1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/if_vlan.h> 62 #include <linux/mpls.h> 63 #include <linux/kcov.h> 64 65 #include <net/protocol.h> 66 #include <net/dst.h> 67 #include <net/sock.h> 68 #include <net/checksum.h> 69 #include <net/ip6_checksum.h> 70 #include <net/xfrm.h> 71 #include <net/mpls.h> 72 #include <net/mptcp.h> 73 #include <net/mctp.h> 74 #include <net/page_pool.h> 75 76 #include <linux/uaccess.h> 77 #include <trace/events/skb.h> 78 #include <linux/highmem.h> 79 #include <linux/capability.h> 80 #include <linux/user_namespace.h> 81 #include <linux/indirect_call_wrapper.h> 82 83 #include "dev.h" 84 #include "sock_destructor.h" 85 86 struct kmem_cache *skbuff_head_cache __ro_after_init; 87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 88 #ifdef CONFIG_SKB_EXTENSIONS 89 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 90 #endif 91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 92 EXPORT_SYMBOL(sysctl_max_skb_frags); 93 94 /** 95 * skb_panic - private function for out-of-line support 96 * @skb: buffer 97 * @sz: size 98 * @addr: address 99 * @msg: skb_over_panic or skb_under_panic 100 * 101 * Out-of-line support for skb_put() and skb_push(). 102 * Called via the wrapper skb_over_panic() or skb_under_panic(). 103 * Keep out of line to prevent kernel bloat. 104 * __builtin_return_address is not used because it is not always reliable. 105 */ 106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 107 const char msg[]) 108 { 109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 110 msg, addr, skb->len, sz, skb->head, skb->data, 111 (unsigned long)skb->tail, (unsigned long)skb->end, 112 skb->dev ? skb->dev->name : "<NULL>"); 113 BUG(); 114 } 115 116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 117 { 118 skb_panic(skb, sz, addr, __func__); 119 } 120 121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 122 { 123 skb_panic(skb, sz, addr, __func__); 124 } 125 126 #define NAPI_SKB_CACHE_SIZE 64 127 #define NAPI_SKB_CACHE_BULK 16 128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 129 130 struct napi_alloc_cache { 131 struct page_frag_cache page; 132 unsigned int skb_count; 133 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 134 }; 135 136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 138 139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 140 { 141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 142 143 fragsz = SKB_DATA_ALIGN(fragsz); 144 145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 146 } 147 EXPORT_SYMBOL(__napi_alloc_frag_align); 148 149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 150 { 151 void *data; 152 153 fragsz = SKB_DATA_ALIGN(fragsz); 154 if (in_hardirq() || irqs_disabled()) { 155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 156 157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 158 } else { 159 struct napi_alloc_cache *nc; 160 161 local_bh_disable(); 162 nc = this_cpu_ptr(&napi_alloc_cache); 163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 164 local_bh_enable(); 165 } 166 return data; 167 } 168 EXPORT_SYMBOL(__netdev_alloc_frag_align); 169 170 static struct sk_buff *napi_skb_cache_get(void) 171 { 172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 173 struct sk_buff *skb; 174 175 if (unlikely(!nc->skb_count)) 176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, 177 GFP_ATOMIC, 178 NAPI_SKB_CACHE_BULK, 179 nc->skb_cache); 180 if (unlikely(!nc->skb_count)) 181 return NULL; 182 183 skb = nc->skb_cache[--nc->skb_count]; 184 kasan_unpoison_object_data(skbuff_head_cache, skb); 185 186 return skb; 187 } 188 189 /* Caller must provide SKB that is memset cleared */ 190 static void __build_skb_around(struct sk_buff *skb, void *data, 191 unsigned int frag_size) 192 { 193 struct skb_shared_info *shinfo; 194 unsigned int size = frag_size ? : ksize(data); 195 196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 197 198 /* Assumes caller memset cleared SKB */ 199 skb->truesize = SKB_TRUESIZE(size); 200 refcount_set(&skb->users, 1); 201 skb->head = data; 202 skb->data = data; 203 skb_reset_tail_pointer(skb); 204 skb_set_end_offset(skb, size); 205 skb->mac_header = (typeof(skb->mac_header))~0U; 206 skb->transport_header = (typeof(skb->transport_header))~0U; 207 skb->alloc_cpu = raw_smp_processor_id(); 208 /* make sure we initialize shinfo sequentially */ 209 shinfo = skb_shinfo(skb); 210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 211 atomic_set(&shinfo->dataref, 1); 212 213 skb_set_kcov_handle(skb, kcov_common_handle()); 214 } 215 216 /** 217 * __build_skb - build a network buffer 218 * @data: data buffer provided by caller 219 * @frag_size: size of data, or 0 if head was kmalloced 220 * 221 * Allocate a new &sk_buff. Caller provides space holding head and 222 * skb_shared_info. @data must have been allocated by kmalloc() only if 223 * @frag_size is 0, otherwise data should come from the page allocator 224 * or vmalloc() 225 * The return is the new skb buffer. 226 * On a failure the return is %NULL, and @data is not freed. 227 * Notes : 228 * Before IO, driver allocates only data buffer where NIC put incoming frame 229 * Driver should add room at head (NET_SKB_PAD) and 230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 232 * before giving packet to stack. 233 * RX rings only contains data buffers, not full skbs. 234 */ 235 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 236 { 237 struct sk_buff *skb; 238 239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 240 if (unlikely(!skb)) 241 return NULL; 242 243 memset(skb, 0, offsetof(struct sk_buff, tail)); 244 __build_skb_around(skb, data, frag_size); 245 246 return skb; 247 } 248 249 /* build_skb() is wrapper over __build_skb(), that specifically 250 * takes care of skb->head and skb->pfmemalloc 251 * This means that if @frag_size is not zero, then @data must be backed 252 * by a page fragment, not kmalloc() or vmalloc() 253 */ 254 struct sk_buff *build_skb(void *data, unsigned int frag_size) 255 { 256 struct sk_buff *skb = __build_skb(data, frag_size); 257 258 if (skb && frag_size) { 259 skb->head_frag = 1; 260 if (page_is_pfmemalloc(virt_to_head_page(data))) 261 skb->pfmemalloc = 1; 262 } 263 return skb; 264 } 265 EXPORT_SYMBOL(build_skb); 266 267 /** 268 * build_skb_around - build a network buffer around provided skb 269 * @skb: sk_buff provide by caller, must be memset cleared 270 * @data: data buffer provided by caller 271 * @frag_size: size of data, or 0 if head was kmalloced 272 */ 273 struct sk_buff *build_skb_around(struct sk_buff *skb, 274 void *data, unsigned int frag_size) 275 { 276 if (unlikely(!skb)) 277 return NULL; 278 279 __build_skb_around(skb, data, frag_size); 280 281 if (frag_size) { 282 skb->head_frag = 1; 283 if (page_is_pfmemalloc(virt_to_head_page(data))) 284 skb->pfmemalloc = 1; 285 } 286 return skb; 287 } 288 EXPORT_SYMBOL(build_skb_around); 289 290 /** 291 * __napi_build_skb - build a network buffer 292 * @data: data buffer provided by caller 293 * @frag_size: size of data, or 0 if head was kmalloced 294 * 295 * Version of __build_skb() that uses NAPI percpu caches to obtain 296 * skbuff_head instead of inplace allocation. 297 * 298 * Returns a new &sk_buff on success, %NULL on allocation failure. 299 */ 300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 301 { 302 struct sk_buff *skb; 303 304 skb = napi_skb_cache_get(); 305 if (unlikely(!skb)) 306 return NULL; 307 308 memset(skb, 0, offsetof(struct sk_buff, tail)); 309 __build_skb_around(skb, data, frag_size); 310 311 return skb; 312 } 313 314 /** 315 * napi_build_skb - build a network buffer 316 * @data: data buffer provided by caller 317 * @frag_size: size of data, or 0 if head was kmalloced 318 * 319 * Version of __napi_build_skb() that takes care of skb->head_frag 320 * and skb->pfmemalloc when the data is a page or page fragment. 321 * 322 * Returns a new &sk_buff on success, %NULL on allocation failure. 323 */ 324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 325 { 326 struct sk_buff *skb = __napi_build_skb(data, frag_size); 327 328 if (likely(skb) && frag_size) { 329 skb->head_frag = 1; 330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 331 } 332 333 return skb; 334 } 335 EXPORT_SYMBOL(napi_build_skb); 336 337 /* 338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 339 * the caller if emergency pfmemalloc reserves are being used. If it is and 340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 341 * may be used. Otherwise, the packet data may be discarded until enough 342 * memory is free 343 */ 344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node, 345 bool *pfmemalloc) 346 { 347 void *obj; 348 bool ret_pfmemalloc = false; 349 350 /* 351 * Try a regular allocation, when that fails and we're not entitled 352 * to the reserves, fail. 353 */ 354 obj = kmalloc_node_track_caller(size, 355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 356 node); 357 if (obj || !(gfp_pfmemalloc_allowed(flags))) 358 goto out; 359 360 /* Try again but now we are using pfmemalloc reserves */ 361 ret_pfmemalloc = true; 362 obj = kmalloc_node_track_caller(size, flags, node); 363 364 out: 365 if (pfmemalloc) 366 *pfmemalloc = ret_pfmemalloc; 367 368 return obj; 369 } 370 371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 372 * 'private' fields and also do memory statistics to find all the 373 * [BEEP] leaks. 374 * 375 */ 376 377 /** 378 * __alloc_skb - allocate a network buffer 379 * @size: size to allocate 380 * @gfp_mask: allocation mask 381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 382 * instead of head cache and allocate a cloned (child) skb. 383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 384 * allocations in case the data is required for writeback 385 * @node: numa node to allocate memory on 386 * 387 * Allocate a new &sk_buff. The returned buffer has no headroom and a 388 * tail room of at least size bytes. The object has a reference count 389 * of one. The return is the buffer. On a failure the return is %NULL. 390 * 391 * Buffers may only be allocated from interrupts using a @gfp_mask of 392 * %GFP_ATOMIC. 393 */ 394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 395 int flags, int node) 396 { 397 struct kmem_cache *cache; 398 struct sk_buff *skb; 399 unsigned int osize; 400 bool pfmemalloc; 401 u8 *data; 402 403 cache = (flags & SKB_ALLOC_FCLONE) 404 ? skbuff_fclone_cache : skbuff_head_cache; 405 406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 407 gfp_mask |= __GFP_MEMALLOC; 408 409 /* Get the HEAD */ 410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 411 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 412 skb = napi_skb_cache_get(); 413 else 414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 415 if (unlikely(!skb)) 416 return NULL; 417 prefetchw(skb); 418 419 /* We do our best to align skb_shared_info on a separate cache 420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 421 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 422 * Both skb->head and skb_shared_info are cache line aligned. 423 */ 424 size = SKB_DATA_ALIGN(size); 425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 427 if (unlikely(!data)) 428 goto nodata; 429 /* kmalloc(size) might give us more room than requested. 430 * Put skb_shared_info exactly at the end of allocated zone, 431 * to allow max possible filling before reallocation. 432 */ 433 osize = ksize(data); 434 size = SKB_WITH_OVERHEAD(osize); 435 prefetchw(data + size); 436 437 /* 438 * Only clear those fields we need to clear, not those that we will 439 * actually initialise below. Hence, don't put any more fields after 440 * the tail pointer in struct sk_buff! 441 */ 442 memset(skb, 0, offsetof(struct sk_buff, tail)); 443 __build_skb_around(skb, data, osize); 444 skb->pfmemalloc = pfmemalloc; 445 446 if (flags & SKB_ALLOC_FCLONE) { 447 struct sk_buff_fclones *fclones; 448 449 fclones = container_of(skb, struct sk_buff_fclones, skb1); 450 451 skb->fclone = SKB_FCLONE_ORIG; 452 refcount_set(&fclones->fclone_ref, 1); 453 454 fclones->skb2.fclone = SKB_FCLONE_CLONE; 455 } 456 457 return skb; 458 459 nodata: 460 kmem_cache_free(cache, skb); 461 return NULL; 462 } 463 EXPORT_SYMBOL(__alloc_skb); 464 465 /** 466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 467 * @dev: network device to receive on 468 * @len: length to allocate 469 * @gfp_mask: get_free_pages mask, passed to alloc_skb 470 * 471 * Allocate a new &sk_buff and assign it a usage count of one. The 472 * buffer has NET_SKB_PAD headroom built in. Users should allocate 473 * the headroom they think they need without accounting for the 474 * built in space. The built in space is used for optimisations. 475 * 476 * %NULL is returned if there is no free memory. 477 */ 478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 479 gfp_t gfp_mask) 480 { 481 struct page_frag_cache *nc; 482 struct sk_buff *skb; 483 bool pfmemalloc; 484 void *data; 485 486 len += NET_SKB_PAD; 487 488 /* If requested length is either too small or too big, 489 * we use kmalloc() for skb->head allocation. 490 */ 491 if (len <= SKB_WITH_OVERHEAD(1024) || 492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 495 if (!skb) 496 goto skb_fail; 497 goto skb_success; 498 } 499 500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 501 len = SKB_DATA_ALIGN(len); 502 503 if (sk_memalloc_socks()) 504 gfp_mask |= __GFP_MEMALLOC; 505 506 if (in_hardirq() || irqs_disabled()) { 507 nc = this_cpu_ptr(&netdev_alloc_cache); 508 data = page_frag_alloc(nc, len, gfp_mask); 509 pfmemalloc = nc->pfmemalloc; 510 } else { 511 local_bh_disable(); 512 nc = this_cpu_ptr(&napi_alloc_cache.page); 513 data = page_frag_alloc(nc, len, gfp_mask); 514 pfmemalloc = nc->pfmemalloc; 515 local_bh_enable(); 516 } 517 518 if (unlikely(!data)) 519 return NULL; 520 521 skb = __build_skb(data, len); 522 if (unlikely(!skb)) { 523 skb_free_frag(data); 524 return NULL; 525 } 526 527 if (pfmemalloc) 528 skb->pfmemalloc = 1; 529 skb->head_frag = 1; 530 531 skb_success: 532 skb_reserve(skb, NET_SKB_PAD); 533 skb->dev = dev; 534 535 skb_fail: 536 return skb; 537 } 538 EXPORT_SYMBOL(__netdev_alloc_skb); 539 540 /** 541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 542 * @napi: napi instance this buffer was allocated for 543 * @len: length to allocate 544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 545 * 546 * Allocate a new sk_buff for use in NAPI receive. This buffer will 547 * attempt to allocate the head from a special reserved region used 548 * only for NAPI Rx allocation. By doing this we can save several 549 * CPU cycles by avoiding having to disable and re-enable IRQs. 550 * 551 * %NULL is returned if there is no free memory. 552 */ 553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 554 gfp_t gfp_mask) 555 { 556 struct napi_alloc_cache *nc; 557 struct sk_buff *skb; 558 void *data; 559 560 len += NET_SKB_PAD + NET_IP_ALIGN; 561 562 /* If requested length is either too small or too big, 563 * we use kmalloc() for skb->head allocation. 564 */ 565 if (len <= SKB_WITH_OVERHEAD(1024) || 566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 569 NUMA_NO_NODE); 570 if (!skb) 571 goto skb_fail; 572 goto skb_success; 573 } 574 575 nc = this_cpu_ptr(&napi_alloc_cache); 576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 577 len = SKB_DATA_ALIGN(len); 578 579 if (sk_memalloc_socks()) 580 gfp_mask |= __GFP_MEMALLOC; 581 582 data = page_frag_alloc(&nc->page, len, gfp_mask); 583 if (unlikely(!data)) 584 return NULL; 585 586 skb = __napi_build_skb(data, len); 587 if (unlikely(!skb)) { 588 skb_free_frag(data); 589 return NULL; 590 } 591 592 if (nc->page.pfmemalloc) 593 skb->pfmemalloc = 1; 594 skb->head_frag = 1; 595 596 skb_success: 597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 598 skb->dev = napi->dev; 599 600 skb_fail: 601 return skb; 602 } 603 EXPORT_SYMBOL(__napi_alloc_skb); 604 605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 606 int size, unsigned int truesize) 607 { 608 skb_fill_page_desc(skb, i, page, off, size); 609 skb->len += size; 610 skb->data_len += size; 611 skb->truesize += truesize; 612 } 613 EXPORT_SYMBOL(skb_add_rx_frag); 614 615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 616 unsigned int truesize) 617 { 618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 619 620 skb_frag_size_add(frag, size); 621 skb->len += size; 622 skb->data_len += size; 623 skb->truesize += truesize; 624 } 625 EXPORT_SYMBOL(skb_coalesce_rx_frag); 626 627 static void skb_drop_list(struct sk_buff **listp) 628 { 629 kfree_skb_list(*listp); 630 *listp = NULL; 631 } 632 633 static inline void skb_drop_fraglist(struct sk_buff *skb) 634 { 635 skb_drop_list(&skb_shinfo(skb)->frag_list); 636 } 637 638 static void skb_clone_fraglist(struct sk_buff *skb) 639 { 640 struct sk_buff *list; 641 642 skb_walk_frags(skb, list) 643 skb_get(list); 644 } 645 646 static void skb_free_head(struct sk_buff *skb) 647 { 648 unsigned char *head = skb->head; 649 650 if (skb->head_frag) { 651 if (skb_pp_recycle(skb, head)) 652 return; 653 skb_free_frag(head); 654 } else { 655 kfree(head); 656 } 657 } 658 659 static void skb_release_data(struct sk_buff *skb) 660 { 661 struct skb_shared_info *shinfo = skb_shinfo(skb); 662 int i; 663 664 if (skb->cloned && 665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 666 &shinfo->dataref)) 667 goto exit; 668 669 skb_zcopy_clear(skb, true); 670 671 for (i = 0; i < shinfo->nr_frags; i++) 672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 673 674 if (shinfo->frag_list) 675 kfree_skb_list(shinfo->frag_list); 676 677 skb_free_head(skb); 678 exit: 679 /* When we clone an SKB we copy the reycling bit. The pp_recycle 680 * bit is only set on the head though, so in order to avoid races 681 * while trying to recycle fragments on __skb_frag_unref() we need 682 * to make one SKB responsible for triggering the recycle path. 683 * So disable the recycling bit if an SKB is cloned and we have 684 * additional references to the fragmented part of the SKB. 685 * Eventually the last SKB will have the recycling bit set and it's 686 * dataref set to 0, which will trigger the recycling 687 */ 688 skb->pp_recycle = 0; 689 } 690 691 /* 692 * Free an skbuff by memory without cleaning the state. 693 */ 694 static void kfree_skbmem(struct sk_buff *skb) 695 { 696 struct sk_buff_fclones *fclones; 697 698 switch (skb->fclone) { 699 case SKB_FCLONE_UNAVAILABLE: 700 kmem_cache_free(skbuff_head_cache, skb); 701 return; 702 703 case SKB_FCLONE_ORIG: 704 fclones = container_of(skb, struct sk_buff_fclones, skb1); 705 706 /* We usually free the clone (TX completion) before original skb 707 * This test would have no chance to be true for the clone, 708 * while here, branch prediction will be good. 709 */ 710 if (refcount_read(&fclones->fclone_ref) == 1) 711 goto fastpath; 712 break; 713 714 default: /* SKB_FCLONE_CLONE */ 715 fclones = container_of(skb, struct sk_buff_fclones, skb2); 716 break; 717 } 718 if (!refcount_dec_and_test(&fclones->fclone_ref)) 719 return; 720 fastpath: 721 kmem_cache_free(skbuff_fclone_cache, fclones); 722 } 723 724 void skb_release_head_state(struct sk_buff *skb) 725 { 726 skb_dst_drop(skb); 727 if (skb->destructor) { 728 WARN_ON(in_hardirq()); 729 skb->destructor(skb); 730 } 731 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 732 nf_conntrack_put(skb_nfct(skb)); 733 #endif 734 skb_ext_put(skb); 735 } 736 737 /* Free everything but the sk_buff shell. */ 738 static void skb_release_all(struct sk_buff *skb) 739 { 740 skb_release_head_state(skb); 741 if (likely(skb->head)) 742 skb_release_data(skb); 743 } 744 745 /** 746 * __kfree_skb - private function 747 * @skb: buffer 748 * 749 * Free an sk_buff. Release anything attached to the buffer. 750 * Clean the state. This is an internal helper function. Users should 751 * always call kfree_skb 752 */ 753 754 void __kfree_skb(struct sk_buff *skb) 755 { 756 skb_release_all(skb); 757 kfree_skbmem(skb); 758 } 759 EXPORT_SYMBOL(__kfree_skb); 760 761 /** 762 * kfree_skb_reason - free an sk_buff with special reason 763 * @skb: buffer to free 764 * @reason: reason why this skb is dropped 765 * 766 * Drop a reference to the buffer and free it if the usage count has 767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 768 * tracepoint. 769 */ 770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 771 { 772 if (!skb_unref(skb)) 773 return; 774 775 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX); 776 777 trace_kfree_skb(skb, __builtin_return_address(0), reason); 778 __kfree_skb(skb); 779 } 780 EXPORT_SYMBOL(kfree_skb_reason); 781 782 void kfree_skb_list_reason(struct sk_buff *segs, 783 enum skb_drop_reason reason) 784 { 785 while (segs) { 786 struct sk_buff *next = segs->next; 787 788 kfree_skb_reason(segs, reason); 789 segs = next; 790 } 791 } 792 EXPORT_SYMBOL(kfree_skb_list_reason); 793 794 /* Dump skb information and contents. 795 * 796 * Must only be called from net_ratelimit()-ed paths. 797 * 798 * Dumps whole packets if full_pkt, only headers otherwise. 799 */ 800 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 801 { 802 struct skb_shared_info *sh = skb_shinfo(skb); 803 struct net_device *dev = skb->dev; 804 struct sock *sk = skb->sk; 805 struct sk_buff *list_skb; 806 bool has_mac, has_trans; 807 int headroom, tailroom; 808 int i, len, seg_len; 809 810 if (full_pkt) 811 len = skb->len; 812 else 813 len = min_t(int, skb->len, MAX_HEADER + 128); 814 815 headroom = skb_headroom(skb); 816 tailroom = skb_tailroom(skb); 817 818 has_mac = skb_mac_header_was_set(skb); 819 has_trans = skb_transport_header_was_set(skb); 820 821 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 822 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 823 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 824 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 825 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 826 level, skb->len, headroom, skb_headlen(skb), tailroom, 827 has_mac ? skb->mac_header : -1, 828 has_mac ? skb_mac_header_len(skb) : -1, 829 skb->network_header, 830 has_trans ? skb_network_header_len(skb) : -1, 831 has_trans ? skb->transport_header : -1, 832 sh->tx_flags, sh->nr_frags, 833 sh->gso_size, sh->gso_type, sh->gso_segs, 834 skb->csum, skb->ip_summed, skb->csum_complete_sw, 835 skb->csum_valid, skb->csum_level, 836 skb->hash, skb->sw_hash, skb->l4_hash, 837 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 838 839 if (dev) 840 printk("%sdev name=%s feat=%pNF\n", 841 level, dev->name, &dev->features); 842 if (sk) 843 printk("%ssk family=%hu type=%u proto=%u\n", 844 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 845 846 if (full_pkt && headroom) 847 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 848 16, 1, skb->head, headroom, false); 849 850 seg_len = min_t(int, skb_headlen(skb), len); 851 if (seg_len) 852 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 853 16, 1, skb->data, seg_len, false); 854 len -= seg_len; 855 856 if (full_pkt && tailroom) 857 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 858 16, 1, skb_tail_pointer(skb), tailroom, false); 859 860 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 861 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 862 u32 p_off, p_len, copied; 863 struct page *p; 864 u8 *vaddr; 865 866 skb_frag_foreach_page(frag, skb_frag_off(frag), 867 skb_frag_size(frag), p, p_off, p_len, 868 copied) { 869 seg_len = min_t(int, p_len, len); 870 vaddr = kmap_atomic(p); 871 print_hex_dump(level, "skb frag: ", 872 DUMP_PREFIX_OFFSET, 873 16, 1, vaddr + p_off, seg_len, false); 874 kunmap_atomic(vaddr); 875 len -= seg_len; 876 if (!len) 877 break; 878 } 879 } 880 881 if (full_pkt && skb_has_frag_list(skb)) { 882 printk("skb fraglist:\n"); 883 skb_walk_frags(skb, list_skb) 884 skb_dump(level, list_skb, true); 885 } 886 } 887 EXPORT_SYMBOL(skb_dump); 888 889 /** 890 * skb_tx_error - report an sk_buff xmit error 891 * @skb: buffer that triggered an error 892 * 893 * Report xmit error if a device callback is tracking this skb. 894 * skb must be freed afterwards. 895 */ 896 void skb_tx_error(struct sk_buff *skb) 897 { 898 skb_zcopy_clear(skb, true); 899 } 900 EXPORT_SYMBOL(skb_tx_error); 901 902 #ifdef CONFIG_TRACEPOINTS 903 /** 904 * consume_skb - free an skbuff 905 * @skb: buffer to free 906 * 907 * Drop a ref to the buffer and free it if the usage count has hit zero 908 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 909 * is being dropped after a failure and notes that 910 */ 911 void consume_skb(struct sk_buff *skb) 912 { 913 if (!skb_unref(skb)) 914 return; 915 916 trace_consume_skb(skb); 917 __kfree_skb(skb); 918 } 919 EXPORT_SYMBOL(consume_skb); 920 #endif 921 922 /** 923 * __consume_stateless_skb - free an skbuff, assuming it is stateless 924 * @skb: buffer to free 925 * 926 * Alike consume_skb(), but this variant assumes that this is the last 927 * skb reference and all the head states have been already dropped 928 */ 929 void __consume_stateless_skb(struct sk_buff *skb) 930 { 931 trace_consume_skb(skb); 932 skb_release_data(skb); 933 kfree_skbmem(skb); 934 } 935 936 static void napi_skb_cache_put(struct sk_buff *skb) 937 { 938 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 939 u32 i; 940 941 kasan_poison_object_data(skbuff_head_cache, skb); 942 nc->skb_cache[nc->skb_count++] = skb; 943 944 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 945 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 946 kasan_unpoison_object_data(skbuff_head_cache, 947 nc->skb_cache[i]); 948 949 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, 950 nc->skb_cache + NAPI_SKB_CACHE_HALF); 951 nc->skb_count = NAPI_SKB_CACHE_HALF; 952 } 953 } 954 955 void __kfree_skb_defer(struct sk_buff *skb) 956 { 957 skb_release_all(skb); 958 napi_skb_cache_put(skb); 959 } 960 961 void napi_skb_free_stolen_head(struct sk_buff *skb) 962 { 963 if (unlikely(skb->slow_gro)) { 964 nf_reset_ct(skb); 965 skb_dst_drop(skb); 966 skb_ext_put(skb); 967 skb_orphan(skb); 968 skb->slow_gro = 0; 969 } 970 napi_skb_cache_put(skb); 971 } 972 973 void napi_consume_skb(struct sk_buff *skb, int budget) 974 { 975 /* Zero budget indicate non-NAPI context called us, like netpoll */ 976 if (unlikely(!budget)) { 977 dev_consume_skb_any(skb); 978 return; 979 } 980 981 lockdep_assert_in_softirq(); 982 983 if (!skb_unref(skb)) 984 return; 985 986 /* if reaching here SKB is ready to free */ 987 trace_consume_skb(skb); 988 989 /* if SKB is a clone, don't handle this case */ 990 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 991 __kfree_skb(skb); 992 return; 993 } 994 995 skb_release_all(skb); 996 napi_skb_cache_put(skb); 997 } 998 EXPORT_SYMBOL(napi_consume_skb); 999 1000 /* Make sure a field is contained by headers group */ 1001 #define CHECK_SKB_FIELD(field) \ 1002 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1003 offsetof(struct sk_buff, headers.field)); \ 1004 1005 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1006 { 1007 new->tstamp = old->tstamp; 1008 /* We do not copy old->sk */ 1009 new->dev = old->dev; 1010 memcpy(new->cb, old->cb, sizeof(old->cb)); 1011 skb_dst_copy(new, old); 1012 __skb_ext_copy(new, old); 1013 __nf_copy(new, old, false); 1014 1015 /* Note : this field could be in the headers group. 1016 * It is not yet because we do not want to have a 16 bit hole 1017 */ 1018 new->queue_mapping = old->queue_mapping; 1019 1020 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1021 CHECK_SKB_FIELD(protocol); 1022 CHECK_SKB_FIELD(csum); 1023 CHECK_SKB_FIELD(hash); 1024 CHECK_SKB_FIELD(priority); 1025 CHECK_SKB_FIELD(skb_iif); 1026 CHECK_SKB_FIELD(vlan_proto); 1027 CHECK_SKB_FIELD(vlan_tci); 1028 CHECK_SKB_FIELD(transport_header); 1029 CHECK_SKB_FIELD(network_header); 1030 CHECK_SKB_FIELD(mac_header); 1031 CHECK_SKB_FIELD(inner_protocol); 1032 CHECK_SKB_FIELD(inner_transport_header); 1033 CHECK_SKB_FIELD(inner_network_header); 1034 CHECK_SKB_FIELD(inner_mac_header); 1035 CHECK_SKB_FIELD(mark); 1036 #ifdef CONFIG_NETWORK_SECMARK 1037 CHECK_SKB_FIELD(secmark); 1038 #endif 1039 #ifdef CONFIG_NET_RX_BUSY_POLL 1040 CHECK_SKB_FIELD(napi_id); 1041 #endif 1042 CHECK_SKB_FIELD(alloc_cpu); 1043 #ifdef CONFIG_XPS 1044 CHECK_SKB_FIELD(sender_cpu); 1045 #endif 1046 #ifdef CONFIG_NET_SCHED 1047 CHECK_SKB_FIELD(tc_index); 1048 #endif 1049 1050 } 1051 1052 /* 1053 * You should not add any new code to this function. Add it to 1054 * __copy_skb_header above instead. 1055 */ 1056 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1057 { 1058 #define C(x) n->x = skb->x 1059 1060 n->next = n->prev = NULL; 1061 n->sk = NULL; 1062 __copy_skb_header(n, skb); 1063 1064 C(len); 1065 C(data_len); 1066 C(mac_len); 1067 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1068 n->cloned = 1; 1069 n->nohdr = 0; 1070 n->peeked = 0; 1071 C(pfmemalloc); 1072 C(pp_recycle); 1073 n->destructor = NULL; 1074 C(tail); 1075 C(end); 1076 C(head); 1077 C(head_frag); 1078 C(data); 1079 C(truesize); 1080 refcount_set(&n->users, 1); 1081 1082 atomic_inc(&(skb_shinfo(skb)->dataref)); 1083 skb->cloned = 1; 1084 1085 return n; 1086 #undef C 1087 } 1088 1089 /** 1090 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1091 * @first: first sk_buff of the msg 1092 */ 1093 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1094 { 1095 struct sk_buff *n; 1096 1097 n = alloc_skb(0, GFP_ATOMIC); 1098 if (!n) 1099 return NULL; 1100 1101 n->len = first->len; 1102 n->data_len = first->len; 1103 n->truesize = first->truesize; 1104 1105 skb_shinfo(n)->frag_list = first; 1106 1107 __copy_skb_header(n, first); 1108 n->destructor = NULL; 1109 1110 return n; 1111 } 1112 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1113 1114 /** 1115 * skb_morph - morph one skb into another 1116 * @dst: the skb to receive the contents 1117 * @src: the skb to supply the contents 1118 * 1119 * This is identical to skb_clone except that the target skb is 1120 * supplied by the user. 1121 * 1122 * The target skb is returned upon exit. 1123 */ 1124 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1125 { 1126 skb_release_all(dst); 1127 return __skb_clone(dst, src); 1128 } 1129 EXPORT_SYMBOL_GPL(skb_morph); 1130 1131 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1132 { 1133 unsigned long max_pg, num_pg, new_pg, old_pg; 1134 struct user_struct *user; 1135 1136 if (capable(CAP_IPC_LOCK) || !size) 1137 return 0; 1138 1139 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1140 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 1141 user = mmp->user ? : current_user(); 1142 1143 do { 1144 old_pg = atomic_long_read(&user->locked_vm); 1145 new_pg = old_pg + num_pg; 1146 if (new_pg > max_pg) 1147 return -ENOBUFS; 1148 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != 1149 old_pg); 1150 1151 if (!mmp->user) { 1152 mmp->user = get_uid(user); 1153 mmp->num_pg = num_pg; 1154 } else { 1155 mmp->num_pg += num_pg; 1156 } 1157 1158 return 0; 1159 } 1160 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1161 1162 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1163 { 1164 if (mmp->user) { 1165 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1166 free_uid(mmp->user); 1167 } 1168 } 1169 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1170 1171 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1172 { 1173 struct ubuf_info *uarg; 1174 struct sk_buff *skb; 1175 1176 WARN_ON_ONCE(!in_task()); 1177 1178 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1179 if (!skb) 1180 return NULL; 1181 1182 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1183 uarg = (void *)skb->cb; 1184 uarg->mmp.user = NULL; 1185 1186 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1187 kfree_skb(skb); 1188 return NULL; 1189 } 1190 1191 uarg->callback = msg_zerocopy_callback; 1192 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1193 uarg->len = 1; 1194 uarg->bytelen = size; 1195 uarg->zerocopy = 1; 1196 uarg->flags = SKBFL_ZEROCOPY_FRAG; 1197 refcount_set(&uarg->refcnt, 1); 1198 sock_hold(sk); 1199 1200 return uarg; 1201 } 1202 1203 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) 1204 { 1205 return container_of((void *)uarg, struct sk_buff, cb); 1206 } 1207 1208 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1209 struct ubuf_info *uarg) 1210 { 1211 if (uarg) { 1212 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1213 u32 bytelen, next; 1214 1215 /* realloc only when socket is locked (TCP, UDP cork), 1216 * so uarg->len and sk_zckey access is serialized 1217 */ 1218 if (!sock_owned_by_user(sk)) { 1219 WARN_ON_ONCE(1); 1220 return NULL; 1221 } 1222 1223 bytelen = uarg->bytelen + size; 1224 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1225 /* TCP can create new skb to attach new uarg */ 1226 if (sk->sk_type == SOCK_STREAM) 1227 goto new_alloc; 1228 return NULL; 1229 } 1230 1231 next = (u32)atomic_read(&sk->sk_zckey); 1232 if ((u32)(uarg->id + uarg->len) == next) { 1233 if (mm_account_pinned_pages(&uarg->mmp, size)) 1234 return NULL; 1235 uarg->len++; 1236 uarg->bytelen = bytelen; 1237 atomic_set(&sk->sk_zckey, ++next); 1238 1239 /* no extra ref when appending to datagram (MSG_MORE) */ 1240 if (sk->sk_type == SOCK_STREAM) 1241 net_zcopy_get(uarg); 1242 1243 return uarg; 1244 } 1245 } 1246 1247 new_alloc: 1248 return msg_zerocopy_alloc(sk, size); 1249 } 1250 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1251 1252 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1253 { 1254 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1255 u32 old_lo, old_hi; 1256 u64 sum_len; 1257 1258 old_lo = serr->ee.ee_info; 1259 old_hi = serr->ee.ee_data; 1260 sum_len = old_hi - old_lo + 1ULL + len; 1261 1262 if (sum_len >= (1ULL << 32)) 1263 return false; 1264 1265 if (lo != old_hi + 1) 1266 return false; 1267 1268 serr->ee.ee_data += len; 1269 return true; 1270 } 1271 1272 static void __msg_zerocopy_callback(struct ubuf_info *uarg) 1273 { 1274 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1275 struct sock_exterr_skb *serr; 1276 struct sock *sk = skb->sk; 1277 struct sk_buff_head *q; 1278 unsigned long flags; 1279 bool is_zerocopy; 1280 u32 lo, hi; 1281 u16 len; 1282 1283 mm_unaccount_pinned_pages(&uarg->mmp); 1284 1285 /* if !len, there was only 1 call, and it was aborted 1286 * so do not queue a completion notification 1287 */ 1288 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1289 goto release; 1290 1291 len = uarg->len; 1292 lo = uarg->id; 1293 hi = uarg->id + len - 1; 1294 is_zerocopy = uarg->zerocopy; 1295 1296 serr = SKB_EXT_ERR(skb); 1297 memset(serr, 0, sizeof(*serr)); 1298 serr->ee.ee_errno = 0; 1299 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1300 serr->ee.ee_data = hi; 1301 serr->ee.ee_info = lo; 1302 if (!is_zerocopy) 1303 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1304 1305 q = &sk->sk_error_queue; 1306 spin_lock_irqsave(&q->lock, flags); 1307 tail = skb_peek_tail(q); 1308 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1309 !skb_zerocopy_notify_extend(tail, lo, len)) { 1310 __skb_queue_tail(q, skb); 1311 skb = NULL; 1312 } 1313 spin_unlock_irqrestore(&q->lock, flags); 1314 1315 sk_error_report(sk); 1316 1317 release: 1318 consume_skb(skb); 1319 sock_put(sk); 1320 } 1321 1322 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1323 bool success) 1324 { 1325 uarg->zerocopy = uarg->zerocopy & success; 1326 1327 if (refcount_dec_and_test(&uarg->refcnt)) 1328 __msg_zerocopy_callback(uarg); 1329 } 1330 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1331 1332 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1333 { 1334 struct sock *sk = skb_from_uarg(uarg)->sk; 1335 1336 atomic_dec(&sk->sk_zckey); 1337 uarg->len--; 1338 1339 if (have_uref) 1340 msg_zerocopy_callback(NULL, uarg, true); 1341 } 1342 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1343 1344 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1345 struct msghdr *msg, int len, 1346 struct ubuf_info *uarg) 1347 { 1348 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1349 int err, orig_len = skb->len; 1350 1351 /* An skb can only point to one uarg. This edge case happens when 1352 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1353 */ 1354 if (orig_uarg && uarg != orig_uarg) 1355 return -EEXIST; 1356 1357 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); 1358 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1359 struct sock *save_sk = skb->sk; 1360 1361 /* Streams do not free skb on error. Reset to prev state. */ 1362 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1363 skb->sk = sk; 1364 ___pskb_trim(skb, orig_len); 1365 skb->sk = save_sk; 1366 return err; 1367 } 1368 1369 skb_zcopy_set(skb, uarg, NULL); 1370 return skb->len - orig_len; 1371 } 1372 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1373 1374 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1375 gfp_t gfp_mask) 1376 { 1377 if (skb_zcopy(orig)) { 1378 if (skb_zcopy(nskb)) { 1379 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1380 if (!gfp_mask) { 1381 WARN_ON_ONCE(1); 1382 return -ENOMEM; 1383 } 1384 if (skb_uarg(nskb) == skb_uarg(orig)) 1385 return 0; 1386 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1387 return -EIO; 1388 } 1389 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1390 } 1391 return 0; 1392 } 1393 1394 /** 1395 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1396 * @skb: the skb to modify 1397 * @gfp_mask: allocation priority 1398 * 1399 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1400 * It will copy all frags into kernel and drop the reference 1401 * to userspace pages. 1402 * 1403 * If this function is called from an interrupt gfp_mask() must be 1404 * %GFP_ATOMIC. 1405 * 1406 * Returns 0 on success or a negative error code on failure 1407 * to allocate kernel memory to copy to. 1408 */ 1409 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1410 { 1411 int num_frags = skb_shinfo(skb)->nr_frags; 1412 struct page *page, *head = NULL; 1413 int i, new_frags; 1414 u32 d_off; 1415 1416 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1417 return -EINVAL; 1418 1419 if (!num_frags) 1420 goto release; 1421 1422 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1423 for (i = 0; i < new_frags; i++) { 1424 page = alloc_page(gfp_mask); 1425 if (!page) { 1426 while (head) { 1427 struct page *next = (struct page *)page_private(head); 1428 put_page(head); 1429 head = next; 1430 } 1431 return -ENOMEM; 1432 } 1433 set_page_private(page, (unsigned long)head); 1434 head = page; 1435 } 1436 1437 page = head; 1438 d_off = 0; 1439 for (i = 0; i < num_frags; i++) { 1440 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1441 u32 p_off, p_len, copied; 1442 struct page *p; 1443 u8 *vaddr; 1444 1445 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1446 p, p_off, p_len, copied) { 1447 u32 copy, done = 0; 1448 vaddr = kmap_atomic(p); 1449 1450 while (done < p_len) { 1451 if (d_off == PAGE_SIZE) { 1452 d_off = 0; 1453 page = (struct page *)page_private(page); 1454 } 1455 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); 1456 memcpy(page_address(page) + d_off, 1457 vaddr + p_off + done, copy); 1458 done += copy; 1459 d_off += copy; 1460 } 1461 kunmap_atomic(vaddr); 1462 } 1463 } 1464 1465 /* skb frags release userspace buffers */ 1466 for (i = 0; i < num_frags; i++) 1467 skb_frag_unref(skb, i); 1468 1469 /* skb frags point to kernel buffers */ 1470 for (i = 0; i < new_frags - 1; i++) { 1471 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); 1472 head = (struct page *)page_private(head); 1473 } 1474 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1475 skb_shinfo(skb)->nr_frags = new_frags; 1476 1477 release: 1478 skb_zcopy_clear(skb, false); 1479 return 0; 1480 } 1481 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1482 1483 /** 1484 * skb_clone - duplicate an sk_buff 1485 * @skb: buffer to clone 1486 * @gfp_mask: allocation priority 1487 * 1488 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1489 * copies share the same packet data but not structure. The new 1490 * buffer has a reference count of 1. If the allocation fails the 1491 * function returns %NULL otherwise the new buffer is returned. 1492 * 1493 * If this function is called from an interrupt gfp_mask() must be 1494 * %GFP_ATOMIC. 1495 */ 1496 1497 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1498 { 1499 struct sk_buff_fclones *fclones = container_of(skb, 1500 struct sk_buff_fclones, 1501 skb1); 1502 struct sk_buff *n; 1503 1504 if (skb_orphan_frags(skb, gfp_mask)) 1505 return NULL; 1506 1507 if (skb->fclone == SKB_FCLONE_ORIG && 1508 refcount_read(&fclones->fclone_ref) == 1) { 1509 n = &fclones->skb2; 1510 refcount_set(&fclones->fclone_ref, 2); 1511 } else { 1512 if (skb_pfmemalloc(skb)) 1513 gfp_mask |= __GFP_MEMALLOC; 1514 1515 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1516 if (!n) 1517 return NULL; 1518 1519 n->fclone = SKB_FCLONE_UNAVAILABLE; 1520 } 1521 1522 return __skb_clone(n, skb); 1523 } 1524 EXPORT_SYMBOL(skb_clone); 1525 1526 void skb_headers_offset_update(struct sk_buff *skb, int off) 1527 { 1528 /* Only adjust this if it actually is csum_start rather than csum */ 1529 if (skb->ip_summed == CHECKSUM_PARTIAL) 1530 skb->csum_start += off; 1531 /* {transport,network,mac}_header and tail are relative to skb->head */ 1532 skb->transport_header += off; 1533 skb->network_header += off; 1534 if (skb_mac_header_was_set(skb)) 1535 skb->mac_header += off; 1536 skb->inner_transport_header += off; 1537 skb->inner_network_header += off; 1538 skb->inner_mac_header += off; 1539 } 1540 EXPORT_SYMBOL(skb_headers_offset_update); 1541 1542 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1543 { 1544 __copy_skb_header(new, old); 1545 1546 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1547 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1548 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1549 } 1550 EXPORT_SYMBOL(skb_copy_header); 1551 1552 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1553 { 1554 if (skb_pfmemalloc(skb)) 1555 return SKB_ALLOC_RX; 1556 return 0; 1557 } 1558 1559 /** 1560 * skb_copy - create private copy of an sk_buff 1561 * @skb: buffer to copy 1562 * @gfp_mask: allocation priority 1563 * 1564 * Make a copy of both an &sk_buff and its data. This is used when the 1565 * caller wishes to modify the data and needs a private copy of the 1566 * data to alter. Returns %NULL on failure or the pointer to the buffer 1567 * on success. The returned buffer has a reference count of 1. 1568 * 1569 * As by-product this function converts non-linear &sk_buff to linear 1570 * one, so that &sk_buff becomes completely private and caller is allowed 1571 * to modify all the data of returned buffer. This means that this 1572 * function is not recommended for use in circumstances when only 1573 * header is going to be modified. Use pskb_copy() instead. 1574 */ 1575 1576 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1577 { 1578 int headerlen = skb_headroom(skb); 1579 unsigned int size = skb_end_offset(skb) + skb->data_len; 1580 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1581 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1582 1583 if (!n) 1584 return NULL; 1585 1586 /* Set the data pointer */ 1587 skb_reserve(n, headerlen); 1588 /* Set the tail pointer and length */ 1589 skb_put(n, skb->len); 1590 1591 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1592 1593 skb_copy_header(n, skb); 1594 return n; 1595 } 1596 EXPORT_SYMBOL(skb_copy); 1597 1598 /** 1599 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1600 * @skb: buffer to copy 1601 * @headroom: headroom of new skb 1602 * @gfp_mask: allocation priority 1603 * @fclone: if true allocate the copy of the skb from the fclone 1604 * cache instead of the head cache; it is recommended to set this 1605 * to true for the cases where the copy will likely be cloned 1606 * 1607 * Make a copy of both an &sk_buff and part of its data, located 1608 * in header. Fragmented data remain shared. This is used when 1609 * the caller wishes to modify only header of &sk_buff and needs 1610 * private copy of the header to alter. Returns %NULL on failure 1611 * or the pointer to the buffer on success. 1612 * The returned buffer has a reference count of 1. 1613 */ 1614 1615 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1616 gfp_t gfp_mask, bool fclone) 1617 { 1618 unsigned int size = skb_headlen(skb) + headroom; 1619 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1620 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1621 1622 if (!n) 1623 goto out; 1624 1625 /* Set the data pointer */ 1626 skb_reserve(n, headroom); 1627 /* Set the tail pointer and length */ 1628 skb_put(n, skb_headlen(skb)); 1629 /* Copy the bytes */ 1630 skb_copy_from_linear_data(skb, n->data, n->len); 1631 1632 n->truesize += skb->data_len; 1633 n->data_len = skb->data_len; 1634 n->len = skb->len; 1635 1636 if (skb_shinfo(skb)->nr_frags) { 1637 int i; 1638 1639 if (skb_orphan_frags(skb, gfp_mask) || 1640 skb_zerocopy_clone(n, skb, gfp_mask)) { 1641 kfree_skb(n); 1642 n = NULL; 1643 goto out; 1644 } 1645 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1646 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1647 skb_frag_ref(skb, i); 1648 } 1649 skb_shinfo(n)->nr_frags = i; 1650 } 1651 1652 if (skb_has_frag_list(skb)) { 1653 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1654 skb_clone_fraglist(n); 1655 } 1656 1657 skb_copy_header(n, skb); 1658 out: 1659 return n; 1660 } 1661 EXPORT_SYMBOL(__pskb_copy_fclone); 1662 1663 /** 1664 * pskb_expand_head - reallocate header of &sk_buff 1665 * @skb: buffer to reallocate 1666 * @nhead: room to add at head 1667 * @ntail: room to add at tail 1668 * @gfp_mask: allocation priority 1669 * 1670 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1671 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1672 * reference count of 1. Returns zero in the case of success or error, 1673 * if expansion failed. In the last case, &sk_buff is not changed. 1674 * 1675 * All the pointers pointing into skb header may change and must be 1676 * reloaded after call to this function. 1677 */ 1678 1679 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1680 gfp_t gfp_mask) 1681 { 1682 int i, osize = skb_end_offset(skb); 1683 int size = osize + nhead + ntail; 1684 long off; 1685 u8 *data; 1686 1687 BUG_ON(nhead < 0); 1688 1689 BUG_ON(skb_shared(skb)); 1690 1691 size = SKB_DATA_ALIGN(size); 1692 1693 if (skb_pfmemalloc(skb)) 1694 gfp_mask |= __GFP_MEMALLOC; 1695 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1696 gfp_mask, NUMA_NO_NODE, NULL); 1697 if (!data) 1698 goto nodata; 1699 size = SKB_WITH_OVERHEAD(ksize(data)); 1700 1701 /* Copy only real data... and, alas, header. This should be 1702 * optimized for the cases when header is void. 1703 */ 1704 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1705 1706 memcpy((struct skb_shared_info *)(data + size), 1707 skb_shinfo(skb), 1708 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1709 1710 /* 1711 * if shinfo is shared we must drop the old head gracefully, but if it 1712 * is not we can just drop the old head and let the existing refcount 1713 * be since all we did is relocate the values 1714 */ 1715 if (skb_cloned(skb)) { 1716 if (skb_orphan_frags(skb, gfp_mask)) 1717 goto nofrags; 1718 if (skb_zcopy(skb)) 1719 refcount_inc(&skb_uarg(skb)->refcnt); 1720 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1721 skb_frag_ref(skb, i); 1722 1723 if (skb_has_frag_list(skb)) 1724 skb_clone_fraglist(skb); 1725 1726 skb_release_data(skb); 1727 } else { 1728 skb_free_head(skb); 1729 } 1730 off = (data + nhead) - skb->head; 1731 1732 skb->head = data; 1733 skb->head_frag = 0; 1734 skb->data += off; 1735 1736 skb_set_end_offset(skb, size); 1737 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1738 off = nhead; 1739 #endif 1740 skb->tail += off; 1741 skb_headers_offset_update(skb, nhead); 1742 skb->cloned = 0; 1743 skb->hdr_len = 0; 1744 skb->nohdr = 0; 1745 atomic_set(&skb_shinfo(skb)->dataref, 1); 1746 1747 skb_metadata_clear(skb); 1748 1749 /* It is not generally safe to change skb->truesize. 1750 * For the moment, we really care of rx path, or 1751 * when skb is orphaned (not attached to a socket). 1752 */ 1753 if (!skb->sk || skb->destructor == sock_edemux) 1754 skb->truesize += size - osize; 1755 1756 return 0; 1757 1758 nofrags: 1759 kfree(data); 1760 nodata: 1761 return -ENOMEM; 1762 } 1763 EXPORT_SYMBOL(pskb_expand_head); 1764 1765 /* Make private copy of skb with writable head and some headroom */ 1766 1767 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1768 { 1769 struct sk_buff *skb2; 1770 int delta = headroom - skb_headroom(skb); 1771 1772 if (delta <= 0) 1773 skb2 = pskb_copy(skb, GFP_ATOMIC); 1774 else { 1775 skb2 = skb_clone(skb, GFP_ATOMIC); 1776 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1777 GFP_ATOMIC)) { 1778 kfree_skb(skb2); 1779 skb2 = NULL; 1780 } 1781 } 1782 return skb2; 1783 } 1784 EXPORT_SYMBOL(skb_realloc_headroom); 1785 1786 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1787 { 1788 unsigned int saved_end_offset, saved_truesize; 1789 struct skb_shared_info *shinfo; 1790 int res; 1791 1792 saved_end_offset = skb_end_offset(skb); 1793 saved_truesize = skb->truesize; 1794 1795 res = pskb_expand_head(skb, 0, 0, pri); 1796 if (res) 1797 return res; 1798 1799 skb->truesize = saved_truesize; 1800 1801 if (likely(skb_end_offset(skb) == saved_end_offset)) 1802 return 0; 1803 1804 shinfo = skb_shinfo(skb); 1805 1806 /* We are about to change back skb->end, 1807 * we need to move skb_shinfo() to its new location. 1808 */ 1809 memmove(skb->head + saved_end_offset, 1810 shinfo, 1811 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 1812 1813 skb_set_end_offset(skb, saved_end_offset); 1814 1815 return 0; 1816 } 1817 1818 /** 1819 * skb_expand_head - reallocate header of &sk_buff 1820 * @skb: buffer to reallocate 1821 * @headroom: needed headroom 1822 * 1823 * Unlike skb_realloc_headroom, this one does not allocate a new skb 1824 * if possible; copies skb->sk to new skb as needed 1825 * and frees original skb in case of failures. 1826 * 1827 * It expect increased headroom and generates warning otherwise. 1828 */ 1829 1830 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 1831 { 1832 int delta = headroom - skb_headroom(skb); 1833 int osize = skb_end_offset(skb); 1834 struct sock *sk = skb->sk; 1835 1836 if (WARN_ONCE(delta <= 0, 1837 "%s is expecting an increase in the headroom", __func__)) 1838 return skb; 1839 1840 delta = SKB_DATA_ALIGN(delta); 1841 /* pskb_expand_head() might crash, if skb is shared. */ 1842 if (skb_shared(skb) || !is_skb_wmem(skb)) { 1843 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1844 1845 if (unlikely(!nskb)) 1846 goto fail; 1847 1848 if (sk) 1849 skb_set_owner_w(nskb, sk); 1850 consume_skb(skb); 1851 skb = nskb; 1852 } 1853 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 1854 goto fail; 1855 1856 if (sk && is_skb_wmem(skb)) { 1857 delta = skb_end_offset(skb) - osize; 1858 refcount_add(delta, &sk->sk_wmem_alloc); 1859 skb->truesize += delta; 1860 } 1861 return skb; 1862 1863 fail: 1864 kfree_skb(skb); 1865 return NULL; 1866 } 1867 EXPORT_SYMBOL(skb_expand_head); 1868 1869 /** 1870 * skb_copy_expand - copy and expand sk_buff 1871 * @skb: buffer to copy 1872 * @newheadroom: new free bytes at head 1873 * @newtailroom: new free bytes at tail 1874 * @gfp_mask: allocation priority 1875 * 1876 * Make a copy of both an &sk_buff and its data and while doing so 1877 * allocate additional space. 1878 * 1879 * This is used when the caller wishes to modify the data and needs a 1880 * private copy of the data to alter as well as more space for new fields. 1881 * Returns %NULL on failure or the pointer to the buffer 1882 * on success. The returned buffer has a reference count of 1. 1883 * 1884 * You must pass %GFP_ATOMIC as the allocation priority if this function 1885 * is called from an interrupt. 1886 */ 1887 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1888 int newheadroom, int newtailroom, 1889 gfp_t gfp_mask) 1890 { 1891 /* 1892 * Allocate the copy buffer 1893 */ 1894 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1895 gfp_mask, skb_alloc_rx_flag(skb), 1896 NUMA_NO_NODE); 1897 int oldheadroom = skb_headroom(skb); 1898 int head_copy_len, head_copy_off; 1899 1900 if (!n) 1901 return NULL; 1902 1903 skb_reserve(n, newheadroom); 1904 1905 /* Set the tail pointer and length */ 1906 skb_put(n, skb->len); 1907 1908 head_copy_len = oldheadroom; 1909 head_copy_off = 0; 1910 if (newheadroom <= head_copy_len) 1911 head_copy_len = newheadroom; 1912 else 1913 head_copy_off = newheadroom - head_copy_len; 1914 1915 /* Copy the linear header and data. */ 1916 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1917 skb->len + head_copy_len)); 1918 1919 skb_copy_header(n, skb); 1920 1921 skb_headers_offset_update(n, newheadroom - oldheadroom); 1922 1923 return n; 1924 } 1925 EXPORT_SYMBOL(skb_copy_expand); 1926 1927 /** 1928 * __skb_pad - zero pad the tail of an skb 1929 * @skb: buffer to pad 1930 * @pad: space to pad 1931 * @free_on_error: free buffer on error 1932 * 1933 * Ensure that a buffer is followed by a padding area that is zero 1934 * filled. Used by network drivers which may DMA or transfer data 1935 * beyond the buffer end onto the wire. 1936 * 1937 * May return error in out of memory cases. The skb is freed on error 1938 * if @free_on_error is true. 1939 */ 1940 1941 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 1942 { 1943 int err; 1944 int ntail; 1945 1946 /* If the skbuff is non linear tailroom is always zero.. */ 1947 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1948 memset(skb->data+skb->len, 0, pad); 1949 return 0; 1950 } 1951 1952 ntail = skb->data_len + pad - (skb->end - skb->tail); 1953 if (likely(skb_cloned(skb) || ntail > 0)) { 1954 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1955 if (unlikely(err)) 1956 goto free_skb; 1957 } 1958 1959 /* FIXME: The use of this function with non-linear skb's really needs 1960 * to be audited. 1961 */ 1962 err = skb_linearize(skb); 1963 if (unlikely(err)) 1964 goto free_skb; 1965 1966 memset(skb->data + skb->len, 0, pad); 1967 return 0; 1968 1969 free_skb: 1970 if (free_on_error) 1971 kfree_skb(skb); 1972 return err; 1973 } 1974 EXPORT_SYMBOL(__skb_pad); 1975 1976 /** 1977 * pskb_put - add data to the tail of a potentially fragmented buffer 1978 * @skb: start of the buffer to use 1979 * @tail: tail fragment of the buffer to use 1980 * @len: amount of data to add 1981 * 1982 * This function extends the used data area of the potentially 1983 * fragmented buffer. @tail must be the last fragment of @skb -- or 1984 * @skb itself. If this would exceed the total buffer size the kernel 1985 * will panic. A pointer to the first byte of the extra data is 1986 * returned. 1987 */ 1988 1989 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1990 { 1991 if (tail != skb) { 1992 skb->data_len += len; 1993 skb->len += len; 1994 } 1995 return skb_put(tail, len); 1996 } 1997 EXPORT_SYMBOL_GPL(pskb_put); 1998 1999 /** 2000 * skb_put - add data to a buffer 2001 * @skb: buffer to use 2002 * @len: amount of data to add 2003 * 2004 * This function extends the used data area of the buffer. If this would 2005 * exceed the total buffer size the kernel will panic. A pointer to the 2006 * first byte of the extra data is returned. 2007 */ 2008 void *skb_put(struct sk_buff *skb, unsigned int len) 2009 { 2010 void *tmp = skb_tail_pointer(skb); 2011 SKB_LINEAR_ASSERT(skb); 2012 skb->tail += len; 2013 skb->len += len; 2014 if (unlikely(skb->tail > skb->end)) 2015 skb_over_panic(skb, len, __builtin_return_address(0)); 2016 return tmp; 2017 } 2018 EXPORT_SYMBOL(skb_put); 2019 2020 /** 2021 * skb_push - add data to the start of a buffer 2022 * @skb: buffer to use 2023 * @len: amount of data to add 2024 * 2025 * This function extends the used data area of the buffer at the buffer 2026 * start. If this would exceed the total buffer headroom the kernel will 2027 * panic. A pointer to the first byte of the extra data is returned. 2028 */ 2029 void *skb_push(struct sk_buff *skb, unsigned int len) 2030 { 2031 skb->data -= len; 2032 skb->len += len; 2033 if (unlikely(skb->data < skb->head)) 2034 skb_under_panic(skb, len, __builtin_return_address(0)); 2035 return skb->data; 2036 } 2037 EXPORT_SYMBOL(skb_push); 2038 2039 /** 2040 * skb_pull - remove data from the start of a buffer 2041 * @skb: buffer to use 2042 * @len: amount of data to remove 2043 * 2044 * This function removes data from the start of a buffer, returning 2045 * the memory to the headroom. A pointer to the next data in the buffer 2046 * is returned. Once the data has been pulled future pushes will overwrite 2047 * the old data. 2048 */ 2049 void *skb_pull(struct sk_buff *skb, unsigned int len) 2050 { 2051 return skb_pull_inline(skb, len); 2052 } 2053 EXPORT_SYMBOL(skb_pull); 2054 2055 /** 2056 * skb_pull_data - remove data from the start of a buffer returning its 2057 * original position. 2058 * @skb: buffer to use 2059 * @len: amount of data to remove 2060 * 2061 * This function removes data from the start of a buffer, returning 2062 * the memory to the headroom. A pointer to the original data in the buffer 2063 * is returned after checking if there is enough data to pull. Once the 2064 * data has been pulled future pushes will overwrite the old data. 2065 */ 2066 void *skb_pull_data(struct sk_buff *skb, size_t len) 2067 { 2068 void *data = skb->data; 2069 2070 if (skb->len < len) 2071 return NULL; 2072 2073 skb_pull(skb, len); 2074 2075 return data; 2076 } 2077 EXPORT_SYMBOL(skb_pull_data); 2078 2079 /** 2080 * skb_trim - remove end from a buffer 2081 * @skb: buffer to alter 2082 * @len: new length 2083 * 2084 * Cut the length of a buffer down by removing data from the tail. If 2085 * the buffer is already under the length specified it is not modified. 2086 * The skb must be linear. 2087 */ 2088 void skb_trim(struct sk_buff *skb, unsigned int len) 2089 { 2090 if (skb->len > len) 2091 __skb_trim(skb, len); 2092 } 2093 EXPORT_SYMBOL(skb_trim); 2094 2095 /* Trims skb to length len. It can change skb pointers. 2096 */ 2097 2098 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2099 { 2100 struct sk_buff **fragp; 2101 struct sk_buff *frag; 2102 int offset = skb_headlen(skb); 2103 int nfrags = skb_shinfo(skb)->nr_frags; 2104 int i; 2105 int err; 2106 2107 if (skb_cloned(skb) && 2108 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2109 return err; 2110 2111 i = 0; 2112 if (offset >= len) 2113 goto drop_pages; 2114 2115 for (; i < nfrags; i++) { 2116 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2117 2118 if (end < len) { 2119 offset = end; 2120 continue; 2121 } 2122 2123 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2124 2125 drop_pages: 2126 skb_shinfo(skb)->nr_frags = i; 2127 2128 for (; i < nfrags; i++) 2129 skb_frag_unref(skb, i); 2130 2131 if (skb_has_frag_list(skb)) 2132 skb_drop_fraglist(skb); 2133 goto done; 2134 } 2135 2136 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2137 fragp = &frag->next) { 2138 int end = offset + frag->len; 2139 2140 if (skb_shared(frag)) { 2141 struct sk_buff *nfrag; 2142 2143 nfrag = skb_clone(frag, GFP_ATOMIC); 2144 if (unlikely(!nfrag)) 2145 return -ENOMEM; 2146 2147 nfrag->next = frag->next; 2148 consume_skb(frag); 2149 frag = nfrag; 2150 *fragp = frag; 2151 } 2152 2153 if (end < len) { 2154 offset = end; 2155 continue; 2156 } 2157 2158 if (end > len && 2159 unlikely((err = pskb_trim(frag, len - offset)))) 2160 return err; 2161 2162 if (frag->next) 2163 skb_drop_list(&frag->next); 2164 break; 2165 } 2166 2167 done: 2168 if (len > skb_headlen(skb)) { 2169 skb->data_len -= skb->len - len; 2170 skb->len = len; 2171 } else { 2172 skb->len = len; 2173 skb->data_len = 0; 2174 skb_set_tail_pointer(skb, len); 2175 } 2176 2177 if (!skb->sk || skb->destructor == sock_edemux) 2178 skb_condense(skb); 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(___pskb_trim); 2182 2183 /* Note : use pskb_trim_rcsum() instead of calling this directly 2184 */ 2185 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2186 { 2187 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2188 int delta = skb->len - len; 2189 2190 skb->csum = csum_block_sub(skb->csum, 2191 skb_checksum(skb, len, delta, 0), 2192 len); 2193 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2194 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2195 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2196 2197 if (offset + sizeof(__sum16) > hdlen) 2198 return -EINVAL; 2199 } 2200 return __pskb_trim(skb, len); 2201 } 2202 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2203 2204 /** 2205 * __pskb_pull_tail - advance tail of skb header 2206 * @skb: buffer to reallocate 2207 * @delta: number of bytes to advance tail 2208 * 2209 * The function makes a sense only on a fragmented &sk_buff, 2210 * it expands header moving its tail forward and copying necessary 2211 * data from fragmented part. 2212 * 2213 * &sk_buff MUST have reference count of 1. 2214 * 2215 * Returns %NULL (and &sk_buff does not change) if pull failed 2216 * or value of new tail of skb in the case of success. 2217 * 2218 * All the pointers pointing into skb header may change and must be 2219 * reloaded after call to this function. 2220 */ 2221 2222 /* Moves tail of skb head forward, copying data from fragmented part, 2223 * when it is necessary. 2224 * 1. It may fail due to malloc failure. 2225 * 2. It may change skb pointers. 2226 * 2227 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2228 */ 2229 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2230 { 2231 /* If skb has not enough free space at tail, get new one 2232 * plus 128 bytes for future expansions. If we have enough 2233 * room at tail, reallocate without expansion only if skb is cloned. 2234 */ 2235 int i, k, eat = (skb->tail + delta) - skb->end; 2236 2237 if (eat > 0 || skb_cloned(skb)) { 2238 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2239 GFP_ATOMIC)) 2240 return NULL; 2241 } 2242 2243 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2244 skb_tail_pointer(skb), delta)); 2245 2246 /* Optimization: no fragments, no reasons to preestimate 2247 * size of pulled pages. Superb. 2248 */ 2249 if (!skb_has_frag_list(skb)) 2250 goto pull_pages; 2251 2252 /* Estimate size of pulled pages. */ 2253 eat = delta; 2254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2255 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2256 2257 if (size >= eat) 2258 goto pull_pages; 2259 eat -= size; 2260 } 2261 2262 /* If we need update frag list, we are in troubles. 2263 * Certainly, it is possible to add an offset to skb data, 2264 * but taking into account that pulling is expected to 2265 * be very rare operation, it is worth to fight against 2266 * further bloating skb head and crucify ourselves here instead. 2267 * Pure masohism, indeed. 8)8) 2268 */ 2269 if (eat) { 2270 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2271 struct sk_buff *clone = NULL; 2272 struct sk_buff *insp = NULL; 2273 2274 do { 2275 if (list->len <= eat) { 2276 /* Eaten as whole. */ 2277 eat -= list->len; 2278 list = list->next; 2279 insp = list; 2280 } else { 2281 /* Eaten partially. */ 2282 2283 if (skb_shared(list)) { 2284 /* Sucks! We need to fork list. :-( */ 2285 clone = skb_clone(list, GFP_ATOMIC); 2286 if (!clone) 2287 return NULL; 2288 insp = list->next; 2289 list = clone; 2290 } else { 2291 /* This may be pulled without 2292 * problems. */ 2293 insp = list; 2294 } 2295 if (!pskb_pull(list, eat)) { 2296 kfree_skb(clone); 2297 return NULL; 2298 } 2299 break; 2300 } 2301 } while (eat); 2302 2303 /* Free pulled out fragments. */ 2304 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2305 skb_shinfo(skb)->frag_list = list->next; 2306 consume_skb(list); 2307 } 2308 /* And insert new clone at head. */ 2309 if (clone) { 2310 clone->next = list; 2311 skb_shinfo(skb)->frag_list = clone; 2312 } 2313 } 2314 /* Success! Now we may commit changes to skb data. */ 2315 2316 pull_pages: 2317 eat = delta; 2318 k = 0; 2319 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2320 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2321 2322 if (size <= eat) { 2323 skb_frag_unref(skb, i); 2324 eat -= size; 2325 } else { 2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2327 2328 *frag = skb_shinfo(skb)->frags[i]; 2329 if (eat) { 2330 skb_frag_off_add(frag, eat); 2331 skb_frag_size_sub(frag, eat); 2332 if (!i) 2333 goto end; 2334 eat = 0; 2335 } 2336 k++; 2337 } 2338 } 2339 skb_shinfo(skb)->nr_frags = k; 2340 2341 end: 2342 skb->tail += delta; 2343 skb->data_len -= delta; 2344 2345 if (!skb->data_len) 2346 skb_zcopy_clear(skb, false); 2347 2348 return skb_tail_pointer(skb); 2349 } 2350 EXPORT_SYMBOL(__pskb_pull_tail); 2351 2352 /** 2353 * skb_copy_bits - copy bits from skb to kernel buffer 2354 * @skb: source skb 2355 * @offset: offset in source 2356 * @to: destination buffer 2357 * @len: number of bytes to copy 2358 * 2359 * Copy the specified number of bytes from the source skb to the 2360 * destination buffer. 2361 * 2362 * CAUTION ! : 2363 * If its prototype is ever changed, 2364 * check arch/{*}/net/{*}.S files, 2365 * since it is called from BPF assembly code. 2366 */ 2367 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2368 { 2369 int start = skb_headlen(skb); 2370 struct sk_buff *frag_iter; 2371 int i, copy; 2372 2373 if (offset > (int)skb->len - len) 2374 goto fault; 2375 2376 /* Copy header. */ 2377 if ((copy = start - offset) > 0) { 2378 if (copy > len) 2379 copy = len; 2380 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2381 if ((len -= copy) == 0) 2382 return 0; 2383 offset += copy; 2384 to += copy; 2385 } 2386 2387 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2388 int end; 2389 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2390 2391 WARN_ON(start > offset + len); 2392 2393 end = start + skb_frag_size(f); 2394 if ((copy = end - offset) > 0) { 2395 u32 p_off, p_len, copied; 2396 struct page *p; 2397 u8 *vaddr; 2398 2399 if (copy > len) 2400 copy = len; 2401 2402 skb_frag_foreach_page(f, 2403 skb_frag_off(f) + offset - start, 2404 copy, p, p_off, p_len, copied) { 2405 vaddr = kmap_atomic(p); 2406 memcpy(to + copied, vaddr + p_off, p_len); 2407 kunmap_atomic(vaddr); 2408 } 2409 2410 if ((len -= copy) == 0) 2411 return 0; 2412 offset += copy; 2413 to += copy; 2414 } 2415 start = end; 2416 } 2417 2418 skb_walk_frags(skb, frag_iter) { 2419 int end; 2420 2421 WARN_ON(start > offset + len); 2422 2423 end = start + frag_iter->len; 2424 if ((copy = end - offset) > 0) { 2425 if (copy > len) 2426 copy = len; 2427 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2428 goto fault; 2429 if ((len -= copy) == 0) 2430 return 0; 2431 offset += copy; 2432 to += copy; 2433 } 2434 start = end; 2435 } 2436 2437 if (!len) 2438 return 0; 2439 2440 fault: 2441 return -EFAULT; 2442 } 2443 EXPORT_SYMBOL(skb_copy_bits); 2444 2445 /* 2446 * Callback from splice_to_pipe(), if we need to release some pages 2447 * at the end of the spd in case we error'ed out in filling the pipe. 2448 */ 2449 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2450 { 2451 put_page(spd->pages[i]); 2452 } 2453 2454 static struct page *linear_to_page(struct page *page, unsigned int *len, 2455 unsigned int *offset, 2456 struct sock *sk) 2457 { 2458 struct page_frag *pfrag = sk_page_frag(sk); 2459 2460 if (!sk_page_frag_refill(sk, pfrag)) 2461 return NULL; 2462 2463 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2464 2465 memcpy(page_address(pfrag->page) + pfrag->offset, 2466 page_address(page) + *offset, *len); 2467 *offset = pfrag->offset; 2468 pfrag->offset += *len; 2469 2470 return pfrag->page; 2471 } 2472 2473 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2474 struct page *page, 2475 unsigned int offset) 2476 { 2477 return spd->nr_pages && 2478 spd->pages[spd->nr_pages - 1] == page && 2479 (spd->partial[spd->nr_pages - 1].offset + 2480 spd->partial[spd->nr_pages - 1].len == offset); 2481 } 2482 2483 /* 2484 * Fill page/offset/length into spd, if it can hold more pages. 2485 */ 2486 static bool spd_fill_page(struct splice_pipe_desc *spd, 2487 struct pipe_inode_info *pipe, struct page *page, 2488 unsigned int *len, unsigned int offset, 2489 bool linear, 2490 struct sock *sk) 2491 { 2492 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2493 return true; 2494 2495 if (linear) { 2496 page = linear_to_page(page, len, &offset, sk); 2497 if (!page) 2498 return true; 2499 } 2500 if (spd_can_coalesce(spd, page, offset)) { 2501 spd->partial[spd->nr_pages - 1].len += *len; 2502 return false; 2503 } 2504 get_page(page); 2505 spd->pages[spd->nr_pages] = page; 2506 spd->partial[spd->nr_pages].len = *len; 2507 spd->partial[spd->nr_pages].offset = offset; 2508 spd->nr_pages++; 2509 2510 return false; 2511 } 2512 2513 static bool __splice_segment(struct page *page, unsigned int poff, 2514 unsigned int plen, unsigned int *off, 2515 unsigned int *len, 2516 struct splice_pipe_desc *spd, bool linear, 2517 struct sock *sk, 2518 struct pipe_inode_info *pipe) 2519 { 2520 if (!*len) 2521 return true; 2522 2523 /* skip this segment if already processed */ 2524 if (*off >= plen) { 2525 *off -= plen; 2526 return false; 2527 } 2528 2529 /* ignore any bits we already processed */ 2530 poff += *off; 2531 plen -= *off; 2532 *off = 0; 2533 2534 do { 2535 unsigned int flen = min(*len, plen); 2536 2537 if (spd_fill_page(spd, pipe, page, &flen, poff, 2538 linear, sk)) 2539 return true; 2540 poff += flen; 2541 plen -= flen; 2542 *len -= flen; 2543 } while (*len && plen); 2544 2545 return false; 2546 } 2547 2548 /* 2549 * Map linear and fragment data from the skb to spd. It reports true if the 2550 * pipe is full or if we already spliced the requested length. 2551 */ 2552 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2553 unsigned int *offset, unsigned int *len, 2554 struct splice_pipe_desc *spd, struct sock *sk) 2555 { 2556 int seg; 2557 struct sk_buff *iter; 2558 2559 /* map the linear part : 2560 * If skb->head_frag is set, this 'linear' part is backed by a 2561 * fragment, and if the head is not shared with any clones then 2562 * we can avoid a copy since we own the head portion of this page. 2563 */ 2564 if (__splice_segment(virt_to_page(skb->data), 2565 (unsigned long) skb->data & (PAGE_SIZE - 1), 2566 skb_headlen(skb), 2567 offset, len, spd, 2568 skb_head_is_locked(skb), 2569 sk, pipe)) 2570 return true; 2571 2572 /* 2573 * then map the fragments 2574 */ 2575 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2576 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2577 2578 if (__splice_segment(skb_frag_page(f), 2579 skb_frag_off(f), skb_frag_size(f), 2580 offset, len, spd, false, sk, pipe)) 2581 return true; 2582 } 2583 2584 skb_walk_frags(skb, iter) { 2585 if (*offset >= iter->len) { 2586 *offset -= iter->len; 2587 continue; 2588 } 2589 /* __skb_splice_bits() only fails if the output has no room 2590 * left, so no point in going over the frag_list for the error 2591 * case. 2592 */ 2593 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2594 return true; 2595 } 2596 2597 return false; 2598 } 2599 2600 /* 2601 * Map data from the skb to a pipe. Should handle both the linear part, 2602 * the fragments, and the frag list. 2603 */ 2604 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 2605 struct pipe_inode_info *pipe, unsigned int tlen, 2606 unsigned int flags) 2607 { 2608 struct partial_page partial[MAX_SKB_FRAGS]; 2609 struct page *pages[MAX_SKB_FRAGS]; 2610 struct splice_pipe_desc spd = { 2611 .pages = pages, 2612 .partial = partial, 2613 .nr_pages_max = MAX_SKB_FRAGS, 2614 .ops = &nosteal_pipe_buf_ops, 2615 .spd_release = sock_spd_release, 2616 }; 2617 int ret = 0; 2618 2619 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 2620 2621 if (spd.nr_pages) 2622 ret = splice_to_pipe(pipe, &spd); 2623 2624 return ret; 2625 } 2626 EXPORT_SYMBOL_GPL(skb_splice_bits); 2627 2628 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg, 2629 struct kvec *vec, size_t num, size_t size) 2630 { 2631 struct socket *sock = sk->sk_socket; 2632 2633 if (!sock) 2634 return -EINVAL; 2635 return kernel_sendmsg(sock, msg, vec, num, size); 2636 } 2637 2638 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset, 2639 size_t size, int flags) 2640 { 2641 struct socket *sock = sk->sk_socket; 2642 2643 if (!sock) 2644 return -EINVAL; 2645 return kernel_sendpage(sock, page, offset, size, flags); 2646 } 2647 2648 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg, 2649 struct kvec *vec, size_t num, size_t size); 2650 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset, 2651 size_t size, int flags); 2652 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 2653 int len, sendmsg_func sendmsg, sendpage_func sendpage) 2654 { 2655 unsigned int orig_len = len; 2656 struct sk_buff *head = skb; 2657 unsigned short fragidx; 2658 int slen, ret; 2659 2660 do_frag_list: 2661 2662 /* Deal with head data */ 2663 while (offset < skb_headlen(skb) && len) { 2664 struct kvec kv; 2665 struct msghdr msg; 2666 2667 slen = min_t(int, len, skb_headlen(skb) - offset); 2668 kv.iov_base = skb->data + offset; 2669 kv.iov_len = slen; 2670 memset(&msg, 0, sizeof(msg)); 2671 msg.msg_flags = MSG_DONTWAIT; 2672 2673 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked, 2674 sendmsg_unlocked, sk, &msg, &kv, 1, slen); 2675 if (ret <= 0) 2676 goto error; 2677 2678 offset += ret; 2679 len -= ret; 2680 } 2681 2682 /* All the data was skb head? */ 2683 if (!len) 2684 goto out; 2685 2686 /* Make offset relative to start of frags */ 2687 offset -= skb_headlen(skb); 2688 2689 /* Find where we are in frag list */ 2690 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2691 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2692 2693 if (offset < skb_frag_size(frag)) 2694 break; 2695 2696 offset -= skb_frag_size(frag); 2697 } 2698 2699 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 2700 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 2701 2702 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 2703 2704 while (slen) { 2705 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked, 2706 sendpage_unlocked, sk, 2707 skb_frag_page(frag), 2708 skb_frag_off(frag) + offset, 2709 slen, MSG_DONTWAIT); 2710 if (ret <= 0) 2711 goto error; 2712 2713 len -= ret; 2714 offset += ret; 2715 slen -= ret; 2716 } 2717 2718 offset = 0; 2719 } 2720 2721 if (len) { 2722 /* Process any frag lists */ 2723 2724 if (skb == head) { 2725 if (skb_has_frag_list(skb)) { 2726 skb = skb_shinfo(skb)->frag_list; 2727 goto do_frag_list; 2728 } 2729 } else if (skb->next) { 2730 skb = skb->next; 2731 goto do_frag_list; 2732 } 2733 } 2734 2735 out: 2736 return orig_len - len; 2737 2738 error: 2739 return orig_len == len ? ret : orig_len - len; 2740 } 2741 2742 /* Send skb data on a socket. Socket must be locked. */ 2743 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 2744 int len) 2745 { 2746 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked, 2747 kernel_sendpage_locked); 2748 } 2749 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 2750 2751 /* Send skb data on a socket. Socket must be unlocked. */ 2752 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 2753 { 2754 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 2755 sendpage_unlocked); 2756 } 2757 2758 /** 2759 * skb_store_bits - store bits from kernel buffer to skb 2760 * @skb: destination buffer 2761 * @offset: offset in destination 2762 * @from: source buffer 2763 * @len: number of bytes to copy 2764 * 2765 * Copy the specified number of bytes from the source buffer to the 2766 * destination skb. This function handles all the messy bits of 2767 * traversing fragment lists and such. 2768 */ 2769 2770 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2771 { 2772 int start = skb_headlen(skb); 2773 struct sk_buff *frag_iter; 2774 int i, copy; 2775 2776 if (offset > (int)skb->len - len) 2777 goto fault; 2778 2779 if ((copy = start - offset) > 0) { 2780 if (copy > len) 2781 copy = len; 2782 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2783 if ((len -= copy) == 0) 2784 return 0; 2785 offset += copy; 2786 from += copy; 2787 } 2788 2789 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2790 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2791 int end; 2792 2793 WARN_ON(start > offset + len); 2794 2795 end = start + skb_frag_size(frag); 2796 if ((copy = end - offset) > 0) { 2797 u32 p_off, p_len, copied; 2798 struct page *p; 2799 u8 *vaddr; 2800 2801 if (copy > len) 2802 copy = len; 2803 2804 skb_frag_foreach_page(frag, 2805 skb_frag_off(frag) + offset - start, 2806 copy, p, p_off, p_len, copied) { 2807 vaddr = kmap_atomic(p); 2808 memcpy(vaddr + p_off, from + copied, p_len); 2809 kunmap_atomic(vaddr); 2810 } 2811 2812 if ((len -= copy) == 0) 2813 return 0; 2814 offset += copy; 2815 from += copy; 2816 } 2817 start = end; 2818 } 2819 2820 skb_walk_frags(skb, frag_iter) { 2821 int end; 2822 2823 WARN_ON(start > offset + len); 2824 2825 end = start + frag_iter->len; 2826 if ((copy = end - offset) > 0) { 2827 if (copy > len) 2828 copy = len; 2829 if (skb_store_bits(frag_iter, offset - start, 2830 from, copy)) 2831 goto fault; 2832 if ((len -= copy) == 0) 2833 return 0; 2834 offset += copy; 2835 from += copy; 2836 } 2837 start = end; 2838 } 2839 if (!len) 2840 return 0; 2841 2842 fault: 2843 return -EFAULT; 2844 } 2845 EXPORT_SYMBOL(skb_store_bits); 2846 2847 /* Checksum skb data. */ 2848 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2849 __wsum csum, const struct skb_checksum_ops *ops) 2850 { 2851 int start = skb_headlen(skb); 2852 int i, copy = start - offset; 2853 struct sk_buff *frag_iter; 2854 int pos = 0; 2855 2856 /* Checksum header. */ 2857 if (copy > 0) { 2858 if (copy > len) 2859 copy = len; 2860 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 2861 skb->data + offset, copy, csum); 2862 if ((len -= copy) == 0) 2863 return csum; 2864 offset += copy; 2865 pos = copy; 2866 } 2867 2868 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2869 int end; 2870 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2871 2872 WARN_ON(start > offset + len); 2873 2874 end = start + skb_frag_size(frag); 2875 if ((copy = end - offset) > 0) { 2876 u32 p_off, p_len, copied; 2877 struct page *p; 2878 __wsum csum2; 2879 u8 *vaddr; 2880 2881 if (copy > len) 2882 copy = len; 2883 2884 skb_frag_foreach_page(frag, 2885 skb_frag_off(frag) + offset - start, 2886 copy, p, p_off, p_len, copied) { 2887 vaddr = kmap_atomic(p); 2888 csum2 = INDIRECT_CALL_1(ops->update, 2889 csum_partial_ext, 2890 vaddr + p_off, p_len, 0); 2891 kunmap_atomic(vaddr); 2892 csum = INDIRECT_CALL_1(ops->combine, 2893 csum_block_add_ext, csum, 2894 csum2, pos, p_len); 2895 pos += p_len; 2896 } 2897 2898 if (!(len -= copy)) 2899 return csum; 2900 offset += copy; 2901 } 2902 start = end; 2903 } 2904 2905 skb_walk_frags(skb, frag_iter) { 2906 int end; 2907 2908 WARN_ON(start > offset + len); 2909 2910 end = start + frag_iter->len; 2911 if ((copy = end - offset) > 0) { 2912 __wsum csum2; 2913 if (copy > len) 2914 copy = len; 2915 csum2 = __skb_checksum(frag_iter, offset - start, 2916 copy, 0, ops); 2917 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 2918 csum, csum2, pos, copy); 2919 if ((len -= copy) == 0) 2920 return csum; 2921 offset += copy; 2922 pos += copy; 2923 } 2924 start = end; 2925 } 2926 BUG_ON(len); 2927 2928 return csum; 2929 } 2930 EXPORT_SYMBOL(__skb_checksum); 2931 2932 __wsum skb_checksum(const struct sk_buff *skb, int offset, 2933 int len, __wsum csum) 2934 { 2935 const struct skb_checksum_ops ops = { 2936 .update = csum_partial_ext, 2937 .combine = csum_block_add_ext, 2938 }; 2939 2940 return __skb_checksum(skb, offset, len, csum, &ops); 2941 } 2942 EXPORT_SYMBOL(skb_checksum); 2943 2944 /* Both of above in one bottle. */ 2945 2946 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2947 u8 *to, int len) 2948 { 2949 int start = skb_headlen(skb); 2950 int i, copy = start - offset; 2951 struct sk_buff *frag_iter; 2952 int pos = 0; 2953 __wsum csum = 0; 2954 2955 /* Copy header. */ 2956 if (copy > 0) { 2957 if (copy > len) 2958 copy = len; 2959 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2960 copy); 2961 if ((len -= copy) == 0) 2962 return csum; 2963 offset += copy; 2964 to += copy; 2965 pos = copy; 2966 } 2967 2968 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2969 int end; 2970 2971 WARN_ON(start > offset + len); 2972 2973 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2974 if ((copy = end - offset) > 0) { 2975 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2976 u32 p_off, p_len, copied; 2977 struct page *p; 2978 __wsum csum2; 2979 u8 *vaddr; 2980 2981 if (copy > len) 2982 copy = len; 2983 2984 skb_frag_foreach_page(frag, 2985 skb_frag_off(frag) + offset - start, 2986 copy, p, p_off, p_len, copied) { 2987 vaddr = kmap_atomic(p); 2988 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 2989 to + copied, 2990 p_len); 2991 kunmap_atomic(vaddr); 2992 csum = csum_block_add(csum, csum2, pos); 2993 pos += p_len; 2994 } 2995 2996 if (!(len -= copy)) 2997 return csum; 2998 offset += copy; 2999 to += copy; 3000 } 3001 start = end; 3002 } 3003 3004 skb_walk_frags(skb, frag_iter) { 3005 __wsum csum2; 3006 int end; 3007 3008 WARN_ON(start > offset + len); 3009 3010 end = start + frag_iter->len; 3011 if ((copy = end - offset) > 0) { 3012 if (copy > len) 3013 copy = len; 3014 csum2 = skb_copy_and_csum_bits(frag_iter, 3015 offset - start, 3016 to, copy); 3017 csum = csum_block_add(csum, csum2, pos); 3018 if ((len -= copy) == 0) 3019 return csum; 3020 offset += copy; 3021 to += copy; 3022 pos += copy; 3023 } 3024 start = end; 3025 } 3026 BUG_ON(len); 3027 return csum; 3028 } 3029 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3030 3031 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3032 { 3033 __sum16 sum; 3034 3035 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3036 /* See comments in __skb_checksum_complete(). */ 3037 if (likely(!sum)) { 3038 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3039 !skb->csum_complete_sw) 3040 netdev_rx_csum_fault(skb->dev, skb); 3041 } 3042 if (!skb_shared(skb)) 3043 skb->csum_valid = !sum; 3044 return sum; 3045 } 3046 EXPORT_SYMBOL(__skb_checksum_complete_head); 3047 3048 /* This function assumes skb->csum already holds pseudo header's checksum, 3049 * which has been changed from the hardware checksum, for example, by 3050 * __skb_checksum_validate_complete(). And, the original skb->csum must 3051 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3052 * 3053 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3054 * zero. The new checksum is stored back into skb->csum unless the skb is 3055 * shared. 3056 */ 3057 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3058 { 3059 __wsum csum; 3060 __sum16 sum; 3061 3062 csum = skb_checksum(skb, 0, skb->len, 0); 3063 3064 sum = csum_fold(csum_add(skb->csum, csum)); 3065 /* This check is inverted, because we already knew the hardware 3066 * checksum is invalid before calling this function. So, if the 3067 * re-computed checksum is valid instead, then we have a mismatch 3068 * between the original skb->csum and skb_checksum(). This means either 3069 * the original hardware checksum is incorrect or we screw up skb->csum 3070 * when moving skb->data around. 3071 */ 3072 if (likely(!sum)) { 3073 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3074 !skb->csum_complete_sw) 3075 netdev_rx_csum_fault(skb->dev, skb); 3076 } 3077 3078 if (!skb_shared(skb)) { 3079 /* Save full packet checksum */ 3080 skb->csum = csum; 3081 skb->ip_summed = CHECKSUM_COMPLETE; 3082 skb->csum_complete_sw = 1; 3083 skb->csum_valid = !sum; 3084 } 3085 3086 return sum; 3087 } 3088 EXPORT_SYMBOL(__skb_checksum_complete); 3089 3090 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3091 { 3092 net_warn_ratelimited( 3093 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3094 __func__); 3095 return 0; 3096 } 3097 3098 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3099 int offset, int len) 3100 { 3101 net_warn_ratelimited( 3102 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3103 __func__); 3104 return 0; 3105 } 3106 3107 static const struct skb_checksum_ops default_crc32c_ops = { 3108 .update = warn_crc32c_csum_update, 3109 .combine = warn_crc32c_csum_combine, 3110 }; 3111 3112 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3113 &default_crc32c_ops; 3114 EXPORT_SYMBOL(crc32c_csum_stub); 3115 3116 /** 3117 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3118 * @from: source buffer 3119 * 3120 * Calculates the amount of linear headroom needed in the 'to' skb passed 3121 * into skb_zerocopy(). 3122 */ 3123 unsigned int 3124 skb_zerocopy_headlen(const struct sk_buff *from) 3125 { 3126 unsigned int hlen = 0; 3127 3128 if (!from->head_frag || 3129 skb_headlen(from) < L1_CACHE_BYTES || 3130 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3131 hlen = skb_headlen(from); 3132 if (!hlen) 3133 hlen = from->len; 3134 } 3135 3136 if (skb_has_frag_list(from)) 3137 hlen = from->len; 3138 3139 return hlen; 3140 } 3141 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3142 3143 /** 3144 * skb_zerocopy - Zero copy skb to skb 3145 * @to: destination buffer 3146 * @from: source buffer 3147 * @len: number of bytes to copy from source buffer 3148 * @hlen: size of linear headroom in destination buffer 3149 * 3150 * Copies up to `len` bytes from `from` to `to` by creating references 3151 * to the frags in the source buffer. 3152 * 3153 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3154 * headroom in the `to` buffer. 3155 * 3156 * Return value: 3157 * 0: everything is OK 3158 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3159 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3160 */ 3161 int 3162 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3163 { 3164 int i, j = 0; 3165 int plen = 0; /* length of skb->head fragment */ 3166 int ret; 3167 struct page *page; 3168 unsigned int offset; 3169 3170 BUG_ON(!from->head_frag && !hlen); 3171 3172 /* dont bother with small payloads */ 3173 if (len <= skb_tailroom(to)) 3174 return skb_copy_bits(from, 0, skb_put(to, len), len); 3175 3176 if (hlen) { 3177 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3178 if (unlikely(ret)) 3179 return ret; 3180 len -= hlen; 3181 } else { 3182 plen = min_t(int, skb_headlen(from), len); 3183 if (plen) { 3184 page = virt_to_head_page(from->head); 3185 offset = from->data - (unsigned char *)page_address(page); 3186 __skb_fill_page_desc(to, 0, page, offset, plen); 3187 get_page(page); 3188 j = 1; 3189 len -= plen; 3190 } 3191 } 3192 3193 to->truesize += len + plen; 3194 to->len += len + plen; 3195 to->data_len += len + plen; 3196 3197 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3198 skb_tx_error(from); 3199 return -ENOMEM; 3200 } 3201 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3202 3203 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3204 int size; 3205 3206 if (!len) 3207 break; 3208 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3209 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3210 len); 3211 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3212 len -= size; 3213 skb_frag_ref(to, j); 3214 j++; 3215 } 3216 skb_shinfo(to)->nr_frags = j; 3217 3218 return 0; 3219 } 3220 EXPORT_SYMBOL_GPL(skb_zerocopy); 3221 3222 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3223 { 3224 __wsum csum; 3225 long csstart; 3226 3227 if (skb->ip_summed == CHECKSUM_PARTIAL) 3228 csstart = skb_checksum_start_offset(skb); 3229 else 3230 csstart = skb_headlen(skb); 3231 3232 BUG_ON(csstart > skb_headlen(skb)); 3233 3234 skb_copy_from_linear_data(skb, to, csstart); 3235 3236 csum = 0; 3237 if (csstart != skb->len) 3238 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3239 skb->len - csstart); 3240 3241 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3242 long csstuff = csstart + skb->csum_offset; 3243 3244 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3245 } 3246 } 3247 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3248 3249 /** 3250 * skb_dequeue - remove from the head of the queue 3251 * @list: list to dequeue from 3252 * 3253 * Remove the head of the list. The list lock is taken so the function 3254 * may be used safely with other locking list functions. The head item is 3255 * returned or %NULL if the list is empty. 3256 */ 3257 3258 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3259 { 3260 unsigned long flags; 3261 struct sk_buff *result; 3262 3263 spin_lock_irqsave(&list->lock, flags); 3264 result = __skb_dequeue(list); 3265 spin_unlock_irqrestore(&list->lock, flags); 3266 return result; 3267 } 3268 EXPORT_SYMBOL(skb_dequeue); 3269 3270 /** 3271 * skb_dequeue_tail - remove from the tail of the queue 3272 * @list: list to dequeue from 3273 * 3274 * Remove the tail of the list. The list lock is taken so the function 3275 * may be used safely with other locking list functions. The tail item is 3276 * returned or %NULL if the list is empty. 3277 */ 3278 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3279 { 3280 unsigned long flags; 3281 struct sk_buff *result; 3282 3283 spin_lock_irqsave(&list->lock, flags); 3284 result = __skb_dequeue_tail(list); 3285 spin_unlock_irqrestore(&list->lock, flags); 3286 return result; 3287 } 3288 EXPORT_SYMBOL(skb_dequeue_tail); 3289 3290 /** 3291 * skb_queue_purge - empty a list 3292 * @list: list to empty 3293 * 3294 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3295 * the list and one reference dropped. This function takes the list 3296 * lock and is atomic with respect to other list locking functions. 3297 */ 3298 void skb_queue_purge(struct sk_buff_head *list) 3299 { 3300 struct sk_buff *skb; 3301 while ((skb = skb_dequeue(list)) != NULL) 3302 kfree_skb(skb); 3303 } 3304 EXPORT_SYMBOL(skb_queue_purge); 3305 3306 /** 3307 * skb_rbtree_purge - empty a skb rbtree 3308 * @root: root of the rbtree to empty 3309 * Return value: the sum of truesizes of all purged skbs. 3310 * 3311 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3312 * the list and one reference dropped. This function does not take 3313 * any lock. Synchronization should be handled by the caller (e.g., TCP 3314 * out-of-order queue is protected by the socket lock). 3315 */ 3316 unsigned int skb_rbtree_purge(struct rb_root *root) 3317 { 3318 struct rb_node *p = rb_first(root); 3319 unsigned int sum = 0; 3320 3321 while (p) { 3322 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3323 3324 p = rb_next(p); 3325 rb_erase(&skb->rbnode, root); 3326 sum += skb->truesize; 3327 kfree_skb(skb); 3328 } 3329 return sum; 3330 } 3331 3332 /** 3333 * skb_queue_head - queue a buffer at the list head 3334 * @list: list to use 3335 * @newsk: buffer to queue 3336 * 3337 * Queue a buffer at the start of the list. This function takes the 3338 * list lock and can be used safely with other locking &sk_buff functions 3339 * safely. 3340 * 3341 * A buffer cannot be placed on two lists at the same time. 3342 */ 3343 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3344 { 3345 unsigned long flags; 3346 3347 spin_lock_irqsave(&list->lock, flags); 3348 __skb_queue_head(list, newsk); 3349 spin_unlock_irqrestore(&list->lock, flags); 3350 } 3351 EXPORT_SYMBOL(skb_queue_head); 3352 3353 /** 3354 * skb_queue_tail - queue a buffer at the list tail 3355 * @list: list to use 3356 * @newsk: buffer to queue 3357 * 3358 * Queue a buffer at the tail of the list. This function takes the 3359 * list lock and can be used safely with other locking &sk_buff functions 3360 * safely. 3361 * 3362 * A buffer cannot be placed on two lists at the same time. 3363 */ 3364 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3365 { 3366 unsigned long flags; 3367 3368 spin_lock_irqsave(&list->lock, flags); 3369 __skb_queue_tail(list, newsk); 3370 spin_unlock_irqrestore(&list->lock, flags); 3371 } 3372 EXPORT_SYMBOL(skb_queue_tail); 3373 3374 /** 3375 * skb_unlink - remove a buffer from a list 3376 * @skb: buffer to remove 3377 * @list: list to use 3378 * 3379 * Remove a packet from a list. The list locks are taken and this 3380 * function is atomic with respect to other list locked calls 3381 * 3382 * You must know what list the SKB is on. 3383 */ 3384 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3385 { 3386 unsigned long flags; 3387 3388 spin_lock_irqsave(&list->lock, flags); 3389 __skb_unlink(skb, list); 3390 spin_unlock_irqrestore(&list->lock, flags); 3391 } 3392 EXPORT_SYMBOL(skb_unlink); 3393 3394 /** 3395 * skb_append - append a buffer 3396 * @old: buffer to insert after 3397 * @newsk: buffer to insert 3398 * @list: list to use 3399 * 3400 * Place a packet after a given packet in a list. The list locks are taken 3401 * and this function is atomic with respect to other list locked calls. 3402 * A buffer cannot be placed on two lists at the same time. 3403 */ 3404 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3405 { 3406 unsigned long flags; 3407 3408 spin_lock_irqsave(&list->lock, flags); 3409 __skb_queue_after(list, old, newsk); 3410 spin_unlock_irqrestore(&list->lock, flags); 3411 } 3412 EXPORT_SYMBOL(skb_append); 3413 3414 static inline void skb_split_inside_header(struct sk_buff *skb, 3415 struct sk_buff* skb1, 3416 const u32 len, const int pos) 3417 { 3418 int i; 3419 3420 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3421 pos - len); 3422 /* And move data appendix as is. */ 3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3424 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3425 3426 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3427 skb_shinfo(skb)->nr_frags = 0; 3428 skb1->data_len = skb->data_len; 3429 skb1->len += skb1->data_len; 3430 skb->data_len = 0; 3431 skb->len = len; 3432 skb_set_tail_pointer(skb, len); 3433 } 3434 3435 static inline void skb_split_no_header(struct sk_buff *skb, 3436 struct sk_buff* skb1, 3437 const u32 len, int pos) 3438 { 3439 int i, k = 0; 3440 const int nfrags = skb_shinfo(skb)->nr_frags; 3441 3442 skb_shinfo(skb)->nr_frags = 0; 3443 skb1->len = skb1->data_len = skb->len - len; 3444 skb->len = len; 3445 skb->data_len = len - pos; 3446 3447 for (i = 0; i < nfrags; i++) { 3448 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3449 3450 if (pos + size > len) { 3451 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3452 3453 if (pos < len) { 3454 /* Split frag. 3455 * We have two variants in this case: 3456 * 1. Move all the frag to the second 3457 * part, if it is possible. F.e. 3458 * this approach is mandatory for TUX, 3459 * where splitting is expensive. 3460 * 2. Split is accurately. We make this. 3461 */ 3462 skb_frag_ref(skb, i); 3463 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3464 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3465 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3466 skb_shinfo(skb)->nr_frags++; 3467 } 3468 k++; 3469 } else 3470 skb_shinfo(skb)->nr_frags++; 3471 pos += size; 3472 } 3473 skb_shinfo(skb1)->nr_frags = k; 3474 } 3475 3476 /** 3477 * skb_split - Split fragmented skb to two parts at length len. 3478 * @skb: the buffer to split 3479 * @skb1: the buffer to receive the second part 3480 * @len: new length for skb 3481 */ 3482 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3483 { 3484 int pos = skb_headlen(skb); 3485 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3486 3487 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3488 skb_zerocopy_clone(skb1, skb, 0); 3489 if (len < pos) /* Split line is inside header. */ 3490 skb_split_inside_header(skb, skb1, len, pos); 3491 else /* Second chunk has no header, nothing to copy. */ 3492 skb_split_no_header(skb, skb1, len, pos); 3493 } 3494 EXPORT_SYMBOL(skb_split); 3495 3496 /* Shifting from/to a cloned skb is a no-go. 3497 * 3498 * Caller cannot keep skb_shinfo related pointers past calling here! 3499 */ 3500 static int skb_prepare_for_shift(struct sk_buff *skb) 3501 { 3502 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3503 } 3504 3505 /** 3506 * skb_shift - Shifts paged data partially from skb to another 3507 * @tgt: buffer into which tail data gets added 3508 * @skb: buffer from which the paged data comes from 3509 * @shiftlen: shift up to this many bytes 3510 * 3511 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3512 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3513 * It's up to caller to free skb if everything was shifted. 3514 * 3515 * If @tgt runs out of frags, the whole operation is aborted. 3516 * 3517 * Skb cannot include anything else but paged data while tgt is allowed 3518 * to have non-paged data as well. 3519 * 3520 * TODO: full sized shift could be optimized but that would need 3521 * specialized skb free'er to handle frags without up-to-date nr_frags. 3522 */ 3523 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3524 { 3525 int from, to, merge, todo; 3526 skb_frag_t *fragfrom, *fragto; 3527 3528 BUG_ON(shiftlen > skb->len); 3529 3530 if (skb_headlen(skb)) 3531 return 0; 3532 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3533 return 0; 3534 3535 todo = shiftlen; 3536 from = 0; 3537 to = skb_shinfo(tgt)->nr_frags; 3538 fragfrom = &skb_shinfo(skb)->frags[from]; 3539 3540 /* Actual merge is delayed until the point when we know we can 3541 * commit all, so that we don't have to undo partial changes 3542 */ 3543 if (!to || 3544 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3545 skb_frag_off(fragfrom))) { 3546 merge = -1; 3547 } else { 3548 merge = to - 1; 3549 3550 todo -= skb_frag_size(fragfrom); 3551 if (todo < 0) { 3552 if (skb_prepare_for_shift(skb) || 3553 skb_prepare_for_shift(tgt)) 3554 return 0; 3555 3556 /* All previous frag pointers might be stale! */ 3557 fragfrom = &skb_shinfo(skb)->frags[from]; 3558 fragto = &skb_shinfo(tgt)->frags[merge]; 3559 3560 skb_frag_size_add(fragto, shiftlen); 3561 skb_frag_size_sub(fragfrom, shiftlen); 3562 skb_frag_off_add(fragfrom, shiftlen); 3563 3564 goto onlymerged; 3565 } 3566 3567 from++; 3568 } 3569 3570 /* Skip full, not-fitting skb to avoid expensive operations */ 3571 if ((shiftlen == skb->len) && 3572 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3573 return 0; 3574 3575 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3576 return 0; 3577 3578 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3579 if (to == MAX_SKB_FRAGS) 3580 return 0; 3581 3582 fragfrom = &skb_shinfo(skb)->frags[from]; 3583 fragto = &skb_shinfo(tgt)->frags[to]; 3584 3585 if (todo >= skb_frag_size(fragfrom)) { 3586 *fragto = *fragfrom; 3587 todo -= skb_frag_size(fragfrom); 3588 from++; 3589 to++; 3590 3591 } else { 3592 __skb_frag_ref(fragfrom); 3593 skb_frag_page_copy(fragto, fragfrom); 3594 skb_frag_off_copy(fragto, fragfrom); 3595 skb_frag_size_set(fragto, todo); 3596 3597 skb_frag_off_add(fragfrom, todo); 3598 skb_frag_size_sub(fragfrom, todo); 3599 todo = 0; 3600 3601 to++; 3602 break; 3603 } 3604 } 3605 3606 /* Ready to "commit" this state change to tgt */ 3607 skb_shinfo(tgt)->nr_frags = to; 3608 3609 if (merge >= 0) { 3610 fragfrom = &skb_shinfo(skb)->frags[0]; 3611 fragto = &skb_shinfo(tgt)->frags[merge]; 3612 3613 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 3614 __skb_frag_unref(fragfrom, skb->pp_recycle); 3615 } 3616 3617 /* Reposition in the original skb */ 3618 to = 0; 3619 while (from < skb_shinfo(skb)->nr_frags) 3620 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 3621 skb_shinfo(skb)->nr_frags = to; 3622 3623 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 3624 3625 onlymerged: 3626 /* Most likely the tgt won't ever need its checksum anymore, skb on 3627 * the other hand might need it if it needs to be resent 3628 */ 3629 tgt->ip_summed = CHECKSUM_PARTIAL; 3630 skb->ip_summed = CHECKSUM_PARTIAL; 3631 3632 /* Yak, is it really working this way? Some helper please? */ 3633 skb->len -= shiftlen; 3634 skb->data_len -= shiftlen; 3635 skb->truesize -= shiftlen; 3636 tgt->len += shiftlen; 3637 tgt->data_len += shiftlen; 3638 tgt->truesize += shiftlen; 3639 3640 return shiftlen; 3641 } 3642 3643 /** 3644 * skb_prepare_seq_read - Prepare a sequential read of skb data 3645 * @skb: the buffer to read 3646 * @from: lower offset of data to be read 3647 * @to: upper offset of data to be read 3648 * @st: state variable 3649 * 3650 * Initializes the specified state variable. Must be called before 3651 * invoking skb_seq_read() for the first time. 3652 */ 3653 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 3654 unsigned int to, struct skb_seq_state *st) 3655 { 3656 st->lower_offset = from; 3657 st->upper_offset = to; 3658 st->root_skb = st->cur_skb = skb; 3659 st->frag_idx = st->stepped_offset = 0; 3660 st->frag_data = NULL; 3661 st->frag_off = 0; 3662 } 3663 EXPORT_SYMBOL(skb_prepare_seq_read); 3664 3665 /** 3666 * skb_seq_read - Sequentially read skb data 3667 * @consumed: number of bytes consumed by the caller so far 3668 * @data: destination pointer for data to be returned 3669 * @st: state variable 3670 * 3671 * Reads a block of skb data at @consumed relative to the 3672 * lower offset specified to skb_prepare_seq_read(). Assigns 3673 * the head of the data block to @data and returns the length 3674 * of the block or 0 if the end of the skb data or the upper 3675 * offset has been reached. 3676 * 3677 * The caller is not required to consume all of the data 3678 * returned, i.e. @consumed is typically set to the number 3679 * of bytes already consumed and the next call to 3680 * skb_seq_read() will return the remaining part of the block. 3681 * 3682 * Note 1: The size of each block of data returned can be arbitrary, 3683 * this limitation is the cost for zerocopy sequential 3684 * reads of potentially non linear data. 3685 * 3686 * Note 2: Fragment lists within fragments are not implemented 3687 * at the moment, state->root_skb could be replaced with 3688 * a stack for this purpose. 3689 */ 3690 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 3691 struct skb_seq_state *st) 3692 { 3693 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 3694 skb_frag_t *frag; 3695 3696 if (unlikely(abs_offset >= st->upper_offset)) { 3697 if (st->frag_data) { 3698 kunmap_atomic(st->frag_data); 3699 st->frag_data = NULL; 3700 } 3701 return 0; 3702 } 3703 3704 next_skb: 3705 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 3706 3707 if (abs_offset < block_limit && !st->frag_data) { 3708 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 3709 return block_limit - abs_offset; 3710 } 3711 3712 if (st->frag_idx == 0 && !st->frag_data) 3713 st->stepped_offset += skb_headlen(st->cur_skb); 3714 3715 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 3716 unsigned int pg_idx, pg_off, pg_sz; 3717 3718 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 3719 3720 pg_idx = 0; 3721 pg_off = skb_frag_off(frag); 3722 pg_sz = skb_frag_size(frag); 3723 3724 if (skb_frag_must_loop(skb_frag_page(frag))) { 3725 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 3726 pg_off = offset_in_page(pg_off + st->frag_off); 3727 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 3728 PAGE_SIZE - pg_off); 3729 } 3730 3731 block_limit = pg_sz + st->stepped_offset; 3732 if (abs_offset < block_limit) { 3733 if (!st->frag_data) 3734 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 3735 3736 *data = (u8 *)st->frag_data + pg_off + 3737 (abs_offset - st->stepped_offset); 3738 3739 return block_limit - abs_offset; 3740 } 3741 3742 if (st->frag_data) { 3743 kunmap_atomic(st->frag_data); 3744 st->frag_data = NULL; 3745 } 3746 3747 st->stepped_offset += pg_sz; 3748 st->frag_off += pg_sz; 3749 if (st->frag_off == skb_frag_size(frag)) { 3750 st->frag_off = 0; 3751 st->frag_idx++; 3752 } 3753 } 3754 3755 if (st->frag_data) { 3756 kunmap_atomic(st->frag_data); 3757 st->frag_data = NULL; 3758 } 3759 3760 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 3761 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 3762 st->frag_idx = 0; 3763 goto next_skb; 3764 } else if (st->cur_skb->next) { 3765 st->cur_skb = st->cur_skb->next; 3766 st->frag_idx = 0; 3767 goto next_skb; 3768 } 3769 3770 return 0; 3771 } 3772 EXPORT_SYMBOL(skb_seq_read); 3773 3774 /** 3775 * skb_abort_seq_read - Abort a sequential read of skb data 3776 * @st: state variable 3777 * 3778 * Must be called if skb_seq_read() was not called until it 3779 * returned 0. 3780 */ 3781 void skb_abort_seq_read(struct skb_seq_state *st) 3782 { 3783 if (st->frag_data) 3784 kunmap_atomic(st->frag_data); 3785 } 3786 EXPORT_SYMBOL(skb_abort_seq_read); 3787 3788 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 3789 3790 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 3791 struct ts_config *conf, 3792 struct ts_state *state) 3793 { 3794 return skb_seq_read(offset, text, TS_SKB_CB(state)); 3795 } 3796 3797 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 3798 { 3799 skb_abort_seq_read(TS_SKB_CB(state)); 3800 } 3801 3802 /** 3803 * skb_find_text - Find a text pattern in skb data 3804 * @skb: the buffer to look in 3805 * @from: search offset 3806 * @to: search limit 3807 * @config: textsearch configuration 3808 * 3809 * Finds a pattern in the skb data according to the specified 3810 * textsearch configuration. Use textsearch_next() to retrieve 3811 * subsequent occurrences of the pattern. Returns the offset 3812 * to the first occurrence or UINT_MAX if no match was found. 3813 */ 3814 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 3815 unsigned int to, struct ts_config *config) 3816 { 3817 struct ts_state state; 3818 unsigned int ret; 3819 3820 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 3821 3822 config->get_next_block = skb_ts_get_next_block; 3823 config->finish = skb_ts_finish; 3824 3825 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 3826 3827 ret = textsearch_find(config, &state); 3828 return (ret <= to - from ? ret : UINT_MAX); 3829 } 3830 EXPORT_SYMBOL(skb_find_text); 3831 3832 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3833 int offset, size_t size) 3834 { 3835 int i = skb_shinfo(skb)->nr_frags; 3836 3837 if (skb_can_coalesce(skb, i, page, offset)) { 3838 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3839 } else if (i < MAX_SKB_FRAGS) { 3840 get_page(page); 3841 skb_fill_page_desc(skb, i, page, offset, size); 3842 } else { 3843 return -EMSGSIZE; 3844 } 3845 3846 return 0; 3847 } 3848 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3849 3850 /** 3851 * skb_pull_rcsum - pull skb and update receive checksum 3852 * @skb: buffer to update 3853 * @len: length of data pulled 3854 * 3855 * This function performs an skb_pull on the packet and updates 3856 * the CHECKSUM_COMPLETE checksum. It should be used on 3857 * receive path processing instead of skb_pull unless you know 3858 * that the checksum difference is zero (e.g., a valid IP header) 3859 * or you are setting ip_summed to CHECKSUM_NONE. 3860 */ 3861 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3862 { 3863 unsigned char *data = skb->data; 3864 3865 BUG_ON(len > skb->len); 3866 __skb_pull(skb, len); 3867 skb_postpull_rcsum(skb, data, len); 3868 return skb->data; 3869 } 3870 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3871 3872 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 3873 { 3874 skb_frag_t head_frag; 3875 struct page *page; 3876 3877 page = virt_to_head_page(frag_skb->head); 3878 __skb_frag_set_page(&head_frag, page); 3879 skb_frag_off_set(&head_frag, frag_skb->data - 3880 (unsigned char *)page_address(page)); 3881 skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); 3882 return head_frag; 3883 } 3884 3885 struct sk_buff *skb_segment_list(struct sk_buff *skb, 3886 netdev_features_t features, 3887 unsigned int offset) 3888 { 3889 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 3890 unsigned int tnl_hlen = skb_tnl_header_len(skb); 3891 unsigned int delta_truesize = 0; 3892 unsigned int delta_len = 0; 3893 struct sk_buff *tail = NULL; 3894 struct sk_buff *nskb, *tmp; 3895 int len_diff, err; 3896 3897 skb_push(skb, -skb_network_offset(skb) + offset); 3898 3899 skb_shinfo(skb)->frag_list = NULL; 3900 3901 do { 3902 nskb = list_skb; 3903 list_skb = list_skb->next; 3904 3905 err = 0; 3906 delta_truesize += nskb->truesize; 3907 if (skb_shared(nskb)) { 3908 tmp = skb_clone(nskb, GFP_ATOMIC); 3909 if (tmp) { 3910 consume_skb(nskb); 3911 nskb = tmp; 3912 err = skb_unclone(nskb, GFP_ATOMIC); 3913 } else { 3914 err = -ENOMEM; 3915 } 3916 } 3917 3918 if (!tail) 3919 skb->next = nskb; 3920 else 3921 tail->next = nskb; 3922 3923 if (unlikely(err)) { 3924 nskb->next = list_skb; 3925 goto err_linearize; 3926 } 3927 3928 tail = nskb; 3929 3930 delta_len += nskb->len; 3931 3932 skb_push(nskb, -skb_network_offset(nskb) + offset); 3933 3934 skb_release_head_state(nskb); 3935 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 3936 __copy_skb_header(nskb, skb); 3937 3938 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 3939 nskb->transport_header += len_diff; 3940 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 3941 nskb->data - tnl_hlen, 3942 offset + tnl_hlen); 3943 3944 if (skb_needs_linearize(nskb, features) && 3945 __skb_linearize(nskb)) 3946 goto err_linearize; 3947 3948 } while (list_skb); 3949 3950 skb->truesize = skb->truesize - delta_truesize; 3951 skb->data_len = skb->data_len - delta_len; 3952 skb->len = skb->len - delta_len; 3953 3954 skb_gso_reset(skb); 3955 3956 skb->prev = tail; 3957 3958 if (skb_needs_linearize(skb, features) && 3959 __skb_linearize(skb)) 3960 goto err_linearize; 3961 3962 skb_get(skb); 3963 3964 return skb; 3965 3966 err_linearize: 3967 kfree_skb_list(skb->next); 3968 skb->next = NULL; 3969 return ERR_PTR(-ENOMEM); 3970 } 3971 EXPORT_SYMBOL_GPL(skb_segment_list); 3972 3973 /** 3974 * skb_segment - Perform protocol segmentation on skb. 3975 * @head_skb: buffer to segment 3976 * @features: features for the output path (see dev->features) 3977 * 3978 * This function performs segmentation on the given skb. It returns 3979 * a pointer to the first in a list of new skbs for the segments. 3980 * In case of error it returns ERR_PTR(err). 3981 */ 3982 struct sk_buff *skb_segment(struct sk_buff *head_skb, 3983 netdev_features_t features) 3984 { 3985 struct sk_buff *segs = NULL; 3986 struct sk_buff *tail = NULL; 3987 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3988 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3989 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3990 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3991 struct sk_buff *frag_skb = head_skb; 3992 unsigned int offset = doffset; 3993 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3994 unsigned int partial_segs = 0; 3995 unsigned int headroom; 3996 unsigned int len = head_skb->len; 3997 __be16 proto; 3998 bool csum, sg; 3999 int nfrags = skb_shinfo(head_skb)->nr_frags; 4000 int err = -ENOMEM; 4001 int i = 0; 4002 int pos; 4003 4004 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) && 4005 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) { 4006 /* gso_size is untrusted, and we have a frag_list with a linear 4007 * non head_frag head. 4008 * 4009 * (we assume checking the first list_skb member suffices; 4010 * i.e if either of the list_skb members have non head_frag 4011 * head, then the first one has too). 4012 * 4013 * If head_skb's headlen does not fit requested gso_size, it 4014 * means that the frag_list members do NOT terminate on exact 4015 * gso_size boundaries. Hence we cannot perform skb_frag_t page 4016 * sharing. Therefore we must fallback to copying the frag_list 4017 * skbs; we do so by disabling SG. 4018 */ 4019 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) 4020 features &= ~NETIF_F_SG; 4021 } 4022 4023 __skb_push(head_skb, doffset); 4024 proto = skb_network_protocol(head_skb, NULL); 4025 if (unlikely(!proto)) 4026 return ERR_PTR(-EINVAL); 4027 4028 sg = !!(features & NETIF_F_SG); 4029 csum = !!can_checksum_protocol(features, proto); 4030 4031 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4032 if (!(features & NETIF_F_GSO_PARTIAL)) { 4033 struct sk_buff *iter; 4034 unsigned int frag_len; 4035 4036 if (!list_skb || 4037 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4038 goto normal; 4039 4040 /* If we get here then all the required 4041 * GSO features except frag_list are supported. 4042 * Try to split the SKB to multiple GSO SKBs 4043 * with no frag_list. 4044 * Currently we can do that only when the buffers don't 4045 * have a linear part and all the buffers except 4046 * the last are of the same length. 4047 */ 4048 frag_len = list_skb->len; 4049 skb_walk_frags(head_skb, iter) { 4050 if (frag_len != iter->len && iter->next) 4051 goto normal; 4052 if (skb_headlen(iter) && !iter->head_frag) 4053 goto normal; 4054 4055 len -= iter->len; 4056 } 4057 4058 if (len != frag_len) 4059 goto normal; 4060 } 4061 4062 /* GSO partial only requires that we trim off any excess that 4063 * doesn't fit into an MSS sized block, so take care of that 4064 * now. 4065 */ 4066 partial_segs = len / mss; 4067 if (partial_segs > 1) 4068 mss *= partial_segs; 4069 else 4070 partial_segs = 0; 4071 } 4072 4073 normal: 4074 headroom = skb_headroom(head_skb); 4075 pos = skb_headlen(head_skb); 4076 4077 do { 4078 struct sk_buff *nskb; 4079 skb_frag_t *nskb_frag; 4080 int hsize; 4081 int size; 4082 4083 if (unlikely(mss == GSO_BY_FRAGS)) { 4084 len = list_skb->len; 4085 } else { 4086 len = head_skb->len - offset; 4087 if (len > mss) 4088 len = mss; 4089 } 4090 4091 hsize = skb_headlen(head_skb) - offset; 4092 4093 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4094 (skb_headlen(list_skb) == len || sg)) { 4095 BUG_ON(skb_headlen(list_skb) > len); 4096 4097 i = 0; 4098 nfrags = skb_shinfo(list_skb)->nr_frags; 4099 frag = skb_shinfo(list_skb)->frags; 4100 frag_skb = list_skb; 4101 pos += skb_headlen(list_skb); 4102 4103 while (pos < offset + len) { 4104 BUG_ON(i >= nfrags); 4105 4106 size = skb_frag_size(frag); 4107 if (pos + size > offset + len) 4108 break; 4109 4110 i++; 4111 pos += size; 4112 frag++; 4113 } 4114 4115 nskb = skb_clone(list_skb, GFP_ATOMIC); 4116 list_skb = list_skb->next; 4117 4118 if (unlikely(!nskb)) 4119 goto err; 4120 4121 if (unlikely(pskb_trim(nskb, len))) { 4122 kfree_skb(nskb); 4123 goto err; 4124 } 4125 4126 hsize = skb_end_offset(nskb); 4127 if (skb_cow_head(nskb, doffset + headroom)) { 4128 kfree_skb(nskb); 4129 goto err; 4130 } 4131 4132 nskb->truesize += skb_end_offset(nskb) - hsize; 4133 skb_release_head_state(nskb); 4134 __skb_push(nskb, doffset); 4135 } else { 4136 if (hsize < 0) 4137 hsize = 0; 4138 if (hsize > len || !sg) 4139 hsize = len; 4140 4141 nskb = __alloc_skb(hsize + doffset + headroom, 4142 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4143 NUMA_NO_NODE); 4144 4145 if (unlikely(!nskb)) 4146 goto err; 4147 4148 skb_reserve(nskb, headroom); 4149 __skb_put(nskb, doffset); 4150 } 4151 4152 if (segs) 4153 tail->next = nskb; 4154 else 4155 segs = nskb; 4156 tail = nskb; 4157 4158 __copy_skb_header(nskb, head_skb); 4159 4160 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4161 skb_reset_mac_len(nskb); 4162 4163 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4164 nskb->data - tnl_hlen, 4165 doffset + tnl_hlen); 4166 4167 if (nskb->len == len + doffset) 4168 goto perform_csum_check; 4169 4170 if (!sg) { 4171 if (!csum) { 4172 if (!nskb->remcsum_offload) 4173 nskb->ip_summed = CHECKSUM_NONE; 4174 SKB_GSO_CB(nskb)->csum = 4175 skb_copy_and_csum_bits(head_skb, offset, 4176 skb_put(nskb, 4177 len), 4178 len); 4179 SKB_GSO_CB(nskb)->csum_start = 4180 skb_headroom(nskb) + doffset; 4181 } else { 4182 skb_copy_bits(head_skb, offset, 4183 skb_put(nskb, len), 4184 len); 4185 } 4186 continue; 4187 } 4188 4189 nskb_frag = skb_shinfo(nskb)->frags; 4190 4191 skb_copy_from_linear_data_offset(head_skb, offset, 4192 skb_put(nskb, hsize), hsize); 4193 4194 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4195 SKBFL_SHARED_FRAG; 4196 4197 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4198 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4199 goto err; 4200 4201 while (pos < offset + len) { 4202 if (i >= nfrags) { 4203 i = 0; 4204 nfrags = skb_shinfo(list_skb)->nr_frags; 4205 frag = skb_shinfo(list_skb)->frags; 4206 frag_skb = list_skb; 4207 if (!skb_headlen(list_skb)) { 4208 BUG_ON(!nfrags); 4209 } else { 4210 BUG_ON(!list_skb->head_frag); 4211 4212 /* to make room for head_frag. */ 4213 i--; 4214 frag--; 4215 } 4216 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4217 skb_zerocopy_clone(nskb, frag_skb, 4218 GFP_ATOMIC)) 4219 goto err; 4220 4221 list_skb = list_skb->next; 4222 } 4223 4224 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4225 MAX_SKB_FRAGS)) { 4226 net_warn_ratelimited( 4227 "skb_segment: too many frags: %u %u\n", 4228 pos, mss); 4229 err = -EINVAL; 4230 goto err; 4231 } 4232 4233 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4234 __skb_frag_ref(nskb_frag); 4235 size = skb_frag_size(nskb_frag); 4236 4237 if (pos < offset) { 4238 skb_frag_off_add(nskb_frag, offset - pos); 4239 skb_frag_size_sub(nskb_frag, offset - pos); 4240 } 4241 4242 skb_shinfo(nskb)->nr_frags++; 4243 4244 if (pos + size <= offset + len) { 4245 i++; 4246 frag++; 4247 pos += size; 4248 } else { 4249 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4250 goto skip_fraglist; 4251 } 4252 4253 nskb_frag++; 4254 } 4255 4256 skip_fraglist: 4257 nskb->data_len = len - hsize; 4258 nskb->len += nskb->data_len; 4259 nskb->truesize += nskb->data_len; 4260 4261 perform_csum_check: 4262 if (!csum) { 4263 if (skb_has_shared_frag(nskb) && 4264 __skb_linearize(nskb)) 4265 goto err; 4266 4267 if (!nskb->remcsum_offload) 4268 nskb->ip_summed = CHECKSUM_NONE; 4269 SKB_GSO_CB(nskb)->csum = 4270 skb_checksum(nskb, doffset, 4271 nskb->len - doffset, 0); 4272 SKB_GSO_CB(nskb)->csum_start = 4273 skb_headroom(nskb) + doffset; 4274 } 4275 } while ((offset += len) < head_skb->len); 4276 4277 /* Some callers want to get the end of the list. 4278 * Put it in segs->prev to avoid walking the list. 4279 * (see validate_xmit_skb_list() for example) 4280 */ 4281 segs->prev = tail; 4282 4283 if (partial_segs) { 4284 struct sk_buff *iter; 4285 int type = skb_shinfo(head_skb)->gso_type; 4286 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4287 4288 /* Update type to add partial and then remove dodgy if set */ 4289 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4290 type &= ~SKB_GSO_DODGY; 4291 4292 /* Update GSO info and prepare to start updating headers on 4293 * our way back down the stack of protocols. 4294 */ 4295 for (iter = segs; iter; iter = iter->next) { 4296 skb_shinfo(iter)->gso_size = gso_size; 4297 skb_shinfo(iter)->gso_segs = partial_segs; 4298 skb_shinfo(iter)->gso_type = type; 4299 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4300 } 4301 4302 if (tail->len - doffset <= gso_size) 4303 skb_shinfo(tail)->gso_size = 0; 4304 else if (tail != segs) 4305 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4306 } 4307 4308 /* Following permits correct backpressure, for protocols 4309 * using skb_set_owner_w(). 4310 * Idea is to tranfert ownership from head_skb to last segment. 4311 */ 4312 if (head_skb->destructor == sock_wfree) { 4313 swap(tail->truesize, head_skb->truesize); 4314 swap(tail->destructor, head_skb->destructor); 4315 swap(tail->sk, head_skb->sk); 4316 } 4317 return segs; 4318 4319 err: 4320 kfree_skb_list(segs); 4321 return ERR_PTR(err); 4322 } 4323 EXPORT_SYMBOL_GPL(skb_segment); 4324 4325 #ifdef CONFIG_SKB_EXTENSIONS 4326 #define SKB_EXT_ALIGN_VALUE 8 4327 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4328 4329 static const u8 skb_ext_type_len[] = { 4330 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4331 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4332 #endif 4333 #ifdef CONFIG_XFRM 4334 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4335 #endif 4336 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4337 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4338 #endif 4339 #if IS_ENABLED(CONFIG_MPTCP) 4340 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4341 #endif 4342 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4343 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4344 #endif 4345 }; 4346 4347 static __always_inline unsigned int skb_ext_total_length(void) 4348 { 4349 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4350 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4351 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4352 #endif 4353 #ifdef CONFIG_XFRM 4354 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4355 #endif 4356 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4357 skb_ext_type_len[TC_SKB_EXT] + 4358 #endif 4359 #if IS_ENABLED(CONFIG_MPTCP) 4360 skb_ext_type_len[SKB_EXT_MPTCP] + 4361 #endif 4362 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4363 skb_ext_type_len[SKB_EXT_MCTP] + 4364 #endif 4365 0; 4366 } 4367 4368 static void skb_extensions_init(void) 4369 { 4370 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4371 BUILD_BUG_ON(skb_ext_total_length() > 255); 4372 4373 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4374 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4375 0, 4376 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4377 NULL); 4378 } 4379 #else 4380 static void skb_extensions_init(void) {} 4381 #endif 4382 4383 void __init skb_init(void) 4384 { 4385 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4386 sizeof(struct sk_buff), 4387 0, 4388 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4389 offsetof(struct sk_buff, cb), 4390 sizeof_field(struct sk_buff, cb), 4391 NULL); 4392 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4393 sizeof(struct sk_buff_fclones), 4394 0, 4395 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4396 NULL); 4397 skb_extensions_init(); 4398 } 4399 4400 static int 4401 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4402 unsigned int recursion_level) 4403 { 4404 int start = skb_headlen(skb); 4405 int i, copy = start - offset; 4406 struct sk_buff *frag_iter; 4407 int elt = 0; 4408 4409 if (unlikely(recursion_level >= 24)) 4410 return -EMSGSIZE; 4411 4412 if (copy > 0) { 4413 if (copy > len) 4414 copy = len; 4415 sg_set_buf(sg, skb->data + offset, copy); 4416 elt++; 4417 if ((len -= copy) == 0) 4418 return elt; 4419 offset += copy; 4420 } 4421 4422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4423 int end; 4424 4425 WARN_ON(start > offset + len); 4426 4427 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4428 if ((copy = end - offset) > 0) { 4429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4430 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4431 return -EMSGSIZE; 4432 4433 if (copy > len) 4434 copy = len; 4435 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4436 skb_frag_off(frag) + offset - start); 4437 elt++; 4438 if (!(len -= copy)) 4439 return elt; 4440 offset += copy; 4441 } 4442 start = end; 4443 } 4444 4445 skb_walk_frags(skb, frag_iter) { 4446 int end, ret; 4447 4448 WARN_ON(start > offset + len); 4449 4450 end = start + frag_iter->len; 4451 if ((copy = end - offset) > 0) { 4452 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4453 return -EMSGSIZE; 4454 4455 if (copy > len) 4456 copy = len; 4457 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4458 copy, recursion_level + 1); 4459 if (unlikely(ret < 0)) 4460 return ret; 4461 elt += ret; 4462 if ((len -= copy) == 0) 4463 return elt; 4464 offset += copy; 4465 } 4466 start = end; 4467 } 4468 BUG_ON(len); 4469 return elt; 4470 } 4471 4472 /** 4473 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4474 * @skb: Socket buffer containing the buffers to be mapped 4475 * @sg: The scatter-gather list to map into 4476 * @offset: The offset into the buffer's contents to start mapping 4477 * @len: Length of buffer space to be mapped 4478 * 4479 * Fill the specified scatter-gather list with mappings/pointers into a 4480 * region of the buffer space attached to a socket buffer. Returns either 4481 * the number of scatterlist items used, or -EMSGSIZE if the contents 4482 * could not fit. 4483 */ 4484 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4485 { 4486 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4487 4488 if (nsg <= 0) 4489 return nsg; 4490 4491 sg_mark_end(&sg[nsg - 1]); 4492 4493 return nsg; 4494 } 4495 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4496 4497 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4498 * sglist without mark the sg which contain last skb data as the end. 4499 * So the caller can mannipulate sg list as will when padding new data after 4500 * the first call without calling sg_unmark_end to expend sg list. 4501 * 4502 * Scenario to use skb_to_sgvec_nomark: 4503 * 1. sg_init_table 4504 * 2. skb_to_sgvec_nomark(payload1) 4505 * 3. skb_to_sgvec_nomark(payload2) 4506 * 4507 * This is equivalent to: 4508 * 1. sg_init_table 4509 * 2. skb_to_sgvec(payload1) 4510 * 3. sg_unmark_end 4511 * 4. skb_to_sgvec(payload2) 4512 * 4513 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4514 * is more preferable. 4515 */ 4516 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4517 int offset, int len) 4518 { 4519 return __skb_to_sgvec(skb, sg, offset, len, 0); 4520 } 4521 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4522 4523 4524 4525 /** 4526 * skb_cow_data - Check that a socket buffer's data buffers are writable 4527 * @skb: The socket buffer to check. 4528 * @tailbits: Amount of trailing space to be added 4529 * @trailer: Returned pointer to the skb where the @tailbits space begins 4530 * 4531 * Make sure that the data buffers attached to a socket buffer are 4532 * writable. If they are not, private copies are made of the data buffers 4533 * and the socket buffer is set to use these instead. 4534 * 4535 * If @tailbits is given, make sure that there is space to write @tailbits 4536 * bytes of data beyond current end of socket buffer. @trailer will be 4537 * set to point to the skb in which this space begins. 4538 * 4539 * The number of scatterlist elements required to completely map the 4540 * COW'd and extended socket buffer will be returned. 4541 */ 4542 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4543 { 4544 int copyflag; 4545 int elt; 4546 struct sk_buff *skb1, **skb_p; 4547 4548 /* If skb is cloned or its head is paged, reallocate 4549 * head pulling out all the pages (pages are considered not writable 4550 * at the moment even if they are anonymous). 4551 */ 4552 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4553 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4554 return -ENOMEM; 4555 4556 /* Easy case. Most of packets will go this way. */ 4557 if (!skb_has_frag_list(skb)) { 4558 /* A little of trouble, not enough of space for trailer. 4559 * This should not happen, when stack is tuned to generate 4560 * good frames. OK, on miss we reallocate and reserve even more 4561 * space, 128 bytes is fair. */ 4562 4563 if (skb_tailroom(skb) < tailbits && 4564 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4565 return -ENOMEM; 4566 4567 /* Voila! */ 4568 *trailer = skb; 4569 return 1; 4570 } 4571 4572 /* Misery. We are in troubles, going to mincer fragments... */ 4573 4574 elt = 1; 4575 skb_p = &skb_shinfo(skb)->frag_list; 4576 copyflag = 0; 4577 4578 while ((skb1 = *skb_p) != NULL) { 4579 int ntail = 0; 4580 4581 /* The fragment is partially pulled by someone, 4582 * this can happen on input. Copy it and everything 4583 * after it. */ 4584 4585 if (skb_shared(skb1)) 4586 copyflag = 1; 4587 4588 /* If the skb is the last, worry about trailer. */ 4589 4590 if (skb1->next == NULL && tailbits) { 4591 if (skb_shinfo(skb1)->nr_frags || 4592 skb_has_frag_list(skb1) || 4593 skb_tailroom(skb1) < tailbits) 4594 ntail = tailbits + 128; 4595 } 4596 4597 if (copyflag || 4598 skb_cloned(skb1) || 4599 ntail || 4600 skb_shinfo(skb1)->nr_frags || 4601 skb_has_frag_list(skb1)) { 4602 struct sk_buff *skb2; 4603 4604 /* Fuck, we are miserable poor guys... */ 4605 if (ntail == 0) 4606 skb2 = skb_copy(skb1, GFP_ATOMIC); 4607 else 4608 skb2 = skb_copy_expand(skb1, 4609 skb_headroom(skb1), 4610 ntail, 4611 GFP_ATOMIC); 4612 if (unlikely(skb2 == NULL)) 4613 return -ENOMEM; 4614 4615 if (skb1->sk) 4616 skb_set_owner_w(skb2, skb1->sk); 4617 4618 /* Looking around. Are we still alive? 4619 * OK, link new skb, drop old one */ 4620 4621 skb2->next = skb1->next; 4622 *skb_p = skb2; 4623 kfree_skb(skb1); 4624 skb1 = skb2; 4625 } 4626 elt++; 4627 *trailer = skb1; 4628 skb_p = &skb1->next; 4629 } 4630 4631 return elt; 4632 } 4633 EXPORT_SYMBOL_GPL(skb_cow_data); 4634 4635 static void sock_rmem_free(struct sk_buff *skb) 4636 { 4637 struct sock *sk = skb->sk; 4638 4639 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 4640 } 4641 4642 static void skb_set_err_queue(struct sk_buff *skb) 4643 { 4644 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 4645 * So, it is safe to (mis)use it to mark skbs on the error queue. 4646 */ 4647 skb->pkt_type = PACKET_OUTGOING; 4648 BUILD_BUG_ON(PACKET_OUTGOING == 0); 4649 } 4650 4651 /* 4652 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 4653 */ 4654 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 4655 { 4656 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 4657 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 4658 return -ENOMEM; 4659 4660 skb_orphan(skb); 4661 skb->sk = sk; 4662 skb->destructor = sock_rmem_free; 4663 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 4664 skb_set_err_queue(skb); 4665 4666 /* before exiting rcu section, make sure dst is refcounted */ 4667 skb_dst_force(skb); 4668 4669 skb_queue_tail(&sk->sk_error_queue, skb); 4670 if (!sock_flag(sk, SOCK_DEAD)) 4671 sk_error_report(sk); 4672 return 0; 4673 } 4674 EXPORT_SYMBOL(sock_queue_err_skb); 4675 4676 static bool is_icmp_err_skb(const struct sk_buff *skb) 4677 { 4678 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 4679 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 4680 } 4681 4682 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 4683 { 4684 struct sk_buff_head *q = &sk->sk_error_queue; 4685 struct sk_buff *skb, *skb_next = NULL; 4686 bool icmp_next = false; 4687 unsigned long flags; 4688 4689 spin_lock_irqsave(&q->lock, flags); 4690 skb = __skb_dequeue(q); 4691 if (skb && (skb_next = skb_peek(q))) { 4692 icmp_next = is_icmp_err_skb(skb_next); 4693 if (icmp_next) 4694 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 4695 } 4696 spin_unlock_irqrestore(&q->lock, flags); 4697 4698 if (is_icmp_err_skb(skb) && !icmp_next) 4699 sk->sk_err = 0; 4700 4701 if (skb_next) 4702 sk_error_report(sk); 4703 4704 return skb; 4705 } 4706 EXPORT_SYMBOL(sock_dequeue_err_skb); 4707 4708 /** 4709 * skb_clone_sk - create clone of skb, and take reference to socket 4710 * @skb: the skb to clone 4711 * 4712 * This function creates a clone of a buffer that holds a reference on 4713 * sk_refcnt. Buffers created via this function are meant to be 4714 * returned using sock_queue_err_skb, or free via kfree_skb. 4715 * 4716 * When passing buffers allocated with this function to sock_queue_err_skb 4717 * it is necessary to wrap the call with sock_hold/sock_put in order to 4718 * prevent the socket from being released prior to being enqueued on 4719 * the sk_error_queue. 4720 */ 4721 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 4722 { 4723 struct sock *sk = skb->sk; 4724 struct sk_buff *clone; 4725 4726 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 4727 return NULL; 4728 4729 clone = skb_clone(skb, GFP_ATOMIC); 4730 if (!clone) { 4731 sock_put(sk); 4732 return NULL; 4733 } 4734 4735 clone->sk = sk; 4736 clone->destructor = sock_efree; 4737 4738 return clone; 4739 } 4740 EXPORT_SYMBOL(skb_clone_sk); 4741 4742 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 4743 struct sock *sk, 4744 int tstype, 4745 bool opt_stats) 4746 { 4747 struct sock_exterr_skb *serr; 4748 int err; 4749 4750 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 4751 4752 serr = SKB_EXT_ERR(skb); 4753 memset(serr, 0, sizeof(*serr)); 4754 serr->ee.ee_errno = ENOMSG; 4755 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 4756 serr->ee.ee_info = tstype; 4757 serr->opt_stats = opt_stats; 4758 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 4759 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 4760 serr->ee.ee_data = skb_shinfo(skb)->tskey; 4761 if (sk_is_tcp(sk)) 4762 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 4763 } 4764 4765 err = sock_queue_err_skb(sk, skb); 4766 4767 if (err) 4768 kfree_skb(skb); 4769 } 4770 4771 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 4772 { 4773 bool ret; 4774 4775 if (likely(sysctl_tstamp_allow_data || tsonly)) 4776 return true; 4777 4778 read_lock_bh(&sk->sk_callback_lock); 4779 ret = sk->sk_socket && sk->sk_socket->file && 4780 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 4781 read_unlock_bh(&sk->sk_callback_lock); 4782 return ret; 4783 } 4784 4785 void skb_complete_tx_timestamp(struct sk_buff *skb, 4786 struct skb_shared_hwtstamps *hwtstamps) 4787 { 4788 struct sock *sk = skb->sk; 4789 4790 if (!skb_may_tx_timestamp(sk, false)) 4791 goto err; 4792 4793 /* Take a reference to prevent skb_orphan() from freeing the socket, 4794 * but only if the socket refcount is not zero. 4795 */ 4796 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4797 *skb_hwtstamps(skb) = *hwtstamps; 4798 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 4799 sock_put(sk); 4800 return; 4801 } 4802 4803 err: 4804 kfree_skb(skb); 4805 } 4806 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 4807 4808 void __skb_tstamp_tx(struct sk_buff *orig_skb, 4809 const struct sk_buff *ack_skb, 4810 struct skb_shared_hwtstamps *hwtstamps, 4811 struct sock *sk, int tstype) 4812 { 4813 struct sk_buff *skb; 4814 bool tsonly, opt_stats = false; 4815 4816 if (!sk) 4817 return; 4818 4819 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 4820 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 4821 return; 4822 4823 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 4824 if (!skb_may_tx_timestamp(sk, tsonly)) 4825 return; 4826 4827 if (tsonly) { 4828 #ifdef CONFIG_INET 4829 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 4830 sk_is_tcp(sk)) { 4831 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 4832 ack_skb); 4833 opt_stats = true; 4834 } else 4835 #endif 4836 skb = alloc_skb(0, GFP_ATOMIC); 4837 } else { 4838 skb = skb_clone(orig_skb, GFP_ATOMIC); 4839 } 4840 if (!skb) 4841 return; 4842 4843 if (tsonly) { 4844 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 4845 SKBTX_ANY_TSTAMP; 4846 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 4847 } 4848 4849 if (hwtstamps) 4850 *skb_hwtstamps(skb) = *hwtstamps; 4851 else 4852 __net_timestamp(skb); 4853 4854 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 4855 } 4856 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 4857 4858 void skb_tstamp_tx(struct sk_buff *orig_skb, 4859 struct skb_shared_hwtstamps *hwtstamps) 4860 { 4861 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 4862 SCM_TSTAMP_SND); 4863 } 4864 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 4865 4866 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 4867 { 4868 struct sock *sk = skb->sk; 4869 struct sock_exterr_skb *serr; 4870 int err = 1; 4871 4872 skb->wifi_acked_valid = 1; 4873 skb->wifi_acked = acked; 4874 4875 serr = SKB_EXT_ERR(skb); 4876 memset(serr, 0, sizeof(*serr)); 4877 serr->ee.ee_errno = ENOMSG; 4878 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 4879 4880 /* Take a reference to prevent skb_orphan() from freeing the socket, 4881 * but only if the socket refcount is not zero. 4882 */ 4883 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 4884 err = sock_queue_err_skb(sk, skb); 4885 sock_put(sk); 4886 } 4887 if (err) 4888 kfree_skb(skb); 4889 } 4890 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 4891 4892 /** 4893 * skb_partial_csum_set - set up and verify partial csum values for packet 4894 * @skb: the skb to set 4895 * @start: the number of bytes after skb->data to start checksumming. 4896 * @off: the offset from start to place the checksum. 4897 * 4898 * For untrusted partially-checksummed packets, we need to make sure the values 4899 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 4900 * 4901 * This function checks and sets those values and skb->ip_summed: if this 4902 * returns false you should drop the packet. 4903 */ 4904 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 4905 { 4906 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 4907 u32 csum_start = skb_headroom(skb) + (u32)start; 4908 4909 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) { 4910 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 4911 start, off, skb_headroom(skb), skb_headlen(skb)); 4912 return false; 4913 } 4914 skb->ip_summed = CHECKSUM_PARTIAL; 4915 skb->csum_start = csum_start; 4916 skb->csum_offset = off; 4917 skb_set_transport_header(skb, start); 4918 return true; 4919 } 4920 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 4921 4922 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 4923 unsigned int max) 4924 { 4925 if (skb_headlen(skb) >= len) 4926 return 0; 4927 4928 /* If we need to pullup then pullup to the max, so we 4929 * won't need to do it again. 4930 */ 4931 if (max > skb->len) 4932 max = skb->len; 4933 4934 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 4935 return -ENOMEM; 4936 4937 if (skb_headlen(skb) < len) 4938 return -EPROTO; 4939 4940 return 0; 4941 } 4942 4943 #define MAX_TCP_HDR_LEN (15 * 4) 4944 4945 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 4946 typeof(IPPROTO_IP) proto, 4947 unsigned int off) 4948 { 4949 int err; 4950 4951 switch (proto) { 4952 case IPPROTO_TCP: 4953 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4954 off + MAX_TCP_HDR_LEN); 4955 if (!err && !skb_partial_csum_set(skb, off, 4956 offsetof(struct tcphdr, 4957 check))) 4958 err = -EPROTO; 4959 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4960 4961 case IPPROTO_UDP: 4962 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4963 off + sizeof(struct udphdr)); 4964 if (!err && !skb_partial_csum_set(skb, off, 4965 offsetof(struct udphdr, 4966 check))) 4967 err = -EPROTO; 4968 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4969 } 4970 4971 return ERR_PTR(-EPROTO); 4972 } 4973 4974 /* This value should be large enough to cover a tagged ethernet header plus 4975 * maximally sized IP and TCP or UDP headers. 4976 */ 4977 #define MAX_IP_HDR_LEN 128 4978 4979 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4980 { 4981 unsigned int off; 4982 bool fragment; 4983 __sum16 *csum; 4984 int err; 4985 4986 fragment = false; 4987 4988 err = skb_maybe_pull_tail(skb, 4989 sizeof(struct iphdr), 4990 MAX_IP_HDR_LEN); 4991 if (err < 0) 4992 goto out; 4993 4994 if (ip_is_fragment(ip_hdr(skb))) 4995 fragment = true; 4996 4997 off = ip_hdrlen(skb); 4998 4999 err = -EPROTO; 5000 5001 if (fragment) 5002 goto out; 5003 5004 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5005 if (IS_ERR(csum)) 5006 return PTR_ERR(csum); 5007 5008 if (recalculate) 5009 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5010 ip_hdr(skb)->daddr, 5011 skb->len - off, 5012 ip_hdr(skb)->protocol, 0); 5013 err = 0; 5014 5015 out: 5016 return err; 5017 } 5018 5019 /* This value should be large enough to cover a tagged ethernet header plus 5020 * an IPv6 header, all options, and a maximal TCP or UDP header. 5021 */ 5022 #define MAX_IPV6_HDR_LEN 256 5023 5024 #define OPT_HDR(type, skb, off) \ 5025 (type *)(skb_network_header(skb) + (off)) 5026 5027 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5028 { 5029 int err; 5030 u8 nexthdr; 5031 unsigned int off; 5032 unsigned int len; 5033 bool fragment; 5034 bool done; 5035 __sum16 *csum; 5036 5037 fragment = false; 5038 done = false; 5039 5040 off = sizeof(struct ipv6hdr); 5041 5042 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5043 if (err < 0) 5044 goto out; 5045 5046 nexthdr = ipv6_hdr(skb)->nexthdr; 5047 5048 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5049 while (off <= len && !done) { 5050 switch (nexthdr) { 5051 case IPPROTO_DSTOPTS: 5052 case IPPROTO_HOPOPTS: 5053 case IPPROTO_ROUTING: { 5054 struct ipv6_opt_hdr *hp; 5055 5056 err = skb_maybe_pull_tail(skb, 5057 off + 5058 sizeof(struct ipv6_opt_hdr), 5059 MAX_IPV6_HDR_LEN); 5060 if (err < 0) 5061 goto out; 5062 5063 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5064 nexthdr = hp->nexthdr; 5065 off += ipv6_optlen(hp); 5066 break; 5067 } 5068 case IPPROTO_AH: { 5069 struct ip_auth_hdr *hp; 5070 5071 err = skb_maybe_pull_tail(skb, 5072 off + 5073 sizeof(struct ip_auth_hdr), 5074 MAX_IPV6_HDR_LEN); 5075 if (err < 0) 5076 goto out; 5077 5078 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5079 nexthdr = hp->nexthdr; 5080 off += ipv6_authlen(hp); 5081 break; 5082 } 5083 case IPPROTO_FRAGMENT: { 5084 struct frag_hdr *hp; 5085 5086 err = skb_maybe_pull_tail(skb, 5087 off + 5088 sizeof(struct frag_hdr), 5089 MAX_IPV6_HDR_LEN); 5090 if (err < 0) 5091 goto out; 5092 5093 hp = OPT_HDR(struct frag_hdr, skb, off); 5094 5095 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5096 fragment = true; 5097 5098 nexthdr = hp->nexthdr; 5099 off += sizeof(struct frag_hdr); 5100 break; 5101 } 5102 default: 5103 done = true; 5104 break; 5105 } 5106 } 5107 5108 err = -EPROTO; 5109 5110 if (!done || fragment) 5111 goto out; 5112 5113 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5114 if (IS_ERR(csum)) 5115 return PTR_ERR(csum); 5116 5117 if (recalculate) 5118 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5119 &ipv6_hdr(skb)->daddr, 5120 skb->len - off, nexthdr, 0); 5121 err = 0; 5122 5123 out: 5124 return err; 5125 } 5126 5127 /** 5128 * skb_checksum_setup - set up partial checksum offset 5129 * @skb: the skb to set up 5130 * @recalculate: if true the pseudo-header checksum will be recalculated 5131 */ 5132 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5133 { 5134 int err; 5135 5136 switch (skb->protocol) { 5137 case htons(ETH_P_IP): 5138 err = skb_checksum_setup_ipv4(skb, recalculate); 5139 break; 5140 5141 case htons(ETH_P_IPV6): 5142 err = skb_checksum_setup_ipv6(skb, recalculate); 5143 break; 5144 5145 default: 5146 err = -EPROTO; 5147 break; 5148 } 5149 5150 return err; 5151 } 5152 EXPORT_SYMBOL(skb_checksum_setup); 5153 5154 /** 5155 * skb_checksum_maybe_trim - maybe trims the given skb 5156 * @skb: the skb to check 5157 * @transport_len: the data length beyond the network header 5158 * 5159 * Checks whether the given skb has data beyond the given transport length. 5160 * If so, returns a cloned skb trimmed to this transport length. 5161 * Otherwise returns the provided skb. Returns NULL in error cases 5162 * (e.g. transport_len exceeds skb length or out-of-memory). 5163 * 5164 * Caller needs to set the skb transport header and free any returned skb if it 5165 * differs from the provided skb. 5166 */ 5167 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5168 unsigned int transport_len) 5169 { 5170 struct sk_buff *skb_chk; 5171 unsigned int len = skb_transport_offset(skb) + transport_len; 5172 int ret; 5173 5174 if (skb->len < len) 5175 return NULL; 5176 else if (skb->len == len) 5177 return skb; 5178 5179 skb_chk = skb_clone(skb, GFP_ATOMIC); 5180 if (!skb_chk) 5181 return NULL; 5182 5183 ret = pskb_trim_rcsum(skb_chk, len); 5184 if (ret) { 5185 kfree_skb(skb_chk); 5186 return NULL; 5187 } 5188 5189 return skb_chk; 5190 } 5191 5192 /** 5193 * skb_checksum_trimmed - validate checksum of an skb 5194 * @skb: the skb to check 5195 * @transport_len: the data length beyond the network header 5196 * @skb_chkf: checksum function to use 5197 * 5198 * Applies the given checksum function skb_chkf to the provided skb. 5199 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5200 * 5201 * If the skb has data beyond the given transport length, then a 5202 * trimmed & cloned skb is checked and returned. 5203 * 5204 * Caller needs to set the skb transport header and free any returned skb if it 5205 * differs from the provided skb. 5206 */ 5207 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5208 unsigned int transport_len, 5209 __sum16(*skb_chkf)(struct sk_buff *skb)) 5210 { 5211 struct sk_buff *skb_chk; 5212 unsigned int offset = skb_transport_offset(skb); 5213 __sum16 ret; 5214 5215 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5216 if (!skb_chk) 5217 goto err; 5218 5219 if (!pskb_may_pull(skb_chk, offset)) 5220 goto err; 5221 5222 skb_pull_rcsum(skb_chk, offset); 5223 ret = skb_chkf(skb_chk); 5224 skb_push_rcsum(skb_chk, offset); 5225 5226 if (ret) 5227 goto err; 5228 5229 return skb_chk; 5230 5231 err: 5232 if (skb_chk && skb_chk != skb) 5233 kfree_skb(skb_chk); 5234 5235 return NULL; 5236 5237 } 5238 EXPORT_SYMBOL(skb_checksum_trimmed); 5239 5240 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5241 { 5242 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5243 skb->dev->name); 5244 } 5245 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5246 5247 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5248 { 5249 if (head_stolen) { 5250 skb_release_head_state(skb); 5251 kmem_cache_free(skbuff_head_cache, skb); 5252 } else { 5253 __kfree_skb(skb); 5254 } 5255 } 5256 EXPORT_SYMBOL(kfree_skb_partial); 5257 5258 /** 5259 * skb_try_coalesce - try to merge skb to prior one 5260 * @to: prior buffer 5261 * @from: buffer to add 5262 * @fragstolen: pointer to boolean 5263 * @delta_truesize: how much more was allocated than was requested 5264 */ 5265 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5266 bool *fragstolen, int *delta_truesize) 5267 { 5268 struct skb_shared_info *to_shinfo, *from_shinfo; 5269 int i, delta, len = from->len; 5270 5271 *fragstolen = false; 5272 5273 if (skb_cloned(to)) 5274 return false; 5275 5276 /* In general, avoid mixing slab allocated and page_pool allocated 5277 * pages within the same SKB. However when @to is not pp_recycle and 5278 * @from is cloned, we can transition frag pages from page_pool to 5279 * reference counted. 5280 * 5281 * On the other hand, don't allow coalescing two pp_recycle SKBs if 5282 * @from is cloned, in case the SKB is using page_pool fragment 5283 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5284 * references for cloned SKBs at the moment that would result in 5285 * inconsistent reference counts. 5286 */ 5287 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from))) 5288 return false; 5289 5290 if (len <= skb_tailroom(to)) { 5291 if (len) 5292 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5293 *delta_truesize = 0; 5294 return true; 5295 } 5296 5297 to_shinfo = skb_shinfo(to); 5298 from_shinfo = skb_shinfo(from); 5299 if (to_shinfo->frag_list || from_shinfo->frag_list) 5300 return false; 5301 if (skb_zcopy(to) || skb_zcopy(from)) 5302 return false; 5303 5304 if (skb_headlen(from) != 0) { 5305 struct page *page; 5306 unsigned int offset; 5307 5308 if (to_shinfo->nr_frags + 5309 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5310 return false; 5311 5312 if (skb_head_is_locked(from)) 5313 return false; 5314 5315 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5316 5317 page = virt_to_head_page(from->head); 5318 offset = from->data - (unsigned char *)page_address(page); 5319 5320 skb_fill_page_desc(to, to_shinfo->nr_frags, 5321 page, offset, skb_headlen(from)); 5322 *fragstolen = true; 5323 } else { 5324 if (to_shinfo->nr_frags + 5325 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5326 return false; 5327 5328 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5329 } 5330 5331 WARN_ON_ONCE(delta < len); 5332 5333 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5334 from_shinfo->frags, 5335 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5336 to_shinfo->nr_frags += from_shinfo->nr_frags; 5337 5338 if (!skb_cloned(from)) 5339 from_shinfo->nr_frags = 0; 5340 5341 /* if the skb is not cloned this does nothing 5342 * since we set nr_frags to 0. 5343 */ 5344 for (i = 0; i < from_shinfo->nr_frags; i++) 5345 __skb_frag_ref(&from_shinfo->frags[i]); 5346 5347 to->truesize += delta; 5348 to->len += len; 5349 to->data_len += len; 5350 5351 *delta_truesize = delta; 5352 return true; 5353 } 5354 EXPORT_SYMBOL(skb_try_coalesce); 5355 5356 /** 5357 * skb_scrub_packet - scrub an skb 5358 * 5359 * @skb: buffer to clean 5360 * @xnet: packet is crossing netns 5361 * 5362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5363 * into/from a tunnel. Some information have to be cleared during these 5364 * operations. 5365 * skb_scrub_packet can also be used to clean a skb before injecting it in 5366 * another namespace (@xnet == true). We have to clear all information in the 5367 * skb that could impact namespace isolation. 5368 */ 5369 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5370 { 5371 skb->pkt_type = PACKET_HOST; 5372 skb->skb_iif = 0; 5373 skb->ignore_df = 0; 5374 skb_dst_drop(skb); 5375 skb_ext_reset(skb); 5376 nf_reset_ct(skb); 5377 nf_reset_trace(skb); 5378 5379 #ifdef CONFIG_NET_SWITCHDEV 5380 skb->offload_fwd_mark = 0; 5381 skb->offload_l3_fwd_mark = 0; 5382 #endif 5383 5384 if (!xnet) 5385 return; 5386 5387 ipvs_reset(skb); 5388 skb->mark = 0; 5389 skb_clear_tstamp(skb); 5390 } 5391 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5392 5393 /** 5394 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 5395 * 5396 * @skb: GSO skb 5397 * 5398 * skb_gso_transport_seglen is used to determine the real size of the 5399 * individual segments, including Layer4 headers (TCP/UDP). 5400 * 5401 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 5402 */ 5403 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 5404 { 5405 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5406 unsigned int thlen = 0; 5407 5408 if (skb->encapsulation) { 5409 thlen = skb_inner_transport_header(skb) - 5410 skb_transport_header(skb); 5411 5412 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 5413 thlen += inner_tcp_hdrlen(skb); 5414 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 5415 thlen = tcp_hdrlen(skb); 5416 } else if (unlikely(skb_is_gso_sctp(skb))) { 5417 thlen = sizeof(struct sctphdr); 5418 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 5419 thlen = sizeof(struct udphdr); 5420 } 5421 /* UFO sets gso_size to the size of the fragmentation 5422 * payload, i.e. the size of the L4 (UDP) header is already 5423 * accounted for. 5424 */ 5425 return thlen + shinfo->gso_size; 5426 } 5427 5428 /** 5429 * skb_gso_network_seglen - Return length of individual segments of a gso packet 5430 * 5431 * @skb: GSO skb 5432 * 5433 * skb_gso_network_seglen is used to determine the real size of the 5434 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 5435 * 5436 * The MAC/L2 header is not accounted for. 5437 */ 5438 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 5439 { 5440 unsigned int hdr_len = skb_transport_header(skb) - 5441 skb_network_header(skb); 5442 5443 return hdr_len + skb_gso_transport_seglen(skb); 5444 } 5445 5446 /** 5447 * skb_gso_mac_seglen - Return length of individual segments of a gso packet 5448 * 5449 * @skb: GSO skb 5450 * 5451 * skb_gso_mac_seglen is used to determine the real size of the 5452 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4 5453 * headers (TCP/UDP). 5454 */ 5455 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) 5456 { 5457 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 5458 5459 return hdr_len + skb_gso_transport_seglen(skb); 5460 } 5461 5462 /** 5463 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS 5464 * 5465 * There are a couple of instances where we have a GSO skb, and we 5466 * want to determine what size it would be after it is segmented. 5467 * 5468 * We might want to check: 5469 * - L3+L4+payload size (e.g. IP forwarding) 5470 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver) 5471 * 5472 * This is a helper to do that correctly considering GSO_BY_FRAGS. 5473 * 5474 * @skb: GSO skb 5475 * 5476 * @seg_len: The segmented length (from skb_gso_*_seglen). In the 5477 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS]. 5478 * 5479 * @max_len: The maximum permissible length. 5480 * 5481 * Returns true if the segmented length <= max length. 5482 */ 5483 static inline bool skb_gso_size_check(const struct sk_buff *skb, 5484 unsigned int seg_len, 5485 unsigned int max_len) { 5486 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5487 const struct sk_buff *iter; 5488 5489 if (shinfo->gso_size != GSO_BY_FRAGS) 5490 return seg_len <= max_len; 5491 5492 /* Undo this so we can re-use header sizes */ 5493 seg_len -= GSO_BY_FRAGS; 5494 5495 skb_walk_frags(skb, iter) { 5496 if (seg_len + skb_headlen(iter) > max_len) 5497 return false; 5498 } 5499 5500 return true; 5501 } 5502 5503 /** 5504 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU? 5505 * 5506 * @skb: GSO skb 5507 * @mtu: MTU to validate against 5508 * 5509 * skb_gso_validate_network_len validates if a given skb will fit a 5510 * wanted MTU once split. It considers L3 headers, L4 headers, and the 5511 * payload. 5512 */ 5513 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu) 5514 { 5515 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu); 5516 } 5517 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len); 5518 5519 /** 5520 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length? 5521 * 5522 * @skb: GSO skb 5523 * @len: length to validate against 5524 * 5525 * skb_gso_validate_mac_len validates if a given skb will fit a wanted 5526 * length once split, including L2, L3 and L4 headers and the payload. 5527 */ 5528 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len) 5529 { 5530 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len); 5531 } 5532 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len); 5533 5534 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5535 { 5536 int mac_len, meta_len; 5537 void *meta; 5538 5539 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5540 kfree_skb(skb); 5541 return NULL; 5542 } 5543 5544 mac_len = skb->data - skb_mac_header(skb); 5545 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5546 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5547 mac_len - VLAN_HLEN - ETH_TLEN); 5548 } 5549 5550 meta_len = skb_metadata_len(skb); 5551 if (meta_len) { 5552 meta = skb_metadata_end(skb) - meta_len; 5553 memmove(meta + VLAN_HLEN, meta, meta_len); 5554 } 5555 5556 skb->mac_header += VLAN_HLEN; 5557 return skb; 5558 } 5559 5560 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5561 { 5562 struct vlan_hdr *vhdr; 5563 u16 vlan_tci; 5564 5565 if (unlikely(skb_vlan_tag_present(skb))) { 5566 /* vlan_tci is already set-up so leave this for another time */ 5567 return skb; 5568 } 5569 5570 skb = skb_share_check(skb, GFP_ATOMIC); 5571 if (unlikely(!skb)) 5572 goto err_free; 5573 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5574 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5575 goto err_free; 5576 5577 vhdr = (struct vlan_hdr *)skb->data; 5578 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5579 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5580 5581 skb_pull_rcsum(skb, VLAN_HLEN); 5582 vlan_set_encap_proto(skb, vhdr); 5583 5584 skb = skb_reorder_vlan_header(skb); 5585 if (unlikely(!skb)) 5586 goto err_free; 5587 5588 skb_reset_network_header(skb); 5589 if (!skb_transport_header_was_set(skb)) 5590 skb_reset_transport_header(skb); 5591 skb_reset_mac_len(skb); 5592 5593 return skb; 5594 5595 err_free: 5596 kfree_skb(skb); 5597 return NULL; 5598 } 5599 EXPORT_SYMBOL(skb_vlan_untag); 5600 5601 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5602 { 5603 if (!pskb_may_pull(skb, write_len)) 5604 return -ENOMEM; 5605 5606 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5607 return 0; 5608 5609 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5610 } 5611 EXPORT_SYMBOL(skb_ensure_writable); 5612 5613 /* remove VLAN header from packet and update csum accordingly. 5614 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5615 */ 5616 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5617 { 5618 struct vlan_hdr *vhdr; 5619 int offset = skb->data - skb_mac_header(skb); 5620 int err; 5621 5622 if (WARN_ONCE(offset, 5623 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5624 offset)) { 5625 return -EINVAL; 5626 } 5627 5628 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5629 if (unlikely(err)) 5630 return err; 5631 5632 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5633 5634 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 5635 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 5636 5637 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 5638 __skb_pull(skb, VLAN_HLEN); 5639 5640 vlan_set_encap_proto(skb, vhdr); 5641 skb->mac_header += VLAN_HLEN; 5642 5643 if (skb_network_offset(skb) < ETH_HLEN) 5644 skb_set_network_header(skb, ETH_HLEN); 5645 5646 skb_reset_mac_len(skb); 5647 5648 return err; 5649 } 5650 EXPORT_SYMBOL(__skb_vlan_pop); 5651 5652 /* Pop a vlan tag either from hwaccel or from payload. 5653 * Expects skb->data at mac header. 5654 */ 5655 int skb_vlan_pop(struct sk_buff *skb) 5656 { 5657 u16 vlan_tci; 5658 __be16 vlan_proto; 5659 int err; 5660 5661 if (likely(skb_vlan_tag_present(skb))) { 5662 __vlan_hwaccel_clear_tag(skb); 5663 } else { 5664 if (unlikely(!eth_type_vlan(skb->protocol))) 5665 return 0; 5666 5667 err = __skb_vlan_pop(skb, &vlan_tci); 5668 if (err) 5669 return err; 5670 } 5671 /* move next vlan tag to hw accel tag */ 5672 if (likely(!eth_type_vlan(skb->protocol))) 5673 return 0; 5674 5675 vlan_proto = skb->protocol; 5676 err = __skb_vlan_pop(skb, &vlan_tci); 5677 if (unlikely(err)) 5678 return err; 5679 5680 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5681 return 0; 5682 } 5683 EXPORT_SYMBOL(skb_vlan_pop); 5684 5685 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5686 * Expects skb->data at mac header. 5687 */ 5688 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5689 { 5690 if (skb_vlan_tag_present(skb)) { 5691 int offset = skb->data - skb_mac_header(skb); 5692 int err; 5693 5694 if (WARN_ONCE(offset, 5695 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5696 offset)) { 5697 return -EINVAL; 5698 } 5699 5700 err = __vlan_insert_tag(skb, skb->vlan_proto, 5701 skb_vlan_tag_get(skb)); 5702 if (err) 5703 return err; 5704 5705 skb->protocol = skb->vlan_proto; 5706 skb->mac_len += VLAN_HLEN; 5707 5708 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5709 } 5710 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5711 return 0; 5712 } 5713 EXPORT_SYMBOL(skb_vlan_push); 5714 5715 /** 5716 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5717 * 5718 * @skb: Socket buffer to modify 5719 * 5720 * Drop the Ethernet header of @skb. 5721 * 5722 * Expects that skb->data points to the mac header and that no VLAN tags are 5723 * present. 5724 * 5725 * Returns 0 on success, -errno otherwise. 5726 */ 5727 int skb_eth_pop(struct sk_buff *skb) 5728 { 5729 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 5730 skb_network_offset(skb) < ETH_HLEN) 5731 return -EPROTO; 5732 5733 skb_pull_rcsum(skb, ETH_HLEN); 5734 skb_reset_mac_header(skb); 5735 skb_reset_mac_len(skb); 5736 5737 return 0; 5738 } 5739 EXPORT_SYMBOL(skb_eth_pop); 5740 5741 /** 5742 * skb_eth_push() - Add a new Ethernet header at the head of a packet 5743 * 5744 * @skb: Socket buffer to modify 5745 * @dst: Destination MAC address of the new header 5746 * @src: Source MAC address of the new header 5747 * 5748 * Prepend @skb with a new Ethernet header. 5749 * 5750 * Expects that skb->data points to the mac header, which must be empty. 5751 * 5752 * Returns 0 on success, -errno otherwise. 5753 */ 5754 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 5755 const unsigned char *src) 5756 { 5757 struct ethhdr *eth; 5758 int err; 5759 5760 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 5761 return -EPROTO; 5762 5763 err = skb_cow_head(skb, sizeof(*eth)); 5764 if (err < 0) 5765 return err; 5766 5767 skb_push(skb, sizeof(*eth)); 5768 skb_reset_mac_header(skb); 5769 skb_reset_mac_len(skb); 5770 5771 eth = eth_hdr(skb); 5772 ether_addr_copy(eth->h_dest, dst); 5773 ether_addr_copy(eth->h_source, src); 5774 eth->h_proto = skb->protocol; 5775 5776 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 5777 5778 return 0; 5779 } 5780 EXPORT_SYMBOL(skb_eth_push); 5781 5782 /* Update the ethertype of hdr and the skb csum value if required. */ 5783 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 5784 __be16 ethertype) 5785 { 5786 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5787 __be16 diff[] = { ~hdr->h_proto, ethertype }; 5788 5789 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5790 } 5791 5792 hdr->h_proto = ethertype; 5793 } 5794 5795 /** 5796 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 5797 * the packet 5798 * 5799 * @skb: buffer 5800 * @mpls_lse: MPLS label stack entry to push 5801 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 5802 * @mac_len: length of the MAC header 5803 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 5804 * ethernet 5805 * 5806 * Expects skb->data at mac header. 5807 * 5808 * Returns 0 on success, -errno otherwise. 5809 */ 5810 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 5811 int mac_len, bool ethernet) 5812 { 5813 struct mpls_shim_hdr *lse; 5814 int err; 5815 5816 if (unlikely(!eth_p_mpls(mpls_proto))) 5817 return -EINVAL; 5818 5819 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 5820 if (skb->encapsulation) 5821 return -EINVAL; 5822 5823 err = skb_cow_head(skb, MPLS_HLEN); 5824 if (unlikely(err)) 5825 return err; 5826 5827 if (!skb->inner_protocol) { 5828 skb_set_inner_network_header(skb, skb_network_offset(skb)); 5829 skb_set_inner_protocol(skb, skb->protocol); 5830 } 5831 5832 skb_push(skb, MPLS_HLEN); 5833 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 5834 mac_len); 5835 skb_reset_mac_header(skb); 5836 skb_set_network_header(skb, mac_len); 5837 skb_reset_mac_len(skb); 5838 5839 lse = mpls_hdr(skb); 5840 lse->label_stack_entry = mpls_lse; 5841 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 5842 5843 if (ethernet && mac_len >= ETH_HLEN) 5844 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 5845 skb->protocol = mpls_proto; 5846 5847 return 0; 5848 } 5849 EXPORT_SYMBOL_GPL(skb_mpls_push); 5850 5851 /** 5852 * skb_mpls_pop() - pop the outermost MPLS header 5853 * 5854 * @skb: buffer 5855 * @next_proto: ethertype of header after popped MPLS header 5856 * @mac_len: length of the MAC header 5857 * @ethernet: flag to indicate if the packet is ethernet 5858 * 5859 * Expects skb->data at mac header. 5860 * 5861 * Returns 0 on success, -errno otherwise. 5862 */ 5863 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 5864 bool ethernet) 5865 { 5866 int err; 5867 5868 if (unlikely(!eth_p_mpls(skb->protocol))) 5869 return 0; 5870 5871 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 5872 if (unlikely(err)) 5873 return err; 5874 5875 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 5876 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 5877 mac_len); 5878 5879 __skb_pull(skb, MPLS_HLEN); 5880 skb_reset_mac_header(skb); 5881 skb_set_network_header(skb, mac_len); 5882 5883 if (ethernet && mac_len >= ETH_HLEN) { 5884 struct ethhdr *hdr; 5885 5886 /* use mpls_hdr() to get ethertype to account for VLANs. */ 5887 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 5888 skb_mod_eth_type(skb, hdr, next_proto); 5889 } 5890 skb->protocol = next_proto; 5891 5892 return 0; 5893 } 5894 EXPORT_SYMBOL_GPL(skb_mpls_pop); 5895 5896 /** 5897 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 5898 * 5899 * @skb: buffer 5900 * @mpls_lse: new MPLS label stack entry to update to 5901 * 5902 * Expects skb->data at mac header. 5903 * 5904 * Returns 0 on success, -errno otherwise. 5905 */ 5906 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 5907 { 5908 int err; 5909 5910 if (unlikely(!eth_p_mpls(skb->protocol))) 5911 return -EINVAL; 5912 5913 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 5914 if (unlikely(err)) 5915 return err; 5916 5917 if (skb->ip_summed == CHECKSUM_COMPLETE) { 5918 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 5919 5920 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 5921 } 5922 5923 mpls_hdr(skb)->label_stack_entry = mpls_lse; 5924 5925 return 0; 5926 } 5927 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 5928 5929 /** 5930 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 5931 * 5932 * @skb: buffer 5933 * 5934 * Expects skb->data at mac header. 5935 * 5936 * Returns 0 on success, -errno otherwise. 5937 */ 5938 int skb_mpls_dec_ttl(struct sk_buff *skb) 5939 { 5940 u32 lse; 5941 u8 ttl; 5942 5943 if (unlikely(!eth_p_mpls(skb->protocol))) 5944 return -EINVAL; 5945 5946 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 5947 return -ENOMEM; 5948 5949 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 5950 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 5951 if (!--ttl) 5952 return -EINVAL; 5953 5954 lse &= ~MPLS_LS_TTL_MASK; 5955 lse |= ttl << MPLS_LS_TTL_SHIFT; 5956 5957 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 5958 } 5959 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 5960 5961 /** 5962 * alloc_skb_with_frags - allocate skb with page frags 5963 * 5964 * @header_len: size of linear part 5965 * @data_len: needed length in frags 5966 * @max_page_order: max page order desired. 5967 * @errcode: pointer to error code if any 5968 * @gfp_mask: allocation mask 5969 * 5970 * This can be used to allocate a paged skb, given a maximal order for frags. 5971 */ 5972 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 5973 unsigned long data_len, 5974 int max_page_order, 5975 int *errcode, 5976 gfp_t gfp_mask) 5977 { 5978 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 5979 unsigned long chunk; 5980 struct sk_buff *skb; 5981 struct page *page; 5982 int i; 5983 5984 *errcode = -EMSGSIZE; 5985 /* Note this test could be relaxed, if we succeed to allocate 5986 * high order pages... 5987 */ 5988 if (npages > MAX_SKB_FRAGS) 5989 return NULL; 5990 5991 *errcode = -ENOBUFS; 5992 skb = alloc_skb(header_len, gfp_mask); 5993 if (!skb) 5994 return NULL; 5995 5996 skb->truesize += npages << PAGE_SHIFT; 5997 5998 for (i = 0; npages > 0; i++) { 5999 int order = max_page_order; 6000 6001 while (order) { 6002 if (npages >= 1 << order) { 6003 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6004 __GFP_COMP | 6005 __GFP_NOWARN, 6006 order); 6007 if (page) 6008 goto fill_page; 6009 /* Do not retry other high order allocations */ 6010 order = 1; 6011 max_page_order = 0; 6012 } 6013 order--; 6014 } 6015 page = alloc_page(gfp_mask); 6016 if (!page) 6017 goto failure; 6018 fill_page: 6019 chunk = min_t(unsigned long, data_len, 6020 PAGE_SIZE << order); 6021 skb_fill_page_desc(skb, i, page, 0, chunk); 6022 data_len -= chunk; 6023 npages -= 1 << order; 6024 } 6025 return skb; 6026 6027 failure: 6028 kfree_skb(skb); 6029 return NULL; 6030 } 6031 EXPORT_SYMBOL(alloc_skb_with_frags); 6032 6033 /* carve out the first off bytes from skb when off < headlen */ 6034 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6035 const int headlen, gfp_t gfp_mask) 6036 { 6037 int i; 6038 int size = skb_end_offset(skb); 6039 int new_hlen = headlen - off; 6040 u8 *data; 6041 6042 size = SKB_DATA_ALIGN(size); 6043 6044 if (skb_pfmemalloc(skb)) 6045 gfp_mask |= __GFP_MEMALLOC; 6046 data = kmalloc_reserve(size + 6047 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6048 gfp_mask, NUMA_NO_NODE, NULL); 6049 if (!data) 6050 return -ENOMEM; 6051 6052 size = SKB_WITH_OVERHEAD(ksize(data)); 6053 6054 /* Copy real data, and all frags */ 6055 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6056 skb->len -= off; 6057 6058 memcpy((struct skb_shared_info *)(data + size), 6059 skb_shinfo(skb), 6060 offsetof(struct skb_shared_info, 6061 frags[skb_shinfo(skb)->nr_frags])); 6062 if (skb_cloned(skb)) { 6063 /* drop the old head gracefully */ 6064 if (skb_orphan_frags(skb, gfp_mask)) { 6065 kfree(data); 6066 return -ENOMEM; 6067 } 6068 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6069 skb_frag_ref(skb, i); 6070 if (skb_has_frag_list(skb)) 6071 skb_clone_fraglist(skb); 6072 skb_release_data(skb); 6073 } else { 6074 /* we can reuse existing recount- all we did was 6075 * relocate values 6076 */ 6077 skb_free_head(skb); 6078 } 6079 6080 skb->head = data; 6081 skb->data = data; 6082 skb->head_frag = 0; 6083 skb_set_end_offset(skb, size); 6084 skb_set_tail_pointer(skb, skb_headlen(skb)); 6085 skb_headers_offset_update(skb, 0); 6086 skb->cloned = 0; 6087 skb->hdr_len = 0; 6088 skb->nohdr = 0; 6089 atomic_set(&skb_shinfo(skb)->dataref, 1); 6090 6091 return 0; 6092 } 6093 6094 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6095 6096 /* carve out the first eat bytes from skb's frag_list. May recurse into 6097 * pskb_carve() 6098 */ 6099 static int pskb_carve_frag_list(struct sk_buff *skb, 6100 struct skb_shared_info *shinfo, int eat, 6101 gfp_t gfp_mask) 6102 { 6103 struct sk_buff *list = shinfo->frag_list; 6104 struct sk_buff *clone = NULL; 6105 struct sk_buff *insp = NULL; 6106 6107 do { 6108 if (!list) { 6109 pr_err("Not enough bytes to eat. Want %d\n", eat); 6110 return -EFAULT; 6111 } 6112 if (list->len <= eat) { 6113 /* Eaten as whole. */ 6114 eat -= list->len; 6115 list = list->next; 6116 insp = list; 6117 } else { 6118 /* Eaten partially. */ 6119 if (skb_shared(list)) { 6120 clone = skb_clone(list, gfp_mask); 6121 if (!clone) 6122 return -ENOMEM; 6123 insp = list->next; 6124 list = clone; 6125 } else { 6126 /* This may be pulled without problems. */ 6127 insp = list; 6128 } 6129 if (pskb_carve(list, eat, gfp_mask) < 0) { 6130 kfree_skb(clone); 6131 return -ENOMEM; 6132 } 6133 break; 6134 } 6135 } while (eat); 6136 6137 /* Free pulled out fragments. */ 6138 while ((list = shinfo->frag_list) != insp) { 6139 shinfo->frag_list = list->next; 6140 consume_skb(list); 6141 } 6142 /* And insert new clone at head. */ 6143 if (clone) { 6144 clone->next = list; 6145 shinfo->frag_list = clone; 6146 } 6147 return 0; 6148 } 6149 6150 /* carve off first len bytes from skb. Split line (off) is in the 6151 * non-linear part of skb 6152 */ 6153 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6154 int pos, gfp_t gfp_mask) 6155 { 6156 int i, k = 0; 6157 int size = skb_end_offset(skb); 6158 u8 *data; 6159 const int nfrags = skb_shinfo(skb)->nr_frags; 6160 struct skb_shared_info *shinfo; 6161 6162 size = SKB_DATA_ALIGN(size); 6163 6164 if (skb_pfmemalloc(skb)) 6165 gfp_mask |= __GFP_MEMALLOC; 6166 data = kmalloc_reserve(size + 6167 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 6168 gfp_mask, NUMA_NO_NODE, NULL); 6169 if (!data) 6170 return -ENOMEM; 6171 6172 size = SKB_WITH_OVERHEAD(ksize(data)); 6173 6174 memcpy((struct skb_shared_info *)(data + size), 6175 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6176 if (skb_orphan_frags(skb, gfp_mask)) { 6177 kfree(data); 6178 return -ENOMEM; 6179 } 6180 shinfo = (struct skb_shared_info *)(data + size); 6181 for (i = 0; i < nfrags; i++) { 6182 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6183 6184 if (pos + fsize > off) { 6185 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6186 6187 if (pos < off) { 6188 /* Split frag. 6189 * We have two variants in this case: 6190 * 1. Move all the frag to the second 6191 * part, if it is possible. F.e. 6192 * this approach is mandatory for TUX, 6193 * where splitting is expensive. 6194 * 2. Split is accurately. We make this. 6195 */ 6196 skb_frag_off_add(&shinfo->frags[0], off - pos); 6197 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6198 } 6199 skb_frag_ref(skb, i); 6200 k++; 6201 } 6202 pos += fsize; 6203 } 6204 shinfo->nr_frags = k; 6205 if (skb_has_frag_list(skb)) 6206 skb_clone_fraglist(skb); 6207 6208 /* split line is in frag list */ 6209 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6210 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6211 if (skb_has_frag_list(skb)) 6212 kfree_skb_list(skb_shinfo(skb)->frag_list); 6213 kfree(data); 6214 return -ENOMEM; 6215 } 6216 skb_release_data(skb); 6217 6218 skb->head = data; 6219 skb->head_frag = 0; 6220 skb->data = data; 6221 skb_set_end_offset(skb, size); 6222 skb_reset_tail_pointer(skb); 6223 skb_headers_offset_update(skb, 0); 6224 skb->cloned = 0; 6225 skb->hdr_len = 0; 6226 skb->nohdr = 0; 6227 skb->len -= off; 6228 skb->data_len = skb->len; 6229 atomic_set(&skb_shinfo(skb)->dataref, 1); 6230 return 0; 6231 } 6232 6233 /* remove len bytes from the beginning of the skb */ 6234 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6235 { 6236 int headlen = skb_headlen(skb); 6237 6238 if (len < headlen) 6239 return pskb_carve_inside_header(skb, len, headlen, gfp); 6240 else 6241 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6242 } 6243 6244 /* Extract to_copy bytes starting at off from skb, and return this in 6245 * a new skb 6246 */ 6247 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6248 int to_copy, gfp_t gfp) 6249 { 6250 struct sk_buff *clone = skb_clone(skb, gfp); 6251 6252 if (!clone) 6253 return NULL; 6254 6255 if (pskb_carve(clone, off, gfp) < 0 || 6256 pskb_trim(clone, to_copy)) { 6257 kfree_skb(clone); 6258 return NULL; 6259 } 6260 return clone; 6261 } 6262 EXPORT_SYMBOL(pskb_extract); 6263 6264 /** 6265 * skb_condense - try to get rid of fragments/frag_list if possible 6266 * @skb: buffer 6267 * 6268 * Can be used to save memory before skb is added to a busy queue. 6269 * If packet has bytes in frags and enough tail room in skb->head, 6270 * pull all of them, so that we can free the frags right now and adjust 6271 * truesize. 6272 * Notes: 6273 * We do not reallocate skb->head thus can not fail. 6274 * Caller must re-evaluate skb->truesize if needed. 6275 */ 6276 void skb_condense(struct sk_buff *skb) 6277 { 6278 if (skb->data_len) { 6279 if (skb->data_len > skb->end - skb->tail || 6280 skb_cloned(skb)) 6281 return; 6282 6283 /* Nice, we can free page frag(s) right now */ 6284 __pskb_pull_tail(skb, skb->data_len); 6285 } 6286 /* At this point, skb->truesize might be over estimated, 6287 * because skb had a fragment, and fragments do not tell 6288 * their truesize. 6289 * When we pulled its content into skb->head, fragment 6290 * was freed, but __pskb_pull_tail() could not possibly 6291 * adjust skb->truesize, not knowing the frag truesize. 6292 */ 6293 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6294 } 6295 6296 #ifdef CONFIG_SKB_EXTENSIONS 6297 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6298 { 6299 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6300 } 6301 6302 /** 6303 * __skb_ext_alloc - allocate a new skb extensions storage 6304 * 6305 * @flags: See kmalloc(). 6306 * 6307 * Returns the newly allocated pointer. The pointer can later attached to a 6308 * skb via __skb_ext_set(). 6309 * Note: caller must handle the skb_ext as an opaque data. 6310 */ 6311 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6312 { 6313 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6314 6315 if (new) { 6316 memset(new->offset, 0, sizeof(new->offset)); 6317 refcount_set(&new->refcnt, 1); 6318 } 6319 6320 return new; 6321 } 6322 6323 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6324 unsigned int old_active) 6325 { 6326 struct skb_ext *new; 6327 6328 if (refcount_read(&old->refcnt) == 1) 6329 return old; 6330 6331 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6332 if (!new) 6333 return NULL; 6334 6335 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6336 refcount_set(&new->refcnt, 1); 6337 6338 #ifdef CONFIG_XFRM 6339 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6340 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6341 unsigned int i; 6342 6343 for (i = 0; i < sp->len; i++) 6344 xfrm_state_hold(sp->xvec[i]); 6345 } 6346 #endif 6347 __skb_ext_put(old); 6348 return new; 6349 } 6350 6351 /** 6352 * __skb_ext_set - attach the specified extension storage to this skb 6353 * @skb: buffer 6354 * @id: extension id 6355 * @ext: extension storage previously allocated via __skb_ext_alloc() 6356 * 6357 * Existing extensions, if any, are cleared. 6358 * 6359 * Returns the pointer to the extension. 6360 */ 6361 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6362 struct skb_ext *ext) 6363 { 6364 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6365 6366 skb_ext_put(skb); 6367 newlen = newoff + skb_ext_type_len[id]; 6368 ext->chunks = newlen; 6369 ext->offset[id] = newoff; 6370 skb->extensions = ext; 6371 skb->active_extensions = 1 << id; 6372 return skb_ext_get_ptr(ext, id); 6373 } 6374 6375 /** 6376 * skb_ext_add - allocate space for given extension, COW if needed 6377 * @skb: buffer 6378 * @id: extension to allocate space for 6379 * 6380 * Allocates enough space for the given extension. 6381 * If the extension is already present, a pointer to that extension 6382 * is returned. 6383 * 6384 * If the skb was cloned, COW applies and the returned memory can be 6385 * modified without changing the extension space of clones buffers. 6386 * 6387 * Returns pointer to the extension or NULL on allocation failure. 6388 */ 6389 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6390 { 6391 struct skb_ext *new, *old = NULL; 6392 unsigned int newlen, newoff; 6393 6394 if (skb->active_extensions) { 6395 old = skb->extensions; 6396 6397 new = skb_ext_maybe_cow(old, skb->active_extensions); 6398 if (!new) 6399 return NULL; 6400 6401 if (__skb_ext_exist(new, id)) 6402 goto set_active; 6403 6404 newoff = new->chunks; 6405 } else { 6406 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6407 6408 new = __skb_ext_alloc(GFP_ATOMIC); 6409 if (!new) 6410 return NULL; 6411 } 6412 6413 newlen = newoff + skb_ext_type_len[id]; 6414 new->chunks = newlen; 6415 new->offset[id] = newoff; 6416 set_active: 6417 skb->slow_gro = 1; 6418 skb->extensions = new; 6419 skb->active_extensions |= 1 << id; 6420 return skb_ext_get_ptr(new, id); 6421 } 6422 EXPORT_SYMBOL(skb_ext_add); 6423 6424 #ifdef CONFIG_XFRM 6425 static void skb_ext_put_sp(struct sec_path *sp) 6426 { 6427 unsigned int i; 6428 6429 for (i = 0; i < sp->len; i++) 6430 xfrm_state_put(sp->xvec[i]); 6431 } 6432 #endif 6433 6434 #ifdef CONFIG_MCTP_FLOWS 6435 static void skb_ext_put_mctp(struct mctp_flow *flow) 6436 { 6437 if (flow->key) 6438 mctp_key_unref(flow->key); 6439 } 6440 #endif 6441 6442 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6443 { 6444 struct skb_ext *ext = skb->extensions; 6445 6446 skb->active_extensions &= ~(1 << id); 6447 if (skb->active_extensions == 0) { 6448 skb->extensions = NULL; 6449 __skb_ext_put(ext); 6450 #ifdef CONFIG_XFRM 6451 } else if (id == SKB_EXT_SEC_PATH && 6452 refcount_read(&ext->refcnt) == 1) { 6453 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6454 6455 skb_ext_put_sp(sp); 6456 sp->len = 0; 6457 #endif 6458 } 6459 } 6460 EXPORT_SYMBOL(__skb_ext_del); 6461 6462 void __skb_ext_put(struct skb_ext *ext) 6463 { 6464 /* If this is last clone, nothing can increment 6465 * it after check passes. Avoids one atomic op. 6466 */ 6467 if (refcount_read(&ext->refcnt) == 1) 6468 goto free_now; 6469 6470 if (!refcount_dec_and_test(&ext->refcnt)) 6471 return; 6472 free_now: 6473 #ifdef CONFIG_XFRM 6474 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6475 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6476 #endif 6477 #ifdef CONFIG_MCTP_FLOWS 6478 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6479 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6480 #endif 6481 6482 kmem_cache_free(skbuff_ext_cache, ext); 6483 } 6484 EXPORT_SYMBOL(__skb_ext_put); 6485 #endif /* CONFIG_SKB_EXTENSIONS */ 6486 6487 /** 6488 * skb_attempt_defer_free - queue skb for remote freeing 6489 * @skb: buffer 6490 * 6491 * Put @skb in a per-cpu list, using the cpu which 6492 * allocated the skb/pages to reduce false sharing 6493 * and memory zone spinlock contention. 6494 */ 6495 void skb_attempt_defer_free(struct sk_buff *skb) 6496 { 6497 int cpu = skb->alloc_cpu; 6498 struct softnet_data *sd; 6499 unsigned long flags; 6500 unsigned int defer_max; 6501 bool kick; 6502 6503 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6504 !cpu_online(cpu) || 6505 cpu == raw_smp_processor_id()) { 6506 nodefer: __kfree_skb(skb); 6507 return; 6508 } 6509 6510 sd = &per_cpu(softnet_data, cpu); 6511 defer_max = READ_ONCE(sysctl_skb_defer_max); 6512 if (READ_ONCE(sd->defer_count) >= defer_max) 6513 goto nodefer; 6514 6515 spin_lock_irqsave(&sd->defer_lock, flags); 6516 /* Send an IPI every time queue reaches half capacity. */ 6517 kick = sd->defer_count == (defer_max >> 1); 6518 /* Paired with the READ_ONCE() few lines above */ 6519 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6520 6521 skb->next = sd->defer_list; 6522 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6523 WRITE_ONCE(sd->defer_list, skb); 6524 spin_unlock_irqrestore(&sd->defer_lock, flags); 6525 6526 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6527 * if we are unlucky enough (this seems very unlikely). 6528 */ 6529 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6530 smp_call_function_single_async(cpu, &sd->defer_csd); 6531 } 6532