xref: /linux/net/core/skbuff.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
61 
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
73 
74 /*
75  *	Keep out-of-line to prevent kernel bloat.
76  *	__builtin_return_address is not used because it is not always
77  *	reliable.
78  */
79 
80 /**
81  *	skb_over_panic	- 	private function
82  *	@skb: buffer
83  *	@sz: size
84  *	@here: address
85  *
86  *	Out of line support code for skb_put(). Not user callable.
87  */
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 {
90 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 	                  "data:%p tail:%p end:%p dev:%s\n",
92 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 	       skb->dev ? skb->dev->name : "<NULL>");
94 	BUG();
95 }
96 
97 /**
98  *	skb_under_panic	- 	private function
99  *	@skb: buffer
100  *	@sz: size
101  *	@here: address
102  *
103  *	Out of line support code for skb_push(). Not user callable.
104  */
105 
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 {
108 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 	                  "data:%p tail:%p end:%p dev:%s\n",
110 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 	       skb->dev ? skb->dev->name : "<NULL>");
112 	BUG();
113 }
114 
115 void skb_truesize_bug(struct sk_buff *skb)
116 {
117 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
118 	       "len=%u, sizeof(sk_buff)=%Zd\n",
119 	       skb->truesize, skb->len, sizeof(struct sk_buff));
120 }
121 EXPORT_SYMBOL(skb_truesize_bug);
122 
123 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
124  *	'private' fields and also do memory statistics to find all the
125  *	[BEEP] leaks.
126  *
127  */
128 
129 /**
130  *	__alloc_skb	-	allocate a network buffer
131  *	@size: size to allocate
132  *	@gfp_mask: allocation mask
133  *	@fclone: allocate from fclone cache instead of head cache
134  *		and allocate a cloned (child) skb
135  *
136  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
137  *	tail room of size bytes. The object has a reference count of one.
138  *	The return is the buffer. On a failure the return is %NULL.
139  *
140  *	Buffers may only be allocated from interrupts using a @gfp_mask of
141  *	%GFP_ATOMIC.
142  */
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 			    int fclone)
145 {
146 	kmem_cache_t *cache;
147 	struct skb_shared_info *shinfo;
148 	struct sk_buff *skb;
149 	u8 *data;
150 
151 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
152 
153 	/* Get the HEAD */
154 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
155 	if (!skb)
156 		goto out;
157 
158 	/* Get the DATA. Size must match skb_add_mtu(). */
159 	size = SKB_DATA_ALIGN(size);
160 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
161 	if (!data)
162 		goto nodata;
163 
164 	memset(skb, 0, offsetof(struct sk_buff, truesize));
165 	skb->truesize = size + sizeof(struct sk_buff);
166 	atomic_set(&skb->users, 1);
167 	skb->head = data;
168 	skb->data = data;
169 	skb->tail = data;
170 	skb->end  = data + size;
171 	/* make sure we initialize shinfo sequentially */
172 	shinfo = skb_shinfo(skb);
173 	atomic_set(&shinfo->dataref, 1);
174 	shinfo->nr_frags  = 0;
175 	shinfo->tso_size = 0;
176 	shinfo->tso_segs = 0;
177 	shinfo->ufo_size = 0;
178 	shinfo->ip6_frag_id = 0;
179 	shinfo->frag_list = NULL;
180 
181 	if (fclone) {
182 		struct sk_buff *child = skb + 1;
183 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
184 
185 		skb->fclone = SKB_FCLONE_ORIG;
186 		atomic_set(fclone_ref, 1);
187 
188 		child->fclone = SKB_FCLONE_UNAVAILABLE;
189 	}
190 out:
191 	return skb;
192 nodata:
193 	kmem_cache_free(cache, skb);
194 	skb = NULL;
195 	goto out;
196 }
197 
198 /**
199  *	alloc_skb_from_cache	-	allocate a network buffer
200  *	@cp: kmem_cache from which to allocate the data area
201  *           (object size must be big enough for @size bytes + skb overheads)
202  *	@size: size to allocate
203  *	@gfp_mask: allocation mask
204  *
205  *	Allocate a new &sk_buff. The returned buffer has no headroom and
206  *	tail room of size bytes. The object has a reference count of one.
207  *	The return is the buffer. On a failure the return is %NULL.
208  *
209  *	Buffers may only be allocated from interrupts using a @gfp_mask of
210  *	%GFP_ATOMIC.
211  */
212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
213 				     unsigned int size,
214 				     gfp_t gfp_mask)
215 {
216 	struct sk_buff *skb;
217 	u8 *data;
218 
219 	/* Get the HEAD */
220 	skb = kmem_cache_alloc(skbuff_head_cache,
221 			       gfp_mask & ~__GFP_DMA);
222 	if (!skb)
223 		goto out;
224 
225 	/* Get the DATA. */
226 	size = SKB_DATA_ALIGN(size);
227 	data = kmem_cache_alloc(cp, gfp_mask);
228 	if (!data)
229 		goto nodata;
230 
231 	memset(skb, 0, offsetof(struct sk_buff, truesize));
232 	skb->truesize = size + sizeof(struct sk_buff);
233 	atomic_set(&skb->users, 1);
234 	skb->head = data;
235 	skb->data = data;
236 	skb->tail = data;
237 	skb->end  = data + size;
238 
239 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
240 	skb_shinfo(skb)->nr_frags  = 0;
241 	skb_shinfo(skb)->tso_size = 0;
242 	skb_shinfo(skb)->tso_segs = 0;
243 	skb_shinfo(skb)->frag_list = NULL;
244 out:
245 	return skb;
246 nodata:
247 	kmem_cache_free(skbuff_head_cache, skb);
248 	skb = NULL;
249 	goto out;
250 }
251 
252 
253 static void skb_drop_fraglist(struct sk_buff *skb)
254 {
255 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
256 
257 	skb_shinfo(skb)->frag_list = NULL;
258 
259 	do {
260 		struct sk_buff *this = list;
261 		list = list->next;
262 		kfree_skb(this);
263 	} while (list);
264 }
265 
266 static void skb_clone_fraglist(struct sk_buff *skb)
267 {
268 	struct sk_buff *list;
269 
270 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
271 		skb_get(list);
272 }
273 
274 void skb_release_data(struct sk_buff *skb)
275 {
276 	if (!skb->cloned ||
277 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
278 			       &skb_shinfo(skb)->dataref)) {
279 		if (skb_shinfo(skb)->nr_frags) {
280 			int i;
281 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
282 				put_page(skb_shinfo(skb)->frags[i].page);
283 		}
284 
285 		if (skb_shinfo(skb)->frag_list)
286 			skb_drop_fraglist(skb);
287 
288 		kfree(skb->head);
289 	}
290 }
291 
292 /*
293  *	Free an skbuff by memory without cleaning the state.
294  */
295 void kfree_skbmem(struct sk_buff *skb)
296 {
297 	struct sk_buff *other;
298 	atomic_t *fclone_ref;
299 
300 	skb_release_data(skb);
301 	switch (skb->fclone) {
302 	case SKB_FCLONE_UNAVAILABLE:
303 		kmem_cache_free(skbuff_head_cache, skb);
304 		break;
305 
306 	case SKB_FCLONE_ORIG:
307 		fclone_ref = (atomic_t *) (skb + 2);
308 		if (atomic_dec_and_test(fclone_ref))
309 			kmem_cache_free(skbuff_fclone_cache, skb);
310 		break;
311 
312 	case SKB_FCLONE_CLONE:
313 		fclone_ref = (atomic_t *) (skb + 1);
314 		other = skb - 1;
315 
316 		/* The clone portion is available for
317 		 * fast-cloning again.
318 		 */
319 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
320 
321 		if (atomic_dec_and_test(fclone_ref))
322 			kmem_cache_free(skbuff_fclone_cache, other);
323 		break;
324 	};
325 }
326 
327 /**
328  *	__kfree_skb - private function
329  *	@skb: buffer
330  *
331  *	Free an sk_buff. Release anything attached to the buffer.
332  *	Clean the state. This is an internal helper function. Users should
333  *	always call kfree_skb
334  */
335 
336 void __kfree_skb(struct sk_buff *skb)
337 {
338 	dst_release(skb->dst);
339 #ifdef CONFIG_XFRM
340 	secpath_put(skb->sp);
341 #endif
342 	if (skb->destructor) {
343 		WARN_ON(in_irq());
344 		skb->destructor(skb);
345 	}
346 #ifdef CONFIG_NETFILTER
347 	nf_conntrack_put(skb->nfct);
348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
349 	nf_conntrack_put_reasm(skb->nfct_reasm);
350 #endif
351 #ifdef CONFIG_BRIDGE_NETFILTER
352 	nf_bridge_put(skb->nf_bridge);
353 #endif
354 #endif
355 /* XXX: IS this still necessary? - JHS */
356 #ifdef CONFIG_NET_SCHED
357 	skb->tc_index = 0;
358 #ifdef CONFIG_NET_CLS_ACT
359 	skb->tc_verd = 0;
360 #endif
361 #endif
362 
363 	kfree_skbmem(skb);
364 }
365 
366 /**
367  *	kfree_skb - free an sk_buff
368  *	@skb: buffer to free
369  *
370  *	Drop a reference to the buffer and free it if the usage count has
371  *	hit zero.
372  */
373 void kfree_skb(struct sk_buff *skb)
374 {
375 	if (unlikely(!skb))
376 		return;
377 	if (likely(atomic_read(&skb->users) == 1))
378 		smp_rmb();
379 	else if (likely(!atomic_dec_and_test(&skb->users)))
380 		return;
381 	__kfree_skb(skb);
382 }
383 
384 /**
385  *	skb_clone	-	duplicate an sk_buff
386  *	@skb: buffer to clone
387  *	@gfp_mask: allocation priority
388  *
389  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
390  *	copies share the same packet data but not structure. The new
391  *	buffer has a reference count of 1. If the allocation fails the
392  *	function returns %NULL otherwise the new buffer is returned.
393  *
394  *	If this function is called from an interrupt gfp_mask() must be
395  *	%GFP_ATOMIC.
396  */
397 
398 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
399 {
400 	struct sk_buff *n;
401 
402 	n = skb + 1;
403 	if (skb->fclone == SKB_FCLONE_ORIG &&
404 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
405 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
406 		n->fclone = SKB_FCLONE_CLONE;
407 		atomic_inc(fclone_ref);
408 	} else {
409 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
410 		if (!n)
411 			return NULL;
412 		n->fclone = SKB_FCLONE_UNAVAILABLE;
413 	}
414 
415 #define C(x) n->x = skb->x
416 
417 	n->next = n->prev = NULL;
418 	n->sk = NULL;
419 	C(tstamp);
420 	C(dev);
421 	C(h);
422 	C(nh);
423 	C(mac);
424 	C(dst);
425 	dst_clone(skb->dst);
426 	C(sp);
427 #ifdef CONFIG_INET
428 	secpath_get(skb->sp);
429 #endif
430 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
431 	C(len);
432 	C(data_len);
433 	C(csum);
434 	C(local_df);
435 	n->cloned = 1;
436 	n->nohdr = 0;
437 	C(pkt_type);
438 	C(ip_summed);
439 	C(priority);
440 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
441 	C(ipvs_property);
442 #endif
443 	C(protocol);
444 	n->destructor = NULL;
445 #ifdef CONFIG_NETFILTER
446 	C(nfmark);
447 	C(nfct);
448 	nf_conntrack_get(skb->nfct);
449 	C(nfctinfo);
450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
451 	C(nfct_reasm);
452 	nf_conntrack_get_reasm(skb->nfct_reasm);
453 #endif
454 #ifdef CONFIG_BRIDGE_NETFILTER
455 	C(nf_bridge);
456 	nf_bridge_get(skb->nf_bridge);
457 #endif
458 #endif /*CONFIG_NETFILTER*/
459 #ifdef CONFIG_NET_SCHED
460 	C(tc_index);
461 #ifdef CONFIG_NET_CLS_ACT
462 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
463 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
464 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
465 	C(input_dev);
466 #endif
467 	skb_copy_secmark(n, skb);
468 #endif
469 	C(truesize);
470 	atomic_set(&n->users, 1);
471 	C(head);
472 	C(data);
473 	C(tail);
474 	C(end);
475 
476 	atomic_inc(&(skb_shinfo(skb)->dataref));
477 	skb->cloned = 1;
478 
479 	return n;
480 }
481 
482 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
483 {
484 	/*
485 	 *	Shift between the two data areas in bytes
486 	 */
487 	unsigned long offset = new->data - old->data;
488 
489 	new->sk		= NULL;
490 	new->dev	= old->dev;
491 	new->priority	= old->priority;
492 	new->protocol	= old->protocol;
493 	new->dst	= dst_clone(old->dst);
494 #ifdef CONFIG_INET
495 	new->sp		= secpath_get(old->sp);
496 #endif
497 	new->h.raw	= old->h.raw + offset;
498 	new->nh.raw	= old->nh.raw + offset;
499 	new->mac.raw	= old->mac.raw + offset;
500 	memcpy(new->cb, old->cb, sizeof(old->cb));
501 	new->local_df	= old->local_df;
502 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
503 	new->pkt_type	= old->pkt_type;
504 	new->tstamp	= old->tstamp;
505 	new->destructor = NULL;
506 #ifdef CONFIG_NETFILTER
507 	new->nfmark	= old->nfmark;
508 	new->nfct	= old->nfct;
509 	nf_conntrack_get(old->nfct);
510 	new->nfctinfo	= old->nfctinfo;
511 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
512 	new->nfct_reasm = old->nfct_reasm;
513 	nf_conntrack_get_reasm(old->nfct_reasm);
514 #endif
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 	new->ipvs_property = old->ipvs_property;
517 #endif
518 #ifdef CONFIG_BRIDGE_NETFILTER
519 	new->nf_bridge	= old->nf_bridge;
520 	nf_bridge_get(old->nf_bridge);
521 #endif
522 #endif
523 #ifdef CONFIG_NET_SCHED
524 #ifdef CONFIG_NET_CLS_ACT
525 	new->tc_verd = old->tc_verd;
526 #endif
527 	new->tc_index	= old->tc_index;
528 #endif
529 	skb_copy_secmark(new, old);
530 	atomic_set(&new->users, 1);
531 	skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
532 	skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
533 }
534 
535 /**
536  *	skb_copy	-	create private copy of an sk_buff
537  *	@skb: buffer to copy
538  *	@gfp_mask: allocation priority
539  *
540  *	Make a copy of both an &sk_buff and its data. This is used when the
541  *	caller wishes to modify the data and needs a private copy of the
542  *	data to alter. Returns %NULL on failure or the pointer to the buffer
543  *	on success. The returned buffer has a reference count of 1.
544  *
545  *	As by-product this function converts non-linear &sk_buff to linear
546  *	one, so that &sk_buff becomes completely private and caller is allowed
547  *	to modify all the data of returned buffer. This means that this
548  *	function is not recommended for use in circumstances when only
549  *	header is going to be modified. Use pskb_copy() instead.
550  */
551 
552 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
553 {
554 	int headerlen = skb->data - skb->head;
555 	/*
556 	 *	Allocate the copy buffer
557 	 */
558 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
559 				      gfp_mask);
560 	if (!n)
561 		return NULL;
562 
563 	/* Set the data pointer */
564 	skb_reserve(n, headerlen);
565 	/* Set the tail pointer and length */
566 	skb_put(n, skb->len);
567 	n->csum	     = skb->csum;
568 	n->ip_summed = skb->ip_summed;
569 
570 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
571 		BUG();
572 
573 	copy_skb_header(n, skb);
574 	return n;
575 }
576 
577 
578 /**
579  *	pskb_copy	-	create copy of an sk_buff with private head.
580  *	@skb: buffer to copy
581  *	@gfp_mask: allocation priority
582  *
583  *	Make a copy of both an &sk_buff and part of its data, located
584  *	in header. Fragmented data remain shared. This is used when
585  *	the caller wishes to modify only header of &sk_buff and needs
586  *	private copy of the header to alter. Returns %NULL on failure
587  *	or the pointer to the buffer on success.
588  *	The returned buffer has a reference count of 1.
589  */
590 
591 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
592 {
593 	/*
594 	 *	Allocate the copy buffer
595 	 */
596 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
597 
598 	if (!n)
599 		goto out;
600 
601 	/* Set the data pointer */
602 	skb_reserve(n, skb->data - skb->head);
603 	/* Set the tail pointer and length */
604 	skb_put(n, skb_headlen(skb));
605 	/* Copy the bytes */
606 	memcpy(n->data, skb->data, n->len);
607 	n->csum	     = skb->csum;
608 	n->ip_summed = skb->ip_summed;
609 
610 	n->data_len  = skb->data_len;
611 	n->len	     = skb->len;
612 
613 	if (skb_shinfo(skb)->nr_frags) {
614 		int i;
615 
616 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
617 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
618 			get_page(skb_shinfo(n)->frags[i].page);
619 		}
620 		skb_shinfo(n)->nr_frags = i;
621 	}
622 
623 	if (skb_shinfo(skb)->frag_list) {
624 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
625 		skb_clone_fraglist(n);
626 	}
627 
628 	copy_skb_header(n, skb);
629 out:
630 	return n;
631 }
632 
633 /**
634  *	pskb_expand_head - reallocate header of &sk_buff
635  *	@skb: buffer to reallocate
636  *	@nhead: room to add at head
637  *	@ntail: room to add at tail
638  *	@gfp_mask: allocation priority
639  *
640  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
641  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
642  *	reference count of 1. Returns zero in the case of success or error,
643  *	if expansion failed. In the last case, &sk_buff is not changed.
644  *
645  *	All the pointers pointing into skb header may change and must be
646  *	reloaded after call to this function.
647  */
648 
649 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
650 		     gfp_t gfp_mask)
651 {
652 	int i;
653 	u8 *data;
654 	int size = nhead + (skb->end - skb->head) + ntail;
655 	long off;
656 
657 	if (skb_shared(skb))
658 		BUG();
659 
660 	size = SKB_DATA_ALIGN(size);
661 
662 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
663 	if (!data)
664 		goto nodata;
665 
666 	/* Copy only real data... and, alas, header. This should be
667 	 * optimized for the cases when header is void. */
668 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
669 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
670 
671 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
672 		get_page(skb_shinfo(skb)->frags[i].page);
673 
674 	if (skb_shinfo(skb)->frag_list)
675 		skb_clone_fraglist(skb);
676 
677 	skb_release_data(skb);
678 
679 	off = (data + nhead) - skb->head;
680 
681 	skb->head     = data;
682 	skb->end      = data + size;
683 	skb->data    += off;
684 	skb->tail    += off;
685 	skb->mac.raw += off;
686 	skb->h.raw   += off;
687 	skb->nh.raw  += off;
688 	skb->cloned   = 0;
689 	skb->nohdr    = 0;
690 	atomic_set(&skb_shinfo(skb)->dataref, 1);
691 	return 0;
692 
693 nodata:
694 	return -ENOMEM;
695 }
696 
697 /* Make private copy of skb with writable head and some headroom */
698 
699 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
700 {
701 	struct sk_buff *skb2;
702 	int delta = headroom - skb_headroom(skb);
703 
704 	if (delta <= 0)
705 		skb2 = pskb_copy(skb, GFP_ATOMIC);
706 	else {
707 		skb2 = skb_clone(skb, GFP_ATOMIC);
708 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
709 					     GFP_ATOMIC)) {
710 			kfree_skb(skb2);
711 			skb2 = NULL;
712 		}
713 	}
714 	return skb2;
715 }
716 
717 
718 /**
719  *	skb_copy_expand	-	copy and expand sk_buff
720  *	@skb: buffer to copy
721  *	@newheadroom: new free bytes at head
722  *	@newtailroom: new free bytes at tail
723  *	@gfp_mask: allocation priority
724  *
725  *	Make a copy of both an &sk_buff and its data and while doing so
726  *	allocate additional space.
727  *
728  *	This is used when the caller wishes to modify the data and needs a
729  *	private copy of the data to alter as well as more space for new fields.
730  *	Returns %NULL on failure or the pointer to the buffer
731  *	on success. The returned buffer has a reference count of 1.
732  *
733  *	You must pass %GFP_ATOMIC as the allocation priority if this function
734  *	is called from an interrupt.
735  *
736  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
737  *	only by netfilter in the cases when checksum is recalculated? --ANK
738  */
739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
740 				int newheadroom, int newtailroom,
741 				gfp_t gfp_mask)
742 {
743 	/*
744 	 *	Allocate the copy buffer
745 	 */
746 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
747 				      gfp_mask);
748 	int head_copy_len, head_copy_off;
749 
750 	if (!n)
751 		return NULL;
752 
753 	skb_reserve(n, newheadroom);
754 
755 	/* Set the tail pointer and length */
756 	skb_put(n, skb->len);
757 
758 	head_copy_len = skb_headroom(skb);
759 	head_copy_off = 0;
760 	if (newheadroom <= head_copy_len)
761 		head_copy_len = newheadroom;
762 	else
763 		head_copy_off = newheadroom - head_copy_len;
764 
765 	/* Copy the linear header and data. */
766 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
767 			  skb->len + head_copy_len))
768 		BUG();
769 
770 	copy_skb_header(n, skb);
771 
772 	return n;
773 }
774 
775 /**
776  *	skb_pad			-	zero pad the tail of an skb
777  *	@skb: buffer to pad
778  *	@pad: space to pad
779  *
780  *	Ensure that a buffer is followed by a padding area that is zero
781  *	filled. Used by network drivers which may DMA or transfer data
782  *	beyond the buffer end onto the wire.
783  *
784  *	May return NULL in out of memory cases.
785  */
786 
787 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
788 {
789 	struct sk_buff *nskb;
790 
791 	/* If the skbuff is non linear tailroom is always zero.. */
792 	if (skb_tailroom(skb) >= pad) {
793 		memset(skb->data+skb->len, 0, pad);
794 		return skb;
795 	}
796 
797 	nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
798 	kfree_skb(skb);
799 	if (nskb)
800 		memset(nskb->data+nskb->len, 0, pad);
801 	return nskb;
802 }
803 
804 /* Trims skb to length len. It can change skb pointers.
805  */
806 
807 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
808 {
809 	int offset = skb_headlen(skb);
810 	int nfrags = skb_shinfo(skb)->nr_frags;
811 	int i;
812 
813 	for (i = 0; i < nfrags; i++) {
814 		int end = offset + skb_shinfo(skb)->frags[i].size;
815 		if (end > len) {
816 			if (skb_cloned(skb)) {
817 				if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
818 					return -ENOMEM;
819 			}
820 			if (len <= offset) {
821 				put_page(skb_shinfo(skb)->frags[i].page);
822 				skb_shinfo(skb)->nr_frags--;
823 			} else {
824 				skb_shinfo(skb)->frags[i].size = len - offset;
825 			}
826 		}
827 		offset = end;
828 	}
829 
830 	if (offset < len) {
831 		skb->data_len -= skb->len - len;
832 		skb->len       = len;
833 	} else {
834 		if (len <= skb_headlen(skb)) {
835 			skb->len      = len;
836 			skb->data_len = 0;
837 			skb->tail     = skb->data + len;
838 			if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
839 				skb_drop_fraglist(skb);
840 		} else {
841 			skb->data_len -= skb->len - len;
842 			skb->len       = len;
843 		}
844 	}
845 
846 	return 0;
847 }
848 
849 /**
850  *	__pskb_pull_tail - advance tail of skb header
851  *	@skb: buffer to reallocate
852  *	@delta: number of bytes to advance tail
853  *
854  *	The function makes a sense only on a fragmented &sk_buff,
855  *	it expands header moving its tail forward and copying necessary
856  *	data from fragmented part.
857  *
858  *	&sk_buff MUST have reference count of 1.
859  *
860  *	Returns %NULL (and &sk_buff does not change) if pull failed
861  *	or value of new tail of skb in the case of success.
862  *
863  *	All the pointers pointing into skb header may change and must be
864  *	reloaded after call to this function.
865  */
866 
867 /* Moves tail of skb head forward, copying data from fragmented part,
868  * when it is necessary.
869  * 1. It may fail due to malloc failure.
870  * 2. It may change skb pointers.
871  *
872  * It is pretty complicated. Luckily, it is called only in exceptional cases.
873  */
874 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
875 {
876 	/* If skb has not enough free space at tail, get new one
877 	 * plus 128 bytes for future expansions. If we have enough
878 	 * room at tail, reallocate without expansion only if skb is cloned.
879 	 */
880 	int i, k, eat = (skb->tail + delta) - skb->end;
881 
882 	if (eat > 0 || skb_cloned(skb)) {
883 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
884 				     GFP_ATOMIC))
885 			return NULL;
886 	}
887 
888 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
889 		BUG();
890 
891 	/* Optimization: no fragments, no reasons to preestimate
892 	 * size of pulled pages. Superb.
893 	 */
894 	if (!skb_shinfo(skb)->frag_list)
895 		goto pull_pages;
896 
897 	/* Estimate size of pulled pages. */
898 	eat = delta;
899 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
900 		if (skb_shinfo(skb)->frags[i].size >= eat)
901 			goto pull_pages;
902 		eat -= skb_shinfo(skb)->frags[i].size;
903 	}
904 
905 	/* If we need update frag list, we are in troubles.
906 	 * Certainly, it possible to add an offset to skb data,
907 	 * but taking into account that pulling is expected to
908 	 * be very rare operation, it is worth to fight against
909 	 * further bloating skb head and crucify ourselves here instead.
910 	 * Pure masohism, indeed. 8)8)
911 	 */
912 	if (eat) {
913 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
914 		struct sk_buff *clone = NULL;
915 		struct sk_buff *insp = NULL;
916 
917 		do {
918 			BUG_ON(!list);
919 
920 			if (list->len <= eat) {
921 				/* Eaten as whole. */
922 				eat -= list->len;
923 				list = list->next;
924 				insp = list;
925 			} else {
926 				/* Eaten partially. */
927 
928 				if (skb_shared(list)) {
929 					/* Sucks! We need to fork list. :-( */
930 					clone = skb_clone(list, GFP_ATOMIC);
931 					if (!clone)
932 						return NULL;
933 					insp = list->next;
934 					list = clone;
935 				} else {
936 					/* This may be pulled without
937 					 * problems. */
938 					insp = list;
939 				}
940 				if (!pskb_pull(list, eat)) {
941 					if (clone)
942 						kfree_skb(clone);
943 					return NULL;
944 				}
945 				break;
946 			}
947 		} while (eat);
948 
949 		/* Free pulled out fragments. */
950 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
951 			skb_shinfo(skb)->frag_list = list->next;
952 			kfree_skb(list);
953 		}
954 		/* And insert new clone at head. */
955 		if (clone) {
956 			clone->next = list;
957 			skb_shinfo(skb)->frag_list = clone;
958 		}
959 	}
960 	/* Success! Now we may commit changes to skb data. */
961 
962 pull_pages:
963 	eat = delta;
964 	k = 0;
965 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
966 		if (skb_shinfo(skb)->frags[i].size <= eat) {
967 			put_page(skb_shinfo(skb)->frags[i].page);
968 			eat -= skb_shinfo(skb)->frags[i].size;
969 		} else {
970 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
971 			if (eat) {
972 				skb_shinfo(skb)->frags[k].page_offset += eat;
973 				skb_shinfo(skb)->frags[k].size -= eat;
974 				eat = 0;
975 			}
976 			k++;
977 		}
978 	}
979 	skb_shinfo(skb)->nr_frags = k;
980 
981 	skb->tail     += delta;
982 	skb->data_len -= delta;
983 
984 	return skb->tail;
985 }
986 
987 /* Copy some data bits from skb to kernel buffer. */
988 
989 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
990 {
991 	int i, copy;
992 	int start = skb_headlen(skb);
993 
994 	if (offset > (int)skb->len - len)
995 		goto fault;
996 
997 	/* Copy header. */
998 	if ((copy = start - offset) > 0) {
999 		if (copy > len)
1000 			copy = len;
1001 		memcpy(to, skb->data + offset, copy);
1002 		if ((len -= copy) == 0)
1003 			return 0;
1004 		offset += copy;
1005 		to     += copy;
1006 	}
1007 
1008 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1009 		int end;
1010 
1011 		BUG_TRAP(start <= offset + len);
1012 
1013 		end = start + skb_shinfo(skb)->frags[i].size;
1014 		if ((copy = end - offset) > 0) {
1015 			u8 *vaddr;
1016 
1017 			if (copy > len)
1018 				copy = len;
1019 
1020 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1021 			memcpy(to,
1022 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1023 			       offset - start, copy);
1024 			kunmap_skb_frag(vaddr);
1025 
1026 			if ((len -= copy) == 0)
1027 				return 0;
1028 			offset += copy;
1029 			to     += copy;
1030 		}
1031 		start = end;
1032 	}
1033 
1034 	if (skb_shinfo(skb)->frag_list) {
1035 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1036 
1037 		for (; list; list = list->next) {
1038 			int end;
1039 
1040 			BUG_TRAP(start <= offset + len);
1041 
1042 			end = start + list->len;
1043 			if ((copy = end - offset) > 0) {
1044 				if (copy > len)
1045 					copy = len;
1046 				if (skb_copy_bits(list, offset - start,
1047 						  to, copy))
1048 					goto fault;
1049 				if ((len -= copy) == 0)
1050 					return 0;
1051 				offset += copy;
1052 				to     += copy;
1053 			}
1054 			start = end;
1055 		}
1056 	}
1057 	if (!len)
1058 		return 0;
1059 
1060 fault:
1061 	return -EFAULT;
1062 }
1063 
1064 /**
1065  *	skb_store_bits - store bits from kernel buffer to skb
1066  *	@skb: destination buffer
1067  *	@offset: offset in destination
1068  *	@from: source buffer
1069  *	@len: number of bytes to copy
1070  *
1071  *	Copy the specified number of bytes from the source buffer to the
1072  *	destination skb.  This function handles all the messy bits of
1073  *	traversing fragment lists and such.
1074  */
1075 
1076 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1077 {
1078 	int i, copy;
1079 	int start = skb_headlen(skb);
1080 
1081 	if (offset > (int)skb->len - len)
1082 		goto fault;
1083 
1084 	if ((copy = start - offset) > 0) {
1085 		if (copy > len)
1086 			copy = len;
1087 		memcpy(skb->data + offset, from, copy);
1088 		if ((len -= copy) == 0)
1089 			return 0;
1090 		offset += copy;
1091 		from += copy;
1092 	}
1093 
1094 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1095 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1096 		int end;
1097 
1098 		BUG_TRAP(start <= offset + len);
1099 
1100 		end = start + frag->size;
1101 		if ((copy = end - offset) > 0) {
1102 			u8 *vaddr;
1103 
1104 			if (copy > len)
1105 				copy = len;
1106 
1107 			vaddr = kmap_skb_frag(frag);
1108 			memcpy(vaddr + frag->page_offset + offset - start,
1109 			       from, copy);
1110 			kunmap_skb_frag(vaddr);
1111 
1112 			if ((len -= copy) == 0)
1113 				return 0;
1114 			offset += copy;
1115 			from += copy;
1116 		}
1117 		start = end;
1118 	}
1119 
1120 	if (skb_shinfo(skb)->frag_list) {
1121 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1122 
1123 		for (; list; list = list->next) {
1124 			int end;
1125 
1126 			BUG_TRAP(start <= offset + len);
1127 
1128 			end = start + list->len;
1129 			if ((copy = end - offset) > 0) {
1130 				if (copy > len)
1131 					copy = len;
1132 				if (skb_store_bits(list, offset - start,
1133 						   from, copy))
1134 					goto fault;
1135 				if ((len -= copy) == 0)
1136 					return 0;
1137 				offset += copy;
1138 				from += copy;
1139 			}
1140 			start = end;
1141 		}
1142 	}
1143 	if (!len)
1144 		return 0;
1145 
1146 fault:
1147 	return -EFAULT;
1148 }
1149 
1150 EXPORT_SYMBOL(skb_store_bits);
1151 
1152 /* Checksum skb data. */
1153 
1154 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1155 			  int len, unsigned int csum)
1156 {
1157 	int start = skb_headlen(skb);
1158 	int i, copy = start - offset;
1159 	int pos = 0;
1160 
1161 	/* Checksum header. */
1162 	if (copy > 0) {
1163 		if (copy > len)
1164 			copy = len;
1165 		csum = csum_partial(skb->data + offset, copy, csum);
1166 		if ((len -= copy) == 0)
1167 			return csum;
1168 		offset += copy;
1169 		pos	= copy;
1170 	}
1171 
1172 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1173 		int end;
1174 
1175 		BUG_TRAP(start <= offset + len);
1176 
1177 		end = start + skb_shinfo(skb)->frags[i].size;
1178 		if ((copy = end - offset) > 0) {
1179 			unsigned int csum2;
1180 			u8 *vaddr;
1181 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1182 
1183 			if (copy > len)
1184 				copy = len;
1185 			vaddr = kmap_skb_frag(frag);
1186 			csum2 = csum_partial(vaddr + frag->page_offset +
1187 					     offset - start, copy, 0);
1188 			kunmap_skb_frag(vaddr);
1189 			csum = csum_block_add(csum, csum2, pos);
1190 			if (!(len -= copy))
1191 				return csum;
1192 			offset += copy;
1193 			pos    += copy;
1194 		}
1195 		start = end;
1196 	}
1197 
1198 	if (skb_shinfo(skb)->frag_list) {
1199 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1200 
1201 		for (; list; list = list->next) {
1202 			int end;
1203 
1204 			BUG_TRAP(start <= offset + len);
1205 
1206 			end = start + list->len;
1207 			if ((copy = end - offset) > 0) {
1208 				unsigned int csum2;
1209 				if (copy > len)
1210 					copy = len;
1211 				csum2 = skb_checksum(list, offset - start,
1212 						     copy, 0);
1213 				csum = csum_block_add(csum, csum2, pos);
1214 				if ((len -= copy) == 0)
1215 					return csum;
1216 				offset += copy;
1217 				pos    += copy;
1218 			}
1219 			start = end;
1220 		}
1221 	}
1222 	BUG_ON(len);
1223 
1224 	return csum;
1225 }
1226 
1227 /* Both of above in one bottle. */
1228 
1229 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1230 				    u8 *to, int len, unsigned int csum)
1231 {
1232 	int start = skb_headlen(skb);
1233 	int i, copy = start - offset;
1234 	int pos = 0;
1235 
1236 	/* Copy header. */
1237 	if (copy > 0) {
1238 		if (copy > len)
1239 			copy = len;
1240 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1241 						 copy, csum);
1242 		if ((len -= copy) == 0)
1243 			return csum;
1244 		offset += copy;
1245 		to     += copy;
1246 		pos	= copy;
1247 	}
1248 
1249 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1250 		int end;
1251 
1252 		BUG_TRAP(start <= offset + len);
1253 
1254 		end = start + skb_shinfo(skb)->frags[i].size;
1255 		if ((copy = end - offset) > 0) {
1256 			unsigned int csum2;
1257 			u8 *vaddr;
1258 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259 
1260 			if (copy > len)
1261 				copy = len;
1262 			vaddr = kmap_skb_frag(frag);
1263 			csum2 = csum_partial_copy_nocheck(vaddr +
1264 							  frag->page_offset +
1265 							  offset - start, to,
1266 							  copy, 0);
1267 			kunmap_skb_frag(vaddr);
1268 			csum = csum_block_add(csum, csum2, pos);
1269 			if (!(len -= copy))
1270 				return csum;
1271 			offset += copy;
1272 			to     += copy;
1273 			pos    += copy;
1274 		}
1275 		start = end;
1276 	}
1277 
1278 	if (skb_shinfo(skb)->frag_list) {
1279 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1280 
1281 		for (; list; list = list->next) {
1282 			unsigned int csum2;
1283 			int end;
1284 
1285 			BUG_TRAP(start <= offset + len);
1286 
1287 			end = start + list->len;
1288 			if ((copy = end - offset) > 0) {
1289 				if (copy > len)
1290 					copy = len;
1291 				csum2 = skb_copy_and_csum_bits(list,
1292 							       offset - start,
1293 							       to, copy, 0);
1294 				csum = csum_block_add(csum, csum2, pos);
1295 				if ((len -= copy) == 0)
1296 					return csum;
1297 				offset += copy;
1298 				to     += copy;
1299 				pos    += copy;
1300 			}
1301 			start = end;
1302 		}
1303 	}
1304 	BUG_ON(len);
1305 	return csum;
1306 }
1307 
1308 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1309 {
1310 	unsigned int csum;
1311 	long csstart;
1312 
1313 	if (skb->ip_summed == CHECKSUM_HW)
1314 		csstart = skb->h.raw - skb->data;
1315 	else
1316 		csstart = skb_headlen(skb);
1317 
1318 	BUG_ON(csstart > skb_headlen(skb));
1319 
1320 	memcpy(to, skb->data, csstart);
1321 
1322 	csum = 0;
1323 	if (csstart != skb->len)
1324 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1325 					      skb->len - csstart, 0);
1326 
1327 	if (skb->ip_summed == CHECKSUM_HW) {
1328 		long csstuff = csstart + skb->csum;
1329 
1330 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1331 	}
1332 }
1333 
1334 /**
1335  *	skb_dequeue - remove from the head of the queue
1336  *	@list: list to dequeue from
1337  *
1338  *	Remove the head of the list. The list lock is taken so the function
1339  *	may be used safely with other locking list functions. The head item is
1340  *	returned or %NULL if the list is empty.
1341  */
1342 
1343 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1344 {
1345 	unsigned long flags;
1346 	struct sk_buff *result;
1347 
1348 	spin_lock_irqsave(&list->lock, flags);
1349 	result = __skb_dequeue(list);
1350 	spin_unlock_irqrestore(&list->lock, flags);
1351 	return result;
1352 }
1353 
1354 /**
1355  *	skb_dequeue_tail - remove from the tail of the queue
1356  *	@list: list to dequeue from
1357  *
1358  *	Remove the tail of the list. The list lock is taken so the function
1359  *	may be used safely with other locking list functions. The tail item is
1360  *	returned or %NULL if the list is empty.
1361  */
1362 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1363 {
1364 	unsigned long flags;
1365 	struct sk_buff *result;
1366 
1367 	spin_lock_irqsave(&list->lock, flags);
1368 	result = __skb_dequeue_tail(list);
1369 	spin_unlock_irqrestore(&list->lock, flags);
1370 	return result;
1371 }
1372 
1373 /**
1374  *	skb_queue_purge - empty a list
1375  *	@list: list to empty
1376  *
1377  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1378  *	the list and one reference dropped. This function takes the list
1379  *	lock and is atomic with respect to other list locking functions.
1380  */
1381 void skb_queue_purge(struct sk_buff_head *list)
1382 {
1383 	struct sk_buff *skb;
1384 	while ((skb = skb_dequeue(list)) != NULL)
1385 		kfree_skb(skb);
1386 }
1387 
1388 /**
1389  *	skb_queue_head - queue a buffer at the list head
1390  *	@list: list to use
1391  *	@newsk: buffer to queue
1392  *
1393  *	Queue a buffer at the start of the list. This function takes the
1394  *	list lock and can be used safely with other locking &sk_buff functions
1395  *	safely.
1396  *
1397  *	A buffer cannot be placed on two lists at the same time.
1398  */
1399 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1400 {
1401 	unsigned long flags;
1402 
1403 	spin_lock_irqsave(&list->lock, flags);
1404 	__skb_queue_head(list, newsk);
1405 	spin_unlock_irqrestore(&list->lock, flags);
1406 }
1407 
1408 /**
1409  *	skb_queue_tail - queue a buffer at the list tail
1410  *	@list: list to use
1411  *	@newsk: buffer to queue
1412  *
1413  *	Queue a buffer at the tail of the list. This function takes the
1414  *	list lock and can be used safely with other locking &sk_buff functions
1415  *	safely.
1416  *
1417  *	A buffer cannot be placed on two lists at the same time.
1418  */
1419 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1420 {
1421 	unsigned long flags;
1422 
1423 	spin_lock_irqsave(&list->lock, flags);
1424 	__skb_queue_tail(list, newsk);
1425 	spin_unlock_irqrestore(&list->lock, flags);
1426 }
1427 
1428 /**
1429  *	skb_unlink	-	remove a buffer from a list
1430  *	@skb: buffer to remove
1431  *	@list: list to use
1432  *
1433  *	Remove a packet from a list. The list locks are taken and this
1434  *	function is atomic with respect to other list locked calls
1435  *
1436  *	You must know what list the SKB is on.
1437  */
1438 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1439 {
1440 	unsigned long flags;
1441 
1442 	spin_lock_irqsave(&list->lock, flags);
1443 	__skb_unlink(skb, list);
1444 	spin_unlock_irqrestore(&list->lock, flags);
1445 }
1446 
1447 /**
1448  *	skb_append	-	append a buffer
1449  *	@old: buffer to insert after
1450  *	@newsk: buffer to insert
1451  *	@list: list to use
1452  *
1453  *	Place a packet after a given packet in a list. The list locks are taken
1454  *	and this function is atomic with respect to other list locked calls.
1455  *	A buffer cannot be placed on two lists at the same time.
1456  */
1457 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1458 {
1459 	unsigned long flags;
1460 
1461 	spin_lock_irqsave(&list->lock, flags);
1462 	__skb_append(old, newsk, list);
1463 	spin_unlock_irqrestore(&list->lock, flags);
1464 }
1465 
1466 
1467 /**
1468  *	skb_insert	-	insert a buffer
1469  *	@old: buffer to insert before
1470  *	@newsk: buffer to insert
1471  *	@list: list to use
1472  *
1473  *	Place a packet before a given packet in a list. The list locks are
1474  * 	taken and this function is atomic with respect to other list locked
1475  *	calls.
1476  *
1477  *	A buffer cannot be placed on two lists at the same time.
1478  */
1479 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1480 {
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&list->lock, flags);
1484 	__skb_insert(newsk, old->prev, old, list);
1485 	spin_unlock_irqrestore(&list->lock, flags);
1486 }
1487 
1488 #if 0
1489 /*
1490  * 	Tune the memory allocator for a new MTU size.
1491  */
1492 void skb_add_mtu(int mtu)
1493 {
1494 	/* Must match allocation in alloc_skb */
1495 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1496 
1497 	kmem_add_cache_size(mtu);
1498 }
1499 #endif
1500 
1501 static inline void skb_split_inside_header(struct sk_buff *skb,
1502 					   struct sk_buff* skb1,
1503 					   const u32 len, const int pos)
1504 {
1505 	int i;
1506 
1507 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1508 
1509 	/* And move data appendix as is. */
1510 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1511 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1512 
1513 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1514 	skb_shinfo(skb)->nr_frags  = 0;
1515 	skb1->data_len		   = skb->data_len;
1516 	skb1->len		   += skb1->data_len;
1517 	skb->data_len		   = 0;
1518 	skb->len		   = len;
1519 	skb->tail		   = skb->data + len;
1520 }
1521 
1522 static inline void skb_split_no_header(struct sk_buff *skb,
1523 				       struct sk_buff* skb1,
1524 				       const u32 len, int pos)
1525 {
1526 	int i, k = 0;
1527 	const int nfrags = skb_shinfo(skb)->nr_frags;
1528 
1529 	skb_shinfo(skb)->nr_frags = 0;
1530 	skb1->len		  = skb1->data_len = skb->len - len;
1531 	skb->len		  = len;
1532 	skb->data_len		  = len - pos;
1533 
1534 	for (i = 0; i < nfrags; i++) {
1535 		int size = skb_shinfo(skb)->frags[i].size;
1536 
1537 		if (pos + size > len) {
1538 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1539 
1540 			if (pos < len) {
1541 				/* Split frag.
1542 				 * We have two variants in this case:
1543 				 * 1. Move all the frag to the second
1544 				 *    part, if it is possible. F.e.
1545 				 *    this approach is mandatory for TUX,
1546 				 *    where splitting is expensive.
1547 				 * 2. Split is accurately. We make this.
1548 				 */
1549 				get_page(skb_shinfo(skb)->frags[i].page);
1550 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1551 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1552 				skb_shinfo(skb)->frags[i].size	= len - pos;
1553 				skb_shinfo(skb)->nr_frags++;
1554 			}
1555 			k++;
1556 		} else
1557 			skb_shinfo(skb)->nr_frags++;
1558 		pos += size;
1559 	}
1560 	skb_shinfo(skb1)->nr_frags = k;
1561 }
1562 
1563 /**
1564  * skb_split - Split fragmented skb to two parts at length len.
1565  * @skb: the buffer to split
1566  * @skb1: the buffer to receive the second part
1567  * @len: new length for skb
1568  */
1569 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1570 {
1571 	int pos = skb_headlen(skb);
1572 
1573 	if (len < pos)	/* Split line is inside header. */
1574 		skb_split_inside_header(skb, skb1, len, pos);
1575 	else		/* Second chunk has no header, nothing to copy. */
1576 		skb_split_no_header(skb, skb1, len, pos);
1577 }
1578 
1579 /**
1580  * skb_prepare_seq_read - Prepare a sequential read of skb data
1581  * @skb: the buffer to read
1582  * @from: lower offset of data to be read
1583  * @to: upper offset of data to be read
1584  * @st: state variable
1585  *
1586  * Initializes the specified state variable. Must be called before
1587  * invoking skb_seq_read() for the first time.
1588  */
1589 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1590 			  unsigned int to, struct skb_seq_state *st)
1591 {
1592 	st->lower_offset = from;
1593 	st->upper_offset = to;
1594 	st->root_skb = st->cur_skb = skb;
1595 	st->frag_idx = st->stepped_offset = 0;
1596 	st->frag_data = NULL;
1597 }
1598 
1599 /**
1600  * skb_seq_read - Sequentially read skb data
1601  * @consumed: number of bytes consumed by the caller so far
1602  * @data: destination pointer for data to be returned
1603  * @st: state variable
1604  *
1605  * Reads a block of skb data at &consumed relative to the
1606  * lower offset specified to skb_prepare_seq_read(). Assigns
1607  * the head of the data block to &data and returns the length
1608  * of the block or 0 if the end of the skb data or the upper
1609  * offset has been reached.
1610  *
1611  * The caller is not required to consume all of the data
1612  * returned, i.e. &consumed is typically set to the number
1613  * of bytes already consumed and the next call to
1614  * skb_seq_read() will return the remaining part of the block.
1615  *
1616  * Note: The size of each block of data returned can be arbitary,
1617  *       this limitation is the cost for zerocopy seqeuental
1618  *       reads of potentially non linear data.
1619  *
1620  * Note: Fragment lists within fragments are not implemented
1621  *       at the moment, state->root_skb could be replaced with
1622  *       a stack for this purpose.
1623  */
1624 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1625 			  struct skb_seq_state *st)
1626 {
1627 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1628 	skb_frag_t *frag;
1629 
1630 	if (unlikely(abs_offset >= st->upper_offset))
1631 		return 0;
1632 
1633 next_skb:
1634 	block_limit = skb_headlen(st->cur_skb);
1635 
1636 	if (abs_offset < block_limit) {
1637 		*data = st->cur_skb->data + abs_offset;
1638 		return block_limit - abs_offset;
1639 	}
1640 
1641 	if (st->frag_idx == 0 && !st->frag_data)
1642 		st->stepped_offset += skb_headlen(st->cur_skb);
1643 
1644 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1645 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1646 		block_limit = frag->size + st->stepped_offset;
1647 
1648 		if (abs_offset < block_limit) {
1649 			if (!st->frag_data)
1650 				st->frag_data = kmap_skb_frag(frag);
1651 
1652 			*data = (u8 *) st->frag_data + frag->page_offset +
1653 				(abs_offset - st->stepped_offset);
1654 
1655 			return block_limit - abs_offset;
1656 		}
1657 
1658 		if (st->frag_data) {
1659 			kunmap_skb_frag(st->frag_data);
1660 			st->frag_data = NULL;
1661 		}
1662 
1663 		st->frag_idx++;
1664 		st->stepped_offset += frag->size;
1665 	}
1666 
1667 	if (st->cur_skb->next) {
1668 		st->cur_skb = st->cur_skb->next;
1669 		st->frag_idx = 0;
1670 		goto next_skb;
1671 	} else if (st->root_skb == st->cur_skb &&
1672 		   skb_shinfo(st->root_skb)->frag_list) {
1673 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1674 		goto next_skb;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * skb_abort_seq_read - Abort a sequential read of skb data
1682  * @st: state variable
1683  *
1684  * Must be called if skb_seq_read() was not called until it
1685  * returned 0.
1686  */
1687 void skb_abort_seq_read(struct skb_seq_state *st)
1688 {
1689 	if (st->frag_data)
1690 		kunmap_skb_frag(st->frag_data);
1691 }
1692 
1693 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1694 
1695 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1696 					  struct ts_config *conf,
1697 					  struct ts_state *state)
1698 {
1699 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1700 }
1701 
1702 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1703 {
1704 	skb_abort_seq_read(TS_SKB_CB(state));
1705 }
1706 
1707 /**
1708  * skb_find_text - Find a text pattern in skb data
1709  * @skb: the buffer to look in
1710  * @from: search offset
1711  * @to: search limit
1712  * @config: textsearch configuration
1713  * @state: uninitialized textsearch state variable
1714  *
1715  * Finds a pattern in the skb data according to the specified
1716  * textsearch configuration. Use textsearch_next() to retrieve
1717  * subsequent occurrences of the pattern. Returns the offset
1718  * to the first occurrence or UINT_MAX if no match was found.
1719  */
1720 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1721 			   unsigned int to, struct ts_config *config,
1722 			   struct ts_state *state)
1723 {
1724 	config->get_next_block = skb_ts_get_next_block;
1725 	config->finish = skb_ts_finish;
1726 
1727 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1728 
1729 	return textsearch_find(config, state);
1730 }
1731 
1732 /**
1733  * skb_append_datato_frags: - append the user data to a skb
1734  * @sk: sock  structure
1735  * @skb: skb structure to be appened with user data.
1736  * @getfrag: call back function to be used for getting the user data
1737  * @from: pointer to user message iov
1738  * @length: length of the iov message
1739  *
1740  * Description: This procedure append the user data in the fragment part
1741  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1742  */
1743 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1744 			int (*getfrag)(void *from, char *to, int offset,
1745 					int len, int odd, struct sk_buff *skb),
1746 			void *from, int length)
1747 {
1748 	int frg_cnt = 0;
1749 	skb_frag_t *frag = NULL;
1750 	struct page *page = NULL;
1751 	int copy, left;
1752 	int offset = 0;
1753 	int ret;
1754 
1755 	do {
1756 		/* Return error if we don't have space for new frag */
1757 		frg_cnt = skb_shinfo(skb)->nr_frags;
1758 		if (frg_cnt >= MAX_SKB_FRAGS)
1759 			return -EFAULT;
1760 
1761 		/* allocate a new page for next frag */
1762 		page = alloc_pages(sk->sk_allocation, 0);
1763 
1764 		/* If alloc_page fails just return failure and caller will
1765 		 * free previous allocated pages by doing kfree_skb()
1766 		 */
1767 		if (page == NULL)
1768 			return -ENOMEM;
1769 
1770 		/* initialize the next frag */
1771 		sk->sk_sndmsg_page = page;
1772 		sk->sk_sndmsg_off = 0;
1773 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1774 		skb->truesize += PAGE_SIZE;
1775 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1776 
1777 		/* get the new initialized frag */
1778 		frg_cnt = skb_shinfo(skb)->nr_frags;
1779 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1780 
1781 		/* copy the user data to page */
1782 		left = PAGE_SIZE - frag->page_offset;
1783 		copy = (length > left)? left : length;
1784 
1785 		ret = getfrag(from, (page_address(frag->page) +
1786 			    frag->page_offset + frag->size),
1787 			    offset, copy, 0, skb);
1788 		if (ret < 0)
1789 			return -EFAULT;
1790 
1791 		/* copy was successful so update the size parameters */
1792 		sk->sk_sndmsg_off += copy;
1793 		frag->size += copy;
1794 		skb->len += copy;
1795 		skb->data_len += copy;
1796 		offset += copy;
1797 		length -= copy;
1798 
1799 	} while (length > 0);
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  *	skb_pull_rcsum - pull skb and update receive checksum
1806  *	@skb: buffer to update
1807  *	@start: start of data before pull
1808  *	@len: length of data pulled
1809  *
1810  *	This function performs an skb_pull on the packet and updates
1811  *	update the CHECKSUM_HW checksum.  It should be used on receive
1812  *	path processing instead of skb_pull unless you know that the
1813  *	checksum difference is zero (e.g., a valid IP header) or you
1814  *	are setting ip_summed to CHECKSUM_NONE.
1815  */
1816 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1817 {
1818 	BUG_ON(len > skb->len);
1819 	skb->len -= len;
1820 	BUG_ON(skb->len < skb->data_len);
1821 	skb_postpull_rcsum(skb, skb->data, len);
1822 	return skb->data += len;
1823 }
1824 
1825 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1826 
1827 void __init skb_init(void)
1828 {
1829 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1830 					      sizeof(struct sk_buff),
1831 					      0,
1832 					      SLAB_HWCACHE_ALIGN,
1833 					      NULL, NULL);
1834 	if (!skbuff_head_cache)
1835 		panic("cannot create skbuff cache");
1836 
1837 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1838 						(2*sizeof(struct sk_buff)) +
1839 						sizeof(atomic_t),
1840 						0,
1841 						SLAB_HWCACHE_ALIGN,
1842 						NULL, NULL);
1843 	if (!skbuff_fclone_cache)
1844 		panic("cannot create skbuff cache");
1845 }
1846 
1847 EXPORT_SYMBOL(___pskb_trim);
1848 EXPORT_SYMBOL(__kfree_skb);
1849 EXPORT_SYMBOL(kfree_skb);
1850 EXPORT_SYMBOL(__pskb_pull_tail);
1851 EXPORT_SYMBOL(__alloc_skb);
1852 EXPORT_SYMBOL(pskb_copy);
1853 EXPORT_SYMBOL(pskb_expand_head);
1854 EXPORT_SYMBOL(skb_checksum);
1855 EXPORT_SYMBOL(skb_clone);
1856 EXPORT_SYMBOL(skb_clone_fraglist);
1857 EXPORT_SYMBOL(skb_copy);
1858 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1859 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1860 EXPORT_SYMBOL(skb_copy_bits);
1861 EXPORT_SYMBOL(skb_copy_expand);
1862 EXPORT_SYMBOL(skb_over_panic);
1863 EXPORT_SYMBOL(skb_pad);
1864 EXPORT_SYMBOL(skb_realloc_headroom);
1865 EXPORT_SYMBOL(skb_under_panic);
1866 EXPORT_SYMBOL(skb_dequeue);
1867 EXPORT_SYMBOL(skb_dequeue_tail);
1868 EXPORT_SYMBOL(skb_insert);
1869 EXPORT_SYMBOL(skb_queue_purge);
1870 EXPORT_SYMBOL(skb_queue_head);
1871 EXPORT_SYMBOL(skb_queue_tail);
1872 EXPORT_SYMBOL(skb_unlink);
1873 EXPORT_SYMBOL(skb_append);
1874 EXPORT_SYMBOL(skb_split);
1875 EXPORT_SYMBOL(skb_prepare_seq_read);
1876 EXPORT_SYMBOL(skb_seq_read);
1877 EXPORT_SYMBOL(skb_abort_seq_read);
1878 EXPORT_SYMBOL(skb_find_text);
1879 EXPORT_SYMBOL(skb_append_datato_frags);
1880