xref: /linux/net/core/skbuff.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /**
108  *	skb_panic - private function for out-of-line support
109  *	@skb:	buffer
110  *	@sz:	size
111  *	@addr:	address
112  *	@msg:	skb_over_panic or skb_under_panic
113  *
114  *	Out-of-line support for skb_put() and skb_push().
115  *	Called via the wrapper skb_over_panic() or skb_under_panic().
116  *	Keep out of line to prevent kernel bloat.
117  *	__builtin_return_address is not used because it is not always reliable.
118  */
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 		      const char msg[])
121 {
122 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 		 msg, addr, skb->len, sz, skb->head, skb->data,
124 		 (unsigned long)skb->tail, (unsigned long)skb->end,
125 		 skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 	skb_panic(skb, sz, addr, __func__);
137 }
138 
139 /*
140  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141  * the caller if emergency pfmemalloc reserves are being used. If it is and
142  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143  * may be used. Otherwise, the packet data may be discarded until enough
144  * memory is free
145  */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148 
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 			       unsigned long ip, bool *pfmemalloc)
151 {
152 	void *obj;
153 	bool ret_pfmemalloc = false;
154 
155 	/*
156 	 * Try a regular allocation, when that fails and we're not entitled
157 	 * to the reserves, fail.
158 	 */
159 	obj = kmalloc_node_track_caller(size,
160 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 					node);
162 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 		goto out;
164 
165 	/* Try again but now we are using pfmemalloc reserves */
166 	ret_pfmemalloc = true;
167 	obj = kmalloc_node_track_caller(size, flags, node);
168 
169 out:
170 	if (pfmemalloc)
171 		*pfmemalloc = ret_pfmemalloc;
172 
173 	return obj;
174 }
175 
176 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
177  *	'private' fields and also do memory statistics to find all the
178  *	[BEEP] leaks.
179  *
180  */
181 
182 /**
183  *	__alloc_skb	-	allocate a network buffer
184  *	@size: size to allocate
185  *	@gfp_mask: allocation mask
186  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
187  *		instead of head cache and allocate a cloned (child) skb.
188  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
189  *		allocations in case the data is required for writeback
190  *	@node: numa node to allocate memory on
191  *
192  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
193  *	tail room of at least size bytes. The object has a reference count
194  *	of one. The return is the buffer. On a failure the return is %NULL.
195  *
196  *	Buffers may only be allocated from interrupts using a @gfp_mask of
197  *	%GFP_ATOMIC.
198  */
199 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
200 			    int flags, int node)
201 {
202 	struct kmem_cache *cache;
203 	struct skb_shared_info *shinfo;
204 	struct sk_buff *skb;
205 	u8 *data;
206 	bool pfmemalloc;
207 
208 	cache = (flags & SKB_ALLOC_FCLONE)
209 		? skbuff_fclone_cache : skbuff_head_cache;
210 
211 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
212 		gfp_mask |= __GFP_MEMALLOC;
213 
214 	/* Get the HEAD */
215 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
216 	if (!skb)
217 		goto out;
218 	prefetchw(skb);
219 
220 	/* We do our best to align skb_shared_info on a separate cache
221 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
222 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
223 	 * Both skb->head and skb_shared_info are cache line aligned.
224 	 */
225 	size = SKB_DATA_ALIGN(size);
226 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
227 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
228 	if (!data)
229 		goto nodata;
230 	/* kmalloc(size) might give us more room than requested.
231 	 * Put skb_shared_info exactly at the end of allocated zone,
232 	 * to allow max possible filling before reallocation.
233 	 */
234 	size = SKB_WITH_OVERHEAD(ksize(data));
235 	prefetchw(data + size);
236 
237 	/*
238 	 * Only clear those fields we need to clear, not those that we will
239 	 * actually initialise below. Hence, don't put any more fields after
240 	 * the tail pointer in struct sk_buff!
241 	 */
242 	memset(skb, 0, offsetof(struct sk_buff, tail));
243 	/* Account for allocated memory : skb + skb->head */
244 	skb->truesize = SKB_TRUESIZE(size);
245 	skb->pfmemalloc = pfmemalloc;
246 	atomic_set(&skb->users, 1);
247 	skb->head = data;
248 	skb->data = data;
249 	skb_reset_tail_pointer(skb);
250 	skb->end = skb->tail + size;
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 	skb->mac_header = ~0U;
253 	skb->transport_header = ~0U;
254 #endif
255 
256 	/* make sure we initialize shinfo sequentially */
257 	shinfo = skb_shinfo(skb);
258 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
259 	atomic_set(&shinfo->dataref, 1);
260 	kmemcheck_annotate_variable(shinfo->destructor_arg);
261 
262 	if (flags & SKB_ALLOC_FCLONE) {
263 		struct sk_buff *child = skb + 1;
264 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
265 
266 		kmemcheck_annotate_bitfield(child, flags1);
267 		kmemcheck_annotate_bitfield(child, flags2);
268 		skb->fclone = SKB_FCLONE_ORIG;
269 		atomic_set(fclone_ref, 1);
270 
271 		child->fclone = SKB_FCLONE_UNAVAILABLE;
272 		child->pfmemalloc = pfmemalloc;
273 	}
274 out:
275 	return skb;
276 nodata:
277 	kmem_cache_free(cache, skb);
278 	skb = NULL;
279 	goto out;
280 }
281 EXPORT_SYMBOL(__alloc_skb);
282 
283 /**
284  * build_skb - build a network buffer
285  * @data: data buffer provided by caller
286  * @frag_size: size of fragment, or 0 if head was kmalloced
287  *
288  * Allocate a new &sk_buff. Caller provides space holding head and
289  * skb_shared_info. @data must have been allocated by kmalloc()
290  * The return is the new skb buffer.
291  * On a failure the return is %NULL, and @data is not freed.
292  * Notes :
293  *  Before IO, driver allocates only data buffer where NIC put incoming frame
294  *  Driver should add room at head (NET_SKB_PAD) and
295  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
296  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
297  *  before giving packet to stack.
298  *  RX rings only contains data buffers, not full skbs.
299  */
300 struct sk_buff *build_skb(void *data, unsigned int frag_size)
301 {
302 	struct skb_shared_info *shinfo;
303 	struct sk_buff *skb;
304 	unsigned int size = frag_size ? : ksize(data);
305 
306 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
307 	if (!skb)
308 		return NULL;
309 
310 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
311 
312 	memset(skb, 0, offsetof(struct sk_buff, tail));
313 	skb->truesize = SKB_TRUESIZE(size);
314 	skb->head_frag = frag_size != 0;
315 	atomic_set(&skb->users, 1);
316 	skb->head = data;
317 	skb->data = data;
318 	skb_reset_tail_pointer(skb);
319 	skb->end = skb->tail + size;
320 #ifdef NET_SKBUFF_DATA_USES_OFFSET
321 	skb->mac_header = ~0U;
322 	skb->transport_header = ~0U;
323 #endif
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 EXPORT_SYMBOL(build_skb);
334 
335 struct netdev_alloc_cache {
336 	struct page_frag	frag;
337 	/* we maintain a pagecount bias, so that we dont dirty cache line
338 	 * containing page->_count every time we allocate a fragment.
339 	 */
340 	unsigned int		pagecnt_bias;
341 };
342 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
343 
344 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
345 {
346 	struct netdev_alloc_cache *nc;
347 	void *data = NULL;
348 	int order;
349 	unsigned long flags;
350 
351 	local_irq_save(flags);
352 	nc = &__get_cpu_var(netdev_alloc_cache);
353 	if (unlikely(!nc->frag.page)) {
354 refill:
355 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
356 			gfp_t gfp = gfp_mask;
357 
358 			if (order)
359 				gfp |= __GFP_COMP | __GFP_NOWARN;
360 			nc->frag.page = alloc_pages(gfp, order);
361 			if (likely(nc->frag.page))
362 				break;
363 			if (--order < 0)
364 				goto end;
365 		}
366 		nc->frag.size = PAGE_SIZE << order;
367 recycle:
368 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
369 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
370 		nc->frag.offset = 0;
371 	}
372 
373 	if (nc->frag.offset + fragsz > nc->frag.size) {
374 		/* avoid unnecessary locked operations if possible */
375 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
376 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
377 			goto recycle;
378 		goto refill;
379 	}
380 
381 	data = page_address(nc->frag.page) + nc->frag.offset;
382 	nc->frag.offset += fragsz;
383 	nc->pagecnt_bias--;
384 end:
385 	local_irq_restore(flags);
386 	return data;
387 }
388 
389 /**
390  * netdev_alloc_frag - allocate a page fragment
391  * @fragsz: fragment size
392  *
393  * Allocates a frag from a page for receive buffer.
394  * Uses GFP_ATOMIC allocations.
395  */
396 void *netdev_alloc_frag(unsigned int fragsz)
397 {
398 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(netdev_alloc_frag);
401 
402 /**
403  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
404  *	@dev: network device to receive on
405  *	@length: length to allocate
406  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
407  *
408  *	Allocate a new &sk_buff and assign it a usage count of one. The
409  *	buffer has unspecified headroom built in. Users should allocate
410  *	the headroom they think they need without accounting for the
411  *	built in space. The built in space is used for optimisations.
412  *
413  *	%NULL is returned if there is no free memory.
414  */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
416 				   unsigned int length, gfp_t gfp_mask)
417 {
418 	struct sk_buff *skb = NULL;
419 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
420 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
421 
422 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
423 		void *data;
424 
425 		if (sk_memalloc_socks())
426 			gfp_mask |= __GFP_MEMALLOC;
427 
428 		data = __netdev_alloc_frag(fragsz, gfp_mask);
429 
430 		if (likely(data)) {
431 			skb = build_skb(data, fragsz);
432 			if (unlikely(!skb))
433 				put_page(virt_to_head_page(data));
434 		}
435 	} else {
436 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
437 				  SKB_ALLOC_RX, NUMA_NO_NODE);
438 	}
439 	if (likely(skb)) {
440 		skb_reserve(skb, NET_SKB_PAD);
441 		skb->dev = dev;
442 	}
443 	return skb;
444 }
445 EXPORT_SYMBOL(__netdev_alloc_skb);
446 
447 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
448 		     int size, unsigned int truesize)
449 {
450 	skb_fill_page_desc(skb, i, page, off, size);
451 	skb->len += size;
452 	skb->data_len += size;
453 	skb->truesize += truesize;
454 }
455 EXPORT_SYMBOL(skb_add_rx_frag);
456 
457 static void skb_drop_list(struct sk_buff **listp)
458 {
459 	struct sk_buff *list = *listp;
460 
461 	*listp = NULL;
462 
463 	do {
464 		struct sk_buff *this = list;
465 		list = list->next;
466 		kfree_skb(this);
467 	} while (list);
468 }
469 
470 static inline void skb_drop_fraglist(struct sk_buff *skb)
471 {
472 	skb_drop_list(&skb_shinfo(skb)->frag_list);
473 }
474 
475 static void skb_clone_fraglist(struct sk_buff *skb)
476 {
477 	struct sk_buff *list;
478 
479 	skb_walk_frags(skb, list)
480 		skb_get(list);
481 }
482 
483 static void skb_free_head(struct sk_buff *skb)
484 {
485 	if (skb->head_frag)
486 		put_page(virt_to_head_page(skb->head));
487 	else
488 		kfree(skb->head);
489 }
490 
491 static void skb_release_data(struct sk_buff *skb)
492 {
493 	if (!skb->cloned ||
494 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
495 			       &skb_shinfo(skb)->dataref)) {
496 		if (skb_shinfo(skb)->nr_frags) {
497 			int i;
498 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
499 				skb_frag_unref(skb, i);
500 		}
501 
502 		/*
503 		 * If skb buf is from userspace, we need to notify the caller
504 		 * the lower device DMA has done;
505 		 */
506 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
507 			struct ubuf_info *uarg;
508 
509 			uarg = skb_shinfo(skb)->destructor_arg;
510 			if (uarg->callback)
511 				uarg->callback(uarg, true);
512 		}
513 
514 		if (skb_has_frag_list(skb))
515 			skb_drop_fraglist(skb);
516 
517 		skb_free_head(skb);
518 	}
519 }
520 
521 /*
522  *	Free an skbuff by memory without cleaning the state.
523  */
524 static void kfree_skbmem(struct sk_buff *skb)
525 {
526 	struct sk_buff *other;
527 	atomic_t *fclone_ref;
528 
529 	switch (skb->fclone) {
530 	case SKB_FCLONE_UNAVAILABLE:
531 		kmem_cache_free(skbuff_head_cache, skb);
532 		break;
533 
534 	case SKB_FCLONE_ORIG:
535 		fclone_ref = (atomic_t *) (skb + 2);
536 		if (atomic_dec_and_test(fclone_ref))
537 			kmem_cache_free(skbuff_fclone_cache, skb);
538 		break;
539 
540 	case SKB_FCLONE_CLONE:
541 		fclone_ref = (atomic_t *) (skb + 1);
542 		other = skb - 1;
543 
544 		/* The clone portion is available for
545 		 * fast-cloning again.
546 		 */
547 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
548 
549 		if (atomic_dec_and_test(fclone_ref))
550 			kmem_cache_free(skbuff_fclone_cache, other);
551 		break;
552 	}
553 }
554 
555 static void skb_release_head_state(struct sk_buff *skb)
556 {
557 	skb_dst_drop(skb);
558 #ifdef CONFIG_XFRM
559 	secpath_put(skb->sp);
560 #endif
561 	if (skb->destructor) {
562 		WARN_ON(in_irq());
563 		skb->destructor(skb);
564 	}
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 	nf_conntrack_put(skb->nfct);
567 #endif
568 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
569 	nf_conntrack_put_reasm(skb->nfct_reasm);
570 #endif
571 #ifdef CONFIG_BRIDGE_NETFILTER
572 	nf_bridge_put(skb->nf_bridge);
573 #endif
574 /* XXX: IS this still necessary? - JHS */
575 #ifdef CONFIG_NET_SCHED
576 	skb->tc_index = 0;
577 #ifdef CONFIG_NET_CLS_ACT
578 	skb->tc_verd = 0;
579 #endif
580 #endif
581 }
582 
583 /* Free everything but the sk_buff shell. */
584 static void skb_release_all(struct sk_buff *skb)
585 {
586 	skb_release_head_state(skb);
587 	skb_release_data(skb);
588 }
589 
590 /**
591  *	__kfree_skb - private function
592  *	@skb: buffer
593  *
594  *	Free an sk_buff. Release anything attached to the buffer.
595  *	Clean the state. This is an internal helper function. Users should
596  *	always call kfree_skb
597  */
598 
599 void __kfree_skb(struct sk_buff *skb)
600 {
601 	skb_release_all(skb);
602 	kfree_skbmem(skb);
603 }
604 EXPORT_SYMBOL(__kfree_skb);
605 
606 /**
607  *	kfree_skb - free an sk_buff
608  *	@skb: buffer to free
609  *
610  *	Drop a reference to the buffer and free it if the usage count has
611  *	hit zero.
612  */
613 void kfree_skb(struct sk_buff *skb)
614 {
615 	if (unlikely(!skb))
616 		return;
617 	if (likely(atomic_read(&skb->users) == 1))
618 		smp_rmb();
619 	else if (likely(!atomic_dec_and_test(&skb->users)))
620 		return;
621 	trace_kfree_skb(skb, __builtin_return_address(0));
622 	__kfree_skb(skb);
623 }
624 EXPORT_SYMBOL(kfree_skb);
625 
626 /**
627  *	skb_tx_error - report an sk_buff xmit error
628  *	@skb: buffer that triggered an error
629  *
630  *	Report xmit error if a device callback is tracking this skb.
631  *	skb must be freed afterwards.
632  */
633 void skb_tx_error(struct sk_buff *skb)
634 {
635 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
636 		struct ubuf_info *uarg;
637 
638 		uarg = skb_shinfo(skb)->destructor_arg;
639 		if (uarg->callback)
640 			uarg->callback(uarg, false);
641 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
642 	}
643 }
644 EXPORT_SYMBOL(skb_tx_error);
645 
646 /**
647  *	consume_skb - free an skbuff
648  *	@skb: buffer to free
649  *
650  *	Drop a ref to the buffer and free it if the usage count has hit zero
651  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
652  *	is being dropped after a failure and notes that
653  */
654 void consume_skb(struct sk_buff *skb)
655 {
656 	if (unlikely(!skb))
657 		return;
658 	if (likely(atomic_read(&skb->users) == 1))
659 		smp_rmb();
660 	else if (likely(!atomic_dec_and_test(&skb->users)))
661 		return;
662 	trace_consume_skb(skb);
663 	__kfree_skb(skb);
664 }
665 EXPORT_SYMBOL(consume_skb);
666 
667 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
668 {
669 	new->tstamp		= old->tstamp;
670 	new->dev		= old->dev;
671 	new->transport_header	= old->transport_header;
672 	new->network_header	= old->network_header;
673 	new->mac_header		= old->mac_header;
674 	new->inner_transport_header = old->inner_transport_header;
675 	new->inner_network_header = old->inner_network_header;
676 	skb_dst_copy(new, old);
677 	new->rxhash		= old->rxhash;
678 	new->ooo_okay		= old->ooo_okay;
679 	new->l4_rxhash		= old->l4_rxhash;
680 	new->no_fcs		= old->no_fcs;
681 	new->encapsulation	= old->encapsulation;
682 #ifdef CONFIG_XFRM
683 	new->sp			= secpath_get(old->sp);
684 #endif
685 	memcpy(new->cb, old->cb, sizeof(old->cb));
686 	new->csum		= old->csum;
687 	new->local_df		= old->local_df;
688 	new->pkt_type		= old->pkt_type;
689 	new->ip_summed		= old->ip_summed;
690 	skb_copy_queue_mapping(new, old);
691 	new->priority		= old->priority;
692 #if IS_ENABLED(CONFIG_IP_VS)
693 	new->ipvs_property	= old->ipvs_property;
694 #endif
695 	new->pfmemalloc		= old->pfmemalloc;
696 	new->protocol		= old->protocol;
697 	new->mark		= old->mark;
698 	new->skb_iif		= old->skb_iif;
699 	__nf_copy(new, old);
700 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
701 	new->nf_trace		= old->nf_trace;
702 #endif
703 #ifdef CONFIG_NET_SCHED
704 	new->tc_index		= old->tc_index;
705 #ifdef CONFIG_NET_CLS_ACT
706 	new->tc_verd		= old->tc_verd;
707 #endif
708 #endif
709 	new->vlan_tci		= old->vlan_tci;
710 
711 	skb_copy_secmark(new, old);
712 }
713 
714 /*
715  * You should not add any new code to this function.  Add it to
716  * __copy_skb_header above instead.
717  */
718 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
719 {
720 #define C(x) n->x = skb->x
721 
722 	n->next = n->prev = NULL;
723 	n->sk = NULL;
724 	__copy_skb_header(n, skb);
725 
726 	C(len);
727 	C(data_len);
728 	C(mac_len);
729 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
730 	n->cloned = 1;
731 	n->nohdr = 0;
732 	n->destructor = NULL;
733 	C(tail);
734 	C(end);
735 	C(head);
736 	C(head_frag);
737 	C(data);
738 	C(truesize);
739 	atomic_set(&n->users, 1);
740 
741 	atomic_inc(&(skb_shinfo(skb)->dataref));
742 	skb->cloned = 1;
743 
744 	return n;
745 #undef C
746 }
747 
748 /**
749  *	skb_morph	-	morph one skb into another
750  *	@dst: the skb to receive the contents
751  *	@src: the skb to supply the contents
752  *
753  *	This is identical to skb_clone except that the target skb is
754  *	supplied by the user.
755  *
756  *	The target skb is returned upon exit.
757  */
758 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
759 {
760 	skb_release_all(dst);
761 	return __skb_clone(dst, src);
762 }
763 EXPORT_SYMBOL_GPL(skb_morph);
764 
765 /**
766  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
767  *	@skb: the skb to modify
768  *	@gfp_mask: allocation priority
769  *
770  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
771  *	It will copy all frags into kernel and drop the reference
772  *	to userspace pages.
773  *
774  *	If this function is called from an interrupt gfp_mask() must be
775  *	%GFP_ATOMIC.
776  *
777  *	Returns 0 on success or a negative error code on failure
778  *	to allocate kernel memory to copy to.
779  */
780 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
781 {
782 	int i;
783 	int num_frags = skb_shinfo(skb)->nr_frags;
784 	struct page *page, *head = NULL;
785 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
786 
787 	for (i = 0; i < num_frags; i++) {
788 		u8 *vaddr;
789 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
790 
791 		page = alloc_page(gfp_mask);
792 		if (!page) {
793 			while (head) {
794 				struct page *next = (struct page *)head->private;
795 				put_page(head);
796 				head = next;
797 			}
798 			return -ENOMEM;
799 		}
800 		vaddr = kmap_atomic(skb_frag_page(f));
801 		memcpy(page_address(page),
802 		       vaddr + f->page_offset, skb_frag_size(f));
803 		kunmap_atomic(vaddr);
804 		page->private = (unsigned long)head;
805 		head = page;
806 	}
807 
808 	/* skb frags release userspace buffers */
809 	for (i = 0; i < num_frags; i++)
810 		skb_frag_unref(skb, i);
811 
812 	uarg->callback(uarg, false);
813 
814 	/* skb frags point to kernel buffers */
815 	for (i = num_frags - 1; i >= 0; i--) {
816 		__skb_fill_page_desc(skb, i, head, 0,
817 				     skb_shinfo(skb)->frags[i].size);
818 		head = (struct page *)head->private;
819 	}
820 
821 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
825 
826 /**
827  *	skb_clone	-	duplicate an sk_buff
828  *	@skb: buffer to clone
829  *	@gfp_mask: allocation priority
830  *
831  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
832  *	copies share the same packet data but not structure. The new
833  *	buffer has a reference count of 1. If the allocation fails the
834  *	function returns %NULL otherwise the new buffer is returned.
835  *
836  *	If this function is called from an interrupt gfp_mask() must be
837  *	%GFP_ATOMIC.
838  */
839 
840 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
841 {
842 	struct sk_buff *n;
843 
844 	if (skb_orphan_frags(skb, gfp_mask))
845 		return NULL;
846 
847 	n = skb + 1;
848 	if (skb->fclone == SKB_FCLONE_ORIG &&
849 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
850 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
851 		n->fclone = SKB_FCLONE_CLONE;
852 		atomic_inc(fclone_ref);
853 	} else {
854 		if (skb_pfmemalloc(skb))
855 			gfp_mask |= __GFP_MEMALLOC;
856 
857 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
858 		if (!n)
859 			return NULL;
860 
861 		kmemcheck_annotate_bitfield(n, flags1);
862 		kmemcheck_annotate_bitfield(n, flags2);
863 		n->fclone = SKB_FCLONE_UNAVAILABLE;
864 	}
865 
866 	return __skb_clone(n, skb);
867 }
868 EXPORT_SYMBOL(skb_clone);
869 
870 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
871 {
872 #ifndef NET_SKBUFF_DATA_USES_OFFSET
873 	/*
874 	 *	Shift between the two data areas in bytes
875 	 */
876 	unsigned long offset = new->data - old->data;
877 #endif
878 
879 	__copy_skb_header(new, old);
880 
881 #ifndef NET_SKBUFF_DATA_USES_OFFSET
882 	/* {transport,network,mac}_header are relative to skb->head */
883 	new->transport_header += offset;
884 	new->network_header   += offset;
885 	if (skb_mac_header_was_set(new))
886 		new->mac_header	      += offset;
887 	new->inner_transport_header += offset;
888 	new->inner_network_header   += offset;
889 #endif
890 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
891 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
892 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
893 }
894 
895 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
896 {
897 	if (skb_pfmemalloc(skb))
898 		return SKB_ALLOC_RX;
899 	return 0;
900 }
901 
902 /**
903  *	skb_copy	-	create private copy of an sk_buff
904  *	@skb: buffer to copy
905  *	@gfp_mask: allocation priority
906  *
907  *	Make a copy of both an &sk_buff and its data. This is used when the
908  *	caller wishes to modify the data and needs a private copy of the
909  *	data to alter. Returns %NULL on failure or the pointer to the buffer
910  *	on success. The returned buffer has a reference count of 1.
911  *
912  *	As by-product this function converts non-linear &sk_buff to linear
913  *	one, so that &sk_buff becomes completely private and caller is allowed
914  *	to modify all the data of returned buffer. This means that this
915  *	function is not recommended for use in circumstances when only
916  *	header is going to be modified. Use pskb_copy() instead.
917  */
918 
919 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
920 {
921 	int headerlen = skb_headroom(skb);
922 	unsigned int size = skb_end_offset(skb) + skb->data_len;
923 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
924 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
925 
926 	if (!n)
927 		return NULL;
928 
929 	/* Set the data pointer */
930 	skb_reserve(n, headerlen);
931 	/* Set the tail pointer and length */
932 	skb_put(n, skb->len);
933 
934 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
935 		BUG();
936 
937 	copy_skb_header(n, skb);
938 	return n;
939 }
940 EXPORT_SYMBOL(skb_copy);
941 
942 /**
943  *	__pskb_copy	-	create copy of an sk_buff with private head.
944  *	@skb: buffer to copy
945  *	@headroom: headroom of new skb
946  *	@gfp_mask: allocation priority
947  *
948  *	Make a copy of both an &sk_buff and part of its data, located
949  *	in header. Fragmented data remain shared. This is used when
950  *	the caller wishes to modify only header of &sk_buff and needs
951  *	private copy of the header to alter. Returns %NULL on failure
952  *	or the pointer to the buffer on success.
953  *	The returned buffer has a reference count of 1.
954  */
955 
956 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
957 {
958 	unsigned int size = skb_headlen(skb) + headroom;
959 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
960 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
961 
962 	if (!n)
963 		goto out;
964 
965 	/* Set the data pointer */
966 	skb_reserve(n, headroom);
967 	/* Set the tail pointer and length */
968 	skb_put(n, skb_headlen(skb));
969 	/* Copy the bytes */
970 	skb_copy_from_linear_data(skb, n->data, n->len);
971 
972 	n->truesize += skb->data_len;
973 	n->data_len  = skb->data_len;
974 	n->len	     = skb->len;
975 
976 	if (skb_shinfo(skb)->nr_frags) {
977 		int i;
978 
979 		if (skb_orphan_frags(skb, gfp_mask)) {
980 			kfree_skb(n);
981 			n = NULL;
982 			goto out;
983 		}
984 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
985 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
986 			skb_frag_ref(skb, i);
987 		}
988 		skb_shinfo(n)->nr_frags = i;
989 	}
990 
991 	if (skb_has_frag_list(skb)) {
992 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
993 		skb_clone_fraglist(n);
994 	}
995 
996 	copy_skb_header(n, skb);
997 out:
998 	return n;
999 }
1000 EXPORT_SYMBOL(__pskb_copy);
1001 
1002 /**
1003  *	pskb_expand_head - reallocate header of &sk_buff
1004  *	@skb: buffer to reallocate
1005  *	@nhead: room to add at head
1006  *	@ntail: room to add at tail
1007  *	@gfp_mask: allocation priority
1008  *
1009  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1010  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1011  *	reference count of 1. Returns zero in the case of success or error,
1012  *	if expansion failed. In the last case, &sk_buff is not changed.
1013  *
1014  *	All the pointers pointing into skb header may change and must be
1015  *	reloaded after call to this function.
1016  */
1017 
1018 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1019 		     gfp_t gfp_mask)
1020 {
1021 	int i;
1022 	u8 *data;
1023 	int size = nhead + skb_end_offset(skb) + ntail;
1024 	long off;
1025 
1026 	BUG_ON(nhead < 0);
1027 
1028 	if (skb_shared(skb))
1029 		BUG();
1030 
1031 	size = SKB_DATA_ALIGN(size);
1032 
1033 	if (skb_pfmemalloc(skb))
1034 		gfp_mask |= __GFP_MEMALLOC;
1035 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1036 			       gfp_mask, NUMA_NO_NODE, NULL);
1037 	if (!data)
1038 		goto nodata;
1039 	size = SKB_WITH_OVERHEAD(ksize(data));
1040 
1041 	/* Copy only real data... and, alas, header. This should be
1042 	 * optimized for the cases when header is void.
1043 	 */
1044 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1045 
1046 	memcpy((struct skb_shared_info *)(data + size),
1047 	       skb_shinfo(skb),
1048 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1049 
1050 	/*
1051 	 * if shinfo is shared we must drop the old head gracefully, but if it
1052 	 * is not we can just drop the old head and let the existing refcount
1053 	 * be since all we did is relocate the values
1054 	 */
1055 	if (skb_cloned(skb)) {
1056 		/* copy this zero copy skb frags */
1057 		if (skb_orphan_frags(skb, gfp_mask))
1058 			goto nofrags;
1059 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1060 			skb_frag_ref(skb, i);
1061 
1062 		if (skb_has_frag_list(skb))
1063 			skb_clone_fraglist(skb);
1064 
1065 		skb_release_data(skb);
1066 	} else {
1067 		skb_free_head(skb);
1068 	}
1069 	off = (data + nhead) - skb->head;
1070 
1071 	skb->head     = data;
1072 	skb->head_frag = 0;
1073 	skb->data    += off;
1074 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1075 	skb->end      = size;
1076 	off           = nhead;
1077 #else
1078 	skb->end      = skb->head + size;
1079 #endif
1080 	/* {transport,network,mac}_header and tail are relative to skb->head */
1081 	skb->tail	      += off;
1082 	skb->transport_header += off;
1083 	skb->network_header   += off;
1084 	if (skb_mac_header_was_set(skb))
1085 		skb->mac_header += off;
1086 	skb->inner_transport_header += off;
1087 	skb->inner_network_header += off;
1088 	/* Only adjust this if it actually is csum_start rather than csum */
1089 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1090 		skb->csum_start += nhead;
1091 	skb->cloned   = 0;
1092 	skb->hdr_len  = 0;
1093 	skb->nohdr    = 0;
1094 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1095 	return 0;
1096 
1097 nofrags:
1098 	kfree(data);
1099 nodata:
1100 	return -ENOMEM;
1101 }
1102 EXPORT_SYMBOL(pskb_expand_head);
1103 
1104 /* Make private copy of skb with writable head and some headroom */
1105 
1106 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1107 {
1108 	struct sk_buff *skb2;
1109 	int delta = headroom - skb_headroom(skb);
1110 
1111 	if (delta <= 0)
1112 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1113 	else {
1114 		skb2 = skb_clone(skb, GFP_ATOMIC);
1115 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1116 					     GFP_ATOMIC)) {
1117 			kfree_skb(skb2);
1118 			skb2 = NULL;
1119 		}
1120 	}
1121 	return skb2;
1122 }
1123 EXPORT_SYMBOL(skb_realloc_headroom);
1124 
1125 /**
1126  *	skb_copy_expand	-	copy and expand sk_buff
1127  *	@skb: buffer to copy
1128  *	@newheadroom: new free bytes at head
1129  *	@newtailroom: new free bytes at tail
1130  *	@gfp_mask: allocation priority
1131  *
1132  *	Make a copy of both an &sk_buff and its data and while doing so
1133  *	allocate additional space.
1134  *
1135  *	This is used when the caller wishes to modify the data and needs a
1136  *	private copy of the data to alter as well as more space for new fields.
1137  *	Returns %NULL on failure or the pointer to the buffer
1138  *	on success. The returned buffer has a reference count of 1.
1139  *
1140  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1141  *	is called from an interrupt.
1142  */
1143 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1144 				int newheadroom, int newtailroom,
1145 				gfp_t gfp_mask)
1146 {
1147 	/*
1148 	 *	Allocate the copy buffer
1149 	 */
1150 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1151 					gfp_mask, skb_alloc_rx_flag(skb),
1152 					NUMA_NO_NODE);
1153 	int oldheadroom = skb_headroom(skb);
1154 	int head_copy_len, head_copy_off;
1155 	int off;
1156 
1157 	if (!n)
1158 		return NULL;
1159 
1160 	skb_reserve(n, newheadroom);
1161 
1162 	/* Set the tail pointer and length */
1163 	skb_put(n, skb->len);
1164 
1165 	head_copy_len = oldheadroom;
1166 	head_copy_off = 0;
1167 	if (newheadroom <= head_copy_len)
1168 		head_copy_len = newheadroom;
1169 	else
1170 		head_copy_off = newheadroom - head_copy_len;
1171 
1172 	/* Copy the linear header and data. */
1173 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1174 			  skb->len + head_copy_len))
1175 		BUG();
1176 
1177 	copy_skb_header(n, skb);
1178 
1179 	off                  = newheadroom - oldheadroom;
1180 	if (n->ip_summed == CHECKSUM_PARTIAL)
1181 		n->csum_start += off;
1182 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1183 	n->transport_header += off;
1184 	n->network_header   += off;
1185 	if (skb_mac_header_was_set(skb))
1186 		n->mac_header += off;
1187 	n->inner_transport_header += off;
1188 	n->inner_network_header	   += off;
1189 #endif
1190 
1191 	return n;
1192 }
1193 EXPORT_SYMBOL(skb_copy_expand);
1194 
1195 /**
1196  *	skb_pad			-	zero pad the tail of an skb
1197  *	@skb: buffer to pad
1198  *	@pad: space to pad
1199  *
1200  *	Ensure that a buffer is followed by a padding area that is zero
1201  *	filled. Used by network drivers which may DMA or transfer data
1202  *	beyond the buffer end onto the wire.
1203  *
1204  *	May return error in out of memory cases. The skb is freed on error.
1205  */
1206 
1207 int skb_pad(struct sk_buff *skb, int pad)
1208 {
1209 	int err;
1210 	int ntail;
1211 
1212 	/* If the skbuff is non linear tailroom is always zero.. */
1213 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1214 		memset(skb->data+skb->len, 0, pad);
1215 		return 0;
1216 	}
1217 
1218 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1219 	if (likely(skb_cloned(skb) || ntail > 0)) {
1220 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1221 		if (unlikely(err))
1222 			goto free_skb;
1223 	}
1224 
1225 	/* FIXME: The use of this function with non-linear skb's really needs
1226 	 * to be audited.
1227 	 */
1228 	err = skb_linearize(skb);
1229 	if (unlikely(err))
1230 		goto free_skb;
1231 
1232 	memset(skb->data + skb->len, 0, pad);
1233 	return 0;
1234 
1235 free_skb:
1236 	kfree_skb(skb);
1237 	return err;
1238 }
1239 EXPORT_SYMBOL(skb_pad);
1240 
1241 /**
1242  *	skb_put - add data to a buffer
1243  *	@skb: buffer to use
1244  *	@len: amount of data to add
1245  *
1246  *	This function extends the used data area of the buffer. If this would
1247  *	exceed the total buffer size the kernel will panic. A pointer to the
1248  *	first byte of the extra data is returned.
1249  */
1250 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1251 {
1252 	unsigned char *tmp = skb_tail_pointer(skb);
1253 	SKB_LINEAR_ASSERT(skb);
1254 	skb->tail += len;
1255 	skb->len  += len;
1256 	if (unlikely(skb->tail > skb->end))
1257 		skb_over_panic(skb, len, __builtin_return_address(0));
1258 	return tmp;
1259 }
1260 EXPORT_SYMBOL(skb_put);
1261 
1262 /**
1263  *	skb_push - add data to the start of a buffer
1264  *	@skb: buffer to use
1265  *	@len: amount of data to add
1266  *
1267  *	This function extends the used data area of the buffer at the buffer
1268  *	start. If this would exceed the total buffer headroom the kernel will
1269  *	panic. A pointer to the first byte of the extra data is returned.
1270  */
1271 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1272 {
1273 	skb->data -= len;
1274 	skb->len  += len;
1275 	if (unlikely(skb->data<skb->head))
1276 		skb_under_panic(skb, len, __builtin_return_address(0));
1277 	return skb->data;
1278 }
1279 EXPORT_SYMBOL(skb_push);
1280 
1281 /**
1282  *	skb_pull - remove data from the start of a buffer
1283  *	@skb: buffer to use
1284  *	@len: amount of data to remove
1285  *
1286  *	This function removes data from the start of a buffer, returning
1287  *	the memory to the headroom. A pointer to the next data in the buffer
1288  *	is returned. Once the data has been pulled future pushes will overwrite
1289  *	the old data.
1290  */
1291 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1292 {
1293 	return skb_pull_inline(skb, len);
1294 }
1295 EXPORT_SYMBOL(skb_pull);
1296 
1297 /**
1298  *	skb_trim - remove end from a buffer
1299  *	@skb: buffer to alter
1300  *	@len: new length
1301  *
1302  *	Cut the length of a buffer down by removing data from the tail. If
1303  *	the buffer is already under the length specified it is not modified.
1304  *	The skb must be linear.
1305  */
1306 void skb_trim(struct sk_buff *skb, unsigned int len)
1307 {
1308 	if (skb->len > len)
1309 		__skb_trim(skb, len);
1310 }
1311 EXPORT_SYMBOL(skb_trim);
1312 
1313 /* Trims skb to length len. It can change skb pointers.
1314  */
1315 
1316 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1317 {
1318 	struct sk_buff **fragp;
1319 	struct sk_buff *frag;
1320 	int offset = skb_headlen(skb);
1321 	int nfrags = skb_shinfo(skb)->nr_frags;
1322 	int i;
1323 	int err;
1324 
1325 	if (skb_cloned(skb) &&
1326 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1327 		return err;
1328 
1329 	i = 0;
1330 	if (offset >= len)
1331 		goto drop_pages;
1332 
1333 	for (; i < nfrags; i++) {
1334 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1335 
1336 		if (end < len) {
1337 			offset = end;
1338 			continue;
1339 		}
1340 
1341 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1342 
1343 drop_pages:
1344 		skb_shinfo(skb)->nr_frags = i;
1345 
1346 		for (; i < nfrags; i++)
1347 			skb_frag_unref(skb, i);
1348 
1349 		if (skb_has_frag_list(skb))
1350 			skb_drop_fraglist(skb);
1351 		goto done;
1352 	}
1353 
1354 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1355 	     fragp = &frag->next) {
1356 		int end = offset + frag->len;
1357 
1358 		if (skb_shared(frag)) {
1359 			struct sk_buff *nfrag;
1360 
1361 			nfrag = skb_clone(frag, GFP_ATOMIC);
1362 			if (unlikely(!nfrag))
1363 				return -ENOMEM;
1364 
1365 			nfrag->next = frag->next;
1366 			consume_skb(frag);
1367 			frag = nfrag;
1368 			*fragp = frag;
1369 		}
1370 
1371 		if (end < len) {
1372 			offset = end;
1373 			continue;
1374 		}
1375 
1376 		if (end > len &&
1377 		    unlikely((err = pskb_trim(frag, len - offset))))
1378 			return err;
1379 
1380 		if (frag->next)
1381 			skb_drop_list(&frag->next);
1382 		break;
1383 	}
1384 
1385 done:
1386 	if (len > skb_headlen(skb)) {
1387 		skb->data_len -= skb->len - len;
1388 		skb->len       = len;
1389 	} else {
1390 		skb->len       = len;
1391 		skb->data_len  = 0;
1392 		skb_set_tail_pointer(skb, len);
1393 	}
1394 
1395 	return 0;
1396 }
1397 EXPORT_SYMBOL(___pskb_trim);
1398 
1399 /**
1400  *	__pskb_pull_tail - advance tail of skb header
1401  *	@skb: buffer to reallocate
1402  *	@delta: number of bytes to advance tail
1403  *
1404  *	The function makes a sense only on a fragmented &sk_buff,
1405  *	it expands header moving its tail forward and copying necessary
1406  *	data from fragmented part.
1407  *
1408  *	&sk_buff MUST have reference count of 1.
1409  *
1410  *	Returns %NULL (and &sk_buff does not change) if pull failed
1411  *	or value of new tail of skb in the case of success.
1412  *
1413  *	All the pointers pointing into skb header may change and must be
1414  *	reloaded after call to this function.
1415  */
1416 
1417 /* Moves tail of skb head forward, copying data from fragmented part,
1418  * when it is necessary.
1419  * 1. It may fail due to malloc failure.
1420  * 2. It may change skb pointers.
1421  *
1422  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1423  */
1424 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1425 {
1426 	/* If skb has not enough free space at tail, get new one
1427 	 * plus 128 bytes for future expansions. If we have enough
1428 	 * room at tail, reallocate without expansion only if skb is cloned.
1429 	 */
1430 	int i, k, eat = (skb->tail + delta) - skb->end;
1431 
1432 	if (eat > 0 || skb_cloned(skb)) {
1433 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1434 				     GFP_ATOMIC))
1435 			return NULL;
1436 	}
1437 
1438 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1439 		BUG();
1440 
1441 	/* Optimization: no fragments, no reasons to preestimate
1442 	 * size of pulled pages. Superb.
1443 	 */
1444 	if (!skb_has_frag_list(skb))
1445 		goto pull_pages;
1446 
1447 	/* Estimate size of pulled pages. */
1448 	eat = delta;
1449 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1450 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1451 
1452 		if (size >= eat)
1453 			goto pull_pages;
1454 		eat -= size;
1455 	}
1456 
1457 	/* If we need update frag list, we are in troubles.
1458 	 * Certainly, it possible to add an offset to skb data,
1459 	 * but taking into account that pulling is expected to
1460 	 * be very rare operation, it is worth to fight against
1461 	 * further bloating skb head and crucify ourselves here instead.
1462 	 * Pure masohism, indeed. 8)8)
1463 	 */
1464 	if (eat) {
1465 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1466 		struct sk_buff *clone = NULL;
1467 		struct sk_buff *insp = NULL;
1468 
1469 		do {
1470 			BUG_ON(!list);
1471 
1472 			if (list->len <= eat) {
1473 				/* Eaten as whole. */
1474 				eat -= list->len;
1475 				list = list->next;
1476 				insp = list;
1477 			} else {
1478 				/* Eaten partially. */
1479 
1480 				if (skb_shared(list)) {
1481 					/* Sucks! We need to fork list. :-( */
1482 					clone = skb_clone(list, GFP_ATOMIC);
1483 					if (!clone)
1484 						return NULL;
1485 					insp = list->next;
1486 					list = clone;
1487 				} else {
1488 					/* This may be pulled without
1489 					 * problems. */
1490 					insp = list;
1491 				}
1492 				if (!pskb_pull(list, eat)) {
1493 					kfree_skb(clone);
1494 					return NULL;
1495 				}
1496 				break;
1497 			}
1498 		} while (eat);
1499 
1500 		/* Free pulled out fragments. */
1501 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1502 			skb_shinfo(skb)->frag_list = list->next;
1503 			kfree_skb(list);
1504 		}
1505 		/* And insert new clone at head. */
1506 		if (clone) {
1507 			clone->next = list;
1508 			skb_shinfo(skb)->frag_list = clone;
1509 		}
1510 	}
1511 	/* Success! Now we may commit changes to skb data. */
1512 
1513 pull_pages:
1514 	eat = delta;
1515 	k = 0;
1516 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1517 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1518 
1519 		if (size <= eat) {
1520 			skb_frag_unref(skb, i);
1521 			eat -= size;
1522 		} else {
1523 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1524 			if (eat) {
1525 				skb_shinfo(skb)->frags[k].page_offset += eat;
1526 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1527 				eat = 0;
1528 			}
1529 			k++;
1530 		}
1531 	}
1532 	skb_shinfo(skb)->nr_frags = k;
1533 
1534 	skb->tail     += delta;
1535 	skb->data_len -= delta;
1536 
1537 	return skb_tail_pointer(skb);
1538 }
1539 EXPORT_SYMBOL(__pskb_pull_tail);
1540 
1541 /**
1542  *	skb_copy_bits - copy bits from skb to kernel buffer
1543  *	@skb: source skb
1544  *	@offset: offset in source
1545  *	@to: destination buffer
1546  *	@len: number of bytes to copy
1547  *
1548  *	Copy the specified number of bytes from the source skb to the
1549  *	destination buffer.
1550  *
1551  *	CAUTION ! :
1552  *		If its prototype is ever changed,
1553  *		check arch/{*}/net/{*}.S files,
1554  *		since it is called from BPF assembly code.
1555  */
1556 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1557 {
1558 	int start = skb_headlen(skb);
1559 	struct sk_buff *frag_iter;
1560 	int i, copy;
1561 
1562 	if (offset > (int)skb->len - len)
1563 		goto fault;
1564 
1565 	/* Copy header. */
1566 	if ((copy = start - offset) > 0) {
1567 		if (copy > len)
1568 			copy = len;
1569 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1570 		if ((len -= copy) == 0)
1571 			return 0;
1572 		offset += copy;
1573 		to     += copy;
1574 	}
1575 
1576 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1577 		int end;
1578 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1579 
1580 		WARN_ON(start > offset + len);
1581 
1582 		end = start + skb_frag_size(f);
1583 		if ((copy = end - offset) > 0) {
1584 			u8 *vaddr;
1585 
1586 			if (copy > len)
1587 				copy = len;
1588 
1589 			vaddr = kmap_atomic(skb_frag_page(f));
1590 			memcpy(to,
1591 			       vaddr + f->page_offset + offset - start,
1592 			       copy);
1593 			kunmap_atomic(vaddr);
1594 
1595 			if ((len -= copy) == 0)
1596 				return 0;
1597 			offset += copy;
1598 			to     += copy;
1599 		}
1600 		start = end;
1601 	}
1602 
1603 	skb_walk_frags(skb, frag_iter) {
1604 		int end;
1605 
1606 		WARN_ON(start > offset + len);
1607 
1608 		end = start + frag_iter->len;
1609 		if ((copy = end - offset) > 0) {
1610 			if (copy > len)
1611 				copy = len;
1612 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1613 				goto fault;
1614 			if ((len -= copy) == 0)
1615 				return 0;
1616 			offset += copy;
1617 			to     += copy;
1618 		}
1619 		start = end;
1620 	}
1621 
1622 	if (!len)
1623 		return 0;
1624 
1625 fault:
1626 	return -EFAULT;
1627 }
1628 EXPORT_SYMBOL(skb_copy_bits);
1629 
1630 /*
1631  * Callback from splice_to_pipe(), if we need to release some pages
1632  * at the end of the spd in case we error'ed out in filling the pipe.
1633  */
1634 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1635 {
1636 	put_page(spd->pages[i]);
1637 }
1638 
1639 static struct page *linear_to_page(struct page *page, unsigned int *len,
1640 				   unsigned int *offset,
1641 				   struct sock *sk)
1642 {
1643 	struct page_frag *pfrag = sk_page_frag(sk);
1644 
1645 	if (!sk_page_frag_refill(sk, pfrag))
1646 		return NULL;
1647 
1648 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1649 
1650 	memcpy(page_address(pfrag->page) + pfrag->offset,
1651 	       page_address(page) + *offset, *len);
1652 	*offset = pfrag->offset;
1653 	pfrag->offset += *len;
1654 
1655 	return pfrag->page;
1656 }
1657 
1658 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1659 			     struct page *page,
1660 			     unsigned int offset)
1661 {
1662 	return	spd->nr_pages &&
1663 		spd->pages[spd->nr_pages - 1] == page &&
1664 		(spd->partial[spd->nr_pages - 1].offset +
1665 		 spd->partial[spd->nr_pages - 1].len == offset);
1666 }
1667 
1668 /*
1669  * Fill page/offset/length into spd, if it can hold more pages.
1670  */
1671 static bool spd_fill_page(struct splice_pipe_desc *spd,
1672 			  struct pipe_inode_info *pipe, struct page *page,
1673 			  unsigned int *len, unsigned int offset,
1674 			  bool linear,
1675 			  struct sock *sk)
1676 {
1677 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1678 		return true;
1679 
1680 	if (linear) {
1681 		page = linear_to_page(page, len, &offset, sk);
1682 		if (!page)
1683 			return true;
1684 	}
1685 	if (spd_can_coalesce(spd, page, offset)) {
1686 		spd->partial[spd->nr_pages - 1].len += *len;
1687 		return false;
1688 	}
1689 	get_page(page);
1690 	spd->pages[spd->nr_pages] = page;
1691 	spd->partial[spd->nr_pages].len = *len;
1692 	spd->partial[spd->nr_pages].offset = offset;
1693 	spd->nr_pages++;
1694 
1695 	return false;
1696 }
1697 
1698 static bool __splice_segment(struct page *page, unsigned int poff,
1699 			     unsigned int plen, unsigned int *off,
1700 			     unsigned int *len,
1701 			     struct splice_pipe_desc *spd, bool linear,
1702 			     struct sock *sk,
1703 			     struct pipe_inode_info *pipe)
1704 {
1705 	if (!*len)
1706 		return true;
1707 
1708 	/* skip this segment if already processed */
1709 	if (*off >= plen) {
1710 		*off -= plen;
1711 		return false;
1712 	}
1713 
1714 	/* ignore any bits we already processed */
1715 	poff += *off;
1716 	plen -= *off;
1717 	*off = 0;
1718 
1719 	do {
1720 		unsigned int flen = min(*len, plen);
1721 
1722 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1723 				  linear, sk))
1724 			return true;
1725 		poff += flen;
1726 		plen -= flen;
1727 		*len -= flen;
1728 	} while (*len && plen);
1729 
1730 	return false;
1731 }
1732 
1733 /*
1734  * Map linear and fragment data from the skb to spd. It reports true if the
1735  * pipe is full or if we already spliced the requested length.
1736  */
1737 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1738 			      unsigned int *offset, unsigned int *len,
1739 			      struct splice_pipe_desc *spd, struct sock *sk)
1740 {
1741 	int seg;
1742 
1743 	/* map the linear part :
1744 	 * If skb->head_frag is set, this 'linear' part is backed by a
1745 	 * fragment, and if the head is not shared with any clones then
1746 	 * we can avoid a copy since we own the head portion of this page.
1747 	 */
1748 	if (__splice_segment(virt_to_page(skb->data),
1749 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1750 			     skb_headlen(skb),
1751 			     offset, len, spd,
1752 			     skb_head_is_locked(skb),
1753 			     sk, pipe))
1754 		return true;
1755 
1756 	/*
1757 	 * then map the fragments
1758 	 */
1759 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1760 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1761 
1762 		if (__splice_segment(skb_frag_page(f),
1763 				     f->page_offset, skb_frag_size(f),
1764 				     offset, len, spd, false, sk, pipe))
1765 			return true;
1766 	}
1767 
1768 	return false;
1769 }
1770 
1771 /*
1772  * Map data from the skb to a pipe. Should handle both the linear part,
1773  * the fragments, and the frag list. It does NOT handle frag lists within
1774  * the frag list, if such a thing exists. We'd probably need to recurse to
1775  * handle that cleanly.
1776  */
1777 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1778 		    struct pipe_inode_info *pipe, unsigned int tlen,
1779 		    unsigned int flags)
1780 {
1781 	struct partial_page partial[MAX_SKB_FRAGS];
1782 	struct page *pages[MAX_SKB_FRAGS];
1783 	struct splice_pipe_desc spd = {
1784 		.pages = pages,
1785 		.partial = partial,
1786 		.nr_pages_max = MAX_SKB_FRAGS,
1787 		.flags = flags,
1788 		.ops = &sock_pipe_buf_ops,
1789 		.spd_release = sock_spd_release,
1790 	};
1791 	struct sk_buff *frag_iter;
1792 	struct sock *sk = skb->sk;
1793 	int ret = 0;
1794 
1795 	/*
1796 	 * __skb_splice_bits() only fails if the output has no room left,
1797 	 * so no point in going over the frag_list for the error case.
1798 	 */
1799 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1800 		goto done;
1801 	else if (!tlen)
1802 		goto done;
1803 
1804 	/*
1805 	 * now see if we have a frag_list to map
1806 	 */
1807 	skb_walk_frags(skb, frag_iter) {
1808 		if (!tlen)
1809 			break;
1810 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1811 			break;
1812 	}
1813 
1814 done:
1815 	if (spd.nr_pages) {
1816 		/*
1817 		 * Drop the socket lock, otherwise we have reverse
1818 		 * locking dependencies between sk_lock and i_mutex
1819 		 * here as compared to sendfile(). We enter here
1820 		 * with the socket lock held, and splice_to_pipe() will
1821 		 * grab the pipe inode lock. For sendfile() emulation,
1822 		 * we call into ->sendpage() with the i_mutex lock held
1823 		 * and networking will grab the socket lock.
1824 		 */
1825 		release_sock(sk);
1826 		ret = splice_to_pipe(pipe, &spd);
1827 		lock_sock(sk);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 /**
1834  *	skb_store_bits - store bits from kernel buffer to skb
1835  *	@skb: destination buffer
1836  *	@offset: offset in destination
1837  *	@from: source buffer
1838  *	@len: number of bytes to copy
1839  *
1840  *	Copy the specified number of bytes from the source buffer to the
1841  *	destination skb.  This function handles all the messy bits of
1842  *	traversing fragment lists and such.
1843  */
1844 
1845 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1846 {
1847 	int start = skb_headlen(skb);
1848 	struct sk_buff *frag_iter;
1849 	int i, copy;
1850 
1851 	if (offset > (int)skb->len - len)
1852 		goto fault;
1853 
1854 	if ((copy = start - offset) > 0) {
1855 		if (copy > len)
1856 			copy = len;
1857 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1858 		if ((len -= copy) == 0)
1859 			return 0;
1860 		offset += copy;
1861 		from += copy;
1862 	}
1863 
1864 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1865 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1866 		int end;
1867 
1868 		WARN_ON(start > offset + len);
1869 
1870 		end = start + skb_frag_size(frag);
1871 		if ((copy = end - offset) > 0) {
1872 			u8 *vaddr;
1873 
1874 			if (copy > len)
1875 				copy = len;
1876 
1877 			vaddr = kmap_atomic(skb_frag_page(frag));
1878 			memcpy(vaddr + frag->page_offset + offset - start,
1879 			       from, copy);
1880 			kunmap_atomic(vaddr);
1881 
1882 			if ((len -= copy) == 0)
1883 				return 0;
1884 			offset += copy;
1885 			from += copy;
1886 		}
1887 		start = end;
1888 	}
1889 
1890 	skb_walk_frags(skb, frag_iter) {
1891 		int end;
1892 
1893 		WARN_ON(start > offset + len);
1894 
1895 		end = start + frag_iter->len;
1896 		if ((copy = end - offset) > 0) {
1897 			if (copy > len)
1898 				copy = len;
1899 			if (skb_store_bits(frag_iter, offset - start,
1900 					   from, copy))
1901 				goto fault;
1902 			if ((len -= copy) == 0)
1903 				return 0;
1904 			offset += copy;
1905 			from += copy;
1906 		}
1907 		start = end;
1908 	}
1909 	if (!len)
1910 		return 0;
1911 
1912 fault:
1913 	return -EFAULT;
1914 }
1915 EXPORT_SYMBOL(skb_store_bits);
1916 
1917 /* Checksum skb data. */
1918 
1919 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1920 			  int len, __wsum csum)
1921 {
1922 	int start = skb_headlen(skb);
1923 	int i, copy = start - offset;
1924 	struct sk_buff *frag_iter;
1925 	int pos = 0;
1926 
1927 	/* Checksum header. */
1928 	if (copy > 0) {
1929 		if (copy > len)
1930 			copy = len;
1931 		csum = csum_partial(skb->data + offset, copy, csum);
1932 		if ((len -= copy) == 0)
1933 			return csum;
1934 		offset += copy;
1935 		pos	= copy;
1936 	}
1937 
1938 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 		int end;
1940 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1941 
1942 		WARN_ON(start > offset + len);
1943 
1944 		end = start + skb_frag_size(frag);
1945 		if ((copy = end - offset) > 0) {
1946 			__wsum csum2;
1947 			u8 *vaddr;
1948 
1949 			if (copy > len)
1950 				copy = len;
1951 			vaddr = kmap_atomic(skb_frag_page(frag));
1952 			csum2 = csum_partial(vaddr + frag->page_offset +
1953 					     offset - start, copy, 0);
1954 			kunmap_atomic(vaddr);
1955 			csum = csum_block_add(csum, csum2, pos);
1956 			if (!(len -= copy))
1957 				return csum;
1958 			offset += copy;
1959 			pos    += copy;
1960 		}
1961 		start = end;
1962 	}
1963 
1964 	skb_walk_frags(skb, frag_iter) {
1965 		int end;
1966 
1967 		WARN_ON(start > offset + len);
1968 
1969 		end = start + frag_iter->len;
1970 		if ((copy = end - offset) > 0) {
1971 			__wsum csum2;
1972 			if (copy > len)
1973 				copy = len;
1974 			csum2 = skb_checksum(frag_iter, offset - start,
1975 					     copy, 0);
1976 			csum = csum_block_add(csum, csum2, pos);
1977 			if ((len -= copy) == 0)
1978 				return csum;
1979 			offset += copy;
1980 			pos    += copy;
1981 		}
1982 		start = end;
1983 	}
1984 	BUG_ON(len);
1985 
1986 	return csum;
1987 }
1988 EXPORT_SYMBOL(skb_checksum);
1989 
1990 /* Both of above in one bottle. */
1991 
1992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1993 				    u8 *to, int len, __wsum csum)
1994 {
1995 	int start = skb_headlen(skb);
1996 	int i, copy = start - offset;
1997 	struct sk_buff *frag_iter;
1998 	int pos = 0;
1999 
2000 	/* Copy header. */
2001 	if (copy > 0) {
2002 		if (copy > len)
2003 			copy = len;
2004 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2005 						 copy, csum);
2006 		if ((len -= copy) == 0)
2007 			return csum;
2008 		offset += copy;
2009 		to     += copy;
2010 		pos	= copy;
2011 	}
2012 
2013 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2014 		int end;
2015 
2016 		WARN_ON(start > offset + len);
2017 
2018 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2019 		if ((copy = end - offset) > 0) {
2020 			__wsum csum2;
2021 			u8 *vaddr;
2022 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2023 
2024 			if (copy > len)
2025 				copy = len;
2026 			vaddr = kmap_atomic(skb_frag_page(frag));
2027 			csum2 = csum_partial_copy_nocheck(vaddr +
2028 							  frag->page_offset +
2029 							  offset - start, to,
2030 							  copy, 0);
2031 			kunmap_atomic(vaddr);
2032 			csum = csum_block_add(csum, csum2, pos);
2033 			if (!(len -= copy))
2034 				return csum;
2035 			offset += copy;
2036 			to     += copy;
2037 			pos    += copy;
2038 		}
2039 		start = end;
2040 	}
2041 
2042 	skb_walk_frags(skb, frag_iter) {
2043 		__wsum csum2;
2044 		int end;
2045 
2046 		WARN_ON(start > offset + len);
2047 
2048 		end = start + frag_iter->len;
2049 		if ((copy = end - offset) > 0) {
2050 			if (copy > len)
2051 				copy = len;
2052 			csum2 = skb_copy_and_csum_bits(frag_iter,
2053 						       offset - start,
2054 						       to, copy, 0);
2055 			csum = csum_block_add(csum, csum2, pos);
2056 			if ((len -= copy) == 0)
2057 				return csum;
2058 			offset += copy;
2059 			to     += copy;
2060 			pos    += copy;
2061 		}
2062 		start = end;
2063 	}
2064 	BUG_ON(len);
2065 	return csum;
2066 }
2067 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2068 
2069 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2070 {
2071 	__wsum csum;
2072 	long csstart;
2073 
2074 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2075 		csstart = skb_checksum_start_offset(skb);
2076 	else
2077 		csstart = skb_headlen(skb);
2078 
2079 	BUG_ON(csstart > skb_headlen(skb));
2080 
2081 	skb_copy_from_linear_data(skb, to, csstart);
2082 
2083 	csum = 0;
2084 	if (csstart != skb->len)
2085 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2086 					      skb->len - csstart, 0);
2087 
2088 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 		long csstuff = csstart + skb->csum_offset;
2090 
2091 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2092 	}
2093 }
2094 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2095 
2096 /**
2097  *	skb_dequeue - remove from the head of the queue
2098  *	@list: list to dequeue from
2099  *
2100  *	Remove the head of the list. The list lock is taken so the function
2101  *	may be used safely with other locking list functions. The head item is
2102  *	returned or %NULL if the list is empty.
2103  */
2104 
2105 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2106 {
2107 	unsigned long flags;
2108 	struct sk_buff *result;
2109 
2110 	spin_lock_irqsave(&list->lock, flags);
2111 	result = __skb_dequeue(list);
2112 	spin_unlock_irqrestore(&list->lock, flags);
2113 	return result;
2114 }
2115 EXPORT_SYMBOL(skb_dequeue);
2116 
2117 /**
2118  *	skb_dequeue_tail - remove from the tail of the queue
2119  *	@list: list to dequeue from
2120  *
2121  *	Remove the tail of the list. The list lock is taken so the function
2122  *	may be used safely with other locking list functions. The tail item is
2123  *	returned or %NULL if the list is empty.
2124  */
2125 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2126 {
2127 	unsigned long flags;
2128 	struct sk_buff *result;
2129 
2130 	spin_lock_irqsave(&list->lock, flags);
2131 	result = __skb_dequeue_tail(list);
2132 	spin_unlock_irqrestore(&list->lock, flags);
2133 	return result;
2134 }
2135 EXPORT_SYMBOL(skb_dequeue_tail);
2136 
2137 /**
2138  *	skb_queue_purge - empty a list
2139  *	@list: list to empty
2140  *
2141  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2142  *	the list and one reference dropped. This function takes the list
2143  *	lock and is atomic with respect to other list locking functions.
2144  */
2145 void skb_queue_purge(struct sk_buff_head *list)
2146 {
2147 	struct sk_buff *skb;
2148 	while ((skb = skb_dequeue(list)) != NULL)
2149 		kfree_skb(skb);
2150 }
2151 EXPORT_SYMBOL(skb_queue_purge);
2152 
2153 /**
2154  *	skb_queue_head - queue a buffer at the list head
2155  *	@list: list to use
2156  *	@newsk: buffer to queue
2157  *
2158  *	Queue a buffer at the start of the list. This function takes the
2159  *	list lock and can be used safely with other locking &sk_buff functions
2160  *	safely.
2161  *
2162  *	A buffer cannot be placed on two lists at the same time.
2163  */
2164 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166 	unsigned long flags;
2167 
2168 	spin_lock_irqsave(&list->lock, flags);
2169 	__skb_queue_head(list, newsk);
2170 	spin_unlock_irqrestore(&list->lock, flags);
2171 }
2172 EXPORT_SYMBOL(skb_queue_head);
2173 
2174 /**
2175  *	skb_queue_tail - queue a buffer at the list tail
2176  *	@list: list to use
2177  *	@newsk: buffer to queue
2178  *
2179  *	Queue a buffer at the tail of the list. This function takes the
2180  *	list lock and can be used safely with other locking &sk_buff functions
2181  *	safely.
2182  *
2183  *	A buffer cannot be placed on two lists at the same time.
2184  */
2185 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2186 {
2187 	unsigned long flags;
2188 
2189 	spin_lock_irqsave(&list->lock, flags);
2190 	__skb_queue_tail(list, newsk);
2191 	spin_unlock_irqrestore(&list->lock, flags);
2192 }
2193 EXPORT_SYMBOL(skb_queue_tail);
2194 
2195 /**
2196  *	skb_unlink	-	remove a buffer from a list
2197  *	@skb: buffer to remove
2198  *	@list: list to use
2199  *
2200  *	Remove a packet from a list. The list locks are taken and this
2201  *	function is atomic with respect to other list locked calls
2202  *
2203  *	You must know what list the SKB is on.
2204  */
2205 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2206 {
2207 	unsigned long flags;
2208 
2209 	spin_lock_irqsave(&list->lock, flags);
2210 	__skb_unlink(skb, list);
2211 	spin_unlock_irqrestore(&list->lock, flags);
2212 }
2213 EXPORT_SYMBOL(skb_unlink);
2214 
2215 /**
2216  *	skb_append	-	append a buffer
2217  *	@old: buffer to insert after
2218  *	@newsk: buffer to insert
2219  *	@list: list to use
2220  *
2221  *	Place a packet after a given packet in a list. The list locks are taken
2222  *	and this function is atomic with respect to other list locked calls.
2223  *	A buffer cannot be placed on two lists at the same time.
2224  */
2225 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2226 {
2227 	unsigned long flags;
2228 
2229 	spin_lock_irqsave(&list->lock, flags);
2230 	__skb_queue_after(list, old, newsk);
2231 	spin_unlock_irqrestore(&list->lock, flags);
2232 }
2233 EXPORT_SYMBOL(skb_append);
2234 
2235 /**
2236  *	skb_insert	-	insert a buffer
2237  *	@old: buffer to insert before
2238  *	@newsk: buffer to insert
2239  *	@list: list to use
2240  *
2241  *	Place a packet before a given packet in a list. The list locks are
2242  * 	taken and this function is atomic with respect to other list locked
2243  *	calls.
2244  *
2245  *	A buffer cannot be placed on two lists at the same time.
2246  */
2247 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2248 {
2249 	unsigned long flags;
2250 
2251 	spin_lock_irqsave(&list->lock, flags);
2252 	__skb_insert(newsk, old->prev, old, list);
2253 	spin_unlock_irqrestore(&list->lock, flags);
2254 }
2255 EXPORT_SYMBOL(skb_insert);
2256 
2257 static inline void skb_split_inside_header(struct sk_buff *skb,
2258 					   struct sk_buff* skb1,
2259 					   const u32 len, const int pos)
2260 {
2261 	int i;
2262 
2263 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2264 					 pos - len);
2265 	/* And move data appendix as is. */
2266 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2267 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2268 
2269 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2270 	skb_shinfo(skb)->nr_frags  = 0;
2271 	skb1->data_len		   = skb->data_len;
2272 	skb1->len		   += skb1->data_len;
2273 	skb->data_len		   = 0;
2274 	skb->len		   = len;
2275 	skb_set_tail_pointer(skb, len);
2276 }
2277 
2278 static inline void skb_split_no_header(struct sk_buff *skb,
2279 				       struct sk_buff* skb1,
2280 				       const u32 len, int pos)
2281 {
2282 	int i, k = 0;
2283 	const int nfrags = skb_shinfo(skb)->nr_frags;
2284 
2285 	skb_shinfo(skb)->nr_frags = 0;
2286 	skb1->len		  = skb1->data_len = skb->len - len;
2287 	skb->len		  = len;
2288 	skb->data_len		  = len - pos;
2289 
2290 	for (i = 0; i < nfrags; i++) {
2291 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2292 
2293 		if (pos + size > len) {
2294 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2295 
2296 			if (pos < len) {
2297 				/* Split frag.
2298 				 * We have two variants in this case:
2299 				 * 1. Move all the frag to the second
2300 				 *    part, if it is possible. F.e.
2301 				 *    this approach is mandatory for TUX,
2302 				 *    where splitting is expensive.
2303 				 * 2. Split is accurately. We make this.
2304 				 */
2305 				skb_frag_ref(skb, i);
2306 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2307 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2308 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2309 				skb_shinfo(skb)->nr_frags++;
2310 			}
2311 			k++;
2312 		} else
2313 			skb_shinfo(skb)->nr_frags++;
2314 		pos += size;
2315 	}
2316 	skb_shinfo(skb1)->nr_frags = k;
2317 }
2318 
2319 /**
2320  * skb_split - Split fragmented skb to two parts at length len.
2321  * @skb: the buffer to split
2322  * @skb1: the buffer to receive the second part
2323  * @len: new length for skb
2324  */
2325 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2326 {
2327 	int pos = skb_headlen(skb);
2328 
2329 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2330 	if (len < pos)	/* Split line is inside header. */
2331 		skb_split_inside_header(skb, skb1, len, pos);
2332 	else		/* Second chunk has no header, nothing to copy. */
2333 		skb_split_no_header(skb, skb1, len, pos);
2334 }
2335 EXPORT_SYMBOL(skb_split);
2336 
2337 /* Shifting from/to a cloned skb is a no-go.
2338  *
2339  * Caller cannot keep skb_shinfo related pointers past calling here!
2340  */
2341 static int skb_prepare_for_shift(struct sk_buff *skb)
2342 {
2343 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2344 }
2345 
2346 /**
2347  * skb_shift - Shifts paged data partially from skb to another
2348  * @tgt: buffer into which tail data gets added
2349  * @skb: buffer from which the paged data comes from
2350  * @shiftlen: shift up to this many bytes
2351  *
2352  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2353  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2354  * It's up to caller to free skb if everything was shifted.
2355  *
2356  * If @tgt runs out of frags, the whole operation is aborted.
2357  *
2358  * Skb cannot include anything else but paged data while tgt is allowed
2359  * to have non-paged data as well.
2360  *
2361  * TODO: full sized shift could be optimized but that would need
2362  * specialized skb free'er to handle frags without up-to-date nr_frags.
2363  */
2364 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2365 {
2366 	int from, to, merge, todo;
2367 	struct skb_frag_struct *fragfrom, *fragto;
2368 
2369 	BUG_ON(shiftlen > skb->len);
2370 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2371 
2372 	todo = shiftlen;
2373 	from = 0;
2374 	to = skb_shinfo(tgt)->nr_frags;
2375 	fragfrom = &skb_shinfo(skb)->frags[from];
2376 
2377 	/* Actual merge is delayed until the point when we know we can
2378 	 * commit all, so that we don't have to undo partial changes
2379 	 */
2380 	if (!to ||
2381 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2382 			      fragfrom->page_offset)) {
2383 		merge = -1;
2384 	} else {
2385 		merge = to - 1;
2386 
2387 		todo -= skb_frag_size(fragfrom);
2388 		if (todo < 0) {
2389 			if (skb_prepare_for_shift(skb) ||
2390 			    skb_prepare_for_shift(tgt))
2391 				return 0;
2392 
2393 			/* All previous frag pointers might be stale! */
2394 			fragfrom = &skb_shinfo(skb)->frags[from];
2395 			fragto = &skb_shinfo(tgt)->frags[merge];
2396 
2397 			skb_frag_size_add(fragto, shiftlen);
2398 			skb_frag_size_sub(fragfrom, shiftlen);
2399 			fragfrom->page_offset += shiftlen;
2400 
2401 			goto onlymerged;
2402 		}
2403 
2404 		from++;
2405 	}
2406 
2407 	/* Skip full, not-fitting skb to avoid expensive operations */
2408 	if ((shiftlen == skb->len) &&
2409 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2410 		return 0;
2411 
2412 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2413 		return 0;
2414 
2415 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2416 		if (to == MAX_SKB_FRAGS)
2417 			return 0;
2418 
2419 		fragfrom = &skb_shinfo(skb)->frags[from];
2420 		fragto = &skb_shinfo(tgt)->frags[to];
2421 
2422 		if (todo >= skb_frag_size(fragfrom)) {
2423 			*fragto = *fragfrom;
2424 			todo -= skb_frag_size(fragfrom);
2425 			from++;
2426 			to++;
2427 
2428 		} else {
2429 			__skb_frag_ref(fragfrom);
2430 			fragto->page = fragfrom->page;
2431 			fragto->page_offset = fragfrom->page_offset;
2432 			skb_frag_size_set(fragto, todo);
2433 
2434 			fragfrom->page_offset += todo;
2435 			skb_frag_size_sub(fragfrom, todo);
2436 			todo = 0;
2437 
2438 			to++;
2439 			break;
2440 		}
2441 	}
2442 
2443 	/* Ready to "commit" this state change to tgt */
2444 	skb_shinfo(tgt)->nr_frags = to;
2445 
2446 	if (merge >= 0) {
2447 		fragfrom = &skb_shinfo(skb)->frags[0];
2448 		fragto = &skb_shinfo(tgt)->frags[merge];
2449 
2450 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2451 		__skb_frag_unref(fragfrom);
2452 	}
2453 
2454 	/* Reposition in the original skb */
2455 	to = 0;
2456 	while (from < skb_shinfo(skb)->nr_frags)
2457 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2458 	skb_shinfo(skb)->nr_frags = to;
2459 
2460 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2461 
2462 onlymerged:
2463 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2464 	 * the other hand might need it if it needs to be resent
2465 	 */
2466 	tgt->ip_summed = CHECKSUM_PARTIAL;
2467 	skb->ip_summed = CHECKSUM_PARTIAL;
2468 
2469 	/* Yak, is it really working this way? Some helper please? */
2470 	skb->len -= shiftlen;
2471 	skb->data_len -= shiftlen;
2472 	skb->truesize -= shiftlen;
2473 	tgt->len += shiftlen;
2474 	tgt->data_len += shiftlen;
2475 	tgt->truesize += shiftlen;
2476 
2477 	return shiftlen;
2478 }
2479 
2480 /**
2481  * skb_prepare_seq_read - Prepare a sequential read of skb data
2482  * @skb: the buffer to read
2483  * @from: lower offset of data to be read
2484  * @to: upper offset of data to be read
2485  * @st: state variable
2486  *
2487  * Initializes the specified state variable. Must be called before
2488  * invoking skb_seq_read() for the first time.
2489  */
2490 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2491 			  unsigned int to, struct skb_seq_state *st)
2492 {
2493 	st->lower_offset = from;
2494 	st->upper_offset = to;
2495 	st->root_skb = st->cur_skb = skb;
2496 	st->frag_idx = st->stepped_offset = 0;
2497 	st->frag_data = NULL;
2498 }
2499 EXPORT_SYMBOL(skb_prepare_seq_read);
2500 
2501 /**
2502  * skb_seq_read - Sequentially read skb data
2503  * @consumed: number of bytes consumed by the caller so far
2504  * @data: destination pointer for data to be returned
2505  * @st: state variable
2506  *
2507  * Reads a block of skb data at &consumed relative to the
2508  * lower offset specified to skb_prepare_seq_read(). Assigns
2509  * the head of the data block to &data and returns the length
2510  * of the block or 0 if the end of the skb data or the upper
2511  * offset has been reached.
2512  *
2513  * The caller is not required to consume all of the data
2514  * returned, i.e. &consumed is typically set to the number
2515  * of bytes already consumed and the next call to
2516  * skb_seq_read() will return the remaining part of the block.
2517  *
2518  * Note 1: The size of each block of data returned can be arbitrary,
2519  *       this limitation is the cost for zerocopy seqeuental
2520  *       reads of potentially non linear data.
2521  *
2522  * Note 2: Fragment lists within fragments are not implemented
2523  *       at the moment, state->root_skb could be replaced with
2524  *       a stack for this purpose.
2525  */
2526 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2527 			  struct skb_seq_state *st)
2528 {
2529 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2530 	skb_frag_t *frag;
2531 
2532 	if (unlikely(abs_offset >= st->upper_offset))
2533 		return 0;
2534 
2535 next_skb:
2536 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2537 
2538 	if (abs_offset < block_limit && !st->frag_data) {
2539 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2540 		return block_limit - abs_offset;
2541 	}
2542 
2543 	if (st->frag_idx == 0 && !st->frag_data)
2544 		st->stepped_offset += skb_headlen(st->cur_skb);
2545 
2546 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2547 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2548 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2549 
2550 		if (abs_offset < block_limit) {
2551 			if (!st->frag_data)
2552 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2553 
2554 			*data = (u8 *) st->frag_data + frag->page_offset +
2555 				(abs_offset - st->stepped_offset);
2556 
2557 			return block_limit - abs_offset;
2558 		}
2559 
2560 		if (st->frag_data) {
2561 			kunmap_atomic(st->frag_data);
2562 			st->frag_data = NULL;
2563 		}
2564 
2565 		st->frag_idx++;
2566 		st->stepped_offset += skb_frag_size(frag);
2567 	}
2568 
2569 	if (st->frag_data) {
2570 		kunmap_atomic(st->frag_data);
2571 		st->frag_data = NULL;
2572 	}
2573 
2574 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2575 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2576 		st->frag_idx = 0;
2577 		goto next_skb;
2578 	} else if (st->cur_skb->next) {
2579 		st->cur_skb = st->cur_skb->next;
2580 		st->frag_idx = 0;
2581 		goto next_skb;
2582 	}
2583 
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(skb_seq_read);
2587 
2588 /**
2589  * skb_abort_seq_read - Abort a sequential read of skb data
2590  * @st: state variable
2591  *
2592  * Must be called if skb_seq_read() was not called until it
2593  * returned 0.
2594  */
2595 void skb_abort_seq_read(struct skb_seq_state *st)
2596 {
2597 	if (st->frag_data)
2598 		kunmap_atomic(st->frag_data);
2599 }
2600 EXPORT_SYMBOL(skb_abort_seq_read);
2601 
2602 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2603 
2604 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2605 					  struct ts_config *conf,
2606 					  struct ts_state *state)
2607 {
2608 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2609 }
2610 
2611 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2612 {
2613 	skb_abort_seq_read(TS_SKB_CB(state));
2614 }
2615 
2616 /**
2617  * skb_find_text - Find a text pattern in skb data
2618  * @skb: the buffer to look in
2619  * @from: search offset
2620  * @to: search limit
2621  * @config: textsearch configuration
2622  * @state: uninitialized textsearch state variable
2623  *
2624  * Finds a pattern in the skb data according to the specified
2625  * textsearch configuration. Use textsearch_next() to retrieve
2626  * subsequent occurrences of the pattern. Returns the offset
2627  * to the first occurrence or UINT_MAX if no match was found.
2628  */
2629 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2630 			   unsigned int to, struct ts_config *config,
2631 			   struct ts_state *state)
2632 {
2633 	unsigned int ret;
2634 
2635 	config->get_next_block = skb_ts_get_next_block;
2636 	config->finish = skb_ts_finish;
2637 
2638 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2639 
2640 	ret = textsearch_find(config, state);
2641 	return (ret <= to - from ? ret : UINT_MAX);
2642 }
2643 EXPORT_SYMBOL(skb_find_text);
2644 
2645 /**
2646  * skb_append_datato_frags - append the user data to a skb
2647  * @sk: sock  structure
2648  * @skb: skb structure to be appened with user data.
2649  * @getfrag: call back function to be used for getting the user data
2650  * @from: pointer to user message iov
2651  * @length: length of the iov message
2652  *
2653  * Description: This procedure append the user data in the fragment part
2654  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2655  */
2656 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2657 			int (*getfrag)(void *from, char *to, int offset,
2658 					int len, int odd, struct sk_buff *skb),
2659 			void *from, int length)
2660 {
2661 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2662 	int copy;
2663 	int offset = 0;
2664 	int ret;
2665 	struct page_frag *pfrag = &current->task_frag;
2666 
2667 	do {
2668 		/* Return error if we don't have space for new frag */
2669 		if (frg_cnt >= MAX_SKB_FRAGS)
2670 			return -EMSGSIZE;
2671 
2672 		if (!sk_page_frag_refill(sk, pfrag))
2673 			return -ENOMEM;
2674 
2675 		/* copy the user data to page */
2676 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2677 
2678 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2679 			      offset, copy, 0, skb);
2680 		if (ret < 0)
2681 			return -EFAULT;
2682 
2683 		/* copy was successful so update the size parameters */
2684 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2685 				   copy);
2686 		frg_cnt++;
2687 		pfrag->offset += copy;
2688 		get_page(pfrag->page);
2689 
2690 		skb->truesize += copy;
2691 		atomic_add(copy, &sk->sk_wmem_alloc);
2692 		skb->len += copy;
2693 		skb->data_len += copy;
2694 		offset += copy;
2695 		length -= copy;
2696 
2697 	} while (length > 0);
2698 
2699 	return 0;
2700 }
2701 EXPORT_SYMBOL(skb_append_datato_frags);
2702 
2703 /**
2704  *	skb_pull_rcsum - pull skb and update receive checksum
2705  *	@skb: buffer to update
2706  *	@len: length of data pulled
2707  *
2708  *	This function performs an skb_pull on the packet and updates
2709  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2710  *	receive path processing instead of skb_pull unless you know
2711  *	that the checksum difference is zero (e.g., a valid IP header)
2712  *	or you are setting ip_summed to CHECKSUM_NONE.
2713  */
2714 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2715 {
2716 	BUG_ON(len > skb->len);
2717 	skb->len -= len;
2718 	BUG_ON(skb->len < skb->data_len);
2719 	skb_postpull_rcsum(skb, skb->data, len);
2720 	return skb->data += len;
2721 }
2722 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2723 
2724 /**
2725  *	skb_segment - Perform protocol segmentation on skb.
2726  *	@skb: buffer to segment
2727  *	@features: features for the output path (see dev->features)
2728  *
2729  *	This function performs segmentation on the given skb.  It returns
2730  *	a pointer to the first in a list of new skbs for the segments.
2731  *	In case of error it returns ERR_PTR(err).
2732  */
2733 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2734 {
2735 	struct sk_buff *segs = NULL;
2736 	struct sk_buff *tail = NULL;
2737 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2738 	unsigned int mss = skb_shinfo(skb)->gso_size;
2739 	unsigned int doffset = skb->data - skb_mac_header(skb);
2740 	unsigned int offset = doffset;
2741 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2742 	unsigned int headroom;
2743 	unsigned int len;
2744 	int sg = !!(features & NETIF_F_SG);
2745 	int nfrags = skb_shinfo(skb)->nr_frags;
2746 	int err = -ENOMEM;
2747 	int i = 0;
2748 	int pos;
2749 
2750 	__skb_push(skb, doffset);
2751 	headroom = skb_headroom(skb);
2752 	pos = skb_headlen(skb);
2753 
2754 	do {
2755 		struct sk_buff *nskb;
2756 		skb_frag_t *frag;
2757 		int hsize;
2758 		int size;
2759 
2760 		len = skb->len - offset;
2761 		if (len > mss)
2762 			len = mss;
2763 
2764 		hsize = skb_headlen(skb) - offset;
2765 		if (hsize < 0)
2766 			hsize = 0;
2767 		if (hsize > len || !sg)
2768 			hsize = len;
2769 
2770 		if (!hsize && i >= nfrags) {
2771 			BUG_ON(fskb->len != len);
2772 
2773 			pos += len;
2774 			nskb = skb_clone(fskb, GFP_ATOMIC);
2775 			fskb = fskb->next;
2776 
2777 			if (unlikely(!nskb))
2778 				goto err;
2779 
2780 			hsize = skb_end_offset(nskb);
2781 			if (skb_cow_head(nskb, doffset + headroom)) {
2782 				kfree_skb(nskb);
2783 				goto err;
2784 			}
2785 
2786 			nskb->truesize += skb_end_offset(nskb) - hsize;
2787 			skb_release_head_state(nskb);
2788 			__skb_push(nskb, doffset);
2789 		} else {
2790 			nskb = __alloc_skb(hsize + doffset + headroom,
2791 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2792 					   NUMA_NO_NODE);
2793 
2794 			if (unlikely(!nskb))
2795 				goto err;
2796 
2797 			skb_reserve(nskb, headroom);
2798 			__skb_put(nskb, doffset);
2799 		}
2800 
2801 		if (segs)
2802 			tail->next = nskb;
2803 		else
2804 			segs = nskb;
2805 		tail = nskb;
2806 
2807 		__copy_skb_header(nskb, skb);
2808 		nskb->mac_len = skb->mac_len;
2809 
2810 		/* nskb and skb might have different headroom */
2811 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2812 			nskb->csum_start += skb_headroom(nskb) - headroom;
2813 
2814 		skb_reset_mac_header(nskb);
2815 		skb_set_network_header(nskb, skb->mac_len);
2816 		nskb->transport_header = (nskb->network_header +
2817 					  skb_network_header_len(skb));
2818 
2819 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2820 						 nskb->data - tnl_hlen,
2821 						 doffset + tnl_hlen);
2822 
2823 		if (fskb != skb_shinfo(skb)->frag_list)
2824 			continue;
2825 
2826 		if (!sg) {
2827 			nskb->ip_summed = CHECKSUM_NONE;
2828 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2829 							    skb_put(nskb, len),
2830 							    len, 0);
2831 			continue;
2832 		}
2833 
2834 		frag = skb_shinfo(nskb)->frags;
2835 
2836 		skb_copy_from_linear_data_offset(skb, offset,
2837 						 skb_put(nskb, hsize), hsize);
2838 
2839 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2840 
2841 		while (pos < offset + len && i < nfrags) {
2842 			*frag = skb_shinfo(skb)->frags[i];
2843 			__skb_frag_ref(frag);
2844 			size = skb_frag_size(frag);
2845 
2846 			if (pos < offset) {
2847 				frag->page_offset += offset - pos;
2848 				skb_frag_size_sub(frag, offset - pos);
2849 			}
2850 
2851 			skb_shinfo(nskb)->nr_frags++;
2852 
2853 			if (pos + size <= offset + len) {
2854 				i++;
2855 				pos += size;
2856 			} else {
2857 				skb_frag_size_sub(frag, pos + size - (offset + len));
2858 				goto skip_fraglist;
2859 			}
2860 
2861 			frag++;
2862 		}
2863 
2864 		if (pos < offset + len) {
2865 			struct sk_buff *fskb2 = fskb;
2866 
2867 			BUG_ON(pos + fskb->len != offset + len);
2868 
2869 			pos += fskb->len;
2870 			fskb = fskb->next;
2871 
2872 			if (fskb2->next) {
2873 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2874 				if (!fskb2)
2875 					goto err;
2876 			} else
2877 				skb_get(fskb2);
2878 
2879 			SKB_FRAG_ASSERT(nskb);
2880 			skb_shinfo(nskb)->frag_list = fskb2;
2881 		}
2882 
2883 skip_fraglist:
2884 		nskb->data_len = len - hsize;
2885 		nskb->len += nskb->data_len;
2886 		nskb->truesize += nskb->data_len;
2887 	} while ((offset += len) < skb->len);
2888 
2889 	return segs;
2890 
2891 err:
2892 	while ((skb = segs)) {
2893 		segs = skb->next;
2894 		kfree_skb(skb);
2895 	}
2896 	return ERR_PTR(err);
2897 }
2898 EXPORT_SYMBOL_GPL(skb_segment);
2899 
2900 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2901 {
2902 	struct sk_buff *p = *head;
2903 	struct sk_buff *nskb;
2904 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2905 	struct skb_shared_info *pinfo = skb_shinfo(p);
2906 	unsigned int headroom;
2907 	unsigned int len = skb_gro_len(skb);
2908 	unsigned int offset = skb_gro_offset(skb);
2909 	unsigned int headlen = skb_headlen(skb);
2910 	unsigned int delta_truesize;
2911 
2912 	if (p->len + len >= 65536)
2913 		return -E2BIG;
2914 
2915 	if (pinfo->frag_list)
2916 		goto merge;
2917 	else if (headlen <= offset) {
2918 		skb_frag_t *frag;
2919 		skb_frag_t *frag2;
2920 		int i = skbinfo->nr_frags;
2921 		int nr_frags = pinfo->nr_frags + i;
2922 
2923 		offset -= headlen;
2924 
2925 		if (nr_frags > MAX_SKB_FRAGS)
2926 			return -E2BIG;
2927 
2928 		pinfo->nr_frags = nr_frags;
2929 		skbinfo->nr_frags = 0;
2930 
2931 		frag = pinfo->frags + nr_frags;
2932 		frag2 = skbinfo->frags + i;
2933 		do {
2934 			*--frag = *--frag2;
2935 		} while (--i);
2936 
2937 		frag->page_offset += offset;
2938 		skb_frag_size_sub(frag, offset);
2939 
2940 		/* all fragments truesize : remove (head size + sk_buff) */
2941 		delta_truesize = skb->truesize -
2942 				 SKB_TRUESIZE(skb_end_offset(skb));
2943 
2944 		skb->truesize -= skb->data_len;
2945 		skb->len -= skb->data_len;
2946 		skb->data_len = 0;
2947 
2948 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2949 		goto done;
2950 	} else if (skb->head_frag) {
2951 		int nr_frags = pinfo->nr_frags;
2952 		skb_frag_t *frag = pinfo->frags + nr_frags;
2953 		struct page *page = virt_to_head_page(skb->head);
2954 		unsigned int first_size = headlen - offset;
2955 		unsigned int first_offset;
2956 
2957 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2958 			return -E2BIG;
2959 
2960 		first_offset = skb->data -
2961 			       (unsigned char *)page_address(page) +
2962 			       offset;
2963 
2964 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2965 
2966 		frag->page.p	  = page;
2967 		frag->page_offset = first_offset;
2968 		skb_frag_size_set(frag, first_size);
2969 
2970 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2971 		/* We dont need to clear skbinfo->nr_frags here */
2972 
2973 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2974 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2975 		goto done;
2976 	} else if (skb_gro_len(p) != pinfo->gso_size)
2977 		return -E2BIG;
2978 
2979 	headroom = skb_headroom(p);
2980 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2981 	if (unlikely(!nskb))
2982 		return -ENOMEM;
2983 
2984 	__copy_skb_header(nskb, p);
2985 	nskb->mac_len = p->mac_len;
2986 
2987 	skb_reserve(nskb, headroom);
2988 	__skb_put(nskb, skb_gro_offset(p));
2989 
2990 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2991 	skb_set_network_header(nskb, skb_network_offset(p));
2992 	skb_set_transport_header(nskb, skb_transport_offset(p));
2993 
2994 	__skb_pull(p, skb_gro_offset(p));
2995 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2996 	       p->data - skb_mac_header(p));
2997 
2998 	skb_shinfo(nskb)->frag_list = p;
2999 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3000 	pinfo->gso_size = 0;
3001 	skb_header_release(p);
3002 	NAPI_GRO_CB(nskb)->last = p;
3003 
3004 	nskb->data_len += p->len;
3005 	nskb->truesize += p->truesize;
3006 	nskb->len += p->len;
3007 
3008 	*head = nskb;
3009 	nskb->next = p->next;
3010 	p->next = NULL;
3011 
3012 	p = nskb;
3013 
3014 merge:
3015 	delta_truesize = skb->truesize;
3016 	if (offset > headlen) {
3017 		unsigned int eat = offset - headlen;
3018 
3019 		skbinfo->frags[0].page_offset += eat;
3020 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3021 		skb->data_len -= eat;
3022 		skb->len -= eat;
3023 		offset = headlen;
3024 	}
3025 
3026 	__skb_pull(skb, offset);
3027 
3028 	NAPI_GRO_CB(p)->last->next = skb;
3029 	NAPI_GRO_CB(p)->last = skb;
3030 	skb_header_release(skb);
3031 
3032 done:
3033 	NAPI_GRO_CB(p)->count++;
3034 	p->data_len += len;
3035 	p->truesize += delta_truesize;
3036 	p->len += len;
3037 
3038 	NAPI_GRO_CB(skb)->same_flow = 1;
3039 	return 0;
3040 }
3041 EXPORT_SYMBOL_GPL(skb_gro_receive);
3042 
3043 void __init skb_init(void)
3044 {
3045 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3046 					      sizeof(struct sk_buff),
3047 					      0,
3048 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3049 					      NULL);
3050 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3051 						(2*sizeof(struct sk_buff)) +
3052 						sizeof(atomic_t),
3053 						0,
3054 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3055 						NULL);
3056 }
3057 
3058 /**
3059  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3060  *	@skb: Socket buffer containing the buffers to be mapped
3061  *	@sg: The scatter-gather list to map into
3062  *	@offset: The offset into the buffer's contents to start mapping
3063  *	@len: Length of buffer space to be mapped
3064  *
3065  *	Fill the specified scatter-gather list with mappings/pointers into a
3066  *	region of the buffer space attached to a socket buffer.
3067  */
3068 static int
3069 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3070 {
3071 	int start = skb_headlen(skb);
3072 	int i, copy = start - offset;
3073 	struct sk_buff *frag_iter;
3074 	int elt = 0;
3075 
3076 	if (copy > 0) {
3077 		if (copy > len)
3078 			copy = len;
3079 		sg_set_buf(sg, skb->data + offset, copy);
3080 		elt++;
3081 		if ((len -= copy) == 0)
3082 			return elt;
3083 		offset += copy;
3084 	}
3085 
3086 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3087 		int end;
3088 
3089 		WARN_ON(start > offset + len);
3090 
3091 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3092 		if ((copy = end - offset) > 0) {
3093 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3094 
3095 			if (copy > len)
3096 				copy = len;
3097 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3098 					frag->page_offset+offset-start);
3099 			elt++;
3100 			if (!(len -= copy))
3101 				return elt;
3102 			offset += copy;
3103 		}
3104 		start = end;
3105 	}
3106 
3107 	skb_walk_frags(skb, frag_iter) {
3108 		int end;
3109 
3110 		WARN_ON(start > offset + len);
3111 
3112 		end = start + frag_iter->len;
3113 		if ((copy = end - offset) > 0) {
3114 			if (copy > len)
3115 				copy = len;
3116 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3117 					      copy);
3118 			if ((len -= copy) == 0)
3119 				return elt;
3120 			offset += copy;
3121 		}
3122 		start = end;
3123 	}
3124 	BUG_ON(len);
3125 	return elt;
3126 }
3127 
3128 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3129 {
3130 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3131 
3132 	sg_mark_end(&sg[nsg - 1]);
3133 
3134 	return nsg;
3135 }
3136 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3137 
3138 /**
3139  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3140  *	@skb: The socket buffer to check.
3141  *	@tailbits: Amount of trailing space to be added
3142  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3143  *
3144  *	Make sure that the data buffers attached to a socket buffer are
3145  *	writable. If they are not, private copies are made of the data buffers
3146  *	and the socket buffer is set to use these instead.
3147  *
3148  *	If @tailbits is given, make sure that there is space to write @tailbits
3149  *	bytes of data beyond current end of socket buffer.  @trailer will be
3150  *	set to point to the skb in which this space begins.
3151  *
3152  *	The number of scatterlist elements required to completely map the
3153  *	COW'd and extended socket buffer will be returned.
3154  */
3155 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3156 {
3157 	int copyflag;
3158 	int elt;
3159 	struct sk_buff *skb1, **skb_p;
3160 
3161 	/* If skb is cloned or its head is paged, reallocate
3162 	 * head pulling out all the pages (pages are considered not writable
3163 	 * at the moment even if they are anonymous).
3164 	 */
3165 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3166 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3167 		return -ENOMEM;
3168 
3169 	/* Easy case. Most of packets will go this way. */
3170 	if (!skb_has_frag_list(skb)) {
3171 		/* A little of trouble, not enough of space for trailer.
3172 		 * This should not happen, when stack is tuned to generate
3173 		 * good frames. OK, on miss we reallocate and reserve even more
3174 		 * space, 128 bytes is fair. */
3175 
3176 		if (skb_tailroom(skb) < tailbits &&
3177 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3178 			return -ENOMEM;
3179 
3180 		/* Voila! */
3181 		*trailer = skb;
3182 		return 1;
3183 	}
3184 
3185 	/* Misery. We are in troubles, going to mincer fragments... */
3186 
3187 	elt = 1;
3188 	skb_p = &skb_shinfo(skb)->frag_list;
3189 	copyflag = 0;
3190 
3191 	while ((skb1 = *skb_p) != NULL) {
3192 		int ntail = 0;
3193 
3194 		/* The fragment is partially pulled by someone,
3195 		 * this can happen on input. Copy it and everything
3196 		 * after it. */
3197 
3198 		if (skb_shared(skb1))
3199 			copyflag = 1;
3200 
3201 		/* If the skb is the last, worry about trailer. */
3202 
3203 		if (skb1->next == NULL && tailbits) {
3204 			if (skb_shinfo(skb1)->nr_frags ||
3205 			    skb_has_frag_list(skb1) ||
3206 			    skb_tailroom(skb1) < tailbits)
3207 				ntail = tailbits + 128;
3208 		}
3209 
3210 		if (copyflag ||
3211 		    skb_cloned(skb1) ||
3212 		    ntail ||
3213 		    skb_shinfo(skb1)->nr_frags ||
3214 		    skb_has_frag_list(skb1)) {
3215 			struct sk_buff *skb2;
3216 
3217 			/* Fuck, we are miserable poor guys... */
3218 			if (ntail == 0)
3219 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3220 			else
3221 				skb2 = skb_copy_expand(skb1,
3222 						       skb_headroom(skb1),
3223 						       ntail,
3224 						       GFP_ATOMIC);
3225 			if (unlikely(skb2 == NULL))
3226 				return -ENOMEM;
3227 
3228 			if (skb1->sk)
3229 				skb_set_owner_w(skb2, skb1->sk);
3230 
3231 			/* Looking around. Are we still alive?
3232 			 * OK, link new skb, drop old one */
3233 
3234 			skb2->next = skb1->next;
3235 			*skb_p = skb2;
3236 			kfree_skb(skb1);
3237 			skb1 = skb2;
3238 		}
3239 		elt++;
3240 		*trailer = skb1;
3241 		skb_p = &skb1->next;
3242 	}
3243 
3244 	return elt;
3245 }
3246 EXPORT_SYMBOL_GPL(skb_cow_data);
3247 
3248 static void sock_rmem_free(struct sk_buff *skb)
3249 {
3250 	struct sock *sk = skb->sk;
3251 
3252 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3253 }
3254 
3255 /*
3256  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3257  */
3258 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3259 {
3260 	int len = skb->len;
3261 
3262 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3263 	    (unsigned int)sk->sk_rcvbuf)
3264 		return -ENOMEM;
3265 
3266 	skb_orphan(skb);
3267 	skb->sk = sk;
3268 	skb->destructor = sock_rmem_free;
3269 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3270 
3271 	/* before exiting rcu section, make sure dst is refcounted */
3272 	skb_dst_force(skb);
3273 
3274 	skb_queue_tail(&sk->sk_error_queue, skb);
3275 	if (!sock_flag(sk, SOCK_DEAD))
3276 		sk->sk_data_ready(sk, len);
3277 	return 0;
3278 }
3279 EXPORT_SYMBOL(sock_queue_err_skb);
3280 
3281 void skb_tstamp_tx(struct sk_buff *orig_skb,
3282 		struct skb_shared_hwtstamps *hwtstamps)
3283 {
3284 	struct sock *sk = orig_skb->sk;
3285 	struct sock_exterr_skb *serr;
3286 	struct sk_buff *skb;
3287 	int err;
3288 
3289 	if (!sk)
3290 		return;
3291 
3292 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3293 	if (!skb)
3294 		return;
3295 
3296 	if (hwtstamps) {
3297 		*skb_hwtstamps(skb) =
3298 			*hwtstamps;
3299 	} else {
3300 		/*
3301 		 * no hardware time stamps available,
3302 		 * so keep the shared tx_flags and only
3303 		 * store software time stamp
3304 		 */
3305 		skb->tstamp = ktime_get_real();
3306 	}
3307 
3308 	serr = SKB_EXT_ERR(skb);
3309 	memset(serr, 0, sizeof(*serr));
3310 	serr->ee.ee_errno = ENOMSG;
3311 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3312 
3313 	err = sock_queue_err_skb(sk, skb);
3314 
3315 	if (err)
3316 		kfree_skb(skb);
3317 }
3318 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3319 
3320 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3321 {
3322 	struct sock *sk = skb->sk;
3323 	struct sock_exterr_skb *serr;
3324 	int err;
3325 
3326 	skb->wifi_acked_valid = 1;
3327 	skb->wifi_acked = acked;
3328 
3329 	serr = SKB_EXT_ERR(skb);
3330 	memset(serr, 0, sizeof(*serr));
3331 	serr->ee.ee_errno = ENOMSG;
3332 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3333 
3334 	err = sock_queue_err_skb(sk, skb);
3335 	if (err)
3336 		kfree_skb(skb);
3337 }
3338 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3339 
3340 
3341 /**
3342  * skb_partial_csum_set - set up and verify partial csum values for packet
3343  * @skb: the skb to set
3344  * @start: the number of bytes after skb->data to start checksumming.
3345  * @off: the offset from start to place the checksum.
3346  *
3347  * For untrusted partially-checksummed packets, we need to make sure the values
3348  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3349  *
3350  * This function checks and sets those values and skb->ip_summed: if this
3351  * returns false you should drop the packet.
3352  */
3353 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3354 {
3355 	if (unlikely(start > skb_headlen(skb)) ||
3356 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3357 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3358 				     start, off, skb_headlen(skb));
3359 		return false;
3360 	}
3361 	skb->ip_summed = CHECKSUM_PARTIAL;
3362 	skb->csum_start = skb_headroom(skb) + start;
3363 	skb->csum_offset = off;
3364 	return true;
3365 }
3366 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3367 
3368 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3369 {
3370 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3371 			     skb->dev->name);
3372 }
3373 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3374 
3375 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3376 {
3377 	if (head_stolen) {
3378 		skb_release_head_state(skb);
3379 		kmem_cache_free(skbuff_head_cache, skb);
3380 	} else {
3381 		__kfree_skb(skb);
3382 	}
3383 }
3384 EXPORT_SYMBOL(kfree_skb_partial);
3385 
3386 /**
3387  * skb_try_coalesce - try to merge skb to prior one
3388  * @to: prior buffer
3389  * @from: buffer to add
3390  * @fragstolen: pointer to boolean
3391  * @delta_truesize: how much more was allocated than was requested
3392  */
3393 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3394 		      bool *fragstolen, int *delta_truesize)
3395 {
3396 	int i, delta, len = from->len;
3397 
3398 	*fragstolen = false;
3399 
3400 	if (skb_cloned(to))
3401 		return false;
3402 
3403 	if (len <= skb_tailroom(to)) {
3404 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3405 		*delta_truesize = 0;
3406 		return true;
3407 	}
3408 
3409 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3410 		return false;
3411 
3412 	if (skb_headlen(from) != 0) {
3413 		struct page *page;
3414 		unsigned int offset;
3415 
3416 		if (skb_shinfo(to)->nr_frags +
3417 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3418 			return false;
3419 
3420 		if (skb_head_is_locked(from))
3421 			return false;
3422 
3423 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3424 
3425 		page = virt_to_head_page(from->head);
3426 		offset = from->data - (unsigned char *)page_address(page);
3427 
3428 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3429 				   page, offset, skb_headlen(from));
3430 		*fragstolen = true;
3431 	} else {
3432 		if (skb_shinfo(to)->nr_frags +
3433 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3434 			return false;
3435 
3436 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3437 	}
3438 
3439 	WARN_ON_ONCE(delta < len);
3440 
3441 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3442 	       skb_shinfo(from)->frags,
3443 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3444 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3445 
3446 	if (!skb_cloned(from))
3447 		skb_shinfo(from)->nr_frags = 0;
3448 
3449 	/* if the skb is not cloned this does nothing
3450 	 * since we set nr_frags to 0.
3451 	 */
3452 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3453 		skb_frag_ref(from, i);
3454 
3455 	to->truesize += delta;
3456 	to->len += len;
3457 	to->data_len += len;
3458 
3459 	*delta_truesize = delta;
3460 	return true;
3461 }
3462 EXPORT_SYMBOL(skb_try_coalesce);
3463