xref: /linux/net/core/skbuff.c (revision fe259a1bb26ec78842c975d992331705b0c2c2e8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gro.h>
73 #include <net/gso.h>
74 #include <net/hotdata.h>
75 #include <net/ip6_checksum.h>
76 #include <net/xfrm.h>
77 #include <net/mpls.h>
78 #include <net/mptcp.h>
79 #include <net/mctp.h>
80 #include <net/page_pool/helpers.h>
81 #include <net/dropreason.h>
82 
83 #include <linux/uaccess.h>
84 #include <trace/events/skb.h>
85 #include <linux/highmem.h>
86 #include <linux/capability.h>
87 #include <linux/user_namespace.h>
88 #include <linux/indirect_call_wrapper.h>
89 #include <linux/textsearch.h>
90 
91 #include "dev.h"
92 #include "netmem_priv.h"
93 #include "sock_destructor.h"
94 
95 #ifdef CONFIG_SKB_EXTENSIONS
96 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 #endif
98 
99 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
101 					       GRO_MAX_HEAD_PAD))
102 
103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
104  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
105  * size, and we can differentiate heads from skb_small_head_cache
106  * vs system slabs by looking at their size (skb_end_offset()).
107  */
108 #define SKB_SMALL_HEAD_CACHE_SIZE					\
109 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
110 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
111 		SKB_SMALL_HEAD_SIZE)
112 
113 #define SKB_SMALL_HEAD_HEADROOM						\
114 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115 
116 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
117  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
118  * netmem is a page.
119  */
120 static_assert(offsetof(struct bio_vec, bv_page) ==
121 	      offsetof(skb_frag_t, netmem));
122 static_assert(sizeof_field(struct bio_vec, bv_page) ==
123 	      sizeof_field(skb_frag_t, netmem));
124 
125 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
126 static_assert(sizeof_field(struct bio_vec, bv_len) ==
127 	      sizeof_field(skb_frag_t, len));
128 
129 static_assert(offsetof(struct bio_vec, bv_offset) ==
130 	      offsetof(skb_frag_t, offset));
131 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
132 	      sizeof_field(skb_frag_t, offset));
133 
134 #undef FN
135 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
136 static const char * const drop_reasons[] = {
137 	[SKB_CONSUMED] = "CONSUMED",
138 	DEFINE_DROP_REASON(FN, FN)
139 };
140 
141 static const struct drop_reason_list drop_reasons_core = {
142 	.reasons = drop_reasons,
143 	.n_reasons = ARRAY_SIZE(drop_reasons),
144 };
145 
146 const struct drop_reason_list __rcu *
147 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
148 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
149 };
150 EXPORT_SYMBOL(drop_reasons_by_subsys);
151 
152 /**
153  * drop_reasons_register_subsys - register another drop reason subsystem
154  * @subsys: the subsystem to register, must not be the core
155  * @list: the list of drop reasons within the subsystem, must point to
156  *	a statically initialized list
157  */
158 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
159 				  const struct drop_reason_list *list)
160 {
161 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
162 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
163 		 "invalid subsystem %d\n", subsys))
164 		return;
165 
166 	/* must point to statically allocated memory, so INIT is OK */
167 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
168 }
169 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
170 
171 /**
172  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
173  * @subsys: the subsystem to remove, must not be the core
174  *
175  * Note: This will synchronize_rcu() to ensure no users when it returns.
176  */
177 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
178 {
179 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
180 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
181 		 "invalid subsystem %d\n", subsys))
182 		return;
183 
184 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
185 
186 	synchronize_rcu();
187 }
188 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
189 
190 /**
191  *	skb_panic - private function for out-of-line support
192  *	@skb:	buffer
193  *	@sz:	size
194  *	@addr:	address
195  *	@msg:	skb_over_panic or skb_under_panic
196  *
197  *	Out-of-line support for skb_put() and skb_push().
198  *	Called via the wrapper skb_over_panic() or skb_under_panic().
199  *	Keep out of line to prevent kernel bloat.
200  *	__builtin_return_address is not used because it is not always reliable.
201  */
202 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
203 		      const char msg[])
204 {
205 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
206 		 msg, addr, skb->len, sz, skb->head, skb->data,
207 		 (unsigned long)skb->tail, (unsigned long)skb->end,
208 		 skb->dev ? skb->dev->name : "<NULL>");
209 	BUG();
210 }
211 
212 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
213 {
214 	skb_panic(skb, sz, addr, __func__);
215 }
216 
217 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
218 {
219 	skb_panic(skb, sz, addr, __func__);
220 }
221 
222 #define NAPI_SKB_CACHE_SIZE	64
223 #define NAPI_SKB_CACHE_BULK	16
224 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
225 
226 struct napi_alloc_cache {
227 	local_lock_t bh_lock;
228 	struct page_frag_cache page;
229 	unsigned int skb_count;
230 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
231 };
232 
233 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
234 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
235 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
236 };
237 
238 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
239 {
240 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
241 	void *data;
242 
243 	fragsz = SKB_DATA_ALIGN(fragsz);
244 
245 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
246 	data = __page_frag_alloc_align(&nc->page, fragsz,
247 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
248 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
249 	return data;
250 
251 }
252 EXPORT_SYMBOL(__napi_alloc_frag_align);
253 
254 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
255 {
256 	void *data;
257 
258 	if (in_hardirq() || irqs_disabled()) {
259 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
260 
261 		fragsz = SKB_DATA_ALIGN(fragsz);
262 		data = __page_frag_alloc_align(nc, fragsz,
263 					       GFP_ATOMIC | __GFP_NOWARN,
264 					       align_mask);
265 	} else {
266 		local_bh_disable();
267 		data = __napi_alloc_frag_align(fragsz, align_mask);
268 		local_bh_enable();
269 	}
270 	return data;
271 }
272 EXPORT_SYMBOL(__netdev_alloc_frag_align);
273 
274 static struct sk_buff *napi_skb_cache_get(void)
275 {
276 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
277 	struct sk_buff *skb;
278 
279 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
280 	if (unlikely(!nc->skb_count)) {
281 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
282 						      GFP_ATOMIC | __GFP_NOWARN,
283 						      NAPI_SKB_CACHE_BULK,
284 						      nc->skb_cache);
285 		if (unlikely(!nc->skb_count)) {
286 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
287 			return NULL;
288 		}
289 	}
290 
291 	skb = nc->skb_cache[--nc->skb_count];
292 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
293 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
294 
295 	return skb;
296 }
297 
298 /**
299  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
300  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
301  * @n: number of entries to provide
302  *
303  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
304  * the pointers into the provided array @skbs. If there are less entries
305  * available, tries to replenish the cache and bulk-allocates the diff from
306  * the MM layer if needed.
307  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
308  * ready for {,__}build_skb_around() and don't have any data buffers attached.
309  * Must be called *only* from the BH context.
310  *
311  * Return: number of successfully allocated skbs (@n if no actual allocation
312  *	   needed or kmem_cache_alloc_bulk() didn't fail).
313  */
314 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
315 {
316 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
317 	u32 bulk, total = n;
318 
319 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
320 
321 	if (nc->skb_count >= n)
322 		goto get;
323 
324 	/* No enough cached skbs. Try refilling the cache first */
325 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
326 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
327 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
328 					       &nc->skb_cache[nc->skb_count]);
329 	if (likely(nc->skb_count >= n))
330 		goto get;
331 
332 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
333 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
334 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
335 				   n - nc->skb_count, &skbs[nc->skb_count]);
336 	if (likely(nc->skb_count >= n))
337 		goto get;
338 
339 	/* kmem_cache didn't allocate the number we need, limit the output */
340 	total -= n - nc->skb_count;
341 	n = nc->skb_count;
342 
343 get:
344 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
345 		u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
346 
347 		skbs[i] = nc->skb_cache[base + i];
348 
349 		kasan_mempool_unpoison_object(skbs[i], cache_size);
350 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
351 	}
352 
353 	nc->skb_count -= n;
354 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
355 
356 	return total;
357 }
358 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
359 
360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
361 					 unsigned int size)
362 {
363 	struct skb_shared_info *shinfo;
364 
365 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
366 
367 	/* Assumes caller memset cleared SKB */
368 	skb->truesize = SKB_TRUESIZE(size);
369 	refcount_set(&skb->users, 1);
370 	skb->head = data;
371 	skb->data = data;
372 	skb_reset_tail_pointer(skb);
373 	skb_set_end_offset(skb, size);
374 	skb->mac_header = (typeof(skb->mac_header))~0U;
375 	skb->transport_header = (typeof(skb->transport_header))~0U;
376 	skb->alloc_cpu = raw_smp_processor_id();
377 	/* make sure we initialize shinfo sequentially */
378 	shinfo = skb_shinfo(skb);
379 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
380 	atomic_set(&shinfo->dataref, 1);
381 
382 	skb_set_kcov_handle(skb, kcov_common_handle());
383 }
384 
385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
386 				     unsigned int *size)
387 {
388 	void *resized;
389 
390 	/* Must find the allocation size (and grow it to match). */
391 	*size = ksize(data);
392 	/* krealloc() will immediately return "data" when
393 	 * "ksize(data)" is requested: it is the existing upper
394 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
395 	 * that this "new" pointer needs to be passed back to the
396 	 * caller for use so the __alloc_size hinting will be
397 	 * tracked correctly.
398 	 */
399 	resized = krealloc(data, *size, GFP_ATOMIC);
400 	WARN_ON_ONCE(resized != data);
401 	return resized;
402 }
403 
404 /* build_skb() variant which can operate on slab buffers.
405  * Note that this should be used sparingly as slab buffers
406  * cannot be combined efficiently by GRO!
407  */
408 struct sk_buff *slab_build_skb(void *data)
409 {
410 	struct sk_buff *skb;
411 	unsigned int size;
412 
413 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
414 			       GFP_ATOMIC | __GFP_NOWARN);
415 	if (unlikely(!skb))
416 		return NULL;
417 
418 	memset(skb, 0, offsetof(struct sk_buff, tail));
419 	data = __slab_build_skb(skb, data, &size);
420 	__finalize_skb_around(skb, data, size);
421 
422 	return skb;
423 }
424 EXPORT_SYMBOL(slab_build_skb);
425 
426 /* Caller must provide SKB that is memset cleared */
427 static void __build_skb_around(struct sk_buff *skb, void *data,
428 			       unsigned int frag_size)
429 {
430 	unsigned int size = frag_size;
431 
432 	/* frag_size == 0 is considered deprecated now. Callers
433 	 * using slab buffer should use slab_build_skb() instead.
434 	 */
435 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
436 		data = __slab_build_skb(skb, data, &size);
437 
438 	__finalize_skb_around(skb, data, size);
439 }
440 
441 /**
442  * __build_skb - build a network buffer
443  * @data: data buffer provided by caller
444  * @frag_size: size of data (must not be 0)
445  *
446  * Allocate a new &sk_buff. Caller provides space holding head and
447  * skb_shared_info. @data must have been allocated from the page
448  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
449  * allocation is deprecated, and callers should use slab_build_skb()
450  * instead.)
451  * The return is the new skb buffer.
452  * On a failure the return is %NULL, and @data is not freed.
453  * Notes :
454  *  Before IO, driver allocates only data buffer where NIC put incoming frame
455  *  Driver should add room at head (NET_SKB_PAD) and
456  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
457  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
458  *  before giving packet to stack.
459  *  RX rings only contains data buffers, not full skbs.
460  */
461 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
462 {
463 	struct sk_buff *skb;
464 
465 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
466 			       GFP_ATOMIC | __GFP_NOWARN);
467 	if (unlikely(!skb))
468 		return NULL;
469 
470 	memset(skb, 0, offsetof(struct sk_buff, tail));
471 	__build_skb_around(skb, data, frag_size);
472 
473 	return skb;
474 }
475 
476 /* build_skb() is wrapper over __build_skb(), that specifically
477  * takes care of skb->head and skb->pfmemalloc
478  */
479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 	struct sk_buff *skb = __build_skb(data, frag_size);
482 
483 	if (likely(skb && frag_size)) {
484 		skb->head_frag = 1;
485 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 	}
487 	return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490 
491 /**
492  * build_skb_around - build a network buffer around provided skb
493  * @skb: sk_buff provide by caller, must be memset cleared
494  * @data: data buffer provided by caller
495  * @frag_size: size of data
496  */
497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 				 void *data, unsigned int frag_size)
499 {
500 	if (unlikely(!skb))
501 		return NULL;
502 
503 	__build_skb_around(skb, data, frag_size);
504 
505 	if (frag_size) {
506 		skb->head_frag = 1;
507 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 	}
509 	return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512 
513 /**
514  * __napi_build_skb - build a network buffer
515  * @data: data buffer provided by caller
516  * @frag_size: size of data
517  *
518  * Version of __build_skb() that uses NAPI percpu caches to obtain
519  * skbuff_head instead of inplace allocation.
520  *
521  * Returns a new &sk_buff on success, %NULL on allocation failure.
522  */
523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 	struct sk_buff *skb;
526 
527 	skb = napi_skb_cache_get();
528 	if (unlikely(!skb))
529 		return NULL;
530 
531 	memset(skb, 0, offsetof(struct sk_buff, tail));
532 	__build_skb_around(skb, data, frag_size);
533 
534 	return skb;
535 }
536 
537 /**
538  * napi_build_skb - build a network buffer
539  * @data: data buffer provided by caller
540  * @frag_size: size of data
541  *
542  * Version of __napi_build_skb() that takes care of skb->head_frag
543  * and skb->pfmemalloc when the data is a page or page fragment.
544  *
545  * Returns a new &sk_buff on success, %NULL on allocation failure.
546  */
547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
550 
551 	if (likely(skb) && frag_size) {
552 		skb->head_frag = 1;
553 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 	}
555 
556 	return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559 
560 /*
561  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562  * the caller if emergency pfmemalloc reserves are being used. If it is and
563  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564  * may be used. Otherwise, the packet data may be discarded until enough
565  * memory is free
566  */
567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 			     bool *pfmemalloc)
569 {
570 	bool ret_pfmemalloc = false;
571 	size_t obj_size;
572 	void *obj;
573 
574 	obj_size = SKB_HEAD_ALIGN(*size);
575 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 				node);
580 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
581 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 			goto out;
583 		/* Try again but now we are using pfmemalloc reserves */
584 		ret_pfmemalloc = true;
585 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 		goto out;
587 	}
588 
589 	obj_size = kmalloc_size_roundup(obj_size);
590 	/* The following cast might truncate high-order bits of obj_size, this
591 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 	 */
593 	*size = (unsigned int)obj_size;
594 
595 	/*
596 	 * Try a regular allocation, when that fails and we're not entitled
597 	 * to the reserves, fail.
598 	 */
599 	obj = kmalloc_node_track_caller(obj_size,
600 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 					node);
602 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 		goto out;
604 
605 	/* Try again but now we are using pfmemalloc reserves */
606 	ret_pfmemalloc = true;
607 	obj = kmalloc_node_track_caller(obj_size, flags, node);
608 
609 out:
610 	if (pfmemalloc)
611 		*pfmemalloc = ret_pfmemalloc;
612 
613 	return obj;
614 }
615 
616 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
617  *	'private' fields and also do memory statistics to find all the
618  *	[BEEP] leaks.
619  *
620  */
621 
622 /**
623  *	__alloc_skb	-	allocate a network buffer
624  *	@size: size to allocate
625  *	@gfp_mask: allocation mask
626  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627  *		instead of head cache and allocate a cloned (child) skb.
628  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629  *		allocations in case the data is required for writeback
630  *	@node: numa node to allocate memory on
631  *
632  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
633  *	tail room of at least size bytes. The object has a reference count
634  *	of one. The return is the buffer. On a failure the return is %NULL.
635  *
636  *	Buffers may only be allocated from interrupts using a @gfp_mask of
637  *	%GFP_ATOMIC.
638  */
639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 			    int flags, int node)
641 {
642 	struct kmem_cache *cache;
643 	struct sk_buff *skb;
644 	bool pfmemalloc;
645 	u8 *data;
646 
647 	cache = (flags & SKB_ALLOC_FCLONE)
648 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649 
650 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 		gfp_mask |= __GFP_MEMALLOC;
652 
653 	/* Get the HEAD */
654 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 		skb = napi_skb_cache_get();
657 	else
658 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 	if (unlikely(!skb))
660 		return NULL;
661 	prefetchw(skb);
662 
663 	/* We do our best to align skb_shared_info on a separate cache
664 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 	 * Both skb->head and skb_shared_info are cache line aligned.
667 	 */
668 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 	if (unlikely(!data))
670 		goto nodata;
671 	/* kmalloc_size_roundup() might give us more room than requested.
672 	 * Put skb_shared_info exactly at the end of allocated zone,
673 	 * to allow max possible filling before reallocation.
674 	 */
675 	prefetchw(data + SKB_WITH_OVERHEAD(size));
676 
677 	/*
678 	 * Only clear those fields we need to clear, not those that we will
679 	 * actually initialise below. Hence, don't put any more fields after
680 	 * the tail pointer in struct sk_buff!
681 	 */
682 	memset(skb, 0, offsetof(struct sk_buff, tail));
683 	__build_skb_around(skb, data, size);
684 	skb->pfmemalloc = pfmemalloc;
685 
686 	if (flags & SKB_ALLOC_FCLONE) {
687 		struct sk_buff_fclones *fclones;
688 
689 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 
691 		skb->fclone = SKB_FCLONE_ORIG;
692 		refcount_set(&fclones->fclone_ref, 1);
693 	}
694 
695 	return skb;
696 
697 nodata:
698 	kmem_cache_free(cache, skb);
699 	return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702 
703 /**
704  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
705  *	@dev: network device to receive on
706  *	@len: length to allocate
707  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
708  *
709  *	Allocate a new &sk_buff and assign it a usage count of one. The
710  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
711  *	the headroom they think they need without accounting for the
712  *	built in space. The built in space is used for optimisations.
713  *
714  *	%NULL is returned if there is no free memory.
715  */
716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 				   gfp_t gfp_mask)
718 {
719 	struct page_frag_cache *nc;
720 	struct sk_buff *skb;
721 	bool pfmemalloc;
722 	void *data;
723 
724 	len += NET_SKB_PAD;
725 
726 	/* If requested length is either too small or too big,
727 	 * we use kmalloc() for skb->head allocation.
728 	 */
729 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
730 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 		if (!skb)
734 			goto skb_fail;
735 		goto skb_success;
736 	}
737 
738 	len = SKB_HEAD_ALIGN(len);
739 
740 	if (sk_memalloc_socks())
741 		gfp_mask |= __GFP_MEMALLOC;
742 
743 	if (in_hardirq() || irqs_disabled()) {
744 		nc = this_cpu_ptr(&netdev_alloc_cache);
745 		data = page_frag_alloc(nc, len, gfp_mask);
746 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
747 	} else {
748 		local_bh_disable();
749 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
750 
751 		nc = this_cpu_ptr(&napi_alloc_cache.page);
752 		data = page_frag_alloc(nc, len, gfp_mask);
753 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
754 
755 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
756 		local_bh_enable();
757 	}
758 
759 	if (unlikely(!data))
760 		return NULL;
761 
762 	skb = __build_skb(data, len);
763 	if (unlikely(!skb)) {
764 		skb_free_frag(data);
765 		return NULL;
766 	}
767 
768 	if (pfmemalloc)
769 		skb->pfmemalloc = 1;
770 	skb->head_frag = 1;
771 
772 skb_success:
773 	skb_reserve(skb, NET_SKB_PAD);
774 	skb->dev = dev;
775 
776 skb_fail:
777 	return skb;
778 }
779 EXPORT_SYMBOL(__netdev_alloc_skb);
780 
781 /**
782  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
783  *	@napi: napi instance this buffer was allocated for
784  *	@len: length to allocate
785  *
786  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
787  *	attempt to allocate the head from a special reserved region used
788  *	only for NAPI Rx allocation.  By doing this we can save several
789  *	CPU cycles by avoiding having to disable and re-enable IRQs.
790  *
791  *	%NULL is returned if there is no free memory.
792  */
793 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
794 {
795 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
796 	struct napi_alloc_cache *nc;
797 	struct sk_buff *skb;
798 	bool pfmemalloc;
799 	void *data;
800 
801 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
802 	len += NET_SKB_PAD + NET_IP_ALIGN;
803 
804 	/* If requested length is either too small or too big,
805 	 * we use kmalloc() for skb->head allocation.
806 	 */
807 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
808 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
809 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
810 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
811 				  NUMA_NO_NODE);
812 		if (!skb)
813 			goto skb_fail;
814 		goto skb_success;
815 	}
816 
817 	len = SKB_HEAD_ALIGN(len);
818 
819 	if (sk_memalloc_socks())
820 		gfp_mask |= __GFP_MEMALLOC;
821 
822 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
823 	nc = this_cpu_ptr(&napi_alloc_cache);
824 
825 	data = page_frag_alloc(&nc->page, len, gfp_mask);
826 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
827 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
828 
829 	if (unlikely(!data))
830 		return NULL;
831 
832 	skb = __napi_build_skb(data, len);
833 	if (unlikely(!skb)) {
834 		skb_free_frag(data);
835 		return NULL;
836 	}
837 
838 	if (pfmemalloc)
839 		skb->pfmemalloc = 1;
840 	skb->head_frag = 1;
841 
842 skb_success:
843 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
844 	skb->dev = napi->dev;
845 
846 skb_fail:
847 	return skb;
848 }
849 EXPORT_SYMBOL(napi_alloc_skb);
850 
851 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
852 			    int off, int size, unsigned int truesize)
853 {
854 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
855 
856 	skb_fill_netmem_desc(skb, i, netmem, off, size);
857 	skb->len += size;
858 	skb->data_len += size;
859 	skb->truesize += truesize;
860 }
861 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
862 
863 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
864 			  unsigned int truesize)
865 {
866 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
867 
868 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
869 
870 	skb_frag_size_add(frag, size);
871 	skb->len += size;
872 	skb->data_len += size;
873 	skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_coalesce_rx_frag);
876 
877 static void skb_drop_list(struct sk_buff **listp)
878 {
879 	kfree_skb_list(*listp);
880 	*listp = NULL;
881 }
882 
883 static inline void skb_drop_fraglist(struct sk_buff *skb)
884 {
885 	skb_drop_list(&skb_shinfo(skb)->frag_list);
886 }
887 
888 static void skb_clone_fraglist(struct sk_buff *skb)
889 {
890 	struct sk_buff *list;
891 
892 	skb_walk_frags(skb, list)
893 		skb_get(list);
894 }
895 
896 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
897 		    unsigned int headroom)
898 {
899 #if IS_ENABLED(CONFIG_PAGE_POOL)
900 	u32 size, truesize, len, max_head_size, off;
901 	struct sk_buff *skb = *pskb, *nskb;
902 	int err, i, head_off;
903 	void *data;
904 
905 	/* XDP does not support fraglist so we need to linearize
906 	 * the skb.
907 	 */
908 	if (skb_has_frag_list(skb))
909 		return -EOPNOTSUPP;
910 
911 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
912 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
913 		return -ENOMEM;
914 
915 	size = min_t(u32, skb->len, max_head_size);
916 	truesize = SKB_HEAD_ALIGN(size) + headroom;
917 	data = page_pool_dev_alloc_va(pool, &truesize);
918 	if (!data)
919 		return -ENOMEM;
920 
921 	nskb = napi_build_skb(data, truesize);
922 	if (!nskb) {
923 		page_pool_free_va(pool, data, true);
924 		return -ENOMEM;
925 	}
926 
927 	skb_reserve(nskb, headroom);
928 	skb_copy_header(nskb, skb);
929 	skb_mark_for_recycle(nskb);
930 
931 	err = skb_copy_bits(skb, 0, nskb->data, size);
932 	if (err) {
933 		consume_skb(nskb);
934 		return err;
935 	}
936 	skb_put(nskb, size);
937 
938 	head_off = skb_headroom(nskb) - skb_headroom(skb);
939 	skb_headers_offset_update(nskb, head_off);
940 
941 	off = size;
942 	len = skb->len - off;
943 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
944 		struct page *page;
945 		u32 page_off;
946 
947 		size = min_t(u32, len, PAGE_SIZE);
948 		truesize = size;
949 
950 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
951 		if (!page) {
952 			consume_skb(nskb);
953 			return -ENOMEM;
954 		}
955 
956 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
957 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
958 				    size);
959 		if (err) {
960 			consume_skb(nskb);
961 			return err;
962 		}
963 
964 		len -= size;
965 		off += size;
966 	}
967 
968 	consume_skb(skb);
969 	*pskb = nskb;
970 
971 	return 0;
972 #else
973 	return -EOPNOTSUPP;
974 #endif
975 }
976 EXPORT_SYMBOL(skb_pp_cow_data);
977 
978 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
979 			 const struct bpf_prog *prog)
980 {
981 	if (!prog->aux->xdp_has_frags)
982 		return -EINVAL;
983 
984 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
985 }
986 EXPORT_SYMBOL(skb_cow_data_for_xdp);
987 
988 #if IS_ENABLED(CONFIG_PAGE_POOL)
989 bool napi_pp_put_page(netmem_ref netmem)
990 {
991 	netmem = netmem_compound_head(netmem);
992 
993 	if (unlikely(!netmem_is_pp(netmem)))
994 		return false;
995 
996 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
997 
998 	return true;
999 }
1000 EXPORT_SYMBOL(napi_pp_put_page);
1001 #endif
1002 
1003 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1004 {
1005 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1006 		return false;
1007 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1008 }
1009 
1010 /**
1011  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1012  * @skb:	page pool aware skb
1013  *
1014  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1015  * intended to gain fragment references only for page pool aware skbs,
1016  * i.e. when skb->pp_recycle is true, and not for fragments in a
1017  * non-pp-recycling skb. It has a fallback to increase references on normal
1018  * pages, as page pool aware skbs may also have normal page fragments.
1019  */
1020 static int skb_pp_frag_ref(struct sk_buff *skb)
1021 {
1022 	struct skb_shared_info *shinfo;
1023 	netmem_ref head_netmem;
1024 	int i;
1025 
1026 	if (!skb->pp_recycle)
1027 		return -EINVAL;
1028 
1029 	shinfo = skb_shinfo(skb);
1030 
1031 	for (i = 0; i < shinfo->nr_frags; i++) {
1032 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1033 		if (likely(netmem_is_pp(head_netmem)))
1034 			page_pool_ref_netmem(head_netmem);
1035 		else
1036 			page_ref_inc(netmem_to_page(head_netmem));
1037 	}
1038 	return 0;
1039 }
1040 
1041 static void skb_kfree_head(void *head, unsigned int end_offset)
1042 {
1043 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1044 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1045 	else
1046 		kfree(head);
1047 }
1048 
1049 static void skb_free_head(struct sk_buff *skb)
1050 {
1051 	unsigned char *head = skb->head;
1052 
1053 	if (skb->head_frag) {
1054 		if (skb_pp_recycle(skb, head))
1055 			return;
1056 		skb_free_frag(head);
1057 	} else {
1058 		skb_kfree_head(head, skb_end_offset(skb));
1059 	}
1060 }
1061 
1062 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1063 {
1064 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1065 	int i;
1066 
1067 	if (!skb_data_unref(skb, shinfo))
1068 		goto exit;
1069 
1070 	if (skb_zcopy(skb)) {
1071 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1072 
1073 		skb_zcopy_clear(skb, true);
1074 		if (skip_unref)
1075 			goto free_head;
1076 	}
1077 
1078 	for (i = 0; i < shinfo->nr_frags; i++)
1079 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1080 
1081 free_head:
1082 	if (shinfo->frag_list)
1083 		kfree_skb_list_reason(shinfo->frag_list, reason);
1084 
1085 	skb_free_head(skb);
1086 exit:
1087 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1088 	 * bit is only set on the head though, so in order to avoid races
1089 	 * while trying to recycle fragments on __skb_frag_unref() we need
1090 	 * to make one SKB responsible for triggering the recycle path.
1091 	 * So disable the recycling bit if an SKB is cloned and we have
1092 	 * additional references to the fragmented part of the SKB.
1093 	 * Eventually the last SKB will have the recycling bit set and it's
1094 	 * dataref set to 0, which will trigger the recycling
1095 	 */
1096 	skb->pp_recycle = 0;
1097 }
1098 
1099 /*
1100  *	Free an skbuff by memory without cleaning the state.
1101  */
1102 static void kfree_skbmem(struct sk_buff *skb)
1103 {
1104 	struct sk_buff_fclones *fclones;
1105 
1106 	switch (skb->fclone) {
1107 	case SKB_FCLONE_UNAVAILABLE:
1108 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1109 		return;
1110 
1111 	case SKB_FCLONE_ORIG:
1112 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1113 
1114 		/* We usually free the clone (TX completion) before original skb
1115 		 * This test would have no chance to be true for the clone,
1116 		 * while here, branch prediction will be good.
1117 		 */
1118 		if (refcount_read(&fclones->fclone_ref) == 1)
1119 			goto fastpath;
1120 		break;
1121 
1122 	default: /* SKB_FCLONE_CLONE */
1123 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1124 		break;
1125 	}
1126 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1127 		return;
1128 fastpath:
1129 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1130 }
1131 
1132 void skb_release_head_state(struct sk_buff *skb)
1133 {
1134 	skb_dst_drop(skb);
1135 	if (skb->destructor) {
1136 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1137 		skb->destructor(skb);
1138 	}
1139 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1140 	nf_conntrack_put(skb_nfct(skb));
1141 #endif
1142 	skb_ext_put(skb);
1143 }
1144 
1145 /* Free everything but the sk_buff shell. */
1146 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1147 {
1148 	skb_release_head_state(skb);
1149 	if (likely(skb->head))
1150 		skb_release_data(skb, reason);
1151 }
1152 
1153 /**
1154  *	__kfree_skb - private function
1155  *	@skb: buffer
1156  *
1157  *	Free an sk_buff. Release anything attached to the buffer.
1158  *	Clean the state. This is an internal helper function. Users should
1159  *	always call kfree_skb
1160  */
1161 
1162 void __kfree_skb(struct sk_buff *skb)
1163 {
1164 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1165 	kfree_skbmem(skb);
1166 }
1167 EXPORT_SYMBOL(__kfree_skb);
1168 
1169 static __always_inline
1170 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1171 			  enum skb_drop_reason reason)
1172 {
1173 	if (unlikely(!skb_unref(skb)))
1174 		return false;
1175 
1176 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1177 			       u32_get_bits(reason,
1178 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1179 				SKB_DROP_REASON_SUBSYS_NUM);
1180 
1181 	if (reason == SKB_CONSUMED)
1182 		trace_consume_skb(skb, __builtin_return_address(0));
1183 	else
1184 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1185 	return true;
1186 }
1187 
1188 /**
1189  *	sk_skb_reason_drop - free an sk_buff with special reason
1190  *	@sk: the socket to receive @skb, or NULL if not applicable
1191  *	@skb: buffer to free
1192  *	@reason: reason why this skb is dropped
1193  *
1194  *	Drop a reference to the buffer and free it if the usage count has hit
1195  *	zero. Meanwhile, pass the receiving socket and drop reason to
1196  *	'kfree_skb' tracepoint.
1197  */
1198 void __fix_address
1199 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1200 {
1201 	if (__sk_skb_reason_drop(sk, skb, reason))
1202 		__kfree_skb(skb);
1203 }
1204 EXPORT_SYMBOL(sk_skb_reason_drop);
1205 
1206 #define KFREE_SKB_BULK_SIZE	16
1207 
1208 struct skb_free_array {
1209 	unsigned int skb_count;
1210 	void *skb_array[KFREE_SKB_BULK_SIZE];
1211 };
1212 
1213 static void kfree_skb_add_bulk(struct sk_buff *skb,
1214 			       struct skb_free_array *sa,
1215 			       enum skb_drop_reason reason)
1216 {
1217 	/* if SKB is a clone, don't handle this case */
1218 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1219 		__kfree_skb(skb);
1220 		return;
1221 	}
1222 
1223 	skb_release_all(skb, reason);
1224 	sa->skb_array[sa->skb_count++] = skb;
1225 
1226 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1227 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1228 				     sa->skb_array);
1229 		sa->skb_count = 0;
1230 	}
1231 }
1232 
1233 void __fix_address
1234 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1235 {
1236 	struct skb_free_array sa;
1237 
1238 	sa.skb_count = 0;
1239 
1240 	while (segs) {
1241 		struct sk_buff *next = segs->next;
1242 
1243 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1244 			skb_poison_list(segs);
1245 			kfree_skb_add_bulk(segs, &sa, reason);
1246 		}
1247 
1248 		segs = next;
1249 	}
1250 
1251 	if (sa.skb_count)
1252 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1253 }
1254 EXPORT_SYMBOL(kfree_skb_list_reason);
1255 
1256 /* Dump skb information and contents.
1257  *
1258  * Must only be called from net_ratelimit()-ed paths.
1259  *
1260  * Dumps whole packets if full_pkt, only headers otherwise.
1261  */
1262 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1263 {
1264 	struct skb_shared_info *sh = skb_shinfo(skb);
1265 	struct net_device *dev = skb->dev;
1266 	struct sock *sk = skb->sk;
1267 	struct sk_buff *list_skb;
1268 	bool has_mac, has_trans;
1269 	int headroom, tailroom;
1270 	int i, len, seg_len;
1271 
1272 	if (full_pkt)
1273 		len = skb->len;
1274 	else
1275 		len = min_t(int, skb->len, MAX_HEADER + 128);
1276 
1277 	headroom = skb_headroom(skb);
1278 	tailroom = skb_tailroom(skb);
1279 
1280 	has_mac = skb_mac_header_was_set(skb);
1281 	has_trans = skb_transport_header_was_set(skb);
1282 
1283 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1284 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1285 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1286 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1287 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1288 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1289 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1290 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1291 	       has_mac ? skb->mac_header : -1,
1292 	       has_mac ? skb_mac_header_len(skb) : -1,
1293 	       skb->mac_len,
1294 	       skb->network_header,
1295 	       has_trans ? skb_network_header_len(skb) : -1,
1296 	       has_trans ? skb->transport_header : -1,
1297 	       sh->tx_flags, sh->nr_frags,
1298 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1299 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1300 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1301 	       skb->hash, skb->sw_hash, skb->l4_hash,
1302 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1303 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1304 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1305 	       skb->inner_network_header, skb->inner_transport_header);
1306 
1307 	if (dev)
1308 		printk("%sdev name=%s feat=%pNF\n",
1309 		       level, dev->name, &dev->features);
1310 	if (sk)
1311 		printk("%ssk family=%hu type=%u proto=%u\n",
1312 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1313 
1314 	if (full_pkt && headroom)
1315 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1316 			       16, 1, skb->head, headroom, false);
1317 
1318 	seg_len = min_t(int, skb_headlen(skb), len);
1319 	if (seg_len)
1320 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1321 			       16, 1, skb->data, seg_len, false);
1322 	len -= seg_len;
1323 
1324 	if (full_pkt && tailroom)
1325 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1326 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1327 
1328 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1329 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1330 		u32 p_off, p_len, copied;
1331 		struct page *p;
1332 		u8 *vaddr;
1333 
1334 		if (skb_frag_is_net_iov(frag)) {
1335 			printk("%sskb frag %d: not readable\n", level, i);
1336 			len -= skb_frag_size(frag);
1337 			if (!len)
1338 				break;
1339 			continue;
1340 		}
1341 
1342 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1343 				      skb_frag_size(frag), p, p_off, p_len,
1344 				      copied) {
1345 			seg_len = min_t(int, p_len, len);
1346 			vaddr = kmap_atomic(p);
1347 			print_hex_dump(level, "skb frag:     ",
1348 				       DUMP_PREFIX_OFFSET,
1349 				       16, 1, vaddr + p_off, seg_len, false);
1350 			kunmap_atomic(vaddr);
1351 			len -= seg_len;
1352 			if (!len)
1353 				break;
1354 		}
1355 	}
1356 
1357 	if (full_pkt && skb_has_frag_list(skb)) {
1358 		printk("skb fraglist:\n");
1359 		skb_walk_frags(skb, list_skb)
1360 			skb_dump(level, list_skb, true);
1361 	}
1362 }
1363 EXPORT_SYMBOL(skb_dump);
1364 
1365 /**
1366  *	skb_tx_error - report an sk_buff xmit error
1367  *	@skb: buffer that triggered an error
1368  *
1369  *	Report xmit error if a device callback is tracking this skb.
1370  *	skb must be freed afterwards.
1371  */
1372 void skb_tx_error(struct sk_buff *skb)
1373 {
1374 	if (skb) {
1375 		skb_zcopy_downgrade_managed(skb);
1376 		skb_zcopy_clear(skb, true);
1377 	}
1378 }
1379 EXPORT_SYMBOL(skb_tx_error);
1380 
1381 #ifdef CONFIG_TRACEPOINTS
1382 /**
1383  *	consume_skb - free an skbuff
1384  *	@skb: buffer to free
1385  *
1386  *	Drop a ref to the buffer and free it if the usage count has hit zero
1387  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1388  *	is being dropped after a failure and notes that
1389  */
1390 void consume_skb(struct sk_buff *skb)
1391 {
1392 	if (!skb_unref(skb))
1393 		return;
1394 
1395 	trace_consume_skb(skb, __builtin_return_address(0));
1396 	__kfree_skb(skb);
1397 }
1398 EXPORT_SYMBOL(consume_skb);
1399 #endif
1400 
1401 /**
1402  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1403  *	@skb: buffer to free
1404  *
1405  *	Alike consume_skb(), but this variant assumes that this is the last
1406  *	skb reference and all the head states have been already dropped
1407  */
1408 void __consume_stateless_skb(struct sk_buff *skb)
1409 {
1410 	trace_consume_skb(skb, __builtin_return_address(0));
1411 	skb_release_data(skb, SKB_CONSUMED);
1412 	kfree_skbmem(skb);
1413 }
1414 
1415 static void napi_skb_cache_put(struct sk_buff *skb)
1416 {
1417 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1418 	u32 i;
1419 
1420 	if (!kasan_mempool_poison_object(skb))
1421 		return;
1422 
1423 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1424 	nc->skb_cache[nc->skb_count++] = skb;
1425 
1426 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1427 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1428 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1429 						kmem_cache_size(net_hotdata.skbuff_cache));
1430 
1431 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1432 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1433 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1434 	}
1435 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1436 }
1437 
1438 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1439 {
1440 	skb_release_all(skb, reason);
1441 	napi_skb_cache_put(skb);
1442 }
1443 
1444 void napi_skb_free_stolen_head(struct sk_buff *skb)
1445 {
1446 	if (unlikely(skb->slow_gro)) {
1447 		nf_reset_ct(skb);
1448 		skb_dst_drop(skb);
1449 		skb_ext_put(skb);
1450 		skb_orphan(skb);
1451 		skb->slow_gro = 0;
1452 	}
1453 	napi_skb_cache_put(skb);
1454 }
1455 
1456 void napi_consume_skb(struct sk_buff *skb, int budget)
1457 {
1458 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1459 	if (unlikely(!budget)) {
1460 		dev_consume_skb_any(skb);
1461 		return;
1462 	}
1463 
1464 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1465 
1466 	if (!skb_unref(skb))
1467 		return;
1468 
1469 	/* if reaching here SKB is ready to free */
1470 	trace_consume_skb(skb, __builtin_return_address(0));
1471 
1472 	/* if SKB is a clone, don't handle this case */
1473 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1474 		__kfree_skb(skb);
1475 		return;
1476 	}
1477 
1478 	skb_release_all(skb, SKB_CONSUMED);
1479 	napi_skb_cache_put(skb);
1480 }
1481 EXPORT_SYMBOL(napi_consume_skb);
1482 
1483 /* Make sure a field is contained by headers group */
1484 #define CHECK_SKB_FIELD(field) \
1485 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1486 		     offsetof(struct sk_buff, headers.field));	\
1487 
1488 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1489 {
1490 	new->tstamp		= old->tstamp;
1491 	/* We do not copy old->sk */
1492 	new->dev		= old->dev;
1493 	memcpy(new->cb, old->cb, sizeof(old->cb));
1494 	skb_dst_copy(new, old);
1495 	__skb_ext_copy(new, old);
1496 	__nf_copy(new, old, false);
1497 
1498 	/* Note : this field could be in the headers group.
1499 	 * It is not yet because we do not want to have a 16 bit hole
1500 	 */
1501 	new->queue_mapping = old->queue_mapping;
1502 
1503 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1504 	CHECK_SKB_FIELD(protocol);
1505 	CHECK_SKB_FIELD(csum);
1506 	CHECK_SKB_FIELD(hash);
1507 	CHECK_SKB_FIELD(priority);
1508 	CHECK_SKB_FIELD(skb_iif);
1509 	CHECK_SKB_FIELD(vlan_proto);
1510 	CHECK_SKB_FIELD(vlan_tci);
1511 	CHECK_SKB_FIELD(transport_header);
1512 	CHECK_SKB_FIELD(network_header);
1513 	CHECK_SKB_FIELD(mac_header);
1514 	CHECK_SKB_FIELD(inner_protocol);
1515 	CHECK_SKB_FIELD(inner_transport_header);
1516 	CHECK_SKB_FIELD(inner_network_header);
1517 	CHECK_SKB_FIELD(inner_mac_header);
1518 	CHECK_SKB_FIELD(mark);
1519 #ifdef CONFIG_NETWORK_SECMARK
1520 	CHECK_SKB_FIELD(secmark);
1521 #endif
1522 #ifdef CONFIG_NET_RX_BUSY_POLL
1523 	CHECK_SKB_FIELD(napi_id);
1524 #endif
1525 	CHECK_SKB_FIELD(alloc_cpu);
1526 #ifdef CONFIG_XPS
1527 	CHECK_SKB_FIELD(sender_cpu);
1528 #endif
1529 #ifdef CONFIG_NET_SCHED
1530 	CHECK_SKB_FIELD(tc_index);
1531 #endif
1532 
1533 }
1534 
1535 /*
1536  * You should not add any new code to this function.  Add it to
1537  * __copy_skb_header above instead.
1538  */
1539 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1540 {
1541 #define C(x) n->x = skb->x
1542 
1543 	n->next = n->prev = NULL;
1544 	n->sk = NULL;
1545 	__copy_skb_header(n, skb);
1546 
1547 	C(len);
1548 	C(data_len);
1549 	C(mac_len);
1550 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1551 	n->cloned = 1;
1552 	n->nohdr = 0;
1553 	n->peeked = 0;
1554 	C(pfmemalloc);
1555 	C(pp_recycle);
1556 	n->destructor = NULL;
1557 	C(tail);
1558 	C(end);
1559 	C(head);
1560 	C(head_frag);
1561 	C(data);
1562 	C(truesize);
1563 	refcount_set(&n->users, 1);
1564 
1565 	atomic_inc(&(skb_shinfo(skb)->dataref));
1566 	skb->cloned = 1;
1567 
1568 	return n;
1569 #undef C
1570 }
1571 
1572 /**
1573  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1574  * @first: first sk_buff of the msg
1575  */
1576 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1577 {
1578 	struct sk_buff *n;
1579 
1580 	n = alloc_skb(0, GFP_ATOMIC);
1581 	if (!n)
1582 		return NULL;
1583 
1584 	n->len = first->len;
1585 	n->data_len = first->len;
1586 	n->truesize = first->truesize;
1587 
1588 	skb_shinfo(n)->frag_list = first;
1589 
1590 	__copy_skb_header(n, first);
1591 	n->destructor = NULL;
1592 
1593 	return n;
1594 }
1595 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1596 
1597 /**
1598  *	skb_morph	-	morph one skb into another
1599  *	@dst: the skb to receive the contents
1600  *	@src: the skb to supply the contents
1601  *
1602  *	This is identical to skb_clone except that the target skb is
1603  *	supplied by the user.
1604  *
1605  *	The target skb is returned upon exit.
1606  */
1607 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1608 {
1609 	skb_release_all(dst, SKB_CONSUMED);
1610 	return __skb_clone(dst, src);
1611 }
1612 EXPORT_SYMBOL_GPL(skb_morph);
1613 
1614 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1615 {
1616 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1617 	struct user_struct *user;
1618 
1619 	if (capable(CAP_IPC_LOCK) || !size)
1620 		return 0;
1621 
1622 	rlim = rlimit(RLIMIT_MEMLOCK);
1623 	if (rlim == RLIM_INFINITY)
1624 		return 0;
1625 
1626 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1627 	max_pg = rlim >> PAGE_SHIFT;
1628 	user = mmp->user ? : current_user();
1629 
1630 	old_pg = atomic_long_read(&user->locked_vm);
1631 	do {
1632 		new_pg = old_pg + num_pg;
1633 		if (new_pg > max_pg)
1634 			return -ENOBUFS;
1635 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1636 
1637 	if (!mmp->user) {
1638 		mmp->user = get_uid(user);
1639 		mmp->num_pg = num_pg;
1640 	} else {
1641 		mmp->num_pg += num_pg;
1642 	}
1643 
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1647 
1648 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1649 {
1650 	if (mmp->user) {
1651 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1652 		free_uid(mmp->user);
1653 	}
1654 }
1655 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1656 
1657 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1658 {
1659 	struct ubuf_info_msgzc *uarg;
1660 	struct sk_buff *skb;
1661 
1662 	WARN_ON_ONCE(!in_task());
1663 
1664 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1665 	if (!skb)
1666 		return NULL;
1667 
1668 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1669 	uarg = (void *)skb->cb;
1670 	uarg->mmp.user = NULL;
1671 
1672 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1673 		kfree_skb(skb);
1674 		return NULL;
1675 	}
1676 
1677 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1678 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1679 	uarg->len = 1;
1680 	uarg->bytelen = size;
1681 	uarg->zerocopy = 1;
1682 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1683 	refcount_set(&uarg->ubuf.refcnt, 1);
1684 	sock_hold(sk);
1685 
1686 	return &uarg->ubuf;
1687 }
1688 
1689 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1690 {
1691 	return container_of((void *)uarg, struct sk_buff, cb);
1692 }
1693 
1694 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1695 				       struct ubuf_info *uarg)
1696 {
1697 	if (uarg) {
1698 		struct ubuf_info_msgzc *uarg_zc;
1699 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1700 		u32 bytelen, next;
1701 
1702 		/* there might be non MSG_ZEROCOPY users */
1703 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1704 			return NULL;
1705 
1706 		/* realloc only when socket is locked (TCP, UDP cork),
1707 		 * so uarg->len and sk_zckey access is serialized
1708 		 */
1709 		if (!sock_owned_by_user(sk)) {
1710 			WARN_ON_ONCE(1);
1711 			return NULL;
1712 		}
1713 
1714 		uarg_zc = uarg_to_msgzc(uarg);
1715 		bytelen = uarg_zc->bytelen + size;
1716 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1717 			/* TCP can create new skb to attach new uarg */
1718 			if (sk->sk_type == SOCK_STREAM)
1719 				goto new_alloc;
1720 			return NULL;
1721 		}
1722 
1723 		next = (u32)atomic_read(&sk->sk_zckey);
1724 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1725 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1726 				return NULL;
1727 			uarg_zc->len++;
1728 			uarg_zc->bytelen = bytelen;
1729 			atomic_set(&sk->sk_zckey, ++next);
1730 
1731 			/* no extra ref when appending to datagram (MSG_MORE) */
1732 			if (sk->sk_type == SOCK_STREAM)
1733 				net_zcopy_get(uarg);
1734 
1735 			return uarg;
1736 		}
1737 	}
1738 
1739 new_alloc:
1740 	return msg_zerocopy_alloc(sk, size);
1741 }
1742 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1743 
1744 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1745 {
1746 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1747 	u32 old_lo, old_hi;
1748 	u64 sum_len;
1749 
1750 	old_lo = serr->ee.ee_info;
1751 	old_hi = serr->ee.ee_data;
1752 	sum_len = old_hi - old_lo + 1ULL + len;
1753 
1754 	if (sum_len >= (1ULL << 32))
1755 		return false;
1756 
1757 	if (lo != old_hi + 1)
1758 		return false;
1759 
1760 	serr->ee.ee_data += len;
1761 	return true;
1762 }
1763 
1764 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1765 {
1766 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1767 	struct sock_exterr_skb *serr;
1768 	struct sock *sk = skb->sk;
1769 	struct sk_buff_head *q;
1770 	unsigned long flags;
1771 	bool is_zerocopy;
1772 	u32 lo, hi;
1773 	u16 len;
1774 
1775 	mm_unaccount_pinned_pages(&uarg->mmp);
1776 
1777 	/* if !len, there was only 1 call, and it was aborted
1778 	 * so do not queue a completion notification
1779 	 */
1780 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1781 		goto release;
1782 
1783 	len = uarg->len;
1784 	lo = uarg->id;
1785 	hi = uarg->id + len - 1;
1786 	is_zerocopy = uarg->zerocopy;
1787 
1788 	serr = SKB_EXT_ERR(skb);
1789 	memset(serr, 0, sizeof(*serr));
1790 	serr->ee.ee_errno = 0;
1791 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1792 	serr->ee.ee_data = hi;
1793 	serr->ee.ee_info = lo;
1794 	if (!is_zerocopy)
1795 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1796 
1797 	q = &sk->sk_error_queue;
1798 	spin_lock_irqsave(&q->lock, flags);
1799 	tail = skb_peek_tail(q);
1800 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1801 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1802 		__skb_queue_tail(q, skb);
1803 		skb = NULL;
1804 	}
1805 	spin_unlock_irqrestore(&q->lock, flags);
1806 
1807 	sk_error_report(sk);
1808 
1809 release:
1810 	consume_skb(skb);
1811 	sock_put(sk);
1812 }
1813 
1814 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1815 				  bool success)
1816 {
1817 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1818 
1819 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1820 
1821 	if (refcount_dec_and_test(&uarg->refcnt))
1822 		__msg_zerocopy_callback(uarg_zc);
1823 }
1824 
1825 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1826 {
1827 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1828 
1829 	atomic_dec(&sk->sk_zckey);
1830 	uarg_to_msgzc(uarg)->len--;
1831 
1832 	if (have_uref)
1833 		msg_zerocopy_complete(NULL, uarg, true);
1834 }
1835 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1836 
1837 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1838 	.complete = msg_zerocopy_complete,
1839 };
1840 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1841 
1842 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1843 			     struct msghdr *msg, int len,
1844 			     struct ubuf_info *uarg)
1845 {
1846 	int err, orig_len = skb->len;
1847 
1848 	if (uarg->ops->link_skb) {
1849 		err = uarg->ops->link_skb(skb, uarg);
1850 		if (err)
1851 			return err;
1852 	} else {
1853 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1854 
1855 		/* An skb can only point to one uarg. This edge case happens
1856 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1857 		 * a new alloc.
1858 		 */
1859 		if (orig_uarg && uarg != orig_uarg)
1860 			return -EEXIST;
1861 	}
1862 
1863 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1864 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1865 		struct sock *save_sk = skb->sk;
1866 
1867 		/* Streams do not free skb on error. Reset to prev state. */
1868 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1869 		skb->sk = sk;
1870 		___pskb_trim(skb, orig_len);
1871 		skb->sk = save_sk;
1872 		return err;
1873 	}
1874 
1875 	skb_zcopy_set(skb, uarg, NULL);
1876 	return skb->len - orig_len;
1877 }
1878 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1879 
1880 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1881 {
1882 	int i;
1883 
1884 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1885 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1886 		skb_frag_ref(skb, i);
1887 }
1888 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1889 
1890 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1891 			      gfp_t gfp_mask)
1892 {
1893 	if (skb_zcopy(orig)) {
1894 		if (skb_zcopy(nskb)) {
1895 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1896 			if (!gfp_mask) {
1897 				WARN_ON_ONCE(1);
1898 				return -ENOMEM;
1899 			}
1900 			if (skb_uarg(nskb) == skb_uarg(orig))
1901 				return 0;
1902 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1903 				return -EIO;
1904 		}
1905 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1906 	}
1907 	return 0;
1908 }
1909 
1910 /**
1911  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1912  *	@skb: the skb to modify
1913  *	@gfp_mask: allocation priority
1914  *
1915  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1916  *	It will copy all frags into kernel and drop the reference
1917  *	to userspace pages.
1918  *
1919  *	If this function is called from an interrupt gfp_mask() must be
1920  *	%GFP_ATOMIC.
1921  *
1922  *	Returns 0 on success or a negative error code on failure
1923  *	to allocate kernel memory to copy to.
1924  */
1925 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1926 {
1927 	int num_frags = skb_shinfo(skb)->nr_frags;
1928 	struct page *page, *head = NULL;
1929 	int i, order, psize, new_frags;
1930 	u32 d_off;
1931 
1932 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1933 		return -EINVAL;
1934 
1935 	if (!skb_frags_readable(skb))
1936 		return -EFAULT;
1937 
1938 	if (!num_frags)
1939 		goto release;
1940 
1941 	/* We might have to allocate high order pages, so compute what minimum
1942 	 * page order is needed.
1943 	 */
1944 	order = 0;
1945 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1946 		order++;
1947 	psize = (PAGE_SIZE << order);
1948 
1949 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1950 	for (i = 0; i < new_frags; i++) {
1951 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1952 		if (!page) {
1953 			while (head) {
1954 				struct page *next = (struct page *)page_private(head);
1955 				put_page(head);
1956 				head = next;
1957 			}
1958 			return -ENOMEM;
1959 		}
1960 		set_page_private(page, (unsigned long)head);
1961 		head = page;
1962 	}
1963 
1964 	page = head;
1965 	d_off = 0;
1966 	for (i = 0; i < num_frags; i++) {
1967 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1968 		u32 p_off, p_len, copied;
1969 		struct page *p;
1970 		u8 *vaddr;
1971 
1972 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1973 				      p, p_off, p_len, copied) {
1974 			u32 copy, done = 0;
1975 			vaddr = kmap_atomic(p);
1976 
1977 			while (done < p_len) {
1978 				if (d_off == psize) {
1979 					d_off = 0;
1980 					page = (struct page *)page_private(page);
1981 				}
1982 				copy = min_t(u32, psize - d_off, p_len - done);
1983 				memcpy(page_address(page) + d_off,
1984 				       vaddr + p_off + done, copy);
1985 				done += copy;
1986 				d_off += copy;
1987 			}
1988 			kunmap_atomic(vaddr);
1989 		}
1990 	}
1991 
1992 	/* skb frags release userspace buffers */
1993 	for (i = 0; i < num_frags; i++)
1994 		skb_frag_unref(skb, i);
1995 
1996 	/* skb frags point to kernel buffers */
1997 	for (i = 0; i < new_frags - 1; i++) {
1998 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1999 		head = (struct page *)page_private(head);
2000 	}
2001 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2002 			       d_off);
2003 	skb_shinfo(skb)->nr_frags = new_frags;
2004 
2005 release:
2006 	skb_zcopy_clear(skb, false);
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2010 
2011 /**
2012  *	skb_clone	-	duplicate an sk_buff
2013  *	@skb: buffer to clone
2014  *	@gfp_mask: allocation priority
2015  *
2016  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2017  *	copies share the same packet data but not structure. The new
2018  *	buffer has a reference count of 1. If the allocation fails the
2019  *	function returns %NULL otherwise the new buffer is returned.
2020  *
2021  *	If this function is called from an interrupt gfp_mask() must be
2022  *	%GFP_ATOMIC.
2023  */
2024 
2025 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2026 {
2027 	struct sk_buff_fclones *fclones = container_of(skb,
2028 						       struct sk_buff_fclones,
2029 						       skb1);
2030 	struct sk_buff *n;
2031 
2032 	if (skb_orphan_frags(skb, gfp_mask))
2033 		return NULL;
2034 
2035 	if (skb->fclone == SKB_FCLONE_ORIG &&
2036 	    refcount_read(&fclones->fclone_ref) == 1) {
2037 		n = &fclones->skb2;
2038 		refcount_set(&fclones->fclone_ref, 2);
2039 		n->fclone = SKB_FCLONE_CLONE;
2040 	} else {
2041 		if (skb_pfmemalloc(skb))
2042 			gfp_mask |= __GFP_MEMALLOC;
2043 
2044 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2045 		if (!n)
2046 			return NULL;
2047 
2048 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2049 	}
2050 
2051 	return __skb_clone(n, skb);
2052 }
2053 EXPORT_SYMBOL(skb_clone);
2054 
2055 void skb_headers_offset_update(struct sk_buff *skb, int off)
2056 {
2057 	/* Only adjust this if it actually is csum_start rather than csum */
2058 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2059 		skb->csum_start += off;
2060 	/* {transport,network,mac}_header and tail are relative to skb->head */
2061 	skb->transport_header += off;
2062 	skb->network_header   += off;
2063 	if (skb_mac_header_was_set(skb))
2064 		skb->mac_header += off;
2065 	skb->inner_transport_header += off;
2066 	skb->inner_network_header += off;
2067 	skb->inner_mac_header += off;
2068 }
2069 EXPORT_SYMBOL(skb_headers_offset_update);
2070 
2071 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2072 {
2073 	__copy_skb_header(new, old);
2074 
2075 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2076 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2077 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2078 }
2079 EXPORT_SYMBOL(skb_copy_header);
2080 
2081 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2082 {
2083 	if (skb_pfmemalloc(skb))
2084 		return SKB_ALLOC_RX;
2085 	return 0;
2086 }
2087 
2088 /**
2089  *	skb_copy	-	create private copy of an sk_buff
2090  *	@skb: buffer to copy
2091  *	@gfp_mask: allocation priority
2092  *
2093  *	Make a copy of both an &sk_buff and its data. This is used when the
2094  *	caller wishes to modify the data and needs a private copy of the
2095  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2096  *	on success. The returned buffer has a reference count of 1.
2097  *
2098  *	As by-product this function converts non-linear &sk_buff to linear
2099  *	one, so that &sk_buff becomes completely private and caller is allowed
2100  *	to modify all the data of returned buffer. This means that this
2101  *	function is not recommended for use in circumstances when only
2102  *	header is going to be modified. Use pskb_copy() instead.
2103  */
2104 
2105 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2106 {
2107 	struct sk_buff *n;
2108 	unsigned int size;
2109 	int headerlen;
2110 
2111 	if (!skb_frags_readable(skb))
2112 		return NULL;
2113 
2114 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2115 		return NULL;
2116 
2117 	headerlen = skb_headroom(skb);
2118 	size = skb_end_offset(skb) + skb->data_len;
2119 	n = __alloc_skb(size, gfp_mask,
2120 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2121 	if (!n)
2122 		return NULL;
2123 
2124 	/* Set the data pointer */
2125 	skb_reserve(n, headerlen);
2126 	/* Set the tail pointer and length */
2127 	skb_put(n, skb->len);
2128 
2129 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2130 
2131 	skb_copy_header(n, skb);
2132 	return n;
2133 }
2134 EXPORT_SYMBOL(skb_copy);
2135 
2136 /**
2137  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2138  *	@skb: buffer to copy
2139  *	@headroom: headroom of new skb
2140  *	@gfp_mask: allocation priority
2141  *	@fclone: if true allocate the copy of the skb from the fclone
2142  *	cache instead of the head cache; it is recommended to set this
2143  *	to true for the cases where the copy will likely be cloned
2144  *
2145  *	Make a copy of both an &sk_buff and part of its data, located
2146  *	in header. Fragmented data remain shared. This is used when
2147  *	the caller wishes to modify only header of &sk_buff and needs
2148  *	private copy of the header to alter. Returns %NULL on failure
2149  *	or the pointer to the buffer on success.
2150  *	The returned buffer has a reference count of 1.
2151  */
2152 
2153 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2154 				   gfp_t gfp_mask, bool fclone)
2155 {
2156 	unsigned int size = skb_headlen(skb) + headroom;
2157 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2158 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2159 
2160 	if (!n)
2161 		goto out;
2162 
2163 	/* Set the data pointer */
2164 	skb_reserve(n, headroom);
2165 	/* Set the tail pointer and length */
2166 	skb_put(n, skb_headlen(skb));
2167 	/* Copy the bytes */
2168 	skb_copy_from_linear_data(skb, n->data, n->len);
2169 
2170 	n->truesize += skb->data_len;
2171 	n->data_len  = skb->data_len;
2172 	n->len	     = skb->len;
2173 
2174 	if (skb_shinfo(skb)->nr_frags) {
2175 		int i;
2176 
2177 		if (skb_orphan_frags(skb, gfp_mask) ||
2178 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2179 			kfree_skb(n);
2180 			n = NULL;
2181 			goto out;
2182 		}
2183 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2184 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2185 			skb_frag_ref(skb, i);
2186 		}
2187 		skb_shinfo(n)->nr_frags = i;
2188 	}
2189 
2190 	if (skb_has_frag_list(skb)) {
2191 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2192 		skb_clone_fraglist(n);
2193 	}
2194 
2195 	skb_copy_header(n, skb);
2196 out:
2197 	return n;
2198 }
2199 EXPORT_SYMBOL(__pskb_copy_fclone);
2200 
2201 /**
2202  *	pskb_expand_head - reallocate header of &sk_buff
2203  *	@skb: buffer to reallocate
2204  *	@nhead: room to add at head
2205  *	@ntail: room to add at tail
2206  *	@gfp_mask: allocation priority
2207  *
2208  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2209  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2210  *	reference count of 1. Returns zero in the case of success or error,
2211  *	if expansion failed. In the last case, &sk_buff is not changed.
2212  *
2213  *	All the pointers pointing into skb header may change and must be
2214  *	reloaded after call to this function.
2215  */
2216 
2217 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2218 		     gfp_t gfp_mask)
2219 {
2220 	unsigned int osize = skb_end_offset(skb);
2221 	unsigned int size = osize + nhead + ntail;
2222 	long off;
2223 	u8 *data;
2224 	int i;
2225 
2226 	BUG_ON(nhead < 0);
2227 
2228 	BUG_ON(skb_shared(skb));
2229 
2230 	skb_zcopy_downgrade_managed(skb);
2231 
2232 	if (skb_pfmemalloc(skb))
2233 		gfp_mask |= __GFP_MEMALLOC;
2234 
2235 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2236 	if (!data)
2237 		goto nodata;
2238 	size = SKB_WITH_OVERHEAD(size);
2239 
2240 	/* Copy only real data... and, alas, header. This should be
2241 	 * optimized for the cases when header is void.
2242 	 */
2243 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2244 
2245 	memcpy((struct skb_shared_info *)(data + size),
2246 	       skb_shinfo(skb),
2247 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2248 
2249 	/*
2250 	 * if shinfo is shared we must drop the old head gracefully, but if it
2251 	 * is not we can just drop the old head and let the existing refcount
2252 	 * be since all we did is relocate the values
2253 	 */
2254 	if (skb_cloned(skb)) {
2255 		if (skb_orphan_frags(skb, gfp_mask))
2256 			goto nofrags;
2257 		if (skb_zcopy(skb))
2258 			refcount_inc(&skb_uarg(skb)->refcnt);
2259 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2260 			skb_frag_ref(skb, i);
2261 
2262 		if (skb_has_frag_list(skb))
2263 			skb_clone_fraglist(skb);
2264 
2265 		skb_release_data(skb, SKB_CONSUMED);
2266 	} else {
2267 		skb_free_head(skb);
2268 	}
2269 	off = (data + nhead) - skb->head;
2270 
2271 	skb->head     = data;
2272 	skb->head_frag = 0;
2273 	skb->data    += off;
2274 
2275 	skb_set_end_offset(skb, size);
2276 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2277 	off           = nhead;
2278 #endif
2279 	skb->tail	      += off;
2280 	skb_headers_offset_update(skb, nhead);
2281 	skb->cloned   = 0;
2282 	skb->hdr_len  = 0;
2283 	skb->nohdr    = 0;
2284 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2285 
2286 	skb_metadata_clear(skb);
2287 
2288 	/* It is not generally safe to change skb->truesize.
2289 	 * For the moment, we really care of rx path, or
2290 	 * when skb is orphaned (not attached to a socket).
2291 	 */
2292 	if (!skb->sk || skb->destructor == sock_edemux)
2293 		skb->truesize += size - osize;
2294 
2295 	return 0;
2296 
2297 nofrags:
2298 	skb_kfree_head(data, size);
2299 nodata:
2300 	return -ENOMEM;
2301 }
2302 EXPORT_SYMBOL(pskb_expand_head);
2303 
2304 /* Make private copy of skb with writable head and some headroom */
2305 
2306 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2307 {
2308 	struct sk_buff *skb2;
2309 	int delta = headroom - skb_headroom(skb);
2310 
2311 	if (delta <= 0)
2312 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2313 	else {
2314 		skb2 = skb_clone(skb, GFP_ATOMIC);
2315 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2316 					     GFP_ATOMIC)) {
2317 			kfree_skb(skb2);
2318 			skb2 = NULL;
2319 		}
2320 	}
2321 	return skb2;
2322 }
2323 EXPORT_SYMBOL(skb_realloc_headroom);
2324 
2325 /* Note: We plan to rework this in linux-6.4 */
2326 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2327 {
2328 	unsigned int saved_end_offset, saved_truesize;
2329 	struct skb_shared_info *shinfo;
2330 	int res;
2331 
2332 	saved_end_offset = skb_end_offset(skb);
2333 	saved_truesize = skb->truesize;
2334 
2335 	res = pskb_expand_head(skb, 0, 0, pri);
2336 	if (res)
2337 		return res;
2338 
2339 	skb->truesize = saved_truesize;
2340 
2341 	if (likely(skb_end_offset(skb) == saved_end_offset))
2342 		return 0;
2343 
2344 	/* We can not change skb->end if the original or new value
2345 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2346 	 */
2347 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2348 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2349 		/* We think this path should not be taken.
2350 		 * Add a temporary trace to warn us just in case.
2351 		 */
2352 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2353 			    saved_end_offset, skb_end_offset(skb));
2354 		WARN_ON_ONCE(1);
2355 		return 0;
2356 	}
2357 
2358 	shinfo = skb_shinfo(skb);
2359 
2360 	/* We are about to change back skb->end,
2361 	 * we need to move skb_shinfo() to its new location.
2362 	 */
2363 	memmove(skb->head + saved_end_offset,
2364 		shinfo,
2365 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2366 
2367 	skb_set_end_offset(skb, saved_end_offset);
2368 
2369 	return 0;
2370 }
2371 
2372 /**
2373  *	skb_expand_head - reallocate header of &sk_buff
2374  *	@skb: buffer to reallocate
2375  *	@headroom: needed headroom
2376  *
2377  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2378  *	if possible; copies skb->sk to new skb as needed
2379  *	and frees original skb in case of failures.
2380  *
2381  *	It expect increased headroom and generates warning otherwise.
2382  */
2383 
2384 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2385 {
2386 	int delta = headroom - skb_headroom(skb);
2387 	int osize = skb_end_offset(skb);
2388 	struct sock *sk = skb->sk;
2389 
2390 	if (WARN_ONCE(delta <= 0,
2391 		      "%s is expecting an increase in the headroom", __func__))
2392 		return skb;
2393 
2394 	delta = SKB_DATA_ALIGN(delta);
2395 	/* pskb_expand_head() might crash, if skb is shared. */
2396 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2397 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2398 
2399 		if (unlikely(!nskb))
2400 			goto fail;
2401 
2402 		if (sk)
2403 			skb_set_owner_w(nskb, sk);
2404 		consume_skb(skb);
2405 		skb = nskb;
2406 	}
2407 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2408 		goto fail;
2409 
2410 	if (sk && is_skb_wmem(skb)) {
2411 		delta = skb_end_offset(skb) - osize;
2412 		refcount_add(delta, &sk->sk_wmem_alloc);
2413 		skb->truesize += delta;
2414 	}
2415 	return skb;
2416 
2417 fail:
2418 	kfree_skb(skb);
2419 	return NULL;
2420 }
2421 EXPORT_SYMBOL(skb_expand_head);
2422 
2423 /**
2424  *	skb_copy_expand	-	copy and expand sk_buff
2425  *	@skb: buffer to copy
2426  *	@newheadroom: new free bytes at head
2427  *	@newtailroom: new free bytes at tail
2428  *	@gfp_mask: allocation priority
2429  *
2430  *	Make a copy of both an &sk_buff and its data and while doing so
2431  *	allocate additional space.
2432  *
2433  *	This is used when the caller wishes to modify the data and needs a
2434  *	private copy of the data to alter as well as more space for new fields.
2435  *	Returns %NULL on failure or the pointer to the buffer
2436  *	on success. The returned buffer has a reference count of 1.
2437  *
2438  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2439  *	is called from an interrupt.
2440  */
2441 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2442 				int newheadroom, int newtailroom,
2443 				gfp_t gfp_mask)
2444 {
2445 	/*
2446 	 *	Allocate the copy buffer
2447 	 */
2448 	int head_copy_len, head_copy_off;
2449 	struct sk_buff *n;
2450 	int oldheadroom;
2451 
2452 	if (!skb_frags_readable(skb))
2453 		return NULL;
2454 
2455 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2456 		return NULL;
2457 
2458 	oldheadroom = skb_headroom(skb);
2459 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2460 			gfp_mask, skb_alloc_rx_flag(skb),
2461 			NUMA_NO_NODE);
2462 	if (!n)
2463 		return NULL;
2464 
2465 	skb_reserve(n, newheadroom);
2466 
2467 	/* Set the tail pointer and length */
2468 	skb_put(n, skb->len);
2469 
2470 	head_copy_len = oldheadroom;
2471 	head_copy_off = 0;
2472 	if (newheadroom <= head_copy_len)
2473 		head_copy_len = newheadroom;
2474 	else
2475 		head_copy_off = newheadroom - head_copy_len;
2476 
2477 	/* Copy the linear header and data. */
2478 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2479 			     skb->len + head_copy_len));
2480 
2481 	skb_copy_header(n, skb);
2482 
2483 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2484 
2485 	return n;
2486 }
2487 EXPORT_SYMBOL(skb_copy_expand);
2488 
2489 /**
2490  *	__skb_pad		-	zero pad the tail of an skb
2491  *	@skb: buffer to pad
2492  *	@pad: space to pad
2493  *	@free_on_error: free buffer on error
2494  *
2495  *	Ensure that a buffer is followed by a padding area that is zero
2496  *	filled. Used by network drivers which may DMA or transfer data
2497  *	beyond the buffer end onto the wire.
2498  *
2499  *	May return error in out of memory cases. The skb is freed on error
2500  *	if @free_on_error is true.
2501  */
2502 
2503 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2504 {
2505 	int err;
2506 	int ntail;
2507 
2508 	/* If the skbuff is non linear tailroom is always zero.. */
2509 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2510 		memset(skb->data+skb->len, 0, pad);
2511 		return 0;
2512 	}
2513 
2514 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2515 	if (likely(skb_cloned(skb) || ntail > 0)) {
2516 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2517 		if (unlikely(err))
2518 			goto free_skb;
2519 	}
2520 
2521 	/* FIXME: The use of this function with non-linear skb's really needs
2522 	 * to be audited.
2523 	 */
2524 	err = skb_linearize(skb);
2525 	if (unlikely(err))
2526 		goto free_skb;
2527 
2528 	memset(skb->data + skb->len, 0, pad);
2529 	return 0;
2530 
2531 free_skb:
2532 	if (free_on_error)
2533 		kfree_skb(skb);
2534 	return err;
2535 }
2536 EXPORT_SYMBOL(__skb_pad);
2537 
2538 /**
2539  *	pskb_put - add data to the tail of a potentially fragmented buffer
2540  *	@skb: start of the buffer to use
2541  *	@tail: tail fragment of the buffer to use
2542  *	@len: amount of data to add
2543  *
2544  *	This function extends the used data area of the potentially
2545  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2546  *	@skb itself. If this would exceed the total buffer size the kernel
2547  *	will panic. A pointer to the first byte of the extra data is
2548  *	returned.
2549  */
2550 
2551 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2552 {
2553 	if (tail != skb) {
2554 		skb->data_len += len;
2555 		skb->len += len;
2556 	}
2557 	return skb_put(tail, len);
2558 }
2559 EXPORT_SYMBOL_GPL(pskb_put);
2560 
2561 /**
2562  *	skb_put - add data to a buffer
2563  *	@skb: buffer to use
2564  *	@len: amount of data to add
2565  *
2566  *	This function extends the used data area of the buffer. If this would
2567  *	exceed the total buffer size the kernel will panic. A pointer to the
2568  *	first byte of the extra data is returned.
2569  */
2570 void *skb_put(struct sk_buff *skb, unsigned int len)
2571 {
2572 	void *tmp = skb_tail_pointer(skb);
2573 	SKB_LINEAR_ASSERT(skb);
2574 	skb->tail += len;
2575 	skb->len  += len;
2576 	if (unlikely(skb->tail > skb->end))
2577 		skb_over_panic(skb, len, __builtin_return_address(0));
2578 	return tmp;
2579 }
2580 EXPORT_SYMBOL(skb_put);
2581 
2582 /**
2583  *	skb_push - add data to the start of a buffer
2584  *	@skb: buffer to use
2585  *	@len: amount of data to add
2586  *
2587  *	This function extends the used data area of the buffer at the buffer
2588  *	start. If this would exceed the total buffer headroom the kernel will
2589  *	panic. A pointer to the first byte of the extra data is returned.
2590  */
2591 void *skb_push(struct sk_buff *skb, unsigned int len)
2592 {
2593 	skb->data -= len;
2594 	skb->len  += len;
2595 	if (unlikely(skb->data < skb->head))
2596 		skb_under_panic(skb, len, __builtin_return_address(0));
2597 	return skb->data;
2598 }
2599 EXPORT_SYMBOL(skb_push);
2600 
2601 /**
2602  *	skb_pull - remove data from the start of a buffer
2603  *	@skb: buffer to use
2604  *	@len: amount of data to remove
2605  *
2606  *	This function removes data from the start of a buffer, returning
2607  *	the memory to the headroom. A pointer to the next data in the buffer
2608  *	is returned. Once the data has been pulled future pushes will overwrite
2609  *	the old data.
2610  */
2611 void *skb_pull(struct sk_buff *skb, unsigned int len)
2612 {
2613 	return skb_pull_inline(skb, len);
2614 }
2615 EXPORT_SYMBOL(skb_pull);
2616 
2617 /**
2618  *	skb_pull_data - remove data from the start of a buffer returning its
2619  *	original position.
2620  *	@skb: buffer to use
2621  *	@len: amount of data to remove
2622  *
2623  *	This function removes data from the start of a buffer, returning
2624  *	the memory to the headroom. A pointer to the original data in the buffer
2625  *	is returned after checking if there is enough data to pull. Once the
2626  *	data has been pulled future pushes will overwrite the old data.
2627  */
2628 void *skb_pull_data(struct sk_buff *skb, size_t len)
2629 {
2630 	void *data = skb->data;
2631 
2632 	if (skb->len < len)
2633 		return NULL;
2634 
2635 	skb_pull(skb, len);
2636 
2637 	return data;
2638 }
2639 EXPORT_SYMBOL(skb_pull_data);
2640 
2641 /**
2642  *	skb_trim - remove end from a buffer
2643  *	@skb: buffer to alter
2644  *	@len: new length
2645  *
2646  *	Cut the length of a buffer down by removing data from the tail. If
2647  *	the buffer is already under the length specified it is not modified.
2648  *	The skb must be linear.
2649  */
2650 void skb_trim(struct sk_buff *skb, unsigned int len)
2651 {
2652 	if (skb->len > len)
2653 		__skb_trim(skb, len);
2654 }
2655 EXPORT_SYMBOL(skb_trim);
2656 
2657 /* Trims skb to length len. It can change skb pointers.
2658  */
2659 
2660 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2661 {
2662 	struct sk_buff **fragp;
2663 	struct sk_buff *frag;
2664 	int offset = skb_headlen(skb);
2665 	int nfrags = skb_shinfo(skb)->nr_frags;
2666 	int i;
2667 	int err;
2668 
2669 	if (skb_cloned(skb) &&
2670 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2671 		return err;
2672 
2673 	i = 0;
2674 	if (offset >= len)
2675 		goto drop_pages;
2676 
2677 	for (; i < nfrags; i++) {
2678 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2679 
2680 		if (end < len) {
2681 			offset = end;
2682 			continue;
2683 		}
2684 
2685 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2686 
2687 drop_pages:
2688 		skb_shinfo(skb)->nr_frags = i;
2689 
2690 		for (; i < nfrags; i++)
2691 			skb_frag_unref(skb, i);
2692 
2693 		if (skb_has_frag_list(skb))
2694 			skb_drop_fraglist(skb);
2695 		goto done;
2696 	}
2697 
2698 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2699 	     fragp = &frag->next) {
2700 		int end = offset + frag->len;
2701 
2702 		if (skb_shared(frag)) {
2703 			struct sk_buff *nfrag;
2704 
2705 			nfrag = skb_clone(frag, GFP_ATOMIC);
2706 			if (unlikely(!nfrag))
2707 				return -ENOMEM;
2708 
2709 			nfrag->next = frag->next;
2710 			consume_skb(frag);
2711 			frag = nfrag;
2712 			*fragp = frag;
2713 		}
2714 
2715 		if (end < len) {
2716 			offset = end;
2717 			continue;
2718 		}
2719 
2720 		if (end > len &&
2721 		    unlikely((err = pskb_trim(frag, len - offset))))
2722 			return err;
2723 
2724 		if (frag->next)
2725 			skb_drop_list(&frag->next);
2726 		break;
2727 	}
2728 
2729 done:
2730 	if (len > skb_headlen(skb)) {
2731 		skb->data_len -= skb->len - len;
2732 		skb->len       = len;
2733 	} else {
2734 		skb->len       = len;
2735 		skb->data_len  = 0;
2736 		skb_set_tail_pointer(skb, len);
2737 	}
2738 
2739 	if (!skb->sk || skb->destructor == sock_edemux)
2740 		skb_condense(skb);
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL(___pskb_trim);
2744 
2745 /* Note : use pskb_trim_rcsum() instead of calling this directly
2746  */
2747 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2748 {
2749 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2750 		int delta = skb->len - len;
2751 
2752 		skb->csum = csum_block_sub(skb->csum,
2753 					   skb_checksum(skb, len, delta, 0),
2754 					   len);
2755 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2756 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2757 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2758 
2759 		if (offset + sizeof(__sum16) > hdlen)
2760 			return -EINVAL;
2761 	}
2762 	return __pskb_trim(skb, len);
2763 }
2764 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2765 
2766 /**
2767  *	__pskb_pull_tail - advance tail of skb header
2768  *	@skb: buffer to reallocate
2769  *	@delta: number of bytes to advance tail
2770  *
2771  *	The function makes a sense only on a fragmented &sk_buff,
2772  *	it expands header moving its tail forward and copying necessary
2773  *	data from fragmented part.
2774  *
2775  *	&sk_buff MUST have reference count of 1.
2776  *
2777  *	Returns %NULL (and &sk_buff does not change) if pull failed
2778  *	or value of new tail of skb in the case of success.
2779  *
2780  *	All the pointers pointing into skb header may change and must be
2781  *	reloaded after call to this function.
2782  */
2783 
2784 /* Moves tail of skb head forward, copying data from fragmented part,
2785  * when it is necessary.
2786  * 1. It may fail due to malloc failure.
2787  * 2. It may change skb pointers.
2788  *
2789  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2790  */
2791 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2792 {
2793 	/* If skb has not enough free space at tail, get new one
2794 	 * plus 128 bytes for future expansions. If we have enough
2795 	 * room at tail, reallocate without expansion only if skb is cloned.
2796 	 */
2797 	int i, k, eat = (skb->tail + delta) - skb->end;
2798 
2799 	if (!skb_frags_readable(skb))
2800 		return NULL;
2801 
2802 	if (eat > 0 || skb_cloned(skb)) {
2803 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2804 				     GFP_ATOMIC))
2805 			return NULL;
2806 	}
2807 
2808 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2809 			     skb_tail_pointer(skb), delta));
2810 
2811 	/* Optimization: no fragments, no reasons to preestimate
2812 	 * size of pulled pages. Superb.
2813 	 */
2814 	if (!skb_has_frag_list(skb))
2815 		goto pull_pages;
2816 
2817 	/* Estimate size of pulled pages. */
2818 	eat = delta;
2819 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2821 
2822 		if (size >= eat)
2823 			goto pull_pages;
2824 		eat -= size;
2825 	}
2826 
2827 	/* If we need update frag list, we are in troubles.
2828 	 * Certainly, it is possible to add an offset to skb data,
2829 	 * but taking into account that pulling is expected to
2830 	 * be very rare operation, it is worth to fight against
2831 	 * further bloating skb head and crucify ourselves here instead.
2832 	 * Pure masohism, indeed. 8)8)
2833 	 */
2834 	if (eat) {
2835 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2836 		struct sk_buff *clone = NULL;
2837 		struct sk_buff *insp = NULL;
2838 
2839 		do {
2840 			if (list->len <= eat) {
2841 				/* Eaten as whole. */
2842 				eat -= list->len;
2843 				list = list->next;
2844 				insp = list;
2845 			} else {
2846 				/* Eaten partially. */
2847 				if (skb_is_gso(skb) && !list->head_frag &&
2848 				    skb_headlen(list))
2849 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2850 
2851 				if (skb_shared(list)) {
2852 					/* Sucks! We need to fork list. :-( */
2853 					clone = skb_clone(list, GFP_ATOMIC);
2854 					if (!clone)
2855 						return NULL;
2856 					insp = list->next;
2857 					list = clone;
2858 				} else {
2859 					/* This may be pulled without
2860 					 * problems. */
2861 					insp = list;
2862 				}
2863 				if (!pskb_pull(list, eat)) {
2864 					kfree_skb(clone);
2865 					return NULL;
2866 				}
2867 				break;
2868 			}
2869 		} while (eat);
2870 
2871 		/* Free pulled out fragments. */
2872 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2873 			skb_shinfo(skb)->frag_list = list->next;
2874 			consume_skb(list);
2875 		}
2876 		/* And insert new clone at head. */
2877 		if (clone) {
2878 			clone->next = list;
2879 			skb_shinfo(skb)->frag_list = clone;
2880 		}
2881 	}
2882 	/* Success! Now we may commit changes to skb data. */
2883 
2884 pull_pages:
2885 	eat = delta;
2886 	k = 0;
2887 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2888 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2889 
2890 		if (size <= eat) {
2891 			skb_frag_unref(skb, i);
2892 			eat -= size;
2893 		} else {
2894 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2895 
2896 			*frag = skb_shinfo(skb)->frags[i];
2897 			if (eat) {
2898 				skb_frag_off_add(frag, eat);
2899 				skb_frag_size_sub(frag, eat);
2900 				if (!i)
2901 					goto end;
2902 				eat = 0;
2903 			}
2904 			k++;
2905 		}
2906 	}
2907 	skb_shinfo(skb)->nr_frags = k;
2908 
2909 end:
2910 	skb->tail     += delta;
2911 	skb->data_len -= delta;
2912 
2913 	if (!skb->data_len)
2914 		skb_zcopy_clear(skb, false);
2915 
2916 	return skb_tail_pointer(skb);
2917 }
2918 EXPORT_SYMBOL(__pskb_pull_tail);
2919 
2920 /**
2921  *	skb_copy_bits - copy bits from skb to kernel buffer
2922  *	@skb: source skb
2923  *	@offset: offset in source
2924  *	@to: destination buffer
2925  *	@len: number of bytes to copy
2926  *
2927  *	Copy the specified number of bytes from the source skb to the
2928  *	destination buffer.
2929  *
2930  *	CAUTION ! :
2931  *		If its prototype is ever changed,
2932  *		check arch/{*}/net/{*}.S files,
2933  *		since it is called from BPF assembly code.
2934  */
2935 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2936 {
2937 	int start = skb_headlen(skb);
2938 	struct sk_buff *frag_iter;
2939 	int i, copy;
2940 
2941 	if (offset > (int)skb->len - len)
2942 		goto fault;
2943 
2944 	/* Copy header. */
2945 	if ((copy = start - offset) > 0) {
2946 		if (copy > len)
2947 			copy = len;
2948 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2949 		if ((len -= copy) == 0)
2950 			return 0;
2951 		offset += copy;
2952 		to     += copy;
2953 	}
2954 
2955 	if (!skb_frags_readable(skb))
2956 		goto fault;
2957 
2958 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2959 		int end;
2960 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2961 
2962 		WARN_ON(start > offset + len);
2963 
2964 		end = start + skb_frag_size(f);
2965 		if ((copy = end - offset) > 0) {
2966 			u32 p_off, p_len, copied;
2967 			struct page *p;
2968 			u8 *vaddr;
2969 
2970 			if (copy > len)
2971 				copy = len;
2972 
2973 			skb_frag_foreach_page(f,
2974 					      skb_frag_off(f) + offset - start,
2975 					      copy, p, p_off, p_len, copied) {
2976 				vaddr = kmap_atomic(p);
2977 				memcpy(to + copied, vaddr + p_off, p_len);
2978 				kunmap_atomic(vaddr);
2979 			}
2980 
2981 			if ((len -= copy) == 0)
2982 				return 0;
2983 			offset += copy;
2984 			to     += copy;
2985 		}
2986 		start = end;
2987 	}
2988 
2989 	skb_walk_frags(skb, frag_iter) {
2990 		int end;
2991 
2992 		WARN_ON(start > offset + len);
2993 
2994 		end = start + frag_iter->len;
2995 		if ((copy = end - offset) > 0) {
2996 			if (copy > len)
2997 				copy = len;
2998 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2999 				goto fault;
3000 			if ((len -= copy) == 0)
3001 				return 0;
3002 			offset += copy;
3003 			to     += copy;
3004 		}
3005 		start = end;
3006 	}
3007 
3008 	if (!len)
3009 		return 0;
3010 
3011 fault:
3012 	return -EFAULT;
3013 }
3014 EXPORT_SYMBOL(skb_copy_bits);
3015 
3016 /*
3017  * Callback from splice_to_pipe(), if we need to release some pages
3018  * at the end of the spd in case we error'ed out in filling the pipe.
3019  */
3020 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3021 {
3022 	put_page(spd->pages[i]);
3023 }
3024 
3025 static struct page *linear_to_page(struct page *page, unsigned int *len,
3026 				   unsigned int *offset,
3027 				   struct sock *sk)
3028 {
3029 	struct page_frag *pfrag = sk_page_frag(sk);
3030 
3031 	if (!sk_page_frag_refill(sk, pfrag))
3032 		return NULL;
3033 
3034 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3035 
3036 	memcpy(page_address(pfrag->page) + pfrag->offset,
3037 	       page_address(page) + *offset, *len);
3038 	*offset = pfrag->offset;
3039 	pfrag->offset += *len;
3040 
3041 	return pfrag->page;
3042 }
3043 
3044 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3045 			     struct page *page,
3046 			     unsigned int offset)
3047 {
3048 	return	spd->nr_pages &&
3049 		spd->pages[spd->nr_pages - 1] == page &&
3050 		(spd->partial[spd->nr_pages - 1].offset +
3051 		 spd->partial[spd->nr_pages - 1].len == offset);
3052 }
3053 
3054 /*
3055  * Fill page/offset/length into spd, if it can hold more pages.
3056  */
3057 static bool spd_fill_page(struct splice_pipe_desc *spd,
3058 			  struct pipe_inode_info *pipe, struct page *page,
3059 			  unsigned int *len, unsigned int offset,
3060 			  bool linear,
3061 			  struct sock *sk)
3062 {
3063 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3064 		return true;
3065 
3066 	if (linear) {
3067 		page = linear_to_page(page, len, &offset, sk);
3068 		if (!page)
3069 			return true;
3070 	}
3071 	if (spd_can_coalesce(spd, page, offset)) {
3072 		spd->partial[spd->nr_pages - 1].len += *len;
3073 		return false;
3074 	}
3075 	get_page(page);
3076 	spd->pages[spd->nr_pages] = page;
3077 	spd->partial[spd->nr_pages].len = *len;
3078 	spd->partial[spd->nr_pages].offset = offset;
3079 	spd->nr_pages++;
3080 
3081 	return false;
3082 }
3083 
3084 static bool __splice_segment(struct page *page, unsigned int poff,
3085 			     unsigned int plen, unsigned int *off,
3086 			     unsigned int *len,
3087 			     struct splice_pipe_desc *spd, bool linear,
3088 			     struct sock *sk,
3089 			     struct pipe_inode_info *pipe)
3090 {
3091 	if (!*len)
3092 		return true;
3093 
3094 	/* skip this segment if already processed */
3095 	if (*off >= plen) {
3096 		*off -= plen;
3097 		return false;
3098 	}
3099 
3100 	/* ignore any bits we already processed */
3101 	poff += *off;
3102 	plen -= *off;
3103 	*off = 0;
3104 
3105 	do {
3106 		unsigned int flen = min(*len, plen);
3107 
3108 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3109 				  linear, sk))
3110 			return true;
3111 		poff += flen;
3112 		plen -= flen;
3113 		*len -= flen;
3114 	} while (*len && plen);
3115 
3116 	return false;
3117 }
3118 
3119 /*
3120  * Map linear and fragment data from the skb to spd. It reports true if the
3121  * pipe is full or if we already spliced the requested length.
3122  */
3123 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3124 			      unsigned int *offset, unsigned int *len,
3125 			      struct splice_pipe_desc *spd, struct sock *sk)
3126 {
3127 	int seg;
3128 	struct sk_buff *iter;
3129 
3130 	/* map the linear part :
3131 	 * If skb->head_frag is set, this 'linear' part is backed by a
3132 	 * fragment, and if the head is not shared with any clones then
3133 	 * we can avoid a copy since we own the head portion of this page.
3134 	 */
3135 	if (__splice_segment(virt_to_page(skb->data),
3136 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3137 			     skb_headlen(skb),
3138 			     offset, len, spd,
3139 			     skb_head_is_locked(skb),
3140 			     sk, pipe))
3141 		return true;
3142 
3143 	/*
3144 	 * then map the fragments
3145 	 */
3146 	if (!skb_frags_readable(skb))
3147 		return false;
3148 
3149 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3150 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3151 
3152 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3153 			return false;
3154 
3155 		if (__splice_segment(skb_frag_page(f),
3156 				     skb_frag_off(f), skb_frag_size(f),
3157 				     offset, len, spd, false, sk, pipe))
3158 			return true;
3159 	}
3160 
3161 	skb_walk_frags(skb, iter) {
3162 		if (*offset >= iter->len) {
3163 			*offset -= iter->len;
3164 			continue;
3165 		}
3166 		/* __skb_splice_bits() only fails if the output has no room
3167 		 * left, so no point in going over the frag_list for the error
3168 		 * case.
3169 		 */
3170 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3171 			return true;
3172 	}
3173 
3174 	return false;
3175 }
3176 
3177 /*
3178  * Map data from the skb to a pipe. Should handle both the linear part,
3179  * the fragments, and the frag list.
3180  */
3181 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3182 		    struct pipe_inode_info *pipe, unsigned int tlen,
3183 		    unsigned int flags)
3184 {
3185 	struct partial_page partial[MAX_SKB_FRAGS];
3186 	struct page *pages[MAX_SKB_FRAGS];
3187 	struct splice_pipe_desc spd = {
3188 		.pages = pages,
3189 		.partial = partial,
3190 		.nr_pages_max = MAX_SKB_FRAGS,
3191 		.ops = &nosteal_pipe_buf_ops,
3192 		.spd_release = sock_spd_release,
3193 	};
3194 	int ret = 0;
3195 
3196 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3197 
3198 	if (spd.nr_pages)
3199 		ret = splice_to_pipe(pipe, &spd);
3200 
3201 	return ret;
3202 }
3203 EXPORT_SYMBOL_GPL(skb_splice_bits);
3204 
3205 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3206 {
3207 	struct socket *sock = sk->sk_socket;
3208 	size_t size = msg_data_left(msg);
3209 
3210 	if (!sock)
3211 		return -EINVAL;
3212 
3213 	if (!sock->ops->sendmsg_locked)
3214 		return sock_no_sendmsg_locked(sk, msg, size);
3215 
3216 	return sock->ops->sendmsg_locked(sk, msg, size);
3217 }
3218 
3219 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3220 {
3221 	struct socket *sock = sk->sk_socket;
3222 
3223 	if (!sock)
3224 		return -EINVAL;
3225 	return sock_sendmsg(sock, msg);
3226 }
3227 
3228 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3229 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3230 			   int len, sendmsg_func sendmsg, int flags)
3231 {
3232 	unsigned int orig_len = len;
3233 	struct sk_buff *head = skb;
3234 	unsigned short fragidx;
3235 	int slen, ret;
3236 
3237 do_frag_list:
3238 
3239 	/* Deal with head data */
3240 	while (offset < skb_headlen(skb) && len) {
3241 		struct kvec kv;
3242 		struct msghdr msg;
3243 
3244 		slen = min_t(int, len, skb_headlen(skb) - offset);
3245 		kv.iov_base = skb->data + offset;
3246 		kv.iov_len = slen;
3247 		memset(&msg, 0, sizeof(msg));
3248 		msg.msg_flags = MSG_DONTWAIT | flags;
3249 
3250 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3251 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3252 				      sendmsg_unlocked, sk, &msg);
3253 		if (ret <= 0)
3254 			goto error;
3255 
3256 		offset += ret;
3257 		len -= ret;
3258 	}
3259 
3260 	/* All the data was skb head? */
3261 	if (!len)
3262 		goto out;
3263 
3264 	/* Make offset relative to start of frags */
3265 	offset -= skb_headlen(skb);
3266 
3267 	/* Find where we are in frag list */
3268 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3269 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3270 
3271 		if (offset < skb_frag_size(frag))
3272 			break;
3273 
3274 		offset -= skb_frag_size(frag);
3275 	}
3276 
3277 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3278 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3279 
3280 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3281 
3282 		while (slen) {
3283 			struct bio_vec bvec;
3284 			struct msghdr msg = {
3285 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3286 					     flags,
3287 			};
3288 
3289 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3290 				      skb_frag_off(frag) + offset);
3291 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3292 				      slen);
3293 
3294 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3295 					      sendmsg_unlocked, sk, &msg);
3296 			if (ret <= 0)
3297 				goto error;
3298 
3299 			len -= ret;
3300 			offset += ret;
3301 			slen -= ret;
3302 		}
3303 
3304 		offset = 0;
3305 	}
3306 
3307 	if (len) {
3308 		/* Process any frag lists */
3309 
3310 		if (skb == head) {
3311 			if (skb_has_frag_list(skb)) {
3312 				skb = skb_shinfo(skb)->frag_list;
3313 				goto do_frag_list;
3314 			}
3315 		} else if (skb->next) {
3316 			skb = skb->next;
3317 			goto do_frag_list;
3318 		}
3319 	}
3320 
3321 out:
3322 	return orig_len - len;
3323 
3324 error:
3325 	return orig_len == len ? ret : orig_len - len;
3326 }
3327 
3328 /* Send skb data on a socket. Socket must be locked. */
3329 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330 			 int len)
3331 {
3332 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3333 }
3334 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3335 
3336 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3337 				    int offset, int len, int flags)
3338 {
3339 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3340 }
3341 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3342 
3343 /* Send skb data on a socket. Socket must be unlocked. */
3344 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3345 {
3346 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3347 }
3348 
3349 /**
3350  *	skb_store_bits - store bits from kernel buffer to skb
3351  *	@skb: destination buffer
3352  *	@offset: offset in destination
3353  *	@from: source buffer
3354  *	@len: number of bytes to copy
3355  *
3356  *	Copy the specified number of bytes from the source buffer to the
3357  *	destination skb.  This function handles all the messy bits of
3358  *	traversing fragment lists and such.
3359  */
3360 
3361 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3362 {
3363 	int start = skb_headlen(skb);
3364 	struct sk_buff *frag_iter;
3365 	int i, copy;
3366 
3367 	if (offset > (int)skb->len - len)
3368 		goto fault;
3369 
3370 	if ((copy = start - offset) > 0) {
3371 		if (copy > len)
3372 			copy = len;
3373 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3374 		if ((len -= copy) == 0)
3375 			return 0;
3376 		offset += copy;
3377 		from += copy;
3378 	}
3379 
3380 	if (!skb_frags_readable(skb))
3381 		goto fault;
3382 
3383 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385 		int end;
3386 
3387 		WARN_ON(start > offset + len);
3388 
3389 		end = start + skb_frag_size(frag);
3390 		if ((copy = end - offset) > 0) {
3391 			u32 p_off, p_len, copied;
3392 			struct page *p;
3393 			u8 *vaddr;
3394 
3395 			if (copy > len)
3396 				copy = len;
3397 
3398 			skb_frag_foreach_page(frag,
3399 					      skb_frag_off(frag) + offset - start,
3400 					      copy, p, p_off, p_len, copied) {
3401 				vaddr = kmap_atomic(p);
3402 				memcpy(vaddr + p_off, from + copied, p_len);
3403 				kunmap_atomic(vaddr);
3404 			}
3405 
3406 			if ((len -= copy) == 0)
3407 				return 0;
3408 			offset += copy;
3409 			from += copy;
3410 		}
3411 		start = end;
3412 	}
3413 
3414 	skb_walk_frags(skb, frag_iter) {
3415 		int end;
3416 
3417 		WARN_ON(start > offset + len);
3418 
3419 		end = start + frag_iter->len;
3420 		if ((copy = end - offset) > 0) {
3421 			if (copy > len)
3422 				copy = len;
3423 			if (skb_store_bits(frag_iter, offset - start,
3424 					   from, copy))
3425 				goto fault;
3426 			if ((len -= copy) == 0)
3427 				return 0;
3428 			offset += copy;
3429 			from += copy;
3430 		}
3431 		start = end;
3432 	}
3433 	if (!len)
3434 		return 0;
3435 
3436 fault:
3437 	return -EFAULT;
3438 }
3439 EXPORT_SYMBOL(skb_store_bits);
3440 
3441 /* Checksum skb data. */
3442 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3443 		      __wsum csum, const struct skb_checksum_ops *ops)
3444 {
3445 	int start = skb_headlen(skb);
3446 	int i, copy = start - offset;
3447 	struct sk_buff *frag_iter;
3448 	int pos = 0;
3449 
3450 	/* Checksum header. */
3451 	if (copy > 0) {
3452 		if (copy > len)
3453 			copy = len;
3454 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3455 				       skb->data + offset, copy, csum);
3456 		if ((len -= copy) == 0)
3457 			return csum;
3458 		offset += copy;
3459 		pos	= copy;
3460 	}
3461 
3462 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3463 		return 0;
3464 
3465 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3466 		int end;
3467 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3468 
3469 		WARN_ON(start > offset + len);
3470 
3471 		end = start + skb_frag_size(frag);
3472 		if ((copy = end - offset) > 0) {
3473 			u32 p_off, p_len, copied;
3474 			struct page *p;
3475 			__wsum csum2;
3476 			u8 *vaddr;
3477 
3478 			if (copy > len)
3479 				copy = len;
3480 
3481 			skb_frag_foreach_page(frag,
3482 					      skb_frag_off(frag) + offset - start,
3483 					      copy, p, p_off, p_len, copied) {
3484 				vaddr = kmap_atomic(p);
3485 				csum2 = INDIRECT_CALL_1(ops->update,
3486 							csum_partial_ext,
3487 							vaddr + p_off, p_len, 0);
3488 				kunmap_atomic(vaddr);
3489 				csum = INDIRECT_CALL_1(ops->combine,
3490 						       csum_block_add_ext, csum,
3491 						       csum2, pos, p_len);
3492 				pos += p_len;
3493 			}
3494 
3495 			if (!(len -= copy))
3496 				return csum;
3497 			offset += copy;
3498 		}
3499 		start = end;
3500 	}
3501 
3502 	skb_walk_frags(skb, frag_iter) {
3503 		int end;
3504 
3505 		WARN_ON(start > offset + len);
3506 
3507 		end = start + frag_iter->len;
3508 		if ((copy = end - offset) > 0) {
3509 			__wsum csum2;
3510 			if (copy > len)
3511 				copy = len;
3512 			csum2 = __skb_checksum(frag_iter, offset - start,
3513 					       copy, 0, ops);
3514 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3515 					       csum, csum2, pos, copy);
3516 			if ((len -= copy) == 0)
3517 				return csum;
3518 			offset += copy;
3519 			pos    += copy;
3520 		}
3521 		start = end;
3522 	}
3523 	BUG_ON(len);
3524 
3525 	return csum;
3526 }
3527 EXPORT_SYMBOL(__skb_checksum);
3528 
3529 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3530 		    int len, __wsum csum)
3531 {
3532 	const struct skb_checksum_ops ops = {
3533 		.update  = csum_partial_ext,
3534 		.combine = csum_block_add_ext,
3535 	};
3536 
3537 	return __skb_checksum(skb, offset, len, csum, &ops);
3538 }
3539 EXPORT_SYMBOL(skb_checksum);
3540 
3541 /* Both of above in one bottle. */
3542 
3543 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3544 				    u8 *to, int len)
3545 {
3546 	int start = skb_headlen(skb);
3547 	int i, copy = start - offset;
3548 	struct sk_buff *frag_iter;
3549 	int pos = 0;
3550 	__wsum csum = 0;
3551 
3552 	/* Copy header. */
3553 	if (copy > 0) {
3554 		if (copy > len)
3555 			copy = len;
3556 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3557 						 copy);
3558 		if ((len -= copy) == 0)
3559 			return csum;
3560 		offset += copy;
3561 		to     += copy;
3562 		pos	= copy;
3563 	}
3564 
3565 	if (!skb_frags_readable(skb))
3566 		return 0;
3567 
3568 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3569 		int end;
3570 
3571 		WARN_ON(start > offset + len);
3572 
3573 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3574 		if ((copy = end - offset) > 0) {
3575 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3576 			u32 p_off, p_len, copied;
3577 			struct page *p;
3578 			__wsum csum2;
3579 			u8 *vaddr;
3580 
3581 			if (copy > len)
3582 				copy = len;
3583 
3584 			skb_frag_foreach_page(frag,
3585 					      skb_frag_off(frag) + offset - start,
3586 					      copy, p, p_off, p_len, copied) {
3587 				vaddr = kmap_atomic(p);
3588 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3589 								  to + copied,
3590 								  p_len);
3591 				kunmap_atomic(vaddr);
3592 				csum = csum_block_add(csum, csum2, pos);
3593 				pos += p_len;
3594 			}
3595 
3596 			if (!(len -= copy))
3597 				return csum;
3598 			offset += copy;
3599 			to     += copy;
3600 		}
3601 		start = end;
3602 	}
3603 
3604 	skb_walk_frags(skb, frag_iter) {
3605 		__wsum csum2;
3606 		int end;
3607 
3608 		WARN_ON(start > offset + len);
3609 
3610 		end = start + frag_iter->len;
3611 		if ((copy = end - offset) > 0) {
3612 			if (copy > len)
3613 				copy = len;
3614 			csum2 = skb_copy_and_csum_bits(frag_iter,
3615 						       offset - start,
3616 						       to, copy);
3617 			csum = csum_block_add(csum, csum2, pos);
3618 			if ((len -= copy) == 0)
3619 				return csum;
3620 			offset += copy;
3621 			to     += copy;
3622 			pos    += copy;
3623 		}
3624 		start = end;
3625 	}
3626 	BUG_ON(len);
3627 	return csum;
3628 }
3629 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3630 
3631 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3632 {
3633 	__sum16 sum;
3634 
3635 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3636 	/* See comments in __skb_checksum_complete(). */
3637 	if (likely(!sum)) {
3638 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3639 		    !skb->csum_complete_sw)
3640 			netdev_rx_csum_fault(skb->dev, skb);
3641 	}
3642 	if (!skb_shared(skb))
3643 		skb->csum_valid = !sum;
3644 	return sum;
3645 }
3646 EXPORT_SYMBOL(__skb_checksum_complete_head);
3647 
3648 /* This function assumes skb->csum already holds pseudo header's checksum,
3649  * which has been changed from the hardware checksum, for example, by
3650  * __skb_checksum_validate_complete(). And, the original skb->csum must
3651  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3652  *
3653  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3654  * zero. The new checksum is stored back into skb->csum unless the skb is
3655  * shared.
3656  */
3657 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3658 {
3659 	__wsum csum;
3660 	__sum16 sum;
3661 
3662 	csum = skb_checksum(skb, 0, skb->len, 0);
3663 
3664 	sum = csum_fold(csum_add(skb->csum, csum));
3665 	/* This check is inverted, because we already knew the hardware
3666 	 * checksum is invalid before calling this function. So, if the
3667 	 * re-computed checksum is valid instead, then we have a mismatch
3668 	 * between the original skb->csum and skb_checksum(). This means either
3669 	 * the original hardware checksum is incorrect or we screw up skb->csum
3670 	 * when moving skb->data around.
3671 	 */
3672 	if (likely(!sum)) {
3673 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3674 		    !skb->csum_complete_sw)
3675 			netdev_rx_csum_fault(skb->dev, skb);
3676 	}
3677 
3678 	if (!skb_shared(skb)) {
3679 		/* Save full packet checksum */
3680 		skb->csum = csum;
3681 		skb->ip_summed = CHECKSUM_COMPLETE;
3682 		skb->csum_complete_sw = 1;
3683 		skb->csum_valid = !sum;
3684 	}
3685 
3686 	return sum;
3687 }
3688 EXPORT_SYMBOL(__skb_checksum_complete);
3689 
3690 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3691 {
3692 	net_warn_ratelimited(
3693 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3694 		__func__);
3695 	return 0;
3696 }
3697 
3698 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3699 				       int offset, int len)
3700 {
3701 	net_warn_ratelimited(
3702 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3703 		__func__);
3704 	return 0;
3705 }
3706 
3707 static const struct skb_checksum_ops default_crc32c_ops = {
3708 	.update  = warn_crc32c_csum_update,
3709 	.combine = warn_crc32c_csum_combine,
3710 };
3711 
3712 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3713 	&default_crc32c_ops;
3714 EXPORT_SYMBOL(crc32c_csum_stub);
3715 
3716  /**
3717  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3718  *	@from: source buffer
3719  *
3720  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3721  *	into skb_zerocopy().
3722  */
3723 unsigned int
3724 skb_zerocopy_headlen(const struct sk_buff *from)
3725 {
3726 	unsigned int hlen = 0;
3727 
3728 	if (!from->head_frag ||
3729 	    skb_headlen(from) < L1_CACHE_BYTES ||
3730 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3731 		hlen = skb_headlen(from);
3732 		if (!hlen)
3733 			hlen = from->len;
3734 	}
3735 
3736 	if (skb_has_frag_list(from))
3737 		hlen = from->len;
3738 
3739 	return hlen;
3740 }
3741 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3742 
3743 /**
3744  *	skb_zerocopy - Zero copy skb to skb
3745  *	@to: destination buffer
3746  *	@from: source buffer
3747  *	@len: number of bytes to copy from source buffer
3748  *	@hlen: size of linear headroom in destination buffer
3749  *
3750  *	Copies up to `len` bytes from `from` to `to` by creating references
3751  *	to the frags in the source buffer.
3752  *
3753  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3754  *	headroom in the `to` buffer.
3755  *
3756  *	Return value:
3757  *	0: everything is OK
3758  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3759  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3760  */
3761 int
3762 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3763 {
3764 	int i, j = 0;
3765 	int plen = 0; /* length of skb->head fragment */
3766 	int ret;
3767 	struct page *page;
3768 	unsigned int offset;
3769 
3770 	BUG_ON(!from->head_frag && !hlen);
3771 
3772 	/* dont bother with small payloads */
3773 	if (len <= skb_tailroom(to))
3774 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3775 
3776 	if (hlen) {
3777 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3778 		if (unlikely(ret))
3779 			return ret;
3780 		len -= hlen;
3781 	} else {
3782 		plen = min_t(int, skb_headlen(from), len);
3783 		if (plen) {
3784 			page = virt_to_head_page(from->head);
3785 			offset = from->data - (unsigned char *)page_address(page);
3786 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3787 					       offset, plen);
3788 			get_page(page);
3789 			j = 1;
3790 			len -= plen;
3791 		}
3792 	}
3793 
3794 	skb_len_add(to, len + plen);
3795 
3796 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3797 		skb_tx_error(from);
3798 		return -ENOMEM;
3799 	}
3800 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3801 
3802 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3803 		int size;
3804 
3805 		if (!len)
3806 			break;
3807 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3808 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3809 					len);
3810 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3811 		len -= size;
3812 		skb_frag_ref(to, j);
3813 		j++;
3814 	}
3815 	skb_shinfo(to)->nr_frags = j;
3816 
3817 	return 0;
3818 }
3819 EXPORT_SYMBOL_GPL(skb_zerocopy);
3820 
3821 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3822 {
3823 	__wsum csum;
3824 	long csstart;
3825 
3826 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3827 		csstart = skb_checksum_start_offset(skb);
3828 	else
3829 		csstart = skb_headlen(skb);
3830 
3831 	BUG_ON(csstart > skb_headlen(skb));
3832 
3833 	skb_copy_from_linear_data(skb, to, csstart);
3834 
3835 	csum = 0;
3836 	if (csstart != skb->len)
3837 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3838 					      skb->len - csstart);
3839 
3840 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3841 		long csstuff = csstart + skb->csum_offset;
3842 
3843 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3844 	}
3845 }
3846 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3847 
3848 /**
3849  *	skb_dequeue - remove from the head of the queue
3850  *	@list: list to dequeue from
3851  *
3852  *	Remove the head of the list. The list lock is taken so the function
3853  *	may be used safely with other locking list functions. The head item is
3854  *	returned or %NULL if the list is empty.
3855  */
3856 
3857 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3858 {
3859 	unsigned long flags;
3860 	struct sk_buff *result;
3861 
3862 	spin_lock_irqsave(&list->lock, flags);
3863 	result = __skb_dequeue(list);
3864 	spin_unlock_irqrestore(&list->lock, flags);
3865 	return result;
3866 }
3867 EXPORT_SYMBOL(skb_dequeue);
3868 
3869 /**
3870  *	skb_dequeue_tail - remove from the tail of the queue
3871  *	@list: list to dequeue from
3872  *
3873  *	Remove the tail of the list. The list lock is taken so the function
3874  *	may be used safely with other locking list functions. The tail item is
3875  *	returned or %NULL if the list is empty.
3876  */
3877 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3878 {
3879 	unsigned long flags;
3880 	struct sk_buff *result;
3881 
3882 	spin_lock_irqsave(&list->lock, flags);
3883 	result = __skb_dequeue_tail(list);
3884 	spin_unlock_irqrestore(&list->lock, flags);
3885 	return result;
3886 }
3887 EXPORT_SYMBOL(skb_dequeue_tail);
3888 
3889 /**
3890  *	skb_queue_purge_reason - empty a list
3891  *	@list: list to empty
3892  *	@reason: drop reason
3893  *
3894  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3895  *	the list and one reference dropped. This function takes the list
3896  *	lock and is atomic with respect to other list locking functions.
3897  */
3898 void skb_queue_purge_reason(struct sk_buff_head *list,
3899 			    enum skb_drop_reason reason)
3900 {
3901 	struct sk_buff_head tmp;
3902 	unsigned long flags;
3903 
3904 	if (skb_queue_empty_lockless(list))
3905 		return;
3906 
3907 	__skb_queue_head_init(&tmp);
3908 
3909 	spin_lock_irqsave(&list->lock, flags);
3910 	skb_queue_splice_init(list, &tmp);
3911 	spin_unlock_irqrestore(&list->lock, flags);
3912 
3913 	__skb_queue_purge_reason(&tmp, reason);
3914 }
3915 EXPORT_SYMBOL(skb_queue_purge_reason);
3916 
3917 /**
3918  *	skb_rbtree_purge - empty a skb rbtree
3919  *	@root: root of the rbtree to empty
3920  *	Return value: the sum of truesizes of all purged skbs.
3921  *
3922  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3923  *	the list and one reference dropped. This function does not take
3924  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3925  *	out-of-order queue is protected by the socket lock).
3926  */
3927 unsigned int skb_rbtree_purge(struct rb_root *root)
3928 {
3929 	struct rb_node *p = rb_first(root);
3930 	unsigned int sum = 0;
3931 
3932 	while (p) {
3933 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3934 
3935 		p = rb_next(p);
3936 		rb_erase(&skb->rbnode, root);
3937 		sum += skb->truesize;
3938 		kfree_skb(skb);
3939 	}
3940 	return sum;
3941 }
3942 
3943 void skb_errqueue_purge(struct sk_buff_head *list)
3944 {
3945 	struct sk_buff *skb, *next;
3946 	struct sk_buff_head kill;
3947 	unsigned long flags;
3948 
3949 	__skb_queue_head_init(&kill);
3950 
3951 	spin_lock_irqsave(&list->lock, flags);
3952 	skb_queue_walk_safe(list, skb, next) {
3953 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3954 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3955 			continue;
3956 		__skb_unlink(skb, list);
3957 		__skb_queue_tail(&kill, skb);
3958 	}
3959 	spin_unlock_irqrestore(&list->lock, flags);
3960 	__skb_queue_purge(&kill);
3961 }
3962 EXPORT_SYMBOL(skb_errqueue_purge);
3963 
3964 /**
3965  *	skb_queue_head - queue a buffer at the list head
3966  *	@list: list to use
3967  *	@newsk: buffer to queue
3968  *
3969  *	Queue a buffer at the start of the list. This function takes the
3970  *	list lock and can be used safely with other locking &sk_buff functions
3971  *	safely.
3972  *
3973  *	A buffer cannot be placed on two lists at the same time.
3974  */
3975 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3976 {
3977 	unsigned long flags;
3978 
3979 	spin_lock_irqsave(&list->lock, flags);
3980 	__skb_queue_head(list, newsk);
3981 	spin_unlock_irqrestore(&list->lock, flags);
3982 }
3983 EXPORT_SYMBOL(skb_queue_head);
3984 
3985 /**
3986  *	skb_queue_tail - queue a buffer at the list tail
3987  *	@list: list to use
3988  *	@newsk: buffer to queue
3989  *
3990  *	Queue a buffer at the tail of the list. This function takes the
3991  *	list lock and can be used safely with other locking &sk_buff functions
3992  *	safely.
3993  *
3994  *	A buffer cannot be placed on two lists at the same time.
3995  */
3996 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3997 {
3998 	unsigned long flags;
3999 
4000 	spin_lock_irqsave(&list->lock, flags);
4001 	__skb_queue_tail(list, newsk);
4002 	spin_unlock_irqrestore(&list->lock, flags);
4003 }
4004 EXPORT_SYMBOL(skb_queue_tail);
4005 
4006 /**
4007  *	skb_unlink	-	remove a buffer from a list
4008  *	@skb: buffer to remove
4009  *	@list: list to use
4010  *
4011  *	Remove a packet from a list. The list locks are taken and this
4012  *	function is atomic with respect to other list locked calls
4013  *
4014  *	You must know what list the SKB is on.
4015  */
4016 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4017 {
4018 	unsigned long flags;
4019 
4020 	spin_lock_irqsave(&list->lock, flags);
4021 	__skb_unlink(skb, list);
4022 	spin_unlock_irqrestore(&list->lock, flags);
4023 }
4024 EXPORT_SYMBOL(skb_unlink);
4025 
4026 /**
4027  *	skb_append	-	append a buffer
4028  *	@old: buffer to insert after
4029  *	@newsk: buffer to insert
4030  *	@list: list to use
4031  *
4032  *	Place a packet after a given packet in a list. The list locks are taken
4033  *	and this function is atomic with respect to other list locked calls.
4034  *	A buffer cannot be placed on two lists at the same time.
4035  */
4036 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4037 {
4038 	unsigned long flags;
4039 
4040 	spin_lock_irqsave(&list->lock, flags);
4041 	__skb_queue_after(list, old, newsk);
4042 	spin_unlock_irqrestore(&list->lock, flags);
4043 }
4044 EXPORT_SYMBOL(skb_append);
4045 
4046 static inline void skb_split_inside_header(struct sk_buff *skb,
4047 					   struct sk_buff* skb1,
4048 					   const u32 len, const int pos)
4049 {
4050 	int i;
4051 
4052 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4053 					 pos - len);
4054 	/* And move data appendix as is. */
4055 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4056 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4057 
4058 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4059 	skb1->unreadable	   = skb->unreadable;
4060 	skb_shinfo(skb)->nr_frags  = 0;
4061 	skb1->data_len		   = skb->data_len;
4062 	skb1->len		   += skb1->data_len;
4063 	skb->data_len		   = 0;
4064 	skb->len		   = len;
4065 	skb_set_tail_pointer(skb, len);
4066 }
4067 
4068 static inline void skb_split_no_header(struct sk_buff *skb,
4069 				       struct sk_buff* skb1,
4070 				       const u32 len, int pos)
4071 {
4072 	int i, k = 0;
4073 	const int nfrags = skb_shinfo(skb)->nr_frags;
4074 
4075 	skb_shinfo(skb)->nr_frags = 0;
4076 	skb1->len		  = skb1->data_len = skb->len - len;
4077 	skb->len		  = len;
4078 	skb->data_len		  = len - pos;
4079 
4080 	for (i = 0; i < nfrags; i++) {
4081 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4082 
4083 		if (pos + size > len) {
4084 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4085 
4086 			if (pos < len) {
4087 				/* Split frag.
4088 				 * We have two variants in this case:
4089 				 * 1. Move all the frag to the second
4090 				 *    part, if it is possible. F.e.
4091 				 *    this approach is mandatory for TUX,
4092 				 *    where splitting is expensive.
4093 				 * 2. Split is accurately. We make this.
4094 				 */
4095 				skb_frag_ref(skb, i);
4096 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4097 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4098 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4099 				skb_shinfo(skb)->nr_frags++;
4100 			}
4101 			k++;
4102 		} else
4103 			skb_shinfo(skb)->nr_frags++;
4104 		pos += size;
4105 	}
4106 	skb_shinfo(skb1)->nr_frags = k;
4107 
4108 	skb1->unreadable = skb->unreadable;
4109 }
4110 
4111 /**
4112  * skb_split - Split fragmented skb to two parts at length len.
4113  * @skb: the buffer to split
4114  * @skb1: the buffer to receive the second part
4115  * @len: new length for skb
4116  */
4117 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4118 {
4119 	int pos = skb_headlen(skb);
4120 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4121 
4122 	skb_zcopy_downgrade_managed(skb);
4123 
4124 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4125 	skb_zerocopy_clone(skb1, skb, 0);
4126 	if (len < pos)	/* Split line is inside header. */
4127 		skb_split_inside_header(skb, skb1, len, pos);
4128 	else		/* Second chunk has no header, nothing to copy. */
4129 		skb_split_no_header(skb, skb1, len, pos);
4130 }
4131 EXPORT_SYMBOL(skb_split);
4132 
4133 /* Shifting from/to a cloned skb is a no-go.
4134  *
4135  * Caller cannot keep skb_shinfo related pointers past calling here!
4136  */
4137 static int skb_prepare_for_shift(struct sk_buff *skb)
4138 {
4139 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4140 }
4141 
4142 /**
4143  * skb_shift - Shifts paged data partially from skb to another
4144  * @tgt: buffer into which tail data gets added
4145  * @skb: buffer from which the paged data comes from
4146  * @shiftlen: shift up to this many bytes
4147  *
4148  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4149  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4150  * It's up to caller to free skb if everything was shifted.
4151  *
4152  * If @tgt runs out of frags, the whole operation is aborted.
4153  *
4154  * Skb cannot include anything else but paged data while tgt is allowed
4155  * to have non-paged data as well.
4156  *
4157  * TODO: full sized shift could be optimized but that would need
4158  * specialized skb free'er to handle frags without up-to-date nr_frags.
4159  */
4160 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4161 {
4162 	int from, to, merge, todo;
4163 	skb_frag_t *fragfrom, *fragto;
4164 
4165 	BUG_ON(shiftlen > skb->len);
4166 
4167 	if (skb_headlen(skb))
4168 		return 0;
4169 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4170 		return 0;
4171 
4172 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4173 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4174 
4175 	todo = shiftlen;
4176 	from = 0;
4177 	to = skb_shinfo(tgt)->nr_frags;
4178 	fragfrom = &skb_shinfo(skb)->frags[from];
4179 
4180 	/* Actual merge is delayed until the point when we know we can
4181 	 * commit all, so that we don't have to undo partial changes
4182 	 */
4183 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4184 			      skb_frag_off(fragfrom))) {
4185 		merge = -1;
4186 	} else {
4187 		merge = to - 1;
4188 
4189 		todo -= skb_frag_size(fragfrom);
4190 		if (todo < 0) {
4191 			if (skb_prepare_for_shift(skb) ||
4192 			    skb_prepare_for_shift(tgt))
4193 				return 0;
4194 
4195 			/* All previous frag pointers might be stale! */
4196 			fragfrom = &skb_shinfo(skb)->frags[from];
4197 			fragto = &skb_shinfo(tgt)->frags[merge];
4198 
4199 			skb_frag_size_add(fragto, shiftlen);
4200 			skb_frag_size_sub(fragfrom, shiftlen);
4201 			skb_frag_off_add(fragfrom, shiftlen);
4202 
4203 			goto onlymerged;
4204 		}
4205 
4206 		from++;
4207 	}
4208 
4209 	/* Skip full, not-fitting skb to avoid expensive operations */
4210 	if ((shiftlen == skb->len) &&
4211 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4212 		return 0;
4213 
4214 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4215 		return 0;
4216 
4217 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4218 		if (to == MAX_SKB_FRAGS)
4219 			return 0;
4220 
4221 		fragfrom = &skb_shinfo(skb)->frags[from];
4222 		fragto = &skb_shinfo(tgt)->frags[to];
4223 
4224 		if (todo >= skb_frag_size(fragfrom)) {
4225 			*fragto = *fragfrom;
4226 			todo -= skb_frag_size(fragfrom);
4227 			from++;
4228 			to++;
4229 
4230 		} else {
4231 			__skb_frag_ref(fragfrom);
4232 			skb_frag_page_copy(fragto, fragfrom);
4233 			skb_frag_off_copy(fragto, fragfrom);
4234 			skb_frag_size_set(fragto, todo);
4235 
4236 			skb_frag_off_add(fragfrom, todo);
4237 			skb_frag_size_sub(fragfrom, todo);
4238 			todo = 0;
4239 
4240 			to++;
4241 			break;
4242 		}
4243 	}
4244 
4245 	/* Ready to "commit" this state change to tgt */
4246 	skb_shinfo(tgt)->nr_frags = to;
4247 
4248 	if (merge >= 0) {
4249 		fragfrom = &skb_shinfo(skb)->frags[0];
4250 		fragto = &skb_shinfo(tgt)->frags[merge];
4251 
4252 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4253 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4254 	}
4255 
4256 	/* Reposition in the original skb */
4257 	to = 0;
4258 	while (from < skb_shinfo(skb)->nr_frags)
4259 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4260 	skb_shinfo(skb)->nr_frags = to;
4261 
4262 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4263 
4264 onlymerged:
4265 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4266 	 * the other hand might need it if it needs to be resent
4267 	 */
4268 	tgt->ip_summed = CHECKSUM_PARTIAL;
4269 	skb->ip_summed = CHECKSUM_PARTIAL;
4270 
4271 	skb_len_add(skb, -shiftlen);
4272 	skb_len_add(tgt, shiftlen);
4273 
4274 	return shiftlen;
4275 }
4276 
4277 /**
4278  * skb_prepare_seq_read - Prepare a sequential read of skb data
4279  * @skb: the buffer to read
4280  * @from: lower offset of data to be read
4281  * @to: upper offset of data to be read
4282  * @st: state variable
4283  *
4284  * Initializes the specified state variable. Must be called before
4285  * invoking skb_seq_read() for the first time.
4286  */
4287 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4288 			  unsigned int to, struct skb_seq_state *st)
4289 {
4290 	st->lower_offset = from;
4291 	st->upper_offset = to;
4292 	st->root_skb = st->cur_skb = skb;
4293 	st->frag_idx = st->stepped_offset = 0;
4294 	st->frag_data = NULL;
4295 	st->frag_off = 0;
4296 }
4297 EXPORT_SYMBOL(skb_prepare_seq_read);
4298 
4299 /**
4300  * skb_seq_read - Sequentially read skb data
4301  * @consumed: number of bytes consumed by the caller so far
4302  * @data: destination pointer for data to be returned
4303  * @st: state variable
4304  *
4305  * Reads a block of skb data at @consumed relative to the
4306  * lower offset specified to skb_prepare_seq_read(). Assigns
4307  * the head of the data block to @data and returns the length
4308  * of the block or 0 if the end of the skb data or the upper
4309  * offset has been reached.
4310  *
4311  * The caller is not required to consume all of the data
4312  * returned, i.e. @consumed is typically set to the number
4313  * of bytes already consumed and the next call to
4314  * skb_seq_read() will return the remaining part of the block.
4315  *
4316  * Note 1: The size of each block of data returned can be arbitrary,
4317  *       this limitation is the cost for zerocopy sequential
4318  *       reads of potentially non linear data.
4319  *
4320  * Note 2: Fragment lists within fragments are not implemented
4321  *       at the moment, state->root_skb could be replaced with
4322  *       a stack for this purpose.
4323  */
4324 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4325 			  struct skb_seq_state *st)
4326 {
4327 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4328 	skb_frag_t *frag;
4329 
4330 	if (unlikely(abs_offset >= st->upper_offset)) {
4331 		if (st->frag_data) {
4332 			kunmap_atomic(st->frag_data);
4333 			st->frag_data = NULL;
4334 		}
4335 		return 0;
4336 	}
4337 
4338 next_skb:
4339 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4340 
4341 	if (abs_offset < block_limit && !st->frag_data) {
4342 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4343 		return block_limit - abs_offset;
4344 	}
4345 
4346 	if (!skb_frags_readable(st->cur_skb))
4347 		return 0;
4348 
4349 	if (st->frag_idx == 0 && !st->frag_data)
4350 		st->stepped_offset += skb_headlen(st->cur_skb);
4351 
4352 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4353 		unsigned int pg_idx, pg_off, pg_sz;
4354 
4355 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4356 
4357 		pg_idx = 0;
4358 		pg_off = skb_frag_off(frag);
4359 		pg_sz = skb_frag_size(frag);
4360 
4361 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4362 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4363 			pg_off = offset_in_page(pg_off + st->frag_off);
4364 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4365 						    PAGE_SIZE - pg_off);
4366 		}
4367 
4368 		block_limit = pg_sz + st->stepped_offset;
4369 		if (abs_offset < block_limit) {
4370 			if (!st->frag_data)
4371 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4372 
4373 			*data = (u8 *)st->frag_data + pg_off +
4374 				(abs_offset - st->stepped_offset);
4375 
4376 			return block_limit - abs_offset;
4377 		}
4378 
4379 		if (st->frag_data) {
4380 			kunmap_atomic(st->frag_data);
4381 			st->frag_data = NULL;
4382 		}
4383 
4384 		st->stepped_offset += pg_sz;
4385 		st->frag_off += pg_sz;
4386 		if (st->frag_off == skb_frag_size(frag)) {
4387 			st->frag_off = 0;
4388 			st->frag_idx++;
4389 		}
4390 	}
4391 
4392 	if (st->frag_data) {
4393 		kunmap_atomic(st->frag_data);
4394 		st->frag_data = NULL;
4395 	}
4396 
4397 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4398 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4399 		st->frag_idx = 0;
4400 		goto next_skb;
4401 	} else if (st->cur_skb->next) {
4402 		st->cur_skb = st->cur_skb->next;
4403 		st->frag_idx = 0;
4404 		goto next_skb;
4405 	}
4406 
4407 	return 0;
4408 }
4409 EXPORT_SYMBOL(skb_seq_read);
4410 
4411 /**
4412  * skb_abort_seq_read - Abort a sequential read of skb data
4413  * @st: state variable
4414  *
4415  * Must be called if skb_seq_read() was not called until it
4416  * returned 0.
4417  */
4418 void skb_abort_seq_read(struct skb_seq_state *st)
4419 {
4420 	if (st->frag_data)
4421 		kunmap_atomic(st->frag_data);
4422 }
4423 EXPORT_SYMBOL(skb_abort_seq_read);
4424 
4425 /**
4426  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4427  * @st: source skb_seq_state
4428  * @offset: offset in source
4429  * @to: destination buffer
4430  * @len: number of bytes to copy
4431  *
4432  * Copy @len bytes from @offset bytes into the source @st to the destination
4433  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4434  * call to this function. If offset needs to decrease from the previous use `st`
4435  * should be reset first.
4436  *
4437  * Return: 0 on success or -EINVAL if the copy ended early
4438  */
4439 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4440 {
4441 	const u8 *data;
4442 	u32 sqlen;
4443 
4444 	for (;;) {
4445 		sqlen = skb_seq_read(offset, &data, st);
4446 		if (sqlen == 0)
4447 			return -EINVAL;
4448 		if (sqlen >= len) {
4449 			memcpy(to, data, len);
4450 			return 0;
4451 		}
4452 		memcpy(to, data, sqlen);
4453 		to += sqlen;
4454 		offset += sqlen;
4455 		len -= sqlen;
4456 	}
4457 }
4458 EXPORT_SYMBOL(skb_copy_seq_read);
4459 
4460 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4461 
4462 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4463 					  struct ts_config *conf,
4464 					  struct ts_state *state)
4465 {
4466 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4467 }
4468 
4469 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4470 {
4471 	skb_abort_seq_read(TS_SKB_CB(state));
4472 }
4473 
4474 /**
4475  * skb_find_text - Find a text pattern in skb data
4476  * @skb: the buffer to look in
4477  * @from: search offset
4478  * @to: search limit
4479  * @config: textsearch configuration
4480  *
4481  * Finds a pattern in the skb data according to the specified
4482  * textsearch configuration. Use textsearch_next() to retrieve
4483  * subsequent occurrences of the pattern. Returns the offset
4484  * to the first occurrence or UINT_MAX if no match was found.
4485  */
4486 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4487 			   unsigned int to, struct ts_config *config)
4488 {
4489 	unsigned int patlen = config->ops->get_pattern_len(config);
4490 	struct ts_state state;
4491 	unsigned int ret;
4492 
4493 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4494 
4495 	config->get_next_block = skb_ts_get_next_block;
4496 	config->finish = skb_ts_finish;
4497 
4498 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4499 
4500 	ret = textsearch_find(config, &state);
4501 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4502 }
4503 EXPORT_SYMBOL(skb_find_text);
4504 
4505 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4506 			 int offset, size_t size, size_t max_frags)
4507 {
4508 	int i = skb_shinfo(skb)->nr_frags;
4509 
4510 	if (skb_can_coalesce(skb, i, page, offset)) {
4511 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4512 	} else if (i < max_frags) {
4513 		skb_zcopy_downgrade_managed(skb);
4514 		get_page(page);
4515 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4516 	} else {
4517 		return -EMSGSIZE;
4518 	}
4519 
4520 	return 0;
4521 }
4522 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4523 
4524 /**
4525  *	skb_pull_rcsum - pull skb and update receive checksum
4526  *	@skb: buffer to update
4527  *	@len: length of data pulled
4528  *
4529  *	This function performs an skb_pull on the packet and updates
4530  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4531  *	receive path processing instead of skb_pull unless you know
4532  *	that the checksum difference is zero (e.g., a valid IP header)
4533  *	or you are setting ip_summed to CHECKSUM_NONE.
4534  */
4535 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4536 {
4537 	unsigned char *data = skb->data;
4538 
4539 	BUG_ON(len > skb->len);
4540 	__skb_pull(skb, len);
4541 	skb_postpull_rcsum(skb, data, len);
4542 	return skb->data;
4543 }
4544 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4545 
4546 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4547 {
4548 	skb_frag_t head_frag;
4549 	struct page *page;
4550 
4551 	page = virt_to_head_page(frag_skb->head);
4552 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4553 				(unsigned char *)page_address(page),
4554 				skb_headlen(frag_skb));
4555 	return head_frag;
4556 }
4557 
4558 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4559 				 netdev_features_t features,
4560 				 unsigned int offset)
4561 {
4562 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4563 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4564 	unsigned int delta_truesize = 0;
4565 	unsigned int delta_len = 0;
4566 	struct sk_buff *tail = NULL;
4567 	struct sk_buff *nskb, *tmp;
4568 	int len_diff, err;
4569 
4570 	skb_push(skb, -skb_network_offset(skb) + offset);
4571 
4572 	/* Ensure the head is writeable before touching the shared info */
4573 	err = skb_unclone(skb, GFP_ATOMIC);
4574 	if (err)
4575 		goto err_linearize;
4576 
4577 	skb_shinfo(skb)->frag_list = NULL;
4578 
4579 	while (list_skb) {
4580 		nskb = list_skb;
4581 		list_skb = list_skb->next;
4582 
4583 		err = 0;
4584 		delta_truesize += nskb->truesize;
4585 		if (skb_shared(nskb)) {
4586 			tmp = skb_clone(nskb, GFP_ATOMIC);
4587 			if (tmp) {
4588 				consume_skb(nskb);
4589 				nskb = tmp;
4590 				err = skb_unclone(nskb, GFP_ATOMIC);
4591 			} else {
4592 				err = -ENOMEM;
4593 			}
4594 		}
4595 
4596 		if (!tail)
4597 			skb->next = nskb;
4598 		else
4599 			tail->next = nskb;
4600 
4601 		if (unlikely(err)) {
4602 			nskb->next = list_skb;
4603 			goto err_linearize;
4604 		}
4605 
4606 		tail = nskb;
4607 
4608 		delta_len += nskb->len;
4609 
4610 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4611 
4612 		skb_release_head_state(nskb);
4613 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4614 		__copy_skb_header(nskb, skb);
4615 
4616 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4617 		nskb->transport_header += len_diff;
4618 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4619 						 nskb->data - tnl_hlen,
4620 						 offset + tnl_hlen);
4621 
4622 		if (skb_needs_linearize(nskb, features) &&
4623 		    __skb_linearize(nskb))
4624 			goto err_linearize;
4625 	}
4626 
4627 	skb->truesize = skb->truesize - delta_truesize;
4628 	skb->data_len = skb->data_len - delta_len;
4629 	skb->len = skb->len - delta_len;
4630 
4631 	skb_gso_reset(skb);
4632 
4633 	skb->prev = tail;
4634 
4635 	if (skb_needs_linearize(skb, features) &&
4636 	    __skb_linearize(skb))
4637 		goto err_linearize;
4638 
4639 	skb_get(skb);
4640 
4641 	return skb;
4642 
4643 err_linearize:
4644 	kfree_skb_list(skb->next);
4645 	skb->next = NULL;
4646 	return ERR_PTR(-ENOMEM);
4647 }
4648 EXPORT_SYMBOL_GPL(skb_segment_list);
4649 
4650 /**
4651  *	skb_segment - Perform protocol segmentation on skb.
4652  *	@head_skb: buffer to segment
4653  *	@features: features for the output path (see dev->features)
4654  *
4655  *	This function performs segmentation on the given skb.  It returns
4656  *	a pointer to the first in a list of new skbs for the segments.
4657  *	In case of error it returns ERR_PTR(err).
4658  */
4659 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4660 			    netdev_features_t features)
4661 {
4662 	struct sk_buff *segs = NULL;
4663 	struct sk_buff *tail = NULL;
4664 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4665 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4666 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4667 	unsigned int offset = doffset;
4668 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4669 	unsigned int partial_segs = 0;
4670 	unsigned int headroom;
4671 	unsigned int len = head_skb->len;
4672 	struct sk_buff *frag_skb;
4673 	skb_frag_t *frag;
4674 	__be16 proto;
4675 	bool csum, sg;
4676 	int err = -ENOMEM;
4677 	int i = 0;
4678 	int nfrags, pos;
4679 
4680 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4681 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4682 		struct sk_buff *check_skb;
4683 
4684 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4685 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4686 				/* gso_size is untrusted, and we have a frag_list with
4687 				 * a linear non head_frag item.
4688 				 *
4689 				 * If head_skb's headlen does not fit requested gso_size,
4690 				 * it means that the frag_list members do NOT terminate
4691 				 * on exact gso_size boundaries. Hence we cannot perform
4692 				 * skb_frag_t page sharing. Therefore we must fallback to
4693 				 * copying the frag_list skbs; we do so by disabling SG.
4694 				 */
4695 				features &= ~NETIF_F_SG;
4696 				break;
4697 			}
4698 		}
4699 	}
4700 
4701 	__skb_push(head_skb, doffset);
4702 	proto = skb_network_protocol(head_skb, NULL);
4703 	if (unlikely(!proto))
4704 		return ERR_PTR(-EINVAL);
4705 
4706 	sg = !!(features & NETIF_F_SG);
4707 	csum = !!can_checksum_protocol(features, proto);
4708 
4709 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4710 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4711 			struct sk_buff *iter;
4712 			unsigned int frag_len;
4713 
4714 			if (!list_skb ||
4715 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4716 				goto normal;
4717 
4718 			/* If we get here then all the required
4719 			 * GSO features except frag_list are supported.
4720 			 * Try to split the SKB to multiple GSO SKBs
4721 			 * with no frag_list.
4722 			 * Currently we can do that only when the buffers don't
4723 			 * have a linear part and all the buffers except
4724 			 * the last are of the same length.
4725 			 */
4726 			frag_len = list_skb->len;
4727 			skb_walk_frags(head_skb, iter) {
4728 				if (frag_len != iter->len && iter->next)
4729 					goto normal;
4730 				if (skb_headlen(iter) && !iter->head_frag)
4731 					goto normal;
4732 
4733 				len -= iter->len;
4734 			}
4735 
4736 			if (len != frag_len)
4737 				goto normal;
4738 		}
4739 
4740 		/* GSO partial only requires that we trim off any excess that
4741 		 * doesn't fit into an MSS sized block, so take care of that
4742 		 * now.
4743 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4744 		 */
4745 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4746 		if (partial_segs > 1)
4747 			mss *= partial_segs;
4748 		else
4749 			partial_segs = 0;
4750 	}
4751 
4752 normal:
4753 	headroom = skb_headroom(head_skb);
4754 	pos = skb_headlen(head_skb);
4755 
4756 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4757 		return ERR_PTR(-ENOMEM);
4758 
4759 	nfrags = skb_shinfo(head_skb)->nr_frags;
4760 	frag = skb_shinfo(head_skb)->frags;
4761 	frag_skb = head_skb;
4762 
4763 	do {
4764 		struct sk_buff *nskb;
4765 		skb_frag_t *nskb_frag;
4766 		int hsize;
4767 		int size;
4768 
4769 		if (unlikely(mss == GSO_BY_FRAGS)) {
4770 			len = list_skb->len;
4771 		} else {
4772 			len = head_skb->len - offset;
4773 			if (len > mss)
4774 				len = mss;
4775 		}
4776 
4777 		hsize = skb_headlen(head_skb) - offset;
4778 
4779 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4780 		    (skb_headlen(list_skb) == len || sg)) {
4781 			BUG_ON(skb_headlen(list_skb) > len);
4782 
4783 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4784 			if (unlikely(!nskb))
4785 				goto err;
4786 
4787 			i = 0;
4788 			nfrags = skb_shinfo(list_skb)->nr_frags;
4789 			frag = skb_shinfo(list_skb)->frags;
4790 			frag_skb = list_skb;
4791 			pos += skb_headlen(list_skb);
4792 
4793 			while (pos < offset + len) {
4794 				BUG_ON(i >= nfrags);
4795 
4796 				size = skb_frag_size(frag);
4797 				if (pos + size > offset + len)
4798 					break;
4799 
4800 				i++;
4801 				pos += size;
4802 				frag++;
4803 			}
4804 
4805 			list_skb = list_skb->next;
4806 
4807 			if (unlikely(pskb_trim(nskb, len))) {
4808 				kfree_skb(nskb);
4809 				goto err;
4810 			}
4811 
4812 			hsize = skb_end_offset(nskb);
4813 			if (skb_cow_head(nskb, doffset + headroom)) {
4814 				kfree_skb(nskb);
4815 				goto err;
4816 			}
4817 
4818 			nskb->truesize += skb_end_offset(nskb) - hsize;
4819 			skb_release_head_state(nskb);
4820 			__skb_push(nskb, doffset);
4821 		} else {
4822 			if (hsize < 0)
4823 				hsize = 0;
4824 			if (hsize > len || !sg)
4825 				hsize = len;
4826 
4827 			nskb = __alloc_skb(hsize + doffset + headroom,
4828 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4829 					   NUMA_NO_NODE);
4830 
4831 			if (unlikely(!nskb))
4832 				goto err;
4833 
4834 			skb_reserve(nskb, headroom);
4835 			__skb_put(nskb, doffset);
4836 		}
4837 
4838 		if (segs)
4839 			tail->next = nskb;
4840 		else
4841 			segs = nskb;
4842 		tail = nskb;
4843 
4844 		__copy_skb_header(nskb, head_skb);
4845 
4846 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4847 		skb_reset_mac_len(nskb);
4848 
4849 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4850 						 nskb->data - tnl_hlen,
4851 						 doffset + tnl_hlen);
4852 
4853 		if (nskb->len == len + doffset)
4854 			goto perform_csum_check;
4855 
4856 		if (!sg) {
4857 			if (!csum) {
4858 				if (!nskb->remcsum_offload)
4859 					nskb->ip_summed = CHECKSUM_NONE;
4860 				SKB_GSO_CB(nskb)->csum =
4861 					skb_copy_and_csum_bits(head_skb, offset,
4862 							       skb_put(nskb,
4863 								       len),
4864 							       len);
4865 				SKB_GSO_CB(nskb)->csum_start =
4866 					skb_headroom(nskb) + doffset;
4867 			} else {
4868 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4869 					goto err;
4870 			}
4871 			continue;
4872 		}
4873 
4874 		nskb_frag = skb_shinfo(nskb)->frags;
4875 
4876 		skb_copy_from_linear_data_offset(head_skb, offset,
4877 						 skb_put(nskb, hsize), hsize);
4878 
4879 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4880 					   SKBFL_SHARED_FRAG;
4881 
4882 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4883 			goto err;
4884 
4885 		while (pos < offset + len) {
4886 			if (i >= nfrags) {
4887 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4888 				    skb_zerocopy_clone(nskb, list_skb,
4889 						       GFP_ATOMIC))
4890 					goto err;
4891 
4892 				i = 0;
4893 				nfrags = skb_shinfo(list_skb)->nr_frags;
4894 				frag = skb_shinfo(list_skb)->frags;
4895 				frag_skb = list_skb;
4896 				if (!skb_headlen(list_skb)) {
4897 					BUG_ON(!nfrags);
4898 				} else {
4899 					BUG_ON(!list_skb->head_frag);
4900 
4901 					/* to make room for head_frag. */
4902 					i--;
4903 					frag--;
4904 				}
4905 
4906 				list_skb = list_skb->next;
4907 			}
4908 
4909 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4910 				     MAX_SKB_FRAGS)) {
4911 				net_warn_ratelimited(
4912 					"skb_segment: too many frags: %u %u\n",
4913 					pos, mss);
4914 				err = -EINVAL;
4915 				goto err;
4916 			}
4917 
4918 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4919 			__skb_frag_ref(nskb_frag);
4920 			size = skb_frag_size(nskb_frag);
4921 
4922 			if (pos < offset) {
4923 				skb_frag_off_add(nskb_frag, offset - pos);
4924 				skb_frag_size_sub(nskb_frag, offset - pos);
4925 			}
4926 
4927 			skb_shinfo(nskb)->nr_frags++;
4928 
4929 			if (pos + size <= offset + len) {
4930 				i++;
4931 				frag++;
4932 				pos += size;
4933 			} else {
4934 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4935 				goto skip_fraglist;
4936 			}
4937 
4938 			nskb_frag++;
4939 		}
4940 
4941 skip_fraglist:
4942 		nskb->data_len = len - hsize;
4943 		nskb->len += nskb->data_len;
4944 		nskb->truesize += nskb->data_len;
4945 
4946 perform_csum_check:
4947 		if (!csum) {
4948 			if (skb_has_shared_frag(nskb) &&
4949 			    __skb_linearize(nskb))
4950 				goto err;
4951 
4952 			if (!nskb->remcsum_offload)
4953 				nskb->ip_summed = CHECKSUM_NONE;
4954 			SKB_GSO_CB(nskb)->csum =
4955 				skb_checksum(nskb, doffset,
4956 					     nskb->len - doffset, 0);
4957 			SKB_GSO_CB(nskb)->csum_start =
4958 				skb_headroom(nskb) + doffset;
4959 		}
4960 	} while ((offset += len) < head_skb->len);
4961 
4962 	/* Some callers want to get the end of the list.
4963 	 * Put it in segs->prev to avoid walking the list.
4964 	 * (see validate_xmit_skb_list() for example)
4965 	 */
4966 	segs->prev = tail;
4967 
4968 	if (partial_segs) {
4969 		struct sk_buff *iter;
4970 		int type = skb_shinfo(head_skb)->gso_type;
4971 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4972 
4973 		/* Update type to add partial and then remove dodgy if set */
4974 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4975 		type &= ~SKB_GSO_DODGY;
4976 
4977 		/* Update GSO info and prepare to start updating headers on
4978 		 * our way back down the stack of protocols.
4979 		 */
4980 		for (iter = segs; iter; iter = iter->next) {
4981 			skb_shinfo(iter)->gso_size = gso_size;
4982 			skb_shinfo(iter)->gso_segs = partial_segs;
4983 			skb_shinfo(iter)->gso_type = type;
4984 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4985 		}
4986 
4987 		if (tail->len - doffset <= gso_size)
4988 			skb_shinfo(tail)->gso_size = 0;
4989 		else if (tail != segs)
4990 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4991 	}
4992 
4993 	/* Following permits correct backpressure, for protocols
4994 	 * using skb_set_owner_w().
4995 	 * Idea is to tranfert ownership from head_skb to last segment.
4996 	 */
4997 	if (head_skb->destructor == sock_wfree) {
4998 		swap(tail->truesize, head_skb->truesize);
4999 		swap(tail->destructor, head_skb->destructor);
5000 		swap(tail->sk, head_skb->sk);
5001 	}
5002 	return segs;
5003 
5004 err:
5005 	kfree_skb_list(segs);
5006 	return ERR_PTR(err);
5007 }
5008 EXPORT_SYMBOL_GPL(skb_segment);
5009 
5010 #ifdef CONFIG_SKB_EXTENSIONS
5011 #define SKB_EXT_ALIGN_VALUE	8
5012 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5013 
5014 static const u8 skb_ext_type_len[] = {
5015 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5016 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5017 #endif
5018 #ifdef CONFIG_XFRM
5019 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5020 #endif
5021 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5022 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5023 #endif
5024 #if IS_ENABLED(CONFIG_MPTCP)
5025 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5026 #endif
5027 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5028 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5029 #endif
5030 };
5031 
5032 static __always_inline unsigned int skb_ext_total_length(void)
5033 {
5034 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5035 	int i;
5036 
5037 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5038 		l += skb_ext_type_len[i];
5039 
5040 	return l;
5041 }
5042 
5043 static void skb_extensions_init(void)
5044 {
5045 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5046 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5047 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5048 #endif
5049 
5050 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5051 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5052 					     0,
5053 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5054 					     NULL);
5055 }
5056 #else
5057 static void skb_extensions_init(void) {}
5058 #endif
5059 
5060 /* The SKB kmem_cache slab is critical for network performance.  Never
5061  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5062  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5063  */
5064 #ifndef CONFIG_SLUB_TINY
5065 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5066 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5067 #define FLAG_SKB_NO_MERGE	0
5068 #endif
5069 
5070 void __init skb_init(void)
5071 {
5072 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5073 					      sizeof(struct sk_buff),
5074 					      0,
5075 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5076 						FLAG_SKB_NO_MERGE,
5077 					      offsetof(struct sk_buff, cb),
5078 					      sizeof_field(struct sk_buff, cb),
5079 					      NULL);
5080 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5081 						sizeof(struct sk_buff_fclones),
5082 						0,
5083 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5084 						NULL);
5085 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5086 	 * struct skb_shared_info is located at the end of skb->head,
5087 	 * and should not be copied to/from user.
5088 	 */
5089 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5090 						SKB_SMALL_HEAD_CACHE_SIZE,
5091 						0,
5092 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5093 						0,
5094 						SKB_SMALL_HEAD_HEADROOM,
5095 						NULL);
5096 	skb_extensions_init();
5097 }
5098 
5099 static int
5100 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5101 	       unsigned int recursion_level)
5102 {
5103 	int start = skb_headlen(skb);
5104 	int i, copy = start - offset;
5105 	struct sk_buff *frag_iter;
5106 	int elt = 0;
5107 
5108 	if (unlikely(recursion_level >= 24))
5109 		return -EMSGSIZE;
5110 
5111 	if (copy > 0) {
5112 		if (copy > len)
5113 			copy = len;
5114 		sg_set_buf(sg, skb->data + offset, copy);
5115 		elt++;
5116 		if ((len -= copy) == 0)
5117 			return elt;
5118 		offset += copy;
5119 	}
5120 
5121 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5122 		int end;
5123 
5124 		WARN_ON(start > offset + len);
5125 
5126 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5127 		if ((copy = end - offset) > 0) {
5128 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5129 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5130 				return -EMSGSIZE;
5131 
5132 			if (copy > len)
5133 				copy = len;
5134 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5135 				    skb_frag_off(frag) + offset - start);
5136 			elt++;
5137 			if (!(len -= copy))
5138 				return elt;
5139 			offset += copy;
5140 		}
5141 		start = end;
5142 	}
5143 
5144 	skb_walk_frags(skb, frag_iter) {
5145 		int end, ret;
5146 
5147 		WARN_ON(start > offset + len);
5148 
5149 		end = start + frag_iter->len;
5150 		if ((copy = end - offset) > 0) {
5151 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5152 				return -EMSGSIZE;
5153 
5154 			if (copy > len)
5155 				copy = len;
5156 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5157 					      copy, recursion_level + 1);
5158 			if (unlikely(ret < 0))
5159 				return ret;
5160 			elt += ret;
5161 			if ((len -= copy) == 0)
5162 				return elt;
5163 			offset += copy;
5164 		}
5165 		start = end;
5166 	}
5167 	BUG_ON(len);
5168 	return elt;
5169 }
5170 
5171 /**
5172  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5173  *	@skb: Socket buffer containing the buffers to be mapped
5174  *	@sg: The scatter-gather list to map into
5175  *	@offset: The offset into the buffer's contents to start mapping
5176  *	@len: Length of buffer space to be mapped
5177  *
5178  *	Fill the specified scatter-gather list with mappings/pointers into a
5179  *	region of the buffer space attached to a socket buffer. Returns either
5180  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5181  *	could not fit.
5182  */
5183 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5184 {
5185 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5186 
5187 	if (nsg <= 0)
5188 		return nsg;
5189 
5190 	sg_mark_end(&sg[nsg - 1]);
5191 
5192 	return nsg;
5193 }
5194 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5195 
5196 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5197  * sglist without mark the sg which contain last skb data as the end.
5198  * So the caller can mannipulate sg list as will when padding new data after
5199  * the first call without calling sg_unmark_end to expend sg list.
5200  *
5201  * Scenario to use skb_to_sgvec_nomark:
5202  * 1. sg_init_table
5203  * 2. skb_to_sgvec_nomark(payload1)
5204  * 3. skb_to_sgvec_nomark(payload2)
5205  *
5206  * This is equivalent to:
5207  * 1. sg_init_table
5208  * 2. skb_to_sgvec(payload1)
5209  * 3. sg_unmark_end
5210  * 4. skb_to_sgvec(payload2)
5211  *
5212  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5213  * is more preferable.
5214  */
5215 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5216 			int offset, int len)
5217 {
5218 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5219 }
5220 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5221 
5222 
5223 
5224 /**
5225  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5226  *	@skb: The socket buffer to check.
5227  *	@tailbits: Amount of trailing space to be added
5228  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5229  *
5230  *	Make sure that the data buffers attached to a socket buffer are
5231  *	writable. If they are not, private copies are made of the data buffers
5232  *	and the socket buffer is set to use these instead.
5233  *
5234  *	If @tailbits is given, make sure that there is space to write @tailbits
5235  *	bytes of data beyond current end of socket buffer.  @trailer will be
5236  *	set to point to the skb in which this space begins.
5237  *
5238  *	The number of scatterlist elements required to completely map the
5239  *	COW'd and extended socket buffer will be returned.
5240  */
5241 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5242 {
5243 	int copyflag;
5244 	int elt;
5245 	struct sk_buff *skb1, **skb_p;
5246 
5247 	/* If skb is cloned or its head is paged, reallocate
5248 	 * head pulling out all the pages (pages are considered not writable
5249 	 * at the moment even if they are anonymous).
5250 	 */
5251 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5252 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5253 		return -ENOMEM;
5254 
5255 	/* Easy case. Most of packets will go this way. */
5256 	if (!skb_has_frag_list(skb)) {
5257 		/* A little of trouble, not enough of space for trailer.
5258 		 * This should not happen, when stack is tuned to generate
5259 		 * good frames. OK, on miss we reallocate and reserve even more
5260 		 * space, 128 bytes is fair. */
5261 
5262 		if (skb_tailroom(skb) < tailbits &&
5263 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5264 			return -ENOMEM;
5265 
5266 		/* Voila! */
5267 		*trailer = skb;
5268 		return 1;
5269 	}
5270 
5271 	/* Misery. We are in troubles, going to mincer fragments... */
5272 
5273 	elt = 1;
5274 	skb_p = &skb_shinfo(skb)->frag_list;
5275 	copyflag = 0;
5276 
5277 	while ((skb1 = *skb_p) != NULL) {
5278 		int ntail = 0;
5279 
5280 		/* The fragment is partially pulled by someone,
5281 		 * this can happen on input. Copy it and everything
5282 		 * after it. */
5283 
5284 		if (skb_shared(skb1))
5285 			copyflag = 1;
5286 
5287 		/* If the skb is the last, worry about trailer. */
5288 
5289 		if (skb1->next == NULL && tailbits) {
5290 			if (skb_shinfo(skb1)->nr_frags ||
5291 			    skb_has_frag_list(skb1) ||
5292 			    skb_tailroom(skb1) < tailbits)
5293 				ntail = tailbits + 128;
5294 		}
5295 
5296 		if (copyflag ||
5297 		    skb_cloned(skb1) ||
5298 		    ntail ||
5299 		    skb_shinfo(skb1)->nr_frags ||
5300 		    skb_has_frag_list(skb1)) {
5301 			struct sk_buff *skb2;
5302 
5303 			/* Fuck, we are miserable poor guys... */
5304 			if (ntail == 0)
5305 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5306 			else
5307 				skb2 = skb_copy_expand(skb1,
5308 						       skb_headroom(skb1),
5309 						       ntail,
5310 						       GFP_ATOMIC);
5311 			if (unlikely(skb2 == NULL))
5312 				return -ENOMEM;
5313 
5314 			if (skb1->sk)
5315 				skb_set_owner_w(skb2, skb1->sk);
5316 
5317 			/* Looking around. Are we still alive?
5318 			 * OK, link new skb, drop old one */
5319 
5320 			skb2->next = skb1->next;
5321 			*skb_p = skb2;
5322 			kfree_skb(skb1);
5323 			skb1 = skb2;
5324 		}
5325 		elt++;
5326 		*trailer = skb1;
5327 		skb_p = &skb1->next;
5328 	}
5329 
5330 	return elt;
5331 }
5332 EXPORT_SYMBOL_GPL(skb_cow_data);
5333 
5334 static void sock_rmem_free(struct sk_buff *skb)
5335 {
5336 	struct sock *sk = skb->sk;
5337 
5338 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5339 }
5340 
5341 static void skb_set_err_queue(struct sk_buff *skb)
5342 {
5343 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5344 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5345 	 */
5346 	skb->pkt_type = PACKET_OUTGOING;
5347 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5348 }
5349 
5350 /*
5351  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5352  */
5353 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5354 {
5355 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5356 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5357 		return -ENOMEM;
5358 
5359 	skb_orphan(skb);
5360 	skb->sk = sk;
5361 	skb->destructor = sock_rmem_free;
5362 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5363 	skb_set_err_queue(skb);
5364 
5365 	/* before exiting rcu section, make sure dst is refcounted */
5366 	skb_dst_force(skb);
5367 
5368 	skb_queue_tail(&sk->sk_error_queue, skb);
5369 	if (!sock_flag(sk, SOCK_DEAD))
5370 		sk_error_report(sk);
5371 	return 0;
5372 }
5373 EXPORT_SYMBOL(sock_queue_err_skb);
5374 
5375 static bool is_icmp_err_skb(const struct sk_buff *skb)
5376 {
5377 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5378 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5379 }
5380 
5381 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5382 {
5383 	struct sk_buff_head *q = &sk->sk_error_queue;
5384 	struct sk_buff *skb, *skb_next = NULL;
5385 	bool icmp_next = false;
5386 	unsigned long flags;
5387 
5388 	if (skb_queue_empty_lockless(q))
5389 		return NULL;
5390 
5391 	spin_lock_irqsave(&q->lock, flags);
5392 	skb = __skb_dequeue(q);
5393 	if (skb && (skb_next = skb_peek(q))) {
5394 		icmp_next = is_icmp_err_skb(skb_next);
5395 		if (icmp_next)
5396 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5397 	}
5398 	spin_unlock_irqrestore(&q->lock, flags);
5399 
5400 	if (is_icmp_err_skb(skb) && !icmp_next)
5401 		sk->sk_err = 0;
5402 
5403 	if (skb_next)
5404 		sk_error_report(sk);
5405 
5406 	return skb;
5407 }
5408 EXPORT_SYMBOL(sock_dequeue_err_skb);
5409 
5410 /**
5411  * skb_clone_sk - create clone of skb, and take reference to socket
5412  * @skb: the skb to clone
5413  *
5414  * This function creates a clone of a buffer that holds a reference on
5415  * sk_refcnt.  Buffers created via this function are meant to be
5416  * returned using sock_queue_err_skb, or free via kfree_skb.
5417  *
5418  * When passing buffers allocated with this function to sock_queue_err_skb
5419  * it is necessary to wrap the call with sock_hold/sock_put in order to
5420  * prevent the socket from being released prior to being enqueued on
5421  * the sk_error_queue.
5422  */
5423 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5424 {
5425 	struct sock *sk = skb->sk;
5426 	struct sk_buff *clone;
5427 
5428 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5429 		return NULL;
5430 
5431 	clone = skb_clone(skb, GFP_ATOMIC);
5432 	if (!clone) {
5433 		sock_put(sk);
5434 		return NULL;
5435 	}
5436 
5437 	clone->sk = sk;
5438 	clone->destructor = sock_efree;
5439 
5440 	return clone;
5441 }
5442 EXPORT_SYMBOL(skb_clone_sk);
5443 
5444 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5445 					struct sock *sk,
5446 					int tstype,
5447 					bool opt_stats)
5448 {
5449 	struct sock_exterr_skb *serr;
5450 	int err;
5451 
5452 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5453 
5454 	serr = SKB_EXT_ERR(skb);
5455 	memset(serr, 0, sizeof(*serr));
5456 	serr->ee.ee_errno = ENOMSG;
5457 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5458 	serr->ee.ee_info = tstype;
5459 	serr->opt_stats = opt_stats;
5460 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5461 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5462 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5463 		if (sk_is_tcp(sk))
5464 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5465 	}
5466 
5467 	err = sock_queue_err_skb(sk, skb);
5468 
5469 	if (err)
5470 		kfree_skb(skb);
5471 }
5472 
5473 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5474 {
5475 	bool ret;
5476 
5477 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5478 		return true;
5479 
5480 	read_lock_bh(&sk->sk_callback_lock);
5481 	ret = sk->sk_socket && sk->sk_socket->file &&
5482 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5483 	read_unlock_bh(&sk->sk_callback_lock);
5484 	return ret;
5485 }
5486 
5487 void skb_complete_tx_timestamp(struct sk_buff *skb,
5488 			       struct skb_shared_hwtstamps *hwtstamps)
5489 {
5490 	struct sock *sk = skb->sk;
5491 
5492 	if (!skb_may_tx_timestamp(sk, false))
5493 		goto err;
5494 
5495 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5496 	 * but only if the socket refcount is not zero.
5497 	 */
5498 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5499 		*skb_hwtstamps(skb) = *hwtstamps;
5500 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5501 		sock_put(sk);
5502 		return;
5503 	}
5504 
5505 err:
5506 	kfree_skb(skb);
5507 }
5508 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5509 
5510 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5511 						 struct skb_shared_hwtstamps *hwtstamps,
5512 						 int tstype)
5513 {
5514 	switch (tstype) {
5515 	case SCM_TSTAMP_SCHED:
5516 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5517 	case SCM_TSTAMP_SND:
5518 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5519 						    SKBTX_SW_TSTAMP);
5520 	case SCM_TSTAMP_ACK:
5521 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5522 	case SCM_TSTAMP_COMPLETION:
5523 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5524 	}
5525 
5526 	return false;
5527 }
5528 
5529 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5530 						  struct skb_shared_hwtstamps *hwtstamps,
5531 						  struct sock *sk,
5532 						  int tstype)
5533 {
5534 	int op;
5535 
5536 	switch (tstype) {
5537 	case SCM_TSTAMP_SCHED:
5538 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5539 		break;
5540 	case SCM_TSTAMP_SND:
5541 		if (hwtstamps) {
5542 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5543 			*skb_hwtstamps(skb) = *hwtstamps;
5544 		} else {
5545 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5546 		}
5547 		break;
5548 	case SCM_TSTAMP_ACK:
5549 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5550 		break;
5551 	default:
5552 		return;
5553 	}
5554 
5555 	bpf_skops_tx_timestamping(sk, skb, op);
5556 }
5557 
5558 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5559 		     const struct sk_buff *ack_skb,
5560 		     struct skb_shared_hwtstamps *hwtstamps,
5561 		     struct sock *sk, int tstype)
5562 {
5563 	struct sk_buff *skb;
5564 	bool tsonly, opt_stats = false;
5565 	u32 tsflags;
5566 
5567 	if (!sk)
5568 		return;
5569 
5570 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5571 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5572 						      sk, tstype);
5573 
5574 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5575 		return;
5576 
5577 	tsflags = READ_ONCE(sk->sk_tsflags);
5578 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5579 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5580 		return;
5581 
5582 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5583 	if (!skb_may_tx_timestamp(sk, tsonly))
5584 		return;
5585 
5586 	if (tsonly) {
5587 #ifdef CONFIG_INET
5588 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5589 		    sk_is_tcp(sk)) {
5590 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5591 							     ack_skb);
5592 			opt_stats = true;
5593 		} else
5594 #endif
5595 			skb = alloc_skb(0, GFP_ATOMIC);
5596 	} else {
5597 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5598 
5599 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5600 			kfree_skb(skb);
5601 			return;
5602 		}
5603 	}
5604 	if (!skb)
5605 		return;
5606 
5607 	if (tsonly) {
5608 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5609 					     SKBTX_ANY_TSTAMP;
5610 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5611 	}
5612 
5613 	if (hwtstamps)
5614 		*skb_hwtstamps(skb) = *hwtstamps;
5615 	else
5616 		__net_timestamp(skb);
5617 
5618 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5619 }
5620 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5621 
5622 void skb_tstamp_tx(struct sk_buff *orig_skb,
5623 		   struct skb_shared_hwtstamps *hwtstamps)
5624 {
5625 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5626 			       SCM_TSTAMP_SND);
5627 }
5628 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5629 
5630 #ifdef CONFIG_WIRELESS
5631 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5632 {
5633 	struct sock *sk = skb->sk;
5634 	struct sock_exterr_skb *serr;
5635 	int err = 1;
5636 
5637 	skb->wifi_acked_valid = 1;
5638 	skb->wifi_acked = acked;
5639 
5640 	serr = SKB_EXT_ERR(skb);
5641 	memset(serr, 0, sizeof(*serr));
5642 	serr->ee.ee_errno = ENOMSG;
5643 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5644 
5645 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5646 	 * but only if the socket refcount is not zero.
5647 	 */
5648 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5649 		err = sock_queue_err_skb(sk, skb);
5650 		sock_put(sk);
5651 	}
5652 	if (err)
5653 		kfree_skb(skb);
5654 }
5655 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5656 #endif /* CONFIG_WIRELESS */
5657 
5658 /**
5659  * skb_partial_csum_set - set up and verify partial csum values for packet
5660  * @skb: the skb to set
5661  * @start: the number of bytes after skb->data to start checksumming.
5662  * @off: the offset from start to place the checksum.
5663  *
5664  * For untrusted partially-checksummed packets, we need to make sure the values
5665  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5666  *
5667  * This function checks and sets those values and skb->ip_summed: if this
5668  * returns false you should drop the packet.
5669  */
5670 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5671 {
5672 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5673 	u32 csum_start = skb_headroom(skb) + (u32)start;
5674 
5675 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5676 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5677 				     start, off, skb_headroom(skb), skb_headlen(skb));
5678 		return false;
5679 	}
5680 	skb->ip_summed = CHECKSUM_PARTIAL;
5681 	skb->csum_start = csum_start;
5682 	skb->csum_offset = off;
5683 	skb->transport_header = csum_start;
5684 	return true;
5685 }
5686 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5687 
5688 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5689 			       unsigned int max)
5690 {
5691 	if (skb_headlen(skb) >= len)
5692 		return 0;
5693 
5694 	/* If we need to pullup then pullup to the max, so we
5695 	 * won't need to do it again.
5696 	 */
5697 	if (max > skb->len)
5698 		max = skb->len;
5699 
5700 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5701 		return -ENOMEM;
5702 
5703 	if (skb_headlen(skb) < len)
5704 		return -EPROTO;
5705 
5706 	return 0;
5707 }
5708 
5709 #define MAX_TCP_HDR_LEN (15 * 4)
5710 
5711 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5712 				      typeof(IPPROTO_IP) proto,
5713 				      unsigned int off)
5714 {
5715 	int err;
5716 
5717 	switch (proto) {
5718 	case IPPROTO_TCP:
5719 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5720 					  off + MAX_TCP_HDR_LEN);
5721 		if (!err && !skb_partial_csum_set(skb, off,
5722 						  offsetof(struct tcphdr,
5723 							   check)))
5724 			err = -EPROTO;
5725 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5726 
5727 	case IPPROTO_UDP:
5728 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5729 					  off + sizeof(struct udphdr));
5730 		if (!err && !skb_partial_csum_set(skb, off,
5731 						  offsetof(struct udphdr,
5732 							   check)))
5733 			err = -EPROTO;
5734 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5735 	}
5736 
5737 	return ERR_PTR(-EPROTO);
5738 }
5739 
5740 /* This value should be large enough to cover a tagged ethernet header plus
5741  * maximally sized IP and TCP or UDP headers.
5742  */
5743 #define MAX_IP_HDR_LEN 128
5744 
5745 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5746 {
5747 	unsigned int off;
5748 	bool fragment;
5749 	__sum16 *csum;
5750 	int err;
5751 
5752 	fragment = false;
5753 
5754 	err = skb_maybe_pull_tail(skb,
5755 				  sizeof(struct iphdr),
5756 				  MAX_IP_HDR_LEN);
5757 	if (err < 0)
5758 		goto out;
5759 
5760 	if (ip_is_fragment(ip_hdr(skb)))
5761 		fragment = true;
5762 
5763 	off = ip_hdrlen(skb);
5764 
5765 	err = -EPROTO;
5766 
5767 	if (fragment)
5768 		goto out;
5769 
5770 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5771 	if (IS_ERR(csum))
5772 		return PTR_ERR(csum);
5773 
5774 	if (recalculate)
5775 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5776 					   ip_hdr(skb)->daddr,
5777 					   skb->len - off,
5778 					   ip_hdr(skb)->protocol, 0);
5779 	err = 0;
5780 
5781 out:
5782 	return err;
5783 }
5784 
5785 /* This value should be large enough to cover a tagged ethernet header plus
5786  * an IPv6 header, all options, and a maximal TCP or UDP header.
5787  */
5788 #define MAX_IPV6_HDR_LEN 256
5789 
5790 #define OPT_HDR(type, skb, off) \
5791 	(type *)(skb_network_header(skb) + (off))
5792 
5793 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5794 {
5795 	int err;
5796 	u8 nexthdr;
5797 	unsigned int off;
5798 	unsigned int len;
5799 	bool fragment;
5800 	bool done;
5801 	__sum16 *csum;
5802 
5803 	fragment = false;
5804 	done = false;
5805 
5806 	off = sizeof(struct ipv6hdr);
5807 
5808 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5809 	if (err < 0)
5810 		goto out;
5811 
5812 	nexthdr = ipv6_hdr(skb)->nexthdr;
5813 
5814 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5815 	while (off <= len && !done) {
5816 		switch (nexthdr) {
5817 		case IPPROTO_DSTOPTS:
5818 		case IPPROTO_HOPOPTS:
5819 		case IPPROTO_ROUTING: {
5820 			struct ipv6_opt_hdr *hp;
5821 
5822 			err = skb_maybe_pull_tail(skb,
5823 						  off +
5824 						  sizeof(struct ipv6_opt_hdr),
5825 						  MAX_IPV6_HDR_LEN);
5826 			if (err < 0)
5827 				goto out;
5828 
5829 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5830 			nexthdr = hp->nexthdr;
5831 			off += ipv6_optlen(hp);
5832 			break;
5833 		}
5834 		case IPPROTO_AH: {
5835 			struct ip_auth_hdr *hp;
5836 
5837 			err = skb_maybe_pull_tail(skb,
5838 						  off +
5839 						  sizeof(struct ip_auth_hdr),
5840 						  MAX_IPV6_HDR_LEN);
5841 			if (err < 0)
5842 				goto out;
5843 
5844 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5845 			nexthdr = hp->nexthdr;
5846 			off += ipv6_authlen(hp);
5847 			break;
5848 		}
5849 		case IPPROTO_FRAGMENT: {
5850 			struct frag_hdr *hp;
5851 
5852 			err = skb_maybe_pull_tail(skb,
5853 						  off +
5854 						  sizeof(struct frag_hdr),
5855 						  MAX_IPV6_HDR_LEN);
5856 			if (err < 0)
5857 				goto out;
5858 
5859 			hp = OPT_HDR(struct frag_hdr, skb, off);
5860 
5861 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5862 				fragment = true;
5863 
5864 			nexthdr = hp->nexthdr;
5865 			off += sizeof(struct frag_hdr);
5866 			break;
5867 		}
5868 		default:
5869 			done = true;
5870 			break;
5871 		}
5872 	}
5873 
5874 	err = -EPROTO;
5875 
5876 	if (!done || fragment)
5877 		goto out;
5878 
5879 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5880 	if (IS_ERR(csum))
5881 		return PTR_ERR(csum);
5882 
5883 	if (recalculate)
5884 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5885 					 &ipv6_hdr(skb)->daddr,
5886 					 skb->len - off, nexthdr, 0);
5887 	err = 0;
5888 
5889 out:
5890 	return err;
5891 }
5892 
5893 /**
5894  * skb_checksum_setup - set up partial checksum offset
5895  * @skb: the skb to set up
5896  * @recalculate: if true the pseudo-header checksum will be recalculated
5897  */
5898 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5899 {
5900 	int err;
5901 
5902 	switch (skb->protocol) {
5903 	case htons(ETH_P_IP):
5904 		err = skb_checksum_setup_ipv4(skb, recalculate);
5905 		break;
5906 
5907 	case htons(ETH_P_IPV6):
5908 		err = skb_checksum_setup_ipv6(skb, recalculate);
5909 		break;
5910 
5911 	default:
5912 		err = -EPROTO;
5913 		break;
5914 	}
5915 
5916 	return err;
5917 }
5918 EXPORT_SYMBOL(skb_checksum_setup);
5919 
5920 /**
5921  * skb_checksum_maybe_trim - maybe trims the given skb
5922  * @skb: the skb to check
5923  * @transport_len: the data length beyond the network header
5924  *
5925  * Checks whether the given skb has data beyond the given transport length.
5926  * If so, returns a cloned skb trimmed to this transport length.
5927  * Otherwise returns the provided skb. Returns NULL in error cases
5928  * (e.g. transport_len exceeds skb length or out-of-memory).
5929  *
5930  * Caller needs to set the skb transport header and free any returned skb if it
5931  * differs from the provided skb.
5932  */
5933 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5934 					       unsigned int transport_len)
5935 {
5936 	struct sk_buff *skb_chk;
5937 	unsigned int len = skb_transport_offset(skb) + transport_len;
5938 	int ret;
5939 
5940 	if (skb->len < len)
5941 		return NULL;
5942 	else if (skb->len == len)
5943 		return skb;
5944 
5945 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5946 	if (!skb_chk)
5947 		return NULL;
5948 
5949 	ret = pskb_trim_rcsum(skb_chk, len);
5950 	if (ret) {
5951 		kfree_skb(skb_chk);
5952 		return NULL;
5953 	}
5954 
5955 	return skb_chk;
5956 }
5957 
5958 /**
5959  * skb_checksum_trimmed - validate checksum of an skb
5960  * @skb: the skb to check
5961  * @transport_len: the data length beyond the network header
5962  * @skb_chkf: checksum function to use
5963  *
5964  * Applies the given checksum function skb_chkf to the provided skb.
5965  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5966  *
5967  * If the skb has data beyond the given transport length, then a
5968  * trimmed & cloned skb is checked and returned.
5969  *
5970  * Caller needs to set the skb transport header and free any returned skb if it
5971  * differs from the provided skb.
5972  */
5973 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5974 				     unsigned int transport_len,
5975 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5976 {
5977 	struct sk_buff *skb_chk;
5978 	unsigned int offset = skb_transport_offset(skb);
5979 	__sum16 ret;
5980 
5981 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5982 	if (!skb_chk)
5983 		goto err;
5984 
5985 	if (!pskb_may_pull(skb_chk, offset))
5986 		goto err;
5987 
5988 	skb_pull_rcsum(skb_chk, offset);
5989 	ret = skb_chkf(skb_chk);
5990 	skb_push_rcsum(skb_chk, offset);
5991 
5992 	if (ret)
5993 		goto err;
5994 
5995 	return skb_chk;
5996 
5997 err:
5998 	if (skb_chk && skb_chk != skb)
5999 		kfree_skb(skb_chk);
6000 
6001 	return NULL;
6002 
6003 }
6004 EXPORT_SYMBOL(skb_checksum_trimmed);
6005 
6006 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6007 {
6008 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6009 			     skb->dev->name);
6010 }
6011 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6012 
6013 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6014 {
6015 	if (head_stolen) {
6016 		skb_release_head_state(skb);
6017 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6018 	} else {
6019 		__kfree_skb(skb);
6020 	}
6021 }
6022 EXPORT_SYMBOL(kfree_skb_partial);
6023 
6024 /**
6025  * skb_try_coalesce - try to merge skb to prior one
6026  * @to: prior buffer
6027  * @from: buffer to add
6028  * @fragstolen: pointer to boolean
6029  * @delta_truesize: how much more was allocated than was requested
6030  */
6031 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6032 		      bool *fragstolen, int *delta_truesize)
6033 {
6034 	struct skb_shared_info *to_shinfo, *from_shinfo;
6035 	int i, delta, len = from->len;
6036 
6037 	*fragstolen = false;
6038 
6039 	if (skb_cloned(to))
6040 		return false;
6041 
6042 	/* In general, avoid mixing page_pool and non-page_pool allocated
6043 	 * pages within the same SKB. In theory we could take full
6044 	 * references if @from is cloned and !@to->pp_recycle but its
6045 	 * tricky (due to potential race with the clone disappearing) and
6046 	 * rare, so not worth dealing with.
6047 	 */
6048 	if (to->pp_recycle != from->pp_recycle)
6049 		return false;
6050 
6051 	if (skb_frags_readable(from) != skb_frags_readable(to))
6052 		return false;
6053 
6054 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6055 		if (len)
6056 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6057 		*delta_truesize = 0;
6058 		return true;
6059 	}
6060 
6061 	to_shinfo = skb_shinfo(to);
6062 	from_shinfo = skb_shinfo(from);
6063 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6064 		return false;
6065 	if (skb_zcopy(to) || skb_zcopy(from))
6066 		return false;
6067 
6068 	if (skb_headlen(from) != 0) {
6069 		struct page *page;
6070 		unsigned int offset;
6071 
6072 		if (to_shinfo->nr_frags +
6073 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6074 			return false;
6075 
6076 		if (skb_head_is_locked(from))
6077 			return false;
6078 
6079 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6080 
6081 		page = virt_to_head_page(from->head);
6082 		offset = from->data - (unsigned char *)page_address(page);
6083 
6084 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6085 				   page, offset, skb_headlen(from));
6086 		*fragstolen = true;
6087 	} else {
6088 		if (to_shinfo->nr_frags +
6089 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6090 			return false;
6091 
6092 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6093 	}
6094 
6095 	WARN_ON_ONCE(delta < len);
6096 
6097 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6098 	       from_shinfo->frags,
6099 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6100 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6101 
6102 	if (!skb_cloned(from))
6103 		from_shinfo->nr_frags = 0;
6104 
6105 	/* if the skb is not cloned this does nothing
6106 	 * since we set nr_frags to 0.
6107 	 */
6108 	if (skb_pp_frag_ref(from)) {
6109 		for (i = 0; i < from_shinfo->nr_frags; i++)
6110 			__skb_frag_ref(&from_shinfo->frags[i]);
6111 	}
6112 
6113 	to->truesize += delta;
6114 	to->len += len;
6115 	to->data_len += len;
6116 
6117 	*delta_truesize = delta;
6118 	return true;
6119 }
6120 EXPORT_SYMBOL(skb_try_coalesce);
6121 
6122 /**
6123  * skb_scrub_packet - scrub an skb
6124  *
6125  * @skb: buffer to clean
6126  * @xnet: packet is crossing netns
6127  *
6128  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6129  * into/from a tunnel. Some information have to be cleared during these
6130  * operations.
6131  * skb_scrub_packet can also be used to clean a skb before injecting it in
6132  * another namespace (@xnet == true). We have to clear all information in the
6133  * skb that could impact namespace isolation.
6134  */
6135 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6136 {
6137 	skb->pkt_type = PACKET_HOST;
6138 	skb->skb_iif = 0;
6139 	skb->ignore_df = 0;
6140 	skb_dst_drop(skb);
6141 	skb_ext_reset(skb);
6142 	nf_reset_ct(skb);
6143 	nf_reset_trace(skb);
6144 
6145 #ifdef CONFIG_NET_SWITCHDEV
6146 	skb->offload_fwd_mark = 0;
6147 	skb->offload_l3_fwd_mark = 0;
6148 #endif
6149 	ipvs_reset(skb);
6150 
6151 	if (!xnet)
6152 		return;
6153 
6154 	skb->mark = 0;
6155 	skb_clear_tstamp(skb);
6156 }
6157 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6158 
6159 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6160 {
6161 	int mac_len, meta_len;
6162 	void *meta;
6163 
6164 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6165 		kfree_skb(skb);
6166 		return NULL;
6167 	}
6168 
6169 	mac_len = skb->data - skb_mac_header(skb);
6170 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6171 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6172 			mac_len - VLAN_HLEN - ETH_TLEN);
6173 	}
6174 
6175 	meta_len = skb_metadata_len(skb);
6176 	if (meta_len) {
6177 		meta = skb_metadata_end(skb) - meta_len;
6178 		memmove(meta + VLAN_HLEN, meta, meta_len);
6179 	}
6180 
6181 	skb->mac_header += VLAN_HLEN;
6182 	return skb;
6183 }
6184 
6185 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6186 {
6187 	struct vlan_hdr *vhdr;
6188 	u16 vlan_tci;
6189 
6190 	if (unlikely(skb_vlan_tag_present(skb))) {
6191 		/* vlan_tci is already set-up so leave this for another time */
6192 		return skb;
6193 	}
6194 
6195 	skb = skb_share_check(skb, GFP_ATOMIC);
6196 	if (unlikely(!skb))
6197 		goto err_free;
6198 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6199 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6200 		goto err_free;
6201 
6202 	vhdr = (struct vlan_hdr *)skb->data;
6203 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6204 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6205 
6206 	skb_pull_rcsum(skb, VLAN_HLEN);
6207 	vlan_set_encap_proto(skb, vhdr);
6208 
6209 	skb = skb_reorder_vlan_header(skb);
6210 	if (unlikely(!skb))
6211 		goto err_free;
6212 
6213 	skb_reset_network_header(skb);
6214 	if (!skb_transport_header_was_set(skb))
6215 		skb_reset_transport_header(skb);
6216 	skb_reset_mac_len(skb);
6217 
6218 	return skb;
6219 
6220 err_free:
6221 	kfree_skb(skb);
6222 	return NULL;
6223 }
6224 EXPORT_SYMBOL(skb_vlan_untag);
6225 
6226 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6227 {
6228 	if (!pskb_may_pull(skb, write_len))
6229 		return -ENOMEM;
6230 
6231 	if (!skb_frags_readable(skb))
6232 		return -EFAULT;
6233 
6234 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6235 		return 0;
6236 
6237 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6238 }
6239 EXPORT_SYMBOL(skb_ensure_writable);
6240 
6241 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6242 {
6243 	int needed_headroom = dev->needed_headroom;
6244 	int needed_tailroom = dev->needed_tailroom;
6245 
6246 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6247 	 * that the tail tag does not fail at its role of being at the end of
6248 	 * the packet, once the conduit interface pads the frame. Account for
6249 	 * that pad length here, and pad later.
6250 	 */
6251 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6252 		needed_tailroom += ETH_ZLEN - skb->len;
6253 	/* skb_headroom() returns unsigned int... */
6254 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6255 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6256 
6257 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6258 		/* No reallocation needed, yay! */
6259 		return 0;
6260 
6261 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6262 				GFP_ATOMIC);
6263 }
6264 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6265 
6266 /* remove VLAN header from packet and update csum accordingly.
6267  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6268  */
6269 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6270 {
6271 	int offset = skb->data - skb_mac_header(skb);
6272 	int err;
6273 
6274 	if (WARN_ONCE(offset,
6275 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6276 		      offset)) {
6277 		return -EINVAL;
6278 	}
6279 
6280 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6281 	if (unlikely(err))
6282 		return err;
6283 
6284 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6285 
6286 	vlan_remove_tag(skb, vlan_tci);
6287 
6288 	skb->mac_header += VLAN_HLEN;
6289 
6290 	if (skb_network_offset(skb) < ETH_HLEN)
6291 		skb_set_network_header(skb, ETH_HLEN);
6292 
6293 	skb_reset_mac_len(skb);
6294 
6295 	return err;
6296 }
6297 EXPORT_SYMBOL(__skb_vlan_pop);
6298 
6299 /* Pop a vlan tag either from hwaccel or from payload.
6300  * Expects skb->data at mac header.
6301  */
6302 int skb_vlan_pop(struct sk_buff *skb)
6303 {
6304 	u16 vlan_tci;
6305 	__be16 vlan_proto;
6306 	int err;
6307 
6308 	if (likely(skb_vlan_tag_present(skb))) {
6309 		__vlan_hwaccel_clear_tag(skb);
6310 	} else {
6311 		if (unlikely(!eth_type_vlan(skb->protocol)))
6312 			return 0;
6313 
6314 		err = __skb_vlan_pop(skb, &vlan_tci);
6315 		if (err)
6316 			return err;
6317 	}
6318 	/* move next vlan tag to hw accel tag */
6319 	if (likely(!eth_type_vlan(skb->protocol)))
6320 		return 0;
6321 
6322 	vlan_proto = skb->protocol;
6323 	err = __skb_vlan_pop(skb, &vlan_tci);
6324 	if (unlikely(err))
6325 		return err;
6326 
6327 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6328 	return 0;
6329 }
6330 EXPORT_SYMBOL(skb_vlan_pop);
6331 
6332 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6333  * Expects skb->data at mac header.
6334  */
6335 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6336 {
6337 	if (skb_vlan_tag_present(skb)) {
6338 		int offset = skb->data - skb_mac_header(skb);
6339 		int err;
6340 
6341 		if (WARN_ONCE(offset,
6342 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6343 			      offset)) {
6344 			return -EINVAL;
6345 		}
6346 
6347 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6348 					skb_vlan_tag_get(skb));
6349 		if (err)
6350 			return err;
6351 
6352 		skb->protocol = skb->vlan_proto;
6353 		skb->network_header -= VLAN_HLEN;
6354 
6355 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6356 	}
6357 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6358 	return 0;
6359 }
6360 EXPORT_SYMBOL(skb_vlan_push);
6361 
6362 /**
6363  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6364  *
6365  * @skb: Socket buffer to modify
6366  *
6367  * Drop the Ethernet header of @skb.
6368  *
6369  * Expects that skb->data points to the mac header and that no VLAN tags are
6370  * present.
6371  *
6372  * Returns 0 on success, -errno otherwise.
6373  */
6374 int skb_eth_pop(struct sk_buff *skb)
6375 {
6376 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6377 	    skb_network_offset(skb) < ETH_HLEN)
6378 		return -EPROTO;
6379 
6380 	skb_pull_rcsum(skb, ETH_HLEN);
6381 	skb_reset_mac_header(skb);
6382 	skb_reset_mac_len(skb);
6383 
6384 	return 0;
6385 }
6386 EXPORT_SYMBOL(skb_eth_pop);
6387 
6388 /**
6389  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6390  *
6391  * @skb: Socket buffer to modify
6392  * @dst: Destination MAC address of the new header
6393  * @src: Source MAC address of the new header
6394  *
6395  * Prepend @skb with a new Ethernet header.
6396  *
6397  * Expects that skb->data points to the mac header, which must be empty.
6398  *
6399  * Returns 0 on success, -errno otherwise.
6400  */
6401 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6402 		 const unsigned char *src)
6403 {
6404 	struct ethhdr *eth;
6405 	int err;
6406 
6407 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6408 		return -EPROTO;
6409 
6410 	err = skb_cow_head(skb, sizeof(*eth));
6411 	if (err < 0)
6412 		return err;
6413 
6414 	skb_push(skb, sizeof(*eth));
6415 	skb_reset_mac_header(skb);
6416 	skb_reset_mac_len(skb);
6417 
6418 	eth = eth_hdr(skb);
6419 	ether_addr_copy(eth->h_dest, dst);
6420 	ether_addr_copy(eth->h_source, src);
6421 	eth->h_proto = skb->protocol;
6422 
6423 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6424 
6425 	return 0;
6426 }
6427 EXPORT_SYMBOL(skb_eth_push);
6428 
6429 /* Update the ethertype of hdr and the skb csum value if required. */
6430 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6431 			     __be16 ethertype)
6432 {
6433 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6434 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6435 
6436 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6437 	}
6438 
6439 	hdr->h_proto = ethertype;
6440 }
6441 
6442 /**
6443  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6444  *                   the packet
6445  *
6446  * @skb: buffer
6447  * @mpls_lse: MPLS label stack entry to push
6448  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6449  * @mac_len: length of the MAC header
6450  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6451  *            ethernet
6452  *
6453  * Expects skb->data at mac header.
6454  *
6455  * Returns 0 on success, -errno otherwise.
6456  */
6457 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6458 		  int mac_len, bool ethernet)
6459 {
6460 	struct mpls_shim_hdr *lse;
6461 	int err;
6462 
6463 	if (unlikely(!eth_p_mpls(mpls_proto)))
6464 		return -EINVAL;
6465 
6466 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6467 	if (skb->encapsulation)
6468 		return -EINVAL;
6469 
6470 	err = skb_cow_head(skb, MPLS_HLEN);
6471 	if (unlikely(err))
6472 		return err;
6473 
6474 	if (!skb->inner_protocol) {
6475 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6476 		skb_set_inner_protocol(skb, skb->protocol);
6477 	}
6478 
6479 	skb_push(skb, MPLS_HLEN);
6480 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6481 		mac_len);
6482 	skb_reset_mac_header(skb);
6483 	skb_set_network_header(skb, mac_len);
6484 	skb_reset_mac_len(skb);
6485 
6486 	lse = mpls_hdr(skb);
6487 	lse->label_stack_entry = mpls_lse;
6488 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6489 
6490 	if (ethernet && mac_len >= ETH_HLEN)
6491 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6492 	skb->protocol = mpls_proto;
6493 
6494 	return 0;
6495 }
6496 EXPORT_SYMBOL_GPL(skb_mpls_push);
6497 
6498 /**
6499  * skb_mpls_pop() - pop the outermost MPLS header
6500  *
6501  * @skb: buffer
6502  * @next_proto: ethertype of header after popped MPLS header
6503  * @mac_len: length of the MAC header
6504  * @ethernet: flag to indicate if the packet is ethernet
6505  *
6506  * Expects skb->data at mac header.
6507  *
6508  * Returns 0 on success, -errno otherwise.
6509  */
6510 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6511 		 bool ethernet)
6512 {
6513 	int err;
6514 
6515 	if (unlikely(!eth_p_mpls(skb->protocol)))
6516 		return 0;
6517 
6518 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6519 	if (unlikely(err))
6520 		return err;
6521 
6522 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6523 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6524 		mac_len);
6525 
6526 	__skb_pull(skb, MPLS_HLEN);
6527 	skb_reset_mac_header(skb);
6528 	skb_set_network_header(skb, mac_len);
6529 
6530 	if (ethernet && mac_len >= ETH_HLEN) {
6531 		struct ethhdr *hdr;
6532 
6533 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6534 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6535 		skb_mod_eth_type(skb, hdr, next_proto);
6536 	}
6537 	skb->protocol = next_proto;
6538 
6539 	return 0;
6540 }
6541 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6542 
6543 /**
6544  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6545  *
6546  * @skb: buffer
6547  * @mpls_lse: new MPLS label stack entry to update to
6548  *
6549  * Expects skb->data at mac header.
6550  *
6551  * Returns 0 on success, -errno otherwise.
6552  */
6553 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6554 {
6555 	int err;
6556 
6557 	if (unlikely(!eth_p_mpls(skb->protocol)))
6558 		return -EINVAL;
6559 
6560 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6561 	if (unlikely(err))
6562 		return err;
6563 
6564 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6565 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6566 
6567 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6568 	}
6569 
6570 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6571 
6572 	return 0;
6573 }
6574 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6575 
6576 /**
6577  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6578  *
6579  * @skb: buffer
6580  *
6581  * Expects skb->data at mac header.
6582  *
6583  * Returns 0 on success, -errno otherwise.
6584  */
6585 int skb_mpls_dec_ttl(struct sk_buff *skb)
6586 {
6587 	u32 lse;
6588 	u8 ttl;
6589 
6590 	if (unlikely(!eth_p_mpls(skb->protocol)))
6591 		return -EINVAL;
6592 
6593 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6594 		return -ENOMEM;
6595 
6596 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6597 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6598 	if (!--ttl)
6599 		return -EINVAL;
6600 
6601 	lse &= ~MPLS_LS_TTL_MASK;
6602 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6603 
6604 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6605 }
6606 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6607 
6608 /**
6609  * alloc_skb_with_frags - allocate skb with page frags
6610  *
6611  * @header_len: size of linear part
6612  * @data_len: needed length in frags
6613  * @order: max page order desired.
6614  * @errcode: pointer to error code if any
6615  * @gfp_mask: allocation mask
6616  *
6617  * This can be used to allocate a paged skb, given a maximal order for frags.
6618  */
6619 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6620 				     unsigned long data_len,
6621 				     int order,
6622 				     int *errcode,
6623 				     gfp_t gfp_mask)
6624 {
6625 	unsigned long chunk;
6626 	struct sk_buff *skb;
6627 	struct page *page;
6628 	int nr_frags = 0;
6629 
6630 	*errcode = -EMSGSIZE;
6631 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6632 		return NULL;
6633 
6634 	*errcode = -ENOBUFS;
6635 	skb = alloc_skb(header_len, gfp_mask);
6636 	if (!skb)
6637 		return NULL;
6638 
6639 	while (data_len) {
6640 		if (nr_frags == MAX_SKB_FRAGS - 1)
6641 			goto failure;
6642 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6643 			order--;
6644 
6645 		if (order) {
6646 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6647 					   __GFP_COMP |
6648 					   __GFP_NOWARN,
6649 					   order);
6650 			if (!page) {
6651 				order--;
6652 				continue;
6653 			}
6654 		} else {
6655 			page = alloc_page(gfp_mask);
6656 			if (!page)
6657 				goto failure;
6658 		}
6659 		chunk = min_t(unsigned long, data_len,
6660 			      PAGE_SIZE << order);
6661 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6662 		nr_frags++;
6663 		skb->truesize += (PAGE_SIZE << order);
6664 		data_len -= chunk;
6665 	}
6666 	return skb;
6667 
6668 failure:
6669 	kfree_skb(skb);
6670 	return NULL;
6671 }
6672 EXPORT_SYMBOL(alloc_skb_with_frags);
6673 
6674 /* carve out the first off bytes from skb when off < headlen */
6675 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6676 				    const int headlen, gfp_t gfp_mask)
6677 {
6678 	int i;
6679 	unsigned int size = skb_end_offset(skb);
6680 	int new_hlen = headlen - off;
6681 	u8 *data;
6682 
6683 	if (skb_pfmemalloc(skb))
6684 		gfp_mask |= __GFP_MEMALLOC;
6685 
6686 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6687 	if (!data)
6688 		return -ENOMEM;
6689 	size = SKB_WITH_OVERHEAD(size);
6690 
6691 	/* Copy real data, and all frags */
6692 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6693 	skb->len -= off;
6694 
6695 	memcpy((struct skb_shared_info *)(data + size),
6696 	       skb_shinfo(skb),
6697 	       offsetof(struct skb_shared_info,
6698 			frags[skb_shinfo(skb)->nr_frags]));
6699 	if (skb_cloned(skb)) {
6700 		/* drop the old head gracefully */
6701 		if (skb_orphan_frags(skb, gfp_mask)) {
6702 			skb_kfree_head(data, size);
6703 			return -ENOMEM;
6704 		}
6705 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6706 			skb_frag_ref(skb, i);
6707 		if (skb_has_frag_list(skb))
6708 			skb_clone_fraglist(skb);
6709 		skb_release_data(skb, SKB_CONSUMED);
6710 	} else {
6711 		/* we can reuse existing recount- all we did was
6712 		 * relocate values
6713 		 */
6714 		skb_free_head(skb);
6715 	}
6716 
6717 	skb->head = data;
6718 	skb->data = data;
6719 	skb->head_frag = 0;
6720 	skb_set_end_offset(skb, size);
6721 	skb_set_tail_pointer(skb, skb_headlen(skb));
6722 	skb_headers_offset_update(skb, 0);
6723 	skb->cloned = 0;
6724 	skb->hdr_len = 0;
6725 	skb->nohdr = 0;
6726 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6727 
6728 	return 0;
6729 }
6730 
6731 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6732 
6733 /* carve out the first eat bytes from skb's frag_list. May recurse into
6734  * pskb_carve()
6735  */
6736 static int pskb_carve_frag_list(struct sk_buff *skb,
6737 				struct skb_shared_info *shinfo, int eat,
6738 				gfp_t gfp_mask)
6739 {
6740 	struct sk_buff *list = shinfo->frag_list;
6741 	struct sk_buff *clone = NULL;
6742 	struct sk_buff *insp = NULL;
6743 
6744 	do {
6745 		if (!list) {
6746 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6747 			return -EFAULT;
6748 		}
6749 		if (list->len <= eat) {
6750 			/* Eaten as whole. */
6751 			eat -= list->len;
6752 			list = list->next;
6753 			insp = list;
6754 		} else {
6755 			/* Eaten partially. */
6756 			if (skb_shared(list)) {
6757 				clone = skb_clone(list, gfp_mask);
6758 				if (!clone)
6759 					return -ENOMEM;
6760 				insp = list->next;
6761 				list = clone;
6762 			} else {
6763 				/* This may be pulled without problems. */
6764 				insp = list;
6765 			}
6766 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6767 				kfree_skb(clone);
6768 				return -ENOMEM;
6769 			}
6770 			break;
6771 		}
6772 	} while (eat);
6773 
6774 	/* Free pulled out fragments. */
6775 	while ((list = shinfo->frag_list) != insp) {
6776 		shinfo->frag_list = list->next;
6777 		consume_skb(list);
6778 	}
6779 	/* And insert new clone at head. */
6780 	if (clone) {
6781 		clone->next = list;
6782 		shinfo->frag_list = clone;
6783 	}
6784 	return 0;
6785 }
6786 
6787 /* carve off first len bytes from skb. Split line (off) is in the
6788  * non-linear part of skb
6789  */
6790 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6791 				       int pos, gfp_t gfp_mask)
6792 {
6793 	int i, k = 0;
6794 	unsigned int size = skb_end_offset(skb);
6795 	u8 *data;
6796 	const int nfrags = skb_shinfo(skb)->nr_frags;
6797 	struct skb_shared_info *shinfo;
6798 
6799 	if (skb_pfmemalloc(skb))
6800 		gfp_mask |= __GFP_MEMALLOC;
6801 
6802 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6803 	if (!data)
6804 		return -ENOMEM;
6805 	size = SKB_WITH_OVERHEAD(size);
6806 
6807 	memcpy((struct skb_shared_info *)(data + size),
6808 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6809 	if (skb_orphan_frags(skb, gfp_mask)) {
6810 		skb_kfree_head(data, size);
6811 		return -ENOMEM;
6812 	}
6813 	shinfo = (struct skb_shared_info *)(data + size);
6814 	for (i = 0; i < nfrags; i++) {
6815 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6816 
6817 		if (pos + fsize > off) {
6818 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6819 
6820 			if (pos < off) {
6821 				/* Split frag.
6822 				 * We have two variants in this case:
6823 				 * 1. Move all the frag to the second
6824 				 *    part, if it is possible. F.e.
6825 				 *    this approach is mandatory for TUX,
6826 				 *    where splitting is expensive.
6827 				 * 2. Split is accurately. We make this.
6828 				 */
6829 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6830 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6831 			}
6832 			skb_frag_ref(skb, i);
6833 			k++;
6834 		}
6835 		pos += fsize;
6836 	}
6837 	shinfo->nr_frags = k;
6838 	if (skb_has_frag_list(skb))
6839 		skb_clone_fraglist(skb);
6840 
6841 	/* split line is in frag list */
6842 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6843 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6844 		if (skb_has_frag_list(skb))
6845 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6846 		skb_kfree_head(data, size);
6847 		return -ENOMEM;
6848 	}
6849 	skb_release_data(skb, SKB_CONSUMED);
6850 
6851 	skb->head = data;
6852 	skb->head_frag = 0;
6853 	skb->data = data;
6854 	skb_set_end_offset(skb, size);
6855 	skb_reset_tail_pointer(skb);
6856 	skb_headers_offset_update(skb, 0);
6857 	skb->cloned   = 0;
6858 	skb->hdr_len  = 0;
6859 	skb->nohdr    = 0;
6860 	skb->len -= off;
6861 	skb->data_len = skb->len;
6862 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6863 	return 0;
6864 }
6865 
6866 /* remove len bytes from the beginning of the skb */
6867 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6868 {
6869 	int headlen = skb_headlen(skb);
6870 
6871 	if (len < headlen)
6872 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6873 	else
6874 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6875 }
6876 
6877 /* Extract to_copy bytes starting at off from skb, and return this in
6878  * a new skb
6879  */
6880 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6881 			     int to_copy, gfp_t gfp)
6882 {
6883 	struct sk_buff  *clone = skb_clone(skb, gfp);
6884 
6885 	if (!clone)
6886 		return NULL;
6887 
6888 	if (pskb_carve(clone, off, gfp) < 0 ||
6889 	    pskb_trim(clone, to_copy)) {
6890 		kfree_skb(clone);
6891 		return NULL;
6892 	}
6893 	return clone;
6894 }
6895 EXPORT_SYMBOL(pskb_extract);
6896 
6897 /**
6898  * skb_condense - try to get rid of fragments/frag_list if possible
6899  * @skb: buffer
6900  *
6901  * Can be used to save memory before skb is added to a busy queue.
6902  * If packet has bytes in frags and enough tail room in skb->head,
6903  * pull all of them, so that we can free the frags right now and adjust
6904  * truesize.
6905  * Notes:
6906  *	We do not reallocate skb->head thus can not fail.
6907  *	Caller must re-evaluate skb->truesize if needed.
6908  */
6909 void skb_condense(struct sk_buff *skb)
6910 {
6911 	if (skb->data_len) {
6912 		if (skb->data_len > skb->end - skb->tail ||
6913 		    skb_cloned(skb) || !skb_frags_readable(skb))
6914 			return;
6915 
6916 		/* Nice, we can free page frag(s) right now */
6917 		__pskb_pull_tail(skb, skb->data_len);
6918 	}
6919 	/* At this point, skb->truesize might be over estimated,
6920 	 * because skb had a fragment, and fragments do not tell
6921 	 * their truesize.
6922 	 * When we pulled its content into skb->head, fragment
6923 	 * was freed, but __pskb_pull_tail() could not possibly
6924 	 * adjust skb->truesize, not knowing the frag truesize.
6925 	 */
6926 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6927 }
6928 EXPORT_SYMBOL(skb_condense);
6929 
6930 #ifdef CONFIG_SKB_EXTENSIONS
6931 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6932 {
6933 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6934 }
6935 
6936 /**
6937  * __skb_ext_alloc - allocate a new skb extensions storage
6938  *
6939  * @flags: See kmalloc().
6940  *
6941  * Returns the newly allocated pointer. The pointer can later attached to a
6942  * skb via __skb_ext_set().
6943  * Note: caller must handle the skb_ext as an opaque data.
6944  */
6945 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6946 {
6947 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6948 
6949 	if (new) {
6950 		memset(new->offset, 0, sizeof(new->offset));
6951 		refcount_set(&new->refcnt, 1);
6952 	}
6953 
6954 	return new;
6955 }
6956 
6957 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6958 					 unsigned int old_active)
6959 {
6960 	struct skb_ext *new;
6961 
6962 	if (refcount_read(&old->refcnt) == 1)
6963 		return old;
6964 
6965 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6966 	if (!new)
6967 		return NULL;
6968 
6969 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6970 	refcount_set(&new->refcnt, 1);
6971 
6972 #ifdef CONFIG_XFRM
6973 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6974 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6975 		unsigned int i;
6976 
6977 		for (i = 0; i < sp->len; i++)
6978 			xfrm_state_hold(sp->xvec[i]);
6979 	}
6980 #endif
6981 #ifdef CONFIG_MCTP_FLOWS
6982 	if (old_active & (1 << SKB_EXT_MCTP)) {
6983 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6984 
6985 		if (flow->key)
6986 			refcount_inc(&flow->key->refs);
6987 	}
6988 #endif
6989 	__skb_ext_put(old);
6990 	return new;
6991 }
6992 
6993 /**
6994  * __skb_ext_set - attach the specified extension storage to this skb
6995  * @skb: buffer
6996  * @id: extension id
6997  * @ext: extension storage previously allocated via __skb_ext_alloc()
6998  *
6999  * Existing extensions, if any, are cleared.
7000  *
7001  * Returns the pointer to the extension.
7002  */
7003 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7004 		    struct skb_ext *ext)
7005 {
7006 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7007 
7008 	skb_ext_put(skb);
7009 	newlen = newoff + skb_ext_type_len[id];
7010 	ext->chunks = newlen;
7011 	ext->offset[id] = newoff;
7012 	skb->extensions = ext;
7013 	skb->active_extensions = 1 << id;
7014 	return skb_ext_get_ptr(ext, id);
7015 }
7016 
7017 /**
7018  * skb_ext_add - allocate space for given extension, COW if needed
7019  * @skb: buffer
7020  * @id: extension to allocate space for
7021  *
7022  * Allocates enough space for the given extension.
7023  * If the extension is already present, a pointer to that extension
7024  * is returned.
7025  *
7026  * If the skb was cloned, COW applies and the returned memory can be
7027  * modified without changing the extension space of clones buffers.
7028  *
7029  * Returns pointer to the extension or NULL on allocation failure.
7030  */
7031 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7032 {
7033 	struct skb_ext *new, *old = NULL;
7034 	unsigned int newlen, newoff;
7035 
7036 	if (skb->active_extensions) {
7037 		old = skb->extensions;
7038 
7039 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7040 		if (!new)
7041 			return NULL;
7042 
7043 		if (__skb_ext_exist(new, id))
7044 			goto set_active;
7045 
7046 		newoff = new->chunks;
7047 	} else {
7048 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7049 
7050 		new = __skb_ext_alloc(GFP_ATOMIC);
7051 		if (!new)
7052 			return NULL;
7053 	}
7054 
7055 	newlen = newoff + skb_ext_type_len[id];
7056 	new->chunks = newlen;
7057 	new->offset[id] = newoff;
7058 set_active:
7059 	skb->slow_gro = 1;
7060 	skb->extensions = new;
7061 	skb->active_extensions |= 1 << id;
7062 	return skb_ext_get_ptr(new, id);
7063 }
7064 EXPORT_SYMBOL(skb_ext_add);
7065 
7066 #ifdef CONFIG_XFRM
7067 static void skb_ext_put_sp(struct sec_path *sp)
7068 {
7069 	unsigned int i;
7070 
7071 	for (i = 0; i < sp->len; i++)
7072 		xfrm_state_put(sp->xvec[i]);
7073 }
7074 #endif
7075 
7076 #ifdef CONFIG_MCTP_FLOWS
7077 static void skb_ext_put_mctp(struct mctp_flow *flow)
7078 {
7079 	if (flow->key)
7080 		mctp_key_unref(flow->key);
7081 }
7082 #endif
7083 
7084 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7085 {
7086 	struct skb_ext *ext = skb->extensions;
7087 
7088 	skb->active_extensions &= ~(1 << id);
7089 	if (skb->active_extensions == 0) {
7090 		skb->extensions = NULL;
7091 		__skb_ext_put(ext);
7092 #ifdef CONFIG_XFRM
7093 	} else if (id == SKB_EXT_SEC_PATH &&
7094 		   refcount_read(&ext->refcnt) == 1) {
7095 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7096 
7097 		skb_ext_put_sp(sp);
7098 		sp->len = 0;
7099 #endif
7100 	}
7101 }
7102 EXPORT_SYMBOL(__skb_ext_del);
7103 
7104 void __skb_ext_put(struct skb_ext *ext)
7105 {
7106 	/* If this is last clone, nothing can increment
7107 	 * it after check passes.  Avoids one atomic op.
7108 	 */
7109 	if (refcount_read(&ext->refcnt) == 1)
7110 		goto free_now;
7111 
7112 	if (!refcount_dec_and_test(&ext->refcnt))
7113 		return;
7114 free_now:
7115 #ifdef CONFIG_XFRM
7116 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7117 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7118 #endif
7119 #ifdef CONFIG_MCTP_FLOWS
7120 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7121 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7122 #endif
7123 
7124 	kmem_cache_free(skbuff_ext_cache, ext);
7125 }
7126 EXPORT_SYMBOL(__skb_ext_put);
7127 #endif /* CONFIG_SKB_EXTENSIONS */
7128 
7129 static void kfree_skb_napi_cache(struct sk_buff *skb)
7130 {
7131 	/* if SKB is a clone, don't handle this case */
7132 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7133 		__kfree_skb(skb);
7134 		return;
7135 	}
7136 
7137 	local_bh_disable();
7138 	__napi_kfree_skb(skb, SKB_CONSUMED);
7139 	local_bh_enable();
7140 }
7141 
7142 /**
7143  * skb_attempt_defer_free - queue skb for remote freeing
7144  * @skb: buffer
7145  *
7146  * Put @skb in a per-cpu list, using the cpu which
7147  * allocated the skb/pages to reduce false sharing
7148  * and memory zone spinlock contention.
7149  */
7150 void skb_attempt_defer_free(struct sk_buff *skb)
7151 {
7152 	int cpu = skb->alloc_cpu;
7153 	struct softnet_data *sd;
7154 	unsigned int defer_max;
7155 	bool kick;
7156 
7157 	if (cpu == raw_smp_processor_id() ||
7158 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7159 	    !cpu_online(cpu)) {
7160 nodefer:	kfree_skb_napi_cache(skb);
7161 		return;
7162 	}
7163 
7164 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7165 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7166 
7167 	sd = &per_cpu(softnet_data, cpu);
7168 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7169 	if (READ_ONCE(sd->defer_count) >= defer_max)
7170 		goto nodefer;
7171 
7172 	spin_lock_bh(&sd->defer_lock);
7173 	/* Send an IPI every time queue reaches half capacity. */
7174 	kick = sd->defer_count == (defer_max >> 1);
7175 	/* Paired with the READ_ONCE() few lines above */
7176 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7177 
7178 	skb->next = sd->defer_list;
7179 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7180 	WRITE_ONCE(sd->defer_list, skb);
7181 	spin_unlock_bh(&sd->defer_lock);
7182 
7183 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7184 	 * if we are unlucky enough (this seems very unlikely).
7185 	 */
7186 	if (unlikely(kick))
7187 		kick_defer_list_purge(sd, cpu);
7188 }
7189 
7190 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7191 				 size_t offset, size_t len)
7192 {
7193 	const char *kaddr;
7194 	__wsum csum;
7195 
7196 	kaddr = kmap_local_page(page);
7197 	csum = csum_partial(kaddr + offset, len, 0);
7198 	kunmap_local(kaddr);
7199 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7200 }
7201 
7202 /**
7203  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7204  * @skb: The buffer to add pages to
7205  * @iter: Iterator representing the pages to be added
7206  * @maxsize: Maximum amount of pages to be added
7207  * @gfp: Allocation flags
7208  *
7209  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7210  * extracts pages from an iterator and adds them to the socket buffer if
7211  * possible, copying them to fragments if not possible (such as if they're slab
7212  * pages).
7213  *
7214  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7215  * insufficient space in the buffer to transfer anything.
7216  */
7217 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7218 			     ssize_t maxsize, gfp_t gfp)
7219 {
7220 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7221 	struct page *pages[8], **ppages = pages;
7222 	ssize_t spliced = 0, ret = 0;
7223 	unsigned int i;
7224 
7225 	while (iter->count > 0) {
7226 		ssize_t space, nr, len;
7227 		size_t off;
7228 
7229 		ret = -EMSGSIZE;
7230 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7231 		if (space < 0)
7232 			break;
7233 
7234 		/* We might be able to coalesce without increasing nr_frags */
7235 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7236 
7237 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7238 		if (len <= 0) {
7239 			ret = len ?: -EIO;
7240 			break;
7241 		}
7242 
7243 		i = 0;
7244 		do {
7245 			struct page *page = pages[i++];
7246 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7247 
7248 			ret = -EIO;
7249 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7250 				goto out;
7251 
7252 			ret = skb_append_pagefrags(skb, page, off, part,
7253 						   frag_limit);
7254 			if (ret < 0) {
7255 				iov_iter_revert(iter, len);
7256 				goto out;
7257 			}
7258 
7259 			if (skb->ip_summed == CHECKSUM_NONE)
7260 				skb_splice_csum_page(skb, page, off, part);
7261 
7262 			off = 0;
7263 			spliced += part;
7264 			maxsize -= part;
7265 			len -= part;
7266 		} while (len > 0);
7267 
7268 		if (maxsize <= 0)
7269 			break;
7270 	}
7271 
7272 out:
7273 	skb_len_add(skb, spliced);
7274 	return spliced ?: ret;
7275 }
7276 EXPORT_SYMBOL(skb_splice_from_iter);
7277 
7278 static __always_inline
7279 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7280 			     size_t len, void *to, void *priv2)
7281 {
7282 	__wsum *csum = priv2;
7283 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7284 
7285 	*csum = csum_block_add(*csum, next, progress);
7286 	return 0;
7287 }
7288 
7289 static __always_inline
7290 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7291 				size_t len, void *to, void *priv2)
7292 {
7293 	__wsum next, *csum = priv2;
7294 
7295 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7296 	*csum = csum_block_add(*csum, next, progress);
7297 	return next ? 0 : len;
7298 }
7299 
7300 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7301 				  __wsum *csum, struct iov_iter *i)
7302 {
7303 	size_t copied;
7304 
7305 	if (WARN_ON_ONCE(!i->data_source))
7306 		return false;
7307 	copied = iterate_and_advance2(i, bytes, addr, csum,
7308 				      copy_from_user_iter_csum,
7309 				      memcpy_from_iter_csum);
7310 	if (likely(copied == bytes))
7311 		return true;
7312 	iov_iter_revert(i, copied);
7313 	return false;
7314 }
7315 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7316