1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 /* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/kmemcheck.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/splice.h> 57 #include <linux/cache.h> 58 #include <linux/rtnetlink.h> 59 #include <linux/init.h> 60 #include <linux/scatterlist.h> 61 #include <linux/errqueue.h> 62 #include <linux/prefetch.h> 63 64 #include <net/protocol.h> 65 #include <net/dst.h> 66 #include <net/sock.h> 67 #include <net/checksum.h> 68 #include <net/xfrm.h> 69 70 #include <asm/uaccess.h> 71 #include <trace/events/skb.h> 72 #include <linux/highmem.h> 73 74 struct kmem_cache *skbuff_head_cache __read_mostly; 75 static struct kmem_cache *skbuff_fclone_cache __read_mostly; 76 77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe, 78 struct pipe_buffer *buf) 79 { 80 put_page(buf->page); 81 } 82 83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe, 84 struct pipe_buffer *buf) 85 { 86 get_page(buf->page); 87 } 88 89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 return 1; 93 } 94 95 96 /* Pipe buffer operations for a socket. */ 97 static const struct pipe_buf_operations sock_pipe_buf_ops = { 98 .can_merge = 0, 99 .map = generic_pipe_buf_map, 100 .unmap = generic_pipe_buf_unmap, 101 .confirm = generic_pipe_buf_confirm, 102 .release = sock_pipe_buf_release, 103 .steal = sock_pipe_buf_steal, 104 .get = sock_pipe_buf_get, 105 }; 106 107 /** 108 * skb_panic - private function for out-of-line support 109 * @skb: buffer 110 * @sz: size 111 * @addr: address 112 * @msg: skb_over_panic or skb_under_panic 113 * 114 * Out-of-line support for skb_put() and skb_push(). 115 * Called via the wrapper skb_over_panic() or skb_under_panic(). 116 * Keep out of line to prevent kernel bloat. 117 * __builtin_return_address is not used because it is not always reliable. 118 */ 119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 120 const char msg[]) 121 { 122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 123 msg, addr, skb->len, sz, skb->head, skb->data, 124 (unsigned long)skb->tail, (unsigned long)skb->end, 125 skb->dev ? skb->dev->name : "<NULL>"); 126 BUG(); 127 } 128 129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 130 { 131 skb_panic(skb, sz, addr, __func__); 132 } 133 134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 135 { 136 skb_panic(skb, sz, addr, __func__); 137 } 138 139 /* 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 141 * the caller if emergency pfmemalloc reserves are being used. If it is and 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 143 * may be used. Otherwise, the packet data may be discarded until enough 144 * memory is free 145 */ 146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 148 149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 150 unsigned long ip, bool *pfmemalloc) 151 { 152 void *obj; 153 bool ret_pfmemalloc = false; 154 155 /* 156 * Try a regular allocation, when that fails and we're not entitled 157 * to the reserves, fail. 158 */ 159 obj = kmalloc_node_track_caller(size, 160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 161 node); 162 if (obj || !(gfp_pfmemalloc_allowed(flags))) 163 goto out; 164 165 /* Try again but now we are using pfmemalloc reserves */ 166 ret_pfmemalloc = true; 167 obj = kmalloc_node_track_caller(size, flags, node); 168 169 out: 170 if (pfmemalloc) 171 *pfmemalloc = ret_pfmemalloc; 172 173 return obj; 174 } 175 176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 177 * 'private' fields and also do memory statistics to find all the 178 * [BEEP] leaks. 179 * 180 */ 181 182 /** 183 * __alloc_skb - allocate a network buffer 184 * @size: size to allocate 185 * @gfp_mask: allocation mask 186 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 187 * instead of head cache and allocate a cloned (child) skb. 188 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 189 * allocations in case the data is required for writeback 190 * @node: numa node to allocate memory on 191 * 192 * Allocate a new &sk_buff. The returned buffer has no headroom and a 193 * tail room of at least size bytes. The object has a reference count 194 * of one. The return is the buffer. On a failure the return is %NULL. 195 * 196 * Buffers may only be allocated from interrupts using a @gfp_mask of 197 * %GFP_ATOMIC. 198 */ 199 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 200 int flags, int node) 201 { 202 struct kmem_cache *cache; 203 struct skb_shared_info *shinfo; 204 struct sk_buff *skb; 205 u8 *data; 206 bool pfmemalloc; 207 208 cache = (flags & SKB_ALLOC_FCLONE) 209 ? skbuff_fclone_cache : skbuff_head_cache; 210 211 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 212 gfp_mask |= __GFP_MEMALLOC; 213 214 /* Get the HEAD */ 215 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 216 if (!skb) 217 goto out; 218 prefetchw(skb); 219 220 /* We do our best to align skb_shared_info on a separate cache 221 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 222 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 223 * Both skb->head and skb_shared_info are cache line aligned. 224 */ 225 size = SKB_DATA_ALIGN(size); 226 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 227 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 228 if (!data) 229 goto nodata; 230 /* kmalloc(size) might give us more room than requested. 231 * Put skb_shared_info exactly at the end of allocated zone, 232 * to allow max possible filling before reallocation. 233 */ 234 size = SKB_WITH_OVERHEAD(ksize(data)); 235 prefetchw(data + size); 236 237 /* 238 * Only clear those fields we need to clear, not those that we will 239 * actually initialise below. Hence, don't put any more fields after 240 * the tail pointer in struct sk_buff! 241 */ 242 memset(skb, 0, offsetof(struct sk_buff, tail)); 243 /* Account for allocated memory : skb + skb->head */ 244 skb->truesize = SKB_TRUESIZE(size); 245 skb->pfmemalloc = pfmemalloc; 246 atomic_set(&skb->users, 1); 247 skb->head = data; 248 skb->data = data; 249 skb_reset_tail_pointer(skb); 250 skb->end = skb->tail + size; 251 #ifdef NET_SKBUFF_DATA_USES_OFFSET 252 skb->mac_header = ~0U; 253 skb->transport_header = ~0U; 254 #endif 255 256 /* make sure we initialize shinfo sequentially */ 257 shinfo = skb_shinfo(skb); 258 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 259 atomic_set(&shinfo->dataref, 1); 260 kmemcheck_annotate_variable(shinfo->destructor_arg); 261 262 if (flags & SKB_ALLOC_FCLONE) { 263 struct sk_buff *child = skb + 1; 264 atomic_t *fclone_ref = (atomic_t *) (child + 1); 265 266 kmemcheck_annotate_bitfield(child, flags1); 267 kmemcheck_annotate_bitfield(child, flags2); 268 skb->fclone = SKB_FCLONE_ORIG; 269 atomic_set(fclone_ref, 1); 270 271 child->fclone = SKB_FCLONE_UNAVAILABLE; 272 child->pfmemalloc = pfmemalloc; 273 } 274 out: 275 return skb; 276 nodata: 277 kmem_cache_free(cache, skb); 278 skb = NULL; 279 goto out; 280 } 281 EXPORT_SYMBOL(__alloc_skb); 282 283 /** 284 * build_skb - build a network buffer 285 * @data: data buffer provided by caller 286 * @frag_size: size of fragment, or 0 if head was kmalloced 287 * 288 * Allocate a new &sk_buff. Caller provides space holding head and 289 * skb_shared_info. @data must have been allocated by kmalloc() 290 * The return is the new skb buffer. 291 * On a failure the return is %NULL, and @data is not freed. 292 * Notes : 293 * Before IO, driver allocates only data buffer where NIC put incoming frame 294 * Driver should add room at head (NET_SKB_PAD) and 295 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 296 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 297 * before giving packet to stack. 298 * RX rings only contains data buffers, not full skbs. 299 */ 300 struct sk_buff *build_skb(void *data, unsigned int frag_size) 301 { 302 struct skb_shared_info *shinfo; 303 struct sk_buff *skb; 304 unsigned int size = frag_size ? : ksize(data); 305 306 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 307 if (!skb) 308 return NULL; 309 310 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 311 312 memset(skb, 0, offsetof(struct sk_buff, tail)); 313 skb->truesize = SKB_TRUESIZE(size); 314 skb->head_frag = frag_size != 0; 315 atomic_set(&skb->users, 1); 316 skb->head = data; 317 skb->data = data; 318 skb_reset_tail_pointer(skb); 319 skb->end = skb->tail + size; 320 #ifdef NET_SKBUFF_DATA_USES_OFFSET 321 skb->mac_header = ~0U; 322 skb->transport_header = ~0U; 323 #endif 324 325 /* make sure we initialize shinfo sequentially */ 326 shinfo = skb_shinfo(skb); 327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 328 atomic_set(&shinfo->dataref, 1); 329 kmemcheck_annotate_variable(shinfo->destructor_arg); 330 331 return skb; 332 } 333 EXPORT_SYMBOL(build_skb); 334 335 struct netdev_alloc_cache { 336 struct page_frag frag; 337 /* we maintain a pagecount bias, so that we dont dirty cache line 338 * containing page->_count every time we allocate a fragment. 339 */ 340 unsigned int pagecnt_bias; 341 }; 342 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); 343 344 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 345 { 346 struct netdev_alloc_cache *nc; 347 void *data = NULL; 348 int order; 349 unsigned long flags; 350 351 local_irq_save(flags); 352 nc = &__get_cpu_var(netdev_alloc_cache); 353 if (unlikely(!nc->frag.page)) { 354 refill: 355 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) { 356 gfp_t gfp = gfp_mask; 357 358 if (order) 359 gfp |= __GFP_COMP | __GFP_NOWARN; 360 nc->frag.page = alloc_pages(gfp, order); 361 if (likely(nc->frag.page)) 362 break; 363 if (--order < 0) 364 goto end; 365 } 366 nc->frag.size = PAGE_SIZE << order; 367 recycle: 368 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS); 369 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS; 370 nc->frag.offset = 0; 371 } 372 373 if (nc->frag.offset + fragsz > nc->frag.size) { 374 /* avoid unnecessary locked operations if possible */ 375 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) || 376 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count)) 377 goto recycle; 378 goto refill; 379 } 380 381 data = page_address(nc->frag.page) + nc->frag.offset; 382 nc->frag.offset += fragsz; 383 nc->pagecnt_bias--; 384 end: 385 local_irq_restore(flags); 386 return data; 387 } 388 389 /** 390 * netdev_alloc_frag - allocate a page fragment 391 * @fragsz: fragment size 392 * 393 * Allocates a frag from a page for receive buffer. 394 * Uses GFP_ATOMIC allocations. 395 */ 396 void *netdev_alloc_frag(unsigned int fragsz) 397 { 398 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 399 } 400 EXPORT_SYMBOL(netdev_alloc_frag); 401 402 /** 403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 404 * @dev: network device to receive on 405 * @length: length to allocate 406 * @gfp_mask: get_free_pages mask, passed to alloc_skb 407 * 408 * Allocate a new &sk_buff and assign it a usage count of one. The 409 * buffer has unspecified headroom built in. Users should allocate 410 * the headroom they think they need without accounting for the 411 * built in space. The built in space is used for optimisations. 412 * 413 * %NULL is returned if there is no free memory. 414 */ 415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 416 unsigned int length, gfp_t gfp_mask) 417 { 418 struct sk_buff *skb = NULL; 419 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) + 420 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 421 422 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { 423 void *data; 424 425 if (sk_memalloc_socks()) 426 gfp_mask |= __GFP_MEMALLOC; 427 428 data = __netdev_alloc_frag(fragsz, gfp_mask); 429 430 if (likely(data)) { 431 skb = build_skb(data, fragsz); 432 if (unlikely(!skb)) 433 put_page(virt_to_head_page(data)); 434 } 435 } else { 436 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 437 SKB_ALLOC_RX, NUMA_NO_NODE); 438 } 439 if (likely(skb)) { 440 skb_reserve(skb, NET_SKB_PAD); 441 skb->dev = dev; 442 } 443 return skb; 444 } 445 EXPORT_SYMBOL(__netdev_alloc_skb); 446 447 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 448 int size, unsigned int truesize) 449 { 450 skb_fill_page_desc(skb, i, page, off, size); 451 skb->len += size; 452 skb->data_len += size; 453 skb->truesize += truesize; 454 } 455 EXPORT_SYMBOL(skb_add_rx_frag); 456 457 static void skb_drop_list(struct sk_buff **listp) 458 { 459 struct sk_buff *list = *listp; 460 461 *listp = NULL; 462 463 do { 464 struct sk_buff *this = list; 465 list = list->next; 466 kfree_skb(this); 467 } while (list); 468 } 469 470 static inline void skb_drop_fraglist(struct sk_buff *skb) 471 { 472 skb_drop_list(&skb_shinfo(skb)->frag_list); 473 } 474 475 static void skb_clone_fraglist(struct sk_buff *skb) 476 { 477 struct sk_buff *list; 478 479 skb_walk_frags(skb, list) 480 skb_get(list); 481 } 482 483 static void skb_free_head(struct sk_buff *skb) 484 { 485 if (skb->head_frag) 486 put_page(virt_to_head_page(skb->head)); 487 else 488 kfree(skb->head); 489 } 490 491 static void skb_release_data(struct sk_buff *skb) 492 { 493 if (!skb->cloned || 494 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 495 &skb_shinfo(skb)->dataref)) { 496 if (skb_shinfo(skb)->nr_frags) { 497 int i; 498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 499 skb_frag_unref(skb, i); 500 } 501 502 /* 503 * If skb buf is from userspace, we need to notify the caller 504 * the lower device DMA has done; 505 */ 506 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 507 struct ubuf_info *uarg; 508 509 uarg = skb_shinfo(skb)->destructor_arg; 510 if (uarg->callback) 511 uarg->callback(uarg, true); 512 } 513 514 if (skb_has_frag_list(skb)) 515 skb_drop_fraglist(skb); 516 517 skb_free_head(skb); 518 } 519 } 520 521 /* 522 * Free an skbuff by memory without cleaning the state. 523 */ 524 static void kfree_skbmem(struct sk_buff *skb) 525 { 526 struct sk_buff *other; 527 atomic_t *fclone_ref; 528 529 switch (skb->fclone) { 530 case SKB_FCLONE_UNAVAILABLE: 531 kmem_cache_free(skbuff_head_cache, skb); 532 break; 533 534 case SKB_FCLONE_ORIG: 535 fclone_ref = (atomic_t *) (skb + 2); 536 if (atomic_dec_and_test(fclone_ref)) 537 kmem_cache_free(skbuff_fclone_cache, skb); 538 break; 539 540 case SKB_FCLONE_CLONE: 541 fclone_ref = (atomic_t *) (skb + 1); 542 other = skb - 1; 543 544 /* The clone portion is available for 545 * fast-cloning again. 546 */ 547 skb->fclone = SKB_FCLONE_UNAVAILABLE; 548 549 if (atomic_dec_and_test(fclone_ref)) 550 kmem_cache_free(skbuff_fclone_cache, other); 551 break; 552 } 553 } 554 555 static void skb_release_head_state(struct sk_buff *skb) 556 { 557 skb_dst_drop(skb); 558 #ifdef CONFIG_XFRM 559 secpath_put(skb->sp); 560 #endif 561 if (skb->destructor) { 562 WARN_ON(in_irq()); 563 skb->destructor(skb); 564 } 565 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 566 nf_conntrack_put(skb->nfct); 567 #endif 568 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 569 nf_conntrack_put_reasm(skb->nfct_reasm); 570 #endif 571 #ifdef CONFIG_BRIDGE_NETFILTER 572 nf_bridge_put(skb->nf_bridge); 573 #endif 574 /* XXX: IS this still necessary? - JHS */ 575 #ifdef CONFIG_NET_SCHED 576 skb->tc_index = 0; 577 #ifdef CONFIG_NET_CLS_ACT 578 skb->tc_verd = 0; 579 #endif 580 #endif 581 } 582 583 /* Free everything but the sk_buff shell. */ 584 static void skb_release_all(struct sk_buff *skb) 585 { 586 skb_release_head_state(skb); 587 skb_release_data(skb); 588 } 589 590 /** 591 * __kfree_skb - private function 592 * @skb: buffer 593 * 594 * Free an sk_buff. Release anything attached to the buffer. 595 * Clean the state. This is an internal helper function. Users should 596 * always call kfree_skb 597 */ 598 599 void __kfree_skb(struct sk_buff *skb) 600 { 601 skb_release_all(skb); 602 kfree_skbmem(skb); 603 } 604 EXPORT_SYMBOL(__kfree_skb); 605 606 /** 607 * kfree_skb - free an sk_buff 608 * @skb: buffer to free 609 * 610 * Drop a reference to the buffer and free it if the usage count has 611 * hit zero. 612 */ 613 void kfree_skb(struct sk_buff *skb) 614 { 615 if (unlikely(!skb)) 616 return; 617 if (likely(atomic_read(&skb->users) == 1)) 618 smp_rmb(); 619 else if (likely(!atomic_dec_and_test(&skb->users))) 620 return; 621 trace_kfree_skb(skb, __builtin_return_address(0)); 622 __kfree_skb(skb); 623 } 624 EXPORT_SYMBOL(kfree_skb); 625 626 /** 627 * skb_tx_error - report an sk_buff xmit error 628 * @skb: buffer that triggered an error 629 * 630 * Report xmit error if a device callback is tracking this skb. 631 * skb must be freed afterwards. 632 */ 633 void skb_tx_error(struct sk_buff *skb) 634 { 635 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 636 struct ubuf_info *uarg; 637 638 uarg = skb_shinfo(skb)->destructor_arg; 639 if (uarg->callback) 640 uarg->callback(uarg, false); 641 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 642 } 643 } 644 EXPORT_SYMBOL(skb_tx_error); 645 646 /** 647 * consume_skb - free an skbuff 648 * @skb: buffer to free 649 * 650 * Drop a ref to the buffer and free it if the usage count has hit zero 651 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 652 * is being dropped after a failure and notes that 653 */ 654 void consume_skb(struct sk_buff *skb) 655 { 656 if (unlikely(!skb)) 657 return; 658 if (likely(atomic_read(&skb->users) == 1)) 659 smp_rmb(); 660 else if (likely(!atomic_dec_and_test(&skb->users))) 661 return; 662 trace_consume_skb(skb); 663 __kfree_skb(skb); 664 } 665 EXPORT_SYMBOL(consume_skb); 666 667 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 668 { 669 new->tstamp = old->tstamp; 670 new->dev = old->dev; 671 new->transport_header = old->transport_header; 672 new->network_header = old->network_header; 673 new->mac_header = old->mac_header; 674 new->inner_transport_header = old->inner_transport_header; 675 new->inner_network_header = old->inner_network_header; 676 skb_dst_copy(new, old); 677 new->rxhash = old->rxhash; 678 new->ooo_okay = old->ooo_okay; 679 new->l4_rxhash = old->l4_rxhash; 680 new->no_fcs = old->no_fcs; 681 new->encapsulation = old->encapsulation; 682 #ifdef CONFIG_XFRM 683 new->sp = secpath_get(old->sp); 684 #endif 685 memcpy(new->cb, old->cb, sizeof(old->cb)); 686 new->csum = old->csum; 687 new->local_df = old->local_df; 688 new->pkt_type = old->pkt_type; 689 new->ip_summed = old->ip_summed; 690 skb_copy_queue_mapping(new, old); 691 new->priority = old->priority; 692 #if IS_ENABLED(CONFIG_IP_VS) 693 new->ipvs_property = old->ipvs_property; 694 #endif 695 new->pfmemalloc = old->pfmemalloc; 696 new->protocol = old->protocol; 697 new->mark = old->mark; 698 new->skb_iif = old->skb_iif; 699 __nf_copy(new, old); 700 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 701 new->nf_trace = old->nf_trace; 702 #endif 703 #ifdef CONFIG_NET_SCHED 704 new->tc_index = old->tc_index; 705 #ifdef CONFIG_NET_CLS_ACT 706 new->tc_verd = old->tc_verd; 707 #endif 708 #endif 709 new->vlan_tci = old->vlan_tci; 710 711 skb_copy_secmark(new, old); 712 } 713 714 /* 715 * You should not add any new code to this function. Add it to 716 * __copy_skb_header above instead. 717 */ 718 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 719 { 720 #define C(x) n->x = skb->x 721 722 n->next = n->prev = NULL; 723 n->sk = NULL; 724 __copy_skb_header(n, skb); 725 726 C(len); 727 C(data_len); 728 C(mac_len); 729 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 730 n->cloned = 1; 731 n->nohdr = 0; 732 n->destructor = NULL; 733 C(tail); 734 C(end); 735 C(head); 736 C(head_frag); 737 C(data); 738 C(truesize); 739 atomic_set(&n->users, 1); 740 741 atomic_inc(&(skb_shinfo(skb)->dataref)); 742 skb->cloned = 1; 743 744 return n; 745 #undef C 746 } 747 748 /** 749 * skb_morph - morph one skb into another 750 * @dst: the skb to receive the contents 751 * @src: the skb to supply the contents 752 * 753 * This is identical to skb_clone except that the target skb is 754 * supplied by the user. 755 * 756 * The target skb is returned upon exit. 757 */ 758 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 759 { 760 skb_release_all(dst); 761 return __skb_clone(dst, src); 762 } 763 EXPORT_SYMBOL_GPL(skb_morph); 764 765 /** 766 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 767 * @skb: the skb to modify 768 * @gfp_mask: allocation priority 769 * 770 * This must be called on SKBTX_DEV_ZEROCOPY skb. 771 * It will copy all frags into kernel and drop the reference 772 * to userspace pages. 773 * 774 * If this function is called from an interrupt gfp_mask() must be 775 * %GFP_ATOMIC. 776 * 777 * Returns 0 on success or a negative error code on failure 778 * to allocate kernel memory to copy to. 779 */ 780 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 781 { 782 int i; 783 int num_frags = skb_shinfo(skb)->nr_frags; 784 struct page *page, *head = NULL; 785 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 786 787 for (i = 0; i < num_frags; i++) { 788 u8 *vaddr; 789 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 790 791 page = alloc_page(gfp_mask); 792 if (!page) { 793 while (head) { 794 struct page *next = (struct page *)head->private; 795 put_page(head); 796 head = next; 797 } 798 return -ENOMEM; 799 } 800 vaddr = kmap_atomic(skb_frag_page(f)); 801 memcpy(page_address(page), 802 vaddr + f->page_offset, skb_frag_size(f)); 803 kunmap_atomic(vaddr); 804 page->private = (unsigned long)head; 805 head = page; 806 } 807 808 /* skb frags release userspace buffers */ 809 for (i = 0; i < num_frags; i++) 810 skb_frag_unref(skb, i); 811 812 uarg->callback(uarg, false); 813 814 /* skb frags point to kernel buffers */ 815 for (i = num_frags - 1; i >= 0; i--) { 816 __skb_fill_page_desc(skb, i, head, 0, 817 skb_shinfo(skb)->frags[i].size); 818 head = (struct page *)head->private; 819 } 820 821 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 822 return 0; 823 } 824 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 825 826 /** 827 * skb_clone - duplicate an sk_buff 828 * @skb: buffer to clone 829 * @gfp_mask: allocation priority 830 * 831 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 832 * copies share the same packet data but not structure. The new 833 * buffer has a reference count of 1. If the allocation fails the 834 * function returns %NULL otherwise the new buffer is returned. 835 * 836 * If this function is called from an interrupt gfp_mask() must be 837 * %GFP_ATOMIC. 838 */ 839 840 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 841 { 842 struct sk_buff *n; 843 844 if (skb_orphan_frags(skb, gfp_mask)) 845 return NULL; 846 847 n = skb + 1; 848 if (skb->fclone == SKB_FCLONE_ORIG && 849 n->fclone == SKB_FCLONE_UNAVAILABLE) { 850 atomic_t *fclone_ref = (atomic_t *) (n + 1); 851 n->fclone = SKB_FCLONE_CLONE; 852 atomic_inc(fclone_ref); 853 } else { 854 if (skb_pfmemalloc(skb)) 855 gfp_mask |= __GFP_MEMALLOC; 856 857 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 858 if (!n) 859 return NULL; 860 861 kmemcheck_annotate_bitfield(n, flags1); 862 kmemcheck_annotate_bitfield(n, flags2); 863 n->fclone = SKB_FCLONE_UNAVAILABLE; 864 } 865 866 return __skb_clone(n, skb); 867 } 868 EXPORT_SYMBOL(skb_clone); 869 870 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 871 { 872 #ifndef NET_SKBUFF_DATA_USES_OFFSET 873 /* 874 * Shift between the two data areas in bytes 875 */ 876 unsigned long offset = new->data - old->data; 877 #endif 878 879 __copy_skb_header(new, old); 880 881 #ifndef NET_SKBUFF_DATA_USES_OFFSET 882 /* {transport,network,mac}_header are relative to skb->head */ 883 new->transport_header += offset; 884 new->network_header += offset; 885 if (skb_mac_header_was_set(new)) 886 new->mac_header += offset; 887 new->inner_transport_header += offset; 888 new->inner_network_header += offset; 889 #endif 890 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 891 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 892 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 893 } 894 895 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 896 { 897 if (skb_pfmemalloc(skb)) 898 return SKB_ALLOC_RX; 899 return 0; 900 } 901 902 /** 903 * skb_copy - create private copy of an sk_buff 904 * @skb: buffer to copy 905 * @gfp_mask: allocation priority 906 * 907 * Make a copy of both an &sk_buff and its data. This is used when the 908 * caller wishes to modify the data and needs a private copy of the 909 * data to alter. Returns %NULL on failure or the pointer to the buffer 910 * on success. The returned buffer has a reference count of 1. 911 * 912 * As by-product this function converts non-linear &sk_buff to linear 913 * one, so that &sk_buff becomes completely private and caller is allowed 914 * to modify all the data of returned buffer. This means that this 915 * function is not recommended for use in circumstances when only 916 * header is going to be modified. Use pskb_copy() instead. 917 */ 918 919 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 920 { 921 int headerlen = skb_headroom(skb); 922 unsigned int size = skb_end_offset(skb) + skb->data_len; 923 struct sk_buff *n = __alloc_skb(size, gfp_mask, 924 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 925 926 if (!n) 927 return NULL; 928 929 /* Set the data pointer */ 930 skb_reserve(n, headerlen); 931 /* Set the tail pointer and length */ 932 skb_put(n, skb->len); 933 934 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 935 BUG(); 936 937 copy_skb_header(n, skb); 938 return n; 939 } 940 EXPORT_SYMBOL(skb_copy); 941 942 /** 943 * __pskb_copy - create copy of an sk_buff with private head. 944 * @skb: buffer to copy 945 * @headroom: headroom of new skb 946 * @gfp_mask: allocation priority 947 * 948 * Make a copy of both an &sk_buff and part of its data, located 949 * in header. Fragmented data remain shared. This is used when 950 * the caller wishes to modify only header of &sk_buff and needs 951 * private copy of the header to alter. Returns %NULL on failure 952 * or the pointer to the buffer on success. 953 * The returned buffer has a reference count of 1. 954 */ 955 956 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) 957 { 958 unsigned int size = skb_headlen(skb) + headroom; 959 struct sk_buff *n = __alloc_skb(size, gfp_mask, 960 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 961 962 if (!n) 963 goto out; 964 965 /* Set the data pointer */ 966 skb_reserve(n, headroom); 967 /* Set the tail pointer and length */ 968 skb_put(n, skb_headlen(skb)); 969 /* Copy the bytes */ 970 skb_copy_from_linear_data(skb, n->data, n->len); 971 972 n->truesize += skb->data_len; 973 n->data_len = skb->data_len; 974 n->len = skb->len; 975 976 if (skb_shinfo(skb)->nr_frags) { 977 int i; 978 979 if (skb_orphan_frags(skb, gfp_mask)) { 980 kfree_skb(n); 981 n = NULL; 982 goto out; 983 } 984 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 985 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 986 skb_frag_ref(skb, i); 987 } 988 skb_shinfo(n)->nr_frags = i; 989 } 990 991 if (skb_has_frag_list(skb)) { 992 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 993 skb_clone_fraglist(n); 994 } 995 996 copy_skb_header(n, skb); 997 out: 998 return n; 999 } 1000 EXPORT_SYMBOL(__pskb_copy); 1001 1002 /** 1003 * pskb_expand_head - reallocate header of &sk_buff 1004 * @skb: buffer to reallocate 1005 * @nhead: room to add at head 1006 * @ntail: room to add at tail 1007 * @gfp_mask: allocation priority 1008 * 1009 * Expands (or creates identical copy, if &nhead and &ntail are zero) 1010 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 1011 * reference count of 1. Returns zero in the case of success or error, 1012 * if expansion failed. In the last case, &sk_buff is not changed. 1013 * 1014 * All the pointers pointing into skb header may change and must be 1015 * reloaded after call to this function. 1016 */ 1017 1018 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1019 gfp_t gfp_mask) 1020 { 1021 int i; 1022 u8 *data; 1023 int size = nhead + skb_end_offset(skb) + ntail; 1024 long off; 1025 1026 BUG_ON(nhead < 0); 1027 1028 if (skb_shared(skb)) 1029 BUG(); 1030 1031 size = SKB_DATA_ALIGN(size); 1032 1033 if (skb_pfmemalloc(skb)) 1034 gfp_mask |= __GFP_MEMALLOC; 1035 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1036 gfp_mask, NUMA_NO_NODE, NULL); 1037 if (!data) 1038 goto nodata; 1039 size = SKB_WITH_OVERHEAD(ksize(data)); 1040 1041 /* Copy only real data... and, alas, header. This should be 1042 * optimized for the cases when header is void. 1043 */ 1044 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1045 1046 memcpy((struct skb_shared_info *)(data + size), 1047 skb_shinfo(skb), 1048 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1049 1050 /* 1051 * if shinfo is shared we must drop the old head gracefully, but if it 1052 * is not we can just drop the old head and let the existing refcount 1053 * be since all we did is relocate the values 1054 */ 1055 if (skb_cloned(skb)) { 1056 /* copy this zero copy skb frags */ 1057 if (skb_orphan_frags(skb, gfp_mask)) 1058 goto nofrags; 1059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1060 skb_frag_ref(skb, i); 1061 1062 if (skb_has_frag_list(skb)) 1063 skb_clone_fraglist(skb); 1064 1065 skb_release_data(skb); 1066 } else { 1067 skb_free_head(skb); 1068 } 1069 off = (data + nhead) - skb->head; 1070 1071 skb->head = data; 1072 skb->head_frag = 0; 1073 skb->data += off; 1074 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1075 skb->end = size; 1076 off = nhead; 1077 #else 1078 skb->end = skb->head + size; 1079 #endif 1080 /* {transport,network,mac}_header and tail are relative to skb->head */ 1081 skb->tail += off; 1082 skb->transport_header += off; 1083 skb->network_header += off; 1084 if (skb_mac_header_was_set(skb)) 1085 skb->mac_header += off; 1086 skb->inner_transport_header += off; 1087 skb->inner_network_header += off; 1088 /* Only adjust this if it actually is csum_start rather than csum */ 1089 if (skb->ip_summed == CHECKSUM_PARTIAL) 1090 skb->csum_start += nhead; 1091 skb->cloned = 0; 1092 skb->hdr_len = 0; 1093 skb->nohdr = 0; 1094 atomic_set(&skb_shinfo(skb)->dataref, 1); 1095 return 0; 1096 1097 nofrags: 1098 kfree(data); 1099 nodata: 1100 return -ENOMEM; 1101 } 1102 EXPORT_SYMBOL(pskb_expand_head); 1103 1104 /* Make private copy of skb with writable head and some headroom */ 1105 1106 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1107 { 1108 struct sk_buff *skb2; 1109 int delta = headroom - skb_headroom(skb); 1110 1111 if (delta <= 0) 1112 skb2 = pskb_copy(skb, GFP_ATOMIC); 1113 else { 1114 skb2 = skb_clone(skb, GFP_ATOMIC); 1115 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1116 GFP_ATOMIC)) { 1117 kfree_skb(skb2); 1118 skb2 = NULL; 1119 } 1120 } 1121 return skb2; 1122 } 1123 EXPORT_SYMBOL(skb_realloc_headroom); 1124 1125 /** 1126 * skb_copy_expand - copy and expand sk_buff 1127 * @skb: buffer to copy 1128 * @newheadroom: new free bytes at head 1129 * @newtailroom: new free bytes at tail 1130 * @gfp_mask: allocation priority 1131 * 1132 * Make a copy of both an &sk_buff and its data and while doing so 1133 * allocate additional space. 1134 * 1135 * This is used when the caller wishes to modify the data and needs a 1136 * private copy of the data to alter as well as more space for new fields. 1137 * Returns %NULL on failure or the pointer to the buffer 1138 * on success. The returned buffer has a reference count of 1. 1139 * 1140 * You must pass %GFP_ATOMIC as the allocation priority if this function 1141 * is called from an interrupt. 1142 */ 1143 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1144 int newheadroom, int newtailroom, 1145 gfp_t gfp_mask) 1146 { 1147 /* 1148 * Allocate the copy buffer 1149 */ 1150 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1151 gfp_mask, skb_alloc_rx_flag(skb), 1152 NUMA_NO_NODE); 1153 int oldheadroom = skb_headroom(skb); 1154 int head_copy_len, head_copy_off; 1155 int off; 1156 1157 if (!n) 1158 return NULL; 1159 1160 skb_reserve(n, newheadroom); 1161 1162 /* Set the tail pointer and length */ 1163 skb_put(n, skb->len); 1164 1165 head_copy_len = oldheadroom; 1166 head_copy_off = 0; 1167 if (newheadroom <= head_copy_len) 1168 head_copy_len = newheadroom; 1169 else 1170 head_copy_off = newheadroom - head_copy_len; 1171 1172 /* Copy the linear header and data. */ 1173 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1174 skb->len + head_copy_len)) 1175 BUG(); 1176 1177 copy_skb_header(n, skb); 1178 1179 off = newheadroom - oldheadroom; 1180 if (n->ip_summed == CHECKSUM_PARTIAL) 1181 n->csum_start += off; 1182 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1183 n->transport_header += off; 1184 n->network_header += off; 1185 if (skb_mac_header_was_set(skb)) 1186 n->mac_header += off; 1187 n->inner_transport_header += off; 1188 n->inner_network_header += off; 1189 #endif 1190 1191 return n; 1192 } 1193 EXPORT_SYMBOL(skb_copy_expand); 1194 1195 /** 1196 * skb_pad - zero pad the tail of an skb 1197 * @skb: buffer to pad 1198 * @pad: space to pad 1199 * 1200 * Ensure that a buffer is followed by a padding area that is zero 1201 * filled. Used by network drivers which may DMA or transfer data 1202 * beyond the buffer end onto the wire. 1203 * 1204 * May return error in out of memory cases. The skb is freed on error. 1205 */ 1206 1207 int skb_pad(struct sk_buff *skb, int pad) 1208 { 1209 int err; 1210 int ntail; 1211 1212 /* If the skbuff is non linear tailroom is always zero.. */ 1213 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1214 memset(skb->data+skb->len, 0, pad); 1215 return 0; 1216 } 1217 1218 ntail = skb->data_len + pad - (skb->end - skb->tail); 1219 if (likely(skb_cloned(skb) || ntail > 0)) { 1220 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1221 if (unlikely(err)) 1222 goto free_skb; 1223 } 1224 1225 /* FIXME: The use of this function with non-linear skb's really needs 1226 * to be audited. 1227 */ 1228 err = skb_linearize(skb); 1229 if (unlikely(err)) 1230 goto free_skb; 1231 1232 memset(skb->data + skb->len, 0, pad); 1233 return 0; 1234 1235 free_skb: 1236 kfree_skb(skb); 1237 return err; 1238 } 1239 EXPORT_SYMBOL(skb_pad); 1240 1241 /** 1242 * skb_put - add data to a buffer 1243 * @skb: buffer to use 1244 * @len: amount of data to add 1245 * 1246 * This function extends the used data area of the buffer. If this would 1247 * exceed the total buffer size the kernel will panic. A pointer to the 1248 * first byte of the extra data is returned. 1249 */ 1250 unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1251 { 1252 unsigned char *tmp = skb_tail_pointer(skb); 1253 SKB_LINEAR_ASSERT(skb); 1254 skb->tail += len; 1255 skb->len += len; 1256 if (unlikely(skb->tail > skb->end)) 1257 skb_over_panic(skb, len, __builtin_return_address(0)); 1258 return tmp; 1259 } 1260 EXPORT_SYMBOL(skb_put); 1261 1262 /** 1263 * skb_push - add data to the start of a buffer 1264 * @skb: buffer to use 1265 * @len: amount of data to add 1266 * 1267 * This function extends the used data area of the buffer at the buffer 1268 * start. If this would exceed the total buffer headroom the kernel will 1269 * panic. A pointer to the first byte of the extra data is returned. 1270 */ 1271 unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1272 { 1273 skb->data -= len; 1274 skb->len += len; 1275 if (unlikely(skb->data<skb->head)) 1276 skb_under_panic(skb, len, __builtin_return_address(0)); 1277 return skb->data; 1278 } 1279 EXPORT_SYMBOL(skb_push); 1280 1281 /** 1282 * skb_pull - remove data from the start of a buffer 1283 * @skb: buffer to use 1284 * @len: amount of data to remove 1285 * 1286 * This function removes data from the start of a buffer, returning 1287 * the memory to the headroom. A pointer to the next data in the buffer 1288 * is returned. Once the data has been pulled future pushes will overwrite 1289 * the old data. 1290 */ 1291 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1292 { 1293 return skb_pull_inline(skb, len); 1294 } 1295 EXPORT_SYMBOL(skb_pull); 1296 1297 /** 1298 * skb_trim - remove end from a buffer 1299 * @skb: buffer to alter 1300 * @len: new length 1301 * 1302 * Cut the length of a buffer down by removing data from the tail. If 1303 * the buffer is already under the length specified it is not modified. 1304 * The skb must be linear. 1305 */ 1306 void skb_trim(struct sk_buff *skb, unsigned int len) 1307 { 1308 if (skb->len > len) 1309 __skb_trim(skb, len); 1310 } 1311 EXPORT_SYMBOL(skb_trim); 1312 1313 /* Trims skb to length len. It can change skb pointers. 1314 */ 1315 1316 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1317 { 1318 struct sk_buff **fragp; 1319 struct sk_buff *frag; 1320 int offset = skb_headlen(skb); 1321 int nfrags = skb_shinfo(skb)->nr_frags; 1322 int i; 1323 int err; 1324 1325 if (skb_cloned(skb) && 1326 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1327 return err; 1328 1329 i = 0; 1330 if (offset >= len) 1331 goto drop_pages; 1332 1333 for (; i < nfrags; i++) { 1334 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1335 1336 if (end < len) { 1337 offset = end; 1338 continue; 1339 } 1340 1341 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1342 1343 drop_pages: 1344 skb_shinfo(skb)->nr_frags = i; 1345 1346 for (; i < nfrags; i++) 1347 skb_frag_unref(skb, i); 1348 1349 if (skb_has_frag_list(skb)) 1350 skb_drop_fraglist(skb); 1351 goto done; 1352 } 1353 1354 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1355 fragp = &frag->next) { 1356 int end = offset + frag->len; 1357 1358 if (skb_shared(frag)) { 1359 struct sk_buff *nfrag; 1360 1361 nfrag = skb_clone(frag, GFP_ATOMIC); 1362 if (unlikely(!nfrag)) 1363 return -ENOMEM; 1364 1365 nfrag->next = frag->next; 1366 consume_skb(frag); 1367 frag = nfrag; 1368 *fragp = frag; 1369 } 1370 1371 if (end < len) { 1372 offset = end; 1373 continue; 1374 } 1375 1376 if (end > len && 1377 unlikely((err = pskb_trim(frag, len - offset)))) 1378 return err; 1379 1380 if (frag->next) 1381 skb_drop_list(&frag->next); 1382 break; 1383 } 1384 1385 done: 1386 if (len > skb_headlen(skb)) { 1387 skb->data_len -= skb->len - len; 1388 skb->len = len; 1389 } else { 1390 skb->len = len; 1391 skb->data_len = 0; 1392 skb_set_tail_pointer(skb, len); 1393 } 1394 1395 return 0; 1396 } 1397 EXPORT_SYMBOL(___pskb_trim); 1398 1399 /** 1400 * __pskb_pull_tail - advance tail of skb header 1401 * @skb: buffer to reallocate 1402 * @delta: number of bytes to advance tail 1403 * 1404 * The function makes a sense only on a fragmented &sk_buff, 1405 * it expands header moving its tail forward and copying necessary 1406 * data from fragmented part. 1407 * 1408 * &sk_buff MUST have reference count of 1. 1409 * 1410 * Returns %NULL (and &sk_buff does not change) if pull failed 1411 * or value of new tail of skb in the case of success. 1412 * 1413 * All the pointers pointing into skb header may change and must be 1414 * reloaded after call to this function. 1415 */ 1416 1417 /* Moves tail of skb head forward, copying data from fragmented part, 1418 * when it is necessary. 1419 * 1. It may fail due to malloc failure. 1420 * 2. It may change skb pointers. 1421 * 1422 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1423 */ 1424 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1425 { 1426 /* If skb has not enough free space at tail, get new one 1427 * plus 128 bytes for future expansions. If we have enough 1428 * room at tail, reallocate without expansion only if skb is cloned. 1429 */ 1430 int i, k, eat = (skb->tail + delta) - skb->end; 1431 1432 if (eat > 0 || skb_cloned(skb)) { 1433 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1434 GFP_ATOMIC)) 1435 return NULL; 1436 } 1437 1438 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1439 BUG(); 1440 1441 /* Optimization: no fragments, no reasons to preestimate 1442 * size of pulled pages. Superb. 1443 */ 1444 if (!skb_has_frag_list(skb)) 1445 goto pull_pages; 1446 1447 /* Estimate size of pulled pages. */ 1448 eat = delta; 1449 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1450 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1451 1452 if (size >= eat) 1453 goto pull_pages; 1454 eat -= size; 1455 } 1456 1457 /* If we need update frag list, we are in troubles. 1458 * Certainly, it possible to add an offset to skb data, 1459 * but taking into account that pulling is expected to 1460 * be very rare operation, it is worth to fight against 1461 * further bloating skb head and crucify ourselves here instead. 1462 * Pure masohism, indeed. 8)8) 1463 */ 1464 if (eat) { 1465 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1466 struct sk_buff *clone = NULL; 1467 struct sk_buff *insp = NULL; 1468 1469 do { 1470 BUG_ON(!list); 1471 1472 if (list->len <= eat) { 1473 /* Eaten as whole. */ 1474 eat -= list->len; 1475 list = list->next; 1476 insp = list; 1477 } else { 1478 /* Eaten partially. */ 1479 1480 if (skb_shared(list)) { 1481 /* Sucks! We need to fork list. :-( */ 1482 clone = skb_clone(list, GFP_ATOMIC); 1483 if (!clone) 1484 return NULL; 1485 insp = list->next; 1486 list = clone; 1487 } else { 1488 /* This may be pulled without 1489 * problems. */ 1490 insp = list; 1491 } 1492 if (!pskb_pull(list, eat)) { 1493 kfree_skb(clone); 1494 return NULL; 1495 } 1496 break; 1497 } 1498 } while (eat); 1499 1500 /* Free pulled out fragments. */ 1501 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1502 skb_shinfo(skb)->frag_list = list->next; 1503 kfree_skb(list); 1504 } 1505 /* And insert new clone at head. */ 1506 if (clone) { 1507 clone->next = list; 1508 skb_shinfo(skb)->frag_list = clone; 1509 } 1510 } 1511 /* Success! Now we may commit changes to skb data. */ 1512 1513 pull_pages: 1514 eat = delta; 1515 k = 0; 1516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1517 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1518 1519 if (size <= eat) { 1520 skb_frag_unref(skb, i); 1521 eat -= size; 1522 } else { 1523 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1524 if (eat) { 1525 skb_shinfo(skb)->frags[k].page_offset += eat; 1526 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1527 eat = 0; 1528 } 1529 k++; 1530 } 1531 } 1532 skb_shinfo(skb)->nr_frags = k; 1533 1534 skb->tail += delta; 1535 skb->data_len -= delta; 1536 1537 return skb_tail_pointer(skb); 1538 } 1539 EXPORT_SYMBOL(__pskb_pull_tail); 1540 1541 /** 1542 * skb_copy_bits - copy bits from skb to kernel buffer 1543 * @skb: source skb 1544 * @offset: offset in source 1545 * @to: destination buffer 1546 * @len: number of bytes to copy 1547 * 1548 * Copy the specified number of bytes from the source skb to the 1549 * destination buffer. 1550 * 1551 * CAUTION ! : 1552 * If its prototype is ever changed, 1553 * check arch/{*}/net/{*}.S files, 1554 * since it is called from BPF assembly code. 1555 */ 1556 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1557 { 1558 int start = skb_headlen(skb); 1559 struct sk_buff *frag_iter; 1560 int i, copy; 1561 1562 if (offset > (int)skb->len - len) 1563 goto fault; 1564 1565 /* Copy header. */ 1566 if ((copy = start - offset) > 0) { 1567 if (copy > len) 1568 copy = len; 1569 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1570 if ((len -= copy) == 0) 1571 return 0; 1572 offset += copy; 1573 to += copy; 1574 } 1575 1576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1577 int end; 1578 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1579 1580 WARN_ON(start > offset + len); 1581 1582 end = start + skb_frag_size(f); 1583 if ((copy = end - offset) > 0) { 1584 u8 *vaddr; 1585 1586 if (copy > len) 1587 copy = len; 1588 1589 vaddr = kmap_atomic(skb_frag_page(f)); 1590 memcpy(to, 1591 vaddr + f->page_offset + offset - start, 1592 copy); 1593 kunmap_atomic(vaddr); 1594 1595 if ((len -= copy) == 0) 1596 return 0; 1597 offset += copy; 1598 to += copy; 1599 } 1600 start = end; 1601 } 1602 1603 skb_walk_frags(skb, frag_iter) { 1604 int end; 1605 1606 WARN_ON(start > offset + len); 1607 1608 end = start + frag_iter->len; 1609 if ((copy = end - offset) > 0) { 1610 if (copy > len) 1611 copy = len; 1612 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1613 goto fault; 1614 if ((len -= copy) == 0) 1615 return 0; 1616 offset += copy; 1617 to += copy; 1618 } 1619 start = end; 1620 } 1621 1622 if (!len) 1623 return 0; 1624 1625 fault: 1626 return -EFAULT; 1627 } 1628 EXPORT_SYMBOL(skb_copy_bits); 1629 1630 /* 1631 * Callback from splice_to_pipe(), if we need to release some pages 1632 * at the end of the spd in case we error'ed out in filling the pipe. 1633 */ 1634 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1635 { 1636 put_page(spd->pages[i]); 1637 } 1638 1639 static struct page *linear_to_page(struct page *page, unsigned int *len, 1640 unsigned int *offset, 1641 struct sock *sk) 1642 { 1643 struct page_frag *pfrag = sk_page_frag(sk); 1644 1645 if (!sk_page_frag_refill(sk, pfrag)) 1646 return NULL; 1647 1648 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1649 1650 memcpy(page_address(pfrag->page) + pfrag->offset, 1651 page_address(page) + *offset, *len); 1652 *offset = pfrag->offset; 1653 pfrag->offset += *len; 1654 1655 return pfrag->page; 1656 } 1657 1658 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1659 struct page *page, 1660 unsigned int offset) 1661 { 1662 return spd->nr_pages && 1663 spd->pages[spd->nr_pages - 1] == page && 1664 (spd->partial[spd->nr_pages - 1].offset + 1665 spd->partial[spd->nr_pages - 1].len == offset); 1666 } 1667 1668 /* 1669 * Fill page/offset/length into spd, if it can hold more pages. 1670 */ 1671 static bool spd_fill_page(struct splice_pipe_desc *spd, 1672 struct pipe_inode_info *pipe, struct page *page, 1673 unsigned int *len, unsigned int offset, 1674 bool linear, 1675 struct sock *sk) 1676 { 1677 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1678 return true; 1679 1680 if (linear) { 1681 page = linear_to_page(page, len, &offset, sk); 1682 if (!page) 1683 return true; 1684 } 1685 if (spd_can_coalesce(spd, page, offset)) { 1686 spd->partial[spd->nr_pages - 1].len += *len; 1687 return false; 1688 } 1689 get_page(page); 1690 spd->pages[spd->nr_pages] = page; 1691 spd->partial[spd->nr_pages].len = *len; 1692 spd->partial[spd->nr_pages].offset = offset; 1693 spd->nr_pages++; 1694 1695 return false; 1696 } 1697 1698 static bool __splice_segment(struct page *page, unsigned int poff, 1699 unsigned int plen, unsigned int *off, 1700 unsigned int *len, 1701 struct splice_pipe_desc *spd, bool linear, 1702 struct sock *sk, 1703 struct pipe_inode_info *pipe) 1704 { 1705 if (!*len) 1706 return true; 1707 1708 /* skip this segment if already processed */ 1709 if (*off >= plen) { 1710 *off -= plen; 1711 return false; 1712 } 1713 1714 /* ignore any bits we already processed */ 1715 poff += *off; 1716 plen -= *off; 1717 *off = 0; 1718 1719 do { 1720 unsigned int flen = min(*len, plen); 1721 1722 if (spd_fill_page(spd, pipe, page, &flen, poff, 1723 linear, sk)) 1724 return true; 1725 poff += flen; 1726 plen -= flen; 1727 *len -= flen; 1728 } while (*len && plen); 1729 1730 return false; 1731 } 1732 1733 /* 1734 * Map linear and fragment data from the skb to spd. It reports true if the 1735 * pipe is full or if we already spliced the requested length. 1736 */ 1737 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1738 unsigned int *offset, unsigned int *len, 1739 struct splice_pipe_desc *spd, struct sock *sk) 1740 { 1741 int seg; 1742 1743 /* map the linear part : 1744 * If skb->head_frag is set, this 'linear' part is backed by a 1745 * fragment, and if the head is not shared with any clones then 1746 * we can avoid a copy since we own the head portion of this page. 1747 */ 1748 if (__splice_segment(virt_to_page(skb->data), 1749 (unsigned long) skb->data & (PAGE_SIZE - 1), 1750 skb_headlen(skb), 1751 offset, len, spd, 1752 skb_head_is_locked(skb), 1753 sk, pipe)) 1754 return true; 1755 1756 /* 1757 * then map the fragments 1758 */ 1759 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1760 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1761 1762 if (__splice_segment(skb_frag_page(f), 1763 f->page_offset, skb_frag_size(f), 1764 offset, len, spd, false, sk, pipe)) 1765 return true; 1766 } 1767 1768 return false; 1769 } 1770 1771 /* 1772 * Map data from the skb to a pipe. Should handle both the linear part, 1773 * the fragments, and the frag list. It does NOT handle frag lists within 1774 * the frag list, if such a thing exists. We'd probably need to recurse to 1775 * handle that cleanly. 1776 */ 1777 int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 1778 struct pipe_inode_info *pipe, unsigned int tlen, 1779 unsigned int flags) 1780 { 1781 struct partial_page partial[MAX_SKB_FRAGS]; 1782 struct page *pages[MAX_SKB_FRAGS]; 1783 struct splice_pipe_desc spd = { 1784 .pages = pages, 1785 .partial = partial, 1786 .nr_pages_max = MAX_SKB_FRAGS, 1787 .flags = flags, 1788 .ops = &sock_pipe_buf_ops, 1789 .spd_release = sock_spd_release, 1790 }; 1791 struct sk_buff *frag_iter; 1792 struct sock *sk = skb->sk; 1793 int ret = 0; 1794 1795 /* 1796 * __skb_splice_bits() only fails if the output has no room left, 1797 * so no point in going over the frag_list for the error case. 1798 */ 1799 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) 1800 goto done; 1801 else if (!tlen) 1802 goto done; 1803 1804 /* 1805 * now see if we have a frag_list to map 1806 */ 1807 skb_walk_frags(skb, frag_iter) { 1808 if (!tlen) 1809 break; 1810 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) 1811 break; 1812 } 1813 1814 done: 1815 if (spd.nr_pages) { 1816 /* 1817 * Drop the socket lock, otherwise we have reverse 1818 * locking dependencies between sk_lock and i_mutex 1819 * here as compared to sendfile(). We enter here 1820 * with the socket lock held, and splice_to_pipe() will 1821 * grab the pipe inode lock. For sendfile() emulation, 1822 * we call into ->sendpage() with the i_mutex lock held 1823 * and networking will grab the socket lock. 1824 */ 1825 release_sock(sk); 1826 ret = splice_to_pipe(pipe, &spd); 1827 lock_sock(sk); 1828 } 1829 1830 return ret; 1831 } 1832 1833 /** 1834 * skb_store_bits - store bits from kernel buffer to skb 1835 * @skb: destination buffer 1836 * @offset: offset in destination 1837 * @from: source buffer 1838 * @len: number of bytes to copy 1839 * 1840 * Copy the specified number of bytes from the source buffer to the 1841 * destination skb. This function handles all the messy bits of 1842 * traversing fragment lists and such. 1843 */ 1844 1845 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 1846 { 1847 int start = skb_headlen(skb); 1848 struct sk_buff *frag_iter; 1849 int i, copy; 1850 1851 if (offset > (int)skb->len - len) 1852 goto fault; 1853 1854 if ((copy = start - offset) > 0) { 1855 if (copy > len) 1856 copy = len; 1857 skb_copy_to_linear_data_offset(skb, offset, from, copy); 1858 if ((len -= copy) == 0) 1859 return 0; 1860 offset += copy; 1861 from += copy; 1862 } 1863 1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1866 int end; 1867 1868 WARN_ON(start > offset + len); 1869 1870 end = start + skb_frag_size(frag); 1871 if ((copy = end - offset) > 0) { 1872 u8 *vaddr; 1873 1874 if (copy > len) 1875 copy = len; 1876 1877 vaddr = kmap_atomic(skb_frag_page(frag)); 1878 memcpy(vaddr + frag->page_offset + offset - start, 1879 from, copy); 1880 kunmap_atomic(vaddr); 1881 1882 if ((len -= copy) == 0) 1883 return 0; 1884 offset += copy; 1885 from += copy; 1886 } 1887 start = end; 1888 } 1889 1890 skb_walk_frags(skb, frag_iter) { 1891 int end; 1892 1893 WARN_ON(start > offset + len); 1894 1895 end = start + frag_iter->len; 1896 if ((copy = end - offset) > 0) { 1897 if (copy > len) 1898 copy = len; 1899 if (skb_store_bits(frag_iter, offset - start, 1900 from, copy)) 1901 goto fault; 1902 if ((len -= copy) == 0) 1903 return 0; 1904 offset += copy; 1905 from += copy; 1906 } 1907 start = end; 1908 } 1909 if (!len) 1910 return 0; 1911 1912 fault: 1913 return -EFAULT; 1914 } 1915 EXPORT_SYMBOL(skb_store_bits); 1916 1917 /* Checksum skb data. */ 1918 1919 __wsum skb_checksum(const struct sk_buff *skb, int offset, 1920 int len, __wsum csum) 1921 { 1922 int start = skb_headlen(skb); 1923 int i, copy = start - offset; 1924 struct sk_buff *frag_iter; 1925 int pos = 0; 1926 1927 /* Checksum header. */ 1928 if (copy > 0) { 1929 if (copy > len) 1930 copy = len; 1931 csum = csum_partial(skb->data + offset, copy, csum); 1932 if ((len -= copy) == 0) 1933 return csum; 1934 offset += copy; 1935 pos = copy; 1936 } 1937 1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1939 int end; 1940 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1941 1942 WARN_ON(start > offset + len); 1943 1944 end = start + skb_frag_size(frag); 1945 if ((copy = end - offset) > 0) { 1946 __wsum csum2; 1947 u8 *vaddr; 1948 1949 if (copy > len) 1950 copy = len; 1951 vaddr = kmap_atomic(skb_frag_page(frag)); 1952 csum2 = csum_partial(vaddr + frag->page_offset + 1953 offset - start, copy, 0); 1954 kunmap_atomic(vaddr); 1955 csum = csum_block_add(csum, csum2, pos); 1956 if (!(len -= copy)) 1957 return csum; 1958 offset += copy; 1959 pos += copy; 1960 } 1961 start = end; 1962 } 1963 1964 skb_walk_frags(skb, frag_iter) { 1965 int end; 1966 1967 WARN_ON(start > offset + len); 1968 1969 end = start + frag_iter->len; 1970 if ((copy = end - offset) > 0) { 1971 __wsum csum2; 1972 if (copy > len) 1973 copy = len; 1974 csum2 = skb_checksum(frag_iter, offset - start, 1975 copy, 0); 1976 csum = csum_block_add(csum, csum2, pos); 1977 if ((len -= copy) == 0) 1978 return csum; 1979 offset += copy; 1980 pos += copy; 1981 } 1982 start = end; 1983 } 1984 BUG_ON(len); 1985 1986 return csum; 1987 } 1988 EXPORT_SYMBOL(skb_checksum); 1989 1990 /* Both of above in one bottle. */ 1991 1992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1993 u8 *to, int len, __wsum csum) 1994 { 1995 int start = skb_headlen(skb); 1996 int i, copy = start - offset; 1997 struct sk_buff *frag_iter; 1998 int pos = 0; 1999 2000 /* Copy header. */ 2001 if (copy > 0) { 2002 if (copy > len) 2003 copy = len; 2004 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2005 copy, csum); 2006 if ((len -= copy) == 0) 2007 return csum; 2008 offset += copy; 2009 to += copy; 2010 pos = copy; 2011 } 2012 2013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2014 int end; 2015 2016 WARN_ON(start > offset + len); 2017 2018 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2019 if ((copy = end - offset) > 0) { 2020 __wsum csum2; 2021 u8 *vaddr; 2022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2023 2024 if (copy > len) 2025 copy = len; 2026 vaddr = kmap_atomic(skb_frag_page(frag)); 2027 csum2 = csum_partial_copy_nocheck(vaddr + 2028 frag->page_offset + 2029 offset - start, to, 2030 copy, 0); 2031 kunmap_atomic(vaddr); 2032 csum = csum_block_add(csum, csum2, pos); 2033 if (!(len -= copy)) 2034 return csum; 2035 offset += copy; 2036 to += copy; 2037 pos += copy; 2038 } 2039 start = end; 2040 } 2041 2042 skb_walk_frags(skb, frag_iter) { 2043 __wsum csum2; 2044 int end; 2045 2046 WARN_ON(start > offset + len); 2047 2048 end = start + frag_iter->len; 2049 if ((copy = end - offset) > 0) { 2050 if (copy > len) 2051 copy = len; 2052 csum2 = skb_copy_and_csum_bits(frag_iter, 2053 offset - start, 2054 to, copy, 0); 2055 csum = csum_block_add(csum, csum2, pos); 2056 if ((len -= copy) == 0) 2057 return csum; 2058 offset += copy; 2059 to += copy; 2060 pos += copy; 2061 } 2062 start = end; 2063 } 2064 BUG_ON(len); 2065 return csum; 2066 } 2067 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2068 2069 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2070 { 2071 __wsum csum; 2072 long csstart; 2073 2074 if (skb->ip_summed == CHECKSUM_PARTIAL) 2075 csstart = skb_checksum_start_offset(skb); 2076 else 2077 csstart = skb_headlen(skb); 2078 2079 BUG_ON(csstart > skb_headlen(skb)); 2080 2081 skb_copy_from_linear_data(skb, to, csstart); 2082 2083 csum = 0; 2084 if (csstart != skb->len) 2085 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2086 skb->len - csstart, 0); 2087 2088 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2089 long csstuff = csstart + skb->csum_offset; 2090 2091 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2092 } 2093 } 2094 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2095 2096 /** 2097 * skb_dequeue - remove from the head of the queue 2098 * @list: list to dequeue from 2099 * 2100 * Remove the head of the list. The list lock is taken so the function 2101 * may be used safely with other locking list functions. The head item is 2102 * returned or %NULL if the list is empty. 2103 */ 2104 2105 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2106 { 2107 unsigned long flags; 2108 struct sk_buff *result; 2109 2110 spin_lock_irqsave(&list->lock, flags); 2111 result = __skb_dequeue(list); 2112 spin_unlock_irqrestore(&list->lock, flags); 2113 return result; 2114 } 2115 EXPORT_SYMBOL(skb_dequeue); 2116 2117 /** 2118 * skb_dequeue_tail - remove from the tail of the queue 2119 * @list: list to dequeue from 2120 * 2121 * Remove the tail of the list. The list lock is taken so the function 2122 * may be used safely with other locking list functions. The tail item is 2123 * returned or %NULL if the list is empty. 2124 */ 2125 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2126 { 2127 unsigned long flags; 2128 struct sk_buff *result; 2129 2130 spin_lock_irqsave(&list->lock, flags); 2131 result = __skb_dequeue_tail(list); 2132 spin_unlock_irqrestore(&list->lock, flags); 2133 return result; 2134 } 2135 EXPORT_SYMBOL(skb_dequeue_tail); 2136 2137 /** 2138 * skb_queue_purge - empty a list 2139 * @list: list to empty 2140 * 2141 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2142 * the list and one reference dropped. This function takes the list 2143 * lock and is atomic with respect to other list locking functions. 2144 */ 2145 void skb_queue_purge(struct sk_buff_head *list) 2146 { 2147 struct sk_buff *skb; 2148 while ((skb = skb_dequeue(list)) != NULL) 2149 kfree_skb(skb); 2150 } 2151 EXPORT_SYMBOL(skb_queue_purge); 2152 2153 /** 2154 * skb_queue_head - queue a buffer at the list head 2155 * @list: list to use 2156 * @newsk: buffer to queue 2157 * 2158 * Queue a buffer at the start of the list. This function takes the 2159 * list lock and can be used safely with other locking &sk_buff functions 2160 * safely. 2161 * 2162 * A buffer cannot be placed on two lists at the same time. 2163 */ 2164 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2165 { 2166 unsigned long flags; 2167 2168 spin_lock_irqsave(&list->lock, flags); 2169 __skb_queue_head(list, newsk); 2170 spin_unlock_irqrestore(&list->lock, flags); 2171 } 2172 EXPORT_SYMBOL(skb_queue_head); 2173 2174 /** 2175 * skb_queue_tail - queue a buffer at the list tail 2176 * @list: list to use 2177 * @newsk: buffer to queue 2178 * 2179 * Queue a buffer at the tail of the list. This function takes the 2180 * list lock and can be used safely with other locking &sk_buff functions 2181 * safely. 2182 * 2183 * A buffer cannot be placed on two lists at the same time. 2184 */ 2185 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2186 { 2187 unsigned long flags; 2188 2189 spin_lock_irqsave(&list->lock, flags); 2190 __skb_queue_tail(list, newsk); 2191 spin_unlock_irqrestore(&list->lock, flags); 2192 } 2193 EXPORT_SYMBOL(skb_queue_tail); 2194 2195 /** 2196 * skb_unlink - remove a buffer from a list 2197 * @skb: buffer to remove 2198 * @list: list to use 2199 * 2200 * Remove a packet from a list. The list locks are taken and this 2201 * function is atomic with respect to other list locked calls 2202 * 2203 * You must know what list the SKB is on. 2204 */ 2205 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2206 { 2207 unsigned long flags; 2208 2209 spin_lock_irqsave(&list->lock, flags); 2210 __skb_unlink(skb, list); 2211 spin_unlock_irqrestore(&list->lock, flags); 2212 } 2213 EXPORT_SYMBOL(skb_unlink); 2214 2215 /** 2216 * skb_append - append a buffer 2217 * @old: buffer to insert after 2218 * @newsk: buffer to insert 2219 * @list: list to use 2220 * 2221 * Place a packet after a given packet in a list. The list locks are taken 2222 * and this function is atomic with respect to other list locked calls. 2223 * A buffer cannot be placed on two lists at the same time. 2224 */ 2225 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2226 { 2227 unsigned long flags; 2228 2229 spin_lock_irqsave(&list->lock, flags); 2230 __skb_queue_after(list, old, newsk); 2231 spin_unlock_irqrestore(&list->lock, flags); 2232 } 2233 EXPORT_SYMBOL(skb_append); 2234 2235 /** 2236 * skb_insert - insert a buffer 2237 * @old: buffer to insert before 2238 * @newsk: buffer to insert 2239 * @list: list to use 2240 * 2241 * Place a packet before a given packet in a list. The list locks are 2242 * taken and this function is atomic with respect to other list locked 2243 * calls. 2244 * 2245 * A buffer cannot be placed on two lists at the same time. 2246 */ 2247 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2248 { 2249 unsigned long flags; 2250 2251 spin_lock_irqsave(&list->lock, flags); 2252 __skb_insert(newsk, old->prev, old, list); 2253 spin_unlock_irqrestore(&list->lock, flags); 2254 } 2255 EXPORT_SYMBOL(skb_insert); 2256 2257 static inline void skb_split_inside_header(struct sk_buff *skb, 2258 struct sk_buff* skb1, 2259 const u32 len, const int pos) 2260 { 2261 int i; 2262 2263 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2264 pos - len); 2265 /* And move data appendix as is. */ 2266 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2267 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2268 2269 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2270 skb_shinfo(skb)->nr_frags = 0; 2271 skb1->data_len = skb->data_len; 2272 skb1->len += skb1->data_len; 2273 skb->data_len = 0; 2274 skb->len = len; 2275 skb_set_tail_pointer(skb, len); 2276 } 2277 2278 static inline void skb_split_no_header(struct sk_buff *skb, 2279 struct sk_buff* skb1, 2280 const u32 len, int pos) 2281 { 2282 int i, k = 0; 2283 const int nfrags = skb_shinfo(skb)->nr_frags; 2284 2285 skb_shinfo(skb)->nr_frags = 0; 2286 skb1->len = skb1->data_len = skb->len - len; 2287 skb->len = len; 2288 skb->data_len = len - pos; 2289 2290 for (i = 0; i < nfrags; i++) { 2291 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2292 2293 if (pos + size > len) { 2294 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2295 2296 if (pos < len) { 2297 /* Split frag. 2298 * We have two variants in this case: 2299 * 1. Move all the frag to the second 2300 * part, if it is possible. F.e. 2301 * this approach is mandatory for TUX, 2302 * where splitting is expensive. 2303 * 2. Split is accurately. We make this. 2304 */ 2305 skb_frag_ref(skb, i); 2306 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2307 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2308 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2309 skb_shinfo(skb)->nr_frags++; 2310 } 2311 k++; 2312 } else 2313 skb_shinfo(skb)->nr_frags++; 2314 pos += size; 2315 } 2316 skb_shinfo(skb1)->nr_frags = k; 2317 } 2318 2319 /** 2320 * skb_split - Split fragmented skb to two parts at length len. 2321 * @skb: the buffer to split 2322 * @skb1: the buffer to receive the second part 2323 * @len: new length for skb 2324 */ 2325 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2326 { 2327 int pos = skb_headlen(skb); 2328 2329 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2330 if (len < pos) /* Split line is inside header. */ 2331 skb_split_inside_header(skb, skb1, len, pos); 2332 else /* Second chunk has no header, nothing to copy. */ 2333 skb_split_no_header(skb, skb1, len, pos); 2334 } 2335 EXPORT_SYMBOL(skb_split); 2336 2337 /* Shifting from/to a cloned skb is a no-go. 2338 * 2339 * Caller cannot keep skb_shinfo related pointers past calling here! 2340 */ 2341 static int skb_prepare_for_shift(struct sk_buff *skb) 2342 { 2343 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2344 } 2345 2346 /** 2347 * skb_shift - Shifts paged data partially from skb to another 2348 * @tgt: buffer into which tail data gets added 2349 * @skb: buffer from which the paged data comes from 2350 * @shiftlen: shift up to this many bytes 2351 * 2352 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2353 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2354 * It's up to caller to free skb if everything was shifted. 2355 * 2356 * If @tgt runs out of frags, the whole operation is aborted. 2357 * 2358 * Skb cannot include anything else but paged data while tgt is allowed 2359 * to have non-paged data as well. 2360 * 2361 * TODO: full sized shift could be optimized but that would need 2362 * specialized skb free'er to handle frags without up-to-date nr_frags. 2363 */ 2364 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2365 { 2366 int from, to, merge, todo; 2367 struct skb_frag_struct *fragfrom, *fragto; 2368 2369 BUG_ON(shiftlen > skb->len); 2370 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ 2371 2372 todo = shiftlen; 2373 from = 0; 2374 to = skb_shinfo(tgt)->nr_frags; 2375 fragfrom = &skb_shinfo(skb)->frags[from]; 2376 2377 /* Actual merge is delayed until the point when we know we can 2378 * commit all, so that we don't have to undo partial changes 2379 */ 2380 if (!to || 2381 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2382 fragfrom->page_offset)) { 2383 merge = -1; 2384 } else { 2385 merge = to - 1; 2386 2387 todo -= skb_frag_size(fragfrom); 2388 if (todo < 0) { 2389 if (skb_prepare_for_shift(skb) || 2390 skb_prepare_for_shift(tgt)) 2391 return 0; 2392 2393 /* All previous frag pointers might be stale! */ 2394 fragfrom = &skb_shinfo(skb)->frags[from]; 2395 fragto = &skb_shinfo(tgt)->frags[merge]; 2396 2397 skb_frag_size_add(fragto, shiftlen); 2398 skb_frag_size_sub(fragfrom, shiftlen); 2399 fragfrom->page_offset += shiftlen; 2400 2401 goto onlymerged; 2402 } 2403 2404 from++; 2405 } 2406 2407 /* Skip full, not-fitting skb to avoid expensive operations */ 2408 if ((shiftlen == skb->len) && 2409 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2410 return 0; 2411 2412 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2413 return 0; 2414 2415 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2416 if (to == MAX_SKB_FRAGS) 2417 return 0; 2418 2419 fragfrom = &skb_shinfo(skb)->frags[from]; 2420 fragto = &skb_shinfo(tgt)->frags[to]; 2421 2422 if (todo >= skb_frag_size(fragfrom)) { 2423 *fragto = *fragfrom; 2424 todo -= skb_frag_size(fragfrom); 2425 from++; 2426 to++; 2427 2428 } else { 2429 __skb_frag_ref(fragfrom); 2430 fragto->page = fragfrom->page; 2431 fragto->page_offset = fragfrom->page_offset; 2432 skb_frag_size_set(fragto, todo); 2433 2434 fragfrom->page_offset += todo; 2435 skb_frag_size_sub(fragfrom, todo); 2436 todo = 0; 2437 2438 to++; 2439 break; 2440 } 2441 } 2442 2443 /* Ready to "commit" this state change to tgt */ 2444 skb_shinfo(tgt)->nr_frags = to; 2445 2446 if (merge >= 0) { 2447 fragfrom = &skb_shinfo(skb)->frags[0]; 2448 fragto = &skb_shinfo(tgt)->frags[merge]; 2449 2450 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2451 __skb_frag_unref(fragfrom); 2452 } 2453 2454 /* Reposition in the original skb */ 2455 to = 0; 2456 while (from < skb_shinfo(skb)->nr_frags) 2457 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2458 skb_shinfo(skb)->nr_frags = to; 2459 2460 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2461 2462 onlymerged: 2463 /* Most likely the tgt won't ever need its checksum anymore, skb on 2464 * the other hand might need it if it needs to be resent 2465 */ 2466 tgt->ip_summed = CHECKSUM_PARTIAL; 2467 skb->ip_summed = CHECKSUM_PARTIAL; 2468 2469 /* Yak, is it really working this way? Some helper please? */ 2470 skb->len -= shiftlen; 2471 skb->data_len -= shiftlen; 2472 skb->truesize -= shiftlen; 2473 tgt->len += shiftlen; 2474 tgt->data_len += shiftlen; 2475 tgt->truesize += shiftlen; 2476 2477 return shiftlen; 2478 } 2479 2480 /** 2481 * skb_prepare_seq_read - Prepare a sequential read of skb data 2482 * @skb: the buffer to read 2483 * @from: lower offset of data to be read 2484 * @to: upper offset of data to be read 2485 * @st: state variable 2486 * 2487 * Initializes the specified state variable. Must be called before 2488 * invoking skb_seq_read() for the first time. 2489 */ 2490 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2491 unsigned int to, struct skb_seq_state *st) 2492 { 2493 st->lower_offset = from; 2494 st->upper_offset = to; 2495 st->root_skb = st->cur_skb = skb; 2496 st->frag_idx = st->stepped_offset = 0; 2497 st->frag_data = NULL; 2498 } 2499 EXPORT_SYMBOL(skb_prepare_seq_read); 2500 2501 /** 2502 * skb_seq_read - Sequentially read skb data 2503 * @consumed: number of bytes consumed by the caller so far 2504 * @data: destination pointer for data to be returned 2505 * @st: state variable 2506 * 2507 * Reads a block of skb data at &consumed relative to the 2508 * lower offset specified to skb_prepare_seq_read(). Assigns 2509 * the head of the data block to &data and returns the length 2510 * of the block or 0 if the end of the skb data or the upper 2511 * offset has been reached. 2512 * 2513 * The caller is not required to consume all of the data 2514 * returned, i.e. &consumed is typically set to the number 2515 * of bytes already consumed and the next call to 2516 * skb_seq_read() will return the remaining part of the block. 2517 * 2518 * Note 1: The size of each block of data returned can be arbitrary, 2519 * this limitation is the cost for zerocopy seqeuental 2520 * reads of potentially non linear data. 2521 * 2522 * Note 2: Fragment lists within fragments are not implemented 2523 * at the moment, state->root_skb could be replaced with 2524 * a stack for this purpose. 2525 */ 2526 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2527 struct skb_seq_state *st) 2528 { 2529 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2530 skb_frag_t *frag; 2531 2532 if (unlikely(abs_offset >= st->upper_offset)) 2533 return 0; 2534 2535 next_skb: 2536 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2537 2538 if (abs_offset < block_limit && !st->frag_data) { 2539 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2540 return block_limit - abs_offset; 2541 } 2542 2543 if (st->frag_idx == 0 && !st->frag_data) 2544 st->stepped_offset += skb_headlen(st->cur_skb); 2545 2546 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2547 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2548 block_limit = skb_frag_size(frag) + st->stepped_offset; 2549 2550 if (abs_offset < block_limit) { 2551 if (!st->frag_data) 2552 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2553 2554 *data = (u8 *) st->frag_data + frag->page_offset + 2555 (abs_offset - st->stepped_offset); 2556 2557 return block_limit - abs_offset; 2558 } 2559 2560 if (st->frag_data) { 2561 kunmap_atomic(st->frag_data); 2562 st->frag_data = NULL; 2563 } 2564 2565 st->frag_idx++; 2566 st->stepped_offset += skb_frag_size(frag); 2567 } 2568 2569 if (st->frag_data) { 2570 kunmap_atomic(st->frag_data); 2571 st->frag_data = NULL; 2572 } 2573 2574 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2575 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2576 st->frag_idx = 0; 2577 goto next_skb; 2578 } else if (st->cur_skb->next) { 2579 st->cur_skb = st->cur_skb->next; 2580 st->frag_idx = 0; 2581 goto next_skb; 2582 } 2583 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(skb_seq_read); 2587 2588 /** 2589 * skb_abort_seq_read - Abort a sequential read of skb data 2590 * @st: state variable 2591 * 2592 * Must be called if skb_seq_read() was not called until it 2593 * returned 0. 2594 */ 2595 void skb_abort_seq_read(struct skb_seq_state *st) 2596 { 2597 if (st->frag_data) 2598 kunmap_atomic(st->frag_data); 2599 } 2600 EXPORT_SYMBOL(skb_abort_seq_read); 2601 2602 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2603 2604 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2605 struct ts_config *conf, 2606 struct ts_state *state) 2607 { 2608 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2609 } 2610 2611 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2612 { 2613 skb_abort_seq_read(TS_SKB_CB(state)); 2614 } 2615 2616 /** 2617 * skb_find_text - Find a text pattern in skb data 2618 * @skb: the buffer to look in 2619 * @from: search offset 2620 * @to: search limit 2621 * @config: textsearch configuration 2622 * @state: uninitialized textsearch state variable 2623 * 2624 * Finds a pattern in the skb data according to the specified 2625 * textsearch configuration. Use textsearch_next() to retrieve 2626 * subsequent occurrences of the pattern. Returns the offset 2627 * to the first occurrence or UINT_MAX if no match was found. 2628 */ 2629 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2630 unsigned int to, struct ts_config *config, 2631 struct ts_state *state) 2632 { 2633 unsigned int ret; 2634 2635 config->get_next_block = skb_ts_get_next_block; 2636 config->finish = skb_ts_finish; 2637 2638 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 2639 2640 ret = textsearch_find(config, state); 2641 return (ret <= to - from ? ret : UINT_MAX); 2642 } 2643 EXPORT_SYMBOL(skb_find_text); 2644 2645 /** 2646 * skb_append_datato_frags - append the user data to a skb 2647 * @sk: sock structure 2648 * @skb: skb structure to be appened with user data. 2649 * @getfrag: call back function to be used for getting the user data 2650 * @from: pointer to user message iov 2651 * @length: length of the iov message 2652 * 2653 * Description: This procedure append the user data in the fragment part 2654 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2655 */ 2656 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2657 int (*getfrag)(void *from, char *to, int offset, 2658 int len, int odd, struct sk_buff *skb), 2659 void *from, int length) 2660 { 2661 int frg_cnt = skb_shinfo(skb)->nr_frags; 2662 int copy; 2663 int offset = 0; 2664 int ret; 2665 struct page_frag *pfrag = ¤t->task_frag; 2666 2667 do { 2668 /* Return error if we don't have space for new frag */ 2669 if (frg_cnt >= MAX_SKB_FRAGS) 2670 return -EMSGSIZE; 2671 2672 if (!sk_page_frag_refill(sk, pfrag)) 2673 return -ENOMEM; 2674 2675 /* copy the user data to page */ 2676 copy = min_t(int, length, pfrag->size - pfrag->offset); 2677 2678 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2679 offset, copy, 0, skb); 2680 if (ret < 0) 2681 return -EFAULT; 2682 2683 /* copy was successful so update the size parameters */ 2684 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2685 copy); 2686 frg_cnt++; 2687 pfrag->offset += copy; 2688 get_page(pfrag->page); 2689 2690 skb->truesize += copy; 2691 atomic_add(copy, &sk->sk_wmem_alloc); 2692 skb->len += copy; 2693 skb->data_len += copy; 2694 offset += copy; 2695 length -= copy; 2696 2697 } while (length > 0); 2698 2699 return 0; 2700 } 2701 EXPORT_SYMBOL(skb_append_datato_frags); 2702 2703 /** 2704 * skb_pull_rcsum - pull skb and update receive checksum 2705 * @skb: buffer to update 2706 * @len: length of data pulled 2707 * 2708 * This function performs an skb_pull on the packet and updates 2709 * the CHECKSUM_COMPLETE checksum. It should be used on 2710 * receive path processing instead of skb_pull unless you know 2711 * that the checksum difference is zero (e.g., a valid IP header) 2712 * or you are setting ip_summed to CHECKSUM_NONE. 2713 */ 2714 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 2715 { 2716 BUG_ON(len > skb->len); 2717 skb->len -= len; 2718 BUG_ON(skb->len < skb->data_len); 2719 skb_postpull_rcsum(skb, skb->data, len); 2720 return skb->data += len; 2721 } 2722 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 2723 2724 /** 2725 * skb_segment - Perform protocol segmentation on skb. 2726 * @skb: buffer to segment 2727 * @features: features for the output path (see dev->features) 2728 * 2729 * This function performs segmentation on the given skb. It returns 2730 * a pointer to the first in a list of new skbs for the segments. 2731 * In case of error it returns ERR_PTR(err). 2732 */ 2733 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features) 2734 { 2735 struct sk_buff *segs = NULL; 2736 struct sk_buff *tail = NULL; 2737 struct sk_buff *fskb = skb_shinfo(skb)->frag_list; 2738 unsigned int mss = skb_shinfo(skb)->gso_size; 2739 unsigned int doffset = skb->data - skb_mac_header(skb); 2740 unsigned int offset = doffset; 2741 unsigned int tnl_hlen = skb_tnl_header_len(skb); 2742 unsigned int headroom; 2743 unsigned int len; 2744 int sg = !!(features & NETIF_F_SG); 2745 int nfrags = skb_shinfo(skb)->nr_frags; 2746 int err = -ENOMEM; 2747 int i = 0; 2748 int pos; 2749 2750 __skb_push(skb, doffset); 2751 headroom = skb_headroom(skb); 2752 pos = skb_headlen(skb); 2753 2754 do { 2755 struct sk_buff *nskb; 2756 skb_frag_t *frag; 2757 int hsize; 2758 int size; 2759 2760 len = skb->len - offset; 2761 if (len > mss) 2762 len = mss; 2763 2764 hsize = skb_headlen(skb) - offset; 2765 if (hsize < 0) 2766 hsize = 0; 2767 if (hsize > len || !sg) 2768 hsize = len; 2769 2770 if (!hsize && i >= nfrags) { 2771 BUG_ON(fskb->len != len); 2772 2773 pos += len; 2774 nskb = skb_clone(fskb, GFP_ATOMIC); 2775 fskb = fskb->next; 2776 2777 if (unlikely(!nskb)) 2778 goto err; 2779 2780 hsize = skb_end_offset(nskb); 2781 if (skb_cow_head(nskb, doffset + headroom)) { 2782 kfree_skb(nskb); 2783 goto err; 2784 } 2785 2786 nskb->truesize += skb_end_offset(nskb) - hsize; 2787 skb_release_head_state(nskb); 2788 __skb_push(nskb, doffset); 2789 } else { 2790 nskb = __alloc_skb(hsize + doffset + headroom, 2791 GFP_ATOMIC, skb_alloc_rx_flag(skb), 2792 NUMA_NO_NODE); 2793 2794 if (unlikely(!nskb)) 2795 goto err; 2796 2797 skb_reserve(nskb, headroom); 2798 __skb_put(nskb, doffset); 2799 } 2800 2801 if (segs) 2802 tail->next = nskb; 2803 else 2804 segs = nskb; 2805 tail = nskb; 2806 2807 __copy_skb_header(nskb, skb); 2808 nskb->mac_len = skb->mac_len; 2809 2810 /* nskb and skb might have different headroom */ 2811 if (nskb->ip_summed == CHECKSUM_PARTIAL) 2812 nskb->csum_start += skb_headroom(nskb) - headroom; 2813 2814 skb_reset_mac_header(nskb); 2815 skb_set_network_header(nskb, skb->mac_len); 2816 nskb->transport_header = (nskb->network_header + 2817 skb_network_header_len(skb)); 2818 2819 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 2820 nskb->data - tnl_hlen, 2821 doffset + tnl_hlen); 2822 2823 if (fskb != skb_shinfo(skb)->frag_list) 2824 continue; 2825 2826 if (!sg) { 2827 nskb->ip_summed = CHECKSUM_NONE; 2828 nskb->csum = skb_copy_and_csum_bits(skb, offset, 2829 skb_put(nskb, len), 2830 len, 0); 2831 continue; 2832 } 2833 2834 frag = skb_shinfo(nskb)->frags; 2835 2836 skb_copy_from_linear_data_offset(skb, offset, 2837 skb_put(nskb, hsize), hsize); 2838 2839 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2840 2841 while (pos < offset + len && i < nfrags) { 2842 *frag = skb_shinfo(skb)->frags[i]; 2843 __skb_frag_ref(frag); 2844 size = skb_frag_size(frag); 2845 2846 if (pos < offset) { 2847 frag->page_offset += offset - pos; 2848 skb_frag_size_sub(frag, offset - pos); 2849 } 2850 2851 skb_shinfo(nskb)->nr_frags++; 2852 2853 if (pos + size <= offset + len) { 2854 i++; 2855 pos += size; 2856 } else { 2857 skb_frag_size_sub(frag, pos + size - (offset + len)); 2858 goto skip_fraglist; 2859 } 2860 2861 frag++; 2862 } 2863 2864 if (pos < offset + len) { 2865 struct sk_buff *fskb2 = fskb; 2866 2867 BUG_ON(pos + fskb->len != offset + len); 2868 2869 pos += fskb->len; 2870 fskb = fskb->next; 2871 2872 if (fskb2->next) { 2873 fskb2 = skb_clone(fskb2, GFP_ATOMIC); 2874 if (!fskb2) 2875 goto err; 2876 } else 2877 skb_get(fskb2); 2878 2879 SKB_FRAG_ASSERT(nskb); 2880 skb_shinfo(nskb)->frag_list = fskb2; 2881 } 2882 2883 skip_fraglist: 2884 nskb->data_len = len - hsize; 2885 nskb->len += nskb->data_len; 2886 nskb->truesize += nskb->data_len; 2887 } while ((offset += len) < skb->len); 2888 2889 return segs; 2890 2891 err: 2892 while ((skb = segs)) { 2893 segs = skb->next; 2894 kfree_skb(skb); 2895 } 2896 return ERR_PTR(err); 2897 } 2898 EXPORT_SYMBOL_GPL(skb_segment); 2899 2900 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2901 { 2902 struct sk_buff *p = *head; 2903 struct sk_buff *nskb; 2904 struct skb_shared_info *skbinfo = skb_shinfo(skb); 2905 struct skb_shared_info *pinfo = skb_shinfo(p); 2906 unsigned int headroom; 2907 unsigned int len = skb_gro_len(skb); 2908 unsigned int offset = skb_gro_offset(skb); 2909 unsigned int headlen = skb_headlen(skb); 2910 unsigned int delta_truesize; 2911 2912 if (p->len + len >= 65536) 2913 return -E2BIG; 2914 2915 if (pinfo->frag_list) 2916 goto merge; 2917 else if (headlen <= offset) { 2918 skb_frag_t *frag; 2919 skb_frag_t *frag2; 2920 int i = skbinfo->nr_frags; 2921 int nr_frags = pinfo->nr_frags + i; 2922 2923 offset -= headlen; 2924 2925 if (nr_frags > MAX_SKB_FRAGS) 2926 return -E2BIG; 2927 2928 pinfo->nr_frags = nr_frags; 2929 skbinfo->nr_frags = 0; 2930 2931 frag = pinfo->frags + nr_frags; 2932 frag2 = skbinfo->frags + i; 2933 do { 2934 *--frag = *--frag2; 2935 } while (--i); 2936 2937 frag->page_offset += offset; 2938 skb_frag_size_sub(frag, offset); 2939 2940 /* all fragments truesize : remove (head size + sk_buff) */ 2941 delta_truesize = skb->truesize - 2942 SKB_TRUESIZE(skb_end_offset(skb)); 2943 2944 skb->truesize -= skb->data_len; 2945 skb->len -= skb->data_len; 2946 skb->data_len = 0; 2947 2948 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 2949 goto done; 2950 } else if (skb->head_frag) { 2951 int nr_frags = pinfo->nr_frags; 2952 skb_frag_t *frag = pinfo->frags + nr_frags; 2953 struct page *page = virt_to_head_page(skb->head); 2954 unsigned int first_size = headlen - offset; 2955 unsigned int first_offset; 2956 2957 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 2958 return -E2BIG; 2959 2960 first_offset = skb->data - 2961 (unsigned char *)page_address(page) + 2962 offset; 2963 2964 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 2965 2966 frag->page.p = page; 2967 frag->page_offset = first_offset; 2968 skb_frag_size_set(frag, first_size); 2969 2970 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 2971 /* We dont need to clear skbinfo->nr_frags here */ 2972 2973 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 2974 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 2975 goto done; 2976 } else if (skb_gro_len(p) != pinfo->gso_size) 2977 return -E2BIG; 2978 2979 headroom = skb_headroom(p); 2980 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC); 2981 if (unlikely(!nskb)) 2982 return -ENOMEM; 2983 2984 __copy_skb_header(nskb, p); 2985 nskb->mac_len = p->mac_len; 2986 2987 skb_reserve(nskb, headroom); 2988 __skb_put(nskb, skb_gro_offset(p)); 2989 2990 skb_set_mac_header(nskb, skb_mac_header(p) - p->data); 2991 skb_set_network_header(nskb, skb_network_offset(p)); 2992 skb_set_transport_header(nskb, skb_transport_offset(p)); 2993 2994 __skb_pull(p, skb_gro_offset(p)); 2995 memcpy(skb_mac_header(nskb), skb_mac_header(p), 2996 p->data - skb_mac_header(p)); 2997 2998 skb_shinfo(nskb)->frag_list = p; 2999 skb_shinfo(nskb)->gso_size = pinfo->gso_size; 3000 pinfo->gso_size = 0; 3001 skb_header_release(p); 3002 NAPI_GRO_CB(nskb)->last = p; 3003 3004 nskb->data_len += p->len; 3005 nskb->truesize += p->truesize; 3006 nskb->len += p->len; 3007 3008 *head = nskb; 3009 nskb->next = p->next; 3010 p->next = NULL; 3011 3012 p = nskb; 3013 3014 merge: 3015 delta_truesize = skb->truesize; 3016 if (offset > headlen) { 3017 unsigned int eat = offset - headlen; 3018 3019 skbinfo->frags[0].page_offset += eat; 3020 skb_frag_size_sub(&skbinfo->frags[0], eat); 3021 skb->data_len -= eat; 3022 skb->len -= eat; 3023 offset = headlen; 3024 } 3025 3026 __skb_pull(skb, offset); 3027 3028 NAPI_GRO_CB(p)->last->next = skb; 3029 NAPI_GRO_CB(p)->last = skb; 3030 skb_header_release(skb); 3031 3032 done: 3033 NAPI_GRO_CB(p)->count++; 3034 p->data_len += len; 3035 p->truesize += delta_truesize; 3036 p->len += len; 3037 3038 NAPI_GRO_CB(skb)->same_flow = 1; 3039 return 0; 3040 } 3041 EXPORT_SYMBOL_GPL(skb_gro_receive); 3042 3043 void __init skb_init(void) 3044 { 3045 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3046 sizeof(struct sk_buff), 3047 0, 3048 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3049 NULL); 3050 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3051 (2*sizeof(struct sk_buff)) + 3052 sizeof(atomic_t), 3053 0, 3054 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3055 NULL); 3056 } 3057 3058 /** 3059 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3060 * @skb: Socket buffer containing the buffers to be mapped 3061 * @sg: The scatter-gather list to map into 3062 * @offset: The offset into the buffer's contents to start mapping 3063 * @len: Length of buffer space to be mapped 3064 * 3065 * Fill the specified scatter-gather list with mappings/pointers into a 3066 * region of the buffer space attached to a socket buffer. 3067 */ 3068 static int 3069 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3070 { 3071 int start = skb_headlen(skb); 3072 int i, copy = start - offset; 3073 struct sk_buff *frag_iter; 3074 int elt = 0; 3075 3076 if (copy > 0) { 3077 if (copy > len) 3078 copy = len; 3079 sg_set_buf(sg, skb->data + offset, copy); 3080 elt++; 3081 if ((len -= copy) == 0) 3082 return elt; 3083 offset += copy; 3084 } 3085 3086 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3087 int end; 3088 3089 WARN_ON(start > offset + len); 3090 3091 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3092 if ((copy = end - offset) > 0) { 3093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3094 3095 if (copy > len) 3096 copy = len; 3097 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3098 frag->page_offset+offset-start); 3099 elt++; 3100 if (!(len -= copy)) 3101 return elt; 3102 offset += copy; 3103 } 3104 start = end; 3105 } 3106 3107 skb_walk_frags(skb, frag_iter) { 3108 int end; 3109 3110 WARN_ON(start > offset + len); 3111 3112 end = start + frag_iter->len; 3113 if ((copy = end - offset) > 0) { 3114 if (copy > len) 3115 copy = len; 3116 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3117 copy); 3118 if ((len -= copy) == 0) 3119 return elt; 3120 offset += copy; 3121 } 3122 start = end; 3123 } 3124 BUG_ON(len); 3125 return elt; 3126 } 3127 3128 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3129 { 3130 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3131 3132 sg_mark_end(&sg[nsg - 1]); 3133 3134 return nsg; 3135 } 3136 EXPORT_SYMBOL_GPL(skb_to_sgvec); 3137 3138 /** 3139 * skb_cow_data - Check that a socket buffer's data buffers are writable 3140 * @skb: The socket buffer to check. 3141 * @tailbits: Amount of trailing space to be added 3142 * @trailer: Returned pointer to the skb where the @tailbits space begins 3143 * 3144 * Make sure that the data buffers attached to a socket buffer are 3145 * writable. If they are not, private copies are made of the data buffers 3146 * and the socket buffer is set to use these instead. 3147 * 3148 * If @tailbits is given, make sure that there is space to write @tailbits 3149 * bytes of data beyond current end of socket buffer. @trailer will be 3150 * set to point to the skb in which this space begins. 3151 * 3152 * The number of scatterlist elements required to completely map the 3153 * COW'd and extended socket buffer will be returned. 3154 */ 3155 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3156 { 3157 int copyflag; 3158 int elt; 3159 struct sk_buff *skb1, **skb_p; 3160 3161 /* If skb is cloned or its head is paged, reallocate 3162 * head pulling out all the pages (pages are considered not writable 3163 * at the moment even if they are anonymous). 3164 */ 3165 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3166 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3167 return -ENOMEM; 3168 3169 /* Easy case. Most of packets will go this way. */ 3170 if (!skb_has_frag_list(skb)) { 3171 /* A little of trouble, not enough of space for trailer. 3172 * This should not happen, when stack is tuned to generate 3173 * good frames. OK, on miss we reallocate and reserve even more 3174 * space, 128 bytes is fair. */ 3175 3176 if (skb_tailroom(skb) < tailbits && 3177 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3178 return -ENOMEM; 3179 3180 /* Voila! */ 3181 *trailer = skb; 3182 return 1; 3183 } 3184 3185 /* Misery. We are in troubles, going to mincer fragments... */ 3186 3187 elt = 1; 3188 skb_p = &skb_shinfo(skb)->frag_list; 3189 copyflag = 0; 3190 3191 while ((skb1 = *skb_p) != NULL) { 3192 int ntail = 0; 3193 3194 /* The fragment is partially pulled by someone, 3195 * this can happen on input. Copy it and everything 3196 * after it. */ 3197 3198 if (skb_shared(skb1)) 3199 copyflag = 1; 3200 3201 /* If the skb is the last, worry about trailer. */ 3202 3203 if (skb1->next == NULL && tailbits) { 3204 if (skb_shinfo(skb1)->nr_frags || 3205 skb_has_frag_list(skb1) || 3206 skb_tailroom(skb1) < tailbits) 3207 ntail = tailbits + 128; 3208 } 3209 3210 if (copyflag || 3211 skb_cloned(skb1) || 3212 ntail || 3213 skb_shinfo(skb1)->nr_frags || 3214 skb_has_frag_list(skb1)) { 3215 struct sk_buff *skb2; 3216 3217 /* Fuck, we are miserable poor guys... */ 3218 if (ntail == 0) 3219 skb2 = skb_copy(skb1, GFP_ATOMIC); 3220 else 3221 skb2 = skb_copy_expand(skb1, 3222 skb_headroom(skb1), 3223 ntail, 3224 GFP_ATOMIC); 3225 if (unlikely(skb2 == NULL)) 3226 return -ENOMEM; 3227 3228 if (skb1->sk) 3229 skb_set_owner_w(skb2, skb1->sk); 3230 3231 /* Looking around. Are we still alive? 3232 * OK, link new skb, drop old one */ 3233 3234 skb2->next = skb1->next; 3235 *skb_p = skb2; 3236 kfree_skb(skb1); 3237 skb1 = skb2; 3238 } 3239 elt++; 3240 *trailer = skb1; 3241 skb_p = &skb1->next; 3242 } 3243 3244 return elt; 3245 } 3246 EXPORT_SYMBOL_GPL(skb_cow_data); 3247 3248 static void sock_rmem_free(struct sk_buff *skb) 3249 { 3250 struct sock *sk = skb->sk; 3251 3252 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3253 } 3254 3255 /* 3256 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3257 */ 3258 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3259 { 3260 int len = skb->len; 3261 3262 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3263 (unsigned int)sk->sk_rcvbuf) 3264 return -ENOMEM; 3265 3266 skb_orphan(skb); 3267 skb->sk = sk; 3268 skb->destructor = sock_rmem_free; 3269 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3270 3271 /* before exiting rcu section, make sure dst is refcounted */ 3272 skb_dst_force(skb); 3273 3274 skb_queue_tail(&sk->sk_error_queue, skb); 3275 if (!sock_flag(sk, SOCK_DEAD)) 3276 sk->sk_data_ready(sk, len); 3277 return 0; 3278 } 3279 EXPORT_SYMBOL(sock_queue_err_skb); 3280 3281 void skb_tstamp_tx(struct sk_buff *orig_skb, 3282 struct skb_shared_hwtstamps *hwtstamps) 3283 { 3284 struct sock *sk = orig_skb->sk; 3285 struct sock_exterr_skb *serr; 3286 struct sk_buff *skb; 3287 int err; 3288 3289 if (!sk) 3290 return; 3291 3292 skb = skb_clone(orig_skb, GFP_ATOMIC); 3293 if (!skb) 3294 return; 3295 3296 if (hwtstamps) { 3297 *skb_hwtstamps(skb) = 3298 *hwtstamps; 3299 } else { 3300 /* 3301 * no hardware time stamps available, 3302 * so keep the shared tx_flags and only 3303 * store software time stamp 3304 */ 3305 skb->tstamp = ktime_get_real(); 3306 } 3307 3308 serr = SKB_EXT_ERR(skb); 3309 memset(serr, 0, sizeof(*serr)); 3310 serr->ee.ee_errno = ENOMSG; 3311 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3312 3313 err = sock_queue_err_skb(sk, skb); 3314 3315 if (err) 3316 kfree_skb(skb); 3317 } 3318 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3319 3320 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3321 { 3322 struct sock *sk = skb->sk; 3323 struct sock_exterr_skb *serr; 3324 int err; 3325 3326 skb->wifi_acked_valid = 1; 3327 skb->wifi_acked = acked; 3328 3329 serr = SKB_EXT_ERR(skb); 3330 memset(serr, 0, sizeof(*serr)); 3331 serr->ee.ee_errno = ENOMSG; 3332 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3333 3334 err = sock_queue_err_skb(sk, skb); 3335 if (err) 3336 kfree_skb(skb); 3337 } 3338 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3339 3340 3341 /** 3342 * skb_partial_csum_set - set up and verify partial csum values for packet 3343 * @skb: the skb to set 3344 * @start: the number of bytes after skb->data to start checksumming. 3345 * @off: the offset from start to place the checksum. 3346 * 3347 * For untrusted partially-checksummed packets, we need to make sure the values 3348 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3349 * 3350 * This function checks and sets those values and skb->ip_summed: if this 3351 * returns false you should drop the packet. 3352 */ 3353 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3354 { 3355 if (unlikely(start > skb_headlen(skb)) || 3356 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3357 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3358 start, off, skb_headlen(skb)); 3359 return false; 3360 } 3361 skb->ip_summed = CHECKSUM_PARTIAL; 3362 skb->csum_start = skb_headroom(skb) + start; 3363 skb->csum_offset = off; 3364 return true; 3365 } 3366 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3367 3368 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 3369 { 3370 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 3371 skb->dev->name); 3372 } 3373 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 3374 3375 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 3376 { 3377 if (head_stolen) { 3378 skb_release_head_state(skb); 3379 kmem_cache_free(skbuff_head_cache, skb); 3380 } else { 3381 __kfree_skb(skb); 3382 } 3383 } 3384 EXPORT_SYMBOL(kfree_skb_partial); 3385 3386 /** 3387 * skb_try_coalesce - try to merge skb to prior one 3388 * @to: prior buffer 3389 * @from: buffer to add 3390 * @fragstolen: pointer to boolean 3391 * @delta_truesize: how much more was allocated than was requested 3392 */ 3393 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 3394 bool *fragstolen, int *delta_truesize) 3395 { 3396 int i, delta, len = from->len; 3397 3398 *fragstolen = false; 3399 3400 if (skb_cloned(to)) 3401 return false; 3402 3403 if (len <= skb_tailroom(to)) { 3404 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 3405 *delta_truesize = 0; 3406 return true; 3407 } 3408 3409 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 3410 return false; 3411 3412 if (skb_headlen(from) != 0) { 3413 struct page *page; 3414 unsigned int offset; 3415 3416 if (skb_shinfo(to)->nr_frags + 3417 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 3418 return false; 3419 3420 if (skb_head_is_locked(from)) 3421 return false; 3422 3423 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3424 3425 page = virt_to_head_page(from->head); 3426 offset = from->data - (unsigned char *)page_address(page); 3427 3428 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 3429 page, offset, skb_headlen(from)); 3430 *fragstolen = true; 3431 } else { 3432 if (skb_shinfo(to)->nr_frags + 3433 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 3434 return false; 3435 3436 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 3437 } 3438 3439 WARN_ON_ONCE(delta < len); 3440 3441 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 3442 skb_shinfo(from)->frags, 3443 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 3444 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 3445 3446 if (!skb_cloned(from)) 3447 skb_shinfo(from)->nr_frags = 0; 3448 3449 /* if the skb is not cloned this does nothing 3450 * since we set nr_frags to 0. 3451 */ 3452 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 3453 skb_frag_ref(from, i); 3454 3455 to->truesize += delta; 3456 to->len += len; 3457 to->data_len += len; 3458 3459 *delta_truesize = delta; 3460 return true; 3461 } 3462 EXPORT_SYMBOL(skb_try_coalesce); 3463