1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/config.h> 42 #include <linux/module.h> 43 #include <linux/types.h> 44 #include <linux/kernel.h> 45 #include <linux/sched.h> 46 #include <linux/mm.h> 47 #include <linux/interrupt.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/slab.h> 51 #include <linux/netdevice.h> 52 #ifdef CONFIG_NET_CLS_ACT 53 #include <net/pkt_sched.h> 54 #endif 55 #include <linux/string.h> 56 #include <linux/skbuff.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/highmem.h> 61 62 #include <net/protocol.h> 63 #include <net/dst.h> 64 #include <net/sock.h> 65 #include <net/checksum.h> 66 #include <net/xfrm.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/system.h> 70 71 static kmem_cache_t *skbuff_head_cache __read_mostly; 72 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 73 74 /* 75 * Keep out-of-line to prevent kernel bloat. 76 * __builtin_return_address is not used because it is not always 77 * reliable. 78 */ 79 80 /** 81 * skb_over_panic - private function 82 * @skb: buffer 83 * @sz: size 84 * @here: address 85 * 86 * Out of line support code for skb_put(). Not user callable. 87 */ 88 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 89 { 90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 91 "data:%p tail:%p end:%p dev:%s\n", 92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 93 skb->dev ? skb->dev->name : "<NULL>"); 94 BUG(); 95 } 96 97 /** 98 * skb_under_panic - private function 99 * @skb: buffer 100 * @sz: size 101 * @here: address 102 * 103 * Out of line support code for skb_push(). Not user callable. 104 */ 105 106 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 107 { 108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 109 "data:%p tail:%p end:%p dev:%s\n", 110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 111 skb->dev ? skb->dev->name : "<NULL>"); 112 BUG(); 113 } 114 115 void skb_truesize_bug(struct sk_buff *skb) 116 { 117 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 118 "len=%u, sizeof(sk_buff)=%Zd\n", 119 skb->truesize, skb->len, sizeof(struct sk_buff)); 120 } 121 EXPORT_SYMBOL(skb_truesize_bug); 122 123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 124 * 'private' fields and also do memory statistics to find all the 125 * [BEEP] leaks. 126 * 127 */ 128 129 /** 130 * __alloc_skb - allocate a network buffer 131 * @size: size to allocate 132 * @gfp_mask: allocation mask 133 * @fclone: allocate from fclone cache instead of head cache 134 * and allocate a cloned (child) skb 135 * 136 * Allocate a new &sk_buff. The returned buffer has no headroom and a 137 * tail room of size bytes. The object has a reference count of one. 138 * The return is the buffer. On a failure the return is %NULL. 139 * 140 * Buffers may only be allocated from interrupts using a @gfp_mask of 141 * %GFP_ATOMIC. 142 */ 143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 144 int fclone) 145 { 146 kmem_cache_t *cache; 147 struct skb_shared_info *shinfo; 148 struct sk_buff *skb; 149 u8 *data; 150 151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 152 153 /* Get the HEAD */ 154 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 155 if (!skb) 156 goto out; 157 158 /* Get the DATA. Size must match skb_add_mtu(). */ 159 size = SKB_DATA_ALIGN(size); 160 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 161 if (!data) 162 goto nodata; 163 164 memset(skb, 0, offsetof(struct sk_buff, truesize)); 165 skb->truesize = size + sizeof(struct sk_buff); 166 atomic_set(&skb->users, 1); 167 skb->head = data; 168 skb->data = data; 169 skb->tail = data; 170 skb->end = data + size; 171 /* make sure we initialize shinfo sequentially */ 172 shinfo = skb_shinfo(skb); 173 atomic_set(&shinfo->dataref, 1); 174 shinfo->nr_frags = 0; 175 shinfo->tso_size = 0; 176 shinfo->tso_segs = 0; 177 shinfo->ufo_size = 0; 178 shinfo->ip6_frag_id = 0; 179 shinfo->frag_list = NULL; 180 181 if (fclone) { 182 struct sk_buff *child = skb + 1; 183 atomic_t *fclone_ref = (atomic_t *) (child + 1); 184 185 skb->fclone = SKB_FCLONE_ORIG; 186 atomic_set(fclone_ref, 1); 187 188 child->fclone = SKB_FCLONE_UNAVAILABLE; 189 } 190 out: 191 return skb; 192 nodata: 193 kmem_cache_free(cache, skb); 194 skb = NULL; 195 goto out; 196 } 197 198 /** 199 * alloc_skb_from_cache - allocate a network buffer 200 * @cp: kmem_cache from which to allocate the data area 201 * (object size must be big enough for @size bytes + skb overheads) 202 * @size: size to allocate 203 * @gfp_mask: allocation mask 204 * 205 * Allocate a new &sk_buff. The returned buffer has no headroom and 206 * tail room of size bytes. The object has a reference count of one. 207 * The return is the buffer. On a failure the return is %NULL. 208 * 209 * Buffers may only be allocated from interrupts using a @gfp_mask of 210 * %GFP_ATOMIC. 211 */ 212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 213 unsigned int size, 214 gfp_t gfp_mask) 215 { 216 struct sk_buff *skb; 217 u8 *data; 218 219 /* Get the HEAD */ 220 skb = kmem_cache_alloc(skbuff_head_cache, 221 gfp_mask & ~__GFP_DMA); 222 if (!skb) 223 goto out; 224 225 /* Get the DATA. */ 226 size = SKB_DATA_ALIGN(size); 227 data = kmem_cache_alloc(cp, gfp_mask); 228 if (!data) 229 goto nodata; 230 231 memset(skb, 0, offsetof(struct sk_buff, truesize)); 232 skb->truesize = size + sizeof(struct sk_buff); 233 atomic_set(&skb->users, 1); 234 skb->head = data; 235 skb->data = data; 236 skb->tail = data; 237 skb->end = data + size; 238 239 atomic_set(&(skb_shinfo(skb)->dataref), 1); 240 skb_shinfo(skb)->nr_frags = 0; 241 skb_shinfo(skb)->tso_size = 0; 242 skb_shinfo(skb)->tso_segs = 0; 243 skb_shinfo(skb)->frag_list = NULL; 244 out: 245 return skb; 246 nodata: 247 kmem_cache_free(skbuff_head_cache, skb); 248 skb = NULL; 249 goto out; 250 } 251 252 253 static void skb_drop_fraglist(struct sk_buff *skb) 254 { 255 struct sk_buff *list = skb_shinfo(skb)->frag_list; 256 257 skb_shinfo(skb)->frag_list = NULL; 258 259 do { 260 struct sk_buff *this = list; 261 list = list->next; 262 kfree_skb(this); 263 } while (list); 264 } 265 266 static void skb_clone_fraglist(struct sk_buff *skb) 267 { 268 struct sk_buff *list; 269 270 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 271 skb_get(list); 272 } 273 274 void skb_release_data(struct sk_buff *skb) 275 { 276 if (!skb->cloned || 277 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 278 &skb_shinfo(skb)->dataref)) { 279 if (skb_shinfo(skb)->nr_frags) { 280 int i; 281 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 282 put_page(skb_shinfo(skb)->frags[i].page); 283 } 284 285 if (skb_shinfo(skb)->frag_list) 286 skb_drop_fraglist(skb); 287 288 kfree(skb->head); 289 } 290 } 291 292 /* 293 * Free an skbuff by memory without cleaning the state. 294 */ 295 void kfree_skbmem(struct sk_buff *skb) 296 { 297 struct sk_buff *other; 298 atomic_t *fclone_ref; 299 300 skb_release_data(skb); 301 switch (skb->fclone) { 302 case SKB_FCLONE_UNAVAILABLE: 303 kmem_cache_free(skbuff_head_cache, skb); 304 break; 305 306 case SKB_FCLONE_ORIG: 307 fclone_ref = (atomic_t *) (skb + 2); 308 if (atomic_dec_and_test(fclone_ref)) 309 kmem_cache_free(skbuff_fclone_cache, skb); 310 break; 311 312 case SKB_FCLONE_CLONE: 313 fclone_ref = (atomic_t *) (skb + 1); 314 other = skb - 1; 315 316 /* The clone portion is available for 317 * fast-cloning again. 318 */ 319 skb->fclone = SKB_FCLONE_UNAVAILABLE; 320 321 if (atomic_dec_and_test(fclone_ref)) 322 kmem_cache_free(skbuff_fclone_cache, other); 323 break; 324 }; 325 } 326 327 /** 328 * __kfree_skb - private function 329 * @skb: buffer 330 * 331 * Free an sk_buff. Release anything attached to the buffer. 332 * Clean the state. This is an internal helper function. Users should 333 * always call kfree_skb 334 */ 335 336 void __kfree_skb(struct sk_buff *skb) 337 { 338 dst_release(skb->dst); 339 #ifdef CONFIG_XFRM 340 secpath_put(skb->sp); 341 #endif 342 if (skb->destructor) { 343 WARN_ON(in_irq()); 344 skb->destructor(skb); 345 } 346 #ifdef CONFIG_NETFILTER 347 nf_conntrack_put(skb->nfct); 348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 349 nf_conntrack_put_reasm(skb->nfct_reasm); 350 #endif 351 #ifdef CONFIG_BRIDGE_NETFILTER 352 nf_bridge_put(skb->nf_bridge); 353 #endif 354 #endif 355 /* XXX: IS this still necessary? - JHS */ 356 #ifdef CONFIG_NET_SCHED 357 skb->tc_index = 0; 358 #ifdef CONFIG_NET_CLS_ACT 359 skb->tc_verd = 0; 360 #endif 361 #endif 362 363 kfree_skbmem(skb); 364 } 365 366 /** 367 * kfree_skb - free an sk_buff 368 * @skb: buffer to free 369 * 370 * Drop a reference to the buffer and free it if the usage count has 371 * hit zero. 372 */ 373 void kfree_skb(struct sk_buff *skb) 374 { 375 if (unlikely(!skb)) 376 return; 377 if (likely(atomic_read(&skb->users) == 1)) 378 smp_rmb(); 379 else if (likely(!atomic_dec_and_test(&skb->users))) 380 return; 381 __kfree_skb(skb); 382 } 383 384 /** 385 * skb_clone - duplicate an sk_buff 386 * @skb: buffer to clone 387 * @gfp_mask: allocation priority 388 * 389 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 390 * copies share the same packet data but not structure. The new 391 * buffer has a reference count of 1. If the allocation fails the 392 * function returns %NULL otherwise the new buffer is returned. 393 * 394 * If this function is called from an interrupt gfp_mask() must be 395 * %GFP_ATOMIC. 396 */ 397 398 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 399 { 400 struct sk_buff *n; 401 402 n = skb + 1; 403 if (skb->fclone == SKB_FCLONE_ORIG && 404 n->fclone == SKB_FCLONE_UNAVAILABLE) { 405 atomic_t *fclone_ref = (atomic_t *) (n + 1); 406 n->fclone = SKB_FCLONE_CLONE; 407 atomic_inc(fclone_ref); 408 } else { 409 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 410 if (!n) 411 return NULL; 412 n->fclone = SKB_FCLONE_UNAVAILABLE; 413 } 414 415 #define C(x) n->x = skb->x 416 417 n->next = n->prev = NULL; 418 n->sk = NULL; 419 C(tstamp); 420 C(dev); 421 C(h); 422 C(nh); 423 C(mac); 424 C(dst); 425 dst_clone(skb->dst); 426 C(sp); 427 #ifdef CONFIG_INET 428 secpath_get(skb->sp); 429 #endif 430 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 431 C(len); 432 C(data_len); 433 C(csum); 434 C(local_df); 435 n->cloned = 1; 436 n->nohdr = 0; 437 C(pkt_type); 438 C(ip_summed); 439 C(priority); 440 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 441 C(ipvs_property); 442 #endif 443 C(protocol); 444 n->destructor = NULL; 445 #ifdef CONFIG_NETFILTER 446 C(nfmark); 447 C(nfct); 448 nf_conntrack_get(skb->nfct); 449 C(nfctinfo); 450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 451 C(nfct_reasm); 452 nf_conntrack_get_reasm(skb->nfct_reasm); 453 #endif 454 #ifdef CONFIG_BRIDGE_NETFILTER 455 C(nf_bridge); 456 nf_bridge_get(skb->nf_bridge); 457 #endif 458 #endif /*CONFIG_NETFILTER*/ 459 #ifdef CONFIG_NET_SCHED 460 C(tc_index); 461 #ifdef CONFIG_NET_CLS_ACT 462 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 463 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 464 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 465 C(input_dev); 466 #endif 467 skb_copy_secmark(n, skb); 468 #endif 469 C(truesize); 470 atomic_set(&n->users, 1); 471 C(head); 472 C(data); 473 C(tail); 474 C(end); 475 476 atomic_inc(&(skb_shinfo(skb)->dataref)); 477 skb->cloned = 1; 478 479 return n; 480 } 481 482 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 483 { 484 /* 485 * Shift between the two data areas in bytes 486 */ 487 unsigned long offset = new->data - old->data; 488 489 new->sk = NULL; 490 new->dev = old->dev; 491 new->priority = old->priority; 492 new->protocol = old->protocol; 493 new->dst = dst_clone(old->dst); 494 #ifdef CONFIG_INET 495 new->sp = secpath_get(old->sp); 496 #endif 497 new->h.raw = old->h.raw + offset; 498 new->nh.raw = old->nh.raw + offset; 499 new->mac.raw = old->mac.raw + offset; 500 memcpy(new->cb, old->cb, sizeof(old->cb)); 501 new->local_df = old->local_df; 502 new->fclone = SKB_FCLONE_UNAVAILABLE; 503 new->pkt_type = old->pkt_type; 504 new->tstamp = old->tstamp; 505 new->destructor = NULL; 506 #ifdef CONFIG_NETFILTER 507 new->nfmark = old->nfmark; 508 new->nfct = old->nfct; 509 nf_conntrack_get(old->nfct); 510 new->nfctinfo = old->nfctinfo; 511 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 512 new->nfct_reasm = old->nfct_reasm; 513 nf_conntrack_get_reasm(old->nfct_reasm); 514 #endif 515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 516 new->ipvs_property = old->ipvs_property; 517 #endif 518 #ifdef CONFIG_BRIDGE_NETFILTER 519 new->nf_bridge = old->nf_bridge; 520 nf_bridge_get(old->nf_bridge); 521 #endif 522 #endif 523 #ifdef CONFIG_NET_SCHED 524 #ifdef CONFIG_NET_CLS_ACT 525 new->tc_verd = old->tc_verd; 526 #endif 527 new->tc_index = old->tc_index; 528 #endif 529 skb_copy_secmark(new, old); 530 atomic_set(&new->users, 1); 531 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size; 532 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs; 533 } 534 535 /** 536 * skb_copy - create private copy of an sk_buff 537 * @skb: buffer to copy 538 * @gfp_mask: allocation priority 539 * 540 * Make a copy of both an &sk_buff and its data. This is used when the 541 * caller wishes to modify the data and needs a private copy of the 542 * data to alter. Returns %NULL on failure or the pointer to the buffer 543 * on success. The returned buffer has a reference count of 1. 544 * 545 * As by-product this function converts non-linear &sk_buff to linear 546 * one, so that &sk_buff becomes completely private and caller is allowed 547 * to modify all the data of returned buffer. This means that this 548 * function is not recommended for use in circumstances when only 549 * header is going to be modified. Use pskb_copy() instead. 550 */ 551 552 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 553 { 554 int headerlen = skb->data - skb->head; 555 /* 556 * Allocate the copy buffer 557 */ 558 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 559 gfp_mask); 560 if (!n) 561 return NULL; 562 563 /* Set the data pointer */ 564 skb_reserve(n, headerlen); 565 /* Set the tail pointer and length */ 566 skb_put(n, skb->len); 567 n->csum = skb->csum; 568 n->ip_summed = skb->ip_summed; 569 570 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 571 BUG(); 572 573 copy_skb_header(n, skb); 574 return n; 575 } 576 577 578 /** 579 * pskb_copy - create copy of an sk_buff with private head. 580 * @skb: buffer to copy 581 * @gfp_mask: allocation priority 582 * 583 * Make a copy of both an &sk_buff and part of its data, located 584 * in header. Fragmented data remain shared. This is used when 585 * the caller wishes to modify only header of &sk_buff and needs 586 * private copy of the header to alter. Returns %NULL on failure 587 * or the pointer to the buffer on success. 588 * The returned buffer has a reference count of 1. 589 */ 590 591 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 592 { 593 /* 594 * Allocate the copy buffer 595 */ 596 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 597 598 if (!n) 599 goto out; 600 601 /* Set the data pointer */ 602 skb_reserve(n, skb->data - skb->head); 603 /* Set the tail pointer and length */ 604 skb_put(n, skb_headlen(skb)); 605 /* Copy the bytes */ 606 memcpy(n->data, skb->data, n->len); 607 n->csum = skb->csum; 608 n->ip_summed = skb->ip_summed; 609 610 n->data_len = skb->data_len; 611 n->len = skb->len; 612 613 if (skb_shinfo(skb)->nr_frags) { 614 int i; 615 616 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 617 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 618 get_page(skb_shinfo(n)->frags[i].page); 619 } 620 skb_shinfo(n)->nr_frags = i; 621 } 622 623 if (skb_shinfo(skb)->frag_list) { 624 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 625 skb_clone_fraglist(n); 626 } 627 628 copy_skb_header(n, skb); 629 out: 630 return n; 631 } 632 633 /** 634 * pskb_expand_head - reallocate header of &sk_buff 635 * @skb: buffer to reallocate 636 * @nhead: room to add at head 637 * @ntail: room to add at tail 638 * @gfp_mask: allocation priority 639 * 640 * Expands (or creates identical copy, if &nhead and &ntail are zero) 641 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 642 * reference count of 1. Returns zero in the case of success or error, 643 * if expansion failed. In the last case, &sk_buff is not changed. 644 * 645 * All the pointers pointing into skb header may change and must be 646 * reloaded after call to this function. 647 */ 648 649 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 650 gfp_t gfp_mask) 651 { 652 int i; 653 u8 *data; 654 int size = nhead + (skb->end - skb->head) + ntail; 655 long off; 656 657 if (skb_shared(skb)) 658 BUG(); 659 660 size = SKB_DATA_ALIGN(size); 661 662 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 663 if (!data) 664 goto nodata; 665 666 /* Copy only real data... and, alas, header. This should be 667 * optimized for the cases when header is void. */ 668 memcpy(data + nhead, skb->head, skb->tail - skb->head); 669 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 670 671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 672 get_page(skb_shinfo(skb)->frags[i].page); 673 674 if (skb_shinfo(skb)->frag_list) 675 skb_clone_fraglist(skb); 676 677 skb_release_data(skb); 678 679 off = (data + nhead) - skb->head; 680 681 skb->head = data; 682 skb->end = data + size; 683 skb->data += off; 684 skb->tail += off; 685 skb->mac.raw += off; 686 skb->h.raw += off; 687 skb->nh.raw += off; 688 skb->cloned = 0; 689 skb->nohdr = 0; 690 atomic_set(&skb_shinfo(skb)->dataref, 1); 691 return 0; 692 693 nodata: 694 return -ENOMEM; 695 } 696 697 /* Make private copy of skb with writable head and some headroom */ 698 699 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 700 { 701 struct sk_buff *skb2; 702 int delta = headroom - skb_headroom(skb); 703 704 if (delta <= 0) 705 skb2 = pskb_copy(skb, GFP_ATOMIC); 706 else { 707 skb2 = skb_clone(skb, GFP_ATOMIC); 708 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 709 GFP_ATOMIC)) { 710 kfree_skb(skb2); 711 skb2 = NULL; 712 } 713 } 714 return skb2; 715 } 716 717 718 /** 719 * skb_copy_expand - copy and expand sk_buff 720 * @skb: buffer to copy 721 * @newheadroom: new free bytes at head 722 * @newtailroom: new free bytes at tail 723 * @gfp_mask: allocation priority 724 * 725 * Make a copy of both an &sk_buff and its data and while doing so 726 * allocate additional space. 727 * 728 * This is used when the caller wishes to modify the data and needs a 729 * private copy of the data to alter as well as more space for new fields. 730 * Returns %NULL on failure or the pointer to the buffer 731 * on success. The returned buffer has a reference count of 1. 732 * 733 * You must pass %GFP_ATOMIC as the allocation priority if this function 734 * is called from an interrupt. 735 * 736 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 737 * only by netfilter in the cases when checksum is recalculated? --ANK 738 */ 739 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 740 int newheadroom, int newtailroom, 741 gfp_t gfp_mask) 742 { 743 /* 744 * Allocate the copy buffer 745 */ 746 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 747 gfp_mask); 748 int head_copy_len, head_copy_off; 749 750 if (!n) 751 return NULL; 752 753 skb_reserve(n, newheadroom); 754 755 /* Set the tail pointer and length */ 756 skb_put(n, skb->len); 757 758 head_copy_len = skb_headroom(skb); 759 head_copy_off = 0; 760 if (newheadroom <= head_copy_len) 761 head_copy_len = newheadroom; 762 else 763 head_copy_off = newheadroom - head_copy_len; 764 765 /* Copy the linear header and data. */ 766 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 767 skb->len + head_copy_len)) 768 BUG(); 769 770 copy_skb_header(n, skb); 771 772 return n; 773 } 774 775 /** 776 * skb_pad - zero pad the tail of an skb 777 * @skb: buffer to pad 778 * @pad: space to pad 779 * 780 * Ensure that a buffer is followed by a padding area that is zero 781 * filled. Used by network drivers which may DMA or transfer data 782 * beyond the buffer end onto the wire. 783 * 784 * May return NULL in out of memory cases. 785 */ 786 787 struct sk_buff *skb_pad(struct sk_buff *skb, int pad) 788 { 789 struct sk_buff *nskb; 790 791 /* If the skbuff is non linear tailroom is always zero.. */ 792 if (skb_tailroom(skb) >= pad) { 793 memset(skb->data+skb->len, 0, pad); 794 return skb; 795 } 796 797 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC); 798 kfree_skb(skb); 799 if (nskb) 800 memset(nskb->data+nskb->len, 0, pad); 801 return nskb; 802 } 803 804 /* Trims skb to length len. It can change skb pointers. 805 */ 806 807 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 808 { 809 int offset = skb_headlen(skb); 810 int nfrags = skb_shinfo(skb)->nr_frags; 811 int i; 812 813 for (i = 0; i < nfrags; i++) { 814 int end = offset + skb_shinfo(skb)->frags[i].size; 815 if (end > len) { 816 if (skb_cloned(skb)) { 817 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 818 return -ENOMEM; 819 } 820 if (len <= offset) { 821 put_page(skb_shinfo(skb)->frags[i].page); 822 skb_shinfo(skb)->nr_frags--; 823 } else { 824 skb_shinfo(skb)->frags[i].size = len - offset; 825 } 826 } 827 offset = end; 828 } 829 830 if (offset < len) { 831 skb->data_len -= skb->len - len; 832 skb->len = len; 833 } else { 834 if (len <= skb_headlen(skb)) { 835 skb->len = len; 836 skb->data_len = 0; 837 skb->tail = skb->data + len; 838 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) 839 skb_drop_fraglist(skb); 840 } else { 841 skb->data_len -= skb->len - len; 842 skb->len = len; 843 } 844 } 845 846 return 0; 847 } 848 849 /** 850 * __pskb_pull_tail - advance tail of skb header 851 * @skb: buffer to reallocate 852 * @delta: number of bytes to advance tail 853 * 854 * The function makes a sense only on a fragmented &sk_buff, 855 * it expands header moving its tail forward and copying necessary 856 * data from fragmented part. 857 * 858 * &sk_buff MUST have reference count of 1. 859 * 860 * Returns %NULL (and &sk_buff does not change) if pull failed 861 * or value of new tail of skb in the case of success. 862 * 863 * All the pointers pointing into skb header may change and must be 864 * reloaded after call to this function. 865 */ 866 867 /* Moves tail of skb head forward, copying data from fragmented part, 868 * when it is necessary. 869 * 1. It may fail due to malloc failure. 870 * 2. It may change skb pointers. 871 * 872 * It is pretty complicated. Luckily, it is called only in exceptional cases. 873 */ 874 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 875 { 876 /* If skb has not enough free space at tail, get new one 877 * plus 128 bytes for future expansions. If we have enough 878 * room at tail, reallocate without expansion only if skb is cloned. 879 */ 880 int i, k, eat = (skb->tail + delta) - skb->end; 881 882 if (eat > 0 || skb_cloned(skb)) { 883 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 884 GFP_ATOMIC)) 885 return NULL; 886 } 887 888 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 889 BUG(); 890 891 /* Optimization: no fragments, no reasons to preestimate 892 * size of pulled pages. Superb. 893 */ 894 if (!skb_shinfo(skb)->frag_list) 895 goto pull_pages; 896 897 /* Estimate size of pulled pages. */ 898 eat = delta; 899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 900 if (skb_shinfo(skb)->frags[i].size >= eat) 901 goto pull_pages; 902 eat -= skb_shinfo(skb)->frags[i].size; 903 } 904 905 /* If we need update frag list, we are in troubles. 906 * Certainly, it possible to add an offset to skb data, 907 * but taking into account that pulling is expected to 908 * be very rare operation, it is worth to fight against 909 * further bloating skb head and crucify ourselves here instead. 910 * Pure masohism, indeed. 8)8) 911 */ 912 if (eat) { 913 struct sk_buff *list = skb_shinfo(skb)->frag_list; 914 struct sk_buff *clone = NULL; 915 struct sk_buff *insp = NULL; 916 917 do { 918 BUG_ON(!list); 919 920 if (list->len <= eat) { 921 /* Eaten as whole. */ 922 eat -= list->len; 923 list = list->next; 924 insp = list; 925 } else { 926 /* Eaten partially. */ 927 928 if (skb_shared(list)) { 929 /* Sucks! We need to fork list. :-( */ 930 clone = skb_clone(list, GFP_ATOMIC); 931 if (!clone) 932 return NULL; 933 insp = list->next; 934 list = clone; 935 } else { 936 /* This may be pulled without 937 * problems. */ 938 insp = list; 939 } 940 if (!pskb_pull(list, eat)) { 941 if (clone) 942 kfree_skb(clone); 943 return NULL; 944 } 945 break; 946 } 947 } while (eat); 948 949 /* Free pulled out fragments. */ 950 while ((list = skb_shinfo(skb)->frag_list) != insp) { 951 skb_shinfo(skb)->frag_list = list->next; 952 kfree_skb(list); 953 } 954 /* And insert new clone at head. */ 955 if (clone) { 956 clone->next = list; 957 skb_shinfo(skb)->frag_list = clone; 958 } 959 } 960 /* Success! Now we may commit changes to skb data. */ 961 962 pull_pages: 963 eat = delta; 964 k = 0; 965 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 966 if (skb_shinfo(skb)->frags[i].size <= eat) { 967 put_page(skb_shinfo(skb)->frags[i].page); 968 eat -= skb_shinfo(skb)->frags[i].size; 969 } else { 970 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 971 if (eat) { 972 skb_shinfo(skb)->frags[k].page_offset += eat; 973 skb_shinfo(skb)->frags[k].size -= eat; 974 eat = 0; 975 } 976 k++; 977 } 978 } 979 skb_shinfo(skb)->nr_frags = k; 980 981 skb->tail += delta; 982 skb->data_len -= delta; 983 984 return skb->tail; 985 } 986 987 /* Copy some data bits from skb to kernel buffer. */ 988 989 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 990 { 991 int i, copy; 992 int start = skb_headlen(skb); 993 994 if (offset > (int)skb->len - len) 995 goto fault; 996 997 /* Copy header. */ 998 if ((copy = start - offset) > 0) { 999 if (copy > len) 1000 copy = len; 1001 memcpy(to, skb->data + offset, copy); 1002 if ((len -= copy) == 0) 1003 return 0; 1004 offset += copy; 1005 to += copy; 1006 } 1007 1008 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1009 int end; 1010 1011 BUG_TRAP(start <= offset + len); 1012 1013 end = start + skb_shinfo(skb)->frags[i].size; 1014 if ((copy = end - offset) > 0) { 1015 u8 *vaddr; 1016 1017 if (copy > len) 1018 copy = len; 1019 1020 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1021 memcpy(to, 1022 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1023 offset - start, copy); 1024 kunmap_skb_frag(vaddr); 1025 1026 if ((len -= copy) == 0) 1027 return 0; 1028 offset += copy; 1029 to += copy; 1030 } 1031 start = end; 1032 } 1033 1034 if (skb_shinfo(skb)->frag_list) { 1035 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1036 1037 for (; list; list = list->next) { 1038 int end; 1039 1040 BUG_TRAP(start <= offset + len); 1041 1042 end = start + list->len; 1043 if ((copy = end - offset) > 0) { 1044 if (copy > len) 1045 copy = len; 1046 if (skb_copy_bits(list, offset - start, 1047 to, copy)) 1048 goto fault; 1049 if ((len -= copy) == 0) 1050 return 0; 1051 offset += copy; 1052 to += copy; 1053 } 1054 start = end; 1055 } 1056 } 1057 if (!len) 1058 return 0; 1059 1060 fault: 1061 return -EFAULT; 1062 } 1063 1064 /** 1065 * skb_store_bits - store bits from kernel buffer to skb 1066 * @skb: destination buffer 1067 * @offset: offset in destination 1068 * @from: source buffer 1069 * @len: number of bytes to copy 1070 * 1071 * Copy the specified number of bytes from the source buffer to the 1072 * destination skb. This function handles all the messy bits of 1073 * traversing fragment lists and such. 1074 */ 1075 1076 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1077 { 1078 int i, copy; 1079 int start = skb_headlen(skb); 1080 1081 if (offset > (int)skb->len - len) 1082 goto fault; 1083 1084 if ((copy = start - offset) > 0) { 1085 if (copy > len) 1086 copy = len; 1087 memcpy(skb->data + offset, from, copy); 1088 if ((len -= copy) == 0) 1089 return 0; 1090 offset += copy; 1091 from += copy; 1092 } 1093 1094 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1095 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1096 int end; 1097 1098 BUG_TRAP(start <= offset + len); 1099 1100 end = start + frag->size; 1101 if ((copy = end - offset) > 0) { 1102 u8 *vaddr; 1103 1104 if (copy > len) 1105 copy = len; 1106 1107 vaddr = kmap_skb_frag(frag); 1108 memcpy(vaddr + frag->page_offset + offset - start, 1109 from, copy); 1110 kunmap_skb_frag(vaddr); 1111 1112 if ((len -= copy) == 0) 1113 return 0; 1114 offset += copy; 1115 from += copy; 1116 } 1117 start = end; 1118 } 1119 1120 if (skb_shinfo(skb)->frag_list) { 1121 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1122 1123 for (; list; list = list->next) { 1124 int end; 1125 1126 BUG_TRAP(start <= offset + len); 1127 1128 end = start + list->len; 1129 if ((copy = end - offset) > 0) { 1130 if (copy > len) 1131 copy = len; 1132 if (skb_store_bits(list, offset - start, 1133 from, copy)) 1134 goto fault; 1135 if ((len -= copy) == 0) 1136 return 0; 1137 offset += copy; 1138 from += copy; 1139 } 1140 start = end; 1141 } 1142 } 1143 if (!len) 1144 return 0; 1145 1146 fault: 1147 return -EFAULT; 1148 } 1149 1150 EXPORT_SYMBOL(skb_store_bits); 1151 1152 /* Checksum skb data. */ 1153 1154 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1155 int len, unsigned int csum) 1156 { 1157 int start = skb_headlen(skb); 1158 int i, copy = start - offset; 1159 int pos = 0; 1160 1161 /* Checksum header. */ 1162 if (copy > 0) { 1163 if (copy > len) 1164 copy = len; 1165 csum = csum_partial(skb->data + offset, copy, csum); 1166 if ((len -= copy) == 0) 1167 return csum; 1168 offset += copy; 1169 pos = copy; 1170 } 1171 1172 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1173 int end; 1174 1175 BUG_TRAP(start <= offset + len); 1176 1177 end = start + skb_shinfo(skb)->frags[i].size; 1178 if ((copy = end - offset) > 0) { 1179 unsigned int csum2; 1180 u8 *vaddr; 1181 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1182 1183 if (copy > len) 1184 copy = len; 1185 vaddr = kmap_skb_frag(frag); 1186 csum2 = csum_partial(vaddr + frag->page_offset + 1187 offset - start, copy, 0); 1188 kunmap_skb_frag(vaddr); 1189 csum = csum_block_add(csum, csum2, pos); 1190 if (!(len -= copy)) 1191 return csum; 1192 offset += copy; 1193 pos += copy; 1194 } 1195 start = end; 1196 } 1197 1198 if (skb_shinfo(skb)->frag_list) { 1199 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1200 1201 for (; list; list = list->next) { 1202 int end; 1203 1204 BUG_TRAP(start <= offset + len); 1205 1206 end = start + list->len; 1207 if ((copy = end - offset) > 0) { 1208 unsigned int csum2; 1209 if (copy > len) 1210 copy = len; 1211 csum2 = skb_checksum(list, offset - start, 1212 copy, 0); 1213 csum = csum_block_add(csum, csum2, pos); 1214 if ((len -= copy) == 0) 1215 return csum; 1216 offset += copy; 1217 pos += copy; 1218 } 1219 start = end; 1220 } 1221 } 1222 BUG_ON(len); 1223 1224 return csum; 1225 } 1226 1227 /* Both of above in one bottle. */ 1228 1229 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1230 u8 *to, int len, unsigned int csum) 1231 { 1232 int start = skb_headlen(skb); 1233 int i, copy = start - offset; 1234 int pos = 0; 1235 1236 /* Copy header. */ 1237 if (copy > 0) { 1238 if (copy > len) 1239 copy = len; 1240 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1241 copy, csum); 1242 if ((len -= copy) == 0) 1243 return csum; 1244 offset += copy; 1245 to += copy; 1246 pos = copy; 1247 } 1248 1249 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1250 int end; 1251 1252 BUG_TRAP(start <= offset + len); 1253 1254 end = start + skb_shinfo(skb)->frags[i].size; 1255 if ((copy = end - offset) > 0) { 1256 unsigned int csum2; 1257 u8 *vaddr; 1258 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1259 1260 if (copy > len) 1261 copy = len; 1262 vaddr = kmap_skb_frag(frag); 1263 csum2 = csum_partial_copy_nocheck(vaddr + 1264 frag->page_offset + 1265 offset - start, to, 1266 copy, 0); 1267 kunmap_skb_frag(vaddr); 1268 csum = csum_block_add(csum, csum2, pos); 1269 if (!(len -= copy)) 1270 return csum; 1271 offset += copy; 1272 to += copy; 1273 pos += copy; 1274 } 1275 start = end; 1276 } 1277 1278 if (skb_shinfo(skb)->frag_list) { 1279 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1280 1281 for (; list; list = list->next) { 1282 unsigned int csum2; 1283 int end; 1284 1285 BUG_TRAP(start <= offset + len); 1286 1287 end = start + list->len; 1288 if ((copy = end - offset) > 0) { 1289 if (copy > len) 1290 copy = len; 1291 csum2 = skb_copy_and_csum_bits(list, 1292 offset - start, 1293 to, copy, 0); 1294 csum = csum_block_add(csum, csum2, pos); 1295 if ((len -= copy) == 0) 1296 return csum; 1297 offset += copy; 1298 to += copy; 1299 pos += copy; 1300 } 1301 start = end; 1302 } 1303 } 1304 BUG_ON(len); 1305 return csum; 1306 } 1307 1308 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1309 { 1310 unsigned int csum; 1311 long csstart; 1312 1313 if (skb->ip_summed == CHECKSUM_HW) 1314 csstart = skb->h.raw - skb->data; 1315 else 1316 csstart = skb_headlen(skb); 1317 1318 BUG_ON(csstart > skb_headlen(skb)); 1319 1320 memcpy(to, skb->data, csstart); 1321 1322 csum = 0; 1323 if (csstart != skb->len) 1324 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1325 skb->len - csstart, 0); 1326 1327 if (skb->ip_summed == CHECKSUM_HW) { 1328 long csstuff = csstart + skb->csum; 1329 1330 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1331 } 1332 } 1333 1334 /** 1335 * skb_dequeue - remove from the head of the queue 1336 * @list: list to dequeue from 1337 * 1338 * Remove the head of the list. The list lock is taken so the function 1339 * may be used safely with other locking list functions. The head item is 1340 * returned or %NULL if the list is empty. 1341 */ 1342 1343 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1344 { 1345 unsigned long flags; 1346 struct sk_buff *result; 1347 1348 spin_lock_irqsave(&list->lock, flags); 1349 result = __skb_dequeue(list); 1350 spin_unlock_irqrestore(&list->lock, flags); 1351 return result; 1352 } 1353 1354 /** 1355 * skb_dequeue_tail - remove from the tail of the queue 1356 * @list: list to dequeue from 1357 * 1358 * Remove the tail of the list. The list lock is taken so the function 1359 * may be used safely with other locking list functions. The tail item is 1360 * returned or %NULL if the list is empty. 1361 */ 1362 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1363 { 1364 unsigned long flags; 1365 struct sk_buff *result; 1366 1367 spin_lock_irqsave(&list->lock, flags); 1368 result = __skb_dequeue_tail(list); 1369 spin_unlock_irqrestore(&list->lock, flags); 1370 return result; 1371 } 1372 1373 /** 1374 * skb_queue_purge - empty a list 1375 * @list: list to empty 1376 * 1377 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1378 * the list and one reference dropped. This function takes the list 1379 * lock and is atomic with respect to other list locking functions. 1380 */ 1381 void skb_queue_purge(struct sk_buff_head *list) 1382 { 1383 struct sk_buff *skb; 1384 while ((skb = skb_dequeue(list)) != NULL) 1385 kfree_skb(skb); 1386 } 1387 1388 /** 1389 * skb_queue_head - queue a buffer at the list head 1390 * @list: list to use 1391 * @newsk: buffer to queue 1392 * 1393 * Queue a buffer at the start of the list. This function takes the 1394 * list lock and can be used safely with other locking &sk_buff functions 1395 * safely. 1396 * 1397 * A buffer cannot be placed on two lists at the same time. 1398 */ 1399 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1400 { 1401 unsigned long flags; 1402 1403 spin_lock_irqsave(&list->lock, flags); 1404 __skb_queue_head(list, newsk); 1405 spin_unlock_irqrestore(&list->lock, flags); 1406 } 1407 1408 /** 1409 * skb_queue_tail - queue a buffer at the list tail 1410 * @list: list to use 1411 * @newsk: buffer to queue 1412 * 1413 * Queue a buffer at the tail of the list. This function takes the 1414 * list lock and can be used safely with other locking &sk_buff functions 1415 * safely. 1416 * 1417 * A buffer cannot be placed on two lists at the same time. 1418 */ 1419 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1420 { 1421 unsigned long flags; 1422 1423 spin_lock_irqsave(&list->lock, flags); 1424 __skb_queue_tail(list, newsk); 1425 spin_unlock_irqrestore(&list->lock, flags); 1426 } 1427 1428 /** 1429 * skb_unlink - remove a buffer from a list 1430 * @skb: buffer to remove 1431 * @list: list to use 1432 * 1433 * Remove a packet from a list. The list locks are taken and this 1434 * function is atomic with respect to other list locked calls 1435 * 1436 * You must know what list the SKB is on. 1437 */ 1438 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1439 { 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&list->lock, flags); 1443 __skb_unlink(skb, list); 1444 spin_unlock_irqrestore(&list->lock, flags); 1445 } 1446 1447 /** 1448 * skb_append - append a buffer 1449 * @old: buffer to insert after 1450 * @newsk: buffer to insert 1451 * @list: list to use 1452 * 1453 * Place a packet after a given packet in a list. The list locks are taken 1454 * and this function is atomic with respect to other list locked calls. 1455 * A buffer cannot be placed on two lists at the same time. 1456 */ 1457 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1458 { 1459 unsigned long flags; 1460 1461 spin_lock_irqsave(&list->lock, flags); 1462 __skb_append(old, newsk, list); 1463 spin_unlock_irqrestore(&list->lock, flags); 1464 } 1465 1466 1467 /** 1468 * skb_insert - insert a buffer 1469 * @old: buffer to insert before 1470 * @newsk: buffer to insert 1471 * @list: list to use 1472 * 1473 * Place a packet before a given packet in a list. The list locks are 1474 * taken and this function is atomic with respect to other list locked 1475 * calls. 1476 * 1477 * A buffer cannot be placed on two lists at the same time. 1478 */ 1479 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1480 { 1481 unsigned long flags; 1482 1483 spin_lock_irqsave(&list->lock, flags); 1484 __skb_insert(newsk, old->prev, old, list); 1485 spin_unlock_irqrestore(&list->lock, flags); 1486 } 1487 1488 #if 0 1489 /* 1490 * Tune the memory allocator for a new MTU size. 1491 */ 1492 void skb_add_mtu(int mtu) 1493 { 1494 /* Must match allocation in alloc_skb */ 1495 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1496 1497 kmem_add_cache_size(mtu); 1498 } 1499 #endif 1500 1501 static inline void skb_split_inside_header(struct sk_buff *skb, 1502 struct sk_buff* skb1, 1503 const u32 len, const int pos) 1504 { 1505 int i; 1506 1507 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1508 1509 /* And move data appendix as is. */ 1510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1511 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1512 1513 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1514 skb_shinfo(skb)->nr_frags = 0; 1515 skb1->data_len = skb->data_len; 1516 skb1->len += skb1->data_len; 1517 skb->data_len = 0; 1518 skb->len = len; 1519 skb->tail = skb->data + len; 1520 } 1521 1522 static inline void skb_split_no_header(struct sk_buff *skb, 1523 struct sk_buff* skb1, 1524 const u32 len, int pos) 1525 { 1526 int i, k = 0; 1527 const int nfrags = skb_shinfo(skb)->nr_frags; 1528 1529 skb_shinfo(skb)->nr_frags = 0; 1530 skb1->len = skb1->data_len = skb->len - len; 1531 skb->len = len; 1532 skb->data_len = len - pos; 1533 1534 for (i = 0; i < nfrags; i++) { 1535 int size = skb_shinfo(skb)->frags[i].size; 1536 1537 if (pos + size > len) { 1538 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1539 1540 if (pos < len) { 1541 /* Split frag. 1542 * We have two variants in this case: 1543 * 1. Move all the frag to the second 1544 * part, if it is possible. F.e. 1545 * this approach is mandatory for TUX, 1546 * where splitting is expensive. 1547 * 2. Split is accurately. We make this. 1548 */ 1549 get_page(skb_shinfo(skb)->frags[i].page); 1550 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1551 skb_shinfo(skb1)->frags[0].size -= len - pos; 1552 skb_shinfo(skb)->frags[i].size = len - pos; 1553 skb_shinfo(skb)->nr_frags++; 1554 } 1555 k++; 1556 } else 1557 skb_shinfo(skb)->nr_frags++; 1558 pos += size; 1559 } 1560 skb_shinfo(skb1)->nr_frags = k; 1561 } 1562 1563 /** 1564 * skb_split - Split fragmented skb to two parts at length len. 1565 * @skb: the buffer to split 1566 * @skb1: the buffer to receive the second part 1567 * @len: new length for skb 1568 */ 1569 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1570 { 1571 int pos = skb_headlen(skb); 1572 1573 if (len < pos) /* Split line is inside header. */ 1574 skb_split_inside_header(skb, skb1, len, pos); 1575 else /* Second chunk has no header, nothing to copy. */ 1576 skb_split_no_header(skb, skb1, len, pos); 1577 } 1578 1579 /** 1580 * skb_prepare_seq_read - Prepare a sequential read of skb data 1581 * @skb: the buffer to read 1582 * @from: lower offset of data to be read 1583 * @to: upper offset of data to be read 1584 * @st: state variable 1585 * 1586 * Initializes the specified state variable. Must be called before 1587 * invoking skb_seq_read() for the first time. 1588 */ 1589 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1590 unsigned int to, struct skb_seq_state *st) 1591 { 1592 st->lower_offset = from; 1593 st->upper_offset = to; 1594 st->root_skb = st->cur_skb = skb; 1595 st->frag_idx = st->stepped_offset = 0; 1596 st->frag_data = NULL; 1597 } 1598 1599 /** 1600 * skb_seq_read - Sequentially read skb data 1601 * @consumed: number of bytes consumed by the caller so far 1602 * @data: destination pointer for data to be returned 1603 * @st: state variable 1604 * 1605 * Reads a block of skb data at &consumed relative to the 1606 * lower offset specified to skb_prepare_seq_read(). Assigns 1607 * the head of the data block to &data and returns the length 1608 * of the block or 0 if the end of the skb data or the upper 1609 * offset has been reached. 1610 * 1611 * The caller is not required to consume all of the data 1612 * returned, i.e. &consumed is typically set to the number 1613 * of bytes already consumed and the next call to 1614 * skb_seq_read() will return the remaining part of the block. 1615 * 1616 * Note: The size of each block of data returned can be arbitary, 1617 * this limitation is the cost for zerocopy seqeuental 1618 * reads of potentially non linear data. 1619 * 1620 * Note: Fragment lists within fragments are not implemented 1621 * at the moment, state->root_skb could be replaced with 1622 * a stack for this purpose. 1623 */ 1624 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1625 struct skb_seq_state *st) 1626 { 1627 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1628 skb_frag_t *frag; 1629 1630 if (unlikely(abs_offset >= st->upper_offset)) 1631 return 0; 1632 1633 next_skb: 1634 block_limit = skb_headlen(st->cur_skb); 1635 1636 if (abs_offset < block_limit) { 1637 *data = st->cur_skb->data + abs_offset; 1638 return block_limit - abs_offset; 1639 } 1640 1641 if (st->frag_idx == 0 && !st->frag_data) 1642 st->stepped_offset += skb_headlen(st->cur_skb); 1643 1644 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1645 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1646 block_limit = frag->size + st->stepped_offset; 1647 1648 if (abs_offset < block_limit) { 1649 if (!st->frag_data) 1650 st->frag_data = kmap_skb_frag(frag); 1651 1652 *data = (u8 *) st->frag_data + frag->page_offset + 1653 (abs_offset - st->stepped_offset); 1654 1655 return block_limit - abs_offset; 1656 } 1657 1658 if (st->frag_data) { 1659 kunmap_skb_frag(st->frag_data); 1660 st->frag_data = NULL; 1661 } 1662 1663 st->frag_idx++; 1664 st->stepped_offset += frag->size; 1665 } 1666 1667 if (st->cur_skb->next) { 1668 st->cur_skb = st->cur_skb->next; 1669 st->frag_idx = 0; 1670 goto next_skb; 1671 } else if (st->root_skb == st->cur_skb && 1672 skb_shinfo(st->root_skb)->frag_list) { 1673 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1674 goto next_skb; 1675 } 1676 1677 return 0; 1678 } 1679 1680 /** 1681 * skb_abort_seq_read - Abort a sequential read of skb data 1682 * @st: state variable 1683 * 1684 * Must be called if skb_seq_read() was not called until it 1685 * returned 0. 1686 */ 1687 void skb_abort_seq_read(struct skb_seq_state *st) 1688 { 1689 if (st->frag_data) 1690 kunmap_skb_frag(st->frag_data); 1691 } 1692 1693 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1694 1695 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1696 struct ts_config *conf, 1697 struct ts_state *state) 1698 { 1699 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1700 } 1701 1702 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1703 { 1704 skb_abort_seq_read(TS_SKB_CB(state)); 1705 } 1706 1707 /** 1708 * skb_find_text - Find a text pattern in skb data 1709 * @skb: the buffer to look in 1710 * @from: search offset 1711 * @to: search limit 1712 * @config: textsearch configuration 1713 * @state: uninitialized textsearch state variable 1714 * 1715 * Finds a pattern in the skb data according to the specified 1716 * textsearch configuration. Use textsearch_next() to retrieve 1717 * subsequent occurrences of the pattern. Returns the offset 1718 * to the first occurrence or UINT_MAX if no match was found. 1719 */ 1720 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1721 unsigned int to, struct ts_config *config, 1722 struct ts_state *state) 1723 { 1724 config->get_next_block = skb_ts_get_next_block; 1725 config->finish = skb_ts_finish; 1726 1727 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1728 1729 return textsearch_find(config, state); 1730 } 1731 1732 /** 1733 * skb_append_datato_frags: - append the user data to a skb 1734 * @sk: sock structure 1735 * @skb: skb structure to be appened with user data. 1736 * @getfrag: call back function to be used for getting the user data 1737 * @from: pointer to user message iov 1738 * @length: length of the iov message 1739 * 1740 * Description: This procedure append the user data in the fragment part 1741 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1742 */ 1743 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1744 int (*getfrag)(void *from, char *to, int offset, 1745 int len, int odd, struct sk_buff *skb), 1746 void *from, int length) 1747 { 1748 int frg_cnt = 0; 1749 skb_frag_t *frag = NULL; 1750 struct page *page = NULL; 1751 int copy, left; 1752 int offset = 0; 1753 int ret; 1754 1755 do { 1756 /* Return error if we don't have space for new frag */ 1757 frg_cnt = skb_shinfo(skb)->nr_frags; 1758 if (frg_cnt >= MAX_SKB_FRAGS) 1759 return -EFAULT; 1760 1761 /* allocate a new page for next frag */ 1762 page = alloc_pages(sk->sk_allocation, 0); 1763 1764 /* If alloc_page fails just return failure and caller will 1765 * free previous allocated pages by doing kfree_skb() 1766 */ 1767 if (page == NULL) 1768 return -ENOMEM; 1769 1770 /* initialize the next frag */ 1771 sk->sk_sndmsg_page = page; 1772 sk->sk_sndmsg_off = 0; 1773 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1774 skb->truesize += PAGE_SIZE; 1775 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1776 1777 /* get the new initialized frag */ 1778 frg_cnt = skb_shinfo(skb)->nr_frags; 1779 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1780 1781 /* copy the user data to page */ 1782 left = PAGE_SIZE - frag->page_offset; 1783 copy = (length > left)? left : length; 1784 1785 ret = getfrag(from, (page_address(frag->page) + 1786 frag->page_offset + frag->size), 1787 offset, copy, 0, skb); 1788 if (ret < 0) 1789 return -EFAULT; 1790 1791 /* copy was successful so update the size parameters */ 1792 sk->sk_sndmsg_off += copy; 1793 frag->size += copy; 1794 skb->len += copy; 1795 skb->data_len += copy; 1796 offset += copy; 1797 length -= copy; 1798 1799 } while (length > 0); 1800 1801 return 0; 1802 } 1803 1804 /** 1805 * skb_pull_rcsum - pull skb and update receive checksum 1806 * @skb: buffer to update 1807 * @start: start of data before pull 1808 * @len: length of data pulled 1809 * 1810 * This function performs an skb_pull on the packet and updates 1811 * update the CHECKSUM_HW checksum. It should be used on receive 1812 * path processing instead of skb_pull unless you know that the 1813 * checksum difference is zero (e.g., a valid IP header) or you 1814 * are setting ip_summed to CHECKSUM_NONE. 1815 */ 1816 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1817 { 1818 BUG_ON(len > skb->len); 1819 skb->len -= len; 1820 BUG_ON(skb->len < skb->data_len); 1821 skb_postpull_rcsum(skb, skb->data, len); 1822 return skb->data += len; 1823 } 1824 1825 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1826 1827 void __init skb_init(void) 1828 { 1829 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 1830 sizeof(struct sk_buff), 1831 0, 1832 SLAB_HWCACHE_ALIGN, 1833 NULL, NULL); 1834 if (!skbuff_head_cache) 1835 panic("cannot create skbuff cache"); 1836 1837 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 1838 (2*sizeof(struct sk_buff)) + 1839 sizeof(atomic_t), 1840 0, 1841 SLAB_HWCACHE_ALIGN, 1842 NULL, NULL); 1843 if (!skbuff_fclone_cache) 1844 panic("cannot create skbuff cache"); 1845 } 1846 1847 EXPORT_SYMBOL(___pskb_trim); 1848 EXPORT_SYMBOL(__kfree_skb); 1849 EXPORT_SYMBOL(kfree_skb); 1850 EXPORT_SYMBOL(__pskb_pull_tail); 1851 EXPORT_SYMBOL(__alloc_skb); 1852 EXPORT_SYMBOL(pskb_copy); 1853 EXPORT_SYMBOL(pskb_expand_head); 1854 EXPORT_SYMBOL(skb_checksum); 1855 EXPORT_SYMBOL(skb_clone); 1856 EXPORT_SYMBOL(skb_clone_fraglist); 1857 EXPORT_SYMBOL(skb_copy); 1858 EXPORT_SYMBOL(skb_copy_and_csum_bits); 1859 EXPORT_SYMBOL(skb_copy_and_csum_dev); 1860 EXPORT_SYMBOL(skb_copy_bits); 1861 EXPORT_SYMBOL(skb_copy_expand); 1862 EXPORT_SYMBOL(skb_over_panic); 1863 EXPORT_SYMBOL(skb_pad); 1864 EXPORT_SYMBOL(skb_realloc_headroom); 1865 EXPORT_SYMBOL(skb_under_panic); 1866 EXPORT_SYMBOL(skb_dequeue); 1867 EXPORT_SYMBOL(skb_dequeue_tail); 1868 EXPORT_SYMBOL(skb_insert); 1869 EXPORT_SYMBOL(skb_queue_purge); 1870 EXPORT_SYMBOL(skb_queue_head); 1871 EXPORT_SYMBOL(skb_queue_tail); 1872 EXPORT_SYMBOL(skb_unlink); 1873 EXPORT_SYMBOL(skb_append); 1874 EXPORT_SYMBOL(skb_split); 1875 EXPORT_SYMBOL(skb_prepare_seq_read); 1876 EXPORT_SYMBOL(skb_seq_read); 1877 EXPORT_SYMBOL(skb_abort_seq_read); 1878 EXPORT_SYMBOL(skb_find_text); 1879 EXPORT_SYMBOL(skb_append_datato_frags); 1880