xref: /linux/net/core/skbuff.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 
70 #include "kmap_skb.h"
71 
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 				  struct pipe_buffer *buf)
77 {
78 	struct sk_buff *skb = (struct sk_buff *) buf->private;
79 
80 	kfree_skb(skb);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	struct sk_buff *skb = (struct sk_buff *) buf->private;
87 
88 	skb_get(skb);
89 }
90 
91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
92 			       struct pipe_buffer *buf)
93 {
94 	return 1;
95 }
96 
97 
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops = {
100 	.can_merge = 0,
101 	.map = generic_pipe_buf_map,
102 	.unmap = generic_pipe_buf_unmap,
103 	.confirm = generic_pipe_buf_confirm,
104 	.release = sock_pipe_buf_release,
105 	.steal = sock_pipe_buf_steal,
106 	.get = sock_pipe_buf_get,
107 };
108 
109 /*
110  *	Keep out-of-line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always
112  *	reliable.
113  */
114 
115 /**
116  *	skb_over_panic	- 	private function
117  *	@skb: buffer
118  *	@sz: size
119  *	@here: address
120  *
121  *	Out of line support code for skb_put(). Not user callable.
122  */
123 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
124 {
125 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
126 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
127 	       here, skb->len, sz, skb->head, skb->data,
128 	       (unsigned long)skb->tail, (unsigned long)skb->end,
129 	       skb->dev ? skb->dev->name : "<NULL>");
130 	BUG();
131 }
132 
133 /**
134  *	skb_under_panic	- 	private function
135  *	@skb: buffer
136  *	@sz: size
137  *	@here: address
138  *
139  *	Out of line support code for skb_push(). Not user callable.
140  */
141 
142 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
143 {
144 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
145 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
146 	       here, skb->len, sz, skb->head, skb->data,
147 	       (unsigned long)skb->tail, (unsigned long)skb->end,
148 	       skb->dev ? skb->dev->name : "<NULL>");
149 	BUG();
150 }
151 
152 void skb_truesize_bug(struct sk_buff *skb)
153 {
154 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
155 	       "len=%u, sizeof(sk_buff)=%Zd\n",
156 	       skb->truesize, skb->len, sizeof(struct sk_buff));
157 }
158 EXPORT_SYMBOL(skb_truesize_bug);
159 
160 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
161  *	'private' fields and also do memory statistics to find all the
162  *	[BEEP] leaks.
163  *
164  */
165 
166 /**
167  *	__alloc_skb	-	allocate a network buffer
168  *	@size: size to allocate
169  *	@gfp_mask: allocation mask
170  *	@fclone: allocate from fclone cache instead of head cache
171  *		and allocate a cloned (child) skb
172  *	@node: numa node to allocate memory on
173  *
174  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *	tail room of size bytes. The object has a reference count of one.
176  *	The return is the buffer. On a failure the return is %NULL.
177  *
178  *	Buffers may only be allocated from interrupts using a @gfp_mask of
179  *	%GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 			    int fclone, int node)
183 {
184 	struct kmem_cache *cache;
185 	struct skb_shared_info *shinfo;
186 	struct sk_buff *skb;
187 	u8 *data;
188 
189 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
190 
191 	/* Get the HEAD */
192 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
193 	if (!skb)
194 		goto out;
195 
196 	size = SKB_DATA_ALIGN(size);
197 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
198 			gfp_mask, node);
199 	if (!data)
200 		goto nodata;
201 
202 	/*
203 	 * See comment in sk_buff definition, just before the 'tail' member
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 /**
267  *	dev_alloc_skb - allocate an skbuff for receiving
268  *	@length: length to allocate
269  *
270  *	Allocate a new &sk_buff and assign it a usage count of one. The
271  *	buffer has unspecified headroom built in. Users should allocate
272  *	the headroom they think they need without accounting for the
273  *	built in space. The built in space is used for optimisations.
274  *
275  *	%NULL is returned if there is no free memory. Although this function
276  *	allocates memory it can be called from an interrupt.
277  */
278 struct sk_buff *dev_alloc_skb(unsigned int length)
279 {
280 	/*
281 	 * There is more code here than it seems:
282 	 * __dev_alloc_skb is an inline
283 	 */
284 	return __dev_alloc_skb(length, GFP_ATOMIC);
285 }
286 EXPORT_SYMBOL(dev_alloc_skb);
287 
288 static void skb_drop_list(struct sk_buff **listp)
289 {
290 	struct sk_buff *list = *listp;
291 
292 	*listp = NULL;
293 
294 	do {
295 		struct sk_buff *this = list;
296 		list = list->next;
297 		kfree_skb(this);
298 	} while (list);
299 }
300 
301 static inline void skb_drop_fraglist(struct sk_buff *skb)
302 {
303 	skb_drop_list(&skb_shinfo(skb)->frag_list);
304 }
305 
306 static void skb_clone_fraglist(struct sk_buff *skb)
307 {
308 	struct sk_buff *list;
309 
310 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
311 		skb_get(list);
312 }
313 
314 static void skb_release_data(struct sk_buff *skb)
315 {
316 	if (!skb->cloned ||
317 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
318 			       &skb_shinfo(skb)->dataref)) {
319 		if (skb_shinfo(skb)->nr_frags) {
320 			int i;
321 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
322 				put_page(skb_shinfo(skb)->frags[i].page);
323 		}
324 
325 		if (skb_shinfo(skb)->frag_list)
326 			skb_drop_fraglist(skb);
327 
328 		kfree(skb->head);
329 	}
330 }
331 
332 /*
333  *	Free an skbuff by memory without cleaning the state.
334  */
335 static void kfree_skbmem(struct sk_buff *skb)
336 {
337 	struct sk_buff *other;
338 	atomic_t *fclone_ref;
339 
340 	switch (skb->fclone) {
341 	case SKB_FCLONE_UNAVAILABLE:
342 		kmem_cache_free(skbuff_head_cache, skb);
343 		break;
344 
345 	case SKB_FCLONE_ORIG:
346 		fclone_ref = (atomic_t *) (skb + 2);
347 		if (atomic_dec_and_test(fclone_ref))
348 			kmem_cache_free(skbuff_fclone_cache, skb);
349 		break;
350 
351 	case SKB_FCLONE_CLONE:
352 		fclone_ref = (atomic_t *) (skb + 1);
353 		other = skb - 1;
354 
355 		/* The clone portion is available for
356 		 * fast-cloning again.
357 		 */
358 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
359 
360 		if (atomic_dec_and_test(fclone_ref))
361 			kmem_cache_free(skbuff_fclone_cache, other);
362 		break;
363 	}
364 }
365 
366 /* Free everything but the sk_buff shell. */
367 static void skb_release_all(struct sk_buff *skb)
368 {
369 	dst_release(skb->dst);
370 #ifdef CONFIG_XFRM
371 	secpath_put(skb->sp);
372 #endif
373 	if (skb->destructor) {
374 		WARN_ON(in_irq());
375 		skb->destructor(skb);
376 	}
377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
378 	nf_conntrack_put(skb->nfct);
379 	nf_conntrack_put_reasm(skb->nfct_reasm);
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 	nf_bridge_put(skb->nf_bridge);
383 #endif
384 /* XXX: IS this still necessary? - JHS */
385 #ifdef CONFIG_NET_SCHED
386 	skb->tc_index = 0;
387 #ifdef CONFIG_NET_CLS_ACT
388 	skb->tc_verd = 0;
389 #endif
390 #endif
391 	skb_release_data(skb);
392 }
393 
394 /**
395  *	__kfree_skb - private function
396  *	@skb: buffer
397  *
398  *	Free an sk_buff. Release anything attached to the buffer.
399  *	Clean the state. This is an internal helper function. Users should
400  *	always call kfree_skb
401  */
402 
403 void __kfree_skb(struct sk_buff *skb)
404 {
405 	skb_release_all(skb);
406 	kfree_skbmem(skb);
407 }
408 
409 /**
410  *	kfree_skb - free an sk_buff
411  *	@skb: buffer to free
412  *
413  *	Drop a reference to the buffer and free it if the usage count has
414  *	hit zero.
415  */
416 void kfree_skb(struct sk_buff *skb)
417 {
418 	if (unlikely(!skb))
419 		return;
420 	if (likely(atomic_read(&skb->users) == 1))
421 		smp_rmb();
422 	else if (likely(!atomic_dec_and_test(&skb->users)))
423 		return;
424 	__kfree_skb(skb);
425 }
426 
427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
428 {
429 	new->tstamp		= old->tstamp;
430 	new->dev		= old->dev;
431 	new->transport_header	= old->transport_header;
432 	new->network_header	= old->network_header;
433 	new->mac_header		= old->mac_header;
434 	new->dst		= dst_clone(old->dst);
435 #ifdef CONFIG_INET
436 	new->sp			= secpath_get(old->sp);
437 #endif
438 	memcpy(new->cb, old->cb, sizeof(old->cb));
439 	new->csum_start		= old->csum_start;
440 	new->csum_offset	= old->csum_offset;
441 	new->local_df		= old->local_df;
442 	new->pkt_type		= old->pkt_type;
443 	new->ip_summed		= old->ip_summed;
444 	skb_copy_queue_mapping(new, old);
445 	new->priority		= old->priority;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 	new->ipvs_property	= old->ipvs_property;
448 #endif
449 	new->protocol		= old->protocol;
450 	new->mark		= old->mark;
451 	__nf_copy(new, old);
452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
453     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
454 	new->nf_trace		= old->nf_trace;
455 #endif
456 #ifdef CONFIG_NET_SCHED
457 	new->tc_index		= old->tc_index;
458 #ifdef CONFIG_NET_CLS_ACT
459 	new->tc_verd		= old->tc_verd;
460 #endif
461 #endif
462 	skb_copy_secmark(new, old);
463 }
464 
465 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
466 {
467 #define C(x) n->x = skb->x
468 
469 	n->next = n->prev = NULL;
470 	n->sk = NULL;
471 	__copy_skb_header(n, skb);
472 
473 	C(len);
474 	C(data_len);
475 	C(mac_len);
476 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
477 	n->cloned = 1;
478 	n->nohdr = 0;
479 	n->destructor = NULL;
480 	C(iif);
481 	C(tail);
482 	C(end);
483 	C(head);
484 	C(data);
485 	C(truesize);
486 	atomic_set(&n->users, 1);
487 
488 	atomic_inc(&(skb_shinfo(skb)->dataref));
489 	skb->cloned = 1;
490 
491 	return n;
492 #undef C
493 }
494 
495 /**
496  *	skb_morph	-	morph one skb into another
497  *	@dst: the skb to receive the contents
498  *	@src: the skb to supply the contents
499  *
500  *	This is identical to skb_clone except that the target skb is
501  *	supplied by the user.
502  *
503  *	The target skb is returned upon exit.
504  */
505 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
506 {
507 	skb_release_all(dst);
508 	return __skb_clone(dst, src);
509 }
510 EXPORT_SYMBOL_GPL(skb_morph);
511 
512 /**
513  *	skb_clone	-	duplicate an sk_buff
514  *	@skb: buffer to clone
515  *	@gfp_mask: allocation priority
516  *
517  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
518  *	copies share the same packet data but not structure. The new
519  *	buffer has a reference count of 1. If the allocation fails the
520  *	function returns %NULL otherwise the new buffer is returned.
521  *
522  *	If this function is called from an interrupt gfp_mask() must be
523  *	%GFP_ATOMIC.
524  */
525 
526 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
527 {
528 	struct sk_buff *n;
529 
530 	n = skb + 1;
531 	if (skb->fclone == SKB_FCLONE_ORIG &&
532 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
533 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
534 		n->fclone = SKB_FCLONE_CLONE;
535 		atomic_inc(fclone_ref);
536 	} else {
537 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
538 		if (!n)
539 			return NULL;
540 		n->fclone = SKB_FCLONE_UNAVAILABLE;
541 	}
542 
543 	return __skb_clone(n, skb);
544 }
545 
546 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
547 {
548 #ifndef NET_SKBUFF_DATA_USES_OFFSET
549 	/*
550 	 *	Shift between the two data areas in bytes
551 	 */
552 	unsigned long offset = new->data - old->data;
553 #endif
554 
555 	__copy_skb_header(new, old);
556 
557 #ifndef NET_SKBUFF_DATA_USES_OFFSET
558 	/* {transport,network,mac}_header are relative to skb->head */
559 	new->transport_header += offset;
560 	new->network_header   += offset;
561 	new->mac_header	      += offset;
562 #endif
563 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
564 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
565 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
566 }
567 
568 /**
569  *	skb_copy	-	create private copy of an sk_buff
570  *	@skb: buffer to copy
571  *	@gfp_mask: allocation priority
572  *
573  *	Make a copy of both an &sk_buff and its data. This is used when the
574  *	caller wishes to modify the data and needs a private copy of the
575  *	data to alter. Returns %NULL on failure or the pointer to the buffer
576  *	on success. The returned buffer has a reference count of 1.
577  *
578  *	As by-product this function converts non-linear &sk_buff to linear
579  *	one, so that &sk_buff becomes completely private and caller is allowed
580  *	to modify all the data of returned buffer. This means that this
581  *	function is not recommended for use in circumstances when only
582  *	header is going to be modified. Use pskb_copy() instead.
583  */
584 
585 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
586 {
587 	int headerlen = skb->data - skb->head;
588 	/*
589 	 *	Allocate the copy buffer
590 	 */
591 	struct sk_buff *n;
592 #ifdef NET_SKBUFF_DATA_USES_OFFSET
593 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
594 #else
595 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
596 #endif
597 	if (!n)
598 		return NULL;
599 
600 	/* Set the data pointer */
601 	skb_reserve(n, headerlen);
602 	/* Set the tail pointer and length */
603 	skb_put(n, skb->len);
604 
605 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
606 		BUG();
607 
608 	copy_skb_header(n, skb);
609 	return n;
610 }
611 
612 
613 /**
614  *	pskb_copy	-	create copy of an sk_buff with private head.
615  *	@skb: buffer to copy
616  *	@gfp_mask: allocation priority
617  *
618  *	Make a copy of both an &sk_buff and part of its data, located
619  *	in header. Fragmented data remain shared. This is used when
620  *	the caller wishes to modify only header of &sk_buff and needs
621  *	private copy of the header to alter. Returns %NULL on failure
622  *	or the pointer to the buffer on success.
623  *	The returned buffer has a reference count of 1.
624  */
625 
626 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
627 {
628 	/*
629 	 *	Allocate the copy buffer
630 	 */
631 	struct sk_buff *n;
632 #ifdef NET_SKBUFF_DATA_USES_OFFSET
633 	n = alloc_skb(skb->end, gfp_mask);
634 #else
635 	n = alloc_skb(skb->end - skb->head, gfp_mask);
636 #endif
637 	if (!n)
638 		goto out;
639 
640 	/* Set the data pointer */
641 	skb_reserve(n, skb->data - skb->head);
642 	/* Set the tail pointer and length */
643 	skb_put(n, skb_headlen(skb));
644 	/* Copy the bytes */
645 	skb_copy_from_linear_data(skb, n->data, n->len);
646 
647 	n->truesize += skb->data_len;
648 	n->data_len  = skb->data_len;
649 	n->len	     = skb->len;
650 
651 	if (skb_shinfo(skb)->nr_frags) {
652 		int i;
653 
654 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
655 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
656 			get_page(skb_shinfo(n)->frags[i].page);
657 		}
658 		skb_shinfo(n)->nr_frags = i;
659 	}
660 
661 	if (skb_shinfo(skb)->frag_list) {
662 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
663 		skb_clone_fraglist(n);
664 	}
665 
666 	copy_skb_header(n, skb);
667 out:
668 	return n;
669 }
670 
671 /**
672  *	pskb_expand_head - reallocate header of &sk_buff
673  *	@skb: buffer to reallocate
674  *	@nhead: room to add at head
675  *	@ntail: room to add at tail
676  *	@gfp_mask: allocation priority
677  *
678  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
679  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
680  *	reference count of 1. Returns zero in the case of success or error,
681  *	if expansion failed. In the last case, &sk_buff is not changed.
682  *
683  *	All the pointers pointing into skb header may change and must be
684  *	reloaded after call to this function.
685  */
686 
687 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
688 		     gfp_t gfp_mask)
689 {
690 	int i;
691 	u8 *data;
692 #ifdef NET_SKBUFF_DATA_USES_OFFSET
693 	int size = nhead + skb->end + ntail;
694 #else
695 	int size = nhead + (skb->end - skb->head) + ntail;
696 #endif
697 	long off;
698 
699 	if (skb_shared(skb))
700 		BUG();
701 
702 	size = SKB_DATA_ALIGN(size);
703 
704 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
705 	if (!data)
706 		goto nodata;
707 
708 	/* Copy only real data... and, alas, header. This should be
709 	 * optimized for the cases when header is void. */
710 #ifdef NET_SKBUFF_DATA_USES_OFFSET
711 	memcpy(data + nhead, skb->head, skb->tail);
712 #else
713 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
714 #endif
715 	memcpy(data + size, skb_end_pointer(skb),
716 	       sizeof(struct skb_shared_info));
717 
718 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
719 		get_page(skb_shinfo(skb)->frags[i].page);
720 
721 	if (skb_shinfo(skb)->frag_list)
722 		skb_clone_fraglist(skb);
723 
724 	skb_release_data(skb);
725 
726 	off = (data + nhead) - skb->head;
727 
728 	skb->head     = data;
729 	skb->data    += off;
730 #ifdef NET_SKBUFF_DATA_USES_OFFSET
731 	skb->end      = size;
732 	off           = nhead;
733 #else
734 	skb->end      = skb->head + size;
735 #endif
736 	/* {transport,network,mac}_header and tail are relative to skb->head */
737 	skb->tail	      += off;
738 	skb->transport_header += off;
739 	skb->network_header   += off;
740 	skb->mac_header	      += off;
741 	skb->csum_start       += nhead;
742 	skb->cloned   = 0;
743 	skb->hdr_len  = 0;
744 	skb->nohdr    = 0;
745 	atomic_set(&skb_shinfo(skb)->dataref, 1);
746 	return 0;
747 
748 nodata:
749 	return -ENOMEM;
750 }
751 
752 /* Make private copy of skb with writable head and some headroom */
753 
754 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
755 {
756 	struct sk_buff *skb2;
757 	int delta = headroom - skb_headroom(skb);
758 
759 	if (delta <= 0)
760 		skb2 = pskb_copy(skb, GFP_ATOMIC);
761 	else {
762 		skb2 = skb_clone(skb, GFP_ATOMIC);
763 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
764 					     GFP_ATOMIC)) {
765 			kfree_skb(skb2);
766 			skb2 = NULL;
767 		}
768 	}
769 	return skb2;
770 }
771 
772 
773 /**
774  *	skb_copy_expand	-	copy and expand sk_buff
775  *	@skb: buffer to copy
776  *	@newheadroom: new free bytes at head
777  *	@newtailroom: new free bytes at tail
778  *	@gfp_mask: allocation priority
779  *
780  *	Make a copy of both an &sk_buff and its data and while doing so
781  *	allocate additional space.
782  *
783  *	This is used when the caller wishes to modify the data and needs a
784  *	private copy of the data to alter as well as more space for new fields.
785  *	Returns %NULL on failure or the pointer to the buffer
786  *	on success. The returned buffer has a reference count of 1.
787  *
788  *	You must pass %GFP_ATOMIC as the allocation priority if this function
789  *	is called from an interrupt.
790  */
791 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
792 				int newheadroom, int newtailroom,
793 				gfp_t gfp_mask)
794 {
795 	/*
796 	 *	Allocate the copy buffer
797 	 */
798 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
799 				      gfp_mask);
800 	int oldheadroom = skb_headroom(skb);
801 	int head_copy_len, head_copy_off;
802 	int off;
803 
804 	if (!n)
805 		return NULL;
806 
807 	skb_reserve(n, newheadroom);
808 
809 	/* Set the tail pointer and length */
810 	skb_put(n, skb->len);
811 
812 	head_copy_len = oldheadroom;
813 	head_copy_off = 0;
814 	if (newheadroom <= head_copy_len)
815 		head_copy_len = newheadroom;
816 	else
817 		head_copy_off = newheadroom - head_copy_len;
818 
819 	/* Copy the linear header and data. */
820 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
821 			  skb->len + head_copy_len))
822 		BUG();
823 
824 	copy_skb_header(n, skb);
825 
826 	off                  = newheadroom - oldheadroom;
827 	n->csum_start       += off;
828 #ifdef NET_SKBUFF_DATA_USES_OFFSET
829 	n->transport_header += off;
830 	n->network_header   += off;
831 	n->mac_header	    += off;
832 #endif
833 
834 	return n;
835 }
836 
837 /**
838  *	skb_pad			-	zero pad the tail of an skb
839  *	@skb: buffer to pad
840  *	@pad: space to pad
841  *
842  *	Ensure that a buffer is followed by a padding area that is zero
843  *	filled. Used by network drivers which may DMA or transfer data
844  *	beyond the buffer end onto the wire.
845  *
846  *	May return error in out of memory cases. The skb is freed on error.
847  */
848 
849 int skb_pad(struct sk_buff *skb, int pad)
850 {
851 	int err;
852 	int ntail;
853 
854 	/* If the skbuff is non linear tailroom is always zero.. */
855 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
856 		memset(skb->data+skb->len, 0, pad);
857 		return 0;
858 	}
859 
860 	ntail = skb->data_len + pad - (skb->end - skb->tail);
861 	if (likely(skb_cloned(skb) || ntail > 0)) {
862 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
863 		if (unlikely(err))
864 			goto free_skb;
865 	}
866 
867 	/* FIXME: The use of this function with non-linear skb's really needs
868 	 * to be audited.
869 	 */
870 	err = skb_linearize(skb);
871 	if (unlikely(err))
872 		goto free_skb;
873 
874 	memset(skb->data + skb->len, 0, pad);
875 	return 0;
876 
877 free_skb:
878 	kfree_skb(skb);
879 	return err;
880 }
881 
882 /**
883  *	skb_put - add data to a buffer
884  *	@skb: buffer to use
885  *	@len: amount of data to add
886  *
887  *	This function extends the used data area of the buffer. If this would
888  *	exceed the total buffer size the kernel will panic. A pointer to the
889  *	first byte of the extra data is returned.
890  */
891 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
892 {
893 	unsigned char *tmp = skb_tail_pointer(skb);
894 	SKB_LINEAR_ASSERT(skb);
895 	skb->tail += len;
896 	skb->len  += len;
897 	if (unlikely(skb->tail > skb->end))
898 		skb_over_panic(skb, len, __builtin_return_address(0));
899 	return tmp;
900 }
901 EXPORT_SYMBOL(skb_put);
902 
903 /**
904  *	skb_push - add data to the start of a buffer
905  *	@skb: buffer to use
906  *	@len: amount of data to add
907  *
908  *	This function extends the used data area of the buffer at the buffer
909  *	start. If this would exceed the total buffer headroom the kernel will
910  *	panic. A pointer to the first byte of the extra data is returned.
911  */
912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
913 {
914 	skb->data -= len;
915 	skb->len  += len;
916 	if (unlikely(skb->data<skb->head))
917 		skb_under_panic(skb, len, __builtin_return_address(0));
918 	return skb->data;
919 }
920 EXPORT_SYMBOL(skb_push);
921 
922 /**
923  *	skb_pull - remove data from the start of a buffer
924  *	@skb: buffer to use
925  *	@len: amount of data to remove
926  *
927  *	This function removes data from the start of a buffer, returning
928  *	the memory to the headroom. A pointer to the next data in the buffer
929  *	is returned. Once the data has been pulled future pushes will overwrite
930  *	the old data.
931  */
932 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
933 {
934 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
935 }
936 EXPORT_SYMBOL(skb_pull);
937 
938 /**
939  *	skb_trim - remove end from a buffer
940  *	@skb: buffer to alter
941  *	@len: new length
942  *
943  *	Cut the length of a buffer down by removing data from the tail. If
944  *	the buffer is already under the length specified it is not modified.
945  *	The skb must be linear.
946  */
947 void skb_trim(struct sk_buff *skb, unsigned int len)
948 {
949 	if (skb->len > len)
950 		__skb_trim(skb, len);
951 }
952 EXPORT_SYMBOL(skb_trim);
953 
954 /* Trims skb to length len. It can change skb pointers.
955  */
956 
957 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
958 {
959 	struct sk_buff **fragp;
960 	struct sk_buff *frag;
961 	int offset = skb_headlen(skb);
962 	int nfrags = skb_shinfo(skb)->nr_frags;
963 	int i;
964 	int err;
965 
966 	if (skb_cloned(skb) &&
967 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
968 		return err;
969 
970 	i = 0;
971 	if (offset >= len)
972 		goto drop_pages;
973 
974 	for (; i < nfrags; i++) {
975 		int end = offset + skb_shinfo(skb)->frags[i].size;
976 
977 		if (end < len) {
978 			offset = end;
979 			continue;
980 		}
981 
982 		skb_shinfo(skb)->frags[i++].size = len - offset;
983 
984 drop_pages:
985 		skb_shinfo(skb)->nr_frags = i;
986 
987 		for (; i < nfrags; i++)
988 			put_page(skb_shinfo(skb)->frags[i].page);
989 
990 		if (skb_shinfo(skb)->frag_list)
991 			skb_drop_fraglist(skb);
992 		goto done;
993 	}
994 
995 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
996 	     fragp = &frag->next) {
997 		int end = offset + frag->len;
998 
999 		if (skb_shared(frag)) {
1000 			struct sk_buff *nfrag;
1001 
1002 			nfrag = skb_clone(frag, GFP_ATOMIC);
1003 			if (unlikely(!nfrag))
1004 				return -ENOMEM;
1005 
1006 			nfrag->next = frag->next;
1007 			kfree_skb(frag);
1008 			frag = nfrag;
1009 			*fragp = frag;
1010 		}
1011 
1012 		if (end < len) {
1013 			offset = end;
1014 			continue;
1015 		}
1016 
1017 		if (end > len &&
1018 		    unlikely((err = pskb_trim(frag, len - offset))))
1019 			return err;
1020 
1021 		if (frag->next)
1022 			skb_drop_list(&frag->next);
1023 		break;
1024 	}
1025 
1026 done:
1027 	if (len > skb_headlen(skb)) {
1028 		skb->data_len -= skb->len - len;
1029 		skb->len       = len;
1030 	} else {
1031 		skb->len       = len;
1032 		skb->data_len  = 0;
1033 		skb_set_tail_pointer(skb, len);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /**
1040  *	__pskb_pull_tail - advance tail of skb header
1041  *	@skb: buffer to reallocate
1042  *	@delta: number of bytes to advance tail
1043  *
1044  *	The function makes a sense only on a fragmented &sk_buff,
1045  *	it expands header moving its tail forward and copying necessary
1046  *	data from fragmented part.
1047  *
1048  *	&sk_buff MUST have reference count of 1.
1049  *
1050  *	Returns %NULL (and &sk_buff does not change) if pull failed
1051  *	or value of new tail of skb in the case of success.
1052  *
1053  *	All the pointers pointing into skb header may change and must be
1054  *	reloaded after call to this function.
1055  */
1056 
1057 /* Moves tail of skb head forward, copying data from fragmented part,
1058  * when it is necessary.
1059  * 1. It may fail due to malloc failure.
1060  * 2. It may change skb pointers.
1061  *
1062  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1063  */
1064 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1065 {
1066 	/* If skb has not enough free space at tail, get new one
1067 	 * plus 128 bytes for future expansions. If we have enough
1068 	 * room at tail, reallocate without expansion only if skb is cloned.
1069 	 */
1070 	int i, k, eat = (skb->tail + delta) - skb->end;
1071 
1072 	if (eat > 0 || skb_cloned(skb)) {
1073 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1074 				     GFP_ATOMIC))
1075 			return NULL;
1076 	}
1077 
1078 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1079 		BUG();
1080 
1081 	/* Optimization: no fragments, no reasons to preestimate
1082 	 * size of pulled pages. Superb.
1083 	 */
1084 	if (!skb_shinfo(skb)->frag_list)
1085 		goto pull_pages;
1086 
1087 	/* Estimate size of pulled pages. */
1088 	eat = delta;
1089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1090 		if (skb_shinfo(skb)->frags[i].size >= eat)
1091 			goto pull_pages;
1092 		eat -= skb_shinfo(skb)->frags[i].size;
1093 	}
1094 
1095 	/* If we need update frag list, we are in troubles.
1096 	 * Certainly, it possible to add an offset to skb data,
1097 	 * but taking into account that pulling is expected to
1098 	 * be very rare operation, it is worth to fight against
1099 	 * further bloating skb head and crucify ourselves here instead.
1100 	 * Pure masohism, indeed. 8)8)
1101 	 */
1102 	if (eat) {
1103 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1104 		struct sk_buff *clone = NULL;
1105 		struct sk_buff *insp = NULL;
1106 
1107 		do {
1108 			BUG_ON(!list);
1109 
1110 			if (list->len <= eat) {
1111 				/* Eaten as whole. */
1112 				eat -= list->len;
1113 				list = list->next;
1114 				insp = list;
1115 			} else {
1116 				/* Eaten partially. */
1117 
1118 				if (skb_shared(list)) {
1119 					/* Sucks! We need to fork list. :-( */
1120 					clone = skb_clone(list, GFP_ATOMIC);
1121 					if (!clone)
1122 						return NULL;
1123 					insp = list->next;
1124 					list = clone;
1125 				} else {
1126 					/* This may be pulled without
1127 					 * problems. */
1128 					insp = list;
1129 				}
1130 				if (!pskb_pull(list, eat)) {
1131 					if (clone)
1132 						kfree_skb(clone);
1133 					return NULL;
1134 				}
1135 				break;
1136 			}
1137 		} while (eat);
1138 
1139 		/* Free pulled out fragments. */
1140 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1141 			skb_shinfo(skb)->frag_list = list->next;
1142 			kfree_skb(list);
1143 		}
1144 		/* And insert new clone at head. */
1145 		if (clone) {
1146 			clone->next = list;
1147 			skb_shinfo(skb)->frag_list = clone;
1148 		}
1149 	}
1150 	/* Success! Now we may commit changes to skb data. */
1151 
1152 pull_pages:
1153 	eat = delta;
1154 	k = 0;
1155 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1156 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1157 			put_page(skb_shinfo(skb)->frags[i].page);
1158 			eat -= skb_shinfo(skb)->frags[i].size;
1159 		} else {
1160 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1161 			if (eat) {
1162 				skb_shinfo(skb)->frags[k].page_offset += eat;
1163 				skb_shinfo(skb)->frags[k].size -= eat;
1164 				eat = 0;
1165 			}
1166 			k++;
1167 		}
1168 	}
1169 	skb_shinfo(skb)->nr_frags = k;
1170 
1171 	skb->tail     += delta;
1172 	skb->data_len -= delta;
1173 
1174 	return skb_tail_pointer(skb);
1175 }
1176 
1177 /* Copy some data bits from skb to kernel buffer. */
1178 
1179 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1180 {
1181 	int i, copy;
1182 	int start = skb_headlen(skb);
1183 
1184 	if (offset > (int)skb->len - len)
1185 		goto fault;
1186 
1187 	/* Copy header. */
1188 	if ((copy = start - offset) > 0) {
1189 		if (copy > len)
1190 			copy = len;
1191 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1192 		if ((len -= copy) == 0)
1193 			return 0;
1194 		offset += copy;
1195 		to     += copy;
1196 	}
1197 
1198 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1199 		int end;
1200 
1201 		BUG_TRAP(start <= offset + len);
1202 
1203 		end = start + skb_shinfo(skb)->frags[i].size;
1204 		if ((copy = end - offset) > 0) {
1205 			u8 *vaddr;
1206 
1207 			if (copy > len)
1208 				copy = len;
1209 
1210 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1211 			memcpy(to,
1212 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1213 			       offset - start, copy);
1214 			kunmap_skb_frag(vaddr);
1215 
1216 			if ((len -= copy) == 0)
1217 				return 0;
1218 			offset += copy;
1219 			to     += copy;
1220 		}
1221 		start = end;
1222 	}
1223 
1224 	if (skb_shinfo(skb)->frag_list) {
1225 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1226 
1227 		for (; list; list = list->next) {
1228 			int end;
1229 
1230 			BUG_TRAP(start <= offset + len);
1231 
1232 			end = start + list->len;
1233 			if ((copy = end - offset) > 0) {
1234 				if (copy > len)
1235 					copy = len;
1236 				if (skb_copy_bits(list, offset - start,
1237 						  to, copy))
1238 					goto fault;
1239 				if ((len -= copy) == 0)
1240 					return 0;
1241 				offset += copy;
1242 				to     += copy;
1243 			}
1244 			start = end;
1245 		}
1246 	}
1247 	if (!len)
1248 		return 0;
1249 
1250 fault:
1251 	return -EFAULT;
1252 }
1253 
1254 /*
1255  * Callback from splice_to_pipe(), if we need to release some pages
1256  * at the end of the spd in case we error'ed out in filling the pipe.
1257  */
1258 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1259 {
1260 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1261 
1262 	kfree_skb(skb);
1263 }
1264 
1265 /*
1266  * Fill page/offset/length into spd, if it can hold more pages.
1267  */
1268 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1269 				unsigned int len, unsigned int offset,
1270 				struct sk_buff *skb)
1271 {
1272 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1273 		return 1;
1274 
1275 	spd->pages[spd->nr_pages] = page;
1276 	spd->partial[spd->nr_pages].len = len;
1277 	spd->partial[spd->nr_pages].offset = offset;
1278 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1279 	spd->nr_pages++;
1280 	return 0;
1281 }
1282 
1283 /*
1284  * Map linear and fragment data from the skb to spd. Returns number of
1285  * pages mapped.
1286  */
1287 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1288 			     unsigned int *total_len,
1289 			     struct splice_pipe_desc *spd)
1290 {
1291 	unsigned int nr_pages = spd->nr_pages;
1292 	unsigned int poff, plen, len, toff, tlen;
1293 	int headlen, seg;
1294 
1295 	toff = *offset;
1296 	tlen = *total_len;
1297 	if (!tlen)
1298 		goto err;
1299 
1300 	/*
1301 	 * if the offset is greater than the linear part, go directly to
1302 	 * the fragments.
1303 	 */
1304 	headlen = skb_headlen(skb);
1305 	if (toff >= headlen) {
1306 		toff -= headlen;
1307 		goto map_frag;
1308 	}
1309 
1310 	/*
1311 	 * first map the linear region into the pages/partial map, skipping
1312 	 * any potential initial offset.
1313 	 */
1314 	len = 0;
1315 	while (len < headlen) {
1316 		void *p = skb->data + len;
1317 
1318 		poff = (unsigned long) p & (PAGE_SIZE - 1);
1319 		plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff);
1320 		len += plen;
1321 
1322 		if (toff) {
1323 			if (plen <= toff) {
1324 				toff -= plen;
1325 				continue;
1326 			}
1327 			plen -= toff;
1328 			poff += toff;
1329 			toff = 0;
1330 		}
1331 
1332 		plen = min(plen, tlen);
1333 		if (!plen)
1334 			break;
1335 
1336 		/*
1337 		 * just jump directly to update and return, no point
1338 		 * in going over fragments when the output is full.
1339 		 */
1340 		if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb))
1341 			goto done;
1342 
1343 		tlen -= plen;
1344 	}
1345 
1346 	/*
1347 	 * then map the fragments
1348 	 */
1349 map_frag:
1350 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1351 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1352 
1353 		plen = f->size;
1354 		poff = f->page_offset;
1355 
1356 		if (toff) {
1357 			if (plen <= toff) {
1358 				toff -= plen;
1359 				continue;
1360 			}
1361 			plen -= toff;
1362 			poff += toff;
1363 			toff = 0;
1364 		}
1365 
1366 		plen = min(plen, tlen);
1367 		if (!plen)
1368 			break;
1369 
1370 		if (spd_fill_page(spd, f->page, plen, poff, skb))
1371 			break;
1372 
1373 		tlen -= plen;
1374 	}
1375 
1376 done:
1377 	if (spd->nr_pages - nr_pages) {
1378 		*offset = 0;
1379 		*total_len = tlen;
1380 		return 0;
1381 	}
1382 err:
1383 	return 1;
1384 }
1385 
1386 /*
1387  * Map data from the skb to a pipe. Should handle both the linear part,
1388  * the fragments, and the frag list. It does NOT handle frag lists within
1389  * the frag list, if such a thing exists. We'd probably need to recurse to
1390  * handle that cleanly.
1391  */
1392 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1393 		    struct pipe_inode_info *pipe, unsigned int tlen,
1394 		    unsigned int flags)
1395 {
1396 	struct partial_page partial[PIPE_BUFFERS];
1397 	struct page *pages[PIPE_BUFFERS];
1398 	struct splice_pipe_desc spd = {
1399 		.pages = pages,
1400 		.partial = partial,
1401 		.flags = flags,
1402 		.ops = &sock_pipe_buf_ops,
1403 		.spd_release = sock_spd_release,
1404 	};
1405 	struct sk_buff *skb;
1406 
1407 	/*
1408 	 * I'd love to avoid the clone here, but tcp_read_sock()
1409 	 * ignores reference counts and unconditonally kills the sk_buff
1410 	 * on return from the actor.
1411 	 */
1412 	skb = skb_clone(__skb, GFP_KERNEL);
1413 	if (unlikely(!skb))
1414 		return -ENOMEM;
1415 
1416 	/*
1417 	 * __skb_splice_bits() only fails if the output has no room left,
1418 	 * so no point in going over the frag_list for the error case.
1419 	 */
1420 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1421 		goto done;
1422 	else if (!tlen)
1423 		goto done;
1424 
1425 	/*
1426 	 * now see if we have a frag_list to map
1427 	 */
1428 	if (skb_shinfo(skb)->frag_list) {
1429 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1430 
1431 		for (; list && tlen; list = list->next) {
1432 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1433 				break;
1434 		}
1435 	}
1436 
1437 done:
1438 	/*
1439 	 * drop our reference to the clone, the pipe consumption will
1440 	 * drop the rest.
1441 	 */
1442 	kfree_skb(skb);
1443 
1444 	if (spd.nr_pages) {
1445 		int ret;
1446 
1447 		/*
1448 		 * Drop the socket lock, otherwise we have reverse
1449 		 * locking dependencies between sk_lock and i_mutex
1450 		 * here as compared to sendfile(). We enter here
1451 		 * with the socket lock held, and splice_to_pipe() will
1452 		 * grab the pipe inode lock. For sendfile() emulation,
1453 		 * we call into ->sendpage() with the i_mutex lock held
1454 		 * and networking will grab the socket lock.
1455 		 */
1456 		release_sock(__skb->sk);
1457 		ret = splice_to_pipe(pipe, &spd);
1458 		lock_sock(__skb->sk);
1459 		return ret;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  *	skb_store_bits - store bits from kernel buffer to skb
1467  *	@skb: destination buffer
1468  *	@offset: offset in destination
1469  *	@from: source buffer
1470  *	@len: number of bytes to copy
1471  *
1472  *	Copy the specified number of bytes from the source buffer to the
1473  *	destination skb.  This function handles all the messy bits of
1474  *	traversing fragment lists and such.
1475  */
1476 
1477 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1478 {
1479 	int i, copy;
1480 	int start = skb_headlen(skb);
1481 
1482 	if (offset > (int)skb->len - len)
1483 		goto fault;
1484 
1485 	if ((copy = start - offset) > 0) {
1486 		if (copy > len)
1487 			copy = len;
1488 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1489 		if ((len -= copy) == 0)
1490 			return 0;
1491 		offset += copy;
1492 		from += copy;
1493 	}
1494 
1495 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1496 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1497 		int end;
1498 
1499 		BUG_TRAP(start <= offset + len);
1500 
1501 		end = start + frag->size;
1502 		if ((copy = end - offset) > 0) {
1503 			u8 *vaddr;
1504 
1505 			if (copy > len)
1506 				copy = len;
1507 
1508 			vaddr = kmap_skb_frag(frag);
1509 			memcpy(vaddr + frag->page_offset + offset - start,
1510 			       from, copy);
1511 			kunmap_skb_frag(vaddr);
1512 
1513 			if ((len -= copy) == 0)
1514 				return 0;
1515 			offset += copy;
1516 			from += copy;
1517 		}
1518 		start = end;
1519 	}
1520 
1521 	if (skb_shinfo(skb)->frag_list) {
1522 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1523 
1524 		for (; list; list = list->next) {
1525 			int end;
1526 
1527 			BUG_TRAP(start <= offset + len);
1528 
1529 			end = start + list->len;
1530 			if ((copy = end - offset) > 0) {
1531 				if (copy > len)
1532 					copy = len;
1533 				if (skb_store_bits(list, offset - start,
1534 						   from, copy))
1535 					goto fault;
1536 				if ((len -= copy) == 0)
1537 					return 0;
1538 				offset += copy;
1539 				from += copy;
1540 			}
1541 			start = end;
1542 		}
1543 	}
1544 	if (!len)
1545 		return 0;
1546 
1547 fault:
1548 	return -EFAULT;
1549 }
1550 
1551 EXPORT_SYMBOL(skb_store_bits);
1552 
1553 /* Checksum skb data. */
1554 
1555 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1556 			  int len, __wsum csum)
1557 {
1558 	int start = skb_headlen(skb);
1559 	int i, copy = start - offset;
1560 	int pos = 0;
1561 
1562 	/* Checksum header. */
1563 	if (copy > 0) {
1564 		if (copy > len)
1565 			copy = len;
1566 		csum = csum_partial(skb->data + offset, copy, csum);
1567 		if ((len -= copy) == 0)
1568 			return csum;
1569 		offset += copy;
1570 		pos	= copy;
1571 	}
1572 
1573 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1574 		int end;
1575 
1576 		BUG_TRAP(start <= offset + len);
1577 
1578 		end = start + skb_shinfo(skb)->frags[i].size;
1579 		if ((copy = end - offset) > 0) {
1580 			__wsum csum2;
1581 			u8 *vaddr;
1582 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1583 
1584 			if (copy > len)
1585 				copy = len;
1586 			vaddr = kmap_skb_frag(frag);
1587 			csum2 = csum_partial(vaddr + frag->page_offset +
1588 					     offset - start, copy, 0);
1589 			kunmap_skb_frag(vaddr);
1590 			csum = csum_block_add(csum, csum2, pos);
1591 			if (!(len -= copy))
1592 				return csum;
1593 			offset += copy;
1594 			pos    += copy;
1595 		}
1596 		start = end;
1597 	}
1598 
1599 	if (skb_shinfo(skb)->frag_list) {
1600 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1601 
1602 		for (; list; list = list->next) {
1603 			int end;
1604 
1605 			BUG_TRAP(start <= offset + len);
1606 
1607 			end = start + list->len;
1608 			if ((copy = end - offset) > 0) {
1609 				__wsum csum2;
1610 				if (copy > len)
1611 					copy = len;
1612 				csum2 = skb_checksum(list, offset - start,
1613 						     copy, 0);
1614 				csum = csum_block_add(csum, csum2, pos);
1615 				if ((len -= copy) == 0)
1616 					return csum;
1617 				offset += copy;
1618 				pos    += copy;
1619 			}
1620 			start = end;
1621 		}
1622 	}
1623 	BUG_ON(len);
1624 
1625 	return csum;
1626 }
1627 
1628 /* Both of above in one bottle. */
1629 
1630 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1631 				    u8 *to, int len, __wsum csum)
1632 {
1633 	int start = skb_headlen(skb);
1634 	int i, copy = start - offset;
1635 	int pos = 0;
1636 
1637 	/* Copy header. */
1638 	if (copy > 0) {
1639 		if (copy > len)
1640 			copy = len;
1641 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1642 						 copy, csum);
1643 		if ((len -= copy) == 0)
1644 			return csum;
1645 		offset += copy;
1646 		to     += copy;
1647 		pos	= copy;
1648 	}
1649 
1650 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 		int end;
1652 
1653 		BUG_TRAP(start <= offset + len);
1654 
1655 		end = start + skb_shinfo(skb)->frags[i].size;
1656 		if ((copy = end - offset) > 0) {
1657 			__wsum csum2;
1658 			u8 *vaddr;
1659 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1660 
1661 			if (copy > len)
1662 				copy = len;
1663 			vaddr = kmap_skb_frag(frag);
1664 			csum2 = csum_partial_copy_nocheck(vaddr +
1665 							  frag->page_offset +
1666 							  offset - start, to,
1667 							  copy, 0);
1668 			kunmap_skb_frag(vaddr);
1669 			csum = csum_block_add(csum, csum2, pos);
1670 			if (!(len -= copy))
1671 				return csum;
1672 			offset += copy;
1673 			to     += copy;
1674 			pos    += copy;
1675 		}
1676 		start = end;
1677 	}
1678 
1679 	if (skb_shinfo(skb)->frag_list) {
1680 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1681 
1682 		for (; list; list = list->next) {
1683 			__wsum csum2;
1684 			int end;
1685 
1686 			BUG_TRAP(start <= offset + len);
1687 
1688 			end = start + list->len;
1689 			if ((copy = end - offset) > 0) {
1690 				if (copy > len)
1691 					copy = len;
1692 				csum2 = skb_copy_and_csum_bits(list,
1693 							       offset - start,
1694 							       to, copy, 0);
1695 				csum = csum_block_add(csum, csum2, pos);
1696 				if ((len -= copy) == 0)
1697 					return csum;
1698 				offset += copy;
1699 				to     += copy;
1700 				pos    += copy;
1701 			}
1702 			start = end;
1703 		}
1704 	}
1705 	BUG_ON(len);
1706 	return csum;
1707 }
1708 
1709 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1710 {
1711 	__wsum csum;
1712 	long csstart;
1713 
1714 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1715 		csstart = skb->csum_start - skb_headroom(skb);
1716 	else
1717 		csstart = skb_headlen(skb);
1718 
1719 	BUG_ON(csstart > skb_headlen(skb));
1720 
1721 	skb_copy_from_linear_data(skb, to, csstart);
1722 
1723 	csum = 0;
1724 	if (csstart != skb->len)
1725 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1726 					      skb->len - csstart, 0);
1727 
1728 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1729 		long csstuff = csstart + skb->csum_offset;
1730 
1731 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1732 	}
1733 }
1734 
1735 /**
1736  *	skb_dequeue - remove from the head of the queue
1737  *	@list: list to dequeue from
1738  *
1739  *	Remove the head of the list. The list lock is taken so the function
1740  *	may be used safely with other locking list functions. The head item is
1741  *	returned or %NULL if the list is empty.
1742  */
1743 
1744 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1745 {
1746 	unsigned long flags;
1747 	struct sk_buff *result;
1748 
1749 	spin_lock_irqsave(&list->lock, flags);
1750 	result = __skb_dequeue(list);
1751 	spin_unlock_irqrestore(&list->lock, flags);
1752 	return result;
1753 }
1754 
1755 /**
1756  *	skb_dequeue_tail - remove from the tail of the queue
1757  *	@list: list to dequeue from
1758  *
1759  *	Remove the tail of the list. The list lock is taken so the function
1760  *	may be used safely with other locking list functions. The tail item is
1761  *	returned or %NULL if the list is empty.
1762  */
1763 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1764 {
1765 	unsigned long flags;
1766 	struct sk_buff *result;
1767 
1768 	spin_lock_irqsave(&list->lock, flags);
1769 	result = __skb_dequeue_tail(list);
1770 	spin_unlock_irqrestore(&list->lock, flags);
1771 	return result;
1772 }
1773 
1774 /**
1775  *	skb_queue_purge - empty a list
1776  *	@list: list to empty
1777  *
1778  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1779  *	the list and one reference dropped. This function takes the list
1780  *	lock and is atomic with respect to other list locking functions.
1781  */
1782 void skb_queue_purge(struct sk_buff_head *list)
1783 {
1784 	struct sk_buff *skb;
1785 	while ((skb = skb_dequeue(list)) != NULL)
1786 		kfree_skb(skb);
1787 }
1788 
1789 /**
1790  *	skb_queue_head - queue a buffer at the list head
1791  *	@list: list to use
1792  *	@newsk: buffer to queue
1793  *
1794  *	Queue a buffer at the start of the list. This function takes the
1795  *	list lock and can be used safely with other locking &sk_buff functions
1796  *	safely.
1797  *
1798  *	A buffer cannot be placed on two lists at the same time.
1799  */
1800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1801 {
1802 	unsigned long flags;
1803 
1804 	spin_lock_irqsave(&list->lock, flags);
1805 	__skb_queue_head(list, newsk);
1806 	spin_unlock_irqrestore(&list->lock, flags);
1807 }
1808 
1809 /**
1810  *	skb_queue_tail - queue a buffer at the list tail
1811  *	@list: list to use
1812  *	@newsk: buffer to queue
1813  *
1814  *	Queue a buffer at the tail of the list. This function takes the
1815  *	list lock and can be used safely with other locking &sk_buff functions
1816  *	safely.
1817  *
1818  *	A buffer cannot be placed on two lists at the same time.
1819  */
1820 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1821 {
1822 	unsigned long flags;
1823 
1824 	spin_lock_irqsave(&list->lock, flags);
1825 	__skb_queue_tail(list, newsk);
1826 	spin_unlock_irqrestore(&list->lock, flags);
1827 }
1828 
1829 /**
1830  *	skb_unlink	-	remove a buffer from a list
1831  *	@skb: buffer to remove
1832  *	@list: list to use
1833  *
1834  *	Remove a packet from a list. The list locks are taken and this
1835  *	function is atomic with respect to other list locked calls
1836  *
1837  *	You must know what list the SKB is on.
1838  */
1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1840 {
1841 	unsigned long flags;
1842 
1843 	spin_lock_irqsave(&list->lock, flags);
1844 	__skb_unlink(skb, list);
1845 	spin_unlock_irqrestore(&list->lock, flags);
1846 }
1847 
1848 /**
1849  *	skb_append	-	append a buffer
1850  *	@old: buffer to insert after
1851  *	@newsk: buffer to insert
1852  *	@list: list to use
1853  *
1854  *	Place a packet after a given packet in a list. The list locks are taken
1855  *	and this function is atomic with respect to other list locked calls.
1856  *	A buffer cannot be placed on two lists at the same time.
1857  */
1858 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1859 {
1860 	unsigned long flags;
1861 
1862 	spin_lock_irqsave(&list->lock, flags);
1863 	__skb_queue_after(list, old, newsk);
1864 	spin_unlock_irqrestore(&list->lock, flags);
1865 }
1866 
1867 
1868 /**
1869  *	skb_insert	-	insert a buffer
1870  *	@old: buffer to insert before
1871  *	@newsk: buffer to insert
1872  *	@list: list to use
1873  *
1874  *	Place a packet before a given packet in a list. The list locks are
1875  * 	taken and this function is atomic with respect to other list locked
1876  *	calls.
1877  *
1878  *	A buffer cannot be placed on two lists at the same time.
1879  */
1880 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1881 {
1882 	unsigned long flags;
1883 
1884 	spin_lock_irqsave(&list->lock, flags);
1885 	__skb_insert(newsk, old->prev, old, list);
1886 	spin_unlock_irqrestore(&list->lock, flags);
1887 }
1888 
1889 static inline void skb_split_inside_header(struct sk_buff *skb,
1890 					   struct sk_buff* skb1,
1891 					   const u32 len, const int pos)
1892 {
1893 	int i;
1894 
1895 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1896 					 pos - len);
1897 	/* And move data appendix as is. */
1898 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1899 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1900 
1901 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1902 	skb_shinfo(skb)->nr_frags  = 0;
1903 	skb1->data_len		   = skb->data_len;
1904 	skb1->len		   += skb1->data_len;
1905 	skb->data_len		   = 0;
1906 	skb->len		   = len;
1907 	skb_set_tail_pointer(skb, len);
1908 }
1909 
1910 static inline void skb_split_no_header(struct sk_buff *skb,
1911 				       struct sk_buff* skb1,
1912 				       const u32 len, int pos)
1913 {
1914 	int i, k = 0;
1915 	const int nfrags = skb_shinfo(skb)->nr_frags;
1916 
1917 	skb_shinfo(skb)->nr_frags = 0;
1918 	skb1->len		  = skb1->data_len = skb->len - len;
1919 	skb->len		  = len;
1920 	skb->data_len		  = len - pos;
1921 
1922 	for (i = 0; i < nfrags; i++) {
1923 		int size = skb_shinfo(skb)->frags[i].size;
1924 
1925 		if (pos + size > len) {
1926 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1927 
1928 			if (pos < len) {
1929 				/* Split frag.
1930 				 * We have two variants in this case:
1931 				 * 1. Move all the frag to the second
1932 				 *    part, if it is possible. F.e.
1933 				 *    this approach is mandatory for TUX,
1934 				 *    where splitting is expensive.
1935 				 * 2. Split is accurately. We make this.
1936 				 */
1937 				get_page(skb_shinfo(skb)->frags[i].page);
1938 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1939 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1940 				skb_shinfo(skb)->frags[i].size	= len - pos;
1941 				skb_shinfo(skb)->nr_frags++;
1942 			}
1943 			k++;
1944 		} else
1945 			skb_shinfo(skb)->nr_frags++;
1946 		pos += size;
1947 	}
1948 	skb_shinfo(skb1)->nr_frags = k;
1949 }
1950 
1951 /**
1952  * skb_split - Split fragmented skb to two parts at length len.
1953  * @skb: the buffer to split
1954  * @skb1: the buffer to receive the second part
1955  * @len: new length for skb
1956  */
1957 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1958 {
1959 	int pos = skb_headlen(skb);
1960 
1961 	if (len < pos)	/* Split line is inside header. */
1962 		skb_split_inside_header(skb, skb1, len, pos);
1963 	else		/* Second chunk has no header, nothing to copy. */
1964 		skb_split_no_header(skb, skb1, len, pos);
1965 }
1966 
1967 /**
1968  * skb_prepare_seq_read - Prepare a sequential read of skb data
1969  * @skb: the buffer to read
1970  * @from: lower offset of data to be read
1971  * @to: upper offset of data to be read
1972  * @st: state variable
1973  *
1974  * Initializes the specified state variable. Must be called before
1975  * invoking skb_seq_read() for the first time.
1976  */
1977 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1978 			  unsigned int to, struct skb_seq_state *st)
1979 {
1980 	st->lower_offset = from;
1981 	st->upper_offset = to;
1982 	st->root_skb = st->cur_skb = skb;
1983 	st->frag_idx = st->stepped_offset = 0;
1984 	st->frag_data = NULL;
1985 }
1986 
1987 /**
1988  * skb_seq_read - Sequentially read skb data
1989  * @consumed: number of bytes consumed by the caller so far
1990  * @data: destination pointer for data to be returned
1991  * @st: state variable
1992  *
1993  * Reads a block of skb data at &consumed relative to the
1994  * lower offset specified to skb_prepare_seq_read(). Assigns
1995  * the head of the data block to &data and returns the length
1996  * of the block or 0 if the end of the skb data or the upper
1997  * offset has been reached.
1998  *
1999  * The caller is not required to consume all of the data
2000  * returned, i.e. &consumed is typically set to the number
2001  * of bytes already consumed and the next call to
2002  * skb_seq_read() will return the remaining part of the block.
2003  *
2004  * Note 1: The size of each block of data returned can be arbitary,
2005  *       this limitation is the cost for zerocopy seqeuental
2006  *       reads of potentially non linear data.
2007  *
2008  * Note 2: Fragment lists within fragments are not implemented
2009  *       at the moment, state->root_skb could be replaced with
2010  *       a stack for this purpose.
2011  */
2012 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2013 			  struct skb_seq_state *st)
2014 {
2015 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2016 	skb_frag_t *frag;
2017 
2018 	if (unlikely(abs_offset >= st->upper_offset))
2019 		return 0;
2020 
2021 next_skb:
2022 	block_limit = skb_headlen(st->cur_skb);
2023 
2024 	if (abs_offset < block_limit) {
2025 		*data = st->cur_skb->data + abs_offset;
2026 		return block_limit - abs_offset;
2027 	}
2028 
2029 	if (st->frag_idx == 0 && !st->frag_data)
2030 		st->stepped_offset += skb_headlen(st->cur_skb);
2031 
2032 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2033 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2034 		block_limit = frag->size + st->stepped_offset;
2035 
2036 		if (abs_offset < block_limit) {
2037 			if (!st->frag_data)
2038 				st->frag_data = kmap_skb_frag(frag);
2039 
2040 			*data = (u8 *) st->frag_data + frag->page_offset +
2041 				(abs_offset - st->stepped_offset);
2042 
2043 			return block_limit - abs_offset;
2044 		}
2045 
2046 		if (st->frag_data) {
2047 			kunmap_skb_frag(st->frag_data);
2048 			st->frag_data = NULL;
2049 		}
2050 
2051 		st->frag_idx++;
2052 		st->stepped_offset += frag->size;
2053 	}
2054 
2055 	if (st->frag_data) {
2056 		kunmap_skb_frag(st->frag_data);
2057 		st->frag_data = NULL;
2058 	}
2059 
2060 	if (st->cur_skb->next) {
2061 		st->cur_skb = st->cur_skb->next;
2062 		st->frag_idx = 0;
2063 		goto next_skb;
2064 	} else if (st->root_skb == st->cur_skb &&
2065 		   skb_shinfo(st->root_skb)->frag_list) {
2066 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2067 		goto next_skb;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /**
2074  * skb_abort_seq_read - Abort a sequential read of skb data
2075  * @st: state variable
2076  *
2077  * Must be called if skb_seq_read() was not called until it
2078  * returned 0.
2079  */
2080 void skb_abort_seq_read(struct skb_seq_state *st)
2081 {
2082 	if (st->frag_data)
2083 		kunmap_skb_frag(st->frag_data);
2084 }
2085 
2086 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2087 
2088 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2089 					  struct ts_config *conf,
2090 					  struct ts_state *state)
2091 {
2092 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2093 }
2094 
2095 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2096 {
2097 	skb_abort_seq_read(TS_SKB_CB(state));
2098 }
2099 
2100 /**
2101  * skb_find_text - Find a text pattern in skb data
2102  * @skb: the buffer to look in
2103  * @from: search offset
2104  * @to: search limit
2105  * @config: textsearch configuration
2106  * @state: uninitialized textsearch state variable
2107  *
2108  * Finds a pattern in the skb data according to the specified
2109  * textsearch configuration. Use textsearch_next() to retrieve
2110  * subsequent occurrences of the pattern. Returns the offset
2111  * to the first occurrence or UINT_MAX if no match was found.
2112  */
2113 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2114 			   unsigned int to, struct ts_config *config,
2115 			   struct ts_state *state)
2116 {
2117 	unsigned int ret;
2118 
2119 	config->get_next_block = skb_ts_get_next_block;
2120 	config->finish = skb_ts_finish;
2121 
2122 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2123 
2124 	ret = textsearch_find(config, state);
2125 	return (ret <= to - from ? ret : UINT_MAX);
2126 }
2127 
2128 /**
2129  * skb_append_datato_frags: - append the user data to a skb
2130  * @sk: sock  structure
2131  * @skb: skb structure to be appened with user data.
2132  * @getfrag: call back function to be used for getting the user data
2133  * @from: pointer to user message iov
2134  * @length: length of the iov message
2135  *
2136  * Description: This procedure append the user data in the fragment part
2137  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2138  */
2139 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2140 			int (*getfrag)(void *from, char *to, int offset,
2141 					int len, int odd, struct sk_buff *skb),
2142 			void *from, int length)
2143 {
2144 	int frg_cnt = 0;
2145 	skb_frag_t *frag = NULL;
2146 	struct page *page = NULL;
2147 	int copy, left;
2148 	int offset = 0;
2149 	int ret;
2150 
2151 	do {
2152 		/* Return error if we don't have space for new frag */
2153 		frg_cnt = skb_shinfo(skb)->nr_frags;
2154 		if (frg_cnt >= MAX_SKB_FRAGS)
2155 			return -EFAULT;
2156 
2157 		/* allocate a new page for next frag */
2158 		page = alloc_pages(sk->sk_allocation, 0);
2159 
2160 		/* If alloc_page fails just return failure and caller will
2161 		 * free previous allocated pages by doing kfree_skb()
2162 		 */
2163 		if (page == NULL)
2164 			return -ENOMEM;
2165 
2166 		/* initialize the next frag */
2167 		sk->sk_sndmsg_page = page;
2168 		sk->sk_sndmsg_off = 0;
2169 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2170 		skb->truesize += PAGE_SIZE;
2171 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2172 
2173 		/* get the new initialized frag */
2174 		frg_cnt = skb_shinfo(skb)->nr_frags;
2175 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2176 
2177 		/* copy the user data to page */
2178 		left = PAGE_SIZE - frag->page_offset;
2179 		copy = (length > left)? left : length;
2180 
2181 		ret = getfrag(from, (page_address(frag->page) +
2182 			    frag->page_offset + frag->size),
2183 			    offset, copy, 0, skb);
2184 		if (ret < 0)
2185 			return -EFAULT;
2186 
2187 		/* copy was successful so update the size parameters */
2188 		sk->sk_sndmsg_off += copy;
2189 		frag->size += copy;
2190 		skb->len += copy;
2191 		skb->data_len += copy;
2192 		offset += copy;
2193 		length -= copy;
2194 
2195 	} while (length > 0);
2196 
2197 	return 0;
2198 }
2199 
2200 /**
2201  *	skb_pull_rcsum - pull skb and update receive checksum
2202  *	@skb: buffer to update
2203  *	@len: length of data pulled
2204  *
2205  *	This function performs an skb_pull on the packet and updates
2206  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2207  *	receive path processing instead of skb_pull unless you know
2208  *	that the checksum difference is zero (e.g., a valid IP header)
2209  *	or you are setting ip_summed to CHECKSUM_NONE.
2210  */
2211 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2212 {
2213 	BUG_ON(len > skb->len);
2214 	skb->len -= len;
2215 	BUG_ON(skb->len < skb->data_len);
2216 	skb_postpull_rcsum(skb, skb->data, len);
2217 	return skb->data += len;
2218 }
2219 
2220 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2221 
2222 /**
2223  *	skb_segment - Perform protocol segmentation on skb.
2224  *	@skb: buffer to segment
2225  *	@features: features for the output path (see dev->features)
2226  *
2227  *	This function performs segmentation on the given skb.  It returns
2228  *	a pointer to the first in a list of new skbs for the segments.
2229  *	In case of error it returns ERR_PTR(err).
2230  */
2231 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2232 {
2233 	struct sk_buff *segs = NULL;
2234 	struct sk_buff *tail = NULL;
2235 	unsigned int mss = skb_shinfo(skb)->gso_size;
2236 	unsigned int doffset = skb->data - skb_mac_header(skb);
2237 	unsigned int offset = doffset;
2238 	unsigned int headroom;
2239 	unsigned int len;
2240 	int sg = features & NETIF_F_SG;
2241 	int nfrags = skb_shinfo(skb)->nr_frags;
2242 	int err = -ENOMEM;
2243 	int i = 0;
2244 	int pos;
2245 
2246 	__skb_push(skb, doffset);
2247 	headroom = skb_headroom(skb);
2248 	pos = skb_headlen(skb);
2249 
2250 	do {
2251 		struct sk_buff *nskb;
2252 		skb_frag_t *frag;
2253 		int hsize;
2254 		int k;
2255 		int size;
2256 
2257 		len = skb->len - offset;
2258 		if (len > mss)
2259 			len = mss;
2260 
2261 		hsize = skb_headlen(skb) - offset;
2262 		if (hsize < 0)
2263 			hsize = 0;
2264 		if (hsize > len || !sg)
2265 			hsize = len;
2266 
2267 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2268 		if (unlikely(!nskb))
2269 			goto err;
2270 
2271 		if (segs)
2272 			tail->next = nskb;
2273 		else
2274 			segs = nskb;
2275 		tail = nskb;
2276 
2277 		nskb->dev = skb->dev;
2278 		skb_copy_queue_mapping(nskb, skb);
2279 		nskb->priority = skb->priority;
2280 		nskb->protocol = skb->protocol;
2281 		nskb->dst = dst_clone(skb->dst);
2282 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2283 		nskb->pkt_type = skb->pkt_type;
2284 		nskb->mac_len = skb->mac_len;
2285 
2286 		skb_reserve(nskb, headroom);
2287 		skb_reset_mac_header(nskb);
2288 		skb_set_network_header(nskb, skb->mac_len);
2289 		nskb->transport_header = (nskb->network_header +
2290 					  skb_network_header_len(skb));
2291 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2292 					  doffset);
2293 		if (!sg) {
2294 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2295 							    skb_put(nskb, len),
2296 							    len, 0);
2297 			continue;
2298 		}
2299 
2300 		frag = skb_shinfo(nskb)->frags;
2301 		k = 0;
2302 
2303 		nskb->ip_summed = CHECKSUM_PARTIAL;
2304 		nskb->csum = skb->csum;
2305 		skb_copy_from_linear_data_offset(skb, offset,
2306 						 skb_put(nskb, hsize), hsize);
2307 
2308 		while (pos < offset + len) {
2309 			BUG_ON(i >= nfrags);
2310 
2311 			*frag = skb_shinfo(skb)->frags[i];
2312 			get_page(frag->page);
2313 			size = frag->size;
2314 
2315 			if (pos < offset) {
2316 				frag->page_offset += offset - pos;
2317 				frag->size -= offset - pos;
2318 			}
2319 
2320 			k++;
2321 
2322 			if (pos + size <= offset + len) {
2323 				i++;
2324 				pos += size;
2325 			} else {
2326 				frag->size -= pos + size - (offset + len);
2327 				break;
2328 			}
2329 
2330 			frag++;
2331 		}
2332 
2333 		skb_shinfo(nskb)->nr_frags = k;
2334 		nskb->data_len = len - hsize;
2335 		nskb->len += nskb->data_len;
2336 		nskb->truesize += nskb->data_len;
2337 	} while ((offset += len) < skb->len);
2338 
2339 	return segs;
2340 
2341 err:
2342 	while ((skb = segs)) {
2343 		segs = skb->next;
2344 		kfree_skb(skb);
2345 	}
2346 	return ERR_PTR(err);
2347 }
2348 
2349 EXPORT_SYMBOL_GPL(skb_segment);
2350 
2351 void __init skb_init(void)
2352 {
2353 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2354 					      sizeof(struct sk_buff),
2355 					      0,
2356 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2357 					      NULL);
2358 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2359 						(2*sizeof(struct sk_buff)) +
2360 						sizeof(atomic_t),
2361 						0,
2362 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2363 						NULL);
2364 }
2365 
2366 /**
2367  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2368  *	@skb: Socket buffer containing the buffers to be mapped
2369  *	@sg: The scatter-gather list to map into
2370  *	@offset: The offset into the buffer's contents to start mapping
2371  *	@len: Length of buffer space to be mapped
2372  *
2373  *	Fill the specified scatter-gather list with mappings/pointers into a
2374  *	region of the buffer space attached to a socket buffer.
2375  */
2376 static int
2377 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2378 {
2379 	int start = skb_headlen(skb);
2380 	int i, copy = start - offset;
2381 	int elt = 0;
2382 
2383 	if (copy > 0) {
2384 		if (copy > len)
2385 			copy = len;
2386 		sg_set_buf(sg, skb->data + offset, copy);
2387 		elt++;
2388 		if ((len -= copy) == 0)
2389 			return elt;
2390 		offset += copy;
2391 	}
2392 
2393 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2394 		int end;
2395 
2396 		BUG_TRAP(start <= offset + len);
2397 
2398 		end = start + skb_shinfo(skb)->frags[i].size;
2399 		if ((copy = end - offset) > 0) {
2400 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2401 
2402 			if (copy > len)
2403 				copy = len;
2404 			sg_set_page(&sg[elt], frag->page, copy,
2405 					frag->page_offset+offset-start);
2406 			elt++;
2407 			if (!(len -= copy))
2408 				return elt;
2409 			offset += copy;
2410 		}
2411 		start = end;
2412 	}
2413 
2414 	if (skb_shinfo(skb)->frag_list) {
2415 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2416 
2417 		for (; list; list = list->next) {
2418 			int end;
2419 
2420 			BUG_TRAP(start <= offset + len);
2421 
2422 			end = start + list->len;
2423 			if ((copy = end - offset) > 0) {
2424 				if (copy > len)
2425 					copy = len;
2426 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2427 						      copy);
2428 				if ((len -= copy) == 0)
2429 					return elt;
2430 				offset += copy;
2431 			}
2432 			start = end;
2433 		}
2434 	}
2435 	BUG_ON(len);
2436 	return elt;
2437 }
2438 
2439 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2440 {
2441 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2442 
2443 	sg_mark_end(&sg[nsg - 1]);
2444 
2445 	return nsg;
2446 }
2447 
2448 /**
2449  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2450  *	@skb: The socket buffer to check.
2451  *	@tailbits: Amount of trailing space to be added
2452  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2453  *
2454  *	Make sure that the data buffers attached to a socket buffer are
2455  *	writable. If they are not, private copies are made of the data buffers
2456  *	and the socket buffer is set to use these instead.
2457  *
2458  *	If @tailbits is given, make sure that there is space to write @tailbits
2459  *	bytes of data beyond current end of socket buffer.  @trailer will be
2460  *	set to point to the skb in which this space begins.
2461  *
2462  *	The number of scatterlist elements required to completely map the
2463  *	COW'd and extended socket buffer will be returned.
2464  */
2465 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2466 {
2467 	int copyflag;
2468 	int elt;
2469 	struct sk_buff *skb1, **skb_p;
2470 
2471 	/* If skb is cloned or its head is paged, reallocate
2472 	 * head pulling out all the pages (pages are considered not writable
2473 	 * at the moment even if they are anonymous).
2474 	 */
2475 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2476 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2477 		return -ENOMEM;
2478 
2479 	/* Easy case. Most of packets will go this way. */
2480 	if (!skb_shinfo(skb)->frag_list) {
2481 		/* A little of trouble, not enough of space for trailer.
2482 		 * This should not happen, when stack is tuned to generate
2483 		 * good frames. OK, on miss we reallocate and reserve even more
2484 		 * space, 128 bytes is fair. */
2485 
2486 		if (skb_tailroom(skb) < tailbits &&
2487 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2488 			return -ENOMEM;
2489 
2490 		/* Voila! */
2491 		*trailer = skb;
2492 		return 1;
2493 	}
2494 
2495 	/* Misery. We are in troubles, going to mincer fragments... */
2496 
2497 	elt = 1;
2498 	skb_p = &skb_shinfo(skb)->frag_list;
2499 	copyflag = 0;
2500 
2501 	while ((skb1 = *skb_p) != NULL) {
2502 		int ntail = 0;
2503 
2504 		/* The fragment is partially pulled by someone,
2505 		 * this can happen on input. Copy it and everything
2506 		 * after it. */
2507 
2508 		if (skb_shared(skb1))
2509 			copyflag = 1;
2510 
2511 		/* If the skb is the last, worry about trailer. */
2512 
2513 		if (skb1->next == NULL && tailbits) {
2514 			if (skb_shinfo(skb1)->nr_frags ||
2515 			    skb_shinfo(skb1)->frag_list ||
2516 			    skb_tailroom(skb1) < tailbits)
2517 				ntail = tailbits + 128;
2518 		}
2519 
2520 		if (copyflag ||
2521 		    skb_cloned(skb1) ||
2522 		    ntail ||
2523 		    skb_shinfo(skb1)->nr_frags ||
2524 		    skb_shinfo(skb1)->frag_list) {
2525 			struct sk_buff *skb2;
2526 
2527 			/* Fuck, we are miserable poor guys... */
2528 			if (ntail == 0)
2529 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2530 			else
2531 				skb2 = skb_copy_expand(skb1,
2532 						       skb_headroom(skb1),
2533 						       ntail,
2534 						       GFP_ATOMIC);
2535 			if (unlikely(skb2 == NULL))
2536 				return -ENOMEM;
2537 
2538 			if (skb1->sk)
2539 				skb_set_owner_w(skb2, skb1->sk);
2540 
2541 			/* Looking around. Are we still alive?
2542 			 * OK, link new skb, drop old one */
2543 
2544 			skb2->next = skb1->next;
2545 			*skb_p = skb2;
2546 			kfree_skb(skb1);
2547 			skb1 = skb2;
2548 		}
2549 		elt++;
2550 		*trailer = skb1;
2551 		skb_p = &skb1->next;
2552 	}
2553 
2554 	return elt;
2555 }
2556 
2557 /**
2558  * skb_partial_csum_set - set up and verify partial csum values for packet
2559  * @skb: the skb to set
2560  * @start: the number of bytes after skb->data to start checksumming.
2561  * @off: the offset from start to place the checksum.
2562  *
2563  * For untrusted partially-checksummed packets, we need to make sure the values
2564  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2565  *
2566  * This function checks and sets those values and skb->ip_summed: if this
2567  * returns false you should drop the packet.
2568  */
2569 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2570 {
2571 	if (unlikely(start > skb->len - 2) ||
2572 	    unlikely((int)start + off > skb->len - 2)) {
2573 		if (net_ratelimit())
2574 			printk(KERN_WARNING
2575 			       "bad partial csum: csum=%u/%u len=%u\n",
2576 			       start, off, skb->len);
2577 		return false;
2578 	}
2579 	skb->ip_summed = CHECKSUM_PARTIAL;
2580 	skb->csum_start = skb_headroom(skb) + start;
2581 	skb->csum_offset = off;
2582 	return true;
2583 }
2584 
2585 EXPORT_SYMBOL(___pskb_trim);
2586 EXPORT_SYMBOL(__kfree_skb);
2587 EXPORT_SYMBOL(kfree_skb);
2588 EXPORT_SYMBOL(__pskb_pull_tail);
2589 EXPORT_SYMBOL(__alloc_skb);
2590 EXPORT_SYMBOL(__netdev_alloc_skb);
2591 EXPORT_SYMBOL(pskb_copy);
2592 EXPORT_SYMBOL(pskb_expand_head);
2593 EXPORT_SYMBOL(skb_checksum);
2594 EXPORT_SYMBOL(skb_clone);
2595 EXPORT_SYMBOL(skb_copy);
2596 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2597 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2598 EXPORT_SYMBOL(skb_copy_bits);
2599 EXPORT_SYMBOL(skb_copy_expand);
2600 EXPORT_SYMBOL(skb_over_panic);
2601 EXPORT_SYMBOL(skb_pad);
2602 EXPORT_SYMBOL(skb_realloc_headroom);
2603 EXPORT_SYMBOL(skb_under_panic);
2604 EXPORT_SYMBOL(skb_dequeue);
2605 EXPORT_SYMBOL(skb_dequeue_tail);
2606 EXPORT_SYMBOL(skb_insert);
2607 EXPORT_SYMBOL(skb_queue_purge);
2608 EXPORT_SYMBOL(skb_queue_head);
2609 EXPORT_SYMBOL(skb_queue_tail);
2610 EXPORT_SYMBOL(skb_unlink);
2611 EXPORT_SYMBOL(skb_append);
2612 EXPORT_SYMBOL(skb_split);
2613 EXPORT_SYMBOL(skb_prepare_seq_read);
2614 EXPORT_SYMBOL(skb_seq_read);
2615 EXPORT_SYMBOL(skb_abort_seq_read);
2616 EXPORT_SYMBOL(skb_find_text);
2617 EXPORT_SYMBOL(skb_append_datato_frags);
2618 
2619 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2620 EXPORT_SYMBOL_GPL(skb_cow_data);
2621 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2622