xref: /linux/net/core/skbuff.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
160 /**
161  *	__alloc_skb	-	allocate a network buffer
162  *	@size: size to allocate
163  *	@gfp_mask: allocation mask
164  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165  *		instead of head cache and allocate a cloned (child) skb.
166  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167  *		allocations in case the data is required for writeback
168  *	@node: numa node to allocate memory on
169  *
170  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
171  *	tail room of at least size bytes. The object has a reference count
172  *	of one. The return is the buffer. On a failure the return is %NULL.
173  *
174  *	Buffers may only be allocated from interrupts using a @gfp_mask of
175  *	%GFP_ATOMIC.
176  */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 			    int flags, int node)
179 {
180 	struct kmem_cache *cache;
181 	struct skb_shared_info *shinfo;
182 	struct sk_buff *skb;
183 	u8 *data;
184 	bool pfmemalloc;
185 
186 	cache = (flags & SKB_ALLOC_FCLONE)
187 		? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 		gfp_mask |= __GFP_MEMALLOC;
191 
192 	/* Get the HEAD */
193 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 	if (!skb)
195 		goto out;
196 	prefetchw(skb);
197 
198 	/* We do our best to align skb_shared_info on a separate cache
199 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 	 * Both skb->head and skb_shared_info are cache line aligned.
202 	 */
203 	size = SKB_DATA_ALIGN(size);
204 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 	if (!data)
207 		goto nodata;
208 	/* kmalloc(size) might give us more room than requested.
209 	 * Put skb_shared_info exactly at the end of allocated zone,
210 	 * to allow max possible filling before reallocation.
211 	 */
212 	size = SKB_WITH_OVERHEAD(ksize(data));
213 	prefetchw(data + size);
214 
215 	/*
216 	 * Only clear those fields we need to clear, not those that we will
217 	 * actually initialise below. Hence, don't put any more fields after
218 	 * the tail pointer in struct sk_buff!
219 	 */
220 	memset(skb, 0, offsetof(struct sk_buff, tail));
221 	/* Account for allocated memory : skb + skb->head */
222 	skb->truesize = SKB_TRUESIZE(size);
223 	skb->pfmemalloc = pfmemalloc;
224 	refcount_set(&skb->users, 1);
225 	skb->head = data;
226 	skb->data = data;
227 	skb_reset_tail_pointer(skb);
228 	skb->end = skb->tail + size;
229 	skb->mac_header = (typeof(skb->mac_header))~0U;
230 	skb->transport_header = (typeof(skb->transport_header))~0U;
231 
232 	/* make sure we initialize shinfo sequentially */
233 	shinfo = skb_shinfo(skb);
234 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 	atomic_set(&shinfo->dataref, 1);
236 
237 	if (flags & SKB_ALLOC_FCLONE) {
238 		struct sk_buff_fclones *fclones;
239 
240 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
241 
242 		skb->fclone = SKB_FCLONE_ORIG;
243 		refcount_set(&fclones->fclone_ref, 1);
244 
245 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 	}
247 out:
248 	return skb;
249 nodata:
250 	kmem_cache_free(cache, skb);
251 	skb = NULL;
252 	goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255 
256 /**
257  * __build_skb - build a network buffer
258  * @data: data buffer provided by caller
259  * @frag_size: size of data, or 0 if head was kmalloced
260  *
261  * Allocate a new &sk_buff. Caller provides space holding head and
262  * skb_shared_info. @data must have been allocated by kmalloc() only if
263  * @frag_size is 0, otherwise data should come from the page allocator
264  *  or vmalloc()
265  * The return is the new skb buffer.
266  * On a failure the return is %NULL, and @data is not freed.
267  * Notes :
268  *  Before IO, driver allocates only data buffer where NIC put incoming frame
269  *  Driver should add room at head (NET_SKB_PAD) and
270  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
272  *  before giving packet to stack.
273  *  RX rings only contains data buffers, not full skbs.
274  */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 	struct skb_shared_info *shinfo;
278 	struct sk_buff *skb;
279 	unsigned int size = frag_size ? : ksize(data);
280 
281 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 	if (!skb)
283 		return NULL;
284 
285 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286 
287 	memset(skb, 0, offsetof(struct sk_buff, tail));
288 	skb->truesize = SKB_TRUESIZE(size);
289 	refcount_set(&skb->users, 1);
290 	skb->head = data;
291 	skb->data = data;
292 	skb_reset_tail_pointer(skb);
293 	skb->end = skb->tail + size;
294 	skb->mac_header = (typeof(skb->mac_header))~0U;
295 	skb->transport_header = (typeof(skb->transport_header))~0U;
296 
297 	/* make sure we initialize shinfo sequentially */
298 	shinfo = skb_shinfo(skb);
299 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 	atomic_set(&shinfo->dataref, 1);
301 
302 	return skb;
303 }
304 
305 /* build_skb() is wrapper over __build_skb(), that specifically
306  * takes care of skb->head and skb->pfmemalloc
307  * This means that if @frag_size is not zero, then @data must be backed
308  * by a page fragment, not kmalloc() or vmalloc()
309  */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 	struct sk_buff *skb = __build_skb(data, frag_size);
313 
314 	if (skb && frag_size) {
315 		skb->head_frag = 1;
316 		if (page_is_pfmemalloc(virt_to_head_page(data)))
317 			skb->pfmemalloc = 1;
318 	}
319 	return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322 
323 #define NAPI_SKB_CACHE_SIZE	64
324 
325 struct napi_alloc_cache {
326 	struct page_frag_cache page;
327 	unsigned int skb_count;
328 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330 
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333 
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 	struct page_frag_cache *nc;
337 	unsigned long flags;
338 	void *data;
339 
340 	local_irq_save(flags);
341 	nc = this_cpu_ptr(&netdev_alloc_cache);
342 	data = page_frag_alloc(nc, fragsz, gfp_mask);
343 	local_irq_restore(flags);
344 	return data;
345 }
346 
347 /**
348  * netdev_alloc_frag - allocate a page fragment
349  * @fragsz: fragment size
350  *
351  * Allocates a frag from a page for receive buffer.
352  * Uses GFP_ATOMIC allocations.
353  */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359 
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363 
364 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366 
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372 
373 /**
374  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
375  *	@dev: network device to receive on
376  *	@len: length to allocate
377  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
378  *
379  *	Allocate a new &sk_buff and assign it a usage count of one. The
380  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
381  *	the headroom they think they need without accounting for the
382  *	built in space. The built in space is used for optimisations.
383  *
384  *	%NULL is returned if there is no free memory.
385  */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 				   gfp_t gfp_mask)
388 {
389 	struct page_frag_cache *nc;
390 	unsigned long flags;
391 	struct sk_buff *skb;
392 	bool pfmemalloc;
393 	void *data;
394 
395 	len += NET_SKB_PAD;
396 
397 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 		if (!skb)
401 			goto skb_fail;
402 		goto skb_success;
403 	}
404 
405 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 	len = SKB_DATA_ALIGN(len);
407 
408 	if (sk_memalloc_socks())
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	local_irq_save(flags);
412 
413 	nc = this_cpu_ptr(&netdev_alloc_cache);
414 	data = page_frag_alloc(nc, len, gfp_mask);
415 	pfmemalloc = nc->pfmemalloc;
416 
417 	local_irq_restore(flags);
418 
419 	if (unlikely(!data))
420 		return NULL;
421 
422 	skb = __build_skb(data, len);
423 	if (unlikely(!skb)) {
424 		skb_free_frag(data);
425 		return NULL;
426 	}
427 
428 	/* use OR instead of assignment to avoid clearing of bits in mask */
429 	if (pfmemalloc)
430 		skb->pfmemalloc = 1;
431 	skb->head_frag = 1;
432 
433 skb_success:
434 	skb_reserve(skb, NET_SKB_PAD);
435 	skb->dev = dev;
436 
437 skb_fail:
438 	return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441 
442 /**
443  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444  *	@napi: napi instance this buffer was allocated for
445  *	@len: length to allocate
446  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447  *
448  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
449  *	attempt to allocate the head from a special reserved region used
450  *	only for NAPI Rx allocation.  By doing this we can save several
451  *	CPU cycles by avoiding having to disable and re-enable IRQs.
452  *
453  *	%NULL is returned if there is no free memory.
454  */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 				 gfp_t gfp_mask)
457 {
458 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 	struct sk_buff *skb;
460 	void *data;
461 
462 	len += NET_SKB_PAD + NET_IP_ALIGN;
463 
464 	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 		if (!skb)
468 			goto skb_fail;
469 		goto skb_success;
470 	}
471 
472 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 	len = SKB_DATA_ALIGN(len);
474 
475 	if (sk_memalloc_socks())
476 		gfp_mask |= __GFP_MEMALLOC;
477 
478 	data = page_frag_alloc(&nc->page, len, gfp_mask);
479 	if (unlikely(!data))
480 		return NULL;
481 
482 	skb = __build_skb(data, len);
483 	if (unlikely(!skb)) {
484 		skb_free_frag(data);
485 		return NULL;
486 	}
487 
488 	/* use OR instead of assignment to avoid clearing of bits in mask */
489 	if (nc->page.pfmemalloc)
490 		skb->pfmemalloc = 1;
491 	skb->head_frag = 1;
492 
493 skb_success:
494 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 	skb->dev = napi->dev;
496 
497 skb_fail:
498 	return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501 
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 		     int size, unsigned int truesize)
504 {
505 	skb_fill_page_desc(skb, i, page, off, size);
506 	skb->len += size;
507 	skb->data_len += size;
508 	skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511 
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 			  unsigned int truesize)
514 {
515 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516 
517 	skb_frag_size_add(frag, size);
518 	skb->len += size;
519 	skb->data_len += size;
520 	skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523 
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 	kfree_skb_list(*listp);
527 	*listp = NULL;
528 }
529 
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 	skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534 
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 	struct sk_buff *list;
538 
539 	skb_walk_frags(skb, list)
540 		skb_get(list);
541 }
542 
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 	unsigned char *head = skb->head;
546 
547 	if (skb->head_frag)
548 		skb_free_frag(head);
549 	else
550 		kfree(head);
551 }
552 
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
556 	int i;
557 
558 	if (skb->cloned &&
559 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 			      &shinfo->dataref))
561 		return;
562 
563 	for (i = 0; i < shinfo->nr_frags; i++)
564 		__skb_frag_unref(&shinfo->frags[i]);
565 
566 	if (shinfo->frag_list)
567 		kfree_skb_list(shinfo->frag_list);
568 
569 	skb_zcopy_clear(skb, true);
570 	skb_free_head(skb);
571 }
572 
573 /*
574  *	Free an skbuff by memory without cleaning the state.
575  */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 	struct sk_buff_fclones *fclones;
579 
580 	switch (skb->fclone) {
581 	case SKB_FCLONE_UNAVAILABLE:
582 		kmem_cache_free(skbuff_head_cache, skb);
583 		return;
584 
585 	case SKB_FCLONE_ORIG:
586 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 
588 		/* We usually free the clone (TX completion) before original skb
589 		 * This test would have no chance to be true for the clone,
590 		 * while here, branch prediction will be good.
591 		 */
592 		if (refcount_read(&fclones->fclone_ref) == 1)
593 			goto fastpath;
594 		break;
595 
596 	default: /* SKB_FCLONE_CLONE */
597 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 		break;
599 	}
600 	if (!refcount_dec_and_test(&fclones->fclone_ref))
601 		return;
602 fastpath:
603 	kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605 
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 	skb_dst_drop(skb);
609 	secpath_reset(skb);
610 	if (skb->destructor) {
611 		WARN_ON(in_irq());
612 		skb->destructor(skb);
613 	}
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 	nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 	nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621 
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 	skb_release_head_state(skb);
626 	if (likely(skb->head))
627 		skb_release_data(skb);
628 }
629 
630 /**
631  *	__kfree_skb - private function
632  *	@skb: buffer
633  *
634  *	Free an sk_buff. Release anything attached to the buffer.
635  *	Clean the state. This is an internal helper function. Users should
636  *	always call kfree_skb
637  */
638 
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 	skb_release_all(skb);
642 	kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645 
646 /**
647  *	kfree_skb - free an sk_buff
648  *	@skb: buffer to free
649  *
650  *	Drop a reference to the buffer and free it if the usage count has
651  *	hit zero.
652  */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 	if (!skb_unref(skb))
656 		return;
657 
658 	trace_kfree_skb(skb, __builtin_return_address(0));
659 	__kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662 
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 	while (segs) {
666 		struct sk_buff *next = segs->next;
667 
668 		kfree_skb(segs);
669 		segs = next;
670 	}
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673 
674 /**
675  *	skb_tx_error - report an sk_buff xmit error
676  *	@skb: buffer that triggered an error
677  *
678  *	Report xmit error if a device callback is tracking this skb.
679  *	skb must be freed afterwards.
680  */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 	skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686 
687 /**
688  *	consume_skb - free an skbuff
689  *	@skb: buffer to free
690  *
691  *	Drop a ref to the buffer and free it if the usage count has hit zero
692  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
693  *	is being dropped after a failure and notes that
694  */
695 void consume_skb(struct sk_buff *skb)
696 {
697 	if (!skb_unref(skb))
698 		return;
699 
700 	trace_consume_skb(skb);
701 	__kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704 
705 /**
706  *	consume_stateless_skb - free an skbuff, assuming it is stateless
707  *	@skb: buffer to free
708  *
709  *	Alike consume_skb(), but this variant assumes that this is the last
710  *	skb reference and all the head states have been already dropped
711  */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 	trace_consume_skb(skb);
715 	skb_release_data(skb);
716 	kfree_skbmem(skb);
717 }
718 
719 void __kfree_skb_flush(void)
720 {
721 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722 
723 	/* flush skb_cache if containing objects */
724 	if (nc->skb_count) {
725 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 				     nc->skb_cache);
727 		nc->skb_count = 0;
728 	}
729 }
730 
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734 
735 	/* drop skb->head and call any destructors for packet */
736 	skb_release_all(skb);
737 
738 	/* record skb to CPU local list */
739 	nc->skb_cache[nc->skb_count++] = skb;
740 
741 #ifdef CONFIG_SLUB
742 	/* SLUB writes into objects when freeing */
743 	prefetchw(skb);
744 #endif
745 
746 	/* flush skb_cache if it is filled */
747 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 				     nc->skb_cache);
750 		nc->skb_count = 0;
751 	}
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 	_kfree_skb_defer(skb);
756 }
757 
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 	if (unlikely(!skb))
761 		return;
762 
763 	/* Zero budget indicate non-NAPI context called us, like netpoll */
764 	if (unlikely(!budget)) {
765 		dev_consume_skb_any(skb);
766 		return;
767 	}
768 
769 	if (!skb_unref(skb))
770 		return;
771 
772 	/* if reaching here SKB is ready to free */
773 	trace_consume_skb(skb);
774 
775 	/* if SKB is a clone, don't handle this case */
776 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 		__kfree_skb(skb);
778 		return;
779 	}
780 
781 	_kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784 
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
788 		     offsetof(struct sk_buff, headers_start));	\
789 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
790 		     offsetof(struct sk_buff, headers_end));	\
791 
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 	new->tstamp		= old->tstamp;
795 	/* We do not copy old->sk */
796 	new->dev		= old->dev;
797 	memcpy(new->cb, old->cb, sizeof(old->cb));
798 	skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 	new->sp			= secpath_get(old->sp);
801 #endif
802 	__nf_copy(new, old, false);
803 
804 	/* Note : this field could be in headers_start/headers_end section
805 	 * It is not yet because we do not want to have a 16 bit hole
806 	 */
807 	new->queue_mapping = old->queue_mapping;
808 
809 	memcpy(&new->headers_start, &old->headers_start,
810 	       offsetof(struct sk_buff, headers_end) -
811 	       offsetof(struct sk_buff, headers_start));
812 	CHECK_SKB_FIELD(protocol);
813 	CHECK_SKB_FIELD(csum);
814 	CHECK_SKB_FIELD(hash);
815 	CHECK_SKB_FIELD(priority);
816 	CHECK_SKB_FIELD(skb_iif);
817 	CHECK_SKB_FIELD(vlan_proto);
818 	CHECK_SKB_FIELD(vlan_tci);
819 	CHECK_SKB_FIELD(transport_header);
820 	CHECK_SKB_FIELD(network_header);
821 	CHECK_SKB_FIELD(mac_header);
822 	CHECK_SKB_FIELD(inner_protocol);
823 	CHECK_SKB_FIELD(inner_transport_header);
824 	CHECK_SKB_FIELD(inner_network_header);
825 	CHECK_SKB_FIELD(inner_mac_header);
826 	CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 	CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 	CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 	CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 	CHECK_SKB_FIELD(tc_index);
838 #endif
839 
840 }
841 
842 /*
843  * You should not add any new code to this function.  Add it to
844  * __copy_skb_header above instead.
845  */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849 
850 	n->next = n->prev = NULL;
851 	n->sk = NULL;
852 	__copy_skb_header(n, skb);
853 
854 	C(len);
855 	C(data_len);
856 	C(mac_len);
857 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 	n->cloned = 1;
859 	n->nohdr = 0;
860 	n->peeked = 0;
861 	n->destructor = NULL;
862 	C(tail);
863 	C(end);
864 	C(head);
865 	C(head_frag);
866 	C(data);
867 	C(truesize);
868 	refcount_set(&n->users, 1);
869 
870 	atomic_inc(&(skb_shinfo(skb)->dataref));
871 	skb->cloned = 1;
872 
873 	return n;
874 #undef C
875 }
876 
877 /**
878  *	skb_morph	-	morph one skb into another
879  *	@dst: the skb to receive the contents
880  *	@src: the skb to supply the contents
881  *
882  *	This is identical to skb_clone except that the target skb is
883  *	supplied by the user.
884  *
885  *	The target skb is returned upon exit.
886  */
887 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
888 {
889 	skb_release_all(dst);
890 	return __skb_clone(dst, src);
891 }
892 EXPORT_SYMBOL_GPL(skb_morph);
893 
894 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
895 {
896 	unsigned long max_pg, num_pg, new_pg, old_pg;
897 	struct user_struct *user;
898 
899 	if (capable(CAP_IPC_LOCK) || !size)
900 		return 0;
901 
902 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
903 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
904 	user = mmp->user ? : current_user();
905 
906 	do {
907 		old_pg = atomic_long_read(&user->locked_vm);
908 		new_pg = old_pg + num_pg;
909 		if (new_pg > max_pg)
910 			return -ENOBUFS;
911 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
912 		 old_pg);
913 
914 	if (!mmp->user) {
915 		mmp->user = get_uid(user);
916 		mmp->num_pg = num_pg;
917 	} else {
918 		mmp->num_pg += num_pg;
919 	}
920 
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
924 
925 void mm_unaccount_pinned_pages(struct mmpin *mmp)
926 {
927 	if (mmp->user) {
928 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
929 		free_uid(mmp->user);
930 	}
931 }
932 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
933 
934 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
935 {
936 	struct ubuf_info *uarg;
937 	struct sk_buff *skb;
938 
939 	WARN_ON_ONCE(!in_task());
940 
941 	if (!sock_flag(sk, SOCK_ZEROCOPY))
942 		return NULL;
943 
944 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 	if (!skb)
946 		return NULL;
947 
948 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 	uarg = (void *)skb->cb;
950 	uarg->mmp.user = NULL;
951 
952 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 		kfree_skb(skb);
954 		return NULL;
955 	}
956 
957 	uarg->callback = sock_zerocopy_callback;
958 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 	uarg->len = 1;
960 	uarg->bytelen = size;
961 	uarg->zerocopy = 1;
962 	refcount_set(&uarg->refcnt, 1);
963 	sock_hold(sk);
964 
965 	return uarg;
966 }
967 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968 
969 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970 {
971 	return container_of((void *)uarg, struct sk_buff, cb);
972 }
973 
974 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 					struct ubuf_info *uarg)
976 {
977 	if (uarg) {
978 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
979 		u32 bytelen, next;
980 
981 		/* realloc only when socket is locked (TCP, UDP cork),
982 		 * so uarg->len and sk_zckey access is serialized
983 		 */
984 		if (!sock_owned_by_user(sk)) {
985 			WARN_ON_ONCE(1);
986 			return NULL;
987 		}
988 
989 		bytelen = uarg->bytelen + size;
990 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 			/* TCP can create new skb to attach new uarg */
992 			if (sk->sk_type == SOCK_STREAM)
993 				goto new_alloc;
994 			return NULL;
995 		}
996 
997 		next = (u32)atomic_read(&sk->sk_zckey);
998 		if ((u32)(uarg->id + uarg->len) == next) {
999 			if (mm_account_pinned_pages(&uarg->mmp, size))
1000 				return NULL;
1001 			uarg->len++;
1002 			uarg->bytelen = bytelen;
1003 			atomic_set(&sk->sk_zckey, ++next);
1004 			sock_zerocopy_get(uarg);
1005 			return uarg;
1006 		}
1007 	}
1008 
1009 new_alloc:
1010 	return sock_zerocopy_alloc(sk, size);
1011 }
1012 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013 
1014 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015 {
1016 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 	u32 old_lo, old_hi;
1018 	u64 sum_len;
1019 
1020 	old_lo = serr->ee.ee_info;
1021 	old_hi = serr->ee.ee_data;
1022 	sum_len = old_hi - old_lo + 1ULL + len;
1023 
1024 	if (sum_len >= (1ULL << 32))
1025 		return false;
1026 
1027 	if (lo != old_hi + 1)
1028 		return false;
1029 
1030 	serr->ee.ee_data += len;
1031 	return true;
1032 }
1033 
1034 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035 {
1036 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 	struct sock_exterr_skb *serr;
1038 	struct sock *sk = skb->sk;
1039 	struct sk_buff_head *q;
1040 	unsigned long flags;
1041 	u32 lo, hi;
1042 	u16 len;
1043 
1044 	mm_unaccount_pinned_pages(&uarg->mmp);
1045 
1046 	/* if !len, there was only 1 call, and it was aborted
1047 	 * so do not queue a completion notification
1048 	 */
1049 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 		goto release;
1051 
1052 	len = uarg->len;
1053 	lo = uarg->id;
1054 	hi = uarg->id + len - 1;
1055 
1056 	serr = SKB_EXT_ERR(skb);
1057 	memset(serr, 0, sizeof(*serr));
1058 	serr->ee.ee_errno = 0;
1059 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 	serr->ee.ee_data = hi;
1061 	serr->ee.ee_info = lo;
1062 	if (!success)
1063 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064 
1065 	q = &sk->sk_error_queue;
1066 	spin_lock_irqsave(&q->lock, flags);
1067 	tail = skb_peek_tail(q);
1068 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 		__skb_queue_tail(q, skb);
1071 		skb = NULL;
1072 	}
1073 	spin_unlock_irqrestore(&q->lock, flags);
1074 
1075 	sk->sk_error_report(sk);
1076 
1077 release:
1078 	consume_skb(skb);
1079 	sock_put(sk);
1080 }
1081 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082 
1083 void sock_zerocopy_put(struct ubuf_info *uarg)
1084 {
1085 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 		if (uarg->callback)
1087 			uarg->callback(uarg, uarg->zerocopy);
1088 		else
1089 			consume_skb(skb_from_uarg(uarg));
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093 
1094 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095 {
1096 	if (uarg) {
1097 		struct sock *sk = skb_from_uarg(uarg)->sk;
1098 
1099 		atomic_dec(&sk->sk_zckey);
1100 		uarg->len--;
1101 
1102 		sock_zerocopy_put(uarg);
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106 
1107 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108 				   struct iov_iter *from, size_t length);
1109 
1110 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111 			     struct msghdr *msg, int len,
1112 			     struct ubuf_info *uarg)
1113 {
1114 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115 	struct iov_iter orig_iter = msg->msg_iter;
1116 	int err, orig_len = skb->len;
1117 
1118 	/* An skb can only point to one uarg. This edge case happens when
1119 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120 	 */
1121 	if (orig_uarg && uarg != orig_uarg)
1122 		return -EEXIST;
1123 
1124 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126 		struct sock *save_sk = skb->sk;
1127 
1128 		/* Streams do not free skb on error. Reset to prev state. */
1129 		msg->msg_iter = orig_iter;
1130 		skb->sk = sk;
1131 		___pskb_trim(skb, orig_len);
1132 		skb->sk = save_sk;
1133 		return err;
1134 	}
1135 
1136 	skb_zcopy_set(skb, uarg);
1137 	return skb->len - orig_len;
1138 }
1139 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140 
1141 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142 			      gfp_t gfp_mask)
1143 {
1144 	if (skb_zcopy(orig)) {
1145 		if (skb_zcopy(nskb)) {
1146 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147 			if (!gfp_mask) {
1148 				WARN_ON_ONCE(1);
1149 				return -ENOMEM;
1150 			}
1151 			if (skb_uarg(nskb) == skb_uarg(orig))
1152 				return 0;
1153 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154 				return -EIO;
1155 		}
1156 		skb_zcopy_set(nskb, skb_uarg(orig));
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1163  *	@skb: the skb to modify
1164  *	@gfp_mask: allocation priority
1165  *
1166  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1167  *	It will copy all frags into kernel and drop the reference
1168  *	to userspace pages.
1169  *
1170  *	If this function is called from an interrupt gfp_mask() must be
1171  *	%GFP_ATOMIC.
1172  *
1173  *	Returns 0 on success or a negative error code on failure
1174  *	to allocate kernel memory to copy to.
1175  */
1176 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177 {
1178 	int num_frags = skb_shinfo(skb)->nr_frags;
1179 	struct page *page, *head = NULL;
1180 	int i, new_frags;
1181 	u32 d_off;
1182 
1183 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 		return -EINVAL;
1185 
1186 	if (!num_frags)
1187 		goto release;
1188 
1189 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 	for (i = 0; i < new_frags; i++) {
1191 		page = alloc_page(gfp_mask);
1192 		if (!page) {
1193 			while (head) {
1194 				struct page *next = (struct page *)page_private(head);
1195 				put_page(head);
1196 				head = next;
1197 			}
1198 			return -ENOMEM;
1199 		}
1200 		set_page_private(page, (unsigned long)head);
1201 		head = page;
1202 	}
1203 
1204 	page = head;
1205 	d_off = 0;
1206 	for (i = 0; i < num_frags; i++) {
1207 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208 		u32 p_off, p_len, copied;
1209 		struct page *p;
1210 		u8 *vaddr;
1211 
1212 		skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213 				      p, p_off, p_len, copied) {
1214 			u32 copy, done = 0;
1215 			vaddr = kmap_atomic(p);
1216 
1217 			while (done < p_len) {
1218 				if (d_off == PAGE_SIZE) {
1219 					d_off = 0;
1220 					page = (struct page *)page_private(page);
1221 				}
1222 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223 				memcpy(page_address(page) + d_off,
1224 				       vaddr + p_off + done, copy);
1225 				done += copy;
1226 				d_off += copy;
1227 			}
1228 			kunmap_atomic(vaddr);
1229 		}
1230 	}
1231 
1232 	/* skb frags release userspace buffers */
1233 	for (i = 0; i < num_frags; i++)
1234 		skb_frag_unref(skb, i);
1235 
1236 	/* skb frags point to kernel buffers */
1237 	for (i = 0; i < new_frags - 1; i++) {
1238 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239 		head = (struct page *)page_private(head);
1240 	}
1241 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1242 	skb_shinfo(skb)->nr_frags = new_frags;
1243 
1244 release:
1245 	skb_zcopy_clear(skb, false);
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249 
1250 /**
1251  *	skb_clone	-	duplicate an sk_buff
1252  *	@skb: buffer to clone
1253  *	@gfp_mask: allocation priority
1254  *
1255  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256  *	copies share the same packet data but not structure. The new
1257  *	buffer has a reference count of 1. If the allocation fails the
1258  *	function returns %NULL otherwise the new buffer is returned.
1259  *
1260  *	If this function is called from an interrupt gfp_mask() must be
1261  *	%GFP_ATOMIC.
1262  */
1263 
1264 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265 {
1266 	struct sk_buff_fclones *fclones = container_of(skb,
1267 						       struct sk_buff_fclones,
1268 						       skb1);
1269 	struct sk_buff *n;
1270 
1271 	if (skb_orphan_frags(skb, gfp_mask))
1272 		return NULL;
1273 
1274 	if (skb->fclone == SKB_FCLONE_ORIG &&
1275 	    refcount_read(&fclones->fclone_ref) == 1) {
1276 		n = &fclones->skb2;
1277 		refcount_set(&fclones->fclone_ref, 2);
1278 	} else {
1279 		if (skb_pfmemalloc(skb))
1280 			gfp_mask |= __GFP_MEMALLOC;
1281 
1282 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 		if (!n)
1284 			return NULL;
1285 
1286 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 	}
1288 
1289 	return __skb_clone(n, skb);
1290 }
1291 EXPORT_SYMBOL(skb_clone);
1292 
1293 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294 {
1295 	/* Only adjust this if it actually is csum_start rather than csum */
1296 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1297 		skb->csum_start += off;
1298 	/* {transport,network,mac}_header and tail are relative to skb->head */
1299 	skb->transport_header += off;
1300 	skb->network_header   += off;
1301 	if (skb_mac_header_was_set(skb))
1302 		skb->mac_header += off;
1303 	skb->inner_transport_header += off;
1304 	skb->inner_network_header += off;
1305 	skb->inner_mac_header += off;
1306 }
1307 
1308 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1309 {
1310 	__copy_skb_header(new, old);
1311 
1312 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315 }
1316 
1317 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1318 {
1319 	if (skb_pfmemalloc(skb))
1320 		return SKB_ALLOC_RX;
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	skb_copy	-	create private copy of an sk_buff
1326  *	@skb: buffer to copy
1327  *	@gfp_mask: allocation priority
1328  *
1329  *	Make a copy of both an &sk_buff and its data. This is used when the
1330  *	caller wishes to modify the data and needs a private copy of the
1331  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1332  *	on success. The returned buffer has a reference count of 1.
1333  *
1334  *	As by-product this function converts non-linear &sk_buff to linear
1335  *	one, so that &sk_buff becomes completely private and caller is allowed
1336  *	to modify all the data of returned buffer. This means that this
1337  *	function is not recommended for use in circumstances when only
1338  *	header is going to be modified. Use pskb_copy() instead.
1339  */
1340 
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 	int headerlen = skb_headroom(skb);
1344 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1345 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1346 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1347 
1348 	if (!n)
1349 		return NULL;
1350 
1351 	/* Set the data pointer */
1352 	skb_reserve(n, headerlen);
1353 	/* Set the tail pointer and length */
1354 	skb_put(n, skb->len);
1355 
1356 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1357 
1358 	copy_skb_header(n, skb);
1359 	return n;
1360 }
1361 EXPORT_SYMBOL(skb_copy);
1362 
1363 /**
1364  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1365  *	@skb: buffer to copy
1366  *	@headroom: headroom of new skb
1367  *	@gfp_mask: allocation priority
1368  *	@fclone: if true allocate the copy of the skb from the fclone
1369  *	cache instead of the head cache; it is recommended to set this
1370  *	to true for the cases where the copy will likely be cloned
1371  *
1372  *	Make a copy of both an &sk_buff and part of its data, located
1373  *	in header. Fragmented data remain shared. This is used when
1374  *	the caller wishes to modify only header of &sk_buff and needs
1375  *	private copy of the header to alter. Returns %NULL on failure
1376  *	or the pointer to the buffer on success.
1377  *	The returned buffer has a reference count of 1.
1378  */
1379 
1380 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1381 				   gfp_t gfp_mask, bool fclone)
1382 {
1383 	unsigned int size = skb_headlen(skb) + headroom;
1384 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1385 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1386 
1387 	if (!n)
1388 		goto out;
1389 
1390 	/* Set the data pointer */
1391 	skb_reserve(n, headroom);
1392 	/* Set the tail pointer and length */
1393 	skb_put(n, skb_headlen(skb));
1394 	/* Copy the bytes */
1395 	skb_copy_from_linear_data(skb, n->data, n->len);
1396 
1397 	n->truesize += skb->data_len;
1398 	n->data_len  = skb->data_len;
1399 	n->len	     = skb->len;
1400 
1401 	if (skb_shinfo(skb)->nr_frags) {
1402 		int i;
1403 
1404 		if (skb_orphan_frags(skb, gfp_mask) ||
1405 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1406 			kfree_skb(n);
1407 			n = NULL;
1408 			goto out;
1409 		}
1410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1411 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1412 			skb_frag_ref(skb, i);
1413 		}
1414 		skb_shinfo(n)->nr_frags = i;
1415 	}
1416 
1417 	if (skb_has_frag_list(skb)) {
1418 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1419 		skb_clone_fraglist(n);
1420 	}
1421 
1422 	copy_skb_header(n, skb);
1423 out:
1424 	return n;
1425 }
1426 EXPORT_SYMBOL(__pskb_copy_fclone);
1427 
1428 /**
1429  *	pskb_expand_head - reallocate header of &sk_buff
1430  *	@skb: buffer to reallocate
1431  *	@nhead: room to add at head
1432  *	@ntail: room to add at tail
1433  *	@gfp_mask: allocation priority
1434  *
1435  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1436  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1437  *	reference count of 1. Returns zero in the case of success or error,
1438  *	if expansion failed. In the last case, &sk_buff is not changed.
1439  *
1440  *	All the pointers pointing into skb header may change and must be
1441  *	reloaded after call to this function.
1442  */
1443 
1444 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1445 		     gfp_t gfp_mask)
1446 {
1447 	int i, osize = skb_end_offset(skb);
1448 	int size = osize + nhead + ntail;
1449 	long off;
1450 	u8 *data;
1451 
1452 	BUG_ON(nhead < 0);
1453 
1454 	BUG_ON(skb_shared(skb));
1455 
1456 	size = SKB_DATA_ALIGN(size);
1457 
1458 	if (skb_pfmemalloc(skb))
1459 		gfp_mask |= __GFP_MEMALLOC;
1460 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1461 			       gfp_mask, NUMA_NO_NODE, NULL);
1462 	if (!data)
1463 		goto nodata;
1464 	size = SKB_WITH_OVERHEAD(ksize(data));
1465 
1466 	/* Copy only real data... and, alas, header. This should be
1467 	 * optimized for the cases when header is void.
1468 	 */
1469 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1470 
1471 	memcpy((struct skb_shared_info *)(data + size),
1472 	       skb_shinfo(skb),
1473 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474 
1475 	/*
1476 	 * if shinfo is shared we must drop the old head gracefully, but if it
1477 	 * is not we can just drop the old head and let the existing refcount
1478 	 * be since all we did is relocate the values
1479 	 */
1480 	if (skb_cloned(skb)) {
1481 		if (skb_orphan_frags(skb, gfp_mask))
1482 			goto nofrags;
1483 		if (skb_zcopy(skb))
1484 			refcount_inc(&skb_uarg(skb)->refcnt);
1485 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1486 			skb_frag_ref(skb, i);
1487 
1488 		if (skb_has_frag_list(skb))
1489 			skb_clone_fraglist(skb);
1490 
1491 		skb_release_data(skb);
1492 	} else {
1493 		skb_free_head(skb);
1494 	}
1495 	off = (data + nhead) - skb->head;
1496 
1497 	skb->head     = data;
1498 	skb->head_frag = 0;
1499 	skb->data    += off;
1500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1501 	skb->end      = size;
1502 	off           = nhead;
1503 #else
1504 	skb->end      = skb->head + size;
1505 #endif
1506 	skb->tail	      += off;
1507 	skb_headers_offset_update(skb, nhead);
1508 	skb->cloned   = 0;
1509 	skb->hdr_len  = 0;
1510 	skb->nohdr    = 0;
1511 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1512 
1513 	skb_metadata_clear(skb);
1514 
1515 	/* It is not generally safe to change skb->truesize.
1516 	 * For the moment, we really care of rx path, or
1517 	 * when skb is orphaned (not attached to a socket).
1518 	 */
1519 	if (!skb->sk || skb->destructor == sock_edemux)
1520 		skb->truesize += size - osize;
1521 
1522 	return 0;
1523 
1524 nofrags:
1525 	kfree(data);
1526 nodata:
1527 	return -ENOMEM;
1528 }
1529 EXPORT_SYMBOL(pskb_expand_head);
1530 
1531 /* Make private copy of skb with writable head and some headroom */
1532 
1533 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1534 {
1535 	struct sk_buff *skb2;
1536 	int delta = headroom - skb_headroom(skb);
1537 
1538 	if (delta <= 0)
1539 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1540 	else {
1541 		skb2 = skb_clone(skb, GFP_ATOMIC);
1542 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1543 					     GFP_ATOMIC)) {
1544 			kfree_skb(skb2);
1545 			skb2 = NULL;
1546 		}
1547 	}
1548 	return skb2;
1549 }
1550 EXPORT_SYMBOL(skb_realloc_headroom);
1551 
1552 /**
1553  *	skb_copy_expand	-	copy and expand sk_buff
1554  *	@skb: buffer to copy
1555  *	@newheadroom: new free bytes at head
1556  *	@newtailroom: new free bytes at tail
1557  *	@gfp_mask: allocation priority
1558  *
1559  *	Make a copy of both an &sk_buff and its data and while doing so
1560  *	allocate additional space.
1561  *
1562  *	This is used when the caller wishes to modify the data and needs a
1563  *	private copy of the data to alter as well as more space for new fields.
1564  *	Returns %NULL on failure or the pointer to the buffer
1565  *	on success. The returned buffer has a reference count of 1.
1566  *
1567  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1568  *	is called from an interrupt.
1569  */
1570 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1571 				int newheadroom, int newtailroom,
1572 				gfp_t gfp_mask)
1573 {
1574 	/*
1575 	 *	Allocate the copy buffer
1576 	 */
1577 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1578 					gfp_mask, skb_alloc_rx_flag(skb),
1579 					NUMA_NO_NODE);
1580 	int oldheadroom = skb_headroom(skb);
1581 	int head_copy_len, head_copy_off;
1582 
1583 	if (!n)
1584 		return NULL;
1585 
1586 	skb_reserve(n, newheadroom);
1587 
1588 	/* Set the tail pointer and length */
1589 	skb_put(n, skb->len);
1590 
1591 	head_copy_len = oldheadroom;
1592 	head_copy_off = 0;
1593 	if (newheadroom <= head_copy_len)
1594 		head_copy_len = newheadroom;
1595 	else
1596 		head_copy_off = newheadroom - head_copy_len;
1597 
1598 	/* Copy the linear header and data. */
1599 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1600 			     skb->len + head_copy_len));
1601 
1602 	copy_skb_header(n, skb);
1603 
1604 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1605 
1606 	return n;
1607 }
1608 EXPORT_SYMBOL(skb_copy_expand);
1609 
1610 /**
1611  *	__skb_pad		-	zero pad the tail of an skb
1612  *	@skb: buffer to pad
1613  *	@pad: space to pad
1614  *	@free_on_error: free buffer on error
1615  *
1616  *	Ensure that a buffer is followed by a padding area that is zero
1617  *	filled. Used by network drivers which may DMA or transfer data
1618  *	beyond the buffer end onto the wire.
1619  *
1620  *	May return error in out of memory cases. The skb is freed on error
1621  *	if @free_on_error is true.
1622  */
1623 
1624 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1625 {
1626 	int err;
1627 	int ntail;
1628 
1629 	/* If the skbuff is non linear tailroom is always zero.. */
1630 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1631 		memset(skb->data+skb->len, 0, pad);
1632 		return 0;
1633 	}
1634 
1635 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1636 	if (likely(skb_cloned(skb) || ntail > 0)) {
1637 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1638 		if (unlikely(err))
1639 			goto free_skb;
1640 	}
1641 
1642 	/* FIXME: The use of this function with non-linear skb's really needs
1643 	 * to be audited.
1644 	 */
1645 	err = skb_linearize(skb);
1646 	if (unlikely(err))
1647 		goto free_skb;
1648 
1649 	memset(skb->data + skb->len, 0, pad);
1650 	return 0;
1651 
1652 free_skb:
1653 	if (free_on_error)
1654 		kfree_skb(skb);
1655 	return err;
1656 }
1657 EXPORT_SYMBOL(__skb_pad);
1658 
1659 /**
1660  *	pskb_put - add data to the tail of a potentially fragmented buffer
1661  *	@skb: start of the buffer to use
1662  *	@tail: tail fragment of the buffer to use
1663  *	@len: amount of data to add
1664  *
1665  *	This function extends the used data area of the potentially
1666  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1667  *	@skb itself. If this would exceed the total buffer size the kernel
1668  *	will panic. A pointer to the first byte of the extra data is
1669  *	returned.
1670  */
1671 
1672 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1673 {
1674 	if (tail != skb) {
1675 		skb->data_len += len;
1676 		skb->len += len;
1677 	}
1678 	return skb_put(tail, len);
1679 }
1680 EXPORT_SYMBOL_GPL(pskb_put);
1681 
1682 /**
1683  *	skb_put - add data to a buffer
1684  *	@skb: buffer to use
1685  *	@len: amount of data to add
1686  *
1687  *	This function extends the used data area of the buffer. If this would
1688  *	exceed the total buffer size the kernel will panic. A pointer to the
1689  *	first byte of the extra data is returned.
1690  */
1691 void *skb_put(struct sk_buff *skb, unsigned int len)
1692 {
1693 	void *tmp = skb_tail_pointer(skb);
1694 	SKB_LINEAR_ASSERT(skb);
1695 	skb->tail += len;
1696 	skb->len  += len;
1697 	if (unlikely(skb->tail > skb->end))
1698 		skb_over_panic(skb, len, __builtin_return_address(0));
1699 	return tmp;
1700 }
1701 EXPORT_SYMBOL(skb_put);
1702 
1703 /**
1704  *	skb_push - add data to the start of a buffer
1705  *	@skb: buffer to use
1706  *	@len: amount of data to add
1707  *
1708  *	This function extends the used data area of the buffer at the buffer
1709  *	start. If this would exceed the total buffer headroom the kernel will
1710  *	panic. A pointer to the first byte of the extra data is returned.
1711  */
1712 void *skb_push(struct sk_buff *skb, unsigned int len)
1713 {
1714 	skb->data -= len;
1715 	skb->len  += len;
1716 	if (unlikely(skb->data<skb->head))
1717 		skb_under_panic(skb, len, __builtin_return_address(0));
1718 	return skb->data;
1719 }
1720 EXPORT_SYMBOL(skb_push);
1721 
1722 /**
1723  *	skb_pull - remove data from the start of a buffer
1724  *	@skb: buffer to use
1725  *	@len: amount of data to remove
1726  *
1727  *	This function removes data from the start of a buffer, returning
1728  *	the memory to the headroom. A pointer to the next data in the buffer
1729  *	is returned. Once the data has been pulled future pushes will overwrite
1730  *	the old data.
1731  */
1732 void *skb_pull(struct sk_buff *skb, unsigned int len)
1733 {
1734 	return skb_pull_inline(skb, len);
1735 }
1736 EXPORT_SYMBOL(skb_pull);
1737 
1738 /**
1739  *	skb_trim - remove end from a buffer
1740  *	@skb: buffer to alter
1741  *	@len: new length
1742  *
1743  *	Cut the length of a buffer down by removing data from the tail. If
1744  *	the buffer is already under the length specified it is not modified.
1745  *	The skb must be linear.
1746  */
1747 void skb_trim(struct sk_buff *skb, unsigned int len)
1748 {
1749 	if (skb->len > len)
1750 		__skb_trim(skb, len);
1751 }
1752 EXPORT_SYMBOL(skb_trim);
1753 
1754 /* Trims skb to length len. It can change skb pointers.
1755  */
1756 
1757 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1758 {
1759 	struct sk_buff **fragp;
1760 	struct sk_buff *frag;
1761 	int offset = skb_headlen(skb);
1762 	int nfrags = skb_shinfo(skb)->nr_frags;
1763 	int i;
1764 	int err;
1765 
1766 	if (skb_cloned(skb) &&
1767 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1768 		return err;
1769 
1770 	i = 0;
1771 	if (offset >= len)
1772 		goto drop_pages;
1773 
1774 	for (; i < nfrags; i++) {
1775 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776 
1777 		if (end < len) {
1778 			offset = end;
1779 			continue;
1780 		}
1781 
1782 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1783 
1784 drop_pages:
1785 		skb_shinfo(skb)->nr_frags = i;
1786 
1787 		for (; i < nfrags; i++)
1788 			skb_frag_unref(skb, i);
1789 
1790 		if (skb_has_frag_list(skb))
1791 			skb_drop_fraglist(skb);
1792 		goto done;
1793 	}
1794 
1795 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1796 	     fragp = &frag->next) {
1797 		int end = offset + frag->len;
1798 
1799 		if (skb_shared(frag)) {
1800 			struct sk_buff *nfrag;
1801 
1802 			nfrag = skb_clone(frag, GFP_ATOMIC);
1803 			if (unlikely(!nfrag))
1804 				return -ENOMEM;
1805 
1806 			nfrag->next = frag->next;
1807 			consume_skb(frag);
1808 			frag = nfrag;
1809 			*fragp = frag;
1810 		}
1811 
1812 		if (end < len) {
1813 			offset = end;
1814 			continue;
1815 		}
1816 
1817 		if (end > len &&
1818 		    unlikely((err = pskb_trim(frag, len - offset))))
1819 			return err;
1820 
1821 		if (frag->next)
1822 			skb_drop_list(&frag->next);
1823 		break;
1824 	}
1825 
1826 done:
1827 	if (len > skb_headlen(skb)) {
1828 		skb->data_len -= skb->len - len;
1829 		skb->len       = len;
1830 	} else {
1831 		skb->len       = len;
1832 		skb->data_len  = 0;
1833 		skb_set_tail_pointer(skb, len);
1834 	}
1835 
1836 	if (!skb->sk || skb->destructor == sock_edemux)
1837 		skb_condense(skb);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(___pskb_trim);
1841 
1842 /* Note : use pskb_trim_rcsum() instead of calling this directly
1843  */
1844 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1845 {
1846 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1847 		int delta = skb->len - len;
1848 
1849 		skb->csum = csum_sub(skb->csum,
1850 				     skb_checksum(skb, len, delta, 0));
1851 	}
1852 	return __pskb_trim(skb, len);
1853 }
1854 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1855 
1856 /**
1857  *	__pskb_pull_tail - advance tail of skb header
1858  *	@skb: buffer to reallocate
1859  *	@delta: number of bytes to advance tail
1860  *
1861  *	The function makes a sense only on a fragmented &sk_buff,
1862  *	it expands header moving its tail forward and copying necessary
1863  *	data from fragmented part.
1864  *
1865  *	&sk_buff MUST have reference count of 1.
1866  *
1867  *	Returns %NULL (and &sk_buff does not change) if pull failed
1868  *	or value of new tail of skb in the case of success.
1869  *
1870  *	All the pointers pointing into skb header may change and must be
1871  *	reloaded after call to this function.
1872  */
1873 
1874 /* Moves tail of skb head forward, copying data from fragmented part,
1875  * when it is necessary.
1876  * 1. It may fail due to malloc failure.
1877  * 2. It may change skb pointers.
1878  *
1879  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1880  */
1881 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1882 {
1883 	/* If skb has not enough free space at tail, get new one
1884 	 * plus 128 bytes for future expansions. If we have enough
1885 	 * room at tail, reallocate without expansion only if skb is cloned.
1886 	 */
1887 	int i, k, eat = (skb->tail + delta) - skb->end;
1888 
1889 	if (eat > 0 || skb_cloned(skb)) {
1890 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1891 				     GFP_ATOMIC))
1892 			return NULL;
1893 	}
1894 
1895 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1896 			     skb_tail_pointer(skb), delta));
1897 
1898 	/* Optimization: no fragments, no reasons to preestimate
1899 	 * size of pulled pages. Superb.
1900 	 */
1901 	if (!skb_has_frag_list(skb))
1902 		goto pull_pages;
1903 
1904 	/* Estimate size of pulled pages. */
1905 	eat = delta;
1906 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1907 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1908 
1909 		if (size >= eat)
1910 			goto pull_pages;
1911 		eat -= size;
1912 	}
1913 
1914 	/* If we need update frag list, we are in troubles.
1915 	 * Certainly, it is possible to add an offset to skb data,
1916 	 * but taking into account that pulling is expected to
1917 	 * be very rare operation, it is worth to fight against
1918 	 * further bloating skb head and crucify ourselves here instead.
1919 	 * Pure masohism, indeed. 8)8)
1920 	 */
1921 	if (eat) {
1922 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1923 		struct sk_buff *clone = NULL;
1924 		struct sk_buff *insp = NULL;
1925 
1926 		do {
1927 			BUG_ON(!list);
1928 
1929 			if (list->len <= eat) {
1930 				/* Eaten as whole. */
1931 				eat -= list->len;
1932 				list = list->next;
1933 				insp = list;
1934 			} else {
1935 				/* Eaten partially. */
1936 
1937 				if (skb_shared(list)) {
1938 					/* Sucks! We need to fork list. :-( */
1939 					clone = skb_clone(list, GFP_ATOMIC);
1940 					if (!clone)
1941 						return NULL;
1942 					insp = list->next;
1943 					list = clone;
1944 				} else {
1945 					/* This may be pulled without
1946 					 * problems. */
1947 					insp = list;
1948 				}
1949 				if (!pskb_pull(list, eat)) {
1950 					kfree_skb(clone);
1951 					return NULL;
1952 				}
1953 				break;
1954 			}
1955 		} while (eat);
1956 
1957 		/* Free pulled out fragments. */
1958 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1959 			skb_shinfo(skb)->frag_list = list->next;
1960 			kfree_skb(list);
1961 		}
1962 		/* And insert new clone at head. */
1963 		if (clone) {
1964 			clone->next = list;
1965 			skb_shinfo(skb)->frag_list = clone;
1966 		}
1967 	}
1968 	/* Success! Now we may commit changes to skb data. */
1969 
1970 pull_pages:
1971 	eat = delta;
1972 	k = 0;
1973 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1974 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1975 
1976 		if (size <= eat) {
1977 			skb_frag_unref(skb, i);
1978 			eat -= size;
1979 		} else {
1980 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1981 			if (eat) {
1982 				skb_shinfo(skb)->frags[k].page_offset += eat;
1983 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1984 				if (!i)
1985 					goto end;
1986 				eat = 0;
1987 			}
1988 			k++;
1989 		}
1990 	}
1991 	skb_shinfo(skb)->nr_frags = k;
1992 
1993 end:
1994 	skb->tail     += delta;
1995 	skb->data_len -= delta;
1996 
1997 	if (!skb->data_len)
1998 		skb_zcopy_clear(skb, false);
1999 
2000 	return skb_tail_pointer(skb);
2001 }
2002 EXPORT_SYMBOL(__pskb_pull_tail);
2003 
2004 /**
2005  *	skb_copy_bits - copy bits from skb to kernel buffer
2006  *	@skb: source skb
2007  *	@offset: offset in source
2008  *	@to: destination buffer
2009  *	@len: number of bytes to copy
2010  *
2011  *	Copy the specified number of bytes from the source skb to the
2012  *	destination buffer.
2013  *
2014  *	CAUTION ! :
2015  *		If its prototype is ever changed,
2016  *		check arch/{*}/net/{*}.S files,
2017  *		since it is called from BPF assembly code.
2018  */
2019 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2020 {
2021 	int start = skb_headlen(skb);
2022 	struct sk_buff *frag_iter;
2023 	int i, copy;
2024 
2025 	if (offset > (int)skb->len - len)
2026 		goto fault;
2027 
2028 	/* Copy header. */
2029 	if ((copy = start - offset) > 0) {
2030 		if (copy > len)
2031 			copy = len;
2032 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2033 		if ((len -= copy) == 0)
2034 			return 0;
2035 		offset += copy;
2036 		to     += copy;
2037 	}
2038 
2039 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 		int end;
2041 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2042 
2043 		WARN_ON(start > offset + len);
2044 
2045 		end = start + skb_frag_size(f);
2046 		if ((copy = end - offset) > 0) {
2047 			u32 p_off, p_len, copied;
2048 			struct page *p;
2049 			u8 *vaddr;
2050 
2051 			if (copy > len)
2052 				copy = len;
2053 
2054 			skb_frag_foreach_page(f,
2055 					      f->page_offset + offset - start,
2056 					      copy, p, p_off, p_len, copied) {
2057 				vaddr = kmap_atomic(p);
2058 				memcpy(to + copied, vaddr + p_off, p_len);
2059 				kunmap_atomic(vaddr);
2060 			}
2061 
2062 			if ((len -= copy) == 0)
2063 				return 0;
2064 			offset += copy;
2065 			to     += copy;
2066 		}
2067 		start = end;
2068 	}
2069 
2070 	skb_walk_frags(skb, frag_iter) {
2071 		int end;
2072 
2073 		WARN_ON(start > offset + len);
2074 
2075 		end = start + frag_iter->len;
2076 		if ((copy = end - offset) > 0) {
2077 			if (copy > len)
2078 				copy = len;
2079 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2080 				goto fault;
2081 			if ((len -= copy) == 0)
2082 				return 0;
2083 			offset += copy;
2084 			to     += copy;
2085 		}
2086 		start = end;
2087 	}
2088 
2089 	if (!len)
2090 		return 0;
2091 
2092 fault:
2093 	return -EFAULT;
2094 }
2095 EXPORT_SYMBOL(skb_copy_bits);
2096 
2097 /*
2098  * Callback from splice_to_pipe(), if we need to release some pages
2099  * at the end of the spd in case we error'ed out in filling the pipe.
2100  */
2101 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2102 {
2103 	put_page(spd->pages[i]);
2104 }
2105 
2106 static struct page *linear_to_page(struct page *page, unsigned int *len,
2107 				   unsigned int *offset,
2108 				   struct sock *sk)
2109 {
2110 	struct page_frag *pfrag = sk_page_frag(sk);
2111 
2112 	if (!sk_page_frag_refill(sk, pfrag))
2113 		return NULL;
2114 
2115 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2116 
2117 	memcpy(page_address(pfrag->page) + pfrag->offset,
2118 	       page_address(page) + *offset, *len);
2119 	*offset = pfrag->offset;
2120 	pfrag->offset += *len;
2121 
2122 	return pfrag->page;
2123 }
2124 
2125 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2126 			     struct page *page,
2127 			     unsigned int offset)
2128 {
2129 	return	spd->nr_pages &&
2130 		spd->pages[spd->nr_pages - 1] == page &&
2131 		(spd->partial[spd->nr_pages - 1].offset +
2132 		 spd->partial[spd->nr_pages - 1].len == offset);
2133 }
2134 
2135 /*
2136  * Fill page/offset/length into spd, if it can hold more pages.
2137  */
2138 static bool spd_fill_page(struct splice_pipe_desc *spd,
2139 			  struct pipe_inode_info *pipe, struct page *page,
2140 			  unsigned int *len, unsigned int offset,
2141 			  bool linear,
2142 			  struct sock *sk)
2143 {
2144 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2145 		return true;
2146 
2147 	if (linear) {
2148 		page = linear_to_page(page, len, &offset, sk);
2149 		if (!page)
2150 			return true;
2151 	}
2152 	if (spd_can_coalesce(spd, page, offset)) {
2153 		spd->partial[spd->nr_pages - 1].len += *len;
2154 		return false;
2155 	}
2156 	get_page(page);
2157 	spd->pages[spd->nr_pages] = page;
2158 	spd->partial[spd->nr_pages].len = *len;
2159 	spd->partial[spd->nr_pages].offset = offset;
2160 	spd->nr_pages++;
2161 
2162 	return false;
2163 }
2164 
2165 static bool __splice_segment(struct page *page, unsigned int poff,
2166 			     unsigned int plen, unsigned int *off,
2167 			     unsigned int *len,
2168 			     struct splice_pipe_desc *spd, bool linear,
2169 			     struct sock *sk,
2170 			     struct pipe_inode_info *pipe)
2171 {
2172 	if (!*len)
2173 		return true;
2174 
2175 	/* skip this segment if already processed */
2176 	if (*off >= plen) {
2177 		*off -= plen;
2178 		return false;
2179 	}
2180 
2181 	/* ignore any bits we already processed */
2182 	poff += *off;
2183 	plen -= *off;
2184 	*off = 0;
2185 
2186 	do {
2187 		unsigned int flen = min(*len, plen);
2188 
2189 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2190 				  linear, sk))
2191 			return true;
2192 		poff += flen;
2193 		plen -= flen;
2194 		*len -= flen;
2195 	} while (*len && plen);
2196 
2197 	return false;
2198 }
2199 
2200 /*
2201  * Map linear and fragment data from the skb to spd. It reports true if the
2202  * pipe is full or if we already spliced the requested length.
2203  */
2204 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2205 			      unsigned int *offset, unsigned int *len,
2206 			      struct splice_pipe_desc *spd, struct sock *sk)
2207 {
2208 	int seg;
2209 	struct sk_buff *iter;
2210 
2211 	/* map the linear part :
2212 	 * If skb->head_frag is set, this 'linear' part is backed by a
2213 	 * fragment, and if the head is not shared with any clones then
2214 	 * we can avoid a copy since we own the head portion of this page.
2215 	 */
2216 	if (__splice_segment(virt_to_page(skb->data),
2217 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2218 			     skb_headlen(skb),
2219 			     offset, len, spd,
2220 			     skb_head_is_locked(skb),
2221 			     sk, pipe))
2222 		return true;
2223 
2224 	/*
2225 	 * then map the fragments
2226 	 */
2227 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2228 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2229 
2230 		if (__splice_segment(skb_frag_page(f),
2231 				     f->page_offset, skb_frag_size(f),
2232 				     offset, len, spd, false, sk, pipe))
2233 			return true;
2234 	}
2235 
2236 	skb_walk_frags(skb, iter) {
2237 		if (*offset >= iter->len) {
2238 			*offset -= iter->len;
2239 			continue;
2240 		}
2241 		/* __skb_splice_bits() only fails if the output has no room
2242 		 * left, so no point in going over the frag_list for the error
2243 		 * case.
2244 		 */
2245 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2246 			return true;
2247 	}
2248 
2249 	return false;
2250 }
2251 
2252 /*
2253  * Map data from the skb to a pipe. Should handle both the linear part,
2254  * the fragments, and the frag list.
2255  */
2256 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2257 		    struct pipe_inode_info *pipe, unsigned int tlen,
2258 		    unsigned int flags)
2259 {
2260 	struct partial_page partial[MAX_SKB_FRAGS];
2261 	struct page *pages[MAX_SKB_FRAGS];
2262 	struct splice_pipe_desc spd = {
2263 		.pages = pages,
2264 		.partial = partial,
2265 		.nr_pages_max = MAX_SKB_FRAGS,
2266 		.ops = &nosteal_pipe_buf_ops,
2267 		.spd_release = sock_spd_release,
2268 	};
2269 	int ret = 0;
2270 
2271 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2272 
2273 	if (spd.nr_pages)
2274 		ret = splice_to_pipe(pipe, &spd);
2275 
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(skb_splice_bits);
2279 
2280 /* Send skb data on a socket. Socket must be locked. */
2281 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2282 			 int len)
2283 {
2284 	unsigned int orig_len = len;
2285 	struct sk_buff *head = skb;
2286 	unsigned short fragidx;
2287 	int slen, ret;
2288 
2289 do_frag_list:
2290 
2291 	/* Deal with head data */
2292 	while (offset < skb_headlen(skb) && len) {
2293 		struct kvec kv;
2294 		struct msghdr msg;
2295 
2296 		slen = min_t(int, len, skb_headlen(skb) - offset);
2297 		kv.iov_base = skb->data + offset;
2298 		kv.iov_len = slen;
2299 		memset(&msg, 0, sizeof(msg));
2300 
2301 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2302 		if (ret <= 0)
2303 			goto error;
2304 
2305 		offset += ret;
2306 		len -= ret;
2307 	}
2308 
2309 	/* All the data was skb head? */
2310 	if (!len)
2311 		goto out;
2312 
2313 	/* Make offset relative to start of frags */
2314 	offset -= skb_headlen(skb);
2315 
2316 	/* Find where we are in frag list */
2317 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2318 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2319 
2320 		if (offset < frag->size)
2321 			break;
2322 
2323 		offset -= frag->size;
2324 	}
2325 
2326 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2327 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2328 
2329 		slen = min_t(size_t, len, frag->size - offset);
2330 
2331 		while (slen) {
2332 			ret = kernel_sendpage_locked(sk, frag->page.p,
2333 						     frag->page_offset + offset,
2334 						     slen, MSG_DONTWAIT);
2335 			if (ret <= 0)
2336 				goto error;
2337 
2338 			len -= ret;
2339 			offset += ret;
2340 			slen -= ret;
2341 		}
2342 
2343 		offset = 0;
2344 	}
2345 
2346 	if (len) {
2347 		/* Process any frag lists */
2348 
2349 		if (skb == head) {
2350 			if (skb_has_frag_list(skb)) {
2351 				skb = skb_shinfo(skb)->frag_list;
2352 				goto do_frag_list;
2353 			}
2354 		} else if (skb->next) {
2355 			skb = skb->next;
2356 			goto do_frag_list;
2357 		}
2358 	}
2359 
2360 out:
2361 	return orig_len - len;
2362 
2363 error:
2364 	return orig_len == len ? ret : orig_len - len;
2365 }
2366 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2367 
2368 /* Send skb data on a socket. */
2369 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2370 {
2371 	int ret = 0;
2372 
2373 	lock_sock(sk);
2374 	ret = skb_send_sock_locked(sk, skb, offset, len);
2375 	release_sock(sk);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(skb_send_sock);
2380 
2381 /**
2382  *	skb_store_bits - store bits from kernel buffer to skb
2383  *	@skb: destination buffer
2384  *	@offset: offset in destination
2385  *	@from: source buffer
2386  *	@len: number of bytes to copy
2387  *
2388  *	Copy the specified number of bytes from the source buffer to the
2389  *	destination skb.  This function handles all the messy bits of
2390  *	traversing fragment lists and such.
2391  */
2392 
2393 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2394 {
2395 	int start = skb_headlen(skb);
2396 	struct sk_buff *frag_iter;
2397 	int i, copy;
2398 
2399 	if (offset > (int)skb->len - len)
2400 		goto fault;
2401 
2402 	if ((copy = start - offset) > 0) {
2403 		if (copy > len)
2404 			copy = len;
2405 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2406 		if ((len -= copy) == 0)
2407 			return 0;
2408 		offset += copy;
2409 		from += copy;
2410 	}
2411 
2412 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2413 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2414 		int end;
2415 
2416 		WARN_ON(start > offset + len);
2417 
2418 		end = start + skb_frag_size(frag);
2419 		if ((copy = end - offset) > 0) {
2420 			u32 p_off, p_len, copied;
2421 			struct page *p;
2422 			u8 *vaddr;
2423 
2424 			if (copy > len)
2425 				copy = len;
2426 
2427 			skb_frag_foreach_page(frag,
2428 					      frag->page_offset + offset - start,
2429 					      copy, p, p_off, p_len, copied) {
2430 				vaddr = kmap_atomic(p);
2431 				memcpy(vaddr + p_off, from + copied, p_len);
2432 				kunmap_atomic(vaddr);
2433 			}
2434 
2435 			if ((len -= copy) == 0)
2436 				return 0;
2437 			offset += copy;
2438 			from += copy;
2439 		}
2440 		start = end;
2441 	}
2442 
2443 	skb_walk_frags(skb, frag_iter) {
2444 		int end;
2445 
2446 		WARN_ON(start > offset + len);
2447 
2448 		end = start + frag_iter->len;
2449 		if ((copy = end - offset) > 0) {
2450 			if (copy > len)
2451 				copy = len;
2452 			if (skb_store_bits(frag_iter, offset - start,
2453 					   from, copy))
2454 				goto fault;
2455 			if ((len -= copy) == 0)
2456 				return 0;
2457 			offset += copy;
2458 			from += copy;
2459 		}
2460 		start = end;
2461 	}
2462 	if (!len)
2463 		return 0;
2464 
2465 fault:
2466 	return -EFAULT;
2467 }
2468 EXPORT_SYMBOL(skb_store_bits);
2469 
2470 /* Checksum skb data. */
2471 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2472 		      __wsum csum, const struct skb_checksum_ops *ops)
2473 {
2474 	int start = skb_headlen(skb);
2475 	int i, copy = start - offset;
2476 	struct sk_buff *frag_iter;
2477 	int pos = 0;
2478 
2479 	/* Checksum header. */
2480 	if (copy > 0) {
2481 		if (copy > len)
2482 			copy = len;
2483 		csum = ops->update(skb->data + offset, copy, csum);
2484 		if ((len -= copy) == 0)
2485 			return csum;
2486 		offset += copy;
2487 		pos	= copy;
2488 	}
2489 
2490 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2491 		int end;
2492 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2493 
2494 		WARN_ON(start > offset + len);
2495 
2496 		end = start + skb_frag_size(frag);
2497 		if ((copy = end - offset) > 0) {
2498 			u32 p_off, p_len, copied;
2499 			struct page *p;
2500 			__wsum csum2;
2501 			u8 *vaddr;
2502 
2503 			if (copy > len)
2504 				copy = len;
2505 
2506 			skb_frag_foreach_page(frag,
2507 					      frag->page_offset + offset - start,
2508 					      copy, p, p_off, p_len, copied) {
2509 				vaddr = kmap_atomic(p);
2510 				csum2 = ops->update(vaddr + p_off, p_len, 0);
2511 				kunmap_atomic(vaddr);
2512 				csum = ops->combine(csum, csum2, pos, p_len);
2513 				pos += p_len;
2514 			}
2515 
2516 			if (!(len -= copy))
2517 				return csum;
2518 			offset += copy;
2519 		}
2520 		start = end;
2521 	}
2522 
2523 	skb_walk_frags(skb, frag_iter) {
2524 		int end;
2525 
2526 		WARN_ON(start > offset + len);
2527 
2528 		end = start + frag_iter->len;
2529 		if ((copy = end - offset) > 0) {
2530 			__wsum csum2;
2531 			if (copy > len)
2532 				copy = len;
2533 			csum2 = __skb_checksum(frag_iter, offset - start,
2534 					       copy, 0, ops);
2535 			csum = ops->combine(csum, csum2, pos, copy);
2536 			if ((len -= copy) == 0)
2537 				return csum;
2538 			offset += copy;
2539 			pos    += copy;
2540 		}
2541 		start = end;
2542 	}
2543 	BUG_ON(len);
2544 
2545 	return csum;
2546 }
2547 EXPORT_SYMBOL(__skb_checksum);
2548 
2549 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2550 		    int len, __wsum csum)
2551 {
2552 	const struct skb_checksum_ops ops = {
2553 		.update  = csum_partial_ext,
2554 		.combine = csum_block_add_ext,
2555 	};
2556 
2557 	return __skb_checksum(skb, offset, len, csum, &ops);
2558 }
2559 EXPORT_SYMBOL(skb_checksum);
2560 
2561 /* Both of above in one bottle. */
2562 
2563 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2564 				    u8 *to, int len, __wsum csum)
2565 {
2566 	int start = skb_headlen(skb);
2567 	int i, copy = start - offset;
2568 	struct sk_buff *frag_iter;
2569 	int pos = 0;
2570 
2571 	/* Copy header. */
2572 	if (copy > 0) {
2573 		if (copy > len)
2574 			copy = len;
2575 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2576 						 copy, csum);
2577 		if ((len -= copy) == 0)
2578 			return csum;
2579 		offset += copy;
2580 		to     += copy;
2581 		pos	= copy;
2582 	}
2583 
2584 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2585 		int end;
2586 
2587 		WARN_ON(start > offset + len);
2588 
2589 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2590 		if ((copy = end - offset) > 0) {
2591 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2592 			u32 p_off, p_len, copied;
2593 			struct page *p;
2594 			__wsum csum2;
2595 			u8 *vaddr;
2596 
2597 			if (copy > len)
2598 				copy = len;
2599 
2600 			skb_frag_foreach_page(frag,
2601 					      frag->page_offset + offset - start,
2602 					      copy, p, p_off, p_len, copied) {
2603 				vaddr = kmap_atomic(p);
2604 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2605 								  to + copied,
2606 								  p_len, 0);
2607 				kunmap_atomic(vaddr);
2608 				csum = csum_block_add(csum, csum2, pos);
2609 				pos += p_len;
2610 			}
2611 
2612 			if (!(len -= copy))
2613 				return csum;
2614 			offset += copy;
2615 			to     += copy;
2616 		}
2617 		start = end;
2618 	}
2619 
2620 	skb_walk_frags(skb, frag_iter) {
2621 		__wsum csum2;
2622 		int end;
2623 
2624 		WARN_ON(start > offset + len);
2625 
2626 		end = start + frag_iter->len;
2627 		if ((copy = end - offset) > 0) {
2628 			if (copy > len)
2629 				copy = len;
2630 			csum2 = skb_copy_and_csum_bits(frag_iter,
2631 						       offset - start,
2632 						       to, copy, 0);
2633 			csum = csum_block_add(csum, csum2, pos);
2634 			if ((len -= copy) == 0)
2635 				return csum;
2636 			offset += copy;
2637 			to     += copy;
2638 			pos    += copy;
2639 		}
2640 		start = end;
2641 	}
2642 	BUG_ON(len);
2643 	return csum;
2644 }
2645 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2646 
2647 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2648 {
2649 	net_warn_ratelimited(
2650 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2651 		__func__);
2652 	return 0;
2653 }
2654 
2655 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2656 				       int offset, int len)
2657 {
2658 	net_warn_ratelimited(
2659 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2660 		__func__);
2661 	return 0;
2662 }
2663 
2664 static const struct skb_checksum_ops default_crc32c_ops = {
2665 	.update  = warn_crc32c_csum_update,
2666 	.combine = warn_crc32c_csum_combine,
2667 };
2668 
2669 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2670 	&default_crc32c_ops;
2671 EXPORT_SYMBOL(crc32c_csum_stub);
2672 
2673  /**
2674  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2675  *	@from: source buffer
2676  *
2677  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2678  *	into skb_zerocopy().
2679  */
2680 unsigned int
2681 skb_zerocopy_headlen(const struct sk_buff *from)
2682 {
2683 	unsigned int hlen = 0;
2684 
2685 	if (!from->head_frag ||
2686 	    skb_headlen(from) < L1_CACHE_BYTES ||
2687 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2688 		hlen = skb_headlen(from);
2689 
2690 	if (skb_has_frag_list(from))
2691 		hlen = from->len;
2692 
2693 	return hlen;
2694 }
2695 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2696 
2697 /**
2698  *	skb_zerocopy - Zero copy skb to skb
2699  *	@to: destination buffer
2700  *	@from: source buffer
2701  *	@len: number of bytes to copy from source buffer
2702  *	@hlen: size of linear headroom in destination buffer
2703  *
2704  *	Copies up to `len` bytes from `from` to `to` by creating references
2705  *	to the frags in the source buffer.
2706  *
2707  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2708  *	headroom in the `to` buffer.
2709  *
2710  *	Return value:
2711  *	0: everything is OK
2712  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2713  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2714  */
2715 int
2716 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2717 {
2718 	int i, j = 0;
2719 	int plen = 0; /* length of skb->head fragment */
2720 	int ret;
2721 	struct page *page;
2722 	unsigned int offset;
2723 
2724 	BUG_ON(!from->head_frag && !hlen);
2725 
2726 	/* dont bother with small payloads */
2727 	if (len <= skb_tailroom(to))
2728 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2729 
2730 	if (hlen) {
2731 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2732 		if (unlikely(ret))
2733 			return ret;
2734 		len -= hlen;
2735 	} else {
2736 		plen = min_t(int, skb_headlen(from), len);
2737 		if (plen) {
2738 			page = virt_to_head_page(from->head);
2739 			offset = from->data - (unsigned char *)page_address(page);
2740 			__skb_fill_page_desc(to, 0, page, offset, plen);
2741 			get_page(page);
2742 			j = 1;
2743 			len -= plen;
2744 		}
2745 	}
2746 
2747 	to->truesize += len + plen;
2748 	to->len += len + plen;
2749 	to->data_len += len + plen;
2750 
2751 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2752 		skb_tx_error(from);
2753 		return -ENOMEM;
2754 	}
2755 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
2756 
2757 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2758 		if (!len)
2759 			break;
2760 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2761 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2762 		len -= skb_shinfo(to)->frags[j].size;
2763 		skb_frag_ref(to, j);
2764 		j++;
2765 	}
2766 	skb_shinfo(to)->nr_frags = j;
2767 
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(skb_zerocopy);
2771 
2772 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2773 {
2774 	__wsum csum;
2775 	long csstart;
2776 
2777 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2778 		csstart = skb_checksum_start_offset(skb);
2779 	else
2780 		csstart = skb_headlen(skb);
2781 
2782 	BUG_ON(csstart > skb_headlen(skb));
2783 
2784 	skb_copy_from_linear_data(skb, to, csstart);
2785 
2786 	csum = 0;
2787 	if (csstart != skb->len)
2788 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2789 					      skb->len - csstart, 0);
2790 
2791 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2792 		long csstuff = csstart + skb->csum_offset;
2793 
2794 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2795 	}
2796 }
2797 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2798 
2799 /**
2800  *	skb_dequeue - remove from the head of the queue
2801  *	@list: list to dequeue from
2802  *
2803  *	Remove the head of the list. The list lock is taken so the function
2804  *	may be used safely with other locking list functions. The head item is
2805  *	returned or %NULL if the list is empty.
2806  */
2807 
2808 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2809 {
2810 	unsigned long flags;
2811 	struct sk_buff *result;
2812 
2813 	spin_lock_irqsave(&list->lock, flags);
2814 	result = __skb_dequeue(list);
2815 	spin_unlock_irqrestore(&list->lock, flags);
2816 	return result;
2817 }
2818 EXPORT_SYMBOL(skb_dequeue);
2819 
2820 /**
2821  *	skb_dequeue_tail - remove from the tail of the queue
2822  *	@list: list to dequeue from
2823  *
2824  *	Remove the tail of the list. The list lock is taken so the function
2825  *	may be used safely with other locking list functions. The tail item is
2826  *	returned or %NULL if the list is empty.
2827  */
2828 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2829 {
2830 	unsigned long flags;
2831 	struct sk_buff *result;
2832 
2833 	spin_lock_irqsave(&list->lock, flags);
2834 	result = __skb_dequeue_tail(list);
2835 	spin_unlock_irqrestore(&list->lock, flags);
2836 	return result;
2837 }
2838 EXPORT_SYMBOL(skb_dequeue_tail);
2839 
2840 /**
2841  *	skb_queue_purge - empty a list
2842  *	@list: list to empty
2843  *
2844  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2845  *	the list and one reference dropped. This function takes the list
2846  *	lock and is atomic with respect to other list locking functions.
2847  */
2848 void skb_queue_purge(struct sk_buff_head *list)
2849 {
2850 	struct sk_buff *skb;
2851 	while ((skb = skb_dequeue(list)) != NULL)
2852 		kfree_skb(skb);
2853 }
2854 EXPORT_SYMBOL(skb_queue_purge);
2855 
2856 /**
2857  *	skb_rbtree_purge - empty a skb rbtree
2858  *	@root: root of the rbtree to empty
2859  *
2860  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2861  *	the list and one reference dropped. This function does not take
2862  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2863  *	out-of-order queue is protected by the socket lock).
2864  */
2865 void skb_rbtree_purge(struct rb_root *root)
2866 {
2867 	struct rb_node *p = rb_first(root);
2868 
2869 	while (p) {
2870 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2871 
2872 		p = rb_next(p);
2873 		rb_erase(&skb->rbnode, root);
2874 		kfree_skb(skb);
2875 	}
2876 }
2877 
2878 /**
2879  *	skb_queue_head - queue a buffer at the list head
2880  *	@list: list to use
2881  *	@newsk: buffer to queue
2882  *
2883  *	Queue a buffer at the start of the list. This function takes the
2884  *	list lock and can be used safely with other locking &sk_buff functions
2885  *	safely.
2886  *
2887  *	A buffer cannot be placed on two lists at the same time.
2888  */
2889 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2890 {
2891 	unsigned long flags;
2892 
2893 	spin_lock_irqsave(&list->lock, flags);
2894 	__skb_queue_head(list, newsk);
2895 	spin_unlock_irqrestore(&list->lock, flags);
2896 }
2897 EXPORT_SYMBOL(skb_queue_head);
2898 
2899 /**
2900  *	skb_queue_tail - queue a buffer at the list tail
2901  *	@list: list to use
2902  *	@newsk: buffer to queue
2903  *
2904  *	Queue a buffer at the tail of the list. This function takes the
2905  *	list lock and can be used safely with other locking &sk_buff functions
2906  *	safely.
2907  *
2908  *	A buffer cannot be placed on two lists at the same time.
2909  */
2910 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2911 {
2912 	unsigned long flags;
2913 
2914 	spin_lock_irqsave(&list->lock, flags);
2915 	__skb_queue_tail(list, newsk);
2916 	spin_unlock_irqrestore(&list->lock, flags);
2917 }
2918 EXPORT_SYMBOL(skb_queue_tail);
2919 
2920 /**
2921  *	skb_unlink	-	remove a buffer from a list
2922  *	@skb: buffer to remove
2923  *	@list: list to use
2924  *
2925  *	Remove a packet from a list. The list locks are taken and this
2926  *	function is atomic with respect to other list locked calls
2927  *
2928  *	You must know what list the SKB is on.
2929  */
2930 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2931 {
2932 	unsigned long flags;
2933 
2934 	spin_lock_irqsave(&list->lock, flags);
2935 	__skb_unlink(skb, list);
2936 	spin_unlock_irqrestore(&list->lock, flags);
2937 }
2938 EXPORT_SYMBOL(skb_unlink);
2939 
2940 /**
2941  *	skb_append	-	append a buffer
2942  *	@old: buffer to insert after
2943  *	@newsk: buffer to insert
2944  *	@list: list to use
2945  *
2946  *	Place a packet after a given packet in a list. The list locks are taken
2947  *	and this function is atomic with respect to other list locked calls.
2948  *	A buffer cannot be placed on two lists at the same time.
2949  */
2950 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2951 {
2952 	unsigned long flags;
2953 
2954 	spin_lock_irqsave(&list->lock, flags);
2955 	__skb_queue_after(list, old, newsk);
2956 	spin_unlock_irqrestore(&list->lock, flags);
2957 }
2958 EXPORT_SYMBOL(skb_append);
2959 
2960 /**
2961  *	skb_insert	-	insert a buffer
2962  *	@old: buffer to insert before
2963  *	@newsk: buffer to insert
2964  *	@list: list to use
2965  *
2966  *	Place a packet before a given packet in a list. The list locks are
2967  * 	taken and this function is atomic with respect to other list locked
2968  *	calls.
2969  *
2970  *	A buffer cannot be placed on two lists at the same time.
2971  */
2972 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2973 {
2974 	unsigned long flags;
2975 
2976 	spin_lock_irqsave(&list->lock, flags);
2977 	__skb_insert(newsk, old->prev, old, list);
2978 	spin_unlock_irqrestore(&list->lock, flags);
2979 }
2980 EXPORT_SYMBOL(skb_insert);
2981 
2982 static inline void skb_split_inside_header(struct sk_buff *skb,
2983 					   struct sk_buff* skb1,
2984 					   const u32 len, const int pos)
2985 {
2986 	int i;
2987 
2988 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2989 					 pos - len);
2990 	/* And move data appendix as is. */
2991 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2992 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2993 
2994 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2995 	skb_shinfo(skb)->nr_frags  = 0;
2996 	skb1->data_len		   = skb->data_len;
2997 	skb1->len		   += skb1->data_len;
2998 	skb->data_len		   = 0;
2999 	skb->len		   = len;
3000 	skb_set_tail_pointer(skb, len);
3001 }
3002 
3003 static inline void skb_split_no_header(struct sk_buff *skb,
3004 				       struct sk_buff* skb1,
3005 				       const u32 len, int pos)
3006 {
3007 	int i, k = 0;
3008 	const int nfrags = skb_shinfo(skb)->nr_frags;
3009 
3010 	skb_shinfo(skb)->nr_frags = 0;
3011 	skb1->len		  = skb1->data_len = skb->len - len;
3012 	skb->len		  = len;
3013 	skb->data_len		  = len - pos;
3014 
3015 	for (i = 0; i < nfrags; i++) {
3016 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3017 
3018 		if (pos + size > len) {
3019 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3020 
3021 			if (pos < len) {
3022 				/* Split frag.
3023 				 * We have two variants in this case:
3024 				 * 1. Move all the frag to the second
3025 				 *    part, if it is possible. F.e.
3026 				 *    this approach is mandatory for TUX,
3027 				 *    where splitting is expensive.
3028 				 * 2. Split is accurately. We make this.
3029 				 */
3030 				skb_frag_ref(skb, i);
3031 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3032 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3033 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3034 				skb_shinfo(skb)->nr_frags++;
3035 			}
3036 			k++;
3037 		} else
3038 			skb_shinfo(skb)->nr_frags++;
3039 		pos += size;
3040 	}
3041 	skb_shinfo(skb1)->nr_frags = k;
3042 }
3043 
3044 /**
3045  * skb_split - Split fragmented skb to two parts at length len.
3046  * @skb: the buffer to split
3047  * @skb1: the buffer to receive the second part
3048  * @len: new length for skb
3049  */
3050 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3051 {
3052 	int pos = skb_headlen(skb);
3053 
3054 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3055 				      SKBTX_SHARED_FRAG;
3056 	skb_zerocopy_clone(skb1, skb, 0);
3057 	if (len < pos)	/* Split line is inside header. */
3058 		skb_split_inside_header(skb, skb1, len, pos);
3059 	else		/* Second chunk has no header, nothing to copy. */
3060 		skb_split_no_header(skb, skb1, len, pos);
3061 }
3062 EXPORT_SYMBOL(skb_split);
3063 
3064 /* Shifting from/to a cloned skb is a no-go.
3065  *
3066  * Caller cannot keep skb_shinfo related pointers past calling here!
3067  */
3068 static int skb_prepare_for_shift(struct sk_buff *skb)
3069 {
3070 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3071 }
3072 
3073 /**
3074  * skb_shift - Shifts paged data partially from skb to another
3075  * @tgt: buffer into which tail data gets added
3076  * @skb: buffer from which the paged data comes from
3077  * @shiftlen: shift up to this many bytes
3078  *
3079  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3080  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3081  * It's up to caller to free skb if everything was shifted.
3082  *
3083  * If @tgt runs out of frags, the whole operation is aborted.
3084  *
3085  * Skb cannot include anything else but paged data while tgt is allowed
3086  * to have non-paged data as well.
3087  *
3088  * TODO: full sized shift could be optimized but that would need
3089  * specialized skb free'er to handle frags without up-to-date nr_frags.
3090  */
3091 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3092 {
3093 	int from, to, merge, todo;
3094 	struct skb_frag_struct *fragfrom, *fragto;
3095 
3096 	BUG_ON(shiftlen > skb->len);
3097 
3098 	if (skb_headlen(skb))
3099 		return 0;
3100 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3101 		return 0;
3102 
3103 	todo = shiftlen;
3104 	from = 0;
3105 	to = skb_shinfo(tgt)->nr_frags;
3106 	fragfrom = &skb_shinfo(skb)->frags[from];
3107 
3108 	/* Actual merge is delayed until the point when we know we can
3109 	 * commit all, so that we don't have to undo partial changes
3110 	 */
3111 	if (!to ||
3112 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3113 			      fragfrom->page_offset)) {
3114 		merge = -1;
3115 	} else {
3116 		merge = to - 1;
3117 
3118 		todo -= skb_frag_size(fragfrom);
3119 		if (todo < 0) {
3120 			if (skb_prepare_for_shift(skb) ||
3121 			    skb_prepare_for_shift(tgt))
3122 				return 0;
3123 
3124 			/* All previous frag pointers might be stale! */
3125 			fragfrom = &skb_shinfo(skb)->frags[from];
3126 			fragto = &skb_shinfo(tgt)->frags[merge];
3127 
3128 			skb_frag_size_add(fragto, shiftlen);
3129 			skb_frag_size_sub(fragfrom, shiftlen);
3130 			fragfrom->page_offset += shiftlen;
3131 
3132 			goto onlymerged;
3133 		}
3134 
3135 		from++;
3136 	}
3137 
3138 	/* Skip full, not-fitting skb to avoid expensive operations */
3139 	if ((shiftlen == skb->len) &&
3140 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3141 		return 0;
3142 
3143 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3144 		return 0;
3145 
3146 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3147 		if (to == MAX_SKB_FRAGS)
3148 			return 0;
3149 
3150 		fragfrom = &skb_shinfo(skb)->frags[from];
3151 		fragto = &skb_shinfo(tgt)->frags[to];
3152 
3153 		if (todo >= skb_frag_size(fragfrom)) {
3154 			*fragto = *fragfrom;
3155 			todo -= skb_frag_size(fragfrom);
3156 			from++;
3157 			to++;
3158 
3159 		} else {
3160 			__skb_frag_ref(fragfrom);
3161 			fragto->page = fragfrom->page;
3162 			fragto->page_offset = fragfrom->page_offset;
3163 			skb_frag_size_set(fragto, todo);
3164 
3165 			fragfrom->page_offset += todo;
3166 			skb_frag_size_sub(fragfrom, todo);
3167 			todo = 0;
3168 
3169 			to++;
3170 			break;
3171 		}
3172 	}
3173 
3174 	/* Ready to "commit" this state change to tgt */
3175 	skb_shinfo(tgt)->nr_frags = to;
3176 
3177 	if (merge >= 0) {
3178 		fragfrom = &skb_shinfo(skb)->frags[0];
3179 		fragto = &skb_shinfo(tgt)->frags[merge];
3180 
3181 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3182 		__skb_frag_unref(fragfrom);
3183 	}
3184 
3185 	/* Reposition in the original skb */
3186 	to = 0;
3187 	while (from < skb_shinfo(skb)->nr_frags)
3188 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3189 	skb_shinfo(skb)->nr_frags = to;
3190 
3191 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3192 
3193 onlymerged:
3194 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3195 	 * the other hand might need it if it needs to be resent
3196 	 */
3197 	tgt->ip_summed = CHECKSUM_PARTIAL;
3198 	skb->ip_summed = CHECKSUM_PARTIAL;
3199 
3200 	/* Yak, is it really working this way? Some helper please? */
3201 	skb->len -= shiftlen;
3202 	skb->data_len -= shiftlen;
3203 	skb->truesize -= shiftlen;
3204 	tgt->len += shiftlen;
3205 	tgt->data_len += shiftlen;
3206 	tgt->truesize += shiftlen;
3207 
3208 	return shiftlen;
3209 }
3210 
3211 /**
3212  * skb_prepare_seq_read - Prepare a sequential read of skb data
3213  * @skb: the buffer to read
3214  * @from: lower offset of data to be read
3215  * @to: upper offset of data to be read
3216  * @st: state variable
3217  *
3218  * Initializes the specified state variable. Must be called before
3219  * invoking skb_seq_read() for the first time.
3220  */
3221 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3222 			  unsigned int to, struct skb_seq_state *st)
3223 {
3224 	st->lower_offset = from;
3225 	st->upper_offset = to;
3226 	st->root_skb = st->cur_skb = skb;
3227 	st->frag_idx = st->stepped_offset = 0;
3228 	st->frag_data = NULL;
3229 }
3230 EXPORT_SYMBOL(skb_prepare_seq_read);
3231 
3232 /**
3233  * skb_seq_read - Sequentially read skb data
3234  * @consumed: number of bytes consumed by the caller so far
3235  * @data: destination pointer for data to be returned
3236  * @st: state variable
3237  *
3238  * Reads a block of skb data at @consumed relative to the
3239  * lower offset specified to skb_prepare_seq_read(). Assigns
3240  * the head of the data block to @data and returns the length
3241  * of the block or 0 if the end of the skb data or the upper
3242  * offset has been reached.
3243  *
3244  * The caller is not required to consume all of the data
3245  * returned, i.e. @consumed is typically set to the number
3246  * of bytes already consumed and the next call to
3247  * skb_seq_read() will return the remaining part of the block.
3248  *
3249  * Note 1: The size of each block of data returned can be arbitrary,
3250  *       this limitation is the cost for zerocopy sequential
3251  *       reads of potentially non linear data.
3252  *
3253  * Note 2: Fragment lists within fragments are not implemented
3254  *       at the moment, state->root_skb could be replaced with
3255  *       a stack for this purpose.
3256  */
3257 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3258 			  struct skb_seq_state *st)
3259 {
3260 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3261 	skb_frag_t *frag;
3262 
3263 	if (unlikely(abs_offset >= st->upper_offset)) {
3264 		if (st->frag_data) {
3265 			kunmap_atomic(st->frag_data);
3266 			st->frag_data = NULL;
3267 		}
3268 		return 0;
3269 	}
3270 
3271 next_skb:
3272 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3273 
3274 	if (abs_offset < block_limit && !st->frag_data) {
3275 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3276 		return block_limit - abs_offset;
3277 	}
3278 
3279 	if (st->frag_idx == 0 && !st->frag_data)
3280 		st->stepped_offset += skb_headlen(st->cur_skb);
3281 
3282 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3283 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3284 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3285 
3286 		if (abs_offset < block_limit) {
3287 			if (!st->frag_data)
3288 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3289 
3290 			*data = (u8 *) st->frag_data + frag->page_offset +
3291 				(abs_offset - st->stepped_offset);
3292 
3293 			return block_limit - abs_offset;
3294 		}
3295 
3296 		if (st->frag_data) {
3297 			kunmap_atomic(st->frag_data);
3298 			st->frag_data = NULL;
3299 		}
3300 
3301 		st->frag_idx++;
3302 		st->stepped_offset += skb_frag_size(frag);
3303 	}
3304 
3305 	if (st->frag_data) {
3306 		kunmap_atomic(st->frag_data);
3307 		st->frag_data = NULL;
3308 	}
3309 
3310 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3311 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3312 		st->frag_idx = 0;
3313 		goto next_skb;
3314 	} else if (st->cur_skb->next) {
3315 		st->cur_skb = st->cur_skb->next;
3316 		st->frag_idx = 0;
3317 		goto next_skb;
3318 	}
3319 
3320 	return 0;
3321 }
3322 EXPORT_SYMBOL(skb_seq_read);
3323 
3324 /**
3325  * skb_abort_seq_read - Abort a sequential read of skb data
3326  * @st: state variable
3327  *
3328  * Must be called if skb_seq_read() was not called until it
3329  * returned 0.
3330  */
3331 void skb_abort_seq_read(struct skb_seq_state *st)
3332 {
3333 	if (st->frag_data)
3334 		kunmap_atomic(st->frag_data);
3335 }
3336 EXPORT_SYMBOL(skb_abort_seq_read);
3337 
3338 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3339 
3340 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3341 					  struct ts_config *conf,
3342 					  struct ts_state *state)
3343 {
3344 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3345 }
3346 
3347 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3348 {
3349 	skb_abort_seq_read(TS_SKB_CB(state));
3350 }
3351 
3352 /**
3353  * skb_find_text - Find a text pattern in skb data
3354  * @skb: the buffer to look in
3355  * @from: search offset
3356  * @to: search limit
3357  * @config: textsearch configuration
3358  *
3359  * Finds a pattern in the skb data according to the specified
3360  * textsearch configuration. Use textsearch_next() to retrieve
3361  * subsequent occurrences of the pattern. Returns the offset
3362  * to the first occurrence or UINT_MAX if no match was found.
3363  */
3364 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3365 			   unsigned int to, struct ts_config *config)
3366 {
3367 	struct ts_state state;
3368 	unsigned int ret;
3369 
3370 	config->get_next_block = skb_ts_get_next_block;
3371 	config->finish = skb_ts_finish;
3372 
3373 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3374 
3375 	ret = textsearch_find(config, &state);
3376 	return (ret <= to - from ? ret : UINT_MAX);
3377 }
3378 EXPORT_SYMBOL(skb_find_text);
3379 
3380 /**
3381  * skb_append_datato_frags - append the user data to a skb
3382  * @sk: sock  structure
3383  * @skb: skb structure to be appended with user data.
3384  * @getfrag: call back function to be used for getting the user data
3385  * @from: pointer to user message iov
3386  * @length: length of the iov message
3387  *
3388  * Description: This procedure append the user data in the fragment part
3389  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
3390  */
3391 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3392 			int (*getfrag)(void *from, char *to, int offset,
3393 					int len, int odd, struct sk_buff *skb),
3394 			void *from, int length)
3395 {
3396 	int frg_cnt = skb_shinfo(skb)->nr_frags;
3397 	int copy;
3398 	int offset = 0;
3399 	int ret;
3400 	struct page_frag *pfrag = &current->task_frag;
3401 
3402 	do {
3403 		/* Return error if we don't have space for new frag */
3404 		if (frg_cnt >= MAX_SKB_FRAGS)
3405 			return -EMSGSIZE;
3406 
3407 		if (!sk_page_frag_refill(sk, pfrag))
3408 			return -ENOMEM;
3409 
3410 		/* copy the user data to page */
3411 		copy = min_t(int, length, pfrag->size - pfrag->offset);
3412 
3413 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3414 			      offset, copy, 0, skb);
3415 		if (ret < 0)
3416 			return -EFAULT;
3417 
3418 		/* copy was successful so update the size parameters */
3419 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3420 				   copy);
3421 		frg_cnt++;
3422 		pfrag->offset += copy;
3423 		get_page(pfrag->page);
3424 
3425 		skb->truesize += copy;
3426 		refcount_add(copy, &sk->sk_wmem_alloc);
3427 		skb->len += copy;
3428 		skb->data_len += copy;
3429 		offset += copy;
3430 		length -= copy;
3431 
3432 	} while (length > 0);
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL(skb_append_datato_frags);
3437 
3438 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3439 			 int offset, size_t size)
3440 {
3441 	int i = skb_shinfo(skb)->nr_frags;
3442 
3443 	if (skb_can_coalesce(skb, i, page, offset)) {
3444 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3445 	} else if (i < MAX_SKB_FRAGS) {
3446 		get_page(page);
3447 		skb_fill_page_desc(skb, i, page, offset, size);
3448 	} else {
3449 		return -EMSGSIZE;
3450 	}
3451 
3452 	return 0;
3453 }
3454 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3455 
3456 /**
3457  *	skb_pull_rcsum - pull skb and update receive checksum
3458  *	@skb: buffer to update
3459  *	@len: length of data pulled
3460  *
3461  *	This function performs an skb_pull on the packet and updates
3462  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3463  *	receive path processing instead of skb_pull unless you know
3464  *	that the checksum difference is zero (e.g., a valid IP header)
3465  *	or you are setting ip_summed to CHECKSUM_NONE.
3466  */
3467 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3468 {
3469 	unsigned char *data = skb->data;
3470 
3471 	BUG_ON(len > skb->len);
3472 	__skb_pull(skb, len);
3473 	skb_postpull_rcsum(skb, data, len);
3474 	return skb->data;
3475 }
3476 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3477 
3478 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3479 {
3480 	skb_frag_t head_frag;
3481 	struct page *page;
3482 
3483 	page = virt_to_head_page(frag_skb->head);
3484 	head_frag.page.p = page;
3485 	head_frag.page_offset = frag_skb->data -
3486 		(unsigned char *)page_address(page);
3487 	head_frag.size = skb_headlen(frag_skb);
3488 	return head_frag;
3489 }
3490 
3491 /**
3492  *	skb_segment - Perform protocol segmentation on skb.
3493  *	@head_skb: buffer to segment
3494  *	@features: features for the output path (see dev->features)
3495  *
3496  *	This function performs segmentation on the given skb.  It returns
3497  *	a pointer to the first in a list of new skbs for the segments.
3498  *	In case of error it returns ERR_PTR(err).
3499  */
3500 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3501 			    netdev_features_t features)
3502 {
3503 	struct sk_buff *segs = NULL;
3504 	struct sk_buff *tail = NULL;
3505 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3506 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3507 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3508 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3509 	struct sk_buff *frag_skb = head_skb;
3510 	unsigned int offset = doffset;
3511 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3512 	unsigned int partial_segs = 0;
3513 	unsigned int headroom;
3514 	unsigned int len = head_skb->len;
3515 	__be16 proto;
3516 	bool csum, sg;
3517 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3518 	int err = -ENOMEM;
3519 	int i = 0;
3520 	int pos;
3521 	int dummy;
3522 
3523 	__skb_push(head_skb, doffset);
3524 	proto = skb_network_protocol(head_skb, &dummy);
3525 	if (unlikely(!proto))
3526 		return ERR_PTR(-EINVAL);
3527 
3528 	sg = !!(features & NETIF_F_SG);
3529 	csum = !!can_checksum_protocol(features, proto);
3530 
3531 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3532 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3533 			struct sk_buff *iter;
3534 			unsigned int frag_len;
3535 
3536 			if (!list_skb ||
3537 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3538 				goto normal;
3539 
3540 			/* If we get here then all the required
3541 			 * GSO features except frag_list are supported.
3542 			 * Try to split the SKB to multiple GSO SKBs
3543 			 * with no frag_list.
3544 			 * Currently we can do that only when the buffers don't
3545 			 * have a linear part and all the buffers except
3546 			 * the last are of the same length.
3547 			 */
3548 			frag_len = list_skb->len;
3549 			skb_walk_frags(head_skb, iter) {
3550 				if (frag_len != iter->len && iter->next)
3551 					goto normal;
3552 				if (skb_headlen(iter) && !iter->head_frag)
3553 					goto normal;
3554 
3555 				len -= iter->len;
3556 			}
3557 
3558 			if (len != frag_len)
3559 				goto normal;
3560 		}
3561 
3562 		/* GSO partial only requires that we trim off any excess that
3563 		 * doesn't fit into an MSS sized block, so take care of that
3564 		 * now.
3565 		 */
3566 		partial_segs = len / mss;
3567 		if (partial_segs > 1)
3568 			mss *= partial_segs;
3569 		else
3570 			partial_segs = 0;
3571 	}
3572 
3573 normal:
3574 	headroom = skb_headroom(head_skb);
3575 	pos = skb_headlen(head_skb);
3576 
3577 	do {
3578 		struct sk_buff *nskb;
3579 		skb_frag_t *nskb_frag;
3580 		int hsize;
3581 		int size;
3582 
3583 		if (unlikely(mss == GSO_BY_FRAGS)) {
3584 			len = list_skb->len;
3585 		} else {
3586 			len = head_skb->len - offset;
3587 			if (len > mss)
3588 				len = mss;
3589 		}
3590 
3591 		hsize = skb_headlen(head_skb) - offset;
3592 		if (hsize < 0)
3593 			hsize = 0;
3594 		if (hsize > len || !sg)
3595 			hsize = len;
3596 
3597 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3598 		    (skb_headlen(list_skb) == len || sg)) {
3599 			BUG_ON(skb_headlen(list_skb) > len);
3600 
3601 			i = 0;
3602 			nfrags = skb_shinfo(list_skb)->nr_frags;
3603 			frag = skb_shinfo(list_skb)->frags;
3604 			frag_skb = list_skb;
3605 			pos += skb_headlen(list_skb);
3606 
3607 			while (pos < offset + len) {
3608 				BUG_ON(i >= nfrags);
3609 
3610 				size = skb_frag_size(frag);
3611 				if (pos + size > offset + len)
3612 					break;
3613 
3614 				i++;
3615 				pos += size;
3616 				frag++;
3617 			}
3618 
3619 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3620 			list_skb = list_skb->next;
3621 
3622 			if (unlikely(!nskb))
3623 				goto err;
3624 
3625 			if (unlikely(pskb_trim(nskb, len))) {
3626 				kfree_skb(nskb);
3627 				goto err;
3628 			}
3629 
3630 			hsize = skb_end_offset(nskb);
3631 			if (skb_cow_head(nskb, doffset + headroom)) {
3632 				kfree_skb(nskb);
3633 				goto err;
3634 			}
3635 
3636 			nskb->truesize += skb_end_offset(nskb) - hsize;
3637 			skb_release_head_state(nskb);
3638 			__skb_push(nskb, doffset);
3639 		} else {
3640 			nskb = __alloc_skb(hsize + doffset + headroom,
3641 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3642 					   NUMA_NO_NODE);
3643 
3644 			if (unlikely(!nskb))
3645 				goto err;
3646 
3647 			skb_reserve(nskb, headroom);
3648 			__skb_put(nskb, doffset);
3649 		}
3650 
3651 		if (segs)
3652 			tail->next = nskb;
3653 		else
3654 			segs = nskb;
3655 		tail = nskb;
3656 
3657 		__copy_skb_header(nskb, head_skb);
3658 
3659 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3660 		skb_reset_mac_len(nskb);
3661 
3662 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3663 						 nskb->data - tnl_hlen,
3664 						 doffset + tnl_hlen);
3665 
3666 		if (nskb->len == len + doffset)
3667 			goto perform_csum_check;
3668 
3669 		if (!sg) {
3670 			if (!nskb->remcsum_offload)
3671 				nskb->ip_summed = CHECKSUM_NONE;
3672 			SKB_GSO_CB(nskb)->csum =
3673 				skb_copy_and_csum_bits(head_skb, offset,
3674 						       skb_put(nskb, len),
3675 						       len, 0);
3676 			SKB_GSO_CB(nskb)->csum_start =
3677 				skb_headroom(nskb) + doffset;
3678 			continue;
3679 		}
3680 
3681 		nskb_frag = skb_shinfo(nskb)->frags;
3682 
3683 		skb_copy_from_linear_data_offset(head_skb, offset,
3684 						 skb_put(nskb, hsize), hsize);
3685 
3686 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3687 					      SKBTX_SHARED_FRAG;
3688 
3689 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3690 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3691 			goto err;
3692 
3693 		while (pos < offset + len) {
3694 			if (i >= nfrags) {
3695 				i = 0;
3696 				nfrags = skb_shinfo(list_skb)->nr_frags;
3697 				frag = skb_shinfo(list_skb)->frags;
3698 				frag_skb = list_skb;
3699 				if (!skb_headlen(list_skb)) {
3700 					BUG_ON(!nfrags);
3701 				} else {
3702 					BUG_ON(!list_skb->head_frag);
3703 
3704 					/* to make room for head_frag. */
3705 					i--;
3706 					frag--;
3707 				}
3708 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3709 				    skb_zerocopy_clone(nskb, frag_skb,
3710 						       GFP_ATOMIC))
3711 					goto err;
3712 
3713 				list_skb = list_skb->next;
3714 			}
3715 
3716 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3717 				     MAX_SKB_FRAGS)) {
3718 				net_warn_ratelimited(
3719 					"skb_segment: too many frags: %u %u\n",
3720 					pos, mss);
3721 				goto err;
3722 			}
3723 
3724 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3725 			__skb_frag_ref(nskb_frag);
3726 			size = skb_frag_size(nskb_frag);
3727 
3728 			if (pos < offset) {
3729 				nskb_frag->page_offset += offset - pos;
3730 				skb_frag_size_sub(nskb_frag, offset - pos);
3731 			}
3732 
3733 			skb_shinfo(nskb)->nr_frags++;
3734 
3735 			if (pos + size <= offset + len) {
3736 				i++;
3737 				frag++;
3738 				pos += size;
3739 			} else {
3740 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3741 				goto skip_fraglist;
3742 			}
3743 
3744 			nskb_frag++;
3745 		}
3746 
3747 skip_fraglist:
3748 		nskb->data_len = len - hsize;
3749 		nskb->len += nskb->data_len;
3750 		nskb->truesize += nskb->data_len;
3751 
3752 perform_csum_check:
3753 		if (!csum) {
3754 			if (skb_has_shared_frag(nskb)) {
3755 				err = __skb_linearize(nskb);
3756 				if (err)
3757 					goto err;
3758 			}
3759 			if (!nskb->remcsum_offload)
3760 				nskb->ip_summed = CHECKSUM_NONE;
3761 			SKB_GSO_CB(nskb)->csum =
3762 				skb_checksum(nskb, doffset,
3763 					     nskb->len - doffset, 0);
3764 			SKB_GSO_CB(nskb)->csum_start =
3765 				skb_headroom(nskb) + doffset;
3766 		}
3767 	} while ((offset += len) < head_skb->len);
3768 
3769 	/* Some callers want to get the end of the list.
3770 	 * Put it in segs->prev to avoid walking the list.
3771 	 * (see validate_xmit_skb_list() for example)
3772 	 */
3773 	segs->prev = tail;
3774 
3775 	if (partial_segs) {
3776 		struct sk_buff *iter;
3777 		int type = skb_shinfo(head_skb)->gso_type;
3778 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3779 
3780 		/* Update type to add partial and then remove dodgy if set */
3781 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3782 		type &= ~SKB_GSO_DODGY;
3783 
3784 		/* Update GSO info and prepare to start updating headers on
3785 		 * our way back down the stack of protocols.
3786 		 */
3787 		for (iter = segs; iter; iter = iter->next) {
3788 			skb_shinfo(iter)->gso_size = gso_size;
3789 			skb_shinfo(iter)->gso_segs = partial_segs;
3790 			skb_shinfo(iter)->gso_type = type;
3791 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3792 		}
3793 
3794 		if (tail->len - doffset <= gso_size)
3795 			skb_shinfo(tail)->gso_size = 0;
3796 		else if (tail != segs)
3797 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3798 	}
3799 
3800 	/* Following permits correct backpressure, for protocols
3801 	 * using skb_set_owner_w().
3802 	 * Idea is to tranfert ownership from head_skb to last segment.
3803 	 */
3804 	if (head_skb->destructor == sock_wfree) {
3805 		swap(tail->truesize, head_skb->truesize);
3806 		swap(tail->destructor, head_skb->destructor);
3807 		swap(tail->sk, head_skb->sk);
3808 	}
3809 	return segs;
3810 
3811 err:
3812 	kfree_skb_list(segs);
3813 	return ERR_PTR(err);
3814 }
3815 EXPORT_SYMBOL_GPL(skb_segment);
3816 
3817 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3818 {
3819 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3820 	unsigned int offset = skb_gro_offset(skb);
3821 	unsigned int headlen = skb_headlen(skb);
3822 	unsigned int len = skb_gro_len(skb);
3823 	struct sk_buff *lp, *p = *head;
3824 	unsigned int delta_truesize;
3825 
3826 	if (unlikely(p->len + len >= 65536))
3827 		return -E2BIG;
3828 
3829 	lp = NAPI_GRO_CB(p)->last;
3830 	pinfo = skb_shinfo(lp);
3831 
3832 	if (headlen <= offset) {
3833 		skb_frag_t *frag;
3834 		skb_frag_t *frag2;
3835 		int i = skbinfo->nr_frags;
3836 		int nr_frags = pinfo->nr_frags + i;
3837 
3838 		if (nr_frags > MAX_SKB_FRAGS)
3839 			goto merge;
3840 
3841 		offset -= headlen;
3842 		pinfo->nr_frags = nr_frags;
3843 		skbinfo->nr_frags = 0;
3844 
3845 		frag = pinfo->frags + nr_frags;
3846 		frag2 = skbinfo->frags + i;
3847 		do {
3848 			*--frag = *--frag2;
3849 		} while (--i);
3850 
3851 		frag->page_offset += offset;
3852 		skb_frag_size_sub(frag, offset);
3853 
3854 		/* all fragments truesize : remove (head size + sk_buff) */
3855 		delta_truesize = skb->truesize -
3856 				 SKB_TRUESIZE(skb_end_offset(skb));
3857 
3858 		skb->truesize -= skb->data_len;
3859 		skb->len -= skb->data_len;
3860 		skb->data_len = 0;
3861 
3862 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3863 		goto done;
3864 	} else if (skb->head_frag) {
3865 		int nr_frags = pinfo->nr_frags;
3866 		skb_frag_t *frag = pinfo->frags + nr_frags;
3867 		struct page *page = virt_to_head_page(skb->head);
3868 		unsigned int first_size = headlen - offset;
3869 		unsigned int first_offset;
3870 
3871 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3872 			goto merge;
3873 
3874 		first_offset = skb->data -
3875 			       (unsigned char *)page_address(page) +
3876 			       offset;
3877 
3878 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3879 
3880 		frag->page.p	  = page;
3881 		frag->page_offset = first_offset;
3882 		skb_frag_size_set(frag, first_size);
3883 
3884 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3885 		/* We dont need to clear skbinfo->nr_frags here */
3886 
3887 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3888 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3889 		goto done;
3890 	}
3891 
3892 merge:
3893 	delta_truesize = skb->truesize;
3894 	if (offset > headlen) {
3895 		unsigned int eat = offset - headlen;
3896 
3897 		skbinfo->frags[0].page_offset += eat;
3898 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3899 		skb->data_len -= eat;
3900 		skb->len -= eat;
3901 		offset = headlen;
3902 	}
3903 
3904 	__skb_pull(skb, offset);
3905 
3906 	if (NAPI_GRO_CB(p)->last == p)
3907 		skb_shinfo(p)->frag_list = skb;
3908 	else
3909 		NAPI_GRO_CB(p)->last->next = skb;
3910 	NAPI_GRO_CB(p)->last = skb;
3911 	__skb_header_release(skb);
3912 	lp = p;
3913 
3914 done:
3915 	NAPI_GRO_CB(p)->count++;
3916 	p->data_len += len;
3917 	p->truesize += delta_truesize;
3918 	p->len += len;
3919 	if (lp != p) {
3920 		lp->data_len += len;
3921 		lp->truesize += delta_truesize;
3922 		lp->len += len;
3923 	}
3924 	NAPI_GRO_CB(skb)->same_flow = 1;
3925 	return 0;
3926 }
3927 EXPORT_SYMBOL_GPL(skb_gro_receive);
3928 
3929 void __init skb_init(void)
3930 {
3931 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3932 					      sizeof(struct sk_buff),
3933 					      0,
3934 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3935 					      offsetof(struct sk_buff, cb),
3936 					      sizeof_field(struct sk_buff, cb),
3937 					      NULL);
3938 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3939 						sizeof(struct sk_buff_fclones),
3940 						0,
3941 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3942 						NULL);
3943 }
3944 
3945 static int
3946 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3947 	       unsigned int recursion_level)
3948 {
3949 	int start = skb_headlen(skb);
3950 	int i, copy = start - offset;
3951 	struct sk_buff *frag_iter;
3952 	int elt = 0;
3953 
3954 	if (unlikely(recursion_level >= 24))
3955 		return -EMSGSIZE;
3956 
3957 	if (copy > 0) {
3958 		if (copy > len)
3959 			copy = len;
3960 		sg_set_buf(sg, skb->data + offset, copy);
3961 		elt++;
3962 		if ((len -= copy) == 0)
3963 			return elt;
3964 		offset += copy;
3965 	}
3966 
3967 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3968 		int end;
3969 
3970 		WARN_ON(start > offset + len);
3971 
3972 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3973 		if ((copy = end - offset) > 0) {
3974 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3975 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3976 				return -EMSGSIZE;
3977 
3978 			if (copy > len)
3979 				copy = len;
3980 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3981 					frag->page_offset+offset-start);
3982 			elt++;
3983 			if (!(len -= copy))
3984 				return elt;
3985 			offset += copy;
3986 		}
3987 		start = end;
3988 	}
3989 
3990 	skb_walk_frags(skb, frag_iter) {
3991 		int end, ret;
3992 
3993 		WARN_ON(start > offset + len);
3994 
3995 		end = start + frag_iter->len;
3996 		if ((copy = end - offset) > 0) {
3997 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3998 				return -EMSGSIZE;
3999 
4000 			if (copy > len)
4001 				copy = len;
4002 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4003 					      copy, recursion_level + 1);
4004 			if (unlikely(ret < 0))
4005 				return ret;
4006 			elt += ret;
4007 			if ((len -= copy) == 0)
4008 				return elt;
4009 			offset += copy;
4010 		}
4011 		start = end;
4012 	}
4013 	BUG_ON(len);
4014 	return elt;
4015 }
4016 
4017 /**
4018  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4019  *	@skb: Socket buffer containing the buffers to be mapped
4020  *	@sg: The scatter-gather list to map into
4021  *	@offset: The offset into the buffer's contents to start mapping
4022  *	@len: Length of buffer space to be mapped
4023  *
4024  *	Fill the specified scatter-gather list with mappings/pointers into a
4025  *	region of the buffer space attached to a socket buffer. Returns either
4026  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4027  *	could not fit.
4028  */
4029 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4030 {
4031 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4032 
4033 	if (nsg <= 0)
4034 		return nsg;
4035 
4036 	sg_mark_end(&sg[nsg - 1]);
4037 
4038 	return nsg;
4039 }
4040 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4041 
4042 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4043  * sglist without mark the sg which contain last skb data as the end.
4044  * So the caller can mannipulate sg list as will when padding new data after
4045  * the first call without calling sg_unmark_end to expend sg list.
4046  *
4047  * Scenario to use skb_to_sgvec_nomark:
4048  * 1. sg_init_table
4049  * 2. skb_to_sgvec_nomark(payload1)
4050  * 3. skb_to_sgvec_nomark(payload2)
4051  *
4052  * This is equivalent to:
4053  * 1. sg_init_table
4054  * 2. skb_to_sgvec(payload1)
4055  * 3. sg_unmark_end
4056  * 4. skb_to_sgvec(payload2)
4057  *
4058  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4059  * is more preferable.
4060  */
4061 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4062 			int offset, int len)
4063 {
4064 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4065 }
4066 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4067 
4068 
4069 
4070 /**
4071  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4072  *	@skb: The socket buffer to check.
4073  *	@tailbits: Amount of trailing space to be added
4074  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4075  *
4076  *	Make sure that the data buffers attached to a socket buffer are
4077  *	writable. If they are not, private copies are made of the data buffers
4078  *	and the socket buffer is set to use these instead.
4079  *
4080  *	If @tailbits is given, make sure that there is space to write @tailbits
4081  *	bytes of data beyond current end of socket buffer.  @trailer will be
4082  *	set to point to the skb in which this space begins.
4083  *
4084  *	The number of scatterlist elements required to completely map the
4085  *	COW'd and extended socket buffer will be returned.
4086  */
4087 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4088 {
4089 	int copyflag;
4090 	int elt;
4091 	struct sk_buff *skb1, **skb_p;
4092 
4093 	/* If skb is cloned or its head is paged, reallocate
4094 	 * head pulling out all the pages (pages are considered not writable
4095 	 * at the moment even if they are anonymous).
4096 	 */
4097 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4098 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4099 		return -ENOMEM;
4100 
4101 	/* Easy case. Most of packets will go this way. */
4102 	if (!skb_has_frag_list(skb)) {
4103 		/* A little of trouble, not enough of space for trailer.
4104 		 * This should not happen, when stack is tuned to generate
4105 		 * good frames. OK, on miss we reallocate and reserve even more
4106 		 * space, 128 bytes is fair. */
4107 
4108 		if (skb_tailroom(skb) < tailbits &&
4109 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4110 			return -ENOMEM;
4111 
4112 		/* Voila! */
4113 		*trailer = skb;
4114 		return 1;
4115 	}
4116 
4117 	/* Misery. We are in troubles, going to mincer fragments... */
4118 
4119 	elt = 1;
4120 	skb_p = &skb_shinfo(skb)->frag_list;
4121 	copyflag = 0;
4122 
4123 	while ((skb1 = *skb_p) != NULL) {
4124 		int ntail = 0;
4125 
4126 		/* The fragment is partially pulled by someone,
4127 		 * this can happen on input. Copy it and everything
4128 		 * after it. */
4129 
4130 		if (skb_shared(skb1))
4131 			copyflag = 1;
4132 
4133 		/* If the skb is the last, worry about trailer. */
4134 
4135 		if (skb1->next == NULL && tailbits) {
4136 			if (skb_shinfo(skb1)->nr_frags ||
4137 			    skb_has_frag_list(skb1) ||
4138 			    skb_tailroom(skb1) < tailbits)
4139 				ntail = tailbits + 128;
4140 		}
4141 
4142 		if (copyflag ||
4143 		    skb_cloned(skb1) ||
4144 		    ntail ||
4145 		    skb_shinfo(skb1)->nr_frags ||
4146 		    skb_has_frag_list(skb1)) {
4147 			struct sk_buff *skb2;
4148 
4149 			/* Fuck, we are miserable poor guys... */
4150 			if (ntail == 0)
4151 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4152 			else
4153 				skb2 = skb_copy_expand(skb1,
4154 						       skb_headroom(skb1),
4155 						       ntail,
4156 						       GFP_ATOMIC);
4157 			if (unlikely(skb2 == NULL))
4158 				return -ENOMEM;
4159 
4160 			if (skb1->sk)
4161 				skb_set_owner_w(skb2, skb1->sk);
4162 
4163 			/* Looking around. Are we still alive?
4164 			 * OK, link new skb, drop old one */
4165 
4166 			skb2->next = skb1->next;
4167 			*skb_p = skb2;
4168 			kfree_skb(skb1);
4169 			skb1 = skb2;
4170 		}
4171 		elt++;
4172 		*trailer = skb1;
4173 		skb_p = &skb1->next;
4174 	}
4175 
4176 	return elt;
4177 }
4178 EXPORT_SYMBOL_GPL(skb_cow_data);
4179 
4180 static void sock_rmem_free(struct sk_buff *skb)
4181 {
4182 	struct sock *sk = skb->sk;
4183 
4184 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4185 }
4186 
4187 static void skb_set_err_queue(struct sk_buff *skb)
4188 {
4189 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4190 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4191 	 */
4192 	skb->pkt_type = PACKET_OUTGOING;
4193 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4194 }
4195 
4196 /*
4197  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4198  */
4199 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4200 {
4201 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4202 	    (unsigned int)sk->sk_rcvbuf)
4203 		return -ENOMEM;
4204 
4205 	skb_orphan(skb);
4206 	skb->sk = sk;
4207 	skb->destructor = sock_rmem_free;
4208 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4209 	skb_set_err_queue(skb);
4210 
4211 	/* before exiting rcu section, make sure dst is refcounted */
4212 	skb_dst_force(skb);
4213 
4214 	skb_queue_tail(&sk->sk_error_queue, skb);
4215 	if (!sock_flag(sk, SOCK_DEAD))
4216 		sk->sk_error_report(sk);
4217 	return 0;
4218 }
4219 EXPORT_SYMBOL(sock_queue_err_skb);
4220 
4221 static bool is_icmp_err_skb(const struct sk_buff *skb)
4222 {
4223 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4224 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4225 }
4226 
4227 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4228 {
4229 	struct sk_buff_head *q = &sk->sk_error_queue;
4230 	struct sk_buff *skb, *skb_next = NULL;
4231 	bool icmp_next = false;
4232 	unsigned long flags;
4233 
4234 	spin_lock_irqsave(&q->lock, flags);
4235 	skb = __skb_dequeue(q);
4236 	if (skb && (skb_next = skb_peek(q))) {
4237 		icmp_next = is_icmp_err_skb(skb_next);
4238 		if (icmp_next)
4239 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4240 	}
4241 	spin_unlock_irqrestore(&q->lock, flags);
4242 
4243 	if (is_icmp_err_skb(skb) && !icmp_next)
4244 		sk->sk_err = 0;
4245 
4246 	if (skb_next)
4247 		sk->sk_error_report(sk);
4248 
4249 	return skb;
4250 }
4251 EXPORT_SYMBOL(sock_dequeue_err_skb);
4252 
4253 /**
4254  * skb_clone_sk - create clone of skb, and take reference to socket
4255  * @skb: the skb to clone
4256  *
4257  * This function creates a clone of a buffer that holds a reference on
4258  * sk_refcnt.  Buffers created via this function are meant to be
4259  * returned using sock_queue_err_skb, or free via kfree_skb.
4260  *
4261  * When passing buffers allocated with this function to sock_queue_err_skb
4262  * it is necessary to wrap the call with sock_hold/sock_put in order to
4263  * prevent the socket from being released prior to being enqueued on
4264  * the sk_error_queue.
4265  */
4266 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4267 {
4268 	struct sock *sk = skb->sk;
4269 	struct sk_buff *clone;
4270 
4271 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4272 		return NULL;
4273 
4274 	clone = skb_clone(skb, GFP_ATOMIC);
4275 	if (!clone) {
4276 		sock_put(sk);
4277 		return NULL;
4278 	}
4279 
4280 	clone->sk = sk;
4281 	clone->destructor = sock_efree;
4282 
4283 	return clone;
4284 }
4285 EXPORT_SYMBOL(skb_clone_sk);
4286 
4287 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4288 					struct sock *sk,
4289 					int tstype,
4290 					bool opt_stats)
4291 {
4292 	struct sock_exterr_skb *serr;
4293 	int err;
4294 
4295 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4296 
4297 	serr = SKB_EXT_ERR(skb);
4298 	memset(serr, 0, sizeof(*serr));
4299 	serr->ee.ee_errno = ENOMSG;
4300 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4301 	serr->ee.ee_info = tstype;
4302 	serr->opt_stats = opt_stats;
4303 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4304 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4305 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4306 		if (sk->sk_protocol == IPPROTO_TCP &&
4307 		    sk->sk_type == SOCK_STREAM)
4308 			serr->ee.ee_data -= sk->sk_tskey;
4309 	}
4310 
4311 	err = sock_queue_err_skb(sk, skb);
4312 
4313 	if (err)
4314 		kfree_skb(skb);
4315 }
4316 
4317 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4318 {
4319 	bool ret;
4320 
4321 	if (likely(sysctl_tstamp_allow_data || tsonly))
4322 		return true;
4323 
4324 	read_lock_bh(&sk->sk_callback_lock);
4325 	ret = sk->sk_socket && sk->sk_socket->file &&
4326 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4327 	read_unlock_bh(&sk->sk_callback_lock);
4328 	return ret;
4329 }
4330 
4331 void skb_complete_tx_timestamp(struct sk_buff *skb,
4332 			       struct skb_shared_hwtstamps *hwtstamps)
4333 {
4334 	struct sock *sk = skb->sk;
4335 
4336 	if (!skb_may_tx_timestamp(sk, false))
4337 		goto err;
4338 
4339 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4340 	 * but only if the socket refcount is not zero.
4341 	 */
4342 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4343 		*skb_hwtstamps(skb) = *hwtstamps;
4344 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4345 		sock_put(sk);
4346 		return;
4347 	}
4348 
4349 err:
4350 	kfree_skb(skb);
4351 }
4352 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4353 
4354 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4355 		     struct skb_shared_hwtstamps *hwtstamps,
4356 		     struct sock *sk, int tstype)
4357 {
4358 	struct sk_buff *skb;
4359 	bool tsonly, opt_stats = false;
4360 
4361 	if (!sk)
4362 		return;
4363 
4364 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4365 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4366 		return;
4367 
4368 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4369 	if (!skb_may_tx_timestamp(sk, tsonly))
4370 		return;
4371 
4372 	if (tsonly) {
4373 #ifdef CONFIG_INET
4374 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4375 		    sk->sk_protocol == IPPROTO_TCP &&
4376 		    sk->sk_type == SOCK_STREAM) {
4377 			skb = tcp_get_timestamping_opt_stats(sk);
4378 			opt_stats = true;
4379 		} else
4380 #endif
4381 			skb = alloc_skb(0, GFP_ATOMIC);
4382 	} else {
4383 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4384 	}
4385 	if (!skb)
4386 		return;
4387 
4388 	if (tsonly) {
4389 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4390 					     SKBTX_ANY_TSTAMP;
4391 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4392 	}
4393 
4394 	if (hwtstamps)
4395 		*skb_hwtstamps(skb) = *hwtstamps;
4396 	else
4397 		skb->tstamp = ktime_get_real();
4398 
4399 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4400 }
4401 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4402 
4403 void skb_tstamp_tx(struct sk_buff *orig_skb,
4404 		   struct skb_shared_hwtstamps *hwtstamps)
4405 {
4406 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4407 			       SCM_TSTAMP_SND);
4408 }
4409 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4410 
4411 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4412 {
4413 	struct sock *sk = skb->sk;
4414 	struct sock_exterr_skb *serr;
4415 	int err = 1;
4416 
4417 	skb->wifi_acked_valid = 1;
4418 	skb->wifi_acked = acked;
4419 
4420 	serr = SKB_EXT_ERR(skb);
4421 	memset(serr, 0, sizeof(*serr));
4422 	serr->ee.ee_errno = ENOMSG;
4423 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4424 
4425 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4426 	 * but only if the socket refcount is not zero.
4427 	 */
4428 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4429 		err = sock_queue_err_skb(sk, skb);
4430 		sock_put(sk);
4431 	}
4432 	if (err)
4433 		kfree_skb(skb);
4434 }
4435 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4436 
4437 /**
4438  * skb_partial_csum_set - set up and verify partial csum values for packet
4439  * @skb: the skb to set
4440  * @start: the number of bytes after skb->data to start checksumming.
4441  * @off: the offset from start to place the checksum.
4442  *
4443  * For untrusted partially-checksummed packets, we need to make sure the values
4444  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4445  *
4446  * This function checks and sets those values and skb->ip_summed: if this
4447  * returns false you should drop the packet.
4448  */
4449 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4450 {
4451 	if (unlikely(start > skb_headlen(skb)) ||
4452 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
4453 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4454 				     start, off, skb_headlen(skb));
4455 		return false;
4456 	}
4457 	skb->ip_summed = CHECKSUM_PARTIAL;
4458 	skb->csum_start = skb_headroom(skb) + start;
4459 	skb->csum_offset = off;
4460 	skb_set_transport_header(skb, start);
4461 	return true;
4462 }
4463 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4464 
4465 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4466 			       unsigned int max)
4467 {
4468 	if (skb_headlen(skb) >= len)
4469 		return 0;
4470 
4471 	/* If we need to pullup then pullup to the max, so we
4472 	 * won't need to do it again.
4473 	 */
4474 	if (max > skb->len)
4475 		max = skb->len;
4476 
4477 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4478 		return -ENOMEM;
4479 
4480 	if (skb_headlen(skb) < len)
4481 		return -EPROTO;
4482 
4483 	return 0;
4484 }
4485 
4486 #define MAX_TCP_HDR_LEN (15 * 4)
4487 
4488 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4489 				      typeof(IPPROTO_IP) proto,
4490 				      unsigned int off)
4491 {
4492 	switch (proto) {
4493 		int err;
4494 
4495 	case IPPROTO_TCP:
4496 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4497 					  off + MAX_TCP_HDR_LEN);
4498 		if (!err && !skb_partial_csum_set(skb, off,
4499 						  offsetof(struct tcphdr,
4500 							   check)))
4501 			err = -EPROTO;
4502 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4503 
4504 	case IPPROTO_UDP:
4505 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4506 					  off + sizeof(struct udphdr));
4507 		if (!err && !skb_partial_csum_set(skb, off,
4508 						  offsetof(struct udphdr,
4509 							   check)))
4510 			err = -EPROTO;
4511 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4512 	}
4513 
4514 	return ERR_PTR(-EPROTO);
4515 }
4516 
4517 /* This value should be large enough to cover a tagged ethernet header plus
4518  * maximally sized IP and TCP or UDP headers.
4519  */
4520 #define MAX_IP_HDR_LEN 128
4521 
4522 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4523 {
4524 	unsigned int off;
4525 	bool fragment;
4526 	__sum16 *csum;
4527 	int err;
4528 
4529 	fragment = false;
4530 
4531 	err = skb_maybe_pull_tail(skb,
4532 				  sizeof(struct iphdr),
4533 				  MAX_IP_HDR_LEN);
4534 	if (err < 0)
4535 		goto out;
4536 
4537 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4538 		fragment = true;
4539 
4540 	off = ip_hdrlen(skb);
4541 
4542 	err = -EPROTO;
4543 
4544 	if (fragment)
4545 		goto out;
4546 
4547 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4548 	if (IS_ERR(csum))
4549 		return PTR_ERR(csum);
4550 
4551 	if (recalculate)
4552 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4553 					   ip_hdr(skb)->daddr,
4554 					   skb->len - off,
4555 					   ip_hdr(skb)->protocol, 0);
4556 	err = 0;
4557 
4558 out:
4559 	return err;
4560 }
4561 
4562 /* This value should be large enough to cover a tagged ethernet header plus
4563  * an IPv6 header, all options, and a maximal TCP or UDP header.
4564  */
4565 #define MAX_IPV6_HDR_LEN 256
4566 
4567 #define OPT_HDR(type, skb, off) \
4568 	(type *)(skb_network_header(skb) + (off))
4569 
4570 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4571 {
4572 	int err;
4573 	u8 nexthdr;
4574 	unsigned int off;
4575 	unsigned int len;
4576 	bool fragment;
4577 	bool done;
4578 	__sum16 *csum;
4579 
4580 	fragment = false;
4581 	done = false;
4582 
4583 	off = sizeof(struct ipv6hdr);
4584 
4585 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4586 	if (err < 0)
4587 		goto out;
4588 
4589 	nexthdr = ipv6_hdr(skb)->nexthdr;
4590 
4591 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4592 	while (off <= len && !done) {
4593 		switch (nexthdr) {
4594 		case IPPROTO_DSTOPTS:
4595 		case IPPROTO_HOPOPTS:
4596 		case IPPROTO_ROUTING: {
4597 			struct ipv6_opt_hdr *hp;
4598 
4599 			err = skb_maybe_pull_tail(skb,
4600 						  off +
4601 						  sizeof(struct ipv6_opt_hdr),
4602 						  MAX_IPV6_HDR_LEN);
4603 			if (err < 0)
4604 				goto out;
4605 
4606 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4607 			nexthdr = hp->nexthdr;
4608 			off += ipv6_optlen(hp);
4609 			break;
4610 		}
4611 		case IPPROTO_AH: {
4612 			struct ip_auth_hdr *hp;
4613 
4614 			err = skb_maybe_pull_tail(skb,
4615 						  off +
4616 						  sizeof(struct ip_auth_hdr),
4617 						  MAX_IPV6_HDR_LEN);
4618 			if (err < 0)
4619 				goto out;
4620 
4621 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4622 			nexthdr = hp->nexthdr;
4623 			off += ipv6_authlen(hp);
4624 			break;
4625 		}
4626 		case IPPROTO_FRAGMENT: {
4627 			struct frag_hdr *hp;
4628 
4629 			err = skb_maybe_pull_tail(skb,
4630 						  off +
4631 						  sizeof(struct frag_hdr),
4632 						  MAX_IPV6_HDR_LEN);
4633 			if (err < 0)
4634 				goto out;
4635 
4636 			hp = OPT_HDR(struct frag_hdr, skb, off);
4637 
4638 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4639 				fragment = true;
4640 
4641 			nexthdr = hp->nexthdr;
4642 			off += sizeof(struct frag_hdr);
4643 			break;
4644 		}
4645 		default:
4646 			done = true;
4647 			break;
4648 		}
4649 	}
4650 
4651 	err = -EPROTO;
4652 
4653 	if (!done || fragment)
4654 		goto out;
4655 
4656 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4657 	if (IS_ERR(csum))
4658 		return PTR_ERR(csum);
4659 
4660 	if (recalculate)
4661 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4662 					 &ipv6_hdr(skb)->daddr,
4663 					 skb->len - off, nexthdr, 0);
4664 	err = 0;
4665 
4666 out:
4667 	return err;
4668 }
4669 
4670 /**
4671  * skb_checksum_setup - set up partial checksum offset
4672  * @skb: the skb to set up
4673  * @recalculate: if true the pseudo-header checksum will be recalculated
4674  */
4675 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4676 {
4677 	int err;
4678 
4679 	switch (skb->protocol) {
4680 	case htons(ETH_P_IP):
4681 		err = skb_checksum_setup_ipv4(skb, recalculate);
4682 		break;
4683 
4684 	case htons(ETH_P_IPV6):
4685 		err = skb_checksum_setup_ipv6(skb, recalculate);
4686 		break;
4687 
4688 	default:
4689 		err = -EPROTO;
4690 		break;
4691 	}
4692 
4693 	return err;
4694 }
4695 EXPORT_SYMBOL(skb_checksum_setup);
4696 
4697 /**
4698  * skb_checksum_maybe_trim - maybe trims the given skb
4699  * @skb: the skb to check
4700  * @transport_len: the data length beyond the network header
4701  *
4702  * Checks whether the given skb has data beyond the given transport length.
4703  * If so, returns a cloned skb trimmed to this transport length.
4704  * Otherwise returns the provided skb. Returns NULL in error cases
4705  * (e.g. transport_len exceeds skb length or out-of-memory).
4706  *
4707  * Caller needs to set the skb transport header and free any returned skb if it
4708  * differs from the provided skb.
4709  */
4710 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4711 					       unsigned int transport_len)
4712 {
4713 	struct sk_buff *skb_chk;
4714 	unsigned int len = skb_transport_offset(skb) + transport_len;
4715 	int ret;
4716 
4717 	if (skb->len < len)
4718 		return NULL;
4719 	else if (skb->len == len)
4720 		return skb;
4721 
4722 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4723 	if (!skb_chk)
4724 		return NULL;
4725 
4726 	ret = pskb_trim_rcsum(skb_chk, len);
4727 	if (ret) {
4728 		kfree_skb(skb_chk);
4729 		return NULL;
4730 	}
4731 
4732 	return skb_chk;
4733 }
4734 
4735 /**
4736  * skb_checksum_trimmed - validate checksum of an skb
4737  * @skb: the skb to check
4738  * @transport_len: the data length beyond the network header
4739  * @skb_chkf: checksum function to use
4740  *
4741  * Applies the given checksum function skb_chkf to the provided skb.
4742  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4743  *
4744  * If the skb has data beyond the given transport length, then a
4745  * trimmed & cloned skb is checked and returned.
4746  *
4747  * Caller needs to set the skb transport header and free any returned skb if it
4748  * differs from the provided skb.
4749  */
4750 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4751 				     unsigned int transport_len,
4752 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4753 {
4754 	struct sk_buff *skb_chk;
4755 	unsigned int offset = skb_transport_offset(skb);
4756 	__sum16 ret;
4757 
4758 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4759 	if (!skb_chk)
4760 		goto err;
4761 
4762 	if (!pskb_may_pull(skb_chk, offset))
4763 		goto err;
4764 
4765 	skb_pull_rcsum(skb_chk, offset);
4766 	ret = skb_chkf(skb_chk);
4767 	skb_push_rcsum(skb_chk, offset);
4768 
4769 	if (ret)
4770 		goto err;
4771 
4772 	return skb_chk;
4773 
4774 err:
4775 	if (skb_chk && skb_chk != skb)
4776 		kfree_skb(skb_chk);
4777 
4778 	return NULL;
4779 
4780 }
4781 EXPORT_SYMBOL(skb_checksum_trimmed);
4782 
4783 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4784 {
4785 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4786 			     skb->dev->name);
4787 }
4788 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4789 
4790 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4791 {
4792 	if (head_stolen) {
4793 		skb_release_head_state(skb);
4794 		kmem_cache_free(skbuff_head_cache, skb);
4795 	} else {
4796 		__kfree_skb(skb);
4797 	}
4798 }
4799 EXPORT_SYMBOL(kfree_skb_partial);
4800 
4801 /**
4802  * skb_try_coalesce - try to merge skb to prior one
4803  * @to: prior buffer
4804  * @from: buffer to add
4805  * @fragstolen: pointer to boolean
4806  * @delta_truesize: how much more was allocated than was requested
4807  */
4808 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4809 		      bool *fragstolen, int *delta_truesize)
4810 {
4811 	struct skb_shared_info *to_shinfo, *from_shinfo;
4812 	int i, delta, len = from->len;
4813 
4814 	*fragstolen = false;
4815 
4816 	if (skb_cloned(to))
4817 		return false;
4818 
4819 	if (len <= skb_tailroom(to)) {
4820 		if (len)
4821 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4822 		*delta_truesize = 0;
4823 		return true;
4824 	}
4825 
4826 	to_shinfo = skb_shinfo(to);
4827 	from_shinfo = skb_shinfo(from);
4828 	if (to_shinfo->frag_list || from_shinfo->frag_list)
4829 		return false;
4830 	if (skb_zcopy(to) || skb_zcopy(from))
4831 		return false;
4832 
4833 	if (skb_headlen(from) != 0) {
4834 		struct page *page;
4835 		unsigned int offset;
4836 
4837 		if (to_shinfo->nr_frags +
4838 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4839 			return false;
4840 
4841 		if (skb_head_is_locked(from))
4842 			return false;
4843 
4844 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4845 
4846 		page = virt_to_head_page(from->head);
4847 		offset = from->data - (unsigned char *)page_address(page);
4848 
4849 		skb_fill_page_desc(to, to_shinfo->nr_frags,
4850 				   page, offset, skb_headlen(from));
4851 		*fragstolen = true;
4852 	} else {
4853 		if (to_shinfo->nr_frags +
4854 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
4855 			return false;
4856 
4857 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4858 	}
4859 
4860 	WARN_ON_ONCE(delta < len);
4861 
4862 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4863 	       from_shinfo->frags,
4864 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
4865 	to_shinfo->nr_frags += from_shinfo->nr_frags;
4866 
4867 	if (!skb_cloned(from))
4868 		from_shinfo->nr_frags = 0;
4869 
4870 	/* if the skb is not cloned this does nothing
4871 	 * since we set nr_frags to 0.
4872 	 */
4873 	for (i = 0; i < from_shinfo->nr_frags; i++)
4874 		__skb_frag_ref(&from_shinfo->frags[i]);
4875 
4876 	to->truesize += delta;
4877 	to->len += len;
4878 	to->data_len += len;
4879 
4880 	*delta_truesize = delta;
4881 	return true;
4882 }
4883 EXPORT_SYMBOL(skb_try_coalesce);
4884 
4885 /**
4886  * skb_scrub_packet - scrub an skb
4887  *
4888  * @skb: buffer to clean
4889  * @xnet: packet is crossing netns
4890  *
4891  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4892  * into/from a tunnel. Some information have to be cleared during these
4893  * operations.
4894  * skb_scrub_packet can also be used to clean a skb before injecting it in
4895  * another namespace (@xnet == true). We have to clear all information in the
4896  * skb that could impact namespace isolation.
4897  */
4898 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4899 {
4900 	skb->tstamp = 0;
4901 	skb->pkt_type = PACKET_HOST;
4902 	skb->skb_iif = 0;
4903 	skb->ignore_df = 0;
4904 	skb_dst_drop(skb);
4905 	secpath_reset(skb);
4906 	nf_reset(skb);
4907 	nf_reset_trace(skb);
4908 
4909 	if (!xnet)
4910 		return;
4911 
4912 	ipvs_reset(skb);
4913 	skb_orphan(skb);
4914 	skb->mark = 0;
4915 }
4916 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4917 
4918 /**
4919  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4920  *
4921  * @skb: GSO skb
4922  *
4923  * skb_gso_transport_seglen is used to determine the real size of the
4924  * individual segments, including Layer4 headers (TCP/UDP).
4925  *
4926  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4927  */
4928 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4929 {
4930 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4931 	unsigned int thlen = 0;
4932 
4933 	if (skb->encapsulation) {
4934 		thlen = skb_inner_transport_header(skb) -
4935 			skb_transport_header(skb);
4936 
4937 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4938 			thlen += inner_tcp_hdrlen(skb);
4939 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4940 		thlen = tcp_hdrlen(skb);
4941 	} else if (unlikely(skb_is_gso_sctp(skb))) {
4942 		thlen = sizeof(struct sctphdr);
4943 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4944 		thlen = sizeof(struct udphdr);
4945 	}
4946 	/* UFO sets gso_size to the size of the fragmentation
4947 	 * payload, i.e. the size of the L4 (UDP) header is already
4948 	 * accounted for.
4949 	 */
4950 	return thlen + shinfo->gso_size;
4951 }
4952 
4953 /**
4954  * skb_gso_network_seglen - Return length of individual segments of a gso packet
4955  *
4956  * @skb: GSO skb
4957  *
4958  * skb_gso_network_seglen is used to determine the real size of the
4959  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4960  *
4961  * The MAC/L2 header is not accounted for.
4962  */
4963 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4964 {
4965 	unsigned int hdr_len = skb_transport_header(skb) -
4966 			       skb_network_header(skb);
4967 
4968 	return hdr_len + skb_gso_transport_seglen(skb);
4969 }
4970 
4971 /**
4972  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4973  *
4974  * @skb: GSO skb
4975  *
4976  * skb_gso_mac_seglen is used to determine the real size of the
4977  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4978  * headers (TCP/UDP).
4979  */
4980 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4981 {
4982 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4983 
4984 	return hdr_len + skb_gso_transport_seglen(skb);
4985 }
4986 
4987 /**
4988  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4989  *
4990  * There are a couple of instances where we have a GSO skb, and we
4991  * want to determine what size it would be after it is segmented.
4992  *
4993  * We might want to check:
4994  * -    L3+L4+payload size (e.g. IP forwarding)
4995  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4996  *
4997  * This is a helper to do that correctly considering GSO_BY_FRAGS.
4998  *
4999  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5000  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5001  *
5002  * @max_len: The maximum permissible length.
5003  *
5004  * Returns true if the segmented length <= max length.
5005  */
5006 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5007 				      unsigned int seg_len,
5008 				      unsigned int max_len) {
5009 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5010 	const struct sk_buff *iter;
5011 
5012 	if (shinfo->gso_size != GSO_BY_FRAGS)
5013 		return seg_len <= max_len;
5014 
5015 	/* Undo this so we can re-use header sizes */
5016 	seg_len -= GSO_BY_FRAGS;
5017 
5018 	skb_walk_frags(skb, iter) {
5019 		if (seg_len + skb_headlen(iter) > max_len)
5020 			return false;
5021 	}
5022 
5023 	return true;
5024 }
5025 
5026 /**
5027  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5028  *
5029  * @skb: GSO skb
5030  * @mtu: MTU to validate against
5031  *
5032  * skb_gso_validate_network_len validates if a given skb will fit a
5033  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5034  * payload.
5035  */
5036 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5037 {
5038 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5039 }
5040 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5041 
5042 /**
5043  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5044  *
5045  * @skb: GSO skb
5046  * @len: length to validate against
5047  *
5048  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5049  * length once split, including L2, L3 and L4 headers and the payload.
5050  */
5051 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5052 {
5053 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5054 }
5055 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5056 
5057 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5058 {
5059 	int mac_len;
5060 
5061 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5062 		kfree_skb(skb);
5063 		return NULL;
5064 	}
5065 
5066 	mac_len = skb->data - skb_mac_header(skb);
5067 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5068 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5069 			mac_len - VLAN_HLEN - ETH_TLEN);
5070 	}
5071 	skb->mac_header += VLAN_HLEN;
5072 	return skb;
5073 }
5074 
5075 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5076 {
5077 	struct vlan_hdr *vhdr;
5078 	u16 vlan_tci;
5079 
5080 	if (unlikely(skb_vlan_tag_present(skb))) {
5081 		/* vlan_tci is already set-up so leave this for another time */
5082 		return skb;
5083 	}
5084 
5085 	skb = skb_share_check(skb, GFP_ATOMIC);
5086 	if (unlikely(!skb))
5087 		goto err_free;
5088 
5089 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5090 		goto err_free;
5091 
5092 	vhdr = (struct vlan_hdr *)skb->data;
5093 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5094 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5095 
5096 	skb_pull_rcsum(skb, VLAN_HLEN);
5097 	vlan_set_encap_proto(skb, vhdr);
5098 
5099 	skb = skb_reorder_vlan_header(skb);
5100 	if (unlikely(!skb))
5101 		goto err_free;
5102 
5103 	skb_reset_network_header(skb);
5104 	skb_reset_transport_header(skb);
5105 	skb_reset_mac_len(skb);
5106 
5107 	return skb;
5108 
5109 err_free:
5110 	kfree_skb(skb);
5111 	return NULL;
5112 }
5113 EXPORT_SYMBOL(skb_vlan_untag);
5114 
5115 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5116 {
5117 	if (!pskb_may_pull(skb, write_len))
5118 		return -ENOMEM;
5119 
5120 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5121 		return 0;
5122 
5123 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5124 }
5125 EXPORT_SYMBOL(skb_ensure_writable);
5126 
5127 /* remove VLAN header from packet and update csum accordingly.
5128  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5129  */
5130 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5131 {
5132 	struct vlan_hdr *vhdr;
5133 	int offset = skb->data - skb_mac_header(skb);
5134 	int err;
5135 
5136 	if (WARN_ONCE(offset,
5137 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5138 		      offset)) {
5139 		return -EINVAL;
5140 	}
5141 
5142 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5143 	if (unlikely(err))
5144 		return err;
5145 
5146 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5147 
5148 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5149 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5150 
5151 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5152 	__skb_pull(skb, VLAN_HLEN);
5153 
5154 	vlan_set_encap_proto(skb, vhdr);
5155 	skb->mac_header += VLAN_HLEN;
5156 
5157 	if (skb_network_offset(skb) < ETH_HLEN)
5158 		skb_set_network_header(skb, ETH_HLEN);
5159 
5160 	skb_reset_mac_len(skb);
5161 
5162 	return err;
5163 }
5164 EXPORT_SYMBOL(__skb_vlan_pop);
5165 
5166 /* Pop a vlan tag either from hwaccel or from payload.
5167  * Expects skb->data at mac header.
5168  */
5169 int skb_vlan_pop(struct sk_buff *skb)
5170 {
5171 	u16 vlan_tci;
5172 	__be16 vlan_proto;
5173 	int err;
5174 
5175 	if (likely(skb_vlan_tag_present(skb))) {
5176 		skb->vlan_tci = 0;
5177 	} else {
5178 		if (unlikely(!eth_type_vlan(skb->protocol)))
5179 			return 0;
5180 
5181 		err = __skb_vlan_pop(skb, &vlan_tci);
5182 		if (err)
5183 			return err;
5184 	}
5185 	/* move next vlan tag to hw accel tag */
5186 	if (likely(!eth_type_vlan(skb->protocol)))
5187 		return 0;
5188 
5189 	vlan_proto = skb->protocol;
5190 	err = __skb_vlan_pop(skb, &vlan_tci);
5191 	if (unlikely(err))
5192 		return err;
5193 
5194 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5195 	return 0;
5196 }
5197 EXPORT_SYMBOL(skb_vlan_pop);
5198 
5199 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5200  * Expects skb->data at mac header.
5201  */
5202 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5203 {
5204 	if (skb_vlan_tag_present(skb)) {
5205 		int offset = skb->data - skb_mac_header(skb);
5206 		int err;
5207 
5208 		if (WARN_ONCE(offset,
5209 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5210 			      offset)) {
5211 			return -EINVAL;
5212 		}
5213 
5214 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5215 					skb_vlan_tag_get(skb));
5216 		if (err)
5217 			return err;
5218 
5219 		skb->protocol = skb->vlan_proto;
5220 		skb->mac_len += VLAN_HLEN;
5221 
5222 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5223 	}
5224 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5225 	return 0;
5226 }
5227 EXPORT_SYMBOL(skb_vlan_push);
5228 
5229 /**
5230  * alloc_skb_with_frags - allocate skb with page frags
5231  *
5232  * @header_len: size of linear part
5233  * @data_len: needed length in frags
5234  * @max_page_order: max page order desired.
5235  * @errcode: pointer to error code if any
5236  * @gfp_mask: allocation mask
5237  *
5238  * This can be used to allocate a paged skb, given a maximal order for frags.
5239  */
5240 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5241 				     unsigned long data_len,
5242 				     int max_page_order,
5243 				     int *errcode,
5244 				     gfp_t gfp_mask)
5245 {
5246 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5247 	unsigned long chunk;
5248 	struct sk_buff *skb;
5249 	struct page *page;
5250 	gfp_t gfp_head;
5251 	int i;
5252 
5253 	*errcode = -EMSGSIZE;
5254 	/* Note this test could be relaxed, if we succeed to allocate
5255 	 * high order pages...
5256 	 */
5257 	if (npages > MAX_SKB_FRAGS)
5258 		return NULL;
5259 
5260 	gfp_head = gfp_mask;
5261 	if (gfp_head & __GFP_DIRECT_RECLAIM)
5262 		gfp_head |= __GFP_RETRY_MAYFAIL;
5263 
5264 	*errcode = -ENOBUFS;
5265 	skb = alloc_skb(header_len, gfp_head);
5266 	if (!skb)
5267 		return NULL;
5268 
5269 	skb->truesize += npages << PAGE_SHIFT;
5270 
5271 	for (i = 0; npages > 0; i++) {
5272 		int order = max_page_order;
5273 
5274 		while (order) {
5275 			if (npages >= 1 << order) {
5276 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5277 						   __GFP_COMP |
5278 						   __GFP_NOWARN |
5279 						   __GFP_NORETRY,
5280 						   order);
5281 				if (page)
5282 					goto fill_page;
5283 				/* Do not retry other high order allocations */
5284 				order = 1;
5285 				max_page_order = 0;
5286 			}
5287 			order--;
5288 		}
5289 		page = alloc_page(gfp_mask);
5290 		if (!page)
5291 			goto failure;
5292 fill_page:
5293 		chunk = min_t(unsigned long, data_len,
5294 			      PAGE_SIZE << order);
5295 		skb_fill_page_desc(skb, i, page, 0, chunk);
5296 		data_len -= chunk;
5297 		npages -= 1 << order;
5298 	}
5299 	return skb;
5300 
5301 failure:
5302 	kfree_skb(skb);
5303 	return NULL;
5304 }
5305 EXPORT_SYMBOL(alloc_skb_with_frags);
5306 
5307 /* carve out the first off bytes from skb when off < headlen */
5308 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5309 				    const int headlen, gfp_t gfp_mask)
5310 {
5311 	int i;
5312 	int size = skb_end_offset(skb);
5313 	int new_hlen = headlen - off;
5314 	u8 *data;
5315 
5316 	size = SKB_DATA_ALIGN(size);
5317 
5318 	if (skb_pfmemalloc(skb))
5319 		gfp_mask |= __GFP_MEMALLOC;
5320 	data = kmalloc_reserve(size +
5321 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5322 			       gfp_mask, NUMA_NO_NODE, NULL);
5323 	if (!data)
5324 		return -ENOMEM;
5325 
5326 	size = SKB_WITH_OVERHEAD(ksize(data));
5327 
5328 	/* Copy real data, and all frags */
5329 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5330 	skb->len -= off;
5331 
5332 	memcpy((struct skb_shared_info *)(data + size),
5333 	       skb_shinfo(skb),
5334 	       offsetof(struct skb_shared_info,
5335 			frags[skb_shinfo(skb)->nr_frags]));
5336 	if (skb_cloned(skb)) {
5337 		/* drop the old head gracefully */
5338 		if (skb_orphan_frags(skb, gfp_mask)) {
5339 			kfree(data);
5340 			return -ENOMEM;
5341 		}
5342 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5343 			skb_frag_ref(skb, i);
5344 		if (skb_has_frag_list(skb))
5345 			skb_clone_fraglist(skb);
5346 		skb_release_data(skb);
5347 	} else {
5348 		/* we can reuse existing recount- all we did was
5349 		 * relocate values
5350 		 */
5351 		skb_free_head(skb);
5352 	}
5353 
5354 	skb->head = data;
5355 	skb->data = data;
5356 	skb->head_frag = 0;
5357 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5358 	skb->end = size;
5359 #else
5360 	skb->end = skb->head + size;
5361 #endif
5362 	skb_set_tail_pointer(skb, skb_headlen(skb));
5363 	skb_headers_offset_update(skb, 0);
5364 	skb->cloned = 0;
5365 	skb->hdr_len = 0;
5366 	skb->nohdr = 0;
5367 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5368 
5369 	return 0;
5370 }
5371 
5372 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5373 
5374 /* carve out the first eat bytes from skb's frag_list. May recurse into
5375  * pskb_carve()
5376  */
5377 static int pskb_carve_frag_list(struct sk_buff *skb,
5378 				struct skb_shared_info *shinfo, int eat,
5379 				gfp_t gfp_mask)
5380 {
5381 	struct sk_buff *list = shinfo->frag_list;
5382 	struct sk_buff *clone = NULL;
5383 	struct sk_buff *insp = NULL;
5384 
5385 	do {
5386 		if (!list) {
5387 			pr_err("Not enough bytes to eat. Want %d\n", eat);
5388 			return -EFAULT;
5389 		}
5390 		if (list->len <= eat) {
5391 			/* Eaten as whole. */
5392 			eat -= list->len;
5393 			list = list->next;
5394 			insp = list;
5395 		} else {
5396 			/* Eaten partially. */
5397 			if (skb_shared(list)) {
5398 				clone = skb_clone(list, gfp_mask);
5399 				if (!clone)
5400 					return -ENOMEM;
5401 				insp = list->next;
5402 				list = clone;
5403 			} else {
5404 				/* This may be pulled without problems. */
5405 				insp = list;
5406 			}
5407 			if (pskb_carve(list, eat, gfp_mask) < 0) {
5408 				kfree_skb(clone);
5409 				return -ENOMEM;
5410 			}
5411 			break;
5412 		}
5413 	} while (eat);
5414 
5415 	/* Free pulled out fragments. */
5416 	while ((list = shinfo->frag_list) != insp) {
5417 		shinfo->frag_list = list->next;
5418 		kfree_skb(list);
5419 	}
5420 	/* And insert new clone at head. */
5421 	if (clone) {
5422 		clone->next = list;
5423 		shinfo->frag_list = clone;
5424 	}
5425 	return 0;
5426 }
5427 
5428 /* carve off first len bytes from skb. Split line (off) is in the
5429  * non-linear part of skb
5430  */
5431 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5432 				       int pos, gfp_t gfp_mask)
5433 {
5434 	int i, k = 0;
5435 	int size = skb_end_offset(skb);
5436 	u8 *data;
5437 	const int nfrags = skb_shinfo(skb)->nr_frags;
5438 	struct skb_shared_info *shinfo;
5439 
5440 	size = SKB_DATA_ALIGN(size);
5441 
5442 	if (skb_pfmemalloc(skb))
5443 		gfp_mask |= __GFP_MEMALLOC;
5444 	data = kmalloc_reserve(size +
5445 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5446 			       gfp_mask, NUMA_NO_NODE, NULL);
5447 	if (!data)
5448 		return -ENOMEM;
5449 
5450 	size = SKB_WITH_OVERHEAD(ksize(data));
5451 
5452 	memcpy((struct skb_shared_info *)(data + size),
5453 	       skb_shinfo(skb), offsetof(struct skb_shared_info,
5454 					 frags[skb_shinfo(skb)->nr_frags]));
5455 	if (skb_orphan_frags(skb, gfp_mask)) {
5456 		kfree(data);
5457 		return -ENOMEM;
5458 	}
5459 	shinfo = (struct skb_shared_info *)(data + size);
5460 	for (i = 0; i < nfrags; i++) {
5461 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5462 
5463 		if (pos + fsize > off) {
5464 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5465 
5466 			if (pos < off) {
5467 				/* Split frag.
5468 				 * We have two variants in this case:
5469 				 * 1. Move all the frag to the second
5470 				 *    part, if it is possible. F.e.
5471 				 *    this approach is mandatory for TUX,
5472 				 *    where splitting is expensive.
5473 				 * 2. Split is accurately. We make this.
5474 				 */
5475 				shinfo->frags[0].page_offset += off - pos;
5476 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
5477 			}
5478 			skb_frag_ref(skb, i);
5479 			k++;
5480 		}
5481 		pos += fsize;
5482 	}
5483 	shinfo->nr_frags = k;
5484 	if (skb_has_frag_list(skb))
5485 		skb_clone_fraglist(skb);
5486 
5487 	if (k == 0) {
5488 		/* split line is in frag list */
5489 		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5490 	}
5491 	skb_release_data(skb);
5492 
5493 	skb->head = data;
5494 	skb->head_frag = 0;
5495 	skb->data = data;
5496 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5497 	skb->end = size;
5498 #else
5499 	skb->end = skb->head + size;
5500 #endif
5501 	skb_reset_tail_pointer(skb);
5502 	skb_headers_offset_update(skb, 0);
5503 	skb->cloned   = 0;
5504 	skb->hdr_len  = 0;
5505 	skb->nohdr    = 0;
5506 	skb->len -= off;
5507 	skb->data_len = skb->len;
5508 	atomic_set(&skb_shinfo(skb)->dataref, 1);
5509 	return 0;
5510 }
5511 
5512 /* remove len bytes from the beginning of the skb */
5513 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5514 {
5515 	int headlen = skb_headlen(skb);
5516 
5517 	if (len < headlen)
5518 		return pskb_carve_inside_header(skb, len, headlen, gfp);
5519 	else
5520 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5521 }
5522 
5523 /* Extract to_copy bytes starting at off from skb, and return this in
5524  * a new skb
5525  */
5526 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5527 			     int to_copy, gfp_t gfp)
5528 {
5529 	struct sk_buff  *clone = skb_clone(skb, gfp);
5530 
5531 	if (!clone)
5532 		return NULL;
5533 
5534 	if (pskb_carve(clone, off, gfp) < 0 ||
5535 	    pskb_trim(clone, to_copy)) {
5536 		kfree_skb(clone);
5537 		return NULL;
5538 	}
5539 	return clone;
5540 }
5541 EXPORT_SYMBOL(pskb_extract);
5542 
5543 /**
5544  * skb_condense - try to get rid of fragments/frag_list if possible
5545  * @skb: buffer
5546  *
5547  * Can be used to save memory before skb is added to a busy queue.
5548  * If packet has bytes in frags and enough tail room in skb->head,
5549  * pull all of them, so that we can free the frags right now and adjust
5550  * truesize.
5551  * Notes:
5552  *	We do not reallocate skb->head thus can not fail.
5553  *	Caller must re-evaluate skb->truesize if needed.
5554  */
5555 void skb_condense(struct sk_buff *skb)
5556 {
5557 	if (skb->data_len) {
5558 		if (skb->data_len > skb->end - skb->tail ||
5559 		    skb_cloned(skb))
5560 			return;
5561 
5562 		/* Nice, we can free page frag(s) right now */
5563 		__pskb_pull_tail(skb, skb->data_len);
5564 	}
5565 	/* At this point, skb->truesize might be over estimated,
5566 	 * because skb had a fragment, and fragments do not tell
5567 	 * their truesize.
5568 	 * When we pulled its content into skb->head, fragment
5569 	 * was freed, but __pskb_pull_tail() could not possibly
5570 	 * adjust skb->truesize, not knowing the frag truesize.
5571 	 */
5572 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5573 }
5574