1 /* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $ 8 * 9 * Fixes: 10 * Alan Cox : Fixed the worst of the load 11 * balancer bugs. 12 * Dave Platt : Interrupt stacking fix. 13 * Richard Kooijman : Timestamp fixes. 14 * Alan Cox : Changed buffer format. 15 * Alan Cox : destructor hook for AF_UNIX etc. 16 * Linus Torvalds : Better skb_clone. 17 * Alan Cox : Added skb_copy. 18 * Alan Cox : Added all the changed routines Linus 19 * only put in the headers 20 * Ray VanTassle : Fixed --skb->lock in free 21 * Alan Cox : skb_copy copy arp field 22 * Andi Kleen : slabified it. 23 * Robert Olsson : Removed skb_head_pool 24 * 25 * NOTE: 26 * The __skb_ routines should be called with interrupts 27 * disabled, or you better be *real* sure that the operation is atomic 28 * with respect to whatever list is being frobbed (e.g. via lock_sock() 29 * or via disabling bottom half handlers, etc). 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License 33 * as published by the Free Software Foundation; either version 34 * 2 of the License, or (at your option) any later version. 35 */ 36 37 /* 38 * The functions in this file will not compile correctly with gcc 2.4.x 39 */ 40 41 #include <linux/module.h> 42 #include <linux/types.h> 43 #include <linux/kernel.h> 44 #include <linux/sched.h> 45 #include <linux/mm.h> 46 #include <linux/interrupt.h> 47 #include <linux/in.h> 48 #include <linux/inet.h> 49 #include <linux/slab.h> 50 #include <linux/netdevice.h> 51 #ifdef CONFIG_NET_CLS_ACT 52 #include <net/pkt_sched.h> 53 #endif 54 #include <linux/string.h> 55 #include <linux/skbuff.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/highmem.h> 60 61 #include <net/protocol.h> 62 #include <net/dst.h> 63 #include <net/sock.h> 64 #include <net/checksum.h> 65 #include <net/xfrm.h> 66 67 #include <asm/uaccess.h> 68 #include <asm/system.h> 69 70 static kmem_cache_t *skbuff_head_cache __read_mostly; 71 static kmem_cache_t *skbuff_fclone_cache __read_mostly; 72 73 /* 74 * Keep out-of-line to prevent kernel bloat. 75 * __builtin_return_address is not used because it is not always 76 * reliable. 77 */ 78 79 /** 80 * skb_over_panic - private function 81 * @skb: buffer 82 * @sz: size 83 * @here: address 84 * 85 * Out of line support code for skb_put(). Not user callable. 86 */ 87 void skb_over_panic(struct sk_buff *skb, int sz, void *here) 88 { 89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p " 90 "data:%p tail:%p end:%p dev:%s\n", 91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 92 skb->dev ? skb->dev->name : "<NULL>"); 93 BUG(); 94 } 95 96 /** 97 * skb_under_panic - private function 98 * @skb: buffer 99 * @sz: size 100 * @here: address 101 * 102 * Out of line support code for skb_push(). Not user callable. 103 */ 104 105 void skb_under_panic(struct sk_buff *skb, int sz, void *here) 106 { 107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p " 108 "data:%p tail:%p end:%p dev:%s\n", 109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end, 110 skb->dev ? skb->dev->name : "<NULL>"); 111 BUG(); 112 } 113 114 void skb_truesize_bug(struct sk_buff *skb) 115 { 116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) " 117 "len=%u, sizeof(sk_buff)=%Zd\n", 118 skb->truesize, skb->len, sizeof(struct sk_buff)); 119 } 120 EXPORT_SYMBOL(skb_truesize_bug); 121 122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 123 * 'private' fields and also do memory statistics to find all the 124 * [BEEP] leaks. 125 * 126 */ 127 128 /** 129 * __alloc_skb - allocate a network buffer 130 * @size: size to allocate 131 * @gfp_mask: allocation mask 132 * @fclone: allocate from fclone cache instead of head cache 133 * and allocate a cloned (child) skb 134 * 135 * Allocate a new &sk_buff. The returned buffer has no headroom and a 136 * tail room of size bytes. The object has a reference count of one. 137 * The return is the buffer. On a failure the return is %NULL. 138 * 139 * Buffers may only be allocated from interrupts using a @gfp_mask of 140 * %GFP_ATOMIC. 141 */ 142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 143 int fclone) 144 { 145 kmem_cache_t *cache; 146 struct skb_shared_info *shinfo; 147 struct sk_buff *skb; 148 u8 *data; 149 150 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache; 151 152 /* Get the HEAD */ 153 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA); 154 if (!skb) 155 goto out; 156 157 /* Get the DATA. Size must match skb_add_mtu(). */ 158 size = SKB_DATA_ALIGN(size); 159 data = ____kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 160 if (!data) 161 goto nodata; 162 163 memset(skb, 0, offsetof(struct sk_buff, truesize)); 164 skb->truesize = size + sizeof(struct sk_buff); 165 atomic_set(&skb->users, 1); 166 skb->head = data; 167 skb->data = data; 168 skb->tail = data; 169 skb->end = data + size; 170 /* make sure we initialize shinfo sequentially */ 171 shinfo = skb_shinfo(skb); 172 atomic_set(&shinfo->dataref, 1); 173 shinfo->nr_frags = 0; 174 shinfo->gso_size = 0; 175 shinfo->gso_segs = 0; 176 shinfo->gso_type = 0; 177 shinfo->ip6_frag_id = 0; 178 shinfo->frag_list = NULL; 179 180 if (fclone) { 181 struct sk_buff *child = skb + 1; 182 atomic_t *fclone_ref = (atomic_t *) (child + 1); 183 184 skb->fclone = SKB_FCLONE_ORIG; 185 atomic_set(fclone_ref, 1); 186 187 child->fclone = SKB_FCLONE_UNAVAILABLE; 188 } 189 out: 190 return skb; 191 nodata: 192 kmem_cache_free(cache, skb); 193 skb = NULL; 194 goto out; 195 } 196 197 /** 198 * alloc_skb_from_cache - allocate a network buffer 199 * @cp: kmem_cache from which to allocate the data area 200 * (object size must be big enough for @size bytes + skb overheads) 201 * @size: size to allocate 202 * @gfp_mask: allocation mask 203 * 204 * Allocate a new &sk_buff. The returned buffer has no headroom and 205 * tail room of size bytes. The object has a reference count of one. 206 * The return is the buffer. On a failure the return is %NULL. 207 * 208 * Buffers may only be allocated from interrupts using a @gfp_mask of 209 * %GFP_ATOMIC. 210 */ 211 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 212 unsigned int size, 213 gfp_t gfp_mask) 214 { 215 struct sk_buff *skb; 216 u8 *data; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc(skbuff_head_cache, 220 gfp_mask & ~__GFP_DMA); 221 if (!skb) 222 goto out; 223 224 /* Get the DATA. */ 225 size = SKB_DATA_ALIGN(size); 226 data = kmem_cache_alloc(cp, gfp_mask); 227 if (!data) 228 goto nodata; 229 230 memset(skb, 0, offsetof(struct sk_buff, truesize)); 231 skb->truesize = size + sizeof(struct sk_buff); 232 atomic_set(&skb->users, 1); 233 skb->head = data; 234 skb->data = data; 235 skb->tail = data; 236 skb->end = data + size; 237 238 atomic_set(&(skb_shinfo(skb)->dataref), 1); 239 skb_shinfo(skb)->nr_frags = 0; 240 skb_shinfo(skb)->gso_size = 0; 241 skb_shinfo(skb)->gso_segs = 0; 242 skb_shinfo(skb)->gso_type = 0; 243 skb_shinfo(skb)->frag_list = NULL; 244 out: 245 return skb; 246 nodata: 247 kmem_cache_free(skbuff_head_cache, skb); 248 skb = NULL; 249 goto out; 250 } 251 252 /** 253 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 254 * @dev: network device to receive on 255 * @length: length to allocate 256 * @gfp_mask: get_free_pages mask, passed to alloc_skb 257 * 258 * Allocate a new &sk_buff and assign it a usage count of one. The 259 * buffer has unspecified headroom built in. Users should allocate 260 * the headroom they think they need without accounting for the 261 * built in space. The built in space is used for optimisations. 262 * 263 * %NULL is returned if there is no free memory. 264 */ 265 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 266 unsigned int length, gfp_t gfp_mask) 267 { 268 struct sk_buff *skb; 269 270 skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 271 if (likely(skb)) { 272 skb_reserve(skb, NET_SKB_PAD); 273 skb->dev = dev; 274 } 275 return skb; 276 } 277 278 static void skb_drop_list(struct sk_buff **listp) 279 { 280 struct sk_buff *list = *listp; 281 282 *listp = NULL; 283 284 do { 285 struct sk_buff *this = list; 286 list = list->next; 287 kfree_skb(this); 288 } while (list); 289 } 290 291 static inline void skb_drop_fraglist(struct sk_buff *skb) 292 { 293 skb_drop_list(&skb_shinfo(skb)->frag_list); 294 } 295 296 static void skb_clone_fraglist(struct sk_buff *skb) 297 { 298 struct sk_buff *list; 299 300 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) 301 skb_get(list); 302 } 303 304 static void skb_release_data(struct sk_buff *skb) 305 { 306 if (!skb->cloned || 307 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 308 &skb_shinfo(skb)->dataref)) { 309 if (skb_shinfo(skb)->nr_frags) { 310 int i; 311 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 312 put_page(skb_shinfo(skb)->frags[i].page); 313 } 314 315 if (skb_shinfo(skb)->frag_list) 316 skb_drop_fraglist(skb); 317 318 kfree(skb->head); 319 } 320 } 321 322 /* 323 * Free an skbuff by memory without cleaning the state. 324 */ 325 void kfree_skbmem(struct sk_buff *skb) 326 { 327 struct sk_buff *other; 328 atomic_t *fclone_ref; 329 330 skb_release_data(skb); 331 switch (skb->fclone) { 332 case SKB_FCLONE_UNAVAILABLE: 333 kmem_cache_free(skbuff_head_cache, skb); 334 break; 335 336 case SKB_FCLONE_ORIG: 337 fclone_ref = (atomic_t *) (skb + 2); 338 if (atomic_dec_and_test(fclone_ref)) 339 kmem_cache_free(skbuff_fclone_cache, skb); 340 break; 341 342 case SKB_FCLONE_CLONE: 343 fclone_ref = (atomic_t *) (skb + 1); 344 other = skb - 1; 345 346 /* The clone portion is available for 347 * fast-cloning again. 348 */ 349 skb->fclone = SKB_FCLONE_UNAVAILABLE; 350 351 if (atomic_dec_and_test(fclone_ref)) 352 kmem_cache_free(skbuff_fclone_cache, other); 353 break; 354 }; 355 } 356 357 /** 358 * __kfree_skb - private function 359 * @skb: buffer 360 * 361 * Free an sk_buff. Release anything attached to the buffer. 362 * Clean the state. This is an internal helper function. Users should 363 * always call kfree_skb 364 */ 365 366 void __kfree_skb(struct sk_buff *skb) 367 { 368 dst_release(skb->dst); 369 #ifdef CONFIG_XFRM 370 secpath_put(skb->sp); 371 #endif 372 if (skb->destructor) { 373 WARN_ON(in_irq()); 374 skb->destructor(skb); 375 } 376 #ifdef CONFIG_NETFILTER 377 nf_conntrack_put(skb->nfct); 378 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 379 nf_conntrack_put_reasm(skb->nfct_reasm); 380 #endif 381 #ifdef CONFIG_BRIDGE_NETFILTER 382 nf_bridge_put(skb->nf_bridge); 383 #endif 384 #endif 385 /* XXX: IS this still necessary? - JHS */ 386 #ifdef CONFIG_NET_SCHED 387 skb->tc_index = 0; 388 #ifdef CONFIG_NET_CLS_ACT 389 skb->tc_verd = 0; 390 #endif 391 #endif 392 393 kfree_skbmem(skb); 394 } 395 396 /** 397 * kfree_skb - free an sk_buff 398 * @skb: buffer to free 399 * 400 * Drop a reference to the buffer and free it if the usage count has 401 * hit zero. 402 */ 403 void kfree_skb(struct sk_buff *skb) 404 { 405 if (unlikely(!skb)) 406 return; 407 if (likely(atomic_read(&skb->users) == 1)) 408 smp_rmb(); 409 else if (likely(!atomic_dec_and_test(&skb->users))) 410 return; 411 __kfree_skb(skb); 412 } 413 414 /** 415 * skb_clone - duplicate an sk_buff 416 * @skb: buffer to clone 417 * @gfp_mask: allocation priority 418 * 419 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 420 * copies share the same packet data but not structure. The new 421 * buffer has a reference count of 1. If the allocation fails the 422 * function returns %NULL otherwise the new buffer is returned. 423 * 424 * If this function is called from an interrupt gfp_mask() must be 425 * %GFP_ATOMIC. 426 */ 427 428 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 429 { 430 struct sk_buff *n; 431 432 n = skb + 1; 433 if (skb->fclone == SKB_FCLONE_ORIG && 434 n->fclone == SKB_FCLONE_UNAVAILABLE) { 435 atomic_t *fclone_ref = (atomic_t *) (n + 1); 436 n->fclone = SKB_FCLONE_CLONE; 437 atomic_inc(fclone_ref); 438 } else { 439 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 440 if (!n) 441 return NULL; 442 n->fclone = SKB_FCLONE_UNAVAILABLE; 443 } 444 445 #define C(x) n->x = skb->x 446 447 n->next = n->prev = NULL; 448 n->sk = NULL; 449 C(tstamp); 450 C(dev); 451 C(h); 452 C(nh); 453 C(mac); 454 C(dst); 455 dst_clone(skb->dst); 456 C(sp); 457 #ifdef CONFIG_INET 458 secpath_get(skb->sp); 459 #endif 460 memcpy(n->cb, skb->cb, sizeof(skb->cb)); 461 C(len); 462 C(data_len); 463 C(csum); 464 C(local_df); 465 n->cloned = 1; 466 n->nohdr = 0; 467 C(pkt_type); 468 C(ip_summed); 469 C(priority); 470 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 471 C(ipvs_property); 472 #endif 473 C(protocol); 474 n->destructor = NULL; 475 #ifdef CONFIG_NETFILTER 476 C(nfmark); 477 C(nfct); 478 nf_conntrack_get(skb->nfct); 479 C(nfctinfo); 480 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 481 C(nfct_reasm); 482 nf_conntrack_get_reasm(skb->nfct_reasm); 483 #endif 484 #ifdef CONFIG_BRIDGE_NETFILTER 485 C(nf_bridge); 486 nf_bridge_get(skb->nf_bridge); 487 #endif 488 #endif /*CONFIG_NETFILTER*/ 489 #ifdef CONFIG_NET_SCHED 490 C(tc_index); 491 #ifdef CONFIG_NET_CLS_ACT 492 n->tc_verd = SET_TC_VERD(skb->tc_verd,0); 493 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd); 494 n->tc_verd = CLR_TC_MUNGED(n->tc_verd); 495 C(input_dev); 496 #endif 497 skb_copy_secmark(n, skb); 498 #endif 499 C(truesize); 500 atomic_set(&n->users, 1); 501 C(head); 502 C(data); 503 C(tail); 504 C(end); 505 506 atomic_inc(&(skb_shinfo(skb)->dataref)); 507 skb->cloned = 1; 508 509 return n; 510 } 511 512 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 513 { 514 /* 515 * Shift between the two data areas in bytes 516 */ 517 unsigned long offset = new->data - old->data; 518 519 new->sk = NULL; 520 new->dev = old->dev; 521 new->priority = old->priority; 522 new->protocol = old->protocol; 523 new->dst = dst_clone(old->dst); 524 #ifdef CONFIG_INET 525 new->sp = secpath_get(old->sp); 526 #endif 527 new->h.raw = old->h.raw + offset; 528 new->nh.raw = old->nh.raw + offset; 529 new->mac.raw = old->mac.raw + offset; 530 memcpy(new->cb, old->cb, sizeof(old->cb)); 531 new->local_df = old->local_df; 532 new->fclone = SKB_FCLONE_UNAVAILABLE; 533 new->pkt_type = old->pkt_type; 534 new->tstamp = old->tstamp; 535 new->destructor = NULL; 536 #ifdef CONFIG_NETFILTER 537 new->nfmark = old->nfmark; 538 new->nfct = old->nfct; 539 nf_conntrack_get(old->nfct); 540 new->nfctinfo = old->nfctinfo; 541 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 542 new->nfct_reasm = old->nfct_reasm; 543 nf_conntrack_get_reasm(old->nfct_reasm); 544 #endif 545 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 546 new->ipvs_property = old->ipvs_property; 547 #endif 548 #ifdef CONFIG_BRIDGE_NETFILTER 549 new->nf_bridge = old->nf_bridge; 550 nf_bridge_get(old->nf_bridge); 551 #endif 552 #endif 553 #ifdef CONFIG_NET_SCHED 554 #ifdef CONFIG_NET_CLS_ACT 555 new->tc_verd = old->tc_verd; 556 #endif 557 new->tc_index = old->tc_index; 558 #endif 559 skb_copy_secmark(new, old); 560 atomic_set(&new->users, 1); 561 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 562 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 563 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 564 } 565 566 /** 567 * skb_copy - create private copy of an sk_buff 568 * @skb: buffer to copy 569 * @gfp_mask: allocation priority 570 * 571 * Make a copy of both an &sk_buff and its data. This is used when the 572 * caller wishes to modify the data and needs a private copy of the 573 * data to alter. Returns %NULL on failure or the pointer to the buffer 574 * on success. The returned buffer has a reference count of 1. 575 * 576 * As by-product this function converts non-linear &sk_buff to linear 577 * one, so that &sk_buff becomes completely private and caller is allowed 578 * to modify all the data of returned buffer. This means that this 579 * function is not recommended for use in circumstances when only 580 * header is going to be modified. Use pskb_copy() instead. 581 */ 582 583 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 584 { 585 int headerlen = skb->data - skb->head; 586 /* 587 * Allocate the copy buffer 588 */ 589 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len, 590 gfp_mask); 591 if (!n) 592 return NULL; 593 594 /* Set the data pointer */ 595 skb_reserve(n, headerlen); 596 /* Set the tail pointer and length */ 597 skb_put(n, skb->len); 598 n->csum = skb->csum; 599 n->ip_summed = skb->ip_summed; 600 601 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 602 BUG(); 603 604 copy_skb_header(n, skb); 605 return n; 606 } 607 608 609 /** 610 * pskb_copy - create copy of an sk_buff with private head. 611 * @skb: buffer to copy 612 * @gfp_mask: allocation priority 613 * 614 * Make a copy of both an &sk_buff and part of its data, located 615 * in header. Fragmented data remain shared. This is used when 616 * the caller wishes to modify only header of &sk_buff and needs 617 * private copy of the header to alter. Returns %NULL on failure 618 * or the pointer to the buffer on success. 619 * The returned buffer has a reference count of 1. 620 */ 621 622 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) 623 { 624 /* 625 * Allocate the copy buffer 626 */ 627 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask); 628 629 if (!n) 630 goto out; 631 632 /* Set the data pointer */ 633 skb_reserve(n, skb->data - skb->head); 634 /* Set the tail pointer and length */ 635 skb_put(n, skb_headlen(skb)); 636 /* Copy the bytes */ 637 memcpy(n->data, skb->data, n->len); 638 n->csum = skb->csum; 639 n->ip_summed = skb->ip_summed; 640 641 n->data_len = skb->data_len; 642 n->len = skb->len; 643 644 if (skb_shinfo(skb)->nr_frags) { 645 int i; 646 647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 648 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 649 get_page(skb_shinfo(n)->frags[i].page); 650 } 651 skb_shinfo(n)->nr_frags = i; 652 } 653 654 if (skb_shinfo(skb)->frag_list) { 655 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 656 skb_clone_fraglist(n); 657 } 658 659 copy_skb_header(n, skb); 660 out: 661 return n; 662 } 663 664 /** 665 * pskb_expand_head - reallocate header of &sk_buff 666 * @skb: buffer to reallocate 667 * @nhead: room to add at head 668 * @ntail: room to add at tail 669 * @gfp_mask: allocation priority 670 * 671 * Expands (or creates identical copy, if &nhead and &ntail are zero) 672 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have 673 * reference count of 1. Returns zero in the case of success or error, 674 * if expansion failed. In the last case, &sk_buff is not changed. 675 * 676 * All the pointers pointing into skb header may change and must be 677 * reloaded after call to this function. 678 */ 679 680 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 681 gfp_t gfp_mask) 682 { 683 int i; 684 u8 *data; 685 int size = nhead + (skb->end - skb->head) + ntail; 686 long off; 687 688 if (skb_shared(skb)) 689 BUG(); 690 691 size = SKB_DATA_ALIGN(size); 692 693 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 694 if (!data) 695 goto nodata; 696 697 /* Copy only real data... and, alas, header. This should be 698 * optimized for the cases when header is void. */ 699 memcpy(data + nhead, skb->head, skb->tail - skb->head); 700 memcpy(data + size, skb->end, sizeof(struct skb_shared_info)); 701 702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 703 get_page(skb_shinfo(skb)->frags[i].page); 704 705 if (skb_shinfo(skb)->frag_list) 706 skb_clone_fraglist(skb); 707 708 skb_release_data(skb); 709 710 off = (data + nhead) - skb->head; 711 712 skb->head = data; 713 skb->end = data + size; 714 skb->data += off; 715 skb->tail += off; 716 skb->mac.raw += off; 717 skb->h.raw += off; 718 skb->nh.raw += off; 719 skb->cloned = 0; 720 skb->nohdr = 0; 721 atomic_set(&skb_shinfo(skb)->dataref, 1); 722 return 0; 723 724 nodata: 725 return -ENOMEM; 726 } 727 728 /* Make private copy of skb with writable head and some headroom */ 729 730 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 731 { 732 struct sk_buff *skb2; 733 int delta = headroom - skb_headroom(skb); 734 735 if (delta <= 0) 736 skb2 = pskb_copy(skb, GFP_ATOMIC); 737 else { 738 skb2 = skb_clone(skb, GFP_ATOMIC); 739 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 740 GFP_ATOMIC)) { 741 kfree_skb(skb2); 742 skb2 = NULL; 743 } 744 } 745 return skb2; 746 } 747 748 749 /** 750 * skb_copy_expand - copy and expand sk_buff 751 * @skb: buffer to copy 752 * @newheadroom: new free bytes at head 753 * @newtailroom: new free bytes at tail 754 * @gfp_mask: allocation priority 755 * 756 * Make a copy of both an &sk_buff and its data and while doing so 757 * allocate additional space. 758 * 759 * This is used when the caller wishes to modify the data and needs a 760 * private copy of the data to alter as well as more space for new fields. 761 * Returns %NULL on failure or the pointer to the buffer 762 * on success. The returned buffer has a reference count of 1. 763 * 764 * You must pass %GFP_ATOMIC as the allocation priority if this function 765 * is called from an interrupt. 766 * 767 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used 768 * only by netfilter in the cases when checksum is recalculated? --ANK 769 */ 770 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 771 int newheadroom, int newtailroom, 772 gfp_t gfp_mask) 773 { 774 /* 775 * Allocate the copy buffer 776 */ 777 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom, 778 gfp_mask); 779 int head_copy_len, head_copy_off; 780 781 if (!n) 782 return NULL; 783 784 skb_reserve(n, newheadroom); 785 786 /* Set the tail pointer and length */ 787 skb_put(n, skb->len); 788 789 head_copy_len = skb_headroom(skb); 790 head_copy_off = 0; 791 if (newheadroom <= head_copy_len) 792 head_copy_len = newheadroom; 793 else 794 head_copy_off = newheadroom - head_copy_len; 795 796 /* Copy the linear header and data. */ 797 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 798 skb->len + head_copy_len)) 799 BUG(); 800 801 copy_skb_header(n, skb); 802 803 return n; 804 } 805 806 /** 807 * skb_pad - zero pad the tail of an skb 808 * @skb: buffer to pad 809 * @pad: space to pad 810 * 811 * Ensure that a buffer is followed by a padding area that is zero 812 * filled. Used by network drivers which may DMA or transfer data 813 * beyond the buffer end onto the wire. 814 * 815 * May return error in out of memory cases. The skb is freed on error. 816 */ 817 818 int skb_pad(struct sk_buff *skb, int pad) 819 { 820 int err; 821 int ntail; 822 823 /* If the skbuff is non linear tailroom is always zero.. */ 824 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 825 memset(skb->data+skb->len, 0, pad); 826 return 0; 827 } 828 829 ntail = skb->data_len + pad - (skb->end - skb->tail); 830 if (likely(skb_cloned(skb) || ntail > 0)) { 831 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 832 if (unlikely(err)) 833 goto free_skb; 834 } 835 836 /* FIXME: The use of this function with non-linear skb's really needs 837 * to be audited. 838 */ 839 err = skb_linearize(skb); 840 if (unlikely(err)) 841 goto free_skb; 842 843 memset(skb->data + skb->len, 0, pad); 844 return 0; 845 846 free_skb: 847 kfree_skb(skb); 848 return err; 849 } 850 851 /* Trims skb to length len. It can change skb pointers. 852 */ 853 854 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 855 { 856 struct sk_buff **fragp; 857 struct sk_buff *frag; 858 int offset = skb_headlen(skb); 859 int nfrags = skb_shinfo(skb)->nr_frags; 860 int i; 861 int err; 862 863 if (skb_cloned(skb) && 864 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 865 return err; 866 867 i = 0; 868 if (offset >= len) 869 goto drop_pages; 870 871 for (; i < nfrags; i++) { 872 int end = offset + skb_shinfo(skb)->frags[i].size; 873 874 if (end < len) { 875 offset = end; 876 continue; 877 } 878 879 skb_shinfo(skb)->frags[i++].size = len - offset; 880 881 drop_pages: 882 skb_shinfo(skb)->nr_frags = i; 883 884 for (; i < nfrags; i++) 885 put_page(skb_shinfo(skb)->frags[i].page); 886 887 if (skb_shinfo(skb)->frag_list) 888 skb_drop_fraglist(skb); 889 goto done; 890 } 891 892 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 893 fragp = &frag->next) { 894 int end = offset + frag->len; 895 896 if (skb_shared(frag)) { 897 struct sk_buff *nfrag; 898 899 nfrag = skb_clone(frag, GFP_ATOMIC); 900 if (unlikely(!nfrag)) 901 return -ENOMEM; 902 903 nfrag->next = frag->next; 904 kfree_skb(frag); 905 frag = nfrag; 906 *fragp = frag; 907 } 908 909 if (end < len) { 910 offset = end; 911 continue; 912 } 913 914 if (end > len && 915 unlikely((err = pskb_trim(frag, len - offset)))) 916 return err; 917 918 if (frag->next) 919 skb_drop_list(&frag->next); 920 break; 921 } 922 923 done: 924 if (len > skb_headlen(skb)) { 925 skb->data_len -= skb->len - len; 926 skb->len = len; 927 } else { 928 skb->len = len; 929 skb->data_len = 0; 930 skb->tail = skb->data + len; 931 } 932 933 return 0; 934 } 935 936 /** 937 * __pskb_pull_tail - advance tail of skb header 938 * @skb: buffer to reallocate 939 * @delta: number of bytes to advance tail 940 * 941 * The function makes a sense only on a fragmented &sk_buff, 942 * it expands header moving its tail forward and copying necessary 943 * data from fragmented part. 944 * 945 * &sk_buff MUST have reference count of 1. 946 * 947 * Returns %NULL (and &sk_buff does not change) if pull failed 948 * or value of new tail of skb in the case of success. 949 * 950 * All the pointers pointing into skb header may change and must be 951 * reloaded after call to this function. 952 */ 953 954 /* Moves tail of skb head forward, copying data from fragmented part, 955 * when it is necessary. 956 * 1. It may fail due to malloc failure. 957 * 2. It may change skb pointers. 958 * 959 * It is pretty complicated. Luckily, it is called only in exceptional cases. 960 */ 961 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 962 { 963 /* If skb has not enough free space at tail, get new one 964 * plus 128 bytes for future expansions. If we have enough 965 * room at tail, reallocate without expansion only if skb is cloned. 966 */ 967 int i, k, eat = (skb->tail + delta) - skb->end; 968 969 if (eat > 0 || skb_cloned(skb)) { 970 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 971 GFP_ATOMIC)) 972 return NULL; 973 } 974 975 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) 976 BUG(); 977 978 /* Optimization: no fragments, no reasons to preestimate 979 * size of pulled pages. Superb. 980 */ 981 if (!skb_shinfo(skb)->frag_list) 982 goto pull_pages; 983 984 /* Estimate size of pulled pages. */ 985 eat = delta; 986 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 987 if (skb_shinfo(skb)->frags[i].size >= eat) 988 goto pull_pages; 989 eat -= skb_shinfo(skb)->frags[i].size; 990 } 991 992 /* If we need update frag list, we are in troubles. 993 * Certainly, it possible to add an offset to skb data, 994 * but taking into account that pulling is expected to 995 * be very rare operation, it is worth to fight against 996 * further bloating skb head and crucify ourselves here instead. 997 * Pure masohism, indeed. 8)8) 998 */ 999 if (eat) { 1000 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1001 struct sk_buff *clone = NULL; 1002 struct sk_buff *insp = NULL; 1003 1004 do { 1005 BUG_ON(!list); 1006 1007 if (list->len <= eat) { 1008 /* Eaten as whole. */ 1009 eat -= list->len; 1010 list = list->next; 1011 insp = list; 1012 } else { 1013 /* Eaten partially. */ 1014 1015 if (skb_shared(list)) { 1016 /* Sucks! We need to fork list. :-( */ 1017 clone = skb_clone(list, GFP_ATOMIC); 1018 if (!clone) 1019 return NULL; 1020 insp = list->next; 1021 list = clone; 1022 } else { 1023 /* This may be pulled without 1024 * problems. */ 1025 insp = list; 1026 } 1027 if (!pskb_pull(list, eat)) { 1028 if (clone) 1029 kfree_skb(clone); 1030 return NULL; 1031 } 1032 break; 1033 } 1034 } while (eat); 1035 1036 /* Free pulled out fragments. */ 1037 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1038 skb_shinfo(skb)->frag_list = list->next; 1039 kfree_skb(list); 1040 } 1041 /* And insert new clone at head. */ 1042 if (clone) { 1043 clone->next = list; 1044 skb_shinfo(skb)->frag_list = clone; 1045 } 1046 } 1047 /* Success! Now we may commit changes to skb data. */ 1048 1049 pull_pages: 1050 eat = delta; 1051 k = 0; 1052 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1053 if (skb_shinfo(skb)->frags[i].size <= eat) { 1054 put_page(skb_shinfo(skb)->frags[i].page); 1055 eat -= skb_shinfo(skb)->frags[i].size; 1056 } else { 1057 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1058 if (eat) { 1059 skb_shinfo(skb)->frags[k].page_offset += eat; 1060 skb_shinfo(skb)->frags[k].size -= eat; 1061 eat = 0; 1062 } 1063 k++; 1064 } 1065 } 1066 skb_shinfo(skb)->nr_frags = k; 1067 1068 skb->tail += delta; 1069 skb->data_len -= delta; 1070 1071 return skb->tail; 1072 } 1073 1074 /* Copy some data bits from skb to kernel buffer. */ 1075 1076 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1077 { 1078 int i, copy; 1079 int start = skb_headlen(skb); 1080 1081 if (offset > (int)skb->len - len) 1082 goto fault; 1083 1084 /* Copy header. */ 1085 if ((copy = start - offset) > 0) { 1086 if (copy > len) 1087 copy = len; 1088 memcpy(to, skb->data + offset, copy); 1089 if ((len -= copy) == 0) 1090 return 0; 1091 offset += copy; 1092 to += copy; 1093 } 1094 1095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1096 int end; 1097 1098 BUG_TRAP(start <= offset + len); 1099 1100 end = start + skb_shinfo(skb)->frags[i].size; 1101 if ((copy = end - offset) > 0) { 1102 u8 *vaddr; 1103 1104 if (copy > len) 1105 copy = len; 1106 1107 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); 1108 memcpy(to, 1109 vaddr + skb_shinfo(skb)->frags[i].page_offset+ 1110 offset - start, copy); 1111 kunmap_skb_frag(vaddr); 1112 1113 if ((len -= copy) == 0) 1114 return 0; 1115 offset += copy; 1116 to += copy; 1117 } 1118 start = end; 1119 } 1120 1121 if (skb_shinfo(skb)->frag_list) { 1122 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1123 1124 for (; list; list = list->next) { 1125 int end; 1126 1127 BUG_TRAP(start <= offset + len); 1128 1129 end = start + list->len; 1130 if ((copy = end - offset) > 0) { 1131 if (copy > len) 1132 copy = len; 1133 if (skb_copy_bits(list, offset - start, 1134 to, copy)) 1135 goto fault; 1136 if ((len -= copy) == 0) 1137 return 0; 1138 offset += copy; 1139 to += copy; 1140 } 1141 start = end; 1142 } 1143 } 1144 if (!len) 1145 return 0; 1146 1147 fault: 1148 return -EFAULT; 1149 } 1150 1151 /** 1152 * skb_store_bits - store bits from kernel buffer to skb 1153 * @skb: destination buffer 1154 * @offset: offset in destination 1155 * @from: source buffer 1156 * @len: number of bytes to copy 1157 * 1158 * Copy the specified number of bytes from the source buffer to the 1159 * destination skb. This function handles all the messy bits of 1160 * traversing fragment lists and such. 1161 */ 1162 1163 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len) 1164 { 1165 int i, copy; 1166 int start = skb_headlen(skb); 1167 1168 if (offset > (int)skb->len - len) 1169 goto fault; 1170 1171 if ((copy = start - offset) > 0) { 1172 if (copy > len) 1173 copy = len; 1174 memcpy(skb->data + offset, from, copy); 1175 if ((len -= copy) == 0) 1176 return 0; 1177 offset += copy; 1178 from += copy; 1179 } 1180 1181 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1182 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1183 int end; 1184 1185 BUG_TRAP(start <= offset + len); 1186 1187 end = start + frag->size; 1188 if ((copy = end - offset) > 0) { 1189 u8 *vaddr; 1190 1191 if (copy > len) 1192 copy = len; 1193 1194 vaddr = kmap_skb_frag(frag); 1195 memcpy(vaddr + frag->page_offset + offset - start, 1196 from, copy); 1197 kunmap_skb_frag(vaddr); 1198 1199 if ((len -= copy) == 0) 1200 return 0; 1201 offset += copy; 1202 from += copy; 1203 } 1204 start = end; 1205 } 1206 1207 if (skb_shinfo(skb)->frag_list) { 1208 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1209 1210 for (; list; list = list->next) { 1211 int end; 1212 1213 BUG_TRAP(start <= offset + len); 1214 1215 end = start + list->len; 1216 if ((copy = end - offset) > 0) { 1217 if (copy > len) 1218 copy = len; 1219 if (skb_store_bits(list, offset - start, 1220 from, copy)) 1221 goto fault; 1222 if ((len -= copy) == 0) 1223 return 0; 1224 offset += copy; 1225 from += copy; 1226 } 1227 start = end; 1228 } 1229 } 1230 if (!len) 1231 return 0; 1232 1233 fault: 1234 return -EFAULT; 1235 } 1236 1237 EXPORT_SYMBOL(skb_store_bits); 1238 1239 /* Checksum skb data. */ 1240 1241 unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1242 int len, unsigned int csum) 1243 { 1244 int start = skb_headlen(skb); 1245 int i, copy = start - offset; 1246 int pos = 0; 1247 1248 /* Checksum header. */ 1249 if (copy > 0) { 1250 if (copy > len) 1251 copy = len; 1252 csum = csum_partial(skb->data + offset, copy, csum); 1253 if ((len -= copy) == 0) 1254 return csum; 1255 offset += copy; 1256 pos = copy; 1257 } 1258 1259 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1260 int end; 1261 1262 BUG_TRAP(start <= offset + len); 1263 1264 end = start + skb_shinfo(skb)->frags[i].size; 1265 if ((copy = end - offset) > 0) { 1266 unsigned int csum2; 1267 u8 *vaddr; 1268 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1269 1270 if (copy > len) 1271 copy = len; 1272 vaddr = kmap_skb_frag(frag); 1273 csum2 = csum_partial(vaddr + frag->page_offset + 1274 offset - start, copy, 0); 1275 kunmap_skb_frag(vaddr); 1276 csum = csum_block_add(csum, csum2, pos); 1277 if (!(len -= copy)) 1278 return csum; 1279 offset += copy; 1280 pos += copy; 1281 } 1282 start = end; 1283 } 1284 1285 if (skb_shinfo(skb)->frag_list) { 1286 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1287 1288 for (; list; list = list->next) { 1289 int end; 1290 1291 BUG_TRAP(start <= offset + len); 1292 1293 end = start + list->len; 1294 if ((copy = end - offset) > 0) { 1295 unsigned int csum2; 1296 if (copy > len) 1297 copy = len; 1298 csum2 = skb_checksum(list, offset - start, 1299 copy, 0); 1300 csum = csum_block_add(csum, csum2, pos); 1301 if ((len -= copy) == 0) 1302 return csum; 1303 offset += copy; 1304 pos += copy; 1305 } 1306 start = end; 1307 } 1308 } 1309 BUG_ON(len); 1310 1311 return csum; 1312 } 1313 1314 /* Both of above in one bottle. */ 1315 1316 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 1317 u8 *to, int len, unsigned int csum) 1318 { 1319 int start = skb_headlen(skb); 1320 int i, copy = start - offset; 1321 int pos = 0; 1322 1323 /* Copy header. */ 1324 if (copy > 0) { 1325 if (copy > len) 1326 copy = len; 1327 csum = csum_partial_copy_nocheck(skb->data + offset, to, 1328 copy, csum); 1329 if ((len -= copy) == 0) 1330 return csum; 1331 offset += copy; 1332 to += copy; 1333 pos = copy; 1334 } 1335 1336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1337 int end; 1338 1339 BUG_TRAP(start <= offset + len); 1340 1341 end = start + skb_shinfo(skb)->frags[i].size; 1342 if ((copy = end - offset) > 0) { 1343 unsigned int csum2; 1344 u8 *vaddr; 1345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1346 1347 if (copy > len) 1348 copy = len; 1349 vaddr = kmap_skb_frag(frag); 1350 csum2 = csum_partial_copy_nocheck(vaddr + 1351 frag->page_offset + 1352 offset - start, to, 1353 copy, 0); 1354 kunmap_skb_frag(vaddr); 1355 csum = csum_block_add(csum, csum2, pos); 1356 if (!(len -= copy)) 1357 return csum; 1358 offset += copy; 1359 to += copy; 1360 pos += copy; 1361 } 1362 start = end; 1363 } 1364 1365 if (skb_shinfo(skb)->frag_list) { 1366 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1367 1368 for (; list; list = list->next) { 1369 unsigned int csum2; 1370 int end; 1371 1372 BUG_TRAP(start <= offset + len); 1373 1374 end = start + list->len; 1375 if ((copy = end - offset) > 0) { 1376 if (copy > len) 1377 copy = len; 1378 csum2 = skb_copy_and_csum_bits(list, 1379 offset - start, 1380 to, copy, 0); 1381 csum = csum_block_add(csum, csum2, pos); 1382 if ((len -= copy) == 0) 1383 return csum; 1384 offset += copy; 1385 to += copy; 1386 pos += copy; 1387 } 1388 start = end; 1389 } 1390 } 1391 BUG_ON(len); 1392 return csum; 1393 } 1394 1395 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 1396 { 1397 unsigned int csum; 1398 long csstart; 1399 1400 if (skb->ip_summed == CHECKSUM_HW) 1401 csstart = skb->h.raw - skb->data; 1402 else 1403 csstart = skb_headlen(skb); 1404 1405 BUG_ON(csstart > skb_headlen(skb)); 1406 1407 memcpy(to, skb->data, csstart); 1408 1409 csum = 0; 1410 if (csstart != skb->len) 1411 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 1412 skb->len - csstart, 0); 1413 1414 if (skb->ip_summed == CHECKSUM_HW) { 1415 long csstuff = csstart + skb->csum; 1416 1417 *((unsigned short *)(to + csstuff)) = csum_fold(csum); 1418 } 1419 } 1420 1421 /** 1422 * skb_dequeue - remove from the head of the queue 1423 * @list: list to dequeue from 1424 * 1425 * Remove the head of the list. The list lock is taken so the function 1426 * may be used safely with other locking list functions. The head item is 1427 * returned or %NULL if the list is empty. 1428 */ 1429 1430 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 1431 { 1432 unsigned long flags; 1433 struct sk_buff *result; 1434 1435 spin_lock_irqsave(&list->lock, flags); 1436 result = __skb_dequeue(list); 1437 spin_unlock_irqrestore(&list->lock, flags); 1438 return result; 1439 } 1440 1441 /** 1442 * skb_dequeue_tail - remove from the tail of the queue 1443 * @list: list to dequeue from 1444 * 1445 * Remove the tail of the list. The list lock is taken so the function 1446 * may be used safely with other locking list functions. The tail item is 1447 * returned or %NULL if the list is empty. 1448 */ 1449 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 1450 { 1451 unsigned long flags; 1452 struct sk_buff *result; 1453 1454 spin_lock_irqsave(&list->lock, flags); 1455 result = __skb_dequeue_tail(list); 1456 spin_unlock_irqrestore(&list->lock, flags); 1457 return result; 1458 } 1459 1460 /** 1461 * skb_queue_purge - empty a list 1462 * @list: list to empty 1463 * 1464 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1465 * the list and one reference dropped. This function takes the list 1466 * lock and is atomic with respect to other list locking functions. 1467 */ 1468 void skb_queue_purge(struct sk_buff_head *list) 1469 { 1470 struct sk_buff *skb; 1471 while ((skb = skb_dequeue(list)) != NULL) 1472 kfree_skb(skb); 1473 } 1474 1475 /** 1476 * skb_queue_head - queue a buffer at the list head 1477 * @list: list to use 1478 * @newsk: buffer to queue 1479 * 1480 * Queue a buffer at the start of the list. This function takes the 1481 * list lock and can be used safely with other locking &sk_buff functions 1482 * safely. 1483 * 1484 * A buffer cannot be placed on two lists at the same time. 1485 */ 1486 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 1487 { 1488 unsigned long flags; 1489 1490 spin_lock_irqsave(&list->lock, flags); 1491 __skb_queue_head(list, newsk); 1492 spin_unlock_irqrestore(&list->lock, flags); 1493 } 1494 1495 /** 1496 * skb_queue_tail - queue a buffer at the list tail 1497 * @list: list to use 1498 * @newsk: buffer to queue 1499 * 1500 * Queue a buffer at the tail of the list. This function takes the 1501 * list lock and can be used safely with other locking &sk_buff functions 1502 * safely. 1503 * 1504 * A buffer cannot be placed on two lists at the same time. 1505 */ 1506 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 1507 { 1508 unsigned long flags; 1509 1510 spin_lock_irqsave(&list->lock, flags); 1511 __skb_queue_tail(list, newsk); 1512 spin_unlock_irqrestore(&list->lock, flags); 1513 } 1514 1515 /** 1516 * skb_unlink - remove a buffer from a list 1517 * @skb: buffer to remove 1518 * @list: list to use 1519 * 1520 * Remove a packet from a list. The list locks are taken and this 1521 * function is atomic with respect to other list locked calls 1522 * 1523 * You must know what list the SKB is on. 1524 */ 1525 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1526 { 1527 unsigned long flags; 1528 1529 spin_lock_irqsave(&list->lock, flags); 1530 __skb_unlink(skb, list); 1531 spin_unlock_irqrestore(&list->lock, flags); 1532 } 1533 1534 /** 1535 * skb_append - append a buffer 1536 * @old: buffer to insert after 1537 * @newsk: buffer to insert 1538 * @list: list to use 1539 * 1540 * Place a packet after a given packet in a list. The list locks are taken 1541 * and this function is atomic with respect to other list locked calls. 1542 * A buffer cannot be placed on two lists at the same time. 1543 */ 1544 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1545 { 1546 unsigned long flags; 1547 1548 spin_lock_irqsave(&list->lock, flags); 1549 __skb_append(old, newsk, list); 1550 spin_unlock_irqrestore(&list->lock, flags); 1551 } 1552 1553 1554 /** 1555 * skb_insert - insert a buffer 1556 * @old: buffer to insert before 1557 * @newsk: buffer to insert 1558 * @list: list to use 1559 * 1560 * Place a packet before a given packet in a list. The list locks are 1561 * taken and this function is atomic with respect to other list locked 1562 * calls. 1563 * 1564 * A buffer cannot be placed on two lists at the same time. 1565 */ 1566 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 1567 { 1568 unsigned long flags; 1569 1570 spin_lock_irqsave(&list->lock, flags); 1571 __skb_insert(newsk, old->prev, old, list); 1572 spin_unlock_irqrestore(&list->lock, flags); 1573 } 1574 1575 #if 0 1576 /* 1577 * Tune the memory allocator for a new MTU size. 1578 */ 1579 void skb_add_mtu(int mtu) 1580 { 1581 /* Must match allocation in alloc_skb */ 1582 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); 1583 1584 kmem_add_cache_size(mtu); 1585 } 1586 #endif 1587 1588 static inline void skb_split_inside_header(struct sk_buff *skb, 1589 struct sk_buff* skb1, 1590 const u32 len, const int pos) 1591 { 1592 int i; 1593 1594 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len); 1595 1596 /* And move data appendix as is. */ 1597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1598 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 1599 1600 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 1601 skb_shinfo(skb)->nr_frags = 0; 1602 skb1->data_len = skb->data_len; 1603 skb1->len += skb1->data_len; 1604 skb->data_len = 0; 1605 skb->len = len; 1606 skb->tail = skb->data + len; 1607 } 1608 1609 static inline void skb_split_no_header(struct sk_buff *skb, 1610 struct sk_buff* skb1, 1611 const u32 len, int pos) 1612 { 1613 int i, k = 0; 1614 const int nfrags = skb_shinfo(skb)->nr_frags; 1615 1616 skb_shinfo(skb)->nr_frags = 0; 1617 skb1->len = skb1->data_len = skb->len - len; 1618 skb->len = len; 1619 skb->data_len = len - pos; 1620 1621 for (i = 0; i < nfrags; i++) { 1622 int size = skb_shinfo(skb)->frags[i].size; 1623 1624 if (pos + size > len) { 1625 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 1626 1627 if (pos < len) { 1628 /* Split frag. 1629 * We have two variants in this case: 1630 * 1. Move all the frag to the second 1631 * part, if it is possible. F.e. 1632 * this approach is mandatory for TUX, 1633 * where splitting is expensive. 1634 * 2. Split is accurately. We make this. 1635 */ 1636 get_page(skb_shinfo(skb)->frags[i].page); 1637 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 1638 skb_shinfo(skb1)->frags[0].size -= len - pos; 1639 skb_shinfo(skb)->frags[i].size = len - pos; 1640 skb_shinfo(skb)->nr_frags++; 1641 } 1642 k++; 1643 } else 1644 skb_shinfo(skb)->nr_frags++; 1645 pos += size; 1646 } 1647 skb_shinfo(skb1)->nr_frags = k; 1648 } 1649 1650 /** 1651 * skb_split - Split fragmented skb to two parts at length len. 1652 * @skb: the buffer to split 1653 * @skb1: the buffer to receive the second part 1654 * @len: new length for skb 1655 */ 1656 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 1657 { 1658 int pos = skb_headlen(skb); 1659 1660 if (len < pos) /* Split line is inside header. */ 1661 skb_split_inside_header(skb, skb1, len, pos); 1662 else /* Second chunk has no header, nothing to copy. */ 1663 skb_split_no_header(skb, skb1, len, pos); 1664 } 1665 1666 /** 1667 * skb_prepare_seq_read - Prepare a sequential read of skb data 1668 * @skb: the buffer to read 1669 * @from: lower offset of data to be read 1670 * @to: upper offset of data to be read 1671 * @st: state variable 1672 * 1673 * Initializes the specified state variable. Must be called before 1674 * invoking skb_seq_read() for the first time. 1675 */ 1676 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1677 unsigned int to, struct skb_seq_state *st) 1678 { 1679 st->lower_offset = from; 1680 st->upper_offset = to; 1681 st->root_skb = st->cur_skb = skb; 1682 st->frag_idx = st->stepped_offset = 0; 1683 st->frag_data = NULL; 1684 } 1685 1686 /** 1687 * skb_seq_read - Sequentially read skb data 1688 * @consumed: number of bytes consumed by the caller so far 1689 * @data: destination pointer for data to be returned 1690 * @st: state variable 1691 * 1692 * Reads a block of skb data at &consumed relative to the 1693 * lower offset specified to skb_prepare_seq_read(). Assigns 1694 * the head of the data block to &data and returns the length 1695 * of the block or 0 if the end of the skb data or the upper 1696 * offset has been reached. 1697 * 1698 * The caller is not required to consume all of the data 1699 * returned, i.e. &consumed is typically set to the number 1700 * of bytes already consumed and the next call to 1701 * skb_seq_read() will return the remaining part of the block. 1702 * 1703 * Note: The size of each block of data returned can be arbitary, 1704 * this limitation is the cost for zerocopy seqeuental 1705 * reads of potentially non linear data. 1706 * 1707 * Note: Fragment lists within fragments are not implemented 1708 * at the moment, state->root_skb could be replaced with 1709 * a stack for this purpose. 1710 */ 1711 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1712 struct skb_seq_state *st) 1713 { 1714 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 1715 skb_frag_t *frag; 1716 1717 if (unlikely(abs_offset >= st->upper_offset)) 1718 return 0; 1719 1720 next_skb: 1721 block_limit = skb_headlen(st->cur_skb); 1722 1723 if (abs_offset < block_limit) { 1724 *data = st->cur_skb->data + abs_offset; 1725 return block_limit - abs_offset; 1726 } 1727 1728 if (st->frag_idx == 0 && !st->frag_data) 1729 st->stepped_offset += skb_headlen(st->cur_skb); 1730 1731 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 1732 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 1733 block_limit = frag->size + st->stepped_offset; 1734 1735 if (abs_offset < block_limit) { 1736 if (!st->frag_data) 1737 st->frag_data = kmap_skb_frag(frag); 1738 1739 *data = (u8 *) st->frag_data + frag->page_offset + 1740 (abs_offset - st->stepped_offset); 1741 1742 return block_limit - abs_offset; 1743 } 1744 1745 if (st->frag_data) { 1746 kunmap_skb_frag(st->frag_data); 1747 st->frag_data = NULL; 1748 } 1749 1750 st->frag_idx++; 1751 st->stepped_offset += frag->size; 1752 } 1753 1754 if (st->cur_skb->next) { 1755 st->cur_skb = st->cur_skb->next; 1756 st->frag_idx = 0; 1757 goto next_skb; 1758 } else if (st->root_skb == st->cur_skb && 1759 skb_shinfo(st->root_skb)->frag_list) { 1760 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 1761 goto next_skb; 1762 } 1763 1764 return 0; 1765 } 1766 1767 /** 1768 * skb_abort_seq_read - Abort a sequential read of skb data 1769 * @st: state variable 1770 * 1771 * Must be called if skb_seq_read() was not called until it 1772 * returned 0. 1773 */ 1774 void skb_abort_seq_read(struct skb_seq_state *st) 1775 { 1776 if (st->frag_data) 1777 kunmap_skb_frag(st->frag_data); 1778 } 1779 1780 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 1781 1782 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 1783 struct ts_config *conf, 1784 struct ts_state *state) 1785 { 1786 return skb_seq_read(offset, text, TS_SKB_CB(state)); 1787 } 1788 1789 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 1790 { 1791 skb_abort_seq_read(TS_SKB_CB(state)); 1792 } 1793 1794 /** 1795 * skb_find_text - Find a text pattern in skb data 1796 * @skb: the buffer to look in 1797 * @from: search offset 1798 * @to: search limit 1799 * @config: textsearch configuration 1800 * @state: uninitialized textsearch state variable 1801 * 1802 * Finds a pattern in the skb data according to the specified 1803 * textsearch configuration. Use textsearch_next() to retrieve 1804 * subsequent occurrences of the pattern. Returns the offset 1805 * to the first occurrence or UINT_MAX if no match was found. 1806 */ 1807 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1808 unsigned int to, struct ts_config *config, 1809 struct ts_state *state) 1810 { 1811 unsigned int ret; 1812 1813 config->get_next_block = skb_ts_get_next_block; 1814 config->finish = skb_ts_finish; 1815 1816 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state)); 1817 1818 ret = textsearch_find(config, state); 1819 return (ret <= to - from ? ret : UINT_MAX); 1820 } 1821 1822 /** 1823 * skb_append_datato_frags: - append the user data to a skb 1824 * @sk: sock structure 1825 * @skb: skb structure to be appened with user data. 1826 * @getfrag: call back function to be used for getting the user data 1827 * @from: pointer to user message iov 1828 * @length: length of the iov message 1829 * 1830 * Description: This procedure append the user data in the fragment part 1831 * of the skb if any page alloc fails user this procedure returns -ENOMEM 1832 */ 1833 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1834 int (*getfrag)(void *from, char *to, int offset, 1835 int len, int odd, struct sk_buff *skb), 1836 void *from, int length) 1837 { 1838 int frg_cnt = 0; 1839 skb_frag_t *frag = NULL; 1840 struct page *page = NULL; 1841 int copy, left; 1842 int offset = 0; 1843 int ret; 1844 1845 do { 1846 /* Return error if we don't have space for new frag */ 1847 frg_cnt = skb_shinfo(skb)->nr_frags; 1848 if (frg_cnt >= MAX_SKB_FRAGS) 1849 return -EFAULT; 1850 1851 /* allocate a new page for next frag */ 1852 page = alloc_pages(sk->sk_allocation, 0); 1853 1854 /* If alloc_page fails just return failure and caller will 1855 * free previous allocated pages by doing kfree_skb() 1856 */ 1857 if (page == NULL) 1858 return -ENOMEM; 1859 1860 /* initialize the next frag */ 1861 sk->sk_sndmsg_page = page; 1862 sk->sk_sndmsg_off = 0; 1863 skb_fill_page_desc(skb, frg_cnt, page, 0, 0); 1864 skb->truesize += PAGE_SIZE; 1865 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc); 1866 1867 /* get the new initialized frag */ 1868 frg_cnt = skb_shinfo(skb)->nr_frags; 1869 frag = &skb_shinfo(skb)->frags[frg_cnt - 1]; 1870 1871 /* copy the user data to page */ 1872 left = PAGE_SIZE - frag->page_offset; 1873 copy = (length > left)? left : length; 1874 1875 ret = getfrag(from, (page_address(frag->page) + 1876 frag->page_offset + frag->size), 1877 offset, copy, 0, skb); 1878 if (ret < 0) 1879 return -EFAULT; 1880 1881 /* copy was successful so update the size parameters */ 1882 sk->sk_sndmsg_off += copy; 1883 frag->size += copy; 1884 skb->len += copy; 1885 skb->data_len += copy; 1886 offset += copy; 1887 length -= copy; 1888 1889 } while (length > 0); 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * skb_pull_rcsum - pull skb and update receive checksum 1896 * @skb: buffer to update 1897 * @start: start of data before pull 1898 * @len: length of data pulled 1899 * 1900 * This function performs an skb_pull on the packet and updates 1901 * update the CHECKSUM_HW checksum. It should be used on receive 1902 * path processing instead of skb_pull unless you know that the 1903 * checksum difference is zero (e.g., a valid IP header) or you 1904 * are setting ip_summed to CHECKSUM_NONE. 1905 */ 1906 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 1907 { 1908 BUG_ON(len > skb->len); 1909 skb->len -= len; 1910 BUG_ON(skb->len < skb->data_len); 1911 skb_postpull_rcsum(skb, skb->data, len); 1912 return skb->data += len; 1913 } 1914 1915 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 1916 1917 /** 1918 * skb_segment - Perform protocol segmentation on skb. 1919 * @skb: buffer to segment 1920 * @features: features for the output path (see dev->features) 1921 * 1922 * This function performs segmentation on the given skb. It returns 1923 * the segment at the given position. It returns NULL if there are 1924 * no more segments to generate, or when an error is encountered. 1925 */ 1926 struct sk_buff *skb_segment(struct sk_buff *skb, int features) 1927 { 1928 struct sk_buff *segs = NULL; 1929 struct sk_buff *tail = NULL; 1930 unsigned int mss = skb_shinfo(skb)->gso_size; 1931 unsigned int doffset = skb->data - skb->mac.raw; 1932 unsigned int offset = doffset; 1933 unsigned int headroom; 1934 unsigned int len; 1935 int sg = features & NETIF_F_SG; 1936 int nfrags = skb_shinfo(skb)->nr_frags; 1937 int err = -ENOMEM; 1938 int i = 0; 1939 int pos; 1940 1941 __skb_push(skb, doffset); 1942 headroom = skb_headroom(skb); 1943 pos = skb_headlen(skb); 1944 1945 do { 1946 struct sk_buff *nskb; 1947 skb_frag_t *frag; 1948 int hsize, nsize; 1949 int k; 1950 int size; 1951 1952 len = skb->len - offset; 1953 if (len > mss) 1954 len = mss; 1955 1956 hsize = skb_headlen(skb) - offset; 1957 if (hsize < 0) 1958 hsize = 0; 1959 nsize = hsize + doffset; 1960 if (nsize > len + doffset || !sg) 1961 nsize = len + doffset; 1962 1963 nskb = alloc_skb(nsize + headroom, GFP_ATOMIC); 1964 if (unlikely(!nskb)) 1965 goto err; 1966 1967 if (segs) 1968 tail->next = nskb; 1969 else 1970 segs = nskb; 1971 tail = nskb; 1972 1973 nskb->dev = skb->dev; 1974 nskb->priority = skb->priority; 1975 nskb->protocol = skb->protocol; 1976 nskb->dst = dst_clone(skb->dst); 1977 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 1978 nskb->pkt_type = skb->pkt_type; 1979 nskb->mac_len = skb->mac_len; 1980 1981 skb_reserve(nskb, headroom); 1982 nskb->mac.raw = nskb->data; 1983 nskb->nh.raw = nskb->data + skb->mac_len; 1984 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw); 1985 memcpy(skb_put(nskb, doffset), skb->data, doffset); 1986 1987 if (!sg) { 1988 nskb->csum = skb_copy_and_csum_bits(skb, offset, 1989 skb_put(nskb, len), 1990 len, 0); 1991 continue; 1992 } 1993 1994 frag = skb_shinfo(nskb)->frags; 1995 k = 0; 1996 1997 nskb->ip_summed = CHECKSUM_HW; 1998 nskb->csum = skb->csum; 1999 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize); 2000 2001 while (pos < offset + len) { 2002 BUG_ON(i >= nfrags); 2003 2004 *frag = skb_shinfo(skb)->frags[i]; 2005 get_page(frag->page); 2006 size = frag->size; 2007 2008 if (pos < offset) { 2009 frag->page_offset += offset - pos; 2010 frag->size -= offset - pos; 2011 } 2012 2013 k++; 2014 2015 if (pos + size <= offset + len) { 2016 i++; 2017 pos += size; 2018 } else { 2019 frag->size -= pos + size - (offset + len); 2020 break; 2021 } 2022 2023 frag++; 2024 } 2025 2026 skb_shinfo(nskb)->nr_frags = k; 2027 nskb->data_len = len - hsize; 2028 nskb->len += nskb->data_len; 2029 nskb->truesize += nskb->data_len; 2030 } while ((offset += len) < skb->len); 2031 2032 return segs; 2033 2034 err: 2035 while ((skb = segs)) { 2036 segs = skb->next; 2037 kfree(skb); 2038 } 2039 return ERR_PTR(err); 2040 } 2041 2042 EXPORT_SYMBOL_GPL(skb_segment); 2043 2044 void __init skb_init(void) 2045 { 2046 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 2047 sizeof(struct sk_buff), 2048 0, 2049 SLAB_HWCACHE_ALIGN, 2050 NULL, NULL); 2051 if (!skbuff_head_cache) 2052 panic("cannot create skbuff cache"); 2053 2054 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 2055 (2*sizeof(struct sk_buff)) + 2056 sizeof(atomic_t), 2057 0, 2058 SLAB_HWCACHE_ALIGN, 2059 NULL, NULL); 2060 if (!skbuff_fclone_cache) 2061 panic("cannot create skbuff cache"); 2062 } 2063 2064 EXPORT_SYMBOL(___pskb_trim); 2065 EXPORT_SYMBOL(__kfree_skb); 2066 EXPORT_SYMBOL(kfree_skb); 2067 EXPORT_SYMBOL(__pskb_pull_tail); 2068 EXPORT_SYMBOL(__alloc_skb); 2069 EXPORT_SYMBOL(__netdev_alloc_skb); 2070 EXPORT_SYMBOL(pskb_copy); 2071 EXPORT_SYMBOL(pskb_expand_head); 2072 EXPORT_SYMBOL(skb_checksum); 2073 EXPORT_SYMBOL(skb_clone); 2074 EXPORT_SYMBOL(skb_clone_fraglist); 2075 EXPORT_SYMBOL(skb_copy); 2076 EXPORT_SYMBOL(skb_copy_and_csum_bits); 2077 EXPORT_SYMBOL(skb_copy_and_csum_dev); 2078 EXPORT_SYMBOL(skb_copy_bits); 2079 EXPORT_SYMBOL(skb_copy_expand); 2080 EXPORT_SYMBOL(skb_over_panic); 2081 EXPORT_SYMBOL(skb_pad); 2082 EXPORT_SYMBOL(skb_realloc_headroom); 2083 EXPORT_SYMBOL(skb_under_panic); 2084 EXPORT_SYMBOL(skb_dequeue); 2085 EXPORT_SYMBOL(skb_dequeue_tail); 2086 EXPORT_SYMBOL(skb_insert); 2087 EXPORT_SYMBOL(skb_queue_purge); 2088 EXPORT_SYMBOL(skb_queue_head); 2089 EXPORT_SYMBOL(skb_queue_tail); 2090 EXPORT_SYMBOL(skb_unlink); 2091 EXPORT_SYMBOL(skb_append); 2092 EXPORT_SYMBOL(skb_split); 2093 EXPORT_SYMBOL(skb_prepare_seq_read); 2094 EXPORT_SYMBOL(skb_seq_read); 2095 EXPORT_SYMBOL(skb_abort_seq_read); 2096 EXPORT_SYMBOL(skb_find_text); 2097 EXPORT_SYMBOL(skb_append_datato_frags); 2098