes at head 1152 * @newtailroom: new free bytes at tail 1153 * @gfp_mask: allocation priority 1154 * 1155 * Make a copy of both an &sk_buff and its data and while doing so 1156 * allocate additional space. 1157 * 1158 * This is used when the caller wishes to modify the data and needs a 1159 * private copy of the data to alter as well as more space for new fields. 1160 * Returns %NULL on failure or the pointer to the buffer 1161 * on success. The returned buffer has a reference count of 1. 1162 * 1163 * You must pass %GFP_ATOMIC as the allocation priority if this function 1164 * is called from an interrupt. 1165 */ 1166 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1167 int newheadroom, int newtailroom, 1168 gfp_t gfp_mask) 1169 { 1170 /* 1171 * Allocate the copy buffer 1172 */ 1173 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1174 gfp_mask, skb_alloc_rx_flag(skb), 1175 NUMA_NO_NODE); 1176 int oldheadroom = skb_headroom(skb); 1177 int head_copy_len, head_copy_off; 1178 int off; 1179 1180 if (!n) 1181 return NULL; 1182 1183 skb_reserve(n, newheadroom); 1184 1185 /* Set the tail pointer and length */ 1186 skb_put(n, skb->len); 1187 1188 head_copy_len = oldheadroom; 1189 head_copy_off = 0; 1190 if (newheadroom <= head_copy_len) 1191 head_copy_len = newheadroom; 1192 else 1193 head_copy_off = newheadroom - head_copy_len; 1194 1195 /* Copy the linear header and data. */ 1196 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1197 skb->len + head_copy_len)) 1198 BUG(); 1199 1200 copy_skb_header(n, skb); 1201 1202 off = newheadroom - oldheadroom; 1203 if (n->ip_summed == CHECKSUM_PARTIAL) 1204 n->csum_start += off; 1205 1206 skb_headers_offset_update(n, off); 1207 1208 return n; 1209 } 1210 EXPORT_SYMBOL(skb_copy_expand); 1211 1212 /** 1213 * skb_pad - zero pad the tail of an skb 1214 * @skb: buffer to pad 1215 * @pad: space to pad 1216 * 1217 * Ensure that a buffer is followed by a padding area that is zero 1218 * filled. Used by network drivers which may DMA or transfer data 1219 * beyond the buffer end onto the wire. 1220 * 1221 * May return error in out of memory cases. The skb is freed on error. 1222 */ 1223 1224 int skb_pad(struct sk_buff *skb, int pad) 1225 { 1226 int err; 1227 int ntail; 1228 1229 /* If the skbuff is non linear tailroom is always zero.. */ 1230 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1231 memset(skb->data+skb->len, 0, pad); 1232 return 0; 1233 } 1234 1235 ntail = skb->data_len + pad - (skb->end - skb->tail); 1236 if (likely(skb_cloned(skb) || ntail > 0)) { 1237 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1238 if (unlikely(err)) 1239 goto free_skb; 1240 } 1241 1242 /* FIXME: The use of this function with non-linear skb's really needs 1243 * to be audited. 1244 */ 1245 err = skb_linearize(skb); 1246 if (unlikely(err)) 1247 goto free_skb; 1248 1249 memset(skb->data + skb->len, 0, pad); 1250 return 0; 1251 1252 free_skb: 1253 kfree_skb(skb); 1254 return err; 1255 } 1256 EXPORT_SYMBOL(skb_pad); 1257 1258 /** 1259 * skb_put - add data to a buffer 1260 * @skb: buffer to use 1261 * @len: amount of data to add 1262 * 1263 * This function extends the used data area of the buffer. If this would 1264 * exceed the total buffer size the kernel will panic. A pointer to the 1265 * first byte of the extra data is returned. 1266 */ 1267 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1268 { 1269 unsigned char *tmp = skb_tail_pointer(skb); 1270 SKB_LINEAR_ASSERT(skb); 1271 skb->tail += len; 1272 skb->len += len; 1273 if (unlikely(skb->tail > skb->end)) 1274 skb_over_panic(skb, len, __builtin_return_address(0)); 1275 return tmp; 1276 } 1277 EXPORT_SYMBOL(skb_put); 1278 1279 /** 1280 * skb_push - add data to the start of a buffer 1281 * @skb: buffer to use 1282 * @len: amount of data to add 1283 * 1284 * This function extends the used data area of the buffer at the buffer 1285 * start. If this would exceed the total buffer headroom the kernel will 1286 * panic. A pointer to the first byte of the extra data is returned. 1287 */ 1288 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1289 { 1290 skb->data -= len; 1291 skb->len += len; 1292 if (unlikely(skb->data<skb->head)) 1293 skb_under_panic(skb, len, __builtin_return_address(0)); 1294 return skb->data; 1295 } 1296 EXPORT_SYMBOL(skb_push); 1297 1298 /** 1299 * skb_pull - remove data from the start of a buffer 1300 * @skb: buffer to use 1301 * @len: amount of data to remove 1302 * 1303 * This function removes data from the start of a buffer, returning 1304 * the memory to the headroom. A pointer to the next data in the buffer 1305 * is returned. Once the data has been pulled future pushes will overwrite 1306 * the old data. 1307 */ 1308 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1309 { 1310 return skb_pull_inline(skb, len); 1311 } 1312 EXPORT_SYMBOL(skb_pull); 1313 1314 /** 1315 * skb_trim - remove end from a buffer 1316 * @skb: buffer to alter 1317 * @len: new length 1318 * 1319 * Cut the length of a buffer down by removing data from the tail. If 1320 * the buffer is already under the length specified it is not modified. 1321 * The skb must be linear. 1322 */ 1323 void skb_trim(struct sk_buff *skb, unsigned int len) 1324 { 1325 if (skb->len > len) 1326 __skb_trim(skb, len); 1327 } 1328 EXPORT_SYMBOL(skb_trim); 1329 1330 /* Trims skb to length len. It can change skb pointers. 1331 */ 1332 1333 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1334 { 1335 struct sk_buff **fragp; 1336 struct sk_buff *frag; 1337 int offset = skb_headlen(skb); 1338 int nfrags = skb_shinfo(skb)->nr_frags; 1339 int i; 1340 int err; 1341 1342 if (skb_cloned(skb) && 1343 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1344 return err; 1345 1346 i = 0; 1347 if (offset >= len) 1348 goto drop_pages; 1349 1350 for (; i < nfrags; i++) { 1351 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1352 1353 if (end < len) { 1354 offset = end; 1355 continue; 1356 } 1357 1358 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1359 1360 drop_pages: 1361 skb_shinfo(skb)->nr_frags = i; 1362 1363 for (; i < nfrags; i++) 1364 skb_frag_unref(skb, i); 1365 1366 if (skb_has_frag_list(skb)) 1367 skb_drop_fraglist(skb); 1368 goto done; 1369 } 1370 1371 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1372 fragp = &frag->next) { 1373 int end = offset + frag->len; 1374 1375 if (skb_shared(frag)) { 1376 struct sk_buff *nfrag; 1377 1378 nfrag = skb_clone(frag, GFP_ATOMIC); 1379 if (unlikely(!nfrag)) 1380 return -ENOMEM; 1381 1382 nfrag->next = frag->next; 1383 consume_skb(frag); 1384 frag = nfrag; 1385 *fragp = frag; 1386 } 1387 1388 if (end < len) { 1389 offset = end; 1390 continue; 1391 } 1392 1393 if (end > len && 1394 unlikely((err = pskb_trim(frag, len - offset)))) 1395 return err; 1396 1397 if (frag->next) 1398 skb_drop_list(&frag->next); 1399 break; 1400 } 1401 1402 done: 1403 if (len > skb_headlen(skb)) { 1404 skb->data_len -= skb->len - len; 1405 skb->len = len; 1406 } else { 1407 skb->len = len; 1408 skb->data_len = 0; 1409 skb_set_tail_pointer(skb, len); 1410 } 1411 1412 return 0; 1413 } 1414 EXPORT_SYMBOL(___pskb_trim); 1415 1416 /** 1417 * __pskb_pull_tail - advance tail of skb header 1418 * @skb: buffer to reallocate 1419 * @delta: number of bytes to advance tail 1420 * 1421 * The function makes a sense only on a fragmented &sk_buff, 1422 * it expands header moving its tail forward and copying necessary 1423 * data from fragmented part. 1424 * 1425 * &sk_buff MUST have reference count of 1. 1426 * 1427 * Returns %NULL (and &sk_buff does not change) if pull failed 1428 * or value of new tail of skb in the case of success. 1429 * 1430 * All the pointers pointing into skb header may change and must be 1431 * reloaded after call to this function. 1432 */ 1433 1434 /* Moves tail of skb head forward, copying data from fragmented part, 1435 * when it is necessary. 1436 * 1. It may fail due to malloc failure. 1437 * 2. It may change skb pointers. 1438 * 1439 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1440 */ 1441 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1442 { 1443 /* If skb has not enough free space at tail, get new one 1444 * plus 128 bytes for future expansions. If we have enough 1445 * room at tail, reallocate without expansion only if skb is cloned. 1446 */ 1447 int i, k, eat = (skb->tail + delta) - skb->end; 1448 1449 if (eat > 0 || skb_cloned(skb)) { 1450 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1451 GFP_ATOMIC)) 1452 return NULL; 1453 } 1454 1455 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1456 BUG(); 1457 1458 /* Optimization: no fragments, no reasons to preestimate 1459 * size of pulled pages. Superb. 1460 */ 1461 if (!skb_has_frag_list(skb)) 1462 goto pull_pages; 1463 1464 /* Estimate size of pulled pages. */ 1465 eat = delta; 1466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1467 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1468 1469 if (size >= eat) 1470 goto pull_pages; 1471 eat -= size; 1472 } 1473 1474 /* If we need update frag list, we are in troubles. 1475 * Certainly, it possible to add an offset to skb data, 1476 * but taking into account that pulling is expected to 1477 * be very rare operation, it is worth to fight against 1478 * further bloating skb head and crucify ourselves here instead. 1479 * Pure masohism, indeed. 8)8) 1480 */ 1481 if (eat) { 1482 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1483 struct sk_buff *clone = NULL; 1484 struct sk_buff *insp = NULL; 1485 1486 do { 1487 BUG_ON(!list); 1488 1489 if (list->len <= eat) { 1490 /* Eaten as whole. */ 1491 eat -= list->len; 1492 list = list->next; 1493 insp = list; 1494 } else { 1495 /* Eaten partially. */ 1496 1497 if (skb_shared(list)) { 1498 /* Sucks! We need to fork list. :-( */ 1499 clone = skb_clone(list, GFP_ATOMIC); 1500 if (!clone) 1501 return NULL; 1502 insp = list->next; 1503 list = clone; 1504 } else { 1505 /* This may be pulled without 1506 * problems. */ 1507 insp = list; 1508 } 1509 if (!pskb_pull(list, eat)) { 1510 kfree_skb(clone); 1511 return NULL; 1512 } 1513 break; 1514 } 1515 } while (eat); 1516 1517 /* Free pulled out fragments. */ 1518 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1519 skb_shinfo(skb)->frag_list = list->next; 1520 kfree_skb(list); 1521 } 1522 /* And insert new clone at head. */ 1523 if (clone) { 1524 clone->next = list; 1525 skb_shinfo(skb)->frag_list = clone; 1526 } 1527 } 1528 /* Success! Now we may commit changes to skb data. */ 1529 1530 pull_pages: 1531 eat = delta; 1532 k = 0; 1533 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1534 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1535 1536 if (size <= eat) { 1537 skb_frag_unref(skb, i); 1538 eat -= size; 1539 } else { 1540 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1541 if (eat) { 1542 skb_shinfo(skb)->frags[k].page_offset += eat; 1543 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1544 eat = 0; 1545 } 1546 k++; 1547 } 1548 } 1549 skb_shinfo(skb)->nr_frags = k; 1550 1551 skb->tail += delta; 1552 skb->data_len -= delta; 1553 1554 return skb_tail_pointer(skb); 1555 } 1556 EXPORT_SYMBOL(__pskb_pull_tail); 1557 1558 /** 1559 * skb_copy_bits - copy bits from skb to kernel buffer 1560 * @skb: source skb 1561 * @offset: offset in source 1562 * @to: destination buffer 1563 * @len: number of bytes to copy 1564 * 1565 * Copy the specified number of bytes from the source skb to the 1566 * destination buffer. 1567 * 1568 * CAUTION ! : 1569 * If its prototype is ever changed, 1570 * check arch/{*}/net/{*}.S files, 1571 * since it is called from BPF assembly code. 1572 */ 1573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1574 { 1575 int start = skb_headlen(skb); 1576 struct sk_buff *frag_iter; 1577 int i, copy; 1578 1579 if (offset > (int)skb->len - len) 1580 goto fault; 1581 1582 /* Copy header. */ 1583 if ((copy = start - offset) > 0) { 1584 if (copy > len) 1585 copy = len; 1586 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1587 if ((len -= copy) == 0) 1588 return 0; 1589 offset += copy; 1590 to += copy; 1591 } 1592 1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1594 int end; 1595 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1596 1597 WARN_ON(start > offset + len); 1598 1599 end = start + skb_frag_size(f); 1600 if ((copy = end - offset) > 0) { 1601 u8 *vaddr; 1602 1603 if (copy > len) 1604 copy = len; 1605 1606 vaddr = kmap_atomic(skb_frag_page(f)); 1607 memcpy(to, 1608 vaddr + f->page_offset + offset - start, 1609 copy); 1610 kunmap_atomic(vaddr); 1611 1612 if ((len -= copy) == 0) 1613 return 0; 1614 offset += copy; 1615 to += copy; 1616 } 1617 start = end; 1618 } 1619 1620 skb_walk_frags(skb, frag_iter) { 1621 int end; 1622 1623 WARN_ON(start > offset + len); 1624 1625 end = start + frag_iter->len; 1626 if ((copy = end - offset) > 0) { 1627 if (copy > len) 1628 copy = len; 1629 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1630 goto fault; 1631 if ((len -= copy) == 0) 1632 return 0; 1633 offset += copy; 1634 to += copy; 1635 } 1636 start = end; 1637 } 1638 1639 if (!len) 1640 return 0; 1641 1642 fault: 1643 return -EFAULT; 1644 } 1645 EXPORT_SYMBOL(skb_copy_bits); 1646 1647 /* 1648 * Callback from splice_to_pipe(), if we need to release some pages 1649 * at the end of the spd in case we error'ed out in filling the pipe. 1650 */ 1651 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1652 { 1653 put_page(spd->pages[i]); 1654 } 1655 1656 static struct page *linear_to_page(struct page *page, unsigned int *len, 1657 unsigned int *offset, 1658 struct sock *sk) 1659 { 1660 struct page_frag *pfrag = sk_page_frag(sk); 1661 1662 if (!sk_page_frag_refill(sk, pfrag)) 1663 return NULL; 1664 1665 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1666 1667 memcpy(page_address(pfrag->page) + pfrag->offset, 1668 page_address(page) + *offset, *len); 1669 *offset = pfrag->offset; 1670 pfrag->offset += *len; 1671 1672 return pfrag->page; 1673 } 1674 1675 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1676 struct page *page, 1677 unsigned int offset) 1678 { 1679 return spd->nr_pages && 1680 spd->pages[spd->nr_pages - 1] == page && 1681 (spd->partial[spd->nr_pages - 1].offset + 1682 spd->partial[spd->nr_pages - 1].len == offset); 1683 } 1684 1685 /* 1686 * Fill page/offset/length into spd, if it can hold more pages. 1687 */ 1688 static bool spd_fill_page(struct splice_pipe_desc *spd, 1689 struct pipe_inode_info *pipe, struct page *page, 1690 unsigned int *len, unsigned int offset, 1691 bool linear, 1692 struct sock *sk) 1693 { 1694 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1695 return true; 1696 1697 if (linear) { 1698 page = linear_to_page(page, len, &offset, sk); 1699 if (!page) 1700 return true; 1701 } 1702 if (spd_can_coalesce(spd, page, offset)) { 1703 spd->partial[spd->nr_pages - 1].len += *len; 1704 return false; 1705 } 1706 get_page(page); 1707 spd->pages[spd->nr_pages] = page; 1708 spd->partial[spd->nr_pages].len = *len; 1709 spd->partial[spd->nr_pages].offset = offset; 1710 spd->nr_pages++; 1711 1712 return false; 1713 } 1714 1715 static bool __splice_segment(struct page *page, unsigned int poff, 1716 unsigned int plen, unsigned int *off, 1717 unsigned int *len, 1718 struct splice_pipe_desc *spd, bool linear, 1719 struct sock *sk, 1720 struct pipe_inode_info *pipe) 1721 { 1722 if (!*len) 1723 return true; 1724 1725 /* skip this segment if already processed */ 1726 if (*off >= plen) { 1727 *off -= plen; 1728 return false; 1729 } 1730 1731 /* ignore any bits we already processed */ 1732 poff += *off; 1733 plen -= *off; 1734 *off = 0; 1735 1736 do { 1737 unsigned int flen = min(*len, plen); 1738 1739 if (spd_fill_page(spd, pipe, page, &flen, poff, 1740 linear, sk)) 1741 return true; 1742 poff += flen; 1743 plen -= flen; 1744 *len -= flen; 1745 } while (*len && plen); 1746 1747 return false; 1748 } 1749 1750 /* 1751 * Map linear and fragment data from the skb to spd. It reports true if the 1752 * pipe is full or if we already spliced the requested length. 1753 */ 1754 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1755 unsigned int *offset, unsigned int *len, 1756 struct splice_pipe_desc *spd, struct sock *sk) 1757 { 1758 int seg; 1759 1760 /* map the linear part : 1761 * If skb->head_frag is set, this 'linear' part is backed by a 1762 * fragment, and if the head is not shared with any clones then 1763 * we can avoid a copy since we own the head portion of this page. 1764 */ 1765 if (__splice_segment(virt_to_page(skb->data), 1766 (unsigned long) skb->data & (PAGE_SIZE - 1), 1767 skb_headlen(skb), 1768 offset, len, spd, 1769 skb_head_is_locked(skb), 1770 sk, pipe)) 1771 return true; 1772 1773 /* 1774 * then map the fragments 1775 */ 1776 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1777 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1778 1779 if (__splice_segment(skb_frag_page(f), 1780 f->page_offset, skb_frag_size(f), 1781 offset, len, spd, false, sk, pipe)) 1782 return true; 1783 } 1784 1785 return false; 1786 } 1787 1788 /* 1789 * Map data from the skb to a pipe. Should handle both the linear part, 1790 * the fragments, and the frag list. It does NOT handle frag lists within 1791 * the frag list, if such a thing exists. We'd probably need to recurse to 1792 * handle that cleanly. 1793 */ 1794 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1795 struct pipe_inode_info *pipe, unsigned int tlen, 1796 unsigned int flags) 1797 { 1798 struct partial_page partial[MAX_SKB_FRAGS]; 1799 struct page *pages[MAX_SKB_FRAGS]; 1800 struct splice_pipe_desc spd = { 1801 .pages = pages, 1802 .partial = partial, 1803 .nr_pages_max = MAX_SKB_FRAGS, 1804 .flags = flags, 1805 .ops = &sock_pipe_buf_ops, 1806 .spd_release = sock_spd_release, 1807 }; 1808 struct sk_buff *frag_iter; 1809 struct sock *sk = skb->sk; 1810 int ret = 0; 1811 1812 /* 1813 * __skb_splice_bits() only fails if the output has no room left, 1814 * so no point in going over the frag_list for the error case. 1815 */ 1816 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1817 goto done; 1818 else if (!tlen) 1819 goto done; 1820 1821 /* 1822 * now see if we have a frag_list to map 1823 */ 1824 skb_walk_frags(skb, frag_iter) { 1825 if (!tlen) 1826 break; 1827 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1828 break; 1829 } 1830 1831 done: 1832 if (spd.nr_pages) { 1833 /* 1834 * Drop the socket lock, otherwise we have reverse 1835 * locking dependencies between sk_lock and i_mutex 1836 * here as compared to sendfile(). We enter here 1837 * with the socket lock held, and splice_to_pipe() will 1838 * grab the pipe inode lock. For sendfile() emulation, 1839 * we call into ->sendpage() with the i_mutex lock held 1840 * and networking will grab the socket lock. 1841 */ 1842 release_sock(sk); 1843 ret = splice_to_pipe(pipe, &spd); 1844 lock_sock(sk); 1845 } 1846 1847 return ret; 1848 } 1849 1850 /** 1851 * skb_store_bits - store bits from kernel buffer to skb 1852 * @skb: destination buffer 1853 * @offset: offset in destination 1854 * @from: source buffer 1855 * @len: number of bytes to copy 1856 * 1857 * Copy the specified number of bytes from the source buffer to the 1858 * destination skb. This function handles all the messy bits of 1859 * traversing fragment lists and such. 1860 */ 1861 1862 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1863 { 1864 int start = skb_headlen(skb); 1865 struct sk_buff *frag_iter; 1866 int i, copy; 1867 1868 if (offset > (int)skb->len - len) 1869 goto fault; 1870 1871 if ((copy = start - offset) > 0) { 1872 if (copy > len) 1873 copy = len; 1874 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1875 if ((len -= copy) == 0) 1876 return 0; 1877 offset += copy; 1878 from += copy; 1879 } 1880 1881 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1882 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1883 int end; 1884 1885 WARN_ON(start > offset + len); 1886 1887 end = start + skb_frag_size(frag); 1888 if ((copy = end - offset) > 0) { 1889 u8 *vaddr; 1890 1891 if (copy > len) 1892 copy = len; 1893 1894 vaddr = kmap_atomic(skb_frag_page(frag)); 1895 memcpy(vaddr + frag->page_offset + offset - start, 1896 from, copy); 1897 kunmap_atomic(vaddr); 1898 1899 if ((len -= copy) == 0) 1900 return 0; 1901 offset += copy; 1902 from += copy; 1903 } 1904 start = end; 1905 } 1906 1907 skb_walk_frags(skb, frag_iter) { 1908 int end; 1909 1910 WARN_ON(start > offset + len); 1911 1912 end = start + frag_iter->len; 1913 if ((copy = end - offset) > 0) { 1914 if (copy > len) 1915 copy = len; 1916 if (skb_store_bits(frag_iter, offset - start, 1917 from, copy)) 1918 goto fault; 1919 if ((len -= copy) == 0) 1920 return 0; 1921 offset += copy; 1922 from += copy; 1923 } 1924 start = end; 1925 } 1926 if (!len) 1927 return 0; 1928 1929 fault: 1930 return -EFAULT; 1931 } 1932 EXPORT_SYMBOL(skb_store_bits); 1933 1934 /* Checksum skb data. */ 1935 1936 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1937 int len, __wsum csum) 1938 { 1939 int start = skb_headlen(skb); 1940 int i, copy = start - offset; 1941 struct sk_buff *frag_iter; 1942 int pos = 0; 1943 1944 /* Checksum header. */ 1945 if (copy > 0) { 1946 if (copy > len) 1947 copy = len; 1948 csum = csum_partial(skb->data + offset, copy, csum); 1949 if ((len -= copy) == 0) 1950 return csum; 1951 offset += copy; 1952 pos = copy; 1953 } 1954 1955 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1956 int end; 1957 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1958 1959 WARN_ON(start > offset + len); 1960 1961 end = start + skb_frag_size(frag); 1962 if ((copy = end - offset) > 0) { 1963 __wsum csum2; 1964 u8 *vaddr; 1965 1966 if (copy > len) 1967 copy = len; 1968 vaddr = kmap_atomic(skb_frag_page(frag)); 1969 csum2 = csum_partial(vaddr + frag->page_offset + 1970 offset - start, copy, 0); 1971 kunmap_atomic(vaddr); 1972 csum = csum_block_add(csum, csum2, pos); 1973 if (!(len -= copy)) 1974 return csum; 1975 offset += copy; 1976 pos += copy; 1977 } 1978 start = end; 1979 } 1980 1981 skb_walk_frags(skb, frag_iter) { 1982 int end; 1983 1984 WARN_ON(start > offset + len); 1985 1986 end = start + frag_iter->len; 1987 if ((copy = end - offset) > 0) { 1988 __wsum csum2; 1989 if (copy > len) 1990 copy = len; 1991 csum2 = skb_checksum(frag_iter, offset - start, 1992 copy, 0); 1993 csum = csum_block_add(csum, csum2, pos); 1994 if ((len -= copy) == 0) 1995 return csum; 1996 offset += copy; 1997 pos += copy; 1998 } 1999 start = end; 2000 } 2001 BUG_ON(len); 2002 2003 return csum; 2004 } 2005 EXPORT_SYMBOL(skb_checksum); 2006 2007 /* Both of above in one bottle. */ 2008 2009 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2010 u8 *to, int len, __wsum csum) 2011 { 2012 int start = skb_headlen(skb); 2013 int i, copy = start - offset; 2014 struct sk_buff *frag_iter; 2015 int pos = 0; 2016 2017 /* Copy header. */ 2018 if (copy > 0) { 2019 if (copy > len) 2020 copy = len; 2021 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2022 copy, csum); 2023 if ((len -= copy) == 0) 2024 return csum; 2025 offset += copy; 2026 to += copy; 2027 pos = copy; 2028 } 2029 2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2031 int end; 2032 2033 WARN_ON(start > offset + len); 2034 2035 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2036 if ((copy = end - offset) > 0) { 2037 __wsum csum2; 2038 u8 *vaddr; 2039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2040 2041 if (copy > len) 2042 copy = len; 2043 vaddr = kmap_atomic(skb_frag_page(frag)); 2044 csum2 = csum_partial_copy_nocheck(vaddr + 2045 frag->page_offset + 2046 offset - start, to, 2047 copy, 0); 2048 kunmap_atomic(vaddr); 2049 csum = csum_block_add(csum, csum2, pos); 2050 if (!(len -= copy)) 2051 return csum; 2052 offset += copy; 2053 to += copy; 2054 pos += copy; 2055 } 2056 start = end; 2057 } 2058 2059 skb_walk_frags(skb, frag_iter) { 2060 __wsum csum2; 2061 int end; 2062 2063 WARN_ON(start > offset + len); 2064 2065 end = start + frag_iter->len; 2066 if ((copy = end - offset) > 0) { 2067 if (copy > len) 2068 copy = len; 2069 csum2 = skb_copy_and_csum_bits(frag_iter, 2070 offset - start, 2071 to, copy, 0); 2072 csum = csum_block_add(csum, csum2, pos); 2073 if ((len -= copy) == 0) 2074 return csum; 2075 offset += copy; 2076 to += copy; 2077 pos += copy; 2078 } 2079 start = end; 2080 } 2081 BUG_ON(len); 2082 return csum; 2083 } 2084 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2085 2086 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2087 { 2088 __wsum csum; 2089 long csstart; 2090 2091 if (skb->ip_summed == CHECKSUM_PARTIAL) 2092 csstart = skb_checksum_start_offset(skb); 2093 else 2094 csstart = skb_headlen(skb); 2095 2096 BUG_ON(csstart > skb_headlen(skb)); 2097 2098 skb_copy_from_linear_data(skb, to, csstart); 2099 2100 csum = 0; 2101 if (csstart != skb->len) 2102 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2103 skb->len - csstart, 0); 2104 2105 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2106 long csstuff = csstart + skb->csum_offset; 2107 2108 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2109 } 2110 } 2111 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2112 2113 /** 2114 * skb_dequeue - remove from the head of the queue 2115 * @list: list to dequeue from 2116 * 2117 * Remove the head of the list. The list lock is taken so the function 2118 * may be used safely with other locking list functions. The head item is 2119 * returned or %NULL if the list is empty. 2120 */ 2121 2122 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2123 { 2124 unsigned long flags; 2125 struct sk_buff *result; 2126 2127 spin_lock_irqsave(&list->lock, flags); 2128 result = __skb_dequeue(list); 2129 spin_unlock_irqrestore(&list->lock, flags); 2130 return result; 2131 } 2132 EXPORT_SYMBOL(skb_dequeue); 2133 2134 /** 2135 * skb_dequeue_tail - remove from the tail of the queue 2136 * @list: list to dequeue from 2137 * 2138 * Remove the tail of the list. The list lock is taken so the function 2139 * may be used safely with other locking list functions. The tail item is 2140 * returned or %NULL if the list is empty. 2141 */ 2142 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2143 { 2144 unsigned long flags; 2145 struct sk_buff *result; 2146 2147 spin_lock_irqsave(&list->lock, flags); 2148 result = __skb_dequeue_tail(list); 2149 spin_unlock_irqrestore(&list->lock, flags); 2150 return result; 2151 } 2152 EXPORT_SYMBOL(skb_dequeue_tail); 2153 2154 /** 2155 * skb_queue_purge - empty a list 2156 * @list: list to empty 2157 * 2158 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2159 * the list and one reference dropped. This function takes the list 2160 * lock and is atomic with respect to other list locking functions. 2161 */ 2162 void skb_queue_purge(struct sk_buff_head *list) 2163 { 2164 struct sk_buff *skb; 2165 while ((skb = skb_dequeue(list)) != NULL) 2166 kfree_skb(skb); 2167 } 2168 EXPORT_SYMBOL(skb_queue_purge); 2169 2170 /** 2171 * skb_queue_head - queue a buffer at the list head 2172 * @list: list to use 2173 * @newsk: buffer to queue 2174 * 2175 * Queue a buffer at the start of the list. This function takes the 2176 * list lock and can be used safely with other locking &sk_buff functions 2177 * safely. 2178 * 2179 * A buffer cannot be placed on two lists at the same time. 2180 */ 2181 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2182 { 2183 unsigned long flags; 2184 2185 spin_lock_irqsave(&list->lock, flags); 2186 __skb_queue_head(list, newsk); 2187 spin_unlock_irqrestore(&list->lock, flags); 2188 } 2189 EXPORT_SYMBOL(skb_queue_head); 2190 2191 /** 2192 * skb_queue_tail - queue a buffer at the list tail 2193 * @list: list to use 2194 * @newsk: buffer to queue 2195 * 2196 * Queue a buffer at the tail of the list. This function takes the 2197 * list lock and can be used safely with other locking &sk_buff functions 2198 * safely. 2199 * 2200 * A buffer cannot be placed on two lists at the same time. 2201 */ 2202 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2203 { 2204 unsigned long flags; 2205 2206 spin_lock_irqsave(&list->lock, flags); 2207 __skb_queue_tail(list, newsk); 2208 spin_unlock_irqrestore(&list->lock, flags); 2209 } 2210 EXPORT_SYMBOL(skb_queue_tail); 2211 2212 /** 2213 * skb_unlink - remove a buffer from a list 2214 * @skb: buffer to remove 2215 * @list: list to use 2216 * 2217 * Remove a packet from a list. The list locks are taken and this 2218 * function is atomic with respect to other list locked calls 2219 * 2220 * You must know what list the SKB is on. 2221 */ 2222 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2223 { 2224 unsigned long flags; 2225 2226 spin_lock_irqsave(&list->lock, flags); 2227 __skb_unlink(skb, list); 2228 spin_unlock_irqrestore(&list->lock, flags); 2229 } 2230 EXPORT_SYMBOL(skb_unlink); 2231 2232 /** 2233 * skb_append - append a buffer 2234 * @old: buffer to insert after 2235 * @newsk: buffer to insert 2236 * @list: list to use 2237 * 2238 * Place a packet after a given packet in a list. The list locks are taken 2239 * and this function is atomic with respect to other list locked calls. 2240 * A buffer cannot be placed on two lists at the same time. 2241 */ 2242 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2243 { 2244 unsigned long flags; 2245 2246 spin_lock_irqsave(&list->lock, flags); 2247 __skb_queue_after(list, old, newsk); 2248 spin_unlock_irqrestore(&list->lock, flags); 2249 } 2250 EXPORT_SYMBOL(skb_append); 2251 2252 /** 2253 * skb_insert - insert a buffer 2254 * @old: buffer to insert before 2255 * @newsk: buffer to insert 2256 * @list: list to use 2257 * 2258 * Place a packet before a given packet in a list. The list locks are 2259 * taken and this function is atomic with respect to other list locked 2260 * calls. 2261 * 2262 * A buffer cannot be placed on two lists at the same time. 2263 */ 2264 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2265 { 2266 unsigned long flags; 2267 2268 spin_lock_irqsave(&list->lock, flags); 2269 __skb_insert(newsk, old->prev, old, list); 2270 spin_unlock_irqrestore(&list->lock, flags); 2271 } 2272 EXPORT_SYMBOL(skb_insert); 2273 2274 static inline void skb_split_inside_header(struct sk_buff *skb, 2275 struct sk_buff* skb1, 2276 const u32 len, const int pos) 2277 { 2278 int i; 2279 2280 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2281 pos - len); 2282 /* And move data appendix as is. */ 2283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2284 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2285 2286 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2287 skb_shinfo(skb)->nr_frags = 0; 2288 skb1->data_len = skb->data_len; 2289 skb1->len += skb1->data_len; 2290 skb->data_len = 0; 2291 skb->len = len; 2292 skb_set_tail_pointer(skb, len); 2293 } 2294 2295 static inline void skb_split_no_header(struct sk_buff *skb, 2296 struct sk_buff* skb1, 2297 const u32 len, int pos) 2298 { 2299 int i, k = 0; 2300 const int nfrags = skb_shinfo(skb)->nr_frags; 2301 2302 skb_shinfo(skb)->nr_frags = 0; 2303 skb1->len = skb1->data_len = skb->len - len; 2304 skb->len = len; 2305 skb->data_len = len - pos; 2306 2307 for (i = 0; i < nfrags; i++) { 2308 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2309 2310 if (pos + size > len) { 2311 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2312 2313 if (pos < len) { 2314 /* Split frag. 2315 * We have two variants in this case: 2316 * 1. Move all the frag to the second 2317 * part, if it is possible. F.e. 2318 * this approach is mandatory for TUX, 2319 * where splitting is expensive. 2320 * 2. Split is accurately. We make this. 2321 */ 2322 skb_frag_ref(skb, i); 2323 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2324 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2325 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2326 skb_shinfo(skb)->nr_frags++; 2327 } 2328 k++; 2329 } else 2330 skb_shinfo(skb)->nr_frags++; 2331 pos += size; 2332 } 2333 skb_shinfo(skb1)->nr_frags = k; 2334 } 2335 2336 /** 2337 * skb_split - Split fragmented skb to two parts at length len. 2338 * @skb: the buffer to split 2339 * @skb1: the buffer to receive the second part 2340 * @len: new length for skb 2341 */ 2342 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2343 { 2344 int pos = skb_headlen(skb); 2345 2346 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2347 if (len < pos) /* Split line is inside header. */ 2348 skb_split_inside_header(skb, skb1, len, pos); 2349 else /* Second chunk has no header, nothing to copy. */ 2350 skb_split_no_header(skb, skb1, len, pos); 2351 } 2352 EXPORT_SYMBOL(skb_split); 2353 2354 /* Shifting from/to a cloned skb is a no-go. 2355 * 2356 * Caller cannot keep skb_shinfo related pointers past calling here! 2357 */ 2358 static int skb_prepare_for_shift(struct sk_buff *skb) 2359 { 2360 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2361 } 2362 2363 /** 2364 * skb_shift - Shifts paged data partially from skb to another 2365 * @tgt: buffer into which tail data gets added 2366 * @skb: buffer from which the paged data comes from 2367 * @shiftlen: shift up to this many bytes 2368 * 2369 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2370 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2371 * It's up to caller to free skb if everything was shifted. 2372 * 2373 * If @tgt runs out of frags, the whole operation is aborted. 2374 * 2375 * Skb cannot include anything else but paged data while tgt is allowed 2376 * to have non-paged data as well. 2377 * 2378 * TODO: full sized shift could be optimized but that would need 2379 * specialized skb free'er to handle frags without up-to-date nr_frags. 2380 */ 2381 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2382 { 2383 int from, to, merge, todo; 2384 struct skb_frag_struct *fragfrom, *fragto; 2385 2386 BUG_ON(shiftlen > skb->len); 2387 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2388 2389 todo = shiftlen; 2390 from = 0; 2391 to = skb_shinfo(tgt)->nr_frags; 2392 fragfrom = &skb_shinfo(skb)->frags[from]; 2393 2394 /* Actual merge is delayed until the point when we know we can 2395 * commit all, so that we don't have to undo partial changes 2396 */ 2397 if (!to || 2398 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2399 fragfrom->page_offset)) { 2400 merge = -1; 2401 } else { 2402 merge = to - 1; 2403 2404 todo -= skb_frag_size(fragfrom); 2405 if (todo < 0) { 2406 if (skb_prepare_for_shift(skb) || 2407 skb_prepare_for_shift(tgt)) 2408 return 0; 2409 2410 /* All previous frag pointers might be stale! */ 2411 fragfrom = &skb_shinfo(skb)->frags[from]; 2412 fragto = &skb_shinfo(tgt)->frags[merge]; 2413 2414 skb_frag_size_add(fragto, shiftlen); 2415 skb_frag_size_sub(fragfrom, shiftlen); 2416 fragfrom->page_offset += shiftlen; 2417 2418 goto onlymerged; 2419 } 2420 2421 from++; 2422 } 2423 2424 /* Skip full, not-fitting skb to avoid expensive operations */ 2425 if ((shiftlen == skb->len) && 2426 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2427 return 0; 2428 2429 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2430 return 0; 2431 2432 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2433 if (to == MAX_SKB_FRAGS) 2434 return 0; 2435 2436 fragfrom = &skb_shinfo(skb)->frags[from]; 2437 fragto = &skb_shinfo(tgt)->frags[to]; 2438 2439 if (todo >= skb_frag_size(fragfrom)) { 2440 *fragto = *fragfrom; 2441 todo -= skb_frag_size(fragfrom); 2442 from++; 2443 to++; 2444 2445 } else { 2446 __skb_frag_ref(fragfrom); 2447 fragto->page = fragfrom->page; 2448 fragto->page_offset = fragfrom->page_offset; 2449 skb_frag_size_set(fragto, todo); 2450 2451 fragfrom->page_offset += todo; 2452 skb_frag_size_sub(fragfrom, todo); 2453 todo = 0; 2454 2455 to++; 2456 break; 2457 } 2458 } 2459 2460 /* Ready to "commit" this state change to tgt */ 2461 skb_shinfo(tgt)->nr_frags = to; 2462 2463 if (merge >= 0) { 2464 fragfrom = &skb_shinfo(skb)->frags[0]; 2465 fragto = &skb_shinfo(tgt)->frags[merge]; 2466 2467 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2468 __skb_frag_unref(fragfrom); 2469 } 2470 2471 /* Reposition in the original skb */ 2472 to = 0; 2473 while (from < skb_shinfo(skb)->nr_frags) 2474 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2475 skb_shinfo(skb)->nr_frags = to; 2476 2477 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2478 2479 onlymerged: 2480 /* Most likely the tgt won't ever need its checksum anymore, skb on 2481 * the other hand might need it if it needs to be resent 2482 */ 2483 tgt->ip_summed = CHECKSUM_PARTIAL; 2484 skb->ip_summed = CHECKSUM_PARTIAL; 2485 2486 /* Yak, is it really working this way? Some helper please? */ 2487 skb->len -= shiftlen; 2488 skb->data_len -= shiftlen; 2489 skb->truesize -= shiftlen; 2490 tgt->len += shiftlen; 2491 tgt->data_len += shiftlen; 2492 tgt->truesize += shiftlen; 2493 2494 return shiftlen; 2495 } 2496 2497 /** 2498 * skb_prepare_seq_read - Prepare a sequential read of skb data 2499 * @skb: the buffer to read 2500 * @from: lower offset of data to be read 2501 * @to: upper offset of data to be read 2502 * @st: state variable 2503 * 2504 * Initializes the specified state variable. Must be called before 2505 * invoking skb_seq_read() for the first time. 2506 */ 2507 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2508 unsigned int to, struct skb_seq_state *st) 2509 { 2510 st->lower_offset = from; 2511 st->upper_offset = to; 2512 st->root_skb = st->cur_skb = skb; 2513 st->frag_idx = st->stepped_offset = 0; 2514 st->frag_data = NULL; 2515 } 2516 EXPORT_SYMBOL(skb_prepare_seq_read); 2517 2518 /** 2519 * skb_seq_read - Sequentially read skb data 2520 * @consumed: number of bytes consumed by the caller so far 2521 * @data: destination pointer for data to be returned 2522 * @st: state variable 2523 * 2524 * Reads a block of skb data at &consumed relative to the 2525 * lower offset specified to skb_prepare_seq_read(). Assigns 2526 * the head of the data block to &data and returns the length 2527 * of the block or 0 if the end of the skb data or the upper 2528 * offset has been reached. 2529 * 2530 * The caller is not required to consume all of the data 2531 * returned, i.e. &consumed is typically set to the number 2532 * of bytes already consumed and the next call to 2533 * skb_seq_read() will return the remaining part of the block. 2534 * 2535 * Note 1: The size of each block of data returned can be arbitrary, 2536 * this limitation is the cost for zerocopy seqeuental 2537 * reads of potentially non linear data. 2538 * 2539 * Note 2: Fragment lists within fragments are not implemented 2540 * at the moment, state->root_skb could be replaced with 2541 * a stack for this purpose. 2542 */ 2543 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2544 struct skb_seq_state *st) 2545 { 2546 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2547 skb_frag_t *frag; 2548 2549 if (unlikely(abs_offset >= st->upper_offset)) { 2550 if (st->frag_data) { 2551 kunmap_atomic(st->frag_data); 2552 st->frag_data = NULL; 2553 } 2554 return 0; 2555 } 2556 2557 next_skb: 2558 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2559 2560 if (abs_offset < block_limit && !st->frag_data) { 2561 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2562 return block_limit - abs_offset; 2563 } 2564 2565 if (st->frag_idx == 0 && !st->frag_data) 2566 st->stepped_offset += skb_headlen(st->cur_skb); 2567 2568 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2569 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2570 block_limit = skb_frag_size(frag) + st->stepped_offset; 2571 2572 if (abs_offset < block_limit) { 2573 if (!st->frag_data) 2574 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2575 2576 *data = (u8 *) st->frag_data + frag->page_offset + 2577 (abs_offset - st->stepped_offset); 2578 2579 return block_limit - abs_offset; 2580 } 2581 2582 if (st->frag_data) { 2583 kunmap_atomic(st->frag_data); 2584 st->frag_data = NULL; 2585 } 2586 2587 st->frag_idx++; 2588 st->stepped_offset += skb_frag_size(frag); 2589 } 2590 2591 if (st->frag_data) { 2592 kunmap_atomic(st->frag_data); 2593 st->frag_data = NULL; 2594 } 2595 2596 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2597 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2598 st->frag_idx = 0; 2599 goto next_skb; 2600 } else if (st->cur_skb->next) { 2601 st->cur_skb = st->cur_skb->next; 2602 st->frag_idx = 0; 2603 goto next_skb; 2604 } 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL(skb_seq_read); 2609 2610 /** 2611 * skb_abort_seq_read - Abort a sequential read of skb data 2612 * @st: state variable 2613 * 2614 * Must be called if skb_seq_read() was not called until it 2615 * returned 0. 2616 */ 2617 void skb_abort_seq_read(struct skb_seq_state *st) 2618 { 2619 if (st->frag_data) 2620 kunmap_atomic(st->frag_data); 2621 } 2622 EXPORT_SYMBOL(skb_abort_seq_read); 2623 2624 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2625 2626 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2627 struct ts_config *conf, 2628 struct ts_state *state) 2629 { 2630 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2631 } 2632 2633 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2634 { 2635 skb_abort_seq_read(TS_SKB_CB(state)); 2636 } 2637 2638 /** 2639 * skb_find_text - Find a text pattern in skb data 2640 * @skb: the buffer to look in 2641 * @from: search offset 2642 * @to: search limit 2643 * @config: textsearch configuration 2644 * @state: uninitialized textsearch state variable 2645 * 2646 * Finds a pattern in the skb data according to the specified 2647 * textsearch configuration. Use textsearch_next() to retrieve 2648 * subsequent occurrences of the pattern. Returns the offset 2649 * to the first occurrence or UINT_MAX if no match was found. 2650 */ 2651 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2652 unsigned int to, struct ts_config *config, 2653 struct ts_state *state) 2654 { 2655 unsigned int ret; 2656 2657 config->get_next_block = skb_ts_get_next_block; 2658 config->finish = skb_ts_finish; 2659 2660 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2661 2662 ret = textsearch_find(config, state); 2663 return (ret <= to - from ? ret : UINT_MAX); 2664 } 2665 EXPORT_SYMBOL(skb_find_text); 2666 2667 /** 2668 * skb_append_datato_frags - append the user data to a skb 2669 * @sk: sock structure 2670 * @skb: skb structure to be appened with user data. 2671 * @getfrag: call back function to be used for getting the user data 2672 * @from: pointer to user message iov 2673 * @length: length of the iov message 2674 * 2675 * Description: This procedure append the user data in the fragment part 2676 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2677 */ 2678 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2679 int (*getfrag)(void *from, char *to, int offset, 2680 int len, int odd, struct sk_buff *skb), 2681 void *from, int length) 2682 { 2683 int frg_cnt = skb_shinfo(skb)->nr_frags; 2684 int copy; 2685 int offset = 0; 2686 int ret; 2687 struct page_frag *pfrag = ¤t->task_frag; 2688 2689 do { 2690 /* Return error if we don't have space for new frag */ 2691 if (frg_cnt >= MAX_SKB_FRAGS) 2692 return -EMSGSIZE; 2693 2694 if (!sk_page_frag_refill(sk, pfrag)) 2695 return -ENOMEM; 2696 2697 /* copy the user data to page */ 2698 copy = min_t(int, length, pfrag->size - pfrag->offset); 2699 2700 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2701 offset, copy, 0, skb); 2702 if (ret < 0) 2703 return -EFAULT; 2704 2705 /* copy was successful so update the size parameters */ 2706 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2707 copy); 2708 frg_cnt++; 2709 pfrag->offset += copy; 2710 get_page(pfrag->page); 2711 2712 skb->truesize += copy; 2713 atomic_add(copy, &sk->sk_wmem_alloc); 2714 skb->len += copy; 2715 skb->data_len += copy; 2716 offset += copy; 2717 length -= copy; 2718 2719 } while (length > 0); 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL(skb_append_datato_frags); 2724 2725 /** 2726 * skb_pull_rcsum - pull skb and update receive checksum 2727 * @skb: buffer to update 2728 * @len: length of data pulled 2729 * 2730 * This function performs an skb_pull on the packet and updates 2731 * the CHECKSUM_COMPLETE checksum. It should be used on 2732 * receive path processing instead of skb_pull unless you know 2733 * that the checksum difference is zero (e.g., a valid IP header) 2734 * or you are setting ip_summed to CHECKSUM_NONE. 2735 */ 2736 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2737 { 2738 BUG_ON(len > skb->len); 2739 skb->len -= len; 2740 BUG_ON(skb->len < skb->data_len); 2741 skb_postpull_rcsum(skb, skb->data, len); 2742 return skb->data += len; 2743 } 2744 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2745 2746 /** 2747 * skb_segment - Perform protocol segmentation on skb. 2748 * @skb: buffer to segment 2749 * @features: features for the output path (see dev->features) 2750 * 2751 * This function performs segmentation on the given skb. It returns 2752 * a pointer to the first in a list of new skbs for the segments. 2753 * In case of error it returns ERR_PTR(err). 2754 */ 2755 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2756 { 2757 struct sk_buff *segs = NULL; 2758 struct sk_buff *tail = NULL; 2759 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2760 unsigned int mss = skb_shinfo(skb)->gso_size; 2761 unsigned int doffset = skb->data - skb_mac_header(skb); 2762 unsigned int offset = doffset; 2763 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2764 unsigned int headroom; 2765 unsigned int len; 2766 __be16 proto; 2767 bool csum; 2768 int sg = !!(features & NETIF_F_SG); 2769 int nfrags = skb_shinfo(skb)->nr_frags; 2770 int err = -ENOMEM; 2771 int i = 0; 2772 int pos; 2773 2774 proto = skb_network_protocol(skb); 2775 if (unlikely(!proto)) 2776 return ERR_PTR(-EINVAL); 2777 2778 csum = !!can_checksum_protocol(features, proto); 2779 __skb_push(skb, doffset); 2780 headroom = skb_headroom(skb); 2781 pos = skb_headlen(skb); 2782 2783 do { 2784 struct sk_buff *nskb; 2785 skb_frag_t *frag; 2786 int hsize; 2787 int size; 2788 2789 len = skb->len - offset; 2790 if (len > mss) 2791 len = mss; 2792 2793 hsize = skb_headlen(skb) - offset; 2794 if (hsize < 0) 2795 hsize = 0; 2796 if (hsize > len || !sg) 2797 hsize = len; 2798 2799 if (!hsize && i >= nfrags) { 2800 BUG_ON(fskb->len != len); 2801 2802 pos += len; 2803 nskb = skb_clone(fskb, GFP_ATOMIC); 2804 fskb = fskb->next; 2805 2806 if (unlikely(!nskb)) 2807 goto err; 2808 2809 hsize = skb_end_offset(nskb); 2810 if (skb_cow_head(nskb, doffset + headroom)) { 2811 kfree_skb(nskb); 2812 goto err; 2813 } 2814 2815 nskb->truesize += skb_end_offset(nskb) - hsize; 2816 skb_release_head_state(nskb); 2817 __skb_push(nskb, doffset); 2818 } else { 2819 nskb = __alloc_skb(hsize + doffset + headroom, 2820 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2821 NUMA_NO_NODE); 2822 2823 if (unlikely(!nskb)) 2824 goto err; 2825 2826 skb_reserve(nskb, headroom); 2827 __skb_put(nskb, doffset); 2828 } 2829 2830 if (segs) 2831 tail->next = nskb; 2832 else 2833 segs = nskb; 2834 tail = nskb; 2835 2836 __copy_skb_header(nskb, skb); 2837 nskb->mac_len = skb->mac_len; 2838 2839 /* nskb and skb might have different headroom */ 2840 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2841 nskb->csum_start += skb_headroom(nskb) - headroom; 2842 2843 skb_reset_mac_header(nskb); 2844 skb_set_network_header(nskb, skb->mac_len); 2845 nskb->transport_header = (nskb->network_header + 2846 skb_network_header_len(skb)); 2847 2848 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2849 nskb->data - tnl_hlen, 2850 doffset + tnl_hlen); 2851 2852 if (fskb != skb_shinfo(skb)->frag_list) 2853 goto perform_csum_check; 2854 2855 if (!sg) { 2856 nskb->ip_summed = CHECKSUM_NONE; 2857 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2858 skb_put(nskb, len), 2859 len, 0); 2860 continue; 2861 } 2862 2863 frag = skb_shinfo(nskb)->frags; 2864 2865 skb_copy_from_linear_data_offset(skb, offset, 2866 skb_put(nskb, hsize), hsize); 2867 2868 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2869 2870 while (pos < offset + len && i < nfrags) { 2871 *frag = skb_shinfo(skb)->frags[i]; 2872 __skb_frag_ref(frag); 2873 size = skb_frag_size(frag); 2874 2875 if (pos < offset) { 2876 frag->page_offset += offset - pos; 2877 skb_frag_size_sub(frag, offset - pos); 2878 } 2879 2880 skb_shinfo(nskb)->nr_frags++; 2881 2882 if (pos + size <= offset + len) { 2883 i++; 2884 pos += size; 2885 } else { 2886 skb_frag_size_sub(frag, pos + size - (offset + len)); 2887 goto skip_fraglist; 2888 } 2889 2890 frag++; 2891 } 2892 2893 if (pos < offset + len) { 2894 struct sk_buff *fskb2 = fskb; 2895 2896 BUG_ON(pos + fskb->len != offset + len); 2897 2898 pos += fskb->len; 2899 fskb = fskb->next; 2900 2901 if (fskb2->next) { 2902 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2903 if (!fskb2) 2904 goto err; 2905 } else 2906 skb_get(fskb2); 2907 2908 SKB_FRAG_ASSERT(nskb); 2909 skb_shinfo(nskb)->frag_list = fskb2; 2910 } 2911 2912 skip_fraglist: 2913 nskb->data_len = len - hsize; 2914 nskb->len += nskb->data_len; 2915 nskb->truesize += nskb->data_len; 2916 2917 perform_csum_check: 2918 if (!csum) { 2919 nskb->csum = skb_checksum(nskb, doffset, 2920 nskb->len - doffset, 0); 2921 nskb->ip_summed = CHECKSUM_NONE; 2922 } 2923 } while ((offset += len) < skb->len); 2924 2925 return segs; 2926 2927 err: 2928 while ((skb = segs)) { 2929 segs = skb->next; 2930 kfree_skb(skb); 2931 } 2932 return ERR_PTR(err); 2933 } 2934 EXPORT_SYMBOL_GPL(skb_segment); 2935 2936 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2937 { 2938 struct sk_buff *p = *head; 2939 struct sk_buff *nskb; 2940 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2941 struct skb_shared_info *pinfo = skb_shinfo(p); 2942 unsigned int headroom; 2943 unsigned int len = skb_gro_len(skb); 2944 unsigned int offset = skb_gro_offset(skb); 2945 unsigned int headlen = skb_headlen(skb); 2946 unsigned int delta_truesize; 2947 2948 if (p->len + len >= 65536) 2949 return -E2BIG; 2950 2951 if (pinfo->frag_list) 2952 goto merge; 2953 else if (headlen <= offset) { 2954 skb_frag_t *frag; 2955 skb_frag_t *frag2; 2956 int i = skbinfo->nr_frags; 2957 int nr_frags = pinfo->nr_frags + i; 2958 2959 offset -= headlen; 2960 2961 if (nr_frags > MAX_SKB_FRAGS) 2962 return -E2BIG; 2963 2964 pinfo->nr_frags = nr_frags; 2965 skbinfo->nr_frags = 0; 2966 2967 frag = pinfo->frags + nr_frags; 2968 frag2 = skbinfo->frags + i; 2969 do { 2970 *--frag = *--frag2; 2971 } while (--i); 2972 2973 frag->page_offset += offset; 2974 skb_frag_size_sub(frag, offset); 2975 2976 /* all fragments truesize : remove (head size + sk_buff) */ 2977 delta_truesize = skb->truesize - 2978 SKB_TRUESIZE(skb_end_offset(skb)); 2979 2980 skb->truesize -= skb->data_len; 2981 skb->len -= skb->data_len; 2982 skb->data_len = 0; 2983 2984 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 2985 goto done; 2986 } else if (skb->head_frag) { 2987 int nr_frags = pinfo->nr_frags; 2988 skb_frag_t *frag = pinfo->frags + nr_frags; 2989 struct page *page = virt_to_head_page(skb->head); 2990 unsigned int first_size = headlen - offset; 2991 unsigned int first_offset; 2992 2993 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 2994 return -E2BIG; 2995 2996 first_offset = skb->data - 2997 (unsigned char *)page_address(page) + 2998 offset; 2999 3000 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3001 3002 frag->page.p = page; 3003 frag->page_offset = first_offset; 3004 skb_frag_size_set(frag, first_size); 3005 3006 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3007 /* We dont need to clear skbinfo->nr_frags here */ 3008 3009 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3010 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3011 goto done; 3012 } else if (skb_gro_len(p) != pinfo->gso_size) 3013 return -E2BIG; 3014 3015 headroom = skb_headroom(p); 3016 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 3017 if (unlikely(!nskb)) 3018 return -ENOMEM; 3019 3020 __copy_skb_header(nskb, p); 3021 nskb->mac_len = p->mac_len; 3022 3023 skb_reserve(nskb, headroom); 3024 __skb_put(nskb, skb_gro_offset(p)); 3025 3026 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 3027 skb_set_network_header(nskb, skb_network_offset(p)); 3028 skb_set_transport_header(nskb, skb_transport_offset(p)); 3029 3030 __skb_pull(p, skb_gro_offset(p)); 3031 memcpy(skb_mac_header(nskb), skb_mac_header(p), 3032 p->data - skb_mac_header(p)); 3033 3034 skb_shinfo(nskb)->frag_list = p; 3035 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3036 pinfo->gso_size = 0; 3037 skb_header_release(p); 3038 NAPI_GRO_CB(nskb)->last = p; 3039 3040 nskb->data_len += p->len; 3041 nskb->truesize += p->truesize; 3042 nskb->len += p->len; 3043 3044 *head = nskb; 3045 nskb->next = p->next; 3046 p->next = NULL; 3047 3048 p = nskb; 3049 3050 merge: 3051 delta_truesize = skb->truesize; 3052 if (offset > headlen) { 3053 unsigned int eat = offset - headlen; 3054 3055 skbinfo->frags[0].page_offset += eat; 3056 skb_frag_size_sub(&skbinfo->frags[0], eat); 3057 skb->data_len -= eat; 3058 skb->len -= eat; 3059 offset = headlen; 3060 } 3061 3062 __skb_pull(skb, offset); 3063 3064 NAPI_GRO_CB(p)->last->next = skb; 3065 NAPI_GRO_CB(p)->last = skb; 3066 skb_header_release(skb); 3067 3068 done: 3069 NAPI_GRO_CB(p)->count++; 3070 p->data_len += len; 3071 p->truesize += delta_truesize; 3072 p->len += len; 3073 3074 NAPI_GRO_CB(skb)->same_flow = 1; 3075 return 0; 3076 } 3077 EXPORT_SYMBOL_GPL(skb_gro_receive); 3078 3079 void __init skb_init(void) 3080 { 3081 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3082 sizeof(struct sk_buff), 3083 0, 3084 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3085 NULL); 3086 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3087 (2*sizeof(struct sk_buff)) + 3088 sizeof(atomic_t), 3089 0, 3090 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3091 NULL); 3092 } 3093 3094 /** 3095 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3096 * @skb: Socket buffer containing the buffers to be mapped 3097 * @sg: The scatter-gather list to map into 3098 * @offset: The offset into the buffer's contents to start mapping 3099 * @len: Length of buffer space to be mapped 3100 * 3101 * Fill the specified scatter-gather list with mappings/pointers into a 3102 * region of the buffer space attached to a socket buffer. 3103 */ 3104 static int 3105 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3106 { 3107 int start = skb_headlen(skb); 3108 int i, copy = start - offset; 3109 struct sk_buff *frag_iter; 3110 int elt = 0; 3111 3112 if (copy > 0) { 3113 if (copy > len) 3114 copy = len; 3115 sg_set_buf(sg, skb->data + offset, copy); 3116 elt++; 3117 if ((len -= copy) == 0) 3118 return elt; 3119 offset += copy; 3120 } 3121 3122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3123 int end; 3124 3125 WARN_ON(start > offset + len); 3126 3127 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3128 if ((copy = end - offset) > 0) { 3129 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3130 3131 if (copy > len) 3132 copy = len; 3133 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3134 frag->page_offset+offset-start); 3135 elt++; 3136 if (!(len -= copy)) 3137 return elt; 3138 offset += copy; 3139 } 3140 start = end; 3141 } 3142 3143 skb_walk_frags(skb, frag_iter) { 3144 int end; 3145 3146 WARN_ON(start > offset + len); 3147 3148 end = start + frag_iter->len; 3149 if ((copy = end - offset) > 0) { 3150 if (copy > len) 3151 copy = len; 3152 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3153 copy); 3154 if ((len -= copy) == 0) 3155 return elt; 3156 offset += copy; 3157 } 3158 start = end; 3159 } 3160 BUG_ON(len); 3161 return elt; 3162 } 3163 3164 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3165 { 3166 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3167 3168 sg_mark_end(&sg[nsg - 1]); 3169 3170 return nsg; 3171 } 3172 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3173 3174 /** 3175 * skb_cow_data - Check that a socket buffer's data buffers are writable 3176 * @skb: The socket buffer to check. 3177 * @tailbits: Amount of trailing space to be added 3178 * @trailer: Returned pointer to the skb where the @tailbits space begins 3179 * 3180 * Make sure that the data buffers attached to a socket buffer are 3181 * writable. If they are not, private copies are made of the data buffers 3182 * and the socket buffer is set to use these instead. 3183 * 3184 * If @tailbits is given, make sure that there is space to write @tailbits 3185 * bytes of data beyond current end of socket buffer. @trailer will be 3186 * set to point to the skb in which this space begins. 3187 * 3188 * The number of scatterlist elements required to completely map the 3189 * COW'd and extended socket buffer will be returned. 3190 */ 3191 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3192 { 3193 int copyflag; 3194 int elt; 3195 struct sk_buff *skb1, **skb_p; 3196 3197 /* If skb is cloned or its head is paged, reallocate 3198 * head pulling out all the pages (pages are considered not writable 3199 * at the moment even if they are anonymous). 3200 */ 3201 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3202 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3203 return -ENOMEM; 3204 3205 /* Easy case. Most of packets will go this way. */ 3206 if (!skb_has_frag_list(skb)) { 3207 /* A little of trouble, not enough of space for trailer. 3208 * This should not happen, when stack is tuned to generate 3209 * good frames. OK, on miss we reallocate and reserve even more 3210 * space, 128 bytes is fair. */ 3211 3212 if (skb_tailroom(skb) < tailbits && 3213 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3214 return -ENOMEM; 3215 3216 /* Voila! */ 3217 *trailer = skb; 3218 return 1; 3219 } 3220 3221 /* Misery. We are in troubles, going to mincer fragments... */ 3222 3223 elt = 1; 3224 skb_p = &skb_shinfo(skb)->frag_list; 3225 copyflag = 0; 3226 3227 while ((skb1 = *skb_p) != NULL) { 3228 int ntail = 0; 3229 3230 /* The fragment is partially pulled by someone, 3231 * this can happen on input. Copy it and everything 3232 * after it. */ 3233 3234 if (skb_shared(skb1)) 3235 copyflag = 1; 3236 3237 /* If the skb is the last, worry about trailer. */ 3238 3239 if (skb1->next == NULL && tailbits) { 3240 if (skb_shinfo(skb1)->nr_frags || 3241 skb_has_frag_list(skb1) || 3242 skb_tailroom(skb1) < tailbits) 3243 ntail = tailbits + 128; 3244 } 3245 3246 if (copyflag || 3247 skb_cloned(skb1) || 3248 ntail || 3249 skb_shinfo(skb1)->nr_frags || 3250 skb_has_frag_list(skb1)) { 3251 struct sk_buff *skb2; 3252 3253 /* Fuck, we are miserable poor guys... */ 3254 if (ntail == 0) 3255 skb2 = skb_copy(skb1, GFP_ATOMIC); 3256 else 3257 skb2 = skb_copy_expand(skb1, 3258 skb_headroom(skb1), 3259 ntail, 3260 GFP_ATOMIC); 3261 if (unlikely(skb2 == NULL)) 3262 return -ENOMEM; 3263 3264 if (skb1->sk) 3265 skb_set_owner_w(skb2, skb1->sk); 3266 3267 /* Looking around. Are we still alive? 3268 * OK, link new skb, drop old one */ 3269 3270 skb2->next = skb1->next; 3271 *skb_p = skb2; 3272 kfree_skb(skb1); 3273 skb1 = skb2; 3274 } 3275 elt++; 3276 *trailer = skb1; 3277 skb_p = &skb1->next; 3278 } 3279 3280 return elt; 3281 } 3282 EXPORT_SYMBOL_GPL(skb_cow_data); 3283 3284 static void sock_rmem_free(struct sk_buff *skb) 3285 { 3286 struct sock *sk = skb->sk; 3287 3288 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3289 } 3290 3291 /* 3292 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3293 */ 3294 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3295 { 3296 int len = skb->len; 3297 3298 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3299 (unsigned int)sk->sk_rcvbuf) 3300 return -ENOMEM; 3301 3302 skb_orphan(skb); 3303 skb->sk = sk; 3304 skb->destructor = sock_rmem_free; 3305 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3306 3307 /* before exiting rcu section, make sure dst is refcounted */ 3308 skb_dst_force(skb); 3309 3310 skb_queue_tail(&sk->sk_error_queue, skb); 3311 if (!sock_flag(sk, SOCK_DEAD)) 3312 sk->sk_data_ready(sk, len); 3313 return 0; 3314 } 3315 EXPORT_SYMBOL(sock_queue_err_skb); 3316 3317 void skb_tstamp_tx(struct sk_buff *orig_skb, 3318 struct skb_shared_hwtstamps *hwtstamps) 3319 { 3320 struct sock *sk = orig_skb->sk; 3321 struct sock_exterr_skb *serr; 3322 struct sk_buff *skb; 3323 int err; 3324 3325 if (!sk) 3326 return; 3327 3328 if (hwtstamps) { 3329 *skb_hwtstamps(orig_skb) = 3330 *hwtstamps; 3331 } else { 3332 /* 3333 * no hardware time stamps available, 3334 * so keep the shared tx_flags and only 3335 * store software time stamp 3336 */ 3337 orig_skb->tstamp = ktime_get_real(); 3338 } 3339 3340 skb = skb_clone(orig_skb, GFP_ATOMIC); 3341 if (!skb) 3342 return; 3343 3344 serr = SKB_EXT_ERR(skb); 3345 memset(serr, 0, sizeof(*serr)); 3346 serr->ee.ee_errno = ENOMSG; 3347 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3348 3349 err = sock_queue_err_skb(sk, skb); 3350 3351 if (err) 3352 kfree_skb(skb); 3353 } 3354 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3355 3356 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3357 { 3358 struct sock *sk = skb->sk; 3359 struct sock_exterr_skb *serr; 3360 int err; 3361 3362 skb->wifi_acked_valid = 1; 3363 skb->wifi_acked = acked; 3364 3365 serr = SKB_EXT_ERR(skb); 3366 memset(serr, 0, sizeof(*serr)); 3367 serr->ee.ee_errno = ENOMSG; 3368 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3369 3370 err = sock_queue_err_skb(sk, skb); 3371 if (err) 3372 kfree_skb(skb); 3373 } 3374 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3375 3376 3377 /** 3378 * skb_partial_csum_set - set up and verify partial csum values for packet 3379 * @skb: the skb to set 3380 * @start: the number of bytes after skb->data to start checksumming. 3381 * @off: the offset from start to place the checksum. 3382 * 3383 * For untrusted partially-checksummed packets, we need to make sure the values 3384 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3385 * 3386 * This function checks and sets those values and skb->ip_summed: if this 3387 * returns false you should drop the packet. 3388 */ 3389 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3390 { 3391 if (unlikely(start > skb_headlen(skb)) || 3392 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3393 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3394 start, off, skb_headlen(skb)); 3395 return false; 3396 } 3397 skb->ip_summed = CHECKSUM_PARTIAL; 3398 skb->csum_start = skb_headroom(skb) + start; 3399 skb->csum_offset = off; 3400 skb_set_transport_header(skb, start); 3401 return true; 3402 } 3403 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3404 3405 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3406 { 3407 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3408 skb->dev->name); 3409 } 3410 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3411 3412 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3413 { 3414 if (head_stolen) { 3415 skb_release_head_state(skb); 3416 kmem_cache_free(skbuff_head_cache, skb); 3417 } else { 3418 __kfree_skb(skb); 3419 } 3420 } 3421 EXPORT_SYMBOL(kfree_skb_partial); 3422 3423 /** 3424 * skb_try_coalesce - try to merge skb to prior one 3425 * @to: prior buffer 3426 * @from: buffer to add 3427 * @fragstolen: pointer to boolean 3428 * @delta_truesize: how much more was allocated than was requested 3429 */ 3430 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3431 bool *fragstolen, int *delta_truesize) 3432 { 3433 int i, delta, len = from->len; 3434 3435 *fragstolen = false; 3436 3437 if (skb_cloned(to)) 3438 return false; 3439 3440 if (len <= skb_tailroom(to)) { 3441 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3442 *delta_truesize = 0; 3443 return true; 3444 } 3445 3446 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3447 return false; 3448 3449 if (skb_headlen(from) != 0) { 3450 struct page *page; 3451 unsigned int offset; 3452 3453 if (skb_shinfo(to)->nr_frags + 3454 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3455 return false; 3456 3457 if (skb_head_is_locked(from)) 3458 return false; 3459 3460 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3461 3462 page = virt_to_head_page(from->head); 3463 offset = from->data - (unsigned char *)page_address(page); 3464 3465 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3466 page, offset, skb_headlen(from)); 3467 *fragstolen = true; 3468 } else { 3469 if (skb_shinfo(to)->nr_frags + 3470 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3471 return false; 3472 3473 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3474 } 3475 3476 WARN_ON_ONCE(delta < len); 3477 3478 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3479 skb_shinfo(from)->frags, 3480 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3481 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3482 3483 if (!skb_cloned(from)) 3484 skb_shinfo(from)->nr_frags = 0; 3485 3486 /* if the skb is not cloned this does nothing 3487 * since we set nr_frags to 0. 3488 */ 3489 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3490 skb_frag_ref(from, i); 3491 3492 to->truesize += delta; 3493 to->len += len; 3494 to->data_len += len; 3495 3496 *delta_truesize = delta; 3497 return true; 3498 } 3499 EXPORT_SYMBOL(skb_try_coalesce); 3500 3501 /** 3502 * skb_scrub_packet - scrub an skb before sending it to another netns 3503 * 3504 * @skb: buffer to clean 3505 * 3506 * skb_scrub_packet can be used to clean an skb before injecting it in 3507 * another namespace. We have to clear all information in the skb that 3508 * could impact namespace isolation. 3509 */ 3510 void skb_scrub_packet(struct sk_buff *skb) 3511 { 3512 skb_orphan(skb); 3513 skb->tstamp.tv64 = 0; 3514 skb->pkt_type = PACKET_HOST; 3515 skb->skb_iif = 0; 3516 skb_dst_drop(skb); 3517 skb->mark = 0; 3518 secpath_reset(skb); 3519 nf_reset(skb); 3520 nf_reset_trace(skb); 3521 } 3522 EXPORT_SYMBOL_GPL(skb_scrub_packet); 3523