xref: /linux/net/core/skbuff.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Version:	$Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8  *
9  *	Fixes:
10  *		Alan Cox	:	Fixed the worst of the load
11  *					balancer bugs.
12  *		Dave Platt	:	Interrupt stacking fix.
13  *	Richard Kooijman	:	Timestamp fixes.
14  *		Alan Cox	:	Changed buffer format.
15  *		Alan Cox	:	destructor hook for AF_UNIX etc.
16  *		Linus Torvalds	:	Better skb_clone.
17  *		Alan Cox	:	Added skb_copy.
18  *		Alan Cox	:	Added all the changed routines Linus
19  *					only put in the headers
20  *		Ray VanTassle	:	Fixed --skb->lock in free
21  *		Alan Cox	:	skb_copy copy arp field
22  *		Andi Kleen	:	slabified it.
23  *		Robert Olsson	:	Removed skb_head_pool
24  *
25  *	NOTE:
26  *		The __skb_ routines should be called with interrupts
27  *	disabled, or you better be *real* sure that the operation is atomic
28  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
29  *	or via disabling bottom half handlers, etc).
30  *
31  *	This program is free software; you can redistribute it and/or
32  *	modify it under the terms of the GNU General Public License
33  *	as published by the Free Software Foundation; either version
34  *	2 of the License, or (at your option) any later version.
35  */
36 
37 /*
38  *	The functions in this file will not compile correctly with gcc 2.4.x
39  */
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
60 
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 
70 static kmem_cache_t *skbuff_head_cache __read_mostly;
71 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
72 
73 /*
74  *	Keep out-of-line to prevent kernel bloat.
75  *	__builtin_return_address is not used because it is not always
76  *	reliable.
77  */
78 
79 /**
80  *	skb_over_panic	- 	private function
81  *	@skb: buffer
82  *	@sz: size
83  *	@here: address
84  *
85  *	Out of line support code for skb_put(). Not user callable.
86  */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 	                  "data:%p tail:%p end:%p dev:%s\n",
91 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 	       skb->dev ? skb->dev->name : "<NULL>");
93 	BUG();
94 }
95 
96 /**
97  *	skb_under_panic	- 	private function
98  *	@skb: buffer
99  *	@sz: size
100  *	@here: address
101  *
102  *	Out of line support code for skb_push(). Not user callable.
103  */
104 
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 	                  "data:%p tail:%p end:%p dev:%s\n",
109 	       here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 	       skb->dev ? skb->dev->name : "<NULL>");
111 	BUG();
112 }
113 
114 void skb_truesize_bug(struct sk_buff *skb)
115 {
116 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 	       "len=%u, sizeof(sk_buff)=%Zd\n",
118 	       skb->truesize, skb->len, sizeof(struct sk_buff));
119 }
120 EXPORT_SYMBOL(skb_truesize_bug);
121 
122 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
123  *	'private' fields and also do memory statistics to find all the
124  *	[BEEP] leaks.
125  *
126  */
127 
128 /**
129  *	__alloc_skb	-	allocate a network buffer
130  *	@size: size to allocate
131  *	@gfp_mask: allocation mask
132  *	@fclone: allocate from fclone cache instead of head cache
133  *		and allocate a cloned (child) skb
134  *
135  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
136  *	tail room of size bytes. The object has a reference count of one.
137  *	The return is the buffer. On a failure the return is %NULL.
138  *
139  *	Buffers may only be allocated from interrupts using a @gfp_mask of
140  *	%GFP_ATOMIC.
141  */
142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
143 			    int fclone)
144 {
145 	kmem_cache_t *cache;
146 	struct skb_shared_info *shinfo;
147 	struct sk_buff *skb;
148 	u8 *data;
149 
150 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
151 
152 	/* Get the HEAD */
153 	skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
154 	if (!skb)
155 		goto out;
156 
157 	/* Get the DATA. Size must match skb_add_mtu(). */
158 	size = SKB_DATA_ALIGN(size);
159 	data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
160 	if (!data)
161 		goto nodata;
162 
163 	memset(skb, 0, offsetof(struct sk_buff, truesize));
164 	skb->truesize = size + sizeof(struct sk_buff);
165 	atomic_set(&skb->users, 1);
166 	skb->head = data;
167 	skb->data = data;
168 	skb->tail = data;
169 	skb->end  = data + size;
170 	/* make sure we initialize shinfo sequentially */
171 	shinfo = skb_shinfo(skb);
172 	atomic_set(&shinfo->dataref, 1);
173 	shinfo->nr_frags  = 0;
174 	shinfo->gso_size = 0;
175 	shinfo->gso_segs = 0;
176 	shinfo->gso_type = 0;
177 	shinfo->ip6_frag_id = 0;
178 	shinfo->frag_list = NULL;
179 
180 	if (fclone) {
181 		struct sk_buff *child = skb + 1;
182 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
183 
184 		skb->fclone = SKB_FCLONE_ORIG;
185 		atomic_set(fclone_ref, 1);
186 
187 		child->fclone = SKB_FCLONE_UNAVAILABLE;
188 	}
189 out:
190 	return skb;
191 nodata:
192 	kmem_cache_free(cache, skb);
193 	skb = NULL;
194 	goto out;
195 }
196 
197 /**
198  *	alloc_skb_from_cache	-	allocate a network buffer
199  *	@cp: kmem_cache from which to allocate the data area
200  *           (object size must be big enough for @size bytes + skb overheads)
201  *	@size: size to allocate
202  *	@gfp_mask: allocation mask
203  *
204  *	Allocate a new &sk_buff. The returned buffer has no headroom and
205  *	tail room of size bytes. The object has a reference count of one.
206  *	The return is the buffer. On a failure the return is %NULL.
207  *
208  *	Buffers may only be allocated from interrupts using a @gfp_mask of
209  *	%GFP_ATOMIC.
210  */
211 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
212 				     unsigned int size,
213 				     gfp_t gfp_mask)
214 {
215 	struct sk_buff *skb;
216 	u8 *data;
217 
218 	/* Get the HEAD */
219 	skb = kmem_cache_alloc(skbuff_head_cache,
220 			       gfp_mask & ~__GFP_DMA);
221 	if (!skb)
222 		goto out;
223 
224 	/* Get the DATA. */
225 	size = SKB_DATA_ALIGN(size);
226 	data = kmem_cache_alloc(cp, gfp_mask);
227 	if (!data)
228 		goto nodata;
229 
230 	memset(skb, 0, offsetof(struct sk_buff, truesize));
231 	skb->truesize = size + sizeof(struct sk_buff);
232 	atomic_set(&skb->users, 1);
233 	skb->head = data;
234 	skb->data = data;
235 	skb->tail = data;
236 	skb->end  = data + size;
237 
238 	atomic_set(&(skb_shinfo(skb)->dataref), 1);
239 	skb_shinfo(skb)->nr_frags  = 0;
240 	skb_shinfo(skb)->gso_size = 0;
241 	skb_shinfo(skb)->gso_segs = 0;
242 	skb_shinfo(skb)->gso_type = 0;
243 	skb_shinfo(skb)->frag_list = NULL;
244 out:
245 	return skb;
246 nodata:
247 	kmem_cache_free(skbuff_head_cache, skb);
248 	skb = NULL;
249 	goto out;
250 }
251 
252 /**
253  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
254  *	@dev: network device to receive on
255  *	@length: length to allocate
256  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
257  *
258  *	Allocate a new &sk_buff and assign it a usage count of one. The
259  *	buffer has unspecified headroom built in. Users should allocate
260  *	the headroom they think they need without accounting for the
261  *	built in space. The built in space is used for optimisations.
262  *
263  *	%NULL is returned if there is no free memory.
264  */
265 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
266 		unsigned int length, gfp_t gfp_mask)
267 {
268 	struct sk_buff *skb;
269 
270 	skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
271 	if (likely(skb)) {
272 		skb_reserve(skb, NET_SKB_PAD);
273 		skb->dev = dev;
274 	}
275 	return skb;
276 }
277 
278 static void skb_drop_list(struct sk_buff **listp)
279 {
280 	struct sk_buff *list = *listp;
281 
282 	*listp = NULL;
283 
284 	do {
285 		struct sk_buff *this = list;
286 		list = list->next;
287 		kfree_skb(this);
288 	} while (list);
289 }
290 
291 static inline void skb_drop_fraglist(struct sk_buff *skb)
292 {
293 	skb_drop_list(&skb_shinfo(skb)->frag_list);
294 }
295 
296 static void skb_clone_fraglist(struct sk_buff *skb)
297 {
298 	struct sk_buff *list;
299 
300 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
301 		skb_get(list);
302 }
303 
304 static void skb_release_data(struct sk_buff *skb)
305 {
306 	if (!skb->cloned ||
307 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
308 			       &skb_shinfo(skb)->dataref)) {
309 		if (skb_shinfo(skb)->nr_frags) {
310 			int i;
311 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
312 				put_page(skb_shinfo(skb)->frags[i].page);
313 		}
314 
315 		if (skb_shinfo(skb)->frag_list)
316 			skb_drop_fraglist(skb);
317 
318 		kfree(skb->head);
319 	}
320 }
321 
322 /*
323  *	Free an skbuff by memory without cleaning the state.
324  */
325 void kfree_skbmem(struct sk_buff *skb)
326 {
327 	struct sk_buff *other;
328 	atomic_t *fclone_ref;
329 
330 	skb_release_data(skb);
331 	switch (skb->fclone) {
332 	case SKB_FCLONE_UNAVAILABLE:
333 		kmem_cache_free(skbuff_head_cache, skb);
334 		break;
335 
336 	case SKB_FCLONE_ORIG:
337 		fclone_ref = (atomic_t *) (skb + 2);
338 		if (atomic_dec_and_test(fclone_ref))
339 			kmem_cache_free(skbuff_fclone_cache, skb);
340 		break;
341 
342 	case SKB_FCLONE_CLONE:
343 		fclone_ref = (atomic_t *) (skb + 1);
344 		other = skb - 1;
345 
346 		/* The clone portion is available for
347 		 * fast-cloning again.
348 		 */
349 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
350 
351 		if (atomic_dec_and_test(fclone_ref))
352 			kmem_cache_free(skbuff_fclone_cache, other);
353 		break;
354 	};
355 }
356 
357 /**
358  *	__kfree_skb - private function
359  *	@skb: buffer
360  *
361  *	Free an sk_buff. Release anything attached to the buffer.
362  *	Clean the state. This is an internal helper function. Users should
363  *	always call kfree_skb
364  */
365 
366 void __kfree_skb(struct sk_buff *skb)
367 {
368 	dst_release(skb->dst);
369 #ifdef CONFIG_XFRM
370 	secpath_put(skb->sp);
371 #endif
372 	if (skb->destructor) {
373 		WARN_ON(in_irq());
374 		skb->destructor(skb);
375 	}
376 #ifdef CONFIG_NETFILTER
377 	nf_conntrack_put(skb->nfct);
378 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
379 	nf_conntrack_put_reasm(skb->nfct_reasm);
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 	nf_bridge_put(skb->nf_bridge);
383 #endif
384 #endif
385 /* XXX: IS this still necessary? - JHS */
386 #ifdef CONFIG_NET_SCHED
387 	skb->tc_index = 0;
388 #ifdef CONFIG_NET_CLS_ACT
389 	skb->tc_verd = 0;
390 #endif
391 #endif
392 
393 	kfree_skbmem(skb);
394 }
395 
396 /**
397  *	kfree_skb - free an sk_buff
398  *	@skb: buffer to free
399  *
400  *	Drop a reference to the buffer and free it if the usage count has
401  *	hit zero.
402  */
403 void kfree_skb(struct sk_buff *skb)
404 {
405 	if (unlikely(!skb))
406 		return;
407 	if (likely(atomic_read(&skb->users) == 1))
408 		smp_rmb();
409 	else if (likely(!atomic_dec_and_test(&skb->users)))
410 		return;
411 	__kfree_skb(skb);
412 }
413 
414 /**
415  *	skb_clone	-	duplicate an sk_buff
416  *	@skb: buffer to clone
417  *	@gfp_mask: allocation priority
418  *
419  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
420  *	copies share the same packet data but not structure. The new
421  *	buffer has a reference count of 1. If the allocation fails the
422  *	function returns %NULL otherwise the new buffer is returned.
423  *
424  *	If this function is called from an interrupt gfp_mask() must be
425  *	%GFP_ATOMIC.
426  */
427 
428 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
429 {
430 	struct sk_buff *n;
431 
432 	n = skb + 1;
433 	if (skb->fclone == SKB_FCLONE_ORIG &&
434 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
435 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
436 		n->fclone = SKB_FCLONE_CLONE;
437 		atomic_inc(fclone_ref);
438 	} else {
439 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
440 		if (!n)
441 			return NULL;
442 		n->fclone = SKB_FCLONE_UNAVAILABLE;
443 	}
444 
445 #define C(x) n->x = skb->x
446 
447 	n->next = n->prev = NULL;
448 	n->sk = NULL;
449 	C(tstamp);
450 	C(dev);
451 	C(h);
452 	C(nh);
453 	C(mac);
454 	C(dst);
455 	dst_clone(skb->dst);
456 	C(sp);
457 #ifdef CONFIG_INET
458 	secpath_get(skb->sp);
459 #endif
460 	memcpy(n->cb, skb->cb, sizeof(skb->cb));
461 	C(len);
462 	C(data_len);
463 	C(csum);
464 	C(local_df);
465 	n->cloned = 1;
466 	n->nohdr = 0;
467 	C(pkt_type);
468 	C(ip_summed);
469 	C(priority);
470 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
471 	C(ipvs_property);
472 #endif
473 	C(protocol);
474 	n->destructor = NULL;
475 #ifdef CONFIG_NETFILTER
476 	C(nfmark);
477 	C(nfct);
478 	nf_conntrack_get(skb->nfct);
479 	C(nfctinfo);
480 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
481 	C(nfct_reasm);
482 	nf_conntrack_get_reasm(skb->nfct_reasm);
483 #endif
484 #ifdef CONFIG_BRIDGE_NETFILTER
485 	C(nf_bridge);
486 	nf_bridge_get(skb->nf_bridge);
487 #endif
488 #endif /*CONFIG_NETFILTER*/
489 #ifdef CONFIG_NET_SCHED
490 	C(tc_index);
491 #ifdef CONFIG_NET_CLS_ACT
492 	n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
493 	n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
494 	n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
495 	C(input_dev);
496 #endif
497 	skb_copy_secmark(n, skb);
498 #endif
499 	C(truesize);
500 	atomic_set(&n->users, 1);
501 	C(head);
502 	C(data);
503 	C(tail);
504 	C(end);
505 
506 	atomic_inc(&(skb_shinfo(skb)->dataref));
507 	skb->cloned = 1;
508 
509 	return n;
510 }
511 
512 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
513 {
514 	/*
515 	 *	Shift between the two data areas in bytes
516 	 */
517 	unsigned long offset = new->data - old->data;
518 
519 	new->sk		= NULL;
520 	new->dev	= old->dev;
521 	new->priority	= old->priority;
522 	new->protocol	= old->protocol;
523 	new->dst	= dst_clone(old->dst);
524 #ifdef CONFIG_INET
525 	new->sp		= secpath_get(old->sp);
526 #endif
527 	new->h.raw	= old->h.raw + offset;
528 	new->nh.raw	= old->nh.raw + offset;
529 	new->mac.raw	= old->mac.raw + offset;
530 	memcpy(new->cb, old->cb, sizeof(old->cb));
531 	new->local_df	= old->local_df;
532 	new->fclone	= SKB_FCLONE_UNAVAILABLE;
533 	new->pkt_type	= old->pkt_type;
534 	new->tstamp	= old->tstamp;
535 	new->destructor = NULL;
536 #ifdef CONFIG_NETFILTER
537 	new->nfmark	= old->nfmark;
538 	new->nfct	= old->nfct;
539 	nf_conntrack_get(old->nfct);
540 	new->nfctinfo	= old->nfctinfo;
541 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
542 	new->nfct_reasm = old->nfct_reasm;
543 	nf_conntrack_get_reasm(old->nfct_reasm);
544 #endif
545 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
546 	new->ipvs_property = old->ipvs_property;
547 #endif
548 #ifdef CONFIG_BRIDGE_NETFILTER
549 	new->nf_bridge	= old->nf_bridge;
550 	nf_bridge_get(old->nf_bridge);
551 #endif
552 #endif
553 #ifdef CONFIG_NET_SCHED
554 #ifdef CONFIG_NET_CLS_ACT
555 	new->tc_verd = old->tc_verd;
556 #endif
557 	new->tc_index	= old->tc_index;
558 #endif
559 	skb_copy_secmark(new, old);
560 	atomic_set(&new->users, 1);
561 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
562 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
563 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
564 }
565 
566 /**
567  *	skb_copy	-	create private copy of an sk_buff
568  *	@skb: buffer to copy
569  *	@gfp_mask: allocation priority
570  *
571  *	Make a copy of both an &sk_buff and its data. This is used when the
572  *	caller wishes to modify the data and needs a private copy of the
573  *	data to alter. Returns %NULL on failure or the pointer to the buffer
574  *	on success. The returned buffer has a reference count of 1.
575  *
576  *	As by-product this function converts non-linear &sk_buff to linear
577  *	one, so that &sk_buff becomes completely private and caller is allowed
578  *	to modify all the data of returned buffer. This means that this
579  *	function is not recommended for use in circumstances when only
580  *	header is going to be modified. Use pskb_copy() instead.
581  */
582 
583 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
584 {
585 	int headerlen = skb->data - skb->head;
586 	/*
587 	 *	Allocate the copy buffer
588 	 */
589 	struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
590 				      gfp_mask);
591 	if (!n)
592 		return NULL;
593 
594 	/* Set the data pointer */
595 	skb_reserve(n, headerlen);
596 	/* Set the tail pointer and length */
597 	skb_put(n, skb->len);
598 	n->csum	     = skb->csum;
599 	n->ip_summed = skb->ip_summed;
600 
601 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
602 		BUG();
603 
604 	copy_skb_header(n, skb);
605 	return n;
606 }
607 
608 
609 /**
610  *	pskb_copy	-	create copy of an sk_buff with private head.
611  *	@skb: buffer to copy
612  *	@gfp_mask: allocation priority
613  *
614  *	Make a copy of both an &sk_buff and part of its data, located
615  *	in header. Fragmented data remain shared. This is used when
616  *	the caller wishes to modify only header of &sk_buff and needs
617  *	private copy of the header to alter. Returns %NULL on failure
618  *	or the pointer to the buffer on success.
619  *	The returned buffer has a reference count of 1.
620  */
621 
622 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
623 {
624 	/*
625 	 *	Allocate the copy buffer
626 	 */
627 	struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
628 
629 	if (!n)
630 		goto out;
631 
632 	/* Set the data pointer */
633 	skb_reserve(n, skb->data - skb->head);
634 	/* Set the tail pointer and length */
635 	skb_put(n, skb_headlen(skb));
636 	/* Copy the bytes */
637 	memcpy(n->data, skb->data, n->len);
638 	n->csum	     = skb->csum;
639 	n->ip_summed = skb->ip_summed;
640 
641 	n->data_len  = skb->data_len;
642 	n->len	     = skb->len;
643 
644 	if (skb_shinfo(skb)->nr_frags) {
645 		int i;
646 
647 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
648 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
649 			get_page(skb_shinfo(n)->frags[i].page);
650 		}
651 		skb_shinfo(n)->nr_frags = i;
652 	}
653 
654 	if (skb_shinfo(skb)->frag_list) {
655 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
656 		skb_clone_fraglist(n);
657 	}
658 
659 	copy_skb_header(n, skb);
660 out:
661 	return n;
662 }
663 
664 /**
665  *	pskb_expand_head - reallocate header of &sk_buff
666  *	@skb: buffer to reallocate
667  *	@nhead: room to add at head
668  *	@ntail: room to add at tail
669  *	@gfp_mask: allocation priority
670  *
671  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
672  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
673  *	reference count of 1. Returns zero in the case of success or error,
674  *	if expansion failed. In the last case, &sk_buff is not changed.
675  *
676  *	All the pointers pointing into skb header may change and must be
677  *	reloaded after call to this function.
678  */
679 
680 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
681 		     gfp_t gfp_mask)
682 {
683 	int i;
684 	u8 *data;
685 	int size = nhead + (skb->end - skb->head) + ntail;
686 	long off;
687 
688 	if (skb_shared(skb))
689 		BUG();
690 
691 	size = SKB_DATA_ALIGN(size);
692 
693 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
694 	if (!data)
695 		goto nodata;
696 
697 	/* Copy only real data... and, alas, header. This should be
698 	 * optimized for the cases when header is void. */
699 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
700 	memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
701 
702 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
703 		get_page(skb_shinfo(skb)->frags[i].page);
704 
705 	if (skb_shinfo(skb)->frag_list)
706 		skb_clone_fraglist(skb);
707 
708 	skb_release_data(skb);
709 
710 	off = (data + nhead) - skb->head;
711 
712 	skb->head     = data;
713 	skb->end      = data + size;
714 	skb->data    += off;
715 	skb->tail    += off;
716 	skb->mac.raw += off;
717 	skb->h.raw   += off;
718 	skb->nh.raw  += off;
719 	skb->cloned   = 0;
720 	skb->nohdr    = 0;
721 	atomic_set(&skb_shinfo(skb)->dataref, 1);
722 	return 0;
723 
724 nodata:
725 	return -ENOMEM;
726 }
727 
728 /* Make private copy of skb with writable head and some headroom */
729 
730 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
731 {
732 	struct sk_buff *skb2;
733 	int delta = headroom - skb_headroom(skb);
734 
735 	if (delta <= 0)
736 		skb2 = pskb_copy(skb, GFP_ATOMIC);
737 	else {
738 		skb2 = skb_clone(skb, GFP_ATOMIC);
739 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
740 					     GFP_ATOMIC)) {
741 			kfree_skb(skb2);
742 			skb2 = NULL;
743 		}
744 	}
745 	return skb2;
746 }
747 
748 
749 /**
750  *	skb_copy_expand	-	copy and expand sk_buff
751  *	@skb: buffer to copy
752  *	@newheadroom: new free bytes at head
753  *	@newtailroom: new free bytes at tail
754  *	@gfp_mask: allocation priority
755  *
756  *	Make a copy of both an &sk_buff and its data and while doing so
757  *	allocate additional space.
758  *
759  *	This is used when the caller wishes to modify the data and needs a
760  *	private copy of the data to alter as well as more space for new fields.
761  *	Returns %NULL on failure or the pointer to the buffer
762  *	on success. The returned buffer has a reference count of 1.
763  *
764  *	You must pass %GFP_ATOMIC as the allocation priority if this function
765  *	is called from an interrupt.
766  *
767  *	BUG ALERT: ip_summed is not copied. Why does this work? Is it used
768  *	only by netfilter in the cases when checksum is recalculated? --ANK
769  */
770 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
771 				int newheadroom, int newtailroom,
772 				gfp_t gfp_mask)
773 {
774 	/*
775 	 *	Allocate the copy buffer
776 	 */
777 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
778 				      gfp_mask);
779 	int head_copy_len, head_copy_off;
780 
781 	if (!n)
782 		return NULL;
783 
784 	skb_reserve(n, newheadroom);
785 
786 	/* Set the tail pointer and length */
787 	skb_put(n, skb->len);
788 
789 	head_copy_len = skb_headroom(skb);
790 	head_copy_off = 0;
791 	if (newheadroom <= head_copy_len)
792 		head_copy_len = newheadroom;
793 	else
794 		head_copy_off = newheadroom - head_copy_len;
795 
796 	/* Copy the linear header and data. */
797 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
798 			  skb->len + head_copy_len))
799 		BUG();
800 
801 	copy_skb_header(n, skb);
802 
803 	return n;
804 }
805 
806 /**
807  *	skb_pad			-	zero pad the tail of an skb
808  *	@skb: buffer to pad
809  *	@pad: space to pad
810  *
811  *	Ensure that a buffer is followed by a padding area that is zero
812  *	filled. Used by network drivers which may DMA or transfer data
813  *	beyond the buffer end onto the wire.
814  *
815  *	May return error in out of memory cases. The skb is freed on error.
816  */
817 
818 int skb_pad(struct sk_buff *skb, int pad)
819 {
820 	int err;
821 	int ntail;
822 
823 	/* If the skbuff is non linear tailroom is always zero.. */
824 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
825 		memset(skb->data+skb->len, 0, pad);
826 		return 0;
827 	}
828 
829 	ntail = skb->data_len + pad - (skb->end - skb->tail);
830 	if (likely(skb_cloned(skb) || ntail > 0)) {
831 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
832 		if (unlikely(err))
833 			goto free_skb;
834 	}
835 
836 	/* FIXME: The use of this function with non-linear skb's really needs
837 	 * to be audited.
838 	 */
839 	err = skb_linearize(skb);
840 	if (unlikely(err))
841 		goto free_skb;
842 
843 	memset(skb->data + skb->len, 0, pad);
844 	return 0;
845 
846 free_skb:
847 	kfree_skb(skb);
848 	return err;
849 }
850 
851 /* Trims skb to length len. It can change skb pointers.
852  */
853 
854 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
855 {
856 	struct sk_buff **fragp;
857 	struct sk_buff *frag;
858 	int offset = skb_headlen(skb);
859 	int nfrags = skb_shinfo(skb)->nr_frags;
860 	int i;
861 	int err;
862 
863 	if (skb_cloned(skb) &&
864 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
865 		return err;
866 
867 	i = 0;
868 	if (offset >= len)
869 		goto drop_pages;
870 
871 	for (; i < nfrags; i++) {
872 		int end = offset + skb_shinfo(skb)->frags[i].size;
873 
874 		if (end < len) {
875 			offset = end;
876 			continue;
877 		}
878 
879 		skb_shinfo(skb)->frags[i++].size = len - offset;
880 
881 drop_pages:
882 		skb_shinfo(skb)->nr_frags = i;
883 
884 		for (; i < nfrags; i++)
885 			put_page(skb_shinfo(skb)->frags[i].page);
886 
887 		if (skb_shinfo(skb)->frag_list)
888 			skb_drop_fraglist(skb);
889 		goto done;
890 	}
891 
892 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
893 	     fragp = &frag->next) {
894 		int end = offset + frag->len;
895 
896 		if (skb_shared(frag)) {
897 			struct sk_buff *nfrag;
898 
899 			nfrag = skb_clone(frag, GFP_ATOMIC);
900 			if (unlikely(!nfrag))
901 				return -ENOMEM;
902 
903 			nfrag->next = frag->next;
904 			kfree_skb(frag);
905 			frag = nfrag;
906 			*fragp = frag;
907 		}
908 
909 		if (end < len) {
910 			offset = end;
911 			continue;
912 		}
913 
914 		if (end > len &&
915 		    unlikely((err = pskb_trim(frag, len - offset))))
916 			return err;
917 
918 		if (frag->next)
919 			skb_drop_list(&frag->next);
920 		break;
921 	}
922 
923 done:
924 	if (len > skb_headlen(skb)) {
925 		skb->data_len -= skb->len - len;
926 		skb->len       = len;
927 	} else {
928 		skb->len       = len;
929 		skb->data_len  = 0;
930 		skb->tail      = skb->data + len;
931 	}
932 
933 	return 0;
934 }
935 
936 /**
937  *	__pskb_pull_tail - advance tail of skb header
938  *	@skb: buffer to reallocate
939  *	@delta: number of bytes to advance tail
940  *
941  *	The function makes a sense only on a fragmented &sk_buff,
942  *	it expands header moving its tail forward and copying necessary
943  *	data from fragmented part.
944  *
945  *	&sk_buff MUST have reference count of 1.
946  *
947  *	Returns %NULL (and &sk_buff does not change) if pull failed
948  *	or value of new tail of skb in the case of success.
949  *
950  *	All the pointers pointing into skb header may change and must be
951  *	reloaded after call to this function.
952  */
953 
954 /* Moves tail of skb head forward, copying data from fragmented part,
955  * when it is necessary.
956  * 1. It may fail due to malloc failure.
957  * 2. It may change skb pointers.
958  *
959  * It is pretty complicated. Luckily, it is called only in exceptional cases.
960  */
961 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
962 {
963 	/* If skb has not enough free space at tail, get new one
964 	 * plus 128 bytes for future expansions. If we have enough
965 	 * room at tail, reallocate without expansion only if skb is cloned.
966 	 */
967 	int i, k, eat = (skb->tail + delta) - skb->end;
968 
969 	if (eat > 0 || skb_cloned(skb)) {
970 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
971 				     GFP_ATOMIC))
972 			return NULL;
973 	}
974 
975 	if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
976 		BUG();
977 
978 	/* Optimization: no fragments, no reasons to preestimate
979 	 * size of pulled pages. Superb.
980 	 */
981 	if (!skb_shinfo(skb)->frag_list)
982 		goto pull_pages;
983 
984 	/* Estimate size of pulled pages. */
985 	eat = delta;
986 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
987 		if (skb_shinfo(skb)->frags[i].size >= eat)
988 			goto pull_pages;
989 		eat -= skb_shinfo(skb)->frags[i].size;
990 	}
991 
992 	/* If we need update frag list, we are in troubles.
993 	 * Certainly, it possible to add an offset to skb data,
994 	 * but taking into account that pulling is expected to
995 	 * be very rare operation, it is worth to fight against
996 	 * further bloating skb head and crucify ourselves here instead.
997 	 * Pure masohism, indeed. 8)8)
998 	 */
999 	if (eat) {
1000 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1001 		struct sk_buff *clone = NULL;
1002 		struct sk_buff *insp = NULL;
1003 
1004 		do {
1005 			BUG_ON(!list);
1006 
1007 			if (list->len <= eat) {
1008 				/* Eaten as whole. */
1009 				eat -= list->len;
1010 				list = list->next;
1011 				insp = list;
1012 			} else {
1013 				/* Eaten partially. */
1014 
1015 				if (skb_shared(list)) {
1016 					/* Sucks! We need to fork list. :-( */
1017 					clone = skb_clone(list, GFP_ATOMIC);
1018 					if (!clone)
1019 						return NULL;
1020 					insp = list->next;
1021 					list = clone;
1022 				} else {
1023 					/* This may be pulled without
1024 					 * problems. */
1025 					insp = list;
1026 				}
1027 				if (!pskb_pull(list, eat)) {
1028 					if (clone)
1029 						kfree_skb(clone);
1030 					return NULL;
1031 				}
1032 				break;
1033 			}
1034 		} while (eat);
1035 
1036 		/* Free pulled out fragments. */
1037 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1038 			skb_shinfo(skb)->frag_list = list->next;
1039 			kfree_skb(list);
1040 		}
1041 		/* And insert new clone at head. */
1042 		if (clone) {
1043 			clone->next = list;
1044 			skb_shinfo(skb)->frag_list = clone;
1045 		}
1046 	}
1047 	/* Success! Now we may commit changes to skb data. */
1048 
1049 pull_pages:
1050 	eat = delta;
1051 	k = 0;
1052 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1053 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1054 			put_page(skb_shinfo(skb)->frags[i].page);
1055 			eat -= skb_shinfo(skb)->frags[i].size;
1056 		} else {
1057 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1058 			if (eat) {
1059 				skb_shinfo(skb)->frags[k].page_offset += eat;
1060 				skb_shinfo(skb)->frags[k].size -= eat;
1061 				eat = 0;
1062 			}
1063 			k++;
1064 		}
1065 	}
1066 	skb_shinfo(skb)->nr_frags = k;
1067 
1068 	skb->tail     += delta;
1069 	skb->data_len -= delta;
1070 
1071 	return skb->tail;
1072 }
1073 
1074 /* Copy some data bits from skb to kernel buffer. */
1075 
1076 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1077 {
1078 	int i, copy;
1079 	int start = skb_headlen(skb);
1080 
1081 	if (offset > (int)skb->len - len)
1082 		goto fault;
1083 
1084 	/* Copy header. */
1085 	if ((copy = start - offset) > 0) {
1086 		if (copy > len)
1087 			copy = len;
1088 		memcpy(to, skb->data + offset, copy);
1089 		if ((len -= copy) == 0)
1090 			return 0;
1091 		offset += copy;
1092 		to     += copy;
1093 	}
1094 
1095 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1096 		int end;
1097 
1098 		BUG_TRAP(start <= offset + len);
1099 
1100 		end = start + skb_shinfo(skb)->frags[i].size;
1101 		if ((copy = end - offset) > 0) {
1102 			u8 *vaddr;
1103 
1104 			if (copy > len)
1105 				copy = len;
1106 
1107 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1108 			memcpy(to,
1109 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1110 			       offset - start, copy);
1111 			kunmap_skb_frag(vaddr);
1112 
1113 			if ((len -= copy) == 0)
1114 				return 0;
1115 			offset += copy;
1116 			to     += copy;
1117 		}
1118 		start = end;
1119 	}
1120 
1121 	if (skb_shinfo(skb)->frag_list) {
1122 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1123 
1124 		for (; list; list = list->next) {
1125 			int end;
1126 
1127 			BUG_TRAP(start <= offset + len);
1128 
1129 			end = start + list->len;
1130 			if ((copy = end - offset) > 0) {
1131 				if (copy > len)
1132 					copy = len;
1133 				if (skb_copy_bits(list, offset - start,
1134 						  to, copy))
1135 					goto fault;
1136 				if ((len -= copy) == 0)
1137 					return 0;
1138 				offset += copy;
1139 				to     += copy;
1140 			}
1141 			start = end;
1142 		}
1143 	}
1144 	if (!len)
1145 		return 0;
1146 
1147 fault:
1148 	return -EFAULT;
1149 }
1150 
1151 /**
1152  *	skb_store_bits - store bits from kernel buffer to skb
1153  *	@skb: destination buffer
1154  *	@offset: offset in destination
1155  *	@from: source buffer
1156  *	@len: number of bytes to copy
1157  *
1158  *	Copy the specified number of bytes from the source buffer to the
1159  *	destination skb.  This function handles all the messy bits of
1160  *	traversing fragment lists and such.
1161  */
1162 
1163 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1164 {
1165 	int i, copy;
1166 	int start = skb_headlen(skb);
1167 
1168 	if (offset > (int)skb->len - len)
1169 		goto fault;
1170 
1171 	if ((copy = start - offset) > 0) {
1172 		if (copy > len)
1173 			copy = len;
1174 		memcpy(skb->data + offset, from, copy);
1175 		if ((len -= copy) == 0)
1176 			return 0;
1177 		offset += copy;
1178 		from += copy;
1179 	}
1180 
1181 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1182 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1183 		int end;
1184 
1185 		BUG_TRAP(start <= offset + len);
1186 
1187 		end = start + frag->size;
1188 		if ((copy = end - offset) > 0) {
1189 			u8 *vaddr;
1190 
1191 			if (copy > len)
1192 				copy = len;
1193 
1194 			vaddr = kmap_skb_frag(frag);
1195 			memcpy(vaddr + frag->page_offset + offset - start,
1196 			       from, copy);
1197 			kunmap_skb_frag(vaddr);
1198 
1199 			if ((len -= copy) == 0)
1200 				return 0;
1201 			offset += copy;
1202 			from += copy;
1203 		}
1204 		start = end;
1205 	}
1206 
1207 	if (skb_shinfo(skb)->frag_list) {
1208 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1209 
1210 		for (; list; list = list->next) {
1211 			int end;
1212 
1213 			BUG_TRAP(start <= offset + len);
1214 
1215 			end = start + list->len;
1216 			if ((copy = end - offset) > 0) {
1217 				if (copy > len)
1218 					copy = len;
1219 				if (skb_store_bits(list, offset - start,
1220 						   from, copy))
1221 					goto fault;
1222 				if ((len -= copy) == 0)
1223 					return 0;
1224 				offset += copy;
1225 				from += copy;
1226 			}
1227 			start = end;
1228 		}
1229 	}
1230 	if (!len)
1231 		return 0;
1232 
1233 fault:
1234 	return -EFAULT;
1235 }
1236 
1237 EXPORT_SYMBOL(skb_store_bits);
1238 
1239 /* Checksum skb data. */
1240 
1241 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1242 			  int len, unsigned int csum)
1243 {
1244 	int start = skb_headlen(skb);
1245 	int i, copy = start - offset;
1246 	int pos = 0;
1247 
1248 	/* Checksum header. */
1249 	if (copy > 0) {
1250 		if (copy > len)
1251 			copy = len;
1252 		csum = csum_partial(skb->data + offset, copy, csum);
1253 		if ((len -= copy) == 0)
1254 			return csum;
1255 		offset += copy;
1256 		pos	= copy;
1257 	}
1258 
1259 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1260 		int end;
1261 
1262 		BUG_TRAP(start <= offset + len);
1263 
1264 		end = start + skb_shinfo(skb)->frags[i].size;
1265 		if ((copy = end - offset) > 0) {
1266 			unsigned int csum2;
1267 			u8 *vaddr;
1268 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1269 
1270 			if (copy > len)
1271 				copy = len;
1272 			vaddr = kmap_skb_frag(frag);
1273 			csum2 = csum_partial(vaddr + frag->page_offset +
1274 					     offset - start, copy, 0);
1275 			kunmap_skb_frag(vaddr);
1276 			csum = csum_block_add(csum, csum2, pos);
1277 			if (!(len -= copy))
1278 				return csum;
1279 			offset += copy;
1280 			pos    += copy;
1281 		}
1282 		start = end;
1283 	}
1284 
1285 	if (skb_shinfo(skb)->frag_list) {
1286 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1287 
1288 		for (; list; list = list->next) {
1289 			int end;
1290 
1291 			BUG_TRAP(start <= offset + len);
1292 
1293 			end = start + list->len;
1294 			if ((copy = end - offset) > 0) {
1295 				unsigned int csum2;
1296 				if (copy > len)
1297 					copy = len;
1298 				csum2 = skb_checksum(list, offset - start,
1299 						     copy, 0);
1300 				csum = csum_block_add(csum, csum2, pos);
1301 				if ((len -= copy) == 0)
1302 					return csum;
1303 				offset += copy;
1304 				pos    += copy;
1305 			}
1306 			start = end;
1307 		}
1308 	}
1309 	BUG_ON(len);
1310 
1311 	return csum;
1312 }
1313 
1314 /* Both of above in one bottle. */
1315 
1316 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1317 				    u8 *to, int len, unsigned int csum)
1318 {
1319 	int start = skb_headlen(skb);
1320 	int i, copy = start - offset;
1321 	int pos = 0;
1322 
1323 	/* Copy header. */
1324 	if (copy > 0) {
1325 		if (copy > len)
1326 			copy = len;
1327 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1328 						 copy, csum);
1329 		if ((len -= copy) == 0)
1330 			return csum;
1331 		offset += copy;
1332 		to     += copy;
1333 		pos	= copy;
1334 	}
1335 
1336 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1337 		int end;
1338 
1339 		BUG_TRAP(start <= offset + len);
1340 
1341 		end = start + skb_shinfo(skb)->frags[i].size;
1342 		if ((copy = end - offset) > 0) {
1343 			unsigned int csum2;
1344 			u8 *vaddr;
1345 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1346 
1347 			if (copy > len)
1348 				copy = len;
1349 			vaddr = kmap_skb_frag(frag);
1350 			csum2 = csum_partial_copy_nocheck(vaddr +
1351 							  frag->page_offset +
1352 							  offset - start, to,
1353 							  copy, 0);
1354 			kunmap_skb_frag(vaddr);
1355 			csum = csum_block_add(csum, csum2, pos);
1356 			if (!(len -= copy))
1357 				return csum;
1358 			offset += copy;
1359 			to     += copy;
1360 			pos    += copy;
1361 		}
1362 		start = end;
1363 	}
1364 
1365 	if (skb_shinfo(skb)->frag_list) {
1366 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1367 
1368 		for (; list; list = list->next) {
1369 			unsigned int csum2;
1370 			int end;
1371 
1372 			BUG_TRAP(start <= offset + len);
1373 
1374 			end = start + list->len;
1375 			if ((copy = end - offset) > 0) {
1376 				if (copy > len)
1377 					copy = len;
1378 				csum2 = skb_copy_and_csum_bits(list,
1379 							       offset - start,
1380 							       to, copy, 0);
1381 				csum = csum_block_add(csum, csum2, pos);
1382 				if ((len -= copy) == 0)
1383 					return csum;
1384 				offset += copy;
1385 				to     += copy;
1386 				pos    += copy;
1387 			}
1388 			start = end;
1389 		}
1390 	}
1391 	BUG_ON(len);
1392 	return csum;
1393 }
1394 
1395 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1396 {
1397 	unsigned int csum;
1398 	long csstart;
1399 
1400 	if (skb->ip_summed == CHECKSUM_HW)
1401 		csstart = skb->h.raw - skb->data;
1402 	else
1403 		csstart = skb_headlen(skb);
1404 
1405 	BUG_ON(csstart > skb_headlen(skb));
1406 
1407 	memcpy(to, skb->data, csstart);
1408 
1409 	csum = 0;
1410 	if (csstart != skb->len)
1411 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1412 					      skb->len - csstart, 0);
1413 
1414 	if (skb->ip_summed == CHECKSUM_HW) {
1415 		long csstuff = csstart + skb->csum;
1416 
1417 		*((unsigned short *)(to + csstuff)) = csum_fold(csum);
1418 	}
1419 }
1420 
1421 /**
1422  *	skb_dequeue - remove from the head of the queue
1423  *	@list: list to dequeue from
1424  *
1425  *	Remove the head of the list. The list lock is taken so the function
1426  *	may be used safely with other locking list functions. The head item is
1427  *	returned or %NULL if the list is empty.
1428  */
1429 
1430 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1431 {
1432 	unsigned long flags;
1433 	struct sk_buff *result;
1434 
1435 	spin_lock_irqsave(&list->lock, flags);
1436 	result = __skb_dequeue(list);
1437 	spin_unlock_irqrestore(&list->lock, flags);
1438 	return result;
1439 }
1440 
1441 /**
1442  *	skb_dequeue_tail - remove from the tail of the queue
1443  *	@list: list to dequeue from
1444  *
1445  *	Remove the tail of the list. The list lock is taken so the function
1446  *	may be used safely with other locking list functions. The tail item is
1447  *	returned or %NULL if the list is empty.
1448  */
1449 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1450 {
1451 	unsigned long flags;
1452 	struct sk_buff *result;
1453 
1454 	spin_lock_irqsave(&list->lock, flags);
1455 	result = __skb_dequeue_tail(list);
1456 	spin_unlock_irqrestore(&list->lock, flags);
1457 	return result;
1458 }
1459 
1460 /**
1461  *	skb_queue_purge - empty a list
1462  *	@list: list to empty
1463  *
1464  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1465  *	the list and one reference dropped. This function takes the list
1466  *	lock and is atomic with respect to other list locking functions.
1467  */
1468 void skb_queue_purge(struct sk_buff_head *list)
1469 {
1470 	struct sk_buff *skb;
1471 	while ((skb = skb_dequeue(list)) != NULL)
1472 		kfree_skb(skb);
1473 }
1474 
1475 /**
1476  *	skb_queue_head - queue a buffer at the list head
1477  *	@list: list to use
1478  *	@newsk: buffer to queue
1479  *
1480  *	Queue a buffer at the start of the list. This function takes the
1481  *	list lock and can be used safely with other locking &sk_buff functions
1482  *	safely.
1483  *
1484  *	A buffer cannot be placed on two lists at the same time.
1485  */
1486 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1487 {
1488 	unsigned long flags;
1489 
1490 	spin_lock_irqsave(&list->lock, flags);
1491 	__skb_queue_head(list, newsk);
1492 	spin_unlock_irqrestore(&list->lock, flags);
1493 }
1494 
1495 /**
1496  *	skb_queue_tail - queue a buffer at the list tail
1497  *	@list: list to use
1498  *	@newsk: buffer to queue
1499  *
1500  *	Queue a buffer at the tail of the list. This function takes the
1501  *	list lock and can be used safely with other locking &sk_buff functions
1502  *	safely.
1503  *
1504  *	A buffer cannot be placed on two lists at the same time.
1505  */
1506 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1507 {
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&list->lock, flags);
1511 	__skb_queue_tail(list, newsk);
1512 	spin_unlock_irqrestore(&list->lock, flags);
1513 }
1514 
1515 /**
1516  *	skb_unlink	-	remove a buffer from a list
1517  *	@skb: buffer to remove
1518  *	@list: list to use
1519  *
1520  *	Remove a packet from a list. The list locks are taken and this
1521  *	function is atomic with respect to other list locked calls
1522  *
1523  *	You must know what list the SKB is on.
1524  */
1525 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1526 {
1527 	unsigned long flags;
1528 
1529 	spin_lock_irqsave(&list->lock, flags);
1530 	__skb_unlink(skb, list);
1531 	spin_unlock_irqrestore(&list->lock, flags);
1532 }
1533 
1534 /**
1535  *	skb_append	-	append a buffer
1536  *	@old: buffer to insert after
1537  *	@newsk: buffer to insert
1538  *	@list: list to use
1539  *
1540  *	Place a packet after a given packet in a list. The list locks are taken
1541  *	and this function is atomic with respect to other list locked calls.
1542  *	A buffer cannot be placed on two lists at the same time.
1543  */
1544 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1545 {
1546 	unsigned long flags;
1547 
1548 	spin_lock_irqsave(&list->lock, flags);
1549 	__skb_append(old, newsk, list);
1550 	spin_unlock_irqrestore(&list->lock, flags);
1551 }
1552 
1553 
1554 /**
1555  *	skb_insert	-	insert a buffer
1556  *	@old: buffer to insert before
1557  *	@newsk: buffer to insert
1558  *	@list: list to use
1559  *
1560  *	Place a packet before a given packet in a list. The list locks are
1561  * 	taken and this function is atomic with respect to other list locked
1562  *	calls.
1563  *
1564  *	A buffer cannot be placed on two lists at the same time.
1565  */
1566 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1567 {
1568 	unsigned long flags;
1569 
1570 	spin_lock_irqsave(&list->lock, flags);
1571 	__skb_insert(newsk, old->prev, old, list);
1572 	spin_unlock_irqrestore(&list->lock, flags);
1573 }
1574 
1575 #if 0
1576 /*
1577  * 	Tune the memory allocator for a new MTU size.
1578  */
1579 void skb_add_mtu(int mtu)
1580 {
1581 	/* Must match allocation in alloc_skb */
1582 	mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1583 
1584 	kmem_add_cache_size(mtu);
1585 }
1586 #endif
1587 
1588 static inline void skb_split_inside_header(struct sk_buff *skb,
1589 					   struct sk_buff* skb1,
1590 					   const u32 len, const int pos)
1591 {
1592 	int i;
1593 
1594 	memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1595 
1596 	/* And move data appendix as is. */
1597 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1598 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1599 
1600 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1601 	skb_shinfo(skb)->nr_frags  = 0;
1602 	skb1->data_len		   = skb->data_len;
1603 	skb1->len		   += skb1->data_len;
1604 	skb->data_len		   = 0;
1605 	skb->len		   = len;
1606 	skb->tail		   = skb->data + len;
1607 }
1608 
1609 static inline void skb_split_no_header(struct sk_buff *skb,
1610 				       struct sk_buff* skb1,
1611 				       const u32 len, int pos)
1612 {
1613 	int i, k = 0;
1614 	const int nfrags = skb_shinfo(skb)->nr_frags;
1615 
1616 	skb_shinfo(skb)->nr_frags = 0;
1617 	skb1->len		  = skb1->data_len = skb->len - len;
1618 	skb->len		  = len;
1619 	skb->data_len		  = len - pos;
1620 
1621 	for (i = 0; i < nfrags; i++) {
1622 		int size = skb_shinfo(skb)->frags[i].size;
1623 
1624 		if (pos + size > len) {
1625 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1626 
1627 			if (pos < len) {
1628 				/* Split frag.
1629 				 * We have two variants in this case:
1630 				 * 1. Move all the frag to the second
1631 				 *    part, if it is possible. F.e.
1632 				 *    this approach is mandatory for TUX,
1633 				 *    where splitting is expensive.
1634 				 * 2. Split is accurately. We make this.
1635 				 */
1636 				get_page(skb_shinfo(skb)->frags[i].page);
1637 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1638 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1639 				skb_shinfo(skb)->frags[i].size	= len - pos;
1640 				skb_shinfo(skb)->nr_frags++;
1641 			}
1642 			k++;
1643 		} else
1644 			skb_shinfo(skb)->nr_frags++;
1645 		pos += size;
1646 	}
1647 	skb_shinfo(skb1)->nr_frags = k;
1648 }
1649 
1650 /**
1651  * skb_split - Split fragmented skb to two parts at length len.
1652  * @skb: the buffer to split
1653  * @skb1: the buffer to receive the second part
1654  * @len: new length for skb
1655  */
1656 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1657 {
1658 	int pos = skb_headlen(skb);
1659 
1660 	if (len < pos)	/* Split line is inside header. */
1661 		skb_split_inside_header(skb, skb1, len, pos);
1662 	else		/* Second chunk has no header, nothing to copy. */
1663 		skb_split_no_header(skb, skb1, len, pos);
1664 }
1665 
1666 /**
1667  * skb_prepare_seq_read - Prepare a sequential read of skb data
1668  * @skb: the buffer to read
1669  * @from: lower offset of data to be read
1670  * @to: upper offset of data to be read
1671  * @st: state variable
1672  *
1673  * Initializes the specified state variable. Must be called before
1674  * invoking skb_seq_read() for the first time.
1675  */
1676 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1677 			  unsigned int to, struct skb_seq_state *st)
1678 {
1679 	st->lower_offset = from;
1680 	st->upper_offset = to;
1681 	st->root_skb = st->cur_skb = skb;
1682 	st->frag_idx = st->stepped_offset = 0;
1683 	st->frag_data = NULL;
1684 }
1685 
1686 /**
1687  * skb_seq_read - Sequentially read skb data
1688  * @consumed: number of bytes consumed by the caller so far
1689  * @data: destination pointer for data to be returned
1690  * @st: state variable
1691  *
1692  * Reads a block of skb data at &consumed relative to the
1693  * lower offset specified to skb_prepare_seq_read(). Assigns
1694  * the head of the data block to &data and returns the length
1695  * of the block or 0 if the end of the skb data or the upper
1696  * offset has been reached.
1697  *
1698  * The caller is not required to consume all of the data
1699  * returned, i.e. &consumed is typically set to the number
1700  * of bytes already consumed and the next call to
1701  * skb_seq_read() will return the remaining part of the block.
1702  *
1703  * Note: The size of each block of data returned can be arbitary,
1704  *       this limitation is the cost for zerocopy seqeuental
1705  *       reads of potentially non linear data.
1706  *
1707  * Note: Fragment lists within fragments are not implemented
1708  *       at the moment, state->root_skb could be replaced with
1709  *       a stack for this purpose.
1710  */
1711 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1712 			  struct skb_seq_state *st)
1713 {
1714 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1715 	skb_frag_t *frag;
1716 
1717 	if (unlikely(abs_offset >= st->upper_offset))
1718 		return 0;
1719 
1720 next_skb:
1721 	block_limit = skb_headlen(st->cur_skb);
1722 
1723 	if (abs_offset < block_limit) {
1724 		*data = st->cur_skb->data + abs_offset;
1725 		return block_limit - abs_offset;
1726 	}
1727 
1728 	if (st->frag_idx == 0 && !st->frag_data)
1729 		st->stepped_offset += skb_headlen(st->cur_skb);
1730 
1731 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1732 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1733 		block_limit = frag->size + st->stepped_offset;
1734 
1735 		if (abs_offset < block_limit) {
1736 			if (!st->frag_data)
1737 				st->frag_data = kmap_skb_frag(frag);
1738 
1739 			*data = (u8 *) st->frag_data + frag->page_offset +
1740 				(abs_offset - st->stepped_offset);
1741 
1742 			return block_limit - abs_offset;
1743 		}
1744 
1745 		if (st->frag_data) {
1746 			kunmap_skb_frag(st->frag_data);
1747 			st->frag_data = NULL;
1748 		}
1749 
1750 		st->frag_idx++;
1751 		st->stepped_offset += frag->size;
1752 	}
1753 
1754 	if (st->cur_skb->next) {
1755 		st->cur_skb = st->cur_skb->next;
1756 		st->frag_idx = 0;
1757 		goto next_skb;
1758 	} else if (st->root_skb == st->cur_skb &&
1759 		   skb_shinfo(st->root_skb)->frag_list) {
1760 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1761 		goto next_skb;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * skb_abort_seq_read - Abort a sequential read of skb data
1769  * @st: state variable
1770  *
1771  * Must be called if skb_seq_read() was not called until it
1772  * returned 0.
1773  */
1774 void skb_abort_seq_read(struct skb_seq_state *st)
1775 {
1776 	if (st->frag_data)
1777 		kunmap_skb_frag(st->frag_data);
1778 }
1779 
1780 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
1781 
1782 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1783 					  struct ts_config *conf,
1784 					  struct ts_state *state)
1785 {
1786 	return skb_seq_read(offset, text, TS_SKB_CB(state));
1787 }
1788 
1789 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1790 {
1791 	skb_abort_seq_read(TS_SKB_CB(state));
1792 }
1793 
1794 /**
1795  * skb_find_text - Find a text pattern in skb data
1796  * @skb: the buffer to look in
1797  * @from: search offset
1798  * @to: search limit
1799  * @config: textsearch configuration
1800  * @state: uninitialized textsearch state variable
1801  *
1802  * Finds a pattern in the skb data according to the specified
1803  * textsearch configuration. Use textsearch_next() to retrieve
1804  * subsequent occurrences of the pattern. Returns the offset
1805  * to the first occurrence or UINT_MAX if no match was found.
1806  */
1807 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1808 			   unsigned int to, struct ts_config *config,
1809 			   struct ts_state *state)
1810 {
1811 	unsigned int ret;
1812 
1813 	config->get_next_block = skb_ts_get_next_block;
1814 	config->finish = skb_ts_finish;
1815 
1816 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1817 
1818 	ret = textsearch_find(config, state);
1819 	return (ret <= to - from ? ret : UINT_MAX);
1820 }
1821 
1822 /**
1823  * skb_append_datato_frags: - append the user data to a skb
1824  * @sk: sock  structure
1825  * @skb: skb structure to be appened with user data.
1826  * @getfrag: call back function to be used for getting the user data
1827  * @from: pointer to user message iov
1828  * @length: length of the iov message
1829  *
1830  * Description: This procedure append the user data in the fragment part
1831  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
1832  */
1833 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1834 			int (*getfrag)(void *from, char *to, int offset,
1835 					int len, int odd, struct sk_buff *skb),
1836 			void *from, int length)
1837 {
1838 	int frg_cnt = 0;
1839 	skb_frag_t *frag = NULL;
1840 	struct page *page = NULL;
1841 	int copy, left;
1842 	int offset = 0;
1843 	int ret;
1844 
1845 	do {
1846 		/* Return error if we don't have space for new frag */
1847 		frg_cnt = skb_shinfo(skb)->nr_frags;
1848 		if (frg_cnt >= MAX_SKB_FRAGS)
1849 			return -EFAULT;
1850 
1851 		/* allocate a new page for next frag */
1852 		page = alloc_pages(sk->sk_allocation, 0);
1853 
1854 		/* If alloc_page fails just return failure and caller will
1855 		 * free previous allocated pages by doing kfree_skb()
1856 		 */
1857 		if (page == NULL)
1858 			return -ENOMEM;
1859 
1860 		/* initialize the next frag */
1861 		sk->sk_sndmsg_page = page;
1862 		sk->sk_sndmsg_off = 0;
1863 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1864 		skb->truesize += PAGE_SIZE;
1865 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1866 
1867 		/* get the new initialized frag */
1868 		frg_cnt = skb_shinfo(skb)->nr_frags;
1869 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1870 
1871 		/* copy the user data to page */
1872 		left = PAGE_SIZE - frag->page_offset;
1873 		copy = (length > left)? left : length;
1874 
1875 		ret = getfrag(from, (page_address(frag->page) +
1876 			    frag->page_offset + frag->size),
1877 			    offset, copy, 0, skb);
1878 		if (ret < 0)
1879 			return -EFAULT;
1880 
1881 		/* copy was successful so update the size parameters */
1882 		sk->sk_sndmsg_off += copy;
1883 		frag->size += copy;
1884 		skb->len += copy;
1885 		skb->data_len += copy;
1886 		offset += copy;
1887 		length -= copy;
1888 
1889 	} while (length > 0);
1890 
1891 	return 0;
1892 }
1893 
1894 /**
1895  *	skb_pull_rcsum - pull skb and update receive checksum
1896  *	@skb: buffer to update
1897  *	@start: start of data before pull
1898  *	@len: length of data pulled
1899  *
1900  *	This function performs an skb_pull on the packet and updates
1901  *	update the CHECKSUM_HW checksum.  It should be used on receive
1902  *	path processing instead of skb_pull unless you know that the
1903  *	checksum difference is zero (e.g., a valid IP header) or you
1904  *	are setting ip_summed to CHECKSUM_NONE.
1905  */
1906 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1907 {
1908 	BUG_ON(len > skb->len);
1909 	skb->len -= len;
1910 	BUG_ON(skb->len < skb->data_len);
1911 	skb_postpull_rcsum(skb, skb->data, len);
1912 	return skb->data += len;
1913 }
1914 
1915 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1916 
1917 /**
1918  *	skb_segment - Perform protocol segmentation on skb.
1919  *	@skb: buffer to segment
1920  *	@features: features for the output path (see dev->features)
1921  *
1922  *	This function performs segmentation on the given skb.  It returns
1923  *	the segment at the given position.  It returns NULL if there are
1924  *	no more segments to generate, or when an error is encountered.
1925  */
1926 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1927 {
1928 	struct sk_buff *segs = NULL;
1929 	struct sk_buff *tail = NULL;
1930 	unsigned int mss = skb_shinfo(skb)->gso_size;
1931 	unsigned int doffset = skb->data - skb->mac.raw;
1932 	unsigned int offset = doffset;
1933 	unsigned int headroom;
1934 	unsigned int len;
1935 	int sg = features & NETIF_F_SG;
1936 	int nfrags = skb_shinfo(skb)->nr_frags;
1937 	int err = -ENOMEM;
1938 	int i = 0;
1939 	int pos;
1940 
1941 	__skb_push(skb, doffset);
1942 	headroom = skb_headroom(skb);
1943 	pos = skb_headlen(skb);
1944 
1945 	do {
1946 		struct sk_buff *nskb;
1947 		skb_frag_t *frag;
1948 		int hsize, nsize;
1949 		int k;
1950 		int size;
1951 
1952 		len = skb->len - offset;
1953 		if (len > mss)
1954 			len = mss;
1955 
1956 		hsize = skb_headlen(skb) - offset;
1957 		if (hsize < 0)
1958 			hsize = 0;
1959 		nsize = hsize + doffset;
1960 		if (nsize > len + doffset || !sg)
1961 			nsize = len + doffset;
1962 
1963 		nskb = alloc_skb(nsize + headroom, GFP_ATOMIC);
1964 		if (unlikely(!nskb))
1965 			goto err;
1966 
1967 		if (segs)
1968 			tail->next = nskb;
1969 		else
1970 			segs = nskb;
1971 		tail = nskb;
1972 
1973 		nskb->dev = skb->dev;
1974 		nskb->priority = skb->priority;
1975 		nskb->protocol = skb->protocol;
1976 		nskb->dst = dst_clone(skb->dst);
1977 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1978 		nskb->pkt_type = skb->pkt_type;
1979 		nskb->mac_len = skb->mac_len;
1980 
1981 		skb_reserve(nskb, headroom);
1982 		nskb->mac.raw = nskb->data;
1983 		nskb->nh.raw = nskb->data + skb->mac_len;
1984 		nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1985 		memcpy(skb_put(nskb, doffset), skb->data, doffset);
1986 
1987 		if (!sg) {
1988 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
1989 							    skb_put(nskb, len),
1990 							    len, 0);
1991 			continue;
1992 		}
1993 
1994 		frag = skb_shinfo(nskb)->frags;
1995 		k = 0;
1996 
1997 		nskb->ip_summed = CHECKSUM_HW;
1998 		nskb->csum = skb->csum;
1999 		memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2000 
2001 		while (pos < offset + len) {
2002 			BUG_ON(i >= nfrags);
2003 
2004 			*frag = skb_shinfo(skb)->frags[i];
2005 			get_page(frag->page);
2006 			size = frag->size;
2007 
2008 			if (pos < offset) {
2009 				frag->page_offset += offset - pos;
2010 				frag->size -= offset - pos;
2011 			}
2012 
2013 			k++;
2014 
2015 			if (pos + size <= offset + len) {
2016 				i++;
2017 				pos += size;
2018 			} else {
2019 				frag->size -= pos + size - (offset + len);
2020 				break;
2021 			}
2022 
2023 			frag++;
2024 		}
2025 
2026 		skb_shinfo(nskb)->nr_frags = k;
2027 		nskb->data_len = len - hsize;
2028 		nskb->len += nskb->data_len;
2029 		nskb->truesize += nskb->data_len;
2030 	} while ((offset += len) < skb->len);
2031 
2032 	return segs;
2033 
2034 err:
2035 	while ((skb = segs)) {
2036 		segs = skb->next;
2037 		kfree(skb);
2038 	}
2039 	return ERR_PTR(err);
2040 }
2041 
2042 EXPORT_SYMBOL_GPL(skb_segment);
2043 
2044 void __init skb_init(void)
2045 {
2046 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2047 					      sizeof(struct sk_buff),
2048 					      0,
2049 					      SLAB_HWCACHE_ALIGN,
2050 					      NULL, NULL);
2051 	if (!skbuff_head_cache)
2052 		panic("cannot create skbuff cache");
2053 
2054 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2055 						(2*sizeof(struct sk_buff)) +
2056 						sizeof(atomic_t),
2057 						0,
2058 						SLAB_HWCACHE_ALIGN,
2059 						NULL, NULL);
2060 	if (!skbuff_fclone_cache)
2061 		panic("cannot create skbuff cache");
2062 }
2063 
2064 EXPORT_SYMBOL(___pskb_trim);
2065 EXPORT_SYMBOL(__kfree_skb);
2066 EXPORT_SYMBOL(kfree_skb);
2067 EXPORT_SYMBOL(__pskb_pull_tail);
2068 EXPORT_SYMBOL(__alloc_skb);
2069 EXPORT_SYMBOL(__netdev_alloc_skb);
2070 EXPORT_SYMBOL(pskb_copy);
2071 EXPORT_SYMBOL(pskb_expand_head);
2072 EXPORT_SYMBOL(skb_checksum);
2073 EXPORT_SYMBOL(skb_clone);
2074 EXPORT_SYMBOL(skb_clone_fraglist);
2075 EXPORT_SYMBOL(skb_copy);
2076 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2077 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2078 EXPORT_SYMBOL(skb_copy_bits);
2079 EXPORT_SYMBOL(skb_copy_expand);
2080 EXPORT_SYMBOL(skb_over_panic);
2081 EXPORT_SYMBOL(skb_pad);
2082 EXPORT_SYMBOL(skb_realloc_headroom);
2083 EXPORT_SYMBOL(skb_under_panic);
2084 EXPORT_SYMBOL(skb_dequeue);
2085 EXPORT_SYMBOL(skb_dequeue_tail);
2086 EXPORT_SYMBOL(skb_insert);
2087 EXPORT_SYMBOL(skb_queue_purge);
2088 EXPORT_SYMBOL(skb_queue_head);
2089 EXPORT_SYMBOL(skb_queue_tail);
2090 EXPORT_SYMBOL(skb_unlink);
2091 EXPORT_SYMBOL(skb_append);
2092 EXPORT_SYMBOL(skb_split);
2093 EXPORT_SYMBOL(skb_prepare_seq_read);
2094 EXPORT_SYMBOL(skb_seq_read);
2095 EXPORT_SYMBOL(skb_abort_seq_read);
2096 EXPORT_SYMBOL(skb_find_text);
2097 EXPORT_SYMBOL(skb_append_datato_frags);
2098