1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/mm.h> 45 #include <linux/interrupt.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/slab.h> 49 #include <linux/netdevice.h> 50 #ifdef CONFIG_NET_CLS_ACT 51 #include <net/pkt_sched.h> 52 #endif 53 #include <linux/string.h> 54 #include <linux/skbuff.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 70 #include "kmap_skb.h" 71 72 static struct kmem_cache *skbuff_head_cache __read_mostly; 73 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 74 75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 76 struct pipe_buffer *buf) 77 { 78 struct sk_buff *skb = (struct sk_buff *) buf->private; 79 80 kfree_skb(skb); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 struct sk_buff *skb = (struct sk_buff *) buf->private; 87 88 skb_get(skb); 89 } 90 91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 92 struct pipe_buffer *buf) 93 { 94 return 1; 95 } 96 97 98 /* Pipe buffer operations for a socket. */ 99 static struct pipe_buf_operations sock_pipe_buf_ops = { 100 .can_merge = 0, 101 .map = generic_pipe_buf_map, 102 .unmap = generic_pipe_buf_unmap, 103 .confirm = generic_pipe_buf_confirm, 104 .release = sock_pipe_buf_release, 105 .steal = sock_pipe_buf_steal, 106 .get = sock_pipe_buf_get, 107 }; 108 109 /* 110 * Keep out-of-line to prevent kernel bloat. 111 * __builtin_return_address is not used because it is not always 112 * reliable. 113 */ 114 115 /** 116 * skb_over_panic - private function 117 * @skb: buffer 118 * @sz: size 119 * @here: address 120 * 121 * Out of line support code for skb_put(). Not user callable. 122 */ 123 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 124 { 125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 126 "data:%p tail:%#lx end:%#lx dev:%s\n", 127 here, skb->len, sz, skb->head, skb->data, 128 (unsigned long)skb->tail, (unsigned long)skb->end, 129 skb->dev ? skb->dev->name : "<NULL>"); 130 BUG(); 131 } 132 133 /** 134 * skb_under_panic - private function 135 * @skb: buffer 136 * @sz: size 137 * @here: address 138 * 139 * Out of line support code for skb_push(). Not user callable. 140 */ 141 142 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 143 { 144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 145 "data:%p tail:%#lx end:%#lx dev:%s\n", 146 here, skb->len, sz, skb->head, skb->data, 147 (unsigned long)skb->tail, (unsigned long)skb->end, 148 skb->dev ? skb->dev->name : "<NULL>"); 149 BUG(); 150 } 151 152 void skb_truesize_bug(struct sk_buff *skb) 153 { 154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 155 "len=%u, sizeof(sk_buff)=%Zd\n", 156 skb->truesize, skb->len, sizeof(struct sk_buff)); 157 } 158 EXPORT_SYMBOL(skb_truesize_bug); 159 160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 161 * 'private' fields and also do memory statistics to find all the 162 * [BEEP] leaks. 163 * 164 */ 165 166 /** 167 * __alloc_skb - allocate a network buffer 168 * @size: size to allocate 169 * @gfp_mask: allocation mask 170 * @fclone: allocate from fclone cache instead of head cache 171 * and allocate a cloned (child) skb 172 * @node: numa node to allocate memory on 173 * 174 * Allocate a new &sk_buff. The returned buffer has no headroom and a 175 * tail room of size bytes. The object has a reference count of one. 176 * The return is the buffer. On a failure the return is %NULL. 177 * 178 * Buffers may only be allocated from interrupts using a @gfp_mask of 179 * %GFP_ATOMIC. 180 */ 181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 182 int fclone, int node) 183 { 184 struct kmem_cache *cache; 185 struct skb_shared_info *shinfo; 186 struct sk_buff *skb; 187 u8 *data; 188 189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 190 191 /* Get the HEAD */ 192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 193 if (!skb) 194 goto out; 195 196 size = SKB_DATA_ALIGN(size); 197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info), 198 gfp_mask, node); 199 if (!data) 200 goto nodata; 201 202 /* 203 * See comment in sk_buff definition, just before the 'tail' member 204 */ 205 memset(skb, 0, offsetof(struct sk_buff, tail)); 206 skb->truesize = size + sizeof(struct sk_buff); 207 atomic_set(&skb->users, 1); 208 skb->head = data; 209 skb->data = data; 210 skb_reset_tail_pointer(skb); 211 skb->end = skb->tail + size; 212 /* make sure we initialize shinfo sequentially */ 213 shinfo = skb_shinfo(skb); 214 atomic_set(&shinfo->dataref, 1); 215 shinfo->nr_frags = 0; 216 shinfo->gso_size = 0; 217 shinfo->gso_segs = 0; 218 shinfo->gso_type = 0; 219 shinfo->ip6_frag_id = 0; 220 shinfo->frag_list = NULL; 221 222 if (fclone) { 223 struct sk_buff *child = skb + 1; 224 atomic_t *fclone_ref = (atomic_t *) (child + 1); 225 226 skb->fclone = SKB_FCLONE_ORIG; 227 atomic_set(fclone_ref, 1); 228 229 child->fclone = SKB_FCLONE_UNAVAILABLE; 230 } 231 out: 232 return skb; 233 nodata: 234 kmem_cache_free(cache, skb); 235 skb = NULL; 236 goto out; 237 } 238 239 /** 240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 241 * @dev: network device to receive on 242 * @length: length to allocate 243 * @gfp_mask: get_free_pages mask, passed to alloc_skb 244 * 245 * Allocate a new &sk_buff and assign it a usage count of one. The 246 * buffer has unspecified headroom built in. Users should allocate 247 * the headroom they think they need without accounting for the 248 * built in space. The built in space is used for optimisations. 249 * 250 * %NULL is returned if there is no free memory. 251 */ 252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 253 unsigned int length, gfp_t gfp_mask) 254 { 255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1; 256 struct sk_buff *skb; 257 258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node); 259 if (likely(skb)) { 260 skb_reserve(skb, NET_SKB_PAD); 261 skb->dev = dev; 262 } 263 return skb; 264 } 265 266 /** 267 * dev_alloc_skb - allocate an skbuff for receiving 268 * @length: length to allocate 269 * 270 * Allocate a new &sk_buff and assign it a usage count of one. The 271 * buffer has unspecified headroom built in. Users should allocate 272 * the headroom they think they need without accounting for the 273 * built in space. The built in space is used for optimisations. 274 * 275 * %NULL is returned if there is no free memory. Although this function 276 * allocates memory it can be called from an interrupt. 277 */ 278 struct sk_buff *dev_alloc_skb(unsigned int length) 279 { 280 /* 281 * There is more code here than it seems: 282 * __dev_alloc_skb is an inline 283 */ 284 return __dev_alloc_skb(length, GFP_ATOMIC); 285 } 286 EXPORT_SYMBOL(dev_alloc_skb); 287 288 static void skb_drop_list(struct sk_buff **listp) 289 { 290 struct sk_buff *list = *listp; 291 292 *listp = NULL; 293 294 do { 295 struct sk_buff *this = list; 296 list = list->next; 297 kfree_skb(this); 298 } while (list); 299 } 300 301 static inline void skb_drop_fraglist(struct sk_buff *skb) 302 { 303 skb_drop_list(&skb_shinfo(skb)->frag_list); 304 } 305 306 static void skb_clone_fraglist(struct sk_buff *skb) 307 { 308 struct sk_buff *list; 309 310 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 311 skb_get(list); 312 } 313 314 static void skb_release_data(struct sk_buff *skb) 315 { 316 if (!skb->cloned || 317 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 318 &skb_shinfo(skb)->dataref)) { 319 if (skb_shinfo(skb)->nr_frags) { 320 int i; 321 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 322 put_page(skb_shinfo(skb)->frags[i].page); 323 } 324 325 if (skb_shinfo(skb)->frag_list) 326 skb_drop_fraglist(skb); 327 328 kfree(skb->head); 329 } 330 } 331 332 /* 333 * Free an skbuff by memory without cleaning the state. 334 */ 335 static void kfree_skbmem(struct sk_buff *skb) 336 { 337 struct sk_buff *other; 338 atomic_t *fclone_ref; 339 340 switch (skb->fclone) { 341 case SKB_FCLONE_UNAVAILABLE: 342 kmem_cache_free(skbuff_head_cache, skb); 343 break; 344 345 case SKB_FCLONE_ORIG: 346 fclone_ref = (atomic_t *) (skb + 2); 347 if (atomic_dec_and_test(fclone_ref)) 348 kmem_cache_free(skbuff_fclone_cache, skb); 349 break; 350 351 case SKB_FCLONE_CLONE: 352 fclone_ref = (atomic_t *) (skb + 1); 353 other = skb - 1; 354 355 /* The clone portion is available for 356 * fast-cloning again. 357 */ 358 skb->fclone = SKB_FCLONE_UNAVAILABLE; 359 360 if (atomic_dec_and_test(fclone_ref)) 361 kmem_cache_free(skbuff_fclone_cache, other); 362 break; 363 } 364 } 365 366 /* Free everything but the sk_buff shell. */ 367 static void skb_release_all(struct sk_buff *skb) 368 { 369 dst_release(skb->dst); 370 #ifdef CONFIG_XFRM 371 secpath_put(skb->sp); 372 #endif 373 if (skb->destructor) { 374 WARN_ON(in_irq()); 375 skb->destructor(skb); 376 } 377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 378 nf_conntrack_put(skb->nfct); 379 nf_conntrack_put_reasm(skb->nfct_reasm); 380 #endif 381 #ifdef CONFIG_BRIDGE_NETFILTER 382 nf_bridge_put(skb->nf_bridge); 383 #endif 384 /* XXX: IS this still necessary? - JHS */ 385 #ifdef CONFIG_NET_SCHED 386 skb->tc_index = 0; 387 #ifdef CONFIG_NET_CLS_ACT 388 skb->tc_verd = 0; 389 #endif 390 #endif 391 skb_release_data(skb); 392 } 393 394 /** 395 * __kfree_skb - private function 396 * @skb: buffer 397 * 398 * Free an sk_buff. Release anything attached to the buffer. 399 * Clean the state. This is an internal helper function. Users should 400 * always call kfree_skb 401 */ 402 403 void __kfree_skb(struct sk_buff *skb) 404 { 405 skb_release_all(skb); 406 kfree_skbmem(skb); 407 } 408 409 /** 410 * kfree_skb - free an sk_buff 411 * @skb: buffer to free 412 * 413 * Drop a reference to the buffer and free it if the usage count has 414 * hit zero. 415 */ 416 void kfree_skb(struct sk_buff *skb) 417 { 418 if (unlikely(!skb)) 419 return; 420 if (likely(atomic_read(&skb->users) == 1)) 421 smp_rmb(); 422 else if (likely(!atomic_dec_and_test(&skb->users))) 423 return; 424 __kfree_skb(skb); 425 } 426 427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 428 { 429 new->tstamp = old->tstamp; 430 new->dev = old->dev; 431 new->transport_header = old->transport_header; 432 new->network_header = old->network_header; 433 new->mac_header = old->mac_header; 434 new->dst = dst_clone(old->dst); 435 #ifdef CONFIG_INET 436 new->sp = secpath_get(old->sp); 437 #endif 438 memcpy(new->cb, old->cb, sizeof(old->cb)); 439 new->csum_start = old->csum_start; 440 new->csum_offset = old->csum_offset; 441 new->local_df = old->local_df; 442 new->pkt_type = old->pkt_type; 443 new->ip_summed = old->ip_summed; 444 skb_copy_queue_mapping(new, old); 445 new->priority = old->priority; 446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 447 new->ipvs_property = old->ipvs_property; 448 #endif 449 new->protocol = old->protocol; 450 new->mark = old->mark; 451 __nf_copy(new, old); 452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ 453 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) 454 new->nf_trace = old->nf_trace; 455 #endif 456 #ifdef CONFIG_NET_SCHED 457 new->tc_index = old->tc_index; 458 #ifdef CONFIG_NET_CLS_ACT 459 new->tc_verd = old->tc_verd; 460 #endif 461 #endif 462 skb_copy_secmark(new, old); 463 } 464 465 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 466 { 467 #define C(x) n->x = skb->x 468 469 n->next = n->prev = NULL; 470 n->sk = NULL; 471 __copy_skb_header(n, skb); 472 473 C(len); 474 C(data_len); 475 C(mac_len); 476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 477 n->cloned = 1; 478 n->nohdr = 0; 479 n->destructor = NULL; 480 C(iif); 481 C(tail); 482 C(end); 483 C(head); 484 C(data); 485 C(truesize); 486 atomic_set(&n->users, 1); 487 488 atomic_inc(&(skb_shinfo(skb)->dataref)); 489 skb->cloned = 1; 490 491 return n; 492 #undef C 493 } 494 495 /** 496 * skb_morph - morph one skb into another 497 * @dst: the skb to receive the contents 498 * @src: the skb to supply the contents 499 * 500 * This is identical to skb_clone except that the target skb is 501 * supplied by the user. 502 * 503 * The target skb is returned upon exit. 504 */ 505 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 506 { 507 skb_release_all(dst); 508 return __skb_clone(dst, src); 509 } 510 EXPORT_SYMBOL_GPL(skb_morph); 511 512 /** 513 * skb_clone - duplicate an sk_buff 514 * @skb: buffer to clone 515 * @gfp_mask: allocation priority 516 * 517 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 518 * copies share the same packet data but not structure. The new 519 * buffer has a reference count of 1. If the allocation fails the 520 * function returns %NULL otherwise the new buffer is returned. 521 * 522 * If this function is called from an interrupt gfp_mask() must be 523 * %GFP_ATOMIC. 524 */ 525 526 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 527 { 528 struct sk_buff *n; 529 530 n = skb + 1; 531 if (skb->fclone == SKB_FCLONE_ORIG && 532 n->fclone == SKB_FCLONE_UNAVAILABLE) { 533 atomic_t *fclone_ref = (atomic_t *) (n + 1); 534 n->fclone = SKB_FCLONE_CLONE; 535 atomic_inc(fclone_ref); 536 } else { 537 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 538 if (!n) 539 return NULL; 540 n->fclone = SKB_FCLONE_UNAVAILABLE; 541 } 542 543 return __skb_clone(n, skb); 544 } 545 546 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 547 { 548 #ifndef NET_SKBUFF_DATA_USES_OFFSET 549 /* 550 * Shift between the two data areas in bytes 551 */ 552 unsigned long offset = new->data - old->data; 553 #endif 554 555 __copy_skb_header(new, old); 556 557 #ifndef NET_SKBUFF_DATA_USES_OFFSET 558 /* {transport,network,mac}_header are relative to skb->head */ 559 new->transport_header += offset; 560 new->network_header += offset; 561 new->mac_header += offset; 562 #endif 563 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 564 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 565 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 566 } 567 568 /** 569 * skb_copy - create private copy of an sk_buff 570 * @skb: buffer to copy 571 * @gfp_mask: allocation priority 572 * 573 * Make a copy of both an &sk_buff and its data. This is used when the 574 * caller wishes to modify the data and needs a private copy of the 575 * data to alter. Returns %NULL on failure or the pointer to the buffer 576 * on success. The returned buffer has a reference count of 1. 577 * 578 * As by-product this function converts non-linear &sk_buff to linear 579 * one, so that &sk_buff becomes completely private and caller is allowed 580 * to modify all the data of returned buffer. This means that this 581 * function is not recommended for use in circumstances when only 582 * header is going to be modified. Use pskb_copy() instead. 583 */ 584 585 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 586 { 587 int headerlen = skb->data - skb->head; 588 /* 589 * Allocate the copy buffer 590 */ 591 struct sk_buff *n; 592 #ifdef NET_SKBUFF_DATA_USES_OFFSET 593 n = alloc_skb(skb->end + skb->data_len, gfp_mask); 594 #else 595 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); 596 #endif 597 if (!n) 598 return NULL; 599 600 /* Set the data pointer */ 601 skb_reserve(n, headerlen); 602 /* Set the tail pointer and length */ 603 skb_put(n, skb->len); 604 605 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 606 BUG(); 607 608 copy_skb_header(n, skb); 609 return n; 610 } 611 612 613 /** 614 * pskb_copy - create copy of an sk_buff with private head. 615 * @skb: buffer to copy 616 * @gfp_mask: allocation priority 617 * 618 * Make a copy of both an &sk_buff and part of its data, located 619 * in header. Fragmented data remain shared. This is used when 620 * the caller wishes to modify only header of &sk_buff and needs 621 * private copy of the header to alter. Returns %NULL on failure 622 * or the pointer to the buffer on success. 623 * The returned buffer has a reference count of 1. 624 */ 625 626 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 627 { 628 /* 629 * Allocate the copy buffer 630 */ 631 struct sk_buff *n; 632 #ifdef NET_SKBUFF_DATA_USES_OFFSET 633 n = alloc_skb(skb->end, gfp_mask); 634 #else 635 n = alloc_skb(skb->end - skb->head, gfp_mask); 636 #endif 637 if (!n) 638 goto out; 639 640 /* Set the data pointer */ 641 skb_reserve(n, skb->data - skb->head); 642 /* Set the tail pointer and length */ 643 skb_put(n, skb_headlen(skb)); 644 /* Copy the bytes */ 645 skb_copy_from_linear_data(skb, n->data, n->len); 646 647 n->truesize += skb->data_len; 648 n->data_len = skb->data_len; 649 n->len = skb->len; 650 651 if (skb_shinfo(skb)->nr_frags) { 652 int i; 653 654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 655 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 656 get_page(skb_shinfo(n)->frags[i].page); 657 } 658 skb_shinfo(n)->nr_frags = i; 659 } 660 661 if (skb_shinfo(skb)->frag_list) { 662 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 663 skb_clone_fraglist(n); 664 } 665 666 copy_skb_header(n, skb); 667 out: 668 return n; 669 } 670 671 /** 672 * pskb_expand_head - reallocate header of &sk_buff 673 * @skb: buffer to reallocate 674 * @nhead: room to add at head 675 * @ntail: room to add at tail 676 * @gfp_mask: allocation priority 677 * 678 * Expands (or creates identical copy, if &nhead and &ntail are zero) 679 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 680 * reference count of 1. Returns zero in the case of success or error, 681 * if expansion failed. In the last case, &sk_buff is not changed. 682 * 683 * All the pointers pointing into skb header may change and must be 684 * reloaded after call to this function. 685 */ 686 687 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 688 gfp_t gfp_mask) 689 { 690 int i; 691 u8 *data; 692 #ifdef NET_SKBUFF_DATA_USES_OFFSET 693 int size = nhead + skb->end + ntail; 694 #else 695 int size = nhead + (skb->end - skb->head) + ntail; 696 #endif 697 long off; 698 699 if (skb_shared(skb)) 700 BUG(); 701 702 size = SKB_DATA_ALIGN(size); 703 704 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 705 if (!data) 706 goto nodata; 707 708 /* Copy only real data... and, alas, header. This should be 709 * optimized for the cases when header is void. */ 710 #ifdef NET_SKBUFF_DATA_USES_OFFSET 711 memcpy(data + nhead, skb->head, skb->tail); 712 #else 713 memcpy(data + nhead, skb->head, skb->tail - skb->head); 714 #endif 715 memcpy(data + size, skb_end_pointer(skb), 716 sizeof(struct skb_shared_info)); 717 718 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 719 get_page(skb_shinfo(skb)->frags[i].page); 720 721 if (skb_shinfo(skb)->frag_list) 722 skb_clone_fraglist(skb); 723 724 skb_release_data(skb); 725 726 off = (data + nhead) - skb->head; 727 728 skb->head = data; 729 skb->data += off; 730 #ifdef NET_SKBUFF_DATA_USES_OFFSET 731 skb->end = size; 732 off = nhead; 733 #else 734 skb->end = skb->head + size; 735 #endif 736 /* {transport,network,mac}_header and tail are relative to skb->head */ 737 skb->tail += off; 738 skb->transport_header += off; 739 skb->network_header += off; 740 skb->mac_header += off; 741 skb->csum_start += nhead; 742 skb->cloned = 0; 743 skb->hdr_len = 0; 744 skb->nohdr = 0; 745 atomic_set(&skb_shinfo(skb)->dataref, 1); 746 return 0; 747 748 nodata: 749 return -ENOMEM; 750 } 751 752 /* Make private copy of skb with writable head and some headroom */ 753 754 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 755 { 756 struct sk_buff *skb2; 757 int delta = headroom - skb_headroom(skb); 758 759 if (delta <= 0) 760 skb2 = pskb_copy(skb, GFP_ATOMIC); 761 else { 762 skb2 = skb_clone(skb, GFP_ATOMIC); 763 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 764 GFP_ATOMIC)) { 765 kfree_skb(skb2); 766 skb2 = NULL; 767 } 768 } 769 return skb2; 770 } 771 772 773 /** 774 * skb_copy_expand - copy and expand sk_buff 775 * @skb: buffer to copy 776 * @newheadroom: new free bytes at head 777 * @newtailroom: new free bytes at tail 778 * @gfp_mask: allocation priority 779 * 780 * Make a copy of both an &sk_buff and its data and while doing so 781 * allocate additional space. 782 * 783 * This is used when the caller wishes to modify the data and needs a 784 * private copy of the data to alter as well as more space for new fields. 785 * Returns %NULL on failure or the pointer to the buffer 786 * on success. The returned buffer has a reference count of 1. 787 * 788 * You must pass %GFP_ATOMIC as the allocation priority if this function 789 * is called from an interrupt. 790 */ 791 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 792 int newheadroom, int newtailroom, 793 gfp_t gfp_mask) 794 { 795 /* 796 * Allocate the copy buffer 797 */ 798 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 799 gfp_mask); 800 int oldheadroom = skb_headroom(skb); 801 int head_copy_len, head_copy_off; 802 int off; 803 804 if (!n) 805 return NULL; 806 807 skb_reserve(n, newheadroom); 808 809 /* Set the tail pointer and length */ 810 skb_put(n, skb->len); 811 812 head_copy_len = oldheadroom; 813 head_copy_off = 0; 814 if (newheadroom <= head_copy_len) 815 head_copy_len = newheadroom; 816 else 817 head_copy_off = newheadroom - head_copy_len; 818 819 /* Copy the linear header and data. */ 820 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 821 skb->len + head_copy_len)) 822 BUG(); 823 824 copy_skb_header(n, skb); 825 826 off = newheadroom - oldheadroom; 827 n->csum_start += off; 828 #ifdef NET_SKBUFF_DATA_USES_OFFSET 829 n->transport_header += off; 830 n->network_header += off; 831 n->mac_header += off; 832 #endif 833 834 return n; 835 } 836 837 /** 838 * skb_pad - zero pad the tail of an skb 839 * @skb: buffer to pad 840 * @pad: space to pad 841 * 842 * Ensure that a buffer is followed by a padding area that is zero 843 * filled. Used by network drivers which may DMA or transfer data 844 * beyond the buffer end onto the wire. 845 * 846 * May return error in out of memory cases. The skb is freed on error. 847 */ 848 849 int skb_pad(struct sk_buff *skb, int pad) 850 { 851 int err; 852 int ntail; 853 854 /* If the skbuff is non linear tailroom is always zero.. */ 855 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 856 memset(skb->data+skb->len, 0, pad); 857 return 0; 858 } 859 860 ntail = skb->data_len + pad - (skb->end - skb->tail); 861 if (likely(skb_cloned(skb) || ntail > 0)) { 862 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 863 if (unlikely(err)) 864 goto free_skb; 865 } 866 867 /* FIXME: The use of this function with non-linear skb's really needs 868 * to be audited. 869 */ 870 err = skb_linearize(skb); 871 if (unlikely(err)) 872 goto free_skb; 873 874 memset(skb->data + skb->len, 0, pad); 875 return 0; 876 877 free_skb: 878 kfree_skb(skb); 879 return err; 880 } 881 882 /** 883 * skb_put - add data to a buffer 884 * @skb: buffer to use 885 * @len: amount of data to add 886 * 887 * This function extends the used data area of the buffer. If this would 888 * exceed the total buffer size the kernel will panic. A pointer to the 889 * first byte of the extra data is returned. 890 */ 891 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 892 { 893 unsigned char *tmp = skb_tail_pointer(skb); 894 SKB_LINEAR_ASSERT(skb); 895 skb->tail += len; 896 skb->len += len; 897 if (unlikely(skb->tail > skb->end)) 898 skb_over_panic(skb, len, __builtin_return_address(0)); 899 return tmp; 900 } 901 EXPORT_SYMBOL(skb_put); 902 903 /** 904 * skb_push - add data to the start of a buffer 905 * @skb: buffer to use 906 * @len: amount of data to add 907 * 908 * This function extends the used data area of the buffer at the buffer 909 * start. If this would exceed the total buffer headroom the kernel will 910 * panic. A pointer to the first byte of the extra data is returned. 911 */ 912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 913 { 914 skb->data -= len; 915 skb->len += len; 916 if (unlikely(skb->data<skb->head)) 917 skb_under_panic(skb, len, __builtin_return_address(0)); 918 return skb->data; 919 } 920 EXPORT_SYMBOL(skb_push); 921 922 /** 923 * skb_pull - remove data from the start of a buffer 924 * @skb: buffer to use 925 * @len: amount of data to remove 926 * 927 * This function removes data from the start of a buffer, returning 928 * the memory to the headroom. A pointer to the next data in the buffer 929 * is returned. Once the data has been pulled future pushes will overwrite 930 * the old data. 931 */ 932 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 933 { 934 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 935 } 936 EXPORT_SYMBOL(skb_pull); 937 938 /** 939 * skb_trim - remove end from a buffer 940 * @skb: buffer to alter 941 * @len: new length 942 * 943 * Cut the length of a buffer down by removing data from the tail. If 944 * the buffer is already under the length specified it is not modified. 945 * The skb must be linear. 946 */ 947 void skb_trim(struct sk_buff *skb, unsigned int len) 948 { 949 if (skb->len > len) 950 __skb_trim(skb, len); 951 } 952 EXPORT_SYMBOL(skb_trim); 953 954 /* Trims skb to length len. It can change skb pointers. 955 */ 956 957 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 958 { 959 struct sk_buff **fragp; 960 struct sk_buff *frag; 961 int offset = skb_headlen(skb); 962 int nfrags = skb_shinfo(skb)->nr_frags; 963 int i; 964 int err; 965 966 if (skb_cloned(skb) && 967 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 968 return err; 969 970 i = 0; 971 if (offset >= len) 972 goto drop_pages; 973 974 for (; i < nfrags; i++) { 975 int end = offset + skb_shinfo(skb)->frags[i].size; 976 977 if (end < len) { 978 offset = end; 979 continue; 980 } 981 982 skb_shinfo(skb)->frags[i++].size = len - offset; 983 984 drop_pages: 985 skb_shinfo(skb)->nr_frags = i; 986 987 for (; i < nfrags; i++) 988 put_page(skb_shinfo(skb)->frags[i].page); 989 990 if (skb_shinfo(skb)->frag_list) 991 skb_drop_fraglist(skb); 992 goto done; 993 } 994 995 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 996 fragp = &frag->next) { 997 int end = offset + frag->len; 998 999 if (skb_shared(frag)) { 1000 struct sk_buff *nfrag; 1001 1002 nfrag = skb_clone(frag, GFP_ATOMIC); 1003 if (unlikely(!nfrag)) 1004 return -ENOMEM; 1005 1006 nfrag->next = frag->next; 1007 kfree_skb(frag); 1008 frag = nfrag; 1009 *fragp = frag; 1010 } 1011 1012 if (end < len) { 1013 offset = end; 1014 continue; 1015 } 1016 1017 if (end > len && 1018 unlikely((err = pskb_trim(frag, len - offset)))) 1019 return err; 1020 1021 if (frag->next) 1022 skb_drop_list(&frag->next); 1023 break; 1024 } 1025 1026 done: 1027 if (len > skb_headlen(skb)) { 1028 skb->data_len -= skb->len - len; 1029 skb->len = len; 1030 } else { 1031 skb->len = len; 1032 skb->data_len = 0; 1033 skb_set_tail_pointer(skb, len); 1034 } 1035 1036 return 0; 1037 } 1038 1039 /** 1040 * __pskb_pull_tail - advance tail of skb header 1041 * @skb: buffer to reallocate 1042 * @delta: number of bytes to advance tail 1043 * 1044 * The function makes a sense only on a fragmented &sk_buff, 1045 * it expands header moving its tail forward and copying necessary 1046 * data from fragmented part. 1047 * 1048 * &sk_buff MUST have reference count of 1. 1049 * 1050 * Returns %NULL (and &sk_buff does not change) if pull failed 1051 * or value of new tail of skb in the case of success. 1052 * 1053 * All the pointers pointing into skb header may change and must be 1054 * reloaded after call to this function. 1055 */ 1056 1057 /* Moves tail of skb head forward, copying data from fragmented part, 1058 * when it is necessary. 1059 * 1. It may fail due to malloc failure. 1060 * 2. It may change skb pointers. 1061 * 1062 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1063 */ 1064 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1065 { 1066 /* If skb has not enough free space at tail, get new one 1067 * plus 128 bytes for future expansions. If we have enough 1068 * room at tail, reallocate without expansion only if skb is cloned. 1069 */ 1070 int i, k, eat = (skb->tail + delta) - skb->end; 1071 1072 if (eat > 0 || skb_cloned(skb)) { 1073 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1074 GFP_ATOMIC)) 1075 return NULL; 1076 } 1077 1078 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1079 BUG(); 1080 1081 /* Optimization: no fragments, no reasons to preestimate 1082 * size of pulled pages. Superb. 1083 */ 1084 if (!skb_shinfo(skb)->frag_list) 1085 goto pull_pages; 1086 1087 /* Estimate size of pulled pages. */ 1088 eat = delta; 1089 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1090 if (skb_shinfo(skb)->frags[i].size >= eat) 1091 goto pull_pages; 1092 eat -= skb_shinfo(skb)->frags[i].size; 1093 } 1094 1095 /* If we need update frag list, we are in troubles. 1096 * Certainly, it possible to add an offset to skb data, 1097 * but taking into account that pulling is expected to 1098 * be very rare operation, it is worth to fight against 1099 * further bloating skb head and crucify ourselves here instead. 1100 * Pure masohism, indeed. 8)8) 1101 */ 1102 if (eat) { 1103 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1104 struct sk_buff *clone = NULL; 1105 struct sk_buff *insp = NULL; 1106 1107 do { 1108 BUG_ON(!list); 1109 1110 if (list->len <= eat) { 1111 /* Eaten as whole. */ 1112 eat -= list->len; 1113 list = list->next; 1114 insp = list; 1115 } else { 1116 /* Eaten partially. */ 1117 1118 if (skb_shared(list)) { 1119 /* Sucks! We need to fork list. :-( */ 1120 clone = skb_clone(list, GFP_ATOMIC); 1121 if (!clone) 1122 return NULL; 1123 insp = list->next; 1124 list = clone; 1125 } else { 1126 /* This may be pulled without 1127 * problems. */ 1128 insp = list; 1129 } 1130 if (!pskb_pull(list, eat)) { 1131 if (clone) 1132 kfree_skb(clone); 1133 return NULL; 1134 } 1135 break; 1136 } 1137 } while (eat); 1138 1139 /* Free pulled out fragments. */ 1140 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1141 skb_shinfo(skb)->frag_list = list->next; 1142 kfree_skb(list); 1143 } 1144 /* And insert new clone at head. */ 1145 if (clone) { 1146 clone->next = list; 1147 skb_shinfo(skb)->frag_list = clone; 1148 } 1149 } 1150 /* Success! Now we may commit changes to skb data. */ 1151 1152 pull_pages: 1153 eat = delta; 1154 k = 0; 1155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1156 if (skb_shinfo(skb)->frags[i].size <= eat) { 1157 put_page(skb_shinfo(skb)->frags[i].page); 1158 eat -= skb_shinfo(skb)->frags[i].size; 1159 } else { 1160 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1161 if (eat) { 1162 skb_shinfo(skb)->frags[k].page_offset += eat; 1163 skb_shinfo(skb)->frags[k].size -= eat; 1164 eat = 0; 1165 } 1166 k++; 1167 } 1168 } 1169 skb_shinfo(skb)->nr_frags = k; 1170 1171 skb->tail += delta; 1172 skb->data_len -= delta; 1173 1174 return skb_tail_pointer(skb); 1175 } 1176 1177 /* Copy some data bits from skb to kernel buffer. */ 1178 1179 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1180 { 1181 int i, copy; 1182 int start = skb_headlen(skb); 1183 1184 if (offset > (int)skb->len - len) 1185 goto fault; 1186 1187 /* Copy header. */ 1188 if ((copy = start - offset) > 0) { 1189 if (copy > len) 1190 copy = len; 1191 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1192 if ((len -= copy) == 0) 1193 return 0; 1194 offset += copy; 1195 to += copy; 1196 } 1197 1198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1199 int end; 1200 1201 BUG_TRAP(start <= offset + len); 1202 1203 end = start + skb_shinfo(skb)->frags[i].size; 1204 if ((copy = end - offset) > 0) { 1205 u8 *vaddr; 1206 1207 if (copy > len) 1208 copy = len; 1209 1210 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1211 memcpy(to, 1212 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1213 offset - start, copy); 1214 kunmap_skb_frag(vaddr); 1215 1216 if ((len -= copy) == 0) 1217 return 0; 1218 offset += copy; 1219 to += copy; 1220 } 1221 start = end; 1222 } 1223 1224 if (skb_shinfo(skb)->frag_list) { 1225 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1226 1227 for (; list; list = list->next) { 1228 int end; 1229 1230 BUG_TRAP(start <= offset + len); 1231 1232 end = start + list->len; 1233 if ((copy = end - offset) > 0) { 1234 if (copy > len) 1235 copy = len; 1236 if (skb_copy_bits(list, offset - start, 1237 to, copy)) 1238 goto fault; 1239 if ((len -= copy) == 0) 1240 return 0; 1241 offset += copy; 1242 to += copy; 1243 } 1244 start = end; 1245 } 1246 } 1247 if (!len) 1248 return 0; 1249 1250 fault: 1251 return -EFAULT; 1252 } 1253 1254 /* 1255 * Callback from splice_to_pipe(), if we need to release some pages 1256 * at the end of the spd in case we error'ed out in filling the pipe. 1257 */ 1258 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1259 { 1260 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private; 1261 1262 kfree_skb(skb); 1263 } 1264 1265 /* 1266 * Fill page/offset/length into spd, if it can hold more pages. 1267 */ 1268 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 1269 unsigned int len, unsigned int offset, 1270 struct sk_buff *skb) 1271 { 1272 if (unlikely(spd->nr_pages == PIPE_BUFFERS)) 1273 return 1; 1274 1275 spd->pages[spd->nr_pages] = page; 1276 spd->partial[spd->nr_pages].len = len; 1277 spd->partial[spd->nr_pages].offset = offset; 1278 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb); 1279 spd->nr_pages++; 1280 return 0; 1281 } 1282 1283 /* 1284 * Map linear and fragment data from the skb to spd. Returns number of 1285 * pages mapped. 1286 */ 1287 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset, 1288 unsigned int *total_len, 1289 struct splice_pipe_desc *spd) 1290 { 1291 unsigned int nr_pages = spd->nr_pages; 1292 unsigned int poff, plen, len, toff, tlen; 1293 int headlen, seg; 1294 1295 toff = *offset; 1296 tlen = *total_len; 1297 if (!tlen) 1298 goto err; 1299 1300 /* 1301 * if the offset is greater than the linear part, go directly to 1302 * the fragments. 1303 */ 1304 headlen = skb_headlen(skb); 1305 if (toff >= headlen) { 1306 toff -= headlen; 1307 goto map_frag; 1308 } 1309 1310 /* 1311 * first map the linear region into the pages/partial map, skipping 1312 * any potential initial offset. 1313 */ 1314 len = 0; 1315 while (len < headlen) { 1316 void *p = skb->data + len; 1317 1318 poff = (unsigned long) p & (PAGE_SIZE - 1); 1319 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff); 1320 len += plen; 1321 1322 if (toff) { 1323 if (plen <= toff) { 1324 toff -= plen; 1325 continue; 1326 } 1327 plen -= toff; 1328 poff += toff; 1329 toff = 0; 1330 } 1331 1332 plen = min(plen, tlen); 1333 if (!plen) 1334 break; 1335 1336 /* 1337 * just jump directly to update and return, no point 1338 * in going over fragments when the output is full. 1339 */ 1340 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb)) 1341 goto done; 1342 1343 tlen -= plen; 1344 } 1345 1346 /* 1347 * then map the fragments 1348 */ 1349 map_frag: 1350 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1351 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1352 1353 plen = f->size; 1354 poff = f->page_offset; 1355 1356 if (toff) { 1357 if (plen <= toff) { 1358 toff -= plen; 1359 continue; 1360 } 1361 plen -= toff; 1362 poff += toff; 1363 toff = 0; 1364 } 1365 1366 plen = min(plen, tlen); 1367 if (!plen) 1368 break; 1369 1370 if (spd_fill_page(spd, f->page, plen, poff, skb)) 1371 break; 1372 1373 tlen -= plen; 1374 } 1375 1376 done: 1377 if (spd->nr_pages - nr_pages) { 1378 *offset = 0; 1379 *total_len = tlen; 1380 return 0; 1381 } 1382 err: 1383 return 1; 1384 } 1385 1386 /* 1387 * Map data from the skb to a pipe. Should handle both the linear part, 1388 * the fragments, and the frag list. It does NOT handle frag lists within 1389 * the frag list, if such a thing exists. We'd probably need to recurse to 1390 * handle that cleanly. 1391 */ 1392 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset, 1393 struct pipe_inode_info *pipe, unsigned int tlen, 1394 unsigned int flags) 1395 { 1396 struct partial_page partial[PIPE_BUFFERS]; 1397 struct page *pages[PIPE_BUFFERS]; 1398 struct splice_pipe_desc spd = { 1399 .pages = pages, 1400 .partial = partial, 1401 .flags = flags, 1402 .ops = &sock_pipe_buf_ops, 1403 .spd_release = sock_spd_release, 1404 }; 1405 struct sk_buff *skb; 1406 1407 /* 1408 * I'd love to avoid the clone here, but tcp_read_sock() 1409 * ignores reference counts and unconditonally kills the sk_buff 1410 * on return from the actor. 1411 */ 1412 skb = skb_clone(__skb, GFP_KERNEL); 1413 if (unlikely(!skb)) 1414 return -ENOMEM; 1415 1416 /* 1417 * __skb_splice_bits() only fails if the output has no room left, 1418 * so no point in going over the frag_list for the error case. 1419 */ 1420 if (__skb_splice_bits(skb, &offset, &tlen, &spd)) 1421 goto done; 1422 else if (!tlen) 1423 goto done; 1424 1425 /* 1426 * now see if we have a frag_list to map 1427 */ 1428 if (skb_shinfo(skb)->frag_list) { 1429 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1430 1431 for (; list && tlen; list = list->next) { 1432 if (__skb_splice_bits(list, &offset, &tlen, &spd)) 1433 break; 1434 } 1435 } 1436 1437 done: 1438 /* 1439 * drop our reference to the clone, the pipe consumption will 1440 * drop the rest. 1441 */ 1442 kfree_skb(skb); 1443 1444 if (spd.nr_pages) { 1445 int ret; 1446 1447 /* 1448 * Drop the socket lock, otherwise we have reverse 1449 * locking dependencies between sk_lock and i_mutex 1450 * here as compared to sendfile(). We enter here 1451 * with the socket lock held, and splice_to_pipe() will 1452 * grab the pipe inode lock. For sendfile() emulation, 1453 * we call into ->sendpage() with the i_mutex lock held 1454 * and networking will grab the socket lock. 1455 */ 1456 release_sock(__skb->sk); 1457 ret = splice_to_pipe(pipe, &spd); 1458 lock_sock(__skb->sk); 1459 return ret; 1460 } 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * skb_store_bits - store bits from kernel buffer to skb 1467 * @skb: destination buffer 1468 * @offset: offset in destination 1469 * @from: source buffer 1470 * @len: number of bytes to copy 1471 * 1472 * Copy the specified number of bytes from the source buffer to the 1473 * destination skb. This function handles all the messy bits of 1474 * traversing fragment lists and such. 1475 */ 1476 1477 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1478 { 1479 int i, copy; 1480 int start = skb_headlen(skb); 1481 1482 if (offset > (int)skb->len - len) 1483 goto fault; 1484 1485 if ((copy = start - offset) > 0) { 1486 if (copy > len) 1487 copy = len; 1488 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1489 if ((len -= copy) == 0) 1490 return 0; 1491 offset += copy; 1492 from += copy; 1493 } 1494 1495 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1496 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1497 int end; 1498 1499 BUG_TRAP(start <= offset + len); 1500 1501 end = start + frag->size; 1502 if ((copy = end - offset) > 0) { 1503 u8 *vaddr; 1504 1505 if (copy > len) 1506 copy = len; 1507 1508 vaddr = kmap_skb_frag(frag); 1509 memcpy(vaddr + frag->page_offset + offset - start, 1510 from, copy); 1511 kunmap_skb_frag(vaddr); 1512 1513 if ((len -= copy) == 0) 1514 return 0; 1515 offset += copy; 1516 from += copy; 1517 } 1518 start = end; 1519 } 1520 1521 if (skb_shinfo(skb)->frag_list) { 1522 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1523 1524 for (; list; list = list->next) { 1525 int end; 1526 1527 BUG_TRAP(start <= offset + len); 1528 1529 end = start + list->len; 1530 if ((copy = end - offset) > 0) { 1531 if (copy > len) 1532 copy = len; 1533 if (skb_store_bits(list, offset - start, 1534 from, copy)) 1535 goto fault; 1536 if ((len -= copy) == 0) 1537 return 0; 1538 offset += copy; 1539 from += copy; 1540 } 1541 start = end; 1542 } 1543 } 1544 if (!len) 1545 return 0; 1546 1547 fault: 1548 return -EFAULT; 1549 } 1550 1551 EXPORT_SYMBOL(skb_store_bits); 1552 1553 /* Checksum skb data. */ 1554 1555 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1556 int len, __wsum csum) 1557 { 1558 int start = skb_headlen(skb); 1559 int i, copy = start - offset; 1560 int pos = 0; 1561 1562 /* Checksum header. */ 1563 if (copy > 0) { 1564 if (copy > len) 1565 copy = len; 1566 csum = csum_partial(skb->data + offset, copy, csum); 1567 if ((len -= copy) == 0) 1568 return csum; 1569 offset += copy; 1570 pos = copy; 1571 } 1572 1573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1574 int end; 1575 1576 BUG_TRAP(start <= offset + len); 1577 1578 end = start + skb_shinfo(skb)->frags[i].size; 1579 if ((copy = end - offset) > 0) { 1580 __wsum csum2; 1581 u8 *vaddr; 1582 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1583 1584 if (copy > len) 1585 copy = len; 1586 vaddr = kmap_skb_frag(frag); 1587 csum2 = csum_partial(vaddr + frag->page_offset + 1588 offset - start, copy, 0); 1589 kunmap_skb_frag(vaddr); 1590 csum = csum_block_add(csum, csum2, pos); 1591 if (!(len -= copy)) 1592 return csum; 1593 offset += copy; 1594 pos += copy; 1595 } 1596 start = end; 1597 } 1598 1599 if (skb_shinfo(skb)->frag_list) { 1600 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1601 1602 for (; list; list = list->next) { 1603 int end; 1604 1605 BUG_TRAP(start <= offset + len); 1606 1607 end = start + list->len; 1608 if ((copy = end - offset) > 0) { 1609 __wsum csum2; 1610 if (copy > len) 1611 copy = len; 1612 csum2 = skb_checksum(list, offset - start, 1613 copy, 0); 1614 csum = csum_block_add(csum, csum2, pos); 1615 if ((len -= copy) == 0) 1616 return csum; 1617 offset += copy; 1618 pos += copy; 1619 } 1620 start = end; 1621 } 1622 } 1623 BUG_ON(len); 1624 1625 return csum; 1626 } 1627 1628 /* Both of above in one bottle. */ 1629 1630 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1631 u8 *to, int len, __wsum csum) 1632 { 1633 int start = skb_headlen(skb); 1634 int i, copy = start - offset; 1635 int pos = 0; 1636 1637 /* Copy header. */ 1638 if (copy > 0) { 1639 if (copy > len) 1640 copy = len; 1641 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1642 copy, csum); 1643 if ((len -= copy) == 0) 1644 return csum; 1645 offset += copy; 1646 to += copy; 1647 pos = copy; 1648 } 1649 1650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1651 int end; 1652 1653 BUG_TRAP(start <= offset + len); 1654 1655 end = start + skb_shinfo(skb)->frags[i].size; 1656 if ((copy = end - offset) > 0) { 1657 __wsum csum2; 1658 u8 *vaddr; 1659 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1660 1661 if (copy > len) 1662 copy = len; 1663 vaddr = kmap_skb_frag(frag); 1664 csum2 = csum_partial_copy_nocheck(vaddr + 1665 frag->page_offset + 1666 offset - start, to, 1667 copy, 0); 1668 kunmap_skb_frag(vaddr); 1669 csum = csum_block_add(csum, csum2, pos); 1670 if (!(len -= copy)) 1671 return csum; 1672 offset += copy; 1673 to += copy; 1674 pos += copy; 1675 } 1676 start = end; 1677 } 1678 1679 if (skb_shinfo(skb)->frag_list) { 1680 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1681 1682 for (; list; list = list->next) { 1683 __wsum csum2; 1684 int end; 1685 1686 BUG_TRAP(start <= offset + len); 1687 1688 end = start + list->len; 1689 if ((copy = end - offset) > 0) { 1690 if (copy > len) 1691 copy = len; 1692 csum2 = skb_copy_and_csum_bits(list, 1693 offset - start, 1694 to, copy, 0); 1695 csum = csum_block_add(csum, csum2, pos); 1696 if ((len -= copy) == 0) 1697 return csum; 1698 offset += copy; 1699 to += copy; 1700 pos += copy; 1701 } 1702 start = end; 1703 } 1704 } 1705 BUG_ON(len); 1706 return csum; 1707 } 1708 1709 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1710 { 1711 __wsum csum; 1712 long csstart; 1713 1714 if (skb->ip_summed == CHECKSUM_PARTIAL) 1715 csstart = skb->csum_start - skb_headroom(skb); 1716 else 1717 csstart = skb_headlen(skb); 1718 1719 BUG_ON(csstart > skb_headlen(skb)); 1720 1721 skb_copy_from_linear_data(skb, to, csstart); 1722 1723 csum = 0; 1724 if (csstart != skb->len) 1725 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1726 skb->len - csstart, 0); 1727 1728 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1729 long csstuff = csstart + skb->csum_offset; 1730 1731 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 1732 } 1733 } 1734 1735 /** 1736 * skb_dequeue - remove from the head of the queue 1737 * @list: list to dequeue from 1738 * 1739 * Remove the head of the list. The list lock is taken so the function 1740 * may be used safely with other locking list functions. The head item is 1741 * returned or %NULL if the list is empty. 1742 */ 1743 1744 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1745 { 1746 unsigned long flags; 1747 struct sk_buff *result; 1748 1749 spin_lock_irqsave(&list->lock, flags); 1750 result = __skb_dequeue(list); 1751 spin_unlock_irqrestore(&list->lock, flags); 1752 return result; 1753 } 1754 1755 /** 1756 * skb_dequeue_tail - remove from the tail of the queue 1757 * @list: list to dequeue from 1758 * 1759 * Remove the tail of the list. The list lock is taken so the function 1760 * may be used safely with other locking list functions. The tail item is 1761 * returned or %NULL if the list is empty. 1762 */ 1763 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1764 { 1765 unsigned long flags; 1766 struct sk_buff *result; 1767 1768 spin_lock_irqsave(&list->lock, flags); 1769 result = __skb_dequeue_tail(list); 1770 spin_unlock_irqrestore(&list->lock, flags); 1771 return result; 1772 } 1773 1774 /** 1775 * skb_queue_purge - empty a list 1776 * @list: list to empty 1777 * 1778 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1779 * the list and one reference dropped. This function takes the list 1780 * lock and is atomic with respect to other list locking functions. 1781 */ 1782 void skb_queue_purge(struct sk_buff_head *list) 1783 { 1784 struct sk_buff *skb; 1785 while ((skb = skb_dequeue(list)) != NULL) 1786 kfree_skb(skb); 1787 } 1788 1789 /** 1790 * skb_queue_head - queue a buffer at the list head 1791 * @list: list to use 1792 * @newsk: buffer to queue 1793 * 1794 * Queue a buffer at the start of the list. This function takes the 1795 * list lock and can be used safely with other locking &sk_buff functions 1796 * safely. 1797 * 1798 * A buffer cannot be placed on two lists at the same time. 1799 */ 1800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1801 { 1802 unsigned long flags; 1803 1804 spin_lock_irqsave(&list->lock, flags); 1805 __skb_queue_head(list, newsk); 1806 spin_unlock_irqrestore(&list->lock, flags); 1807 } 1808 1809 /** 1810 * skb_queue_tail - queue a buffer at the list tail 1811 * @list: list to use 1812 * @newsk: buffer to queue 1813 * 1814 * Queue a buffer at the tail of the list. This function takes the 1815 * list lock and can be used safely with other locking &sk_buff functions 1816 * safely. 1817 * 1818 * A buffer cannot be placed on two lists at the same time. 1819 */ 1820 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1821 { 1822 unsigned long flags; 1823 1824 spin_lock_irqsave(&list->lock, flags); 1825 __skb_queue_tail(list, newsk); 1826 spin_unlock_irqrestore(&list->lock, flags); 1827 } 1828 1829 /** 1830 * skb_unlink - remove a buffer from a list 1831 * @skb: buffer to remove 1832 * @list: list to use 1833 * 1834 * Remove a packet from a list. The list locks are taken and this 1835 * function is atomic with respect to other list locked calls 1836 * 1837 * You must know what list the SKB is on. 1838 */ 1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1840 { 1841 unsigned long flags; 1842 1843 spin_lock_irqsave(&list->lock, flags); 1844 __skb_unlink(skb, list); 1845 spin_unlock_irqrestore(&list->lock, flags); 1846 } 1847 1848 /** 1849 * skb_append - append a buffer 1850 * @old: buffer to insert after 1851 * @newsk: buffer to insert 1852 * @list: list to use 1853 * 1854 * Place a packet after a given packet in a list. The list locks are taken 1855 * and this function is atomic with respect to other list locked calls. 1856 * A buffer cannot be placed on two lists at the same time. 1857 */ 1858 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1859 { 1860 unsigned long flags; 1861 1862 spin_lock_irqsave(&list->lock, flags); 1863 __skb_queue_after(list, old, newsk); 1864 spin_unlock_irqrestore(&list->lock, flags); 1865 } 1866 1867 1868 /** 1869 * skb_insert - insert a buffer 1870 * @old: buffer to insert before 1871 * @newsk: buffer to insert 1872 * @list: list to use 1873 * 1874 * Place a packet before a given packet in a list. The list locks are 1875 * taken and this function is atomic with respect to other list locked 1876 * calls. 1877 * 1878 * A buffer cannot be placed on two lists at the same time. 1879 */ 1880 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1881 { 1882 unsigned long flags; 1883 1884 spin_lock_irqsave(&list->lock, flags); 1885 __skb_insert(newsk, old->prev, old, list); 1886 spin_unlock_irqrestore(&list->lock, flags); 1887 } 1888 1889 static inline void skb_split_inside_header(struct sk_buff *skb, 1890 struct sk_buff* skb1, 1891 const u32 len, const int pos) 1892 { 1893 int i; 1894 1895 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 1896 pos - len); 1897 /* And move data appendix as is. */ 1898 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1899 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1900 1901 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1902 skb_shinfo(skb)->nr_frags = 0; 1903 skb1->data_len = skb->data_len; 1904 skb1->len += skb1->data_len; 1905 skb->data_len = 0; 1906 skb->len = len; 1907 skb_set_tail_pointer(skb, len); 1908 } 1909 1910 static inline void skb_split_no_header(struct sk_buff *skb, 1911 struct sk_buff* skb1, 1912 const u32 len, int pos) 1913 { 1914 int i, k = 0; 1915 const int nfrags = skb_shinfo(skb)->nr_frags; 1916 1917 skb_shinfo(skb)->nr_frags = 0; 1918 skb1->len = skb1->data_len = skb->len - len; 1919 skb->len = len; 1920 skb->data_len = len - pos; 1921 1922 for (i = 0; i < nfrags; i++) { 1923 int size = skb_shinfo(skb)->frags[i].size; 1924 1925 if (pos + size > len) { 1926 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1927 1928 if (pos < len) { 1929 /* Split frag. 1930 * We have two variants in this case: 1931 * 1. Move all the frag to the second 1932 * part, if it is possible. F.e. 1933 * this approach is mandatory for TUX, 1934 * where splitting is expensive. 1935 * 2. Split is accurately. We make this. 1936 */ 1937 get_page(skb_shinfo(skb)->frags[i].page); 1938 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1939 skb_shinfo(skb1)->frags[0].size -= len - pos; 1940 skb_shinfo(skb)->frags[i].size = len - pos; 1941 skb_shinfo(skb)->nr_frags++; 1942 } 1943 k++; 1944 } else 1945 skb_shinfo(skb)->nr_frags++; 1946 pos += size; 1947 } 1948 skb_shinfo(skb1)->nr_frags = k; 1949 } 1950 1951 /** 1952 * skb_split - Split fragmented skb to two parts at length len. 1953 * @skb: the buffer to split 1954 * @skb1: the buffer to receive the second part 1955 * @len: new length for skb 1956 */ 1957 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1958 { 1959 int pos = skb_headlen(skb); 1960 1961 if (len < pos) /* Split line is inside header. */ 1962 skb_split_inside_header(skb, skb1, len, pos); 1963 else /* Second chunk has no header, nothing to copy. */ 1964 skb_split_no_header(skb, skb1, len, pos); 1965 } 1966 1967 /** 1968 * skb_prepare_seq_read - Prepare a sequential read of skb data 1969 * @skb: the buffer to read 1970 * @from: lower offset of data to be read 1971 * @to: upper offset of data to be read 1972 * @st: state variable 1973 * 1974 * Initializes the specified state variable. Must be called before 1975 * invoking skb_seq_read() for the first time. 1976 */ 1977 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1978 unsigned int to, struct skb_seq_state *st) 1979 { 1980 st->lower_offset = from; 1981 st->upper_offset = to; 1982 st->root_skb = st->cur_skb = skb; 1983 st->frag_idx = st->stepped_offset = 0; 1984 st->frag_data = NULL; 1985 } 1986 1987 /** 1988 * skb_seq_read - Sequentially read skb data 1989 * @consumed: number of bytes consumed by the caller so far 1990 * @data: destination pointer for data to be returned 1991 * @st: state variable 1992 * 1993 * Reads a block of skb data at &consumed relative to the 1994 * lower offset specified to skb_prepare_seq_read(). Assigns 1995 * the head of the data block to &data and returns the length 1996 * of the block or 0 if the end of the skb data or the upper 1997 * offset has been reached. 1998 * 1999 * The caller is not required to consume all of the data 2000 * returned, i.e. &consumed is typically set to the number 2001 * of bytes already consumed and the next call to 2002 * skb_seq_read() will return the remaining part of the block. 2003 * 2004 * Note 1: The size of each block of data returned can be arbitary, 2005 * this limitation is the cost for zerocopy seqeuental 2006 * reads of potentially non linear data. 2007 * 2008 * Note 2: Fragment lists within fragments are not implemented 2009 * at the moment, state->root_skb could be replaced with 2010 * a stack for this purpose. 2011 */ 2012 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2013 struct skb_seq_state *st) 2014 { 2015 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2016 skb_frag_t *frag; 2017 2018 if (unlikely(abs_offset >= st->upper_offset)) 2019 return 0; 2020 2021 next_skb: 2022 block_limit = skb_headlen(st->cur_skb); 2023 2024 if (abs_offset < block_limit) { 2025 *data = st->cur_skb->data + abs_offset; 2026 return block_limit - abs_offset; 2027 } 2028 2029 if (st->frag_idx == 0 && !st->frag_data) 2030 st->stepped_offset += skb_headlen(st->cur_skb); 2031 2032 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2033 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2034 block_limit = frag->size + st->stepped_offset; 2035 2036 if (abs_offset < block_limit) { 2037 if (!st->frag_data) 2038 st->frag_data = kmap_skb_frag(frag); 2039 2040 *data = (u8 *) st->frag_data + frag->page_offset + 2041 (abs_offset - st->stepped_offset); 2042 2043 return block_limit - abs_offset; 2044 } 2045 2046 if (st->frag_data) { 2047 kunmap_skb_frag(st->frag_data); 2048 st->frag_data = NULL; 2049 } 2050 2051 st->frag_idx++; 2052 st->stepped_offset += frag->size; 2053 } 2054 2055 if (st->frag_data) { 2056 kunmap_skb_frag(st->frag_data); 2057 st->frag_data = NULL; 2058 } 2059 2060 if (st->cur_skb->next) { 2061 st->cur_skb = st->cur_skb->next; 2062 st->frag_idx = 0; 2063 goto next_skb; 2064 } else if (st->root_skb == st->cur_skb && 2065 skb_shinfo(st->root_skb)->frag_list) { 2066 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2067 goto next_skb; 2068 } 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * skb_abort_seq_read - Abort a sequential read of skb data 2075 * @st: state variable 2076 * 2077 * Must be called if skb_seq_read() was not called until it 2078 * returned 0. 2079 */ 2080 void skb_abort_seq_read(struct skb_seq_state *st) 2081 { 2082 if (st->frag_data) 2083 kunmap_skb_frag(st->frag_data); 2084 } 2085 2086 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2087 2088 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2089 struct ts_config *conf, 2090 struct ts_state *state) 2091 { 2092 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2093 } 2094 2095 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2096 { 2097 skb_abort_seq_read(TS_SKB_CB(state)); 2098 } 2099 2100 /** 2101 * skb_find_text - Find a text pattern in skb data 2102 * @skb: the buffer to look in 2103 * @from: search offset 2104 * @to: search limit 2105 * @config: textsearch configuration 2106 * @state: uninitialized textsearch state variable 2107 * 2108 * Finds a pattern in the skb data according to the specified 2109 * textsearch configuration. Use textsearch_next() to retrieve 2110 * subsequent occurrences of the pattern. Returns the offset 2111 * to the first occurrence or UINT_MAX if no match was found. 2112 */ 2113 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2114 unsigned int to, struct ts_config *config, 2115 struct ts_state *state) 2116 { 2117 unsigned int ret; 2118 2119 config->get_next_block = skb_ts_get_next_block; 2120 config->finish = skb_ts_finish; 2121 2122 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2123 2124 ret = textsearch_find(config, state); 2125 return (ret <= to - from ? ret : UINT_MAX); 2126 } 2127 2128 /** 2129 * skb_append_datato_frags: - append the user data to a skb 2130 * @sk: sock structure 2131 * @skb: skb structure to be appened with user data. 2132 * @getfrag: call back function to be used for getting the user data 2133 * @from: pointer to user message iov 2134 * @length: length of the iov message 2135 * 2136 * Description: This procedure append the user data in the fragment part 2137 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2138 */ 2139 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2140 int (*getfrag)(void *from, char *to, int offset, 2141 int len, int odd, struct sk_buff *skb), 2142 void *from, int length) 2143 { 2144 int frg_cnt = 0; 2145 skb_frag_t *frag = NULL; 2146 struct page *page = NULL; 2147 int copy, left; 2148 int offset = 0; 2149 int ret; 2150 2151 do { 2152 /* Return error if we don't have space for new frag */ 2153 frg_cnt = skb_shinfo(skb)->nr_frags; 2154 if (frg_cnt >= MAX_SKB_FRAGS) 2155 return -EFAULT; 2156 2157 /* allocate a new page for next frag */ 2158 page = alloc_pages(sk->sk_allocation, 0); 2159 2160 /* If alloc_page fails just return failure and caller will 2161 * free previous allocated pages by doing kfree_skb() 2162 */ 2163 if (page == NULL) 2164 return -ENOMEM; 2165 2166 /* initialize the next frag */ 2167 sk->sk_sndmsg_page = page; 2168 sk->sk_sndmsg_off = 0; 2169 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 2170 skb->truesize += PAGE_SIZE; 2171 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 2172 2173 /* get the new initialized frag */ 2174 frg_cnt = skb_shinfo(skb)->nr_frags; 2175 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 2176 2177 /* copy the user data to page */ 2178 left = PAGE_SIZE - frag->page_offset; 2179 copy = (length > left)? left : length; 2180 2181 ret = getfrag(from, (page_address(frag->page) + 2182 frag->page_offset + frag->size), 2183 offset, copy, 0, skb); 2184 if (ret < 0) 2185 return -EFAULT; 2186 2187 /* copy was successful so update the size parameters */ 2188 sk->sk_sndmsg_off += copy; 2189 frag->size += copy; 2190 skb->len += copy; 2191 skb->data_len += copy; 2192 offset += copy; 2193 length -= copy; 2194 2195 } while (length > 0); 2196 2197 return 0; 2198 } 2199 2200 /** 2201 * skb_pull_rcsum - pull skb and update receive checksum 2202 * @skb: buffer to update 2203 * @len: length of data pulled 2204 * 2205 * This function performs an skb_pull on the packet and updates 2206 * the CHECKSUM_COMPLETE checksum. It should be used on 2207 * receive path processing instead of skb_pull unless you know 2208 * that the checksum difference is zero (e.g., a valid IP header) 2209 * or you are setting ip_summed to CHECKSUM_NONE. 2210 */ 2211 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2212 { 2213 BUG_ON(len > skb->len); 2214 skb->len -= len; 2215 BUG_ON(skb->len < skb->data_len); 2216 skb_postpull_rcsum(skb, skb->data, len); 2217 return skb->data += len; 2218 } 2219 2220 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2221 2222 /** 2223 * skb_segment - Perform protocol segmentation on skb. 2224 * @skb: buffer to segment 2225 * @features: features for the output path (see dev->features) 2226 * 2227 * This function performs segmentation on the given skb. It returns 2228 * a pointer to the first in a list of new skbs for the segments. 2229 * In case of error it returns ERR_PTR(err). 2230 */ 2231 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 2232 { 2233 struct sk_buff *segs = NULL; 2234 struct sk_buff *tail = NULL; 2235 unsigned int mss = skb_shinfo(skb)->gso_size; 2236 unsigned int doffset = skb->data - skb_mac_header(skb); 2237 unsigned int offset = doffset; 2238 unsigned int headroom; 2239 unsigned int len; 2240 int sg = features & NETIF_F_SG; 2241 int nfrags = skb_shinfo(skb)->nr_frags; 2242 int err = -ENOMEM; 2243 int i = 0; 2244 int pos; 2245 2246 __skb_push(skb, doffset); 2247 headroom = skb_headroom(skb); 2248 pos = skb_headlen(skb); 2249 2250 do { 2251 struct sk_buff *nskb; 2252 skb_frag_t *frag; 2253 int hsize; 2254 int k; 2255 int size; 2256 2257 len = skb->len - offset; 2258 if (len > mss) 2259 len = mss; 2260 2261 hsize = skb_headlen(skb) - offset; 2262 if (hsize < 0) 2263 hsize = 0; 2264 if (hsize > len || !sg) 2265 hsize = len; 2266 2267 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC); 2268 if (unlikely(!nskb)) 2269 goto err; 2270 2271 if (segs) 2272 tail->next = nskb; 2273 else 2274 segs = nskb; 2275 tail = nskb; 2276 2277 nskb->dev = skb->dev; 2278 skb_copy_queue_mapping(nskb, skb); 2279 nskb->priority = skb->priority; 2280 nskb->protocol = skb->protocol; 2281 nskb->dst = dst_clone(skb->dst); 2282 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 2283 nskb->pkt_type = skb->pkt_type; 2284 nskb->mac_len = skb->mac_len; 2285 2286 skb_reserve(nskb, headroom); 2287 skb_reset_mac_header(nskb); 2288 skb_set_network_header(nskb, skb->mac_len); 2289 nskb->transport_header = (nskb->network_header + 2290 skb_network_header_len(skb)); 2291 skb_copy_from_linear_data(skb, skb_put(nskb, doffset), 2292 doffset); 2293 if (!sg) { 2294 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2295 skb_put(nskb, len), 2296 len, 0); 2297 continue; 2298 } 2299 2300 frag = skb_shinfo(nskb)->frags; 2301 k = 0; 2302 2303 nskb->ip_summed = CHECKSUM_PARTIAL; 2304 nskb->csum = skb->csum; 2305 skb_copy_from_linear_data_offset(skb, offset, 2306 skb_put(nskb, hsize), hsize); 2307 2308 while (pos < offset + len) { 2309 BUG_ON(i >= nfrags); 2310 2311 *frag = skb_shinfo(skb)->frags[i]; 2312 get_page(frag->page); 2313 size = frag->size; 2314 2315 if (pos < offset) { 2316 frag->page_offset += offset - pos; 2317 frag->size -= offset - pos; 2318 } 2319 2320 k++; 2321 2322 if (pos + size <= offset + len) { 2323 i++; 2324 pos += size; 2325 } else { 2326 frag->size -= pos + size - (offset + len); 2327 break; 2328 } 2329 2330 frag++; 2331 } 2332 2333 skb_shinfo(nskb)->nr_frags = k; 2334 nskb->data_len = len - hsize; 2335 nskb->len += nskb->data_len; 2336 nskb->truesize += nskb->data_len; 2337 } while ((offset += len) < skb->len); 2338 2339 return segs; 2340 2341 err: 2342 while ((skb = segs)) { 2343 segs = skb->next; 2344 kfree_skb(skb); 2345 } 2346 return ERR_PTR(err); 2347 } 2348 2349 EXPORT_SYMBOL_GPL(skb_segment); 2350 2351 void __init skb_init(void) 2352 { 2353 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2354 sizeof(struct sk_buff), 2355 0, 2356 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2357 NULL); 2358 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2359 (2*sizeof(struct sk_buff)) + 2360 sizeof(atomic_t), 2361 0, 2362 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2363 NULL); 2364 } 2365 2366 /** 2367 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 2368 * @skb: Socket buffer containing the buffers to be mapped 2369 * @sg: The scatter-gather list to map into 2370 * @offset: The offset into the buffer's contents to start mapping 2371 * @len: Length of buffer space to be mapped 2372 * 2373 * Fill the specified scatter-gather list with mappings/pointers into a 2374 * region of the buffer space attached to a socket buffer. 2375 */ 2376 static int 2377 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2378 { 2379 int start = skb_headlen(skb); 2380 int i, copy = start - offset; 2381 int elt = 0; 2382 2383 if (copy > 0) { 2384 if (copy > len) 2385 copy = len; 2386 sg_set_buf(sg, skb->data + offset, copy); 2387 elt++; 2388 if ((len -= copy) == 0) 2389 return elt; 2390 offset += copy; 2391 } 2392 2393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2394 int end; 2395 2396 BUG_TRAP(start <= offset + len); 2397 2398 end = start + skb_shinfo(skb)->frags[i].size; 2399 if ((copy = end - offset) > 0) { 2400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2401 2402 if (copy > len) 2403 copy = len; 2404 sg_set_page(&sg[elt], frag->page, copy, 2405 frag->page_offset+offset-start); 2406 elt++; 2407 if (!(len -= copy)) 2408 return elt; 2409 offset += copy; 2410 } 2411 start = end; 2412 } 2413 2414 if (skb_shinfo(skb)->frag_list) { 2415 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2416 2417 for (; list; list = list->next) { 2418 int end; 2419 2420 BUG_TRAP(start <= offset + len); 2421 2422 end = start + list->len; 2423 if ((copy = end - offset) > 0) { 2424 if (copy > len) 2425 copy = len; 2426 elt += __skb_to_sgvec(list, sg+elt, offset - start, 2427 copy); 2428 if ((len -= copy) == 0) 2429 return elt; 2430 offset += copy; 2431 } 2432 start = end; 2433 } 2434 } 2435 BUG_ON(len); 2436 return elt; 2437 } 2438 2439 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 2440 { 2441 int nsg = __skb_to_sgvec(skb, sg, offset, len); 2442 2443 sg_mark_end(&sg[nsg - 1]); 2444 2445 return nsg; 2446 } 2447 2448 /** 2449 * skb_cow_data - Check that a socket buffer's data buffers are writable 2450 * @skb: The socket buffer to check. 2451 * @tailbits: Amount of trailing space to be added 2452 * @trailer: Returned pointer to the skb where the @tailbits space begins 2453 * 2454 * Make sure that the data buffers attached to a socket buffer are 2455 * writable. If they are not, private copies are made of the data buffers 2456 * and the socket buffer is set to use these instead. 2457 * 2458 * If @tailbits is given, make sure that there is space to write @tailbits 2459 * bytes of data beyond current end of socket buffer. @trailer will be 2460 * set to point to the skb in which this space begins. 2461 * 2462 * The number of scatterlist elements required to completely map the 2463 * COW'd and extended socket buffer will be returned. 2464 */ 2465 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 2466 { 2467 int copyflag; 2468 int elt; 2469 struct sk_buff *skb1, **skb_p; 2470 2471 /* If skb is cloned or its head is paged, reallocate 2472 * head pulling out all the pages (pages are considered not writable 2473 * at the moment even if they are anonymous). 2474 */ 2475 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 2476 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 2477 return -ENOMEM; 2478 2479 /* Easy case. Most of packets will go this way. */ 2480 if (!skb_shinfo(skb)->frag_list) { 2481 /* A little of trouble, not enough of space for trailer. 2482 * This should not happen, when stack is tuned to generate 2483 * good frames. OK, on miss we reallocate and reserve even more 2484 * space, 128 bytes is fair. */ 2485 2486 if (skb_tailroom(skb) < tailbits && 2487 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 2488 return -ENOMEM; 2489 2490 /* Voila! */ 2491 *trailer = skb; 2492 return 1; 2493 } 2494 2495 /* Misery. We are in troubles, going to mincer fragments... */ 2496 2497 elt = 1; 2498 skb_p = &skb_shinfo(skb)->frag_list; 2499 copyflag = 0; 2500 2501 while ((skb1 = *skb_p) != NULL) { 2502 int ntail = 0; 2503 2504 /* The fragment is partially pulled by someone, 2505 * this can happen on input. Copy it and everything 2506 * after it. */ 2507 2508 if (skb_shared(skb1)) 2509 copyflag = 1; 2510 2511 /* If the skb is the last, worry about trailer. */ 2512 2513 if (skb1->next == NULL && tailbits) { 2514 if (skb_shinfo(skb1)->nr_frags || 2515 skb_shinfo(skb1)->frag_list || 2516 skb_tailroom(skb1) < tailbits) 2517 ntail = tailbits + 128; 2518 } 2519 2520 if (copyflag || 2521 skb_cloned(skb1) || 2522 ntail || 2523 skb_shinfo(skb1)->nr_frags || 2524 skb_shinfo(skb1)->frag_list) { 2525 struct sk_buff *skb2; 2526 2527 /* Fuck, we are miserable poor guys... */ 2528 if (ntail == 0) 2529 skb2 = skb_copy(skb1, GFP_ATOMIC); 2530 else 2531 skb2 = skb_copy_expand(skb1, 2532 skb_headroom(skb1), 2533 ntail, 2534 GFP_ATOMIC); 2535 if (unlikely(skb2 == NULL)) 2536 return -ENOMEM; 2537 2538 if (skb1->sk) 2539 skb_set_owner_w(skb2, skb1->sk); 2540 2541 /* Looking around. Are we still alive? 2542 * OK, link new skb, drop old one */ 2543 2544 skb2->next = skb1->next; 2545 *skb_p = skb2; 2546 kfree_skb(skb1); 2547 skb1 = skb2; 2548 } 2549 elt++; 2550 *trailer = skb1; 2551 skb_p = &skb1->next; 2552 } 2553 2554 return elt; 2555 } 2556 2557 /** 2558 * skb_partial_csum_set - set up and verify partial csum values for packet 2559 * @skb: the skb to set 2560 * @start: the number of bytes after skb->data to start checksumming. 2561 * @off: the offset from start to place the checksum. 2562 * 2563 * For untrusted partially-checksummed packets, we need to make sure the values 2564 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 2565 * 2566 * This function checks and sets those values and skb->ip_summed: if this 2567 * returns false you should drop the packet. 2568 */ 2569 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 2570 { 2571 if (unlikely(start > skb->len - 2) || 2572 unlikely((int)start + off > skb->len - 2)) { 2573 if (net_ratelimit()) 2574 printk(KERN_WARNING 2575 "bad partial csum: csum=%u/%u len=%u\n", 2576 start, off, skb->len); 2577 return false; 2578 } 2579 skb->ip_summed = CHECKSUM_PARTIAL; 2580 skb->csum_start = skb_headroom(skb) + start; 2581 skb->csum_offset = off; 2582 return true; 2583 } 2584 2585 EXPORT_SYMBOL(___pskb_trim); 2586 EXPORT_SYMBOL(__kfree_skb); 2587 EXPORT_SYMBOL(kfree_skb); 2588 EXPORT_SYMBOL(__pskb_pull_tail); 2589 EXPORT_SYMBOL(__alloc_skb); 2590 EXPORT_SYMBOL(__netdev_alloc_skb); 2591 EXPORT_SYMBOL(pskb_copy); 2592 EXPORT_SYMBOL(pskb_expand_head); 2593 EXPORT_SYMBOL(skb_checksum); 2594 EXPORT_SYMBOL(skb_clone); 2595 EXPORT_SYMBOL(skb_copy); 2596 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2597 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2598 EXPORT_SYMBOL(skb_copy_bits); 2599 EXPORT_SYMBOL(skb_copy_expand); 2600 EXPORT_SYMBOL(skb_over_panic); 2601 EXPORT_SYMBOL(skb_pad); 2602 EXPORT_SYMBOL(skb_realloc_headroom); 2603 EXPORT_SYMBOL(skb_under_panic); 2604 EXPORT_SYMBOL(skb_dequeue); 2605 EXPORT_SYMBOL(skb_dequeue_tail); 2606 EXPORT_SYMBOL(skb_insert); 2607 EXPORT_SYMBOL(skb_queue_purge); 2608 EXPORT_SYMBOL(skb_queue_head); 2609 EXPORT_SYMBOL(skb_queue_tail); 2610 EXPORT_SYMBOL(skb_unlink); 2611 EXPORT_SYMBOL(skb_append); 2612 EXPORT_SYMBOL(skb_split); 2613 EXPORT_SYMBOL(skb_prepare_seq_read); 2614 EXPORT_SYMBOL(skb_seq_read); 2615 EXPORT_SYMBOL(skb_abort_seq_read); 2616 EXPORT_SYMBOL(skb_find_text); 2617 EXPORT_SYMBOL(skb_append_datato_frags); 2618 2619 EXPORT_SYMBOL_GPL(skb_to_sgvec); 2620 EXPORT_SYMBOL_GPL(skb_cow_data); 2621 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 2622