xref: /linux/net/core/skbuff.c (revision ee61c10cd4820e8844dba4315f2d1e522f1f3b98)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 
85 #include <linux/uaccess.h>
86 #include <trace/events/skb.h>
87 #include <linux/highmem.h>
88 #include <linux/capability.h>
89 #include <linux/user_namespace.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/textsearch.h>
92 
93 #include "dev.h"
94 #include "devmem.h"
95 #include "netmem_priv.h"
96 #include "sock_destructor.h"
97 
98 #ifdef CONFIG_SKB_EXTENSIONS
99 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
100 #endif
101 
102 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
103 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
104 					       GRO_MAX_HEAD_PAD))
105 
106 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
107  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
108  * size, and we can differentiate heads from skb_small_head_cache
109  * vs system slabs by looking at their size (skb_end_offset()).
110  */
111 #define SKB_SMALL_HEAD_CACHE_SIZE					\
112 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
113 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
114 		SKB_SMALL_HEAD_SIZE)
115 
116 #define SKB_SMALL_HEAD_HEADROOM						\
117 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
118 
119 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
120  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
121  * netmem is a page.
122  */
123 static_assert(offsetof(struct bio_vec, bv_page) ==
124 	      offsetof(skb_frag_t, netmem));
125 static_assert(sizeof_field(struct bio_vec, bv_page) ==
126 	      sizeof_field(skb_frag_t, netmem));
127 
128 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
129 static_assert(sizeof_field(struct bio_vec, bv_len) ==
130 	      sizeof_field(skb_frag_t, len));
131 
132 static_assert(offsetof(struct bio_vec, bv_offset) ==
133 	      offsetof(skb_frag_t, offset));
134 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
135 	      sizeof_field(skb_frag_t, offset));
136 
137 #undef FN
138 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
139 static const char * const drop_reasons[] = {
140 	[SKB_CONSUMED] = "CONSUMED",
141 	DEFINE_DROP_REASON(FN, FN)
142 };
143 
144 static const struct drop_reason_list drop_reasons_core = {
145 	.reasons = drop_reasons,
146 	.n_reasons = ARRAY_SIZE(drop_reasons),
147 };
148 
149 const struct drop_reason_list __rcu *
150 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
151 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
152 };
153 EXPORT_SYMBOL(drop_reasons_by_subsys);
154 
155 /**
156  * drop_reasons_register_subsys - register another drop reason subsystem
157  * @subsys: the subsystem to register, must not be the core
158  * @list: the list of drop reasons within the subsystem, must point to
159  *	a statically initialized list
160  */
161 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
162 				  const struct drop_reason_list *list)
163 {
164 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
165 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
166 		 "invalid subsystem %d\n", subsys))
167 		return;
168 
169 	/* must point to statically allocated memory, so INIT is OK */
170 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
171 }
172 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
173 
174 /**
175  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
176  * @subsys: the subsystem to remove, must not be the core
177  *
178  * Note: This will synchronize_rcu() to ensure no users when it returns.
179  */
180 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
181 {
182 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
183 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
184 		 "invalid subsystem %d\n", subsys))
185 		return;
186 
187 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
188 
189 	synchronize_rcu();
190 }
191 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
192 
193 /**
194  *	skb_panic - private function for out-of-line support
195  *	@skb:	buffer
196  *	@sz:	size
197  *	@addr:	address
198  *	@msg:	skb_over_panic or skb_under_panic
199  *
200  *	Out-of-line support for skb_put() and skb_push().
201  *	Called via the wrapper skb_over_panic() or skb_under_panic().
202  *	Keep out of line to prevent kernel bloat.
203  *	__builtin_return_address is not used because it is not always reliable.
204  */
205 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
206 		      const char msg[])
207 {
208 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
209 		 msg, addr, skb->len, sz, skb->head, skb->data,
210 		 (unsigned long)skb->tail, (unsigned long)skb->end,
211 		 skb->dev ? skb->dev->name : "<NULL>");
212 	BUG();
213 }
214 
215 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216 {
217 	skb_panic(skb, sz, addr, __func__);
218 }
219 
220 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
221 {
222 	skb_panic(skb, sz, addr, __func__);
223 }
224 
225 #define NAPI_SKB_CACHE_SIZE	64
226 #define NAPI_SKB_CACHE_BULK	16
227 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
228 
229 struct napi_alloc_cache {
230 	local_lock_t bh_lock;
231 	struct page_frag_cache page;
232 	unsigned int skb_count;
233 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
234 };
235 
236 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
237 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
238 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
239 };
240 
241 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
242 {
243 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
244 	void *data;
245 
246 	fragsz = SKB_DATA_ALIGN(fragsz);
247 
248 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
249 	data = __page_frag_alloc_align(&nc->page, fragsz,
250 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
251 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
252 	return data;
253 
254 }
255 EXPORT_SYMBOL(__napi_alloc_frag_align);
256 
257 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
258 {
259 	void *data;
260 
261 	if (in_hardirq() || irqs_disabled()) {
262 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
263 
264 		fragsz = SKB_DATA_ALIGN(fragsz);
265 		data = __page_frag_alloc_align(nc, fragsz,
266 					       GFP_ATOMIC | __GFP_NOWARN,
267 					       align_mask);
268 	} else {
269 		local_bh_disable();
270 		data = __napi_alloc_frag_align(fragsz, align_mask);
271 		local_bh_enable();
272 	}
273 	return data;
274 }
275 EXPORT_SYMBOL(__netdev_alloc_frag_align);
276 
277 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler
278  * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset.
279  */
280 static u32 skbuff_cache_size __read_mostly;
281 
282 static struct sk_buff *napi_skb_cache_get(void)
283 {
284 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
285 	struct sk_buff *skb;
286 
287 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
288 	if (unlikely(!nc->skb_count)) {
289 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
290 						      GFP_ATOMIC | __GFP_NOWARN,
291 						      NAPI_SKB_CACHE_BULK,
292 						      nc->skb_cache);
293 		if (unlikely(!nc->skb_count)) {
294 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
295 			return NULL;
296 		}
297 	}
298 
299 	skb = nc->skb_cache[--nc->skb_count];
300 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
301 	kasan_mempool_unpoison_object(skb, skbuff_cache_size);
302 
303 	return skb;
304 }
305 
306 /**
307  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
308  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
309  * @n: number of entries to provide
310  *
311  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
312  * the pointers into the provided array @skbs. If there are less entries
313  * available, tries to replenish the cache and bulk-allocates the diff from
314  * the MM layer if needed.
315  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
316  * ready for {,__}build_skb_around() and don't have any data buffers attached.
317  * Must be called *only* from the BH context.
318  *
319  * Return: number of successfully allocated skbs (@n if no actual allocation
320  *	   needed or kmem_cache_alloc_bulk() didn't fail).
321  */
322 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
323 {
324 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
325 	u32 bulk, total = n;
326 
327 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
328 
329 	if (nc->skb_count >= n)
330 		goto get;
331 
332 	/* No enough cached skbs. Try refilling the cache first */
333 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
334 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
335 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
336 					       &nc->skb_cache[nc->skb_count]);
337 	if (likely(nc->skb_count >= n))
338 		goto get;
339 
340 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
341 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
342 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
343 				   n - nc->skb_count, &skbs[nc->skb_count]);
344 	if (likely(nc->skb_count >= n))
345 		goto get;
346 
347 	/* kmem_cache didn't allocate the number we need, limit the output */
348 	total -= n - nc->skb_count;
349 	n = nc->skb_count;
350 
351 get:
352 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
353 		skbs[i] = nc->skb_cache[base + i];
354 
355 		kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size);
356 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
357 	}
358 
359 	nc->skb_count -= n;
360 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
361 
362 	return total;
363 }
364 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
365 
366 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
367 					 unsigned int size)
368 {
369 	struct skb_shared_info *shinfo;
370 
371 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
372 
373 	/* Assumes caller memset cleared SKB */
374 	skb->truesize = SKB_TRUESIZE(size);
375 	refcount_set(&skb->users, 1);
376 	skb->head = data;
377 	skb->data = data;
378 	skb_reset_tail_pointer(skb);
379 	skb_set_end_offset(skb, size);
380 	skb->mac_header = (typeof(skb->mac_header))~0U;
381 	skb->transport_header = (typeof(skb->transport_header))~0U;
382 	skb->alloc_cpu = raw_smp_processor_id();
383 	/* make sure we initialize shinfo sequentially */
384 	shinfo = skb_shinfo(skb);
385 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
386 	atomic_set(&shinfo->dataref, 1);
387 
388 	skb_set_kcov_handle(skb, kcov_common_handle());
389 }
390 
391 static inline void *__slab_build_skb(void *data, unsigned int *size)
392 {
393 	void *resized;
394 
395 	/* Must find the allocation size (and grow it to match). */
396 	*size = ksize(data);
397 	/* krealloc() will immediately return "data" when
398 	 * "ksize(data)" is requested: it is the existing upper
399 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
400 	 * that this "new" pointer needs to be passed back to the
401 	 * caller for use so the __alloc_size hinting will be
402 	 * tracked correctly.
403 	 */
404 	resized = krealloc(data, *size, GFP_ATOMIC);
405 	WARN_ON_ONCE(resized != data);
406 	return resized;
407 }
408 
409 /* build_skb() variant which can operate on slab buffers.
410  * Note that this should be used sparingly as slab buffers
411  * cannot be combined efficiently by GRO!
412  */
413 struct sk_buff *slab_build_skb(void *data)
414 {
415 	struct sk_buff *skb;
416 	unsigned int size;
417 
418 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
419 			       GFP_ATOMIC | __GFP_NOWARN);
420 	if (unlikely(!skb))
421 		return NULL;
422 
423 	memset(skb, 0, offsetof(struct sk_buff, tail));
424 	data = __slab_build_skb(data, &size);
425 	__finalize_skb_around(skb, data, size);
426 
427 	return skb;
428 }
429 EXPORT_SYMBOL(slab_build_skb);
430 
431 /* Caller must provide SKB that is memset cleared */
432 static void __build_skb_around(struct sk_buff *skb, void *data,
433 			       unsigned int frag_size)
434 {
435 	unsigned int size = frag_size;
436 
437 	/* frag_size == 0 is considered deprecated now. Callers
438 	 * using slab buffer should use slab_build_skb() instead.
439 	 */
440 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
441 		data = __slab_build_skb(data, &size);
442 
443 	__finalize_skb_around(skb, data, size);
444 }
445 
446 /**
447  * __build_skb - build a network buffer
448  * @data: data buffer provided by caller
449  * @frag_size: size of data (must not be 0)
450  *
451  * Allocate a new &sk_buff. Caller provides space holding head and
452  * skb_shared_info. @data must have been allocated from the page
453  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
454  * allocation is deprecated, and callers should use slab_build_skb()
455  * instead.)
456  * The return is the new skb buffer.
457  * On a failure the return is %NULL, and @data is not freed.
458  * Notes :
459  *  Before IO, driver allocates only data buffer where NIC put incoming frame
460  *  Driver should add room at head (NET_SKB_PAD) and
461  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
462  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
463  *  before giving packet to stack.
464  *  RX rings only contains data buffers, not full skbs.
465  */
466 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
467 {
468 	struct sk_buff *skb;
469 
470 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
471 			       GFP_ATOMIC | __GFP_NOWARN);
472 	if (unlikely(!skb))
473 		return NULL;
474 
475 	memset(skb, 0, offsetof(struct sk_buff, tail));
476 	__build_skb_around(skb, data, frag_size);
477 
478 	return skb;
479 }
480 
481 /* build_skb() is wrapper over __build_skb(), that specifically
482  * takes care of skb->head and skb->pfmemalloc
483  */
484 struct sk_buff *build_skb(void *data, unsigned int frag_size)
485 {
486 	struct sk_buff *skb = __build_skb(data, frag_size);
487 
488 	if (likely(skb && frag_size)) {
489 		skb->head_frag = 1;
490 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 	}
492 	return skb;
493 }
494 EXPORT_SYMBOL(build_skb);
495 
496 /**
497  * build_skb_around - build a network buffer around provided skb
498  * @skb: sk_buff provide by caller, must be memset cleared
499  * @data: data buffer provided by caller
500  * @frag_size: size of data
501  */
502 struct sk_buff *build_skb_around(struct sk_buff *skb,
503 				 void *data, unsigned int frag_size)
504 {
505 	if (unlikely(!skb))
506 		return NULL;
507 
508 	__build_skb_around(skb, data, frag_size);
509 
510 	if (frag_size) {
511 		skb->head_frag = 1;
512 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
513 	}
514 	return skb;
515 }
516 EXPORT_SYMBOL(build_skb_around);
517 
518 /**
519  * __napi_build_skb - build a network buffer
520  * @data: data buffer provided by caller
521  * @frag_size: size of data
522  *
523  * Version of __build_skb() that uses NAPI percpu caches to obtain
524  * skbuff_head instead of inplace allocation.
525  *
526  * Returns a new &sk_buff on success, %NULL on allocation failure.
527  */
528 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
529 {
530 	struct sk_buff *skb;
531 
532 	skb = napi_skb_cache_get();
533 	if (unlikely(!skb))
534 		return NULL;
535 
536 	memset(skb, 0, offsetof(struct sk_buff, tail));
537 	__build_skb_around(skb, data, frag_size);
538 
539 	return skb;
540 }
541 
542 /**
543  * napi_build_skb - build a network buffer
544  * @data: data buffer provided by caller
545  * @frag_size: size of data
546  *
547  * Version of __napi_build_skb() that takes care of skb->head_frag
548  * and skb->pfmemalloc when the data is a page or page fragment.
549  *
550  * Returns a new &sk_buff on success, %NULL on allocation failure.
551  */
552 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
553 {
554 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
555 
556 	if (likely(skb) && frag_size) {
557 		skb->head_frag = 1;
558 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
559 	}
560 
561 	return skb;
562 }
563 EXPORT_SYMBOL(napi_build_skb);
564 
565 /*
566  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
567  * the caller if emergency pfmemalloc reserves are being used. If it is and
568  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
569  * may be used. Otherwise, the packet data may be discarded until enough
570  * memory is free
571  */
572 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
573 			     bool *pfmemalloc)
574 {
575 	bool ret_pfmemalloc = false;
576 	size_t obj_size;
577 	void *obj;
578 
579 	obj_size = SKB_HEAD_ALIGN(*size);
580 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
581 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
582 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
583 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 				node);
585 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
586 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
587 			goto out;
588 		/* Try again but now we are using pfmemalloc reserves */
589 		ret_pfmemalloc = true;
590 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
591 		goto out;
592 	}
593 
594 	obj_size = kmalloc_size_roundup(obj_size);
595 	/* The following cast might truncate high-order bits of obj_size, this
596 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
597 	 */
598 	*size = (unsigned int)obj_size;
599 
600 	/*
601 	 * Try a regular allocation, when that fails and we're not entitled
602 	 * to the reserves, fail.
603 	 */
604 	obj = kmalloc_node_track_caller(obj_size,
605 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
606 					node);
607 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
608 		goto out;
609 
610 	/* Try again but now we are using pfmemalloc reserves */
611 	ret_pfmemalloc = true;
612 	obj = kmalloc_node_track_caller(obj_size, flags, node);
613 
614 out:
615 	if (pfmemalloc)
616 		*pfmemalloc = ret_pfmemalloc;
617 
618 	return obj;
619 }
620 
621 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
622  *	'private' fields and also do memory statistics to find all the
623  *	[BEEP] leaks.
624  *
625  */
626 
627 /**
628  *	__alloc_skb	-	allocate a network buffer
629  *	@size: size to allocate
630  *	@gfp_mask: allocation mask
631  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
632  *		instead of head cache and allocate a cloned (child) skb.
633  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
634  *		allocations in case the data is required for writeback
635  *	@node: numa node to allocate memory on
636  *
637  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
638  *	tail room of at least size bytes. The object has a reference count
639  *	of one. The return is the buffer. On a failure the return is %NULL.
640  *
641  *	Buffers may only be allocated from interrupts using a @gfp_mask of
642  *	%GFP_ATOMIC.
643  */
644 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
645 			    int flags, int node)
646 {
647 	struct kmem_cache *cache;
648 	struct sk_buff *skb;
649 	bool pfmemalloc;
650 	u8 *data;
651 
652 	cache = (flags & SKB_ALLOC_FCLONE)
653 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
654 
655 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
656 		gfp_mask |= __GFP_MEMALLOC;
657 
658 	/* Get the HEAD */
659 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
660 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
661 		skb = napi_skb_cache_get();
662 	else
663 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
664 	if (unlikely(!skb))
665 		return NULL;
666 	prefetchw(skb);
667 
668 	/* We do our best to align skb_shared_info on a separate cache
669 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
670 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
671 	 * Both skb->head and skb_shared_info are cache line aligned.
672 	 */
673 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
674 	if (unlikely(!data))
675 		goto nodata;
676 	/* kmalloc_size_roundup() might give us more room than requested.
677 	 * Put skb_shared_info exactly at the end of allocated zone,
678 	 * to allow max possible filling before reallocation.
679 	 */
680 	prefetchw(data + SKB_WITH_OVERHEAD(size));
681 
682 	/*
683 	 * Only clear those fields we need to clear, not those that we will
684 	 * actually initialise below. Hence, don't put any more fields after
685 	 * the tail pointer in struct sk_buff!
686 	 */
687 	memset(skb, 0, offsetof(struct sk_buff, tail));
688 	__build_skb_around(skb, data, size);
689 	skb->pfmemalloc = pfmemalloc;
690 
691 	if (flags & SKB_ALLOC_FCLONE) {
692 		struct sk_buff_fclones *fclones;
693 
694 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
695 
696 		skb->fclone = SKB_FCLONE_ORIG;
697 		refcount_set(&fclones->fclone_ref, 1);
698 	}
699 
700 	return skb;
701 
702 nodata:
703 	kmem_cache_free(cache, skb);
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__alloc_skb);
707 
708 /**
709  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
710  *	@dev: network device to receive on
711  *	@len: length to allocate
712  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
713  *
714  *	Allocate a new &sk_buff and assign it a usage count of one. The
715  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
716  *	the headroom they think they need without accounting for the
717  *	built in space. The built in space is used for optimisations.
718  *
719  *	%NULL is returned if there is no free memory.
720  */
721 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
722 				   gfp_t gfp_mask)
723 {
724 	struct page_frag_cache *nc;
725 	struct sk_buff *skb;
726 	bool pfmemalloc;
727 	void *data;
728 
729 	len += NET_SKB_PAD;
730 
731 	/* If requested length is either too small or too big,
732 	 * we use kmalloc() for skb->head allocation.
733 	 */
734 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
735 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
736 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
737 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
738 		if (!skb)
739 			goto skb_fail;
740 		goto skb_success;
741 	}
742 
743 	len = SKB_HEAD_ALIGN(len);
744 
745 	if (sk_memalloc_socks())
746 		gfp_mask |= __GFP_MEMALLOC;
747 
748 	if (in_hardirq() || irqs_disabled()) {
749 		nc = this_cpu_ptr(&netdev_alloc_cache);
750 		data = page_frag_alloc(nc, len, gfp_mask);
751 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
752 	} else {
753 		local_bh_disable();
754 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
755 
756 		nc = this_cpu_ptr(&napi_alloc_cache.page);
757 		data = page_frag_alloc(nc, len, gfp_mask);
758 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
759 
760 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
761 		local_bh_enable();
762 	}
763 
764 	if (unlikely(!data))
765 		return NULL;
766 
767 	skb = __build_skb(data, len);
768 	if (unlikely(!skb)) {
769 		skb_free_frag(data);
770 		return NULL;
771 	}
772 
773 	if (pfmemalloc)
774 		skb->pfmemalloc = 1;
775 	skb->head_frag = 1;
776 
777 skb_success:
778 	skb_reserve(skb, NET_SKB_PAD);
779 	skb->dev = dev;
780 
781 skb_fail:
782 	return skb;
783 }
784 EXPORT_SYMBOL(__netdev_alloc_skb);
785 
786 /**
787  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
788  *	@napi: napi instance this buffer was allocated for
789  *	@len: length to allocate
790  *
791  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
792  *	attempt to allocate the head from a special reserved region used
793  *	only for NAPI Rx allocation.  By doing this we can save several
794  *	CPU cycles by avoiding having to disable and re-enable IRQs.
795  *
796  *	%NULL is returned if there is no free memory.
797  */
798 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
799 {
800 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
801 	struct napi_alloc_cache *nc;
802 	struct sk_buff *skb;
803 	bool pfmemalloc;
804 	void *data;
805 
806 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
807 	len += NET_SKB_PAD + NET_IP_ALIGN;
808 
809 	/* If requested length is either too small or too big,
810 	 * we use kmalloc() for skb->head allocation.
811 	 */
812 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
813 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
814 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
815 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
816 				  NUMA_NO_NODE);
817 		if (!skb)
818 			goto skb_fail;
819 		goto skb_success;
820 	}
821 
822 	len = SKB_HEAD_ALIGN(len);
823 
824 	if (sk_memalloc_socks())
825 		gfp_mask |= __GFP_MEMALLOC;
826 
827 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
828 	nc = this_cpu_ptr(&napi_alloc_cache);
829 
830 	data = page_frag_alloc(&nc->page, len, gfp_mask);
831 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
832 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
833 
834 	if (unlikely(!data))
835 		return NULL;
836 
837 	skb = __napi_build_skb(data, len);
838 	if (unlikely(!skb)) {
839 		skb_free_frag(data);
840 		return NULL;
841 	}
842 
843 	if (pfmemalloc)
844 		skb->pfmemalloc = 1;
845 	skb->head_frag = 1;
846 
847 skb_success:
848 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
849 	skb->dev = napi->dev;
850 
851 skb_fail:
852 	return skb;
853 }
854 EXPORT_SYMBOL(napi_alloc_skb);
855 
856 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
857 			    int off, int size, unsigned int truesize)
858 {
859 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
860 
861 	skb_fill_netmem_desc(skb, i, netmem, off, size);
862 	skb->len += size;
863 	skb->data_len += size;
864 	skb->truesize += truesize;
865 }
866 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
867 
868 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
869 			  unsigned int truesize)
870 {
871 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
872 
873 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
874 
875 	skb_frag_size_add(frag, size);
876 	skb->len += size;
877 	skb->data_len += size;
878 	skb->truesize += truesize;
879 }
880 EXPORT_SYMBOL(skb_coalesce_rx_frag);
881 
882 static void skb_drop_list(struct sk_buff **listp)
883 {
884 	kfree_skb_list(*listp);
885 	*listp = NULL;
886 }
887 
888 static inline void skb_drop_fraglist(struct sk_buff *skb)
889 {
890 	skb_drop_list(&skb_shinfo(skb)->frag_list);
891 }
892 
893 static void skb_clone_fraglist(struct sk_buff *skb)
894 {
895 	struct sk_buff *list;
896 
897 	skb_walk_frags(skb, list)
898 		skb_get(list);
899 }
900 
901 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
902 		    unsigned int headroom)
903 {
904 #if IS_ENABLED(CONFIG_PAGE_POOL)
905 	u32 size, truesize, len, max_head_size, off;
906 	struct sk_buff *skb = *pskb, *nskb;
907 	int err, i, head_off;
908 	void *data;
909 
910 	/* XDP does not support fraglist so we need to linearize
911 	 * the skb.
912 	 */
913 	if (skb_has_frag_list(skb))
914 		return -EOPNOTSUPP;
915 
916 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
917 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
918 		return -ENOMEM;
919 
920 	size = min_t(u32, skb->len, max_head_size);
921 	truesize = SKB_HEAD_ALIGN(size) + headroom;
922 	data = page_pool_dev_alloc_va(pool, &truesize);
923 	if (!data)
924 		return -ENOMEM;
925 
926 	nskb = napi_build_skb(data, truesize);
927 	if (!nskb) {
928 		page_pool_free_va(pool, data, true);
929 		return -ENOMEM;
930 	}
931 
932 	skb_reserve(nskb, headroom);
933 	skb_copy_header(nskb, skb);
934 	skb_mark_for_recycle(nskb);
935 
936 	err = skb_copy_bits(skb, 0, nskb->data, size);
937 	if (err) {
938 		consume_skb(nskb);
939 		return err;
940 	}
941 	skb_put(nskb, size);
942 
943 	head_off = skb_headroom(nskb) - skb_headroom(skb);
944 	skb_headers_offset_update(nskb, head_off);
945 
946 	off = size;
947 	len = skb->len - off;
948 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
949 		struct page *page;
950 		u32 page_off;
951 
952 		size = min_t(u32, len, PAGE_SIZE);
953 		truesize = size;
954 
955 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
956 		if (!page) {
957 			consume_skb(nskb);
958 			return -ENOMEM;
959 		}
960 
961 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
962 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
963 				    size);
964 		if (err) {
965 			consume_skb(nskb);
966 			return err;
967 		}
968 
969 		len -= size;
970 		off += size;
971 	}
972 
973 	consume_skb(skb);
974 	*pskb = nskb;
975 
976 	return 0;
977 #else
978 	return -EOPNOTSUPP;
979 #endif
980 }
981 EXPORT_SYMBOL(skb_pp_cow_data);
982 
983 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
984 			 const struct bpf_prog *prog)
985 {
986 	if (!prog->aux->xdp_has_frags)
987 		return -EINVAL;
988 
989 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
990 }
991 EXPORT_SYMBOL(skb_cow_data_for_xdp);
992 
993 #if IS_ENABLED(CONFIG_PAGE_POOL)
994 bool napi_pp_put_page(netmem_ref netmem)
995 {
996 	netmem = netmem_compound_head(netmem);
997 
998 	if (unlikely(!netmem_is_pp(netmem)))
999 		return false;
1000 
1001 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1002 
1003 	return true;
1004 }
1005 EXPORT_SYMBOL(napi_pp_put_page);
1006 #endif
1007 
1008 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1009 {
1010 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1011 		return false;
1012 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1013 }
1014 
1015 /**
1016  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1017  * @skb:	page pool aware skb
1018  *
1019  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1020  * intended to gain fragment references only for page pool aware skbs,
1021  * i.e. when skb->pp_recycle is true, and not for fragments in a
1022  * non-pp-recycling skb. It has a fallback to increase references on normal
1023  * pages, as page pool aware skbs may also have normal page fragments.
1024  */
1025 static int skb_pp_frag_ref(struct sk_buff *skb)
1026 {
1027 	struct skb_shared_info *shinfo;
1028 	netmem_ref head_netmem;
1029 	int i;
1030 
1031 	if (!skb->pp_recycle)
1032 		return -EINVAL;
1033 
1034 	shinfo = skb_shinfo(skb);
1035 
1036 	for (i = 0; i < shinfo->nr_frags; i++) {
1037 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1038 		if (likely(netmem_is_pp(head_netmem)))
1039 			page_pool_ref_netmem(head_netmem);
1040 		else
1041 			page_ref_inc(netmem_to_page(head_netmem));
1042 	}
1043 	return 0;
1044 }
1045 
1046 static void skb_kfree_head(void *head, unsigned int end_offset)
1047 {
1048 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1049 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1050 	else
1051 		kfree(head);
1052 }
1053 
1054 static void skb_free_head(struct sk_buff *skb)
1055 {
1056 	unsigned char *head = skb->head;
1057 
1058 	if (skb->head_frag) {
1059 		if (skb_pp_recycle(skb, head))
1060 			return;
1061 		skb_free_frag(head);
1062 	} else {
1063 		skb_kfree_head(head, skb_end_offset(skb));
1064 	}
1065 }
1066 
1067 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1068 {
1069 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1070 	int i;
1071 
1072 	if (!skb_data_unref(skb, shinfo))
1073 		goto exit;
1074 
1075 	if (skb_zcopy(skb)) {
1076 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1077 
1078 		skb_zcopy_clear(skb, true);
1079 		if (skip_unref)
1080 			goto free_head;
1081 	}
1082 
1083 	for (i = 0; i < shinfo->nr_frags; i++)
1084 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1085 
1086 free_head:
1087 	if (shinfo->frag_list)
1088 		kfree_skb_list_reason(shinfo->frag_list, reason);
1089 
1090 	skb_free_head(skb);
1091 exit:
1092 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1093 	 * bit is only set on the head though, so in order to avoid races
1094 	 * while trying to recycle fragments on __skb_frag_unref() we need
1095 	 * to make one SKB responsible for triggering the recycle path.
1096 	 * So disable the recycling bit if an SKB is cloned and we have
1097 	 * additional references to the fragmented part of the SKB.
1098 	 * Eventually the last SKB will have the recycling bit set and it's
1099 	 * dataref set to 0, which will trigger the recycling
1100 	 */
1101 	skb->pp_recycle = 0;
1102 }
1103 
1104 /*
1105  *	Free an skbuff by memory without cleaning the state.
1106  */
1107 static void kfree_skbmem(struct sk_buff *skb)
1108 {
1109 	struct sk_buff_fclones *fclones;
1110 
1111 	switch (skb->fclone) {
1112 	case SKB_FCLONE_UNAVAILABLE:
1113 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1114 		return;
1115 
1116 	case SKB_FCLONE_ORIG:
1117 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1118 
1119 		/* We usually free the clone (TX completion) before original skb
1120 		 * This test would have no chance to be true for the clone,
1121 		 * while here, branch prediction will be good.
1122 		 */
1123 		if (refcount_read(&fclones->fclone_ref) == 1)
1124 			goto fastpath;
1125 		break;
1126 
1127 	default: /* SKB_FCLONE_CLONE */
1128 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1129 		break;
1130 	}
1131 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1132 		return;
1133 fastpath:
1134 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1135 }
1136 
1137 void skb_release_head_state(struct sk_buff *skb)
1138 {
1139 	skb_dst_drop(skb);
1140 	if (skb->destructor) {
1141 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1142 #ifdef CONFIG_INET
1143 		INDIRECT_CALL_3(skb->destructor,
1144 				tcp_wfree, __sock_wfree, sock_wfree,
1145 				skb);
1146 #else
1147 		INDIRECT_CALL_1(skb->destructor,
1148 				sock_wfree,
1149 				skb);
1150 
1151 #endif
1152 	}
1153 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1154 	nf_conntrack_put(skb_nfct(skb));
1155 #endif
1156 	skb_ext_put(skb);
1157 }
1158 
1159 /* Free everything but the sk_buff shell. */
1160 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1161 {
1162 	skb_release_head_state(skb);
1163 	if (likely(skb->head))
1164 		skb_release_data(skb, reason);
1165 }
1166 
1167 /**
1168  *	__kfree_skb - private function
1169  *	@skb: buffer
1170  *
1171  *	Free an sk_buff. Release anything attached to the buffer.
1172  *	Clean the state. This is an internal helper function. Users should
1173  *	always call kfree_skb
1174  */
1175 
1176 void __kfree_skb(struct sk_buff *skb)
1177 {
1178 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1179 	kfree_skbmem(skb);
1180 }
1181 EXPORT_SYMBOL(__kfree_skb);
1182 
1183 static __always_inline
1184 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1185 			  enum skb_drop_reason reason)
1186 {
1187 	if (unlikely(!skb_unref(skb)))
1188 		return false;
1189 
1190 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1191 			       u32_get_bits(reason,
1192 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1193 				SKB_DROP_REASON_SUBSYS_NUM);
1194 
1195 	if (reason == SKB_CONSUMED)
1196 		trace_consume_skb(skb, __builtin_return_address(0));
1197 	else
1198 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1199 	return true;
1200 }
1201 
1202 /**
1203  *	sk_skb_reason_drop - free an sk_buff with special reason
1204  *	@sk: the socket to receive @skb, or NULL if not applicable
1205  *	@skb: buffer to free
1206  *	@reason: reason why this skb is dropped
1207  *
1208  *	Drop a reference to the buffer and free it if the usage count has hit
1209  *	zero. Meanwhile, pass the receiving socket and drop reason to
1210  *	'kfree_skb' tracepoint.
1211  */
1212 void __fix_address
1213 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1214 {
1215 	if (__sk_skb_reason_drop(sk, skb, reason))
1216 		__kfree_skb(skb);
1217 }
1218 EXPORT_SYMBOL(sk_skb_reason_drop);
1219 
1220 #define KFREE_SKB_BULK_SIZE	16
1221 
1222 struct skb_free_array {
1223 	unsigned int skb_count;
1224 	void *skb_array[KFREE_SKB_BULK_SIZE];
1225 };
1226 
1227 static void kfree_skb_add_bulk(struct sk_buff *skb,
1228 			       struct skb_free_array *sa,
1229 			       enum skb_drop_reason reason)
1230 {
1231 	/* if SKB is a clone, don't handle this case */
1232 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1233 		__kfree_skb(skb);
1234 		return;
1235 	}
1236 
1237 	skb_release_all(skb, reason);
1238 	sa->skb_array[sa->skb_count++] = skb;
1239 
1240 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1241 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1242 				     sa->skb_array);
1243 		sa->skb_count = 0;
1244 	}
1245 }
1246 
1247 void __fix_address
1248 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1249 {
1250 	struct skb_free_array sa;
1251 
1252 	sa.skb_count = 0;
1253 
1254 	while (segs) {
1255 		struct sk_buff *next = segs->next;
1256 
1257 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1258 			skb_poison_list(segs);
1259 			kfree_skb_add_bulk(segs, &sa, reason);
1260 		}
1261 
1262 		segs = next;
1263 	}
1264 
1265 	if (sa.skb_count)
1266 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1267 }
1268 EXPORT_SYMBOL(kfree_skb_list_reason);
1269 
1270 /* Dump skb information and contents.
1271  *
1272  * Must only be called from net_ratelimit()-ed paths.
1273  *
1274  * Dumps whole packets if full_pkt, only headers otherwise.
1275  */
1276 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1277 {
1278 	struct skb_shared_info *sh = skb_shinfo(skb);
1279 	struct net_device *dev = skb->dev;
1280 	struct sock *sk = skb->sk;
1281 	struct sk_buff *list_skb;
1282 	bool has_mac, has_trans;
1283 	int headroom, tailroom;
1284 	int i, len, seg_len;
1285 
1286 	if (full_pkt)
1287 		len = skb->len;
1288 	else
1289 		len = min_t(int, skb->len, MAX_HEADER + 128);
1290 
1291 	headroom = skb_headroom(skb);
1292 	tailroom = skb_tailroom(skb);
1293 
1294 	has_mac = skb_mac_header_was_set(skb);
1295 	has_trans = skb_transport_header_was_set(skb);
1296 
1297 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1298 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1299 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1300 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1301 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1302 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1303 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1304 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1305 	       has_mac ? skb->mac_header : -1,
1306 	       has_mac ? skb_mac_header_len(skb) : -1,
1307 	       skb->mac_len,
1308 	       skb->network_header,
1309 	       has_trans ? skb_network_header_len(skb) : -1,
1310 	       has_trans ? skb->transport_header : -1,
1311 	       sh->tx_flags, sh->nr_frags,
1312 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1313 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1314 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1315 	       skb->hash, skb->sw_hash, skb->l4_hash,
1316 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1317 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1318 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1319 	       skb->inner_network_header, skb->inner_transport_header);
1320 
1321 	if (dev)
1322 		printk("%sdev name=%s feat=%pNF\n",
1323 		       level, dev->name, &dev->features);
1324 	if (sk)
1325 		printk("%ssk family=%hu type=%u proto=%u\n",
1326 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1327 
1328 	if (full_pkt && headroom)
1329 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1330 			       16, 1, skb->head, headroom, false);
1331 
1332 	seg_len = min_t(int, skb_headlen(skb), len);
1333 	if (seg_len)
1334 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1335 			       16, 1, skb->data, seg_len, false);
1336 	len -= seg_len;
1337 
1338 	if (full_pkt && tailroom)
1339 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1340 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1341 
1342 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1343 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1344 		u32 p_off, p_len, copied;
1345 		struct page *p;
1346 		u8 *vaddr;
1347 
1348 		if (skb_frag_is_net_iov(frag)) {
1349 			printk("%sskb frag %d: not readable\n", level, i);
1350 			len -= skb_frag_size(frag);
1351 			if (!len)
1352 				break;
1353 			continue;
1354 		}
1355 
1356 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1357 				      skb_frag_size(frag), p, p_off, p_len,
1358 				      copied) {
1359 			seg_len = min_t(int, p_len, len);
1360 			vaddr = kmap_atomic(p);
1361 			print_hex_dump(level, "skb frag:     ",
1362 				       DUMP_PREFIX_OFFSET,
1363 				       16, 1, vaddr + p_off, seg_len, false);
1364 			kunmap_atomic(vaddr);
1365 			len -= seg_len;
1366 			if (!len)
1367 				break;
1368 		}
1369 	}
1370 
1371 	if (full_pkt && skb_has_frag_list(skb)) {
1372 		printk("skb fraglist:\n");
1373 		skb_walk_frags(skb, list_skb)
1374 			skb_dump(level, list_skb, true);
1375 	}
1376 }
1377 EXPORT_SYMBOL(skb_dump);
1378 
1379 /**
1380  *	skb_tx_error - report an sk_buff xmit error
1381  *	@skb: buffer that triggered an error
1382  *
1383  *	Report xmit error if a device callback is tracking this skb.
1384  *	skb must be freed afterwards.
1385  */
1386 void skb_tx_error(struct sk_buff *skb)
1387 {
1388 	if (skb) {
1389 		skb_zcopy_downgrade_managed(skb);
1390 		skb_zcopy_clear(skb, true);
1391 	}
1392 }
1393 EXPORT_SYMBOL(skb_tx_error);
1394 
1395 #ifdef CONFIG_TRACEPOINTS
1396 /**
1397  *	consume_skb - free an skbuff
1398  *	@skb: buffer to free
1399  *
1400  *	Drop a ref to the buffer and free it if the usage count has hit zero
1401  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1402  *	is being dropped after a failure and notes that
1403  */
1404 void consume_skb(struct sk_buff *skb)
1405 {
1406 	if (!skb_unref(skb))
1407 		return;
1408 
1409 	trace_consume_skb(skb, __builtin_return_address(0));
1410 	__kfree_skb(skb);
1411 }
1412 EXPORT_SYMBOL(consume_skb);
1413 #endif
1414 
1415 /**
1416  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1417  *	@skb: buffer to free
1418  *
1419  *	Alike consume_skb(), but this variant assumes that this is the last
1420  *	skb reference and all the head states have been already dropped
1421  */
1422 void __consume_stateless_skb(struct sk_buff *skb)
1423 {
1424 	trace_consume_skb(skb, __builtin_return_address(0));
1425 	skb_release_data(skb, SKB_CONSUMED);
1426 	kfree_skbmem(skb);
1427 }
1428 
1429 static void napi_skb_cache_put(struct sk_buff *skb)
1430 {
1431 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1432 	u32 i;
1433 
1434 	if (!kasan_mempool_poison_object(skb))
1435 		return;
1436 
1437 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1438 	nc->skb_cache[nc->skb_count++] = skb;
1439 
1440 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1441 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1442 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1443 						skbuff_cache_size);
1444 
1445 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1446 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1447 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1448 	}
1449 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1450 }
1451 
1452 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1453 {
1454 	skb_release_all(skb, reason);
1455 	napi_skb_cache_put(skb);
1456 }
1457 
1458 void napi_skb_free_stolen_head(struct sk_buff *skb)
1459 {
1460 	if (unlikely(skb->slow_gro)) {
1461 		nf_reset_ct(skb);
1462 		skb_dst_drop(skb);
1463 		skb_ext_put(skb);
1464 		skb_orphan(skb);
1465 		skb->slow_gro = 0;
1466 	}
1467 	napi_skb_cache_put(skb);
1468 }
1469 
1470 void napi_consume_skb(struct sk_buff *skb, int budget)
1471 {
1472 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1473 	if (unlikely(!budget)) {
1474 		dev_consume_skb_any(skb);
1475 		return;
1476 	}
1477 
1478 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1479 
1480 	if (!skb_unref(skb))
1481 		return;
1482 
1483 	/* if reaching here SKB is ready to free */
1484 	trace_consume_skb(skb, __builtin_return_address(0));
1485 
1486 	/* if SKB is a clone, don't handle this case */
1487 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1488 		__kfree_skb(skb);
1489 		return;
1490 	}
1491 
1492 	skb_release_all(skb, SKB_CONSUMED);
1493 	napi_skb_cache_put(skb);
1494 }
1495 EXPORT_SYMBOL(napi_consume_skb);
1496 
1497 /* Make sure a field is contained by headers group */
1498 #define CHECK_SKB_FIELD(field) \
1499 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1500 		     offsetof(struct sk_buff, headers.field));	\
1501 
1502 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1503 {
1504 	new->tstamp		= old->tstamp;
1505 	/* We do not copy old->sk */
1506 	new->dev		= old->dev;
1507 	memcpy(new->cb, old->cb, sizeof(old->cb));
1508 	skb_dst_copy(new, old);
1509 	__skb_ext_copy(new, old);
1510 	__nf_copy(new, old, false);
1511 
1512 	/* Note : this field could be in the headers group.
1513 	 * It is not yet because we do not want to have a 16 bit hole
1514 	 */
1515 	new->queue_mapping = old->queue_mapping;
1516 
1517 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1518 	CHECK_SKB_FIELD(protocol);
1519 	CHECK_SKB_FIELD(csum);
1520 	CHECK_SKB_FIELD(hash);
1521 	CHECK_SKB_FIELD(priority);
1522 	CHECK_SKB_FIELD(skb_iif);
1523 	CHECK_SKB_FIELD(vlan_proto);
1524 	CHECK_SKB_FIELD(vlan_tci);
1525 	CHECK_SKB_FIELD(transport_header);
1526 	CHECK_SKB_FIELD(network_header);
1527 	CHECK_SKB_FIELD(mac_header);
1528 	CHECK_SKB_FIELD(inner_protocol);
1529 	CHECK_SKB_FIELD(inner_transport_header);
1530 	CHECK_SKB_FIELD(inner_network_header);
1531 	CHECK_SKB_FIELD(inner_mac_header);
1532 	CHECK_SKB_FIELD(mark);
1533 #ifdef CONFIG_NETWORK_SECMARK
1534 	CHECK_SKB_FIELD(secmark);
1535 #endif
1536 #ifdef CONFIG_NET_RX_BUSY_POLL
1537 	CHECK_SKB_FIELD(napi_id);
1538 #endif
1539 	CHECK_SKB_FIELD(alloc_cpu);
1540 #ifdef CONFIG_XPS
1541 	CHECK_SKB_FIELD(sender_cpu);
1542 #endif
1543 #ifdef CONFIG_NET_SCHED
1544 	CHECK_SKB_FIELD(tc_index);
1545 #endif
1546 
1547 }
1548 
1549 /*
1550  * You should not add any new code to this function.  Add it to
1551  * __copy_skb_header above instead.
1552  */
1553 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1554 {
1555 #define C(x) n->x = skb->x
1556 
1557 	n->next = n->prev = NULL;
1558 	n->sk = NULL;
1559 	__copy_skb_header(n, skb);
1560 
1561 	C(len);
1562 	C(data_len);
1563 	C(mac_len);
1564 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1565 	n->cloned = 1;
1566 	n->nohdr = 0;
1567 	n->peeked = 0;
1568 	C(pfmemalloc);
1569 	C(pp_recycle);
1570 	n->destructor = NULL;
1571 	C(tail);
1572 	C(end);
1573 	C(head);
1574 	C(head_frag);
1575 	C(data);
1576 	C(truesize);
1577 	refcount_set(&n->users, 1);
1578 
1579 	atomic_inc(&(skb_shinfo(skb)->dataref));
1580 	skb->cloned = 1;
1581 
1582 	return n;
1583 #undef C
1584 }
1585 
1586 /**
1587  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1588  * @first: first sk_buff of the msg
1589  */
1590 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1591 {
1592 	struct sk_buff *n;
1593 
1594 	n = alloc_skb(0, GFP_ATOMIC);
1595 	if (!n)
1596 		return NULL;
1597 
1598 	n->len = first->len;
1599 	n->data_len = first->len;
1600 	n->truesize = first->truesize;
1601 
1602 	skb_shinfo(n)->frag_list = first;
1603 
1604 	__copy_skb_header(n, first);
1605 	n->destructor = NULL;
1606 
1607 	return n;
1608 }
1609 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1610 
1611 /**
1612  *	skb_morph	-	morph one skb into another
1613  *	@dst: the skb to receive the contents
1614  *	@src: the skb to supply the contents
1615  *
1616  *	This is identical to skb_clone except that the target skb is
1617  *	supplied by the user.
1618  *
1619  *	The target skb is returned upon exit.
1620  */
1621 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1622 {
1623 	skb_release_all(dst, SKB_CONSUMED);
1624 	return __skb_clone(dst, src);
1625 }
1626 EXPORT_SYMBOL_GPL(skb_morph);
1627 
1628 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1629 {
1630 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1631 	struct user_struct *user;
1632 
1633 	if (capable(CAP_IPC_LOCK) || !size)
1634 		return 0;
1635 
1636 	rlim = rlimit(RLIMIT_MEMLOCK);
1637 	if (rlim == RLIM_INFINITY)
1638 		return 0;
1639 
1640 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1641 	max_pg = rlim >> PAGE_SHIFT;
1642 	user = mmp->user ? : current_user();
1643 
1644 	old_pg = atomic_long_read(&user->locked_vm);
1645 	do {
1646 		new_pg = old_pg + num_pg;
1647 		if (new_pg > max_pg)
1648 			return -ENOBUFS;
1649 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1650 
1651 	if (!mmp->user) {
1652 		mmp->user = get_uid(user);
1653 		mmp->num_pg = num_pg;
1654 	} else {
1655 		mmp->num_pg += num_pg;
1656 	}
1657 
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1661 
1662 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1663 {
1664 	if (mmp->user) {
1665 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1666 		free_uid(mmp->user);
1667 	}
1668 }
1669 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1670 
1671 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1672 					    bool devmem)
1673 {
1674 	struct ubuf_info_msgzc *uarg;
1675 	struct sk_buff *skb;
1676 
1677 	WARN_ON_ONCE(!in_task());
1678 
1679 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1680 	if (!skb)
1681 		return NULL;
1682 
1683 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1684 	uarg = (void *)skb->cb;
1685 	uarg->mmp.user = NULL;
1686 
1687 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1688 		kfree_skb(skb);
1689 		return NULL;
1690 	}
1691 
1692 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1693 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1694 	uarg->len = 1;
1695 	uarg->bytelen = size;
1696 	uarg->zerocopy = 1;
1697 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1698 	refcount_set(&uarg->ubuf.refcnt, 1);
1699 	sock_hold(sk);
1700 
1701 	return &uarg->ubuf;
1702 }
1703 
1704 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1705 {
1706 	return container_of((void *)uarg, struct sk_buff, cb);
1707 }
1708 
1709 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1710 				       struct ubuf_info *uarg, bool devmem)
1711 {
1712 	if (uarg) {
1713 		struct ubuf_info_msgzc *uarg_zc;
1714 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1715 		u32 bytelen, next;
1716 
1717 		/* there might be non MSG_ZEROCOPY users */
1718 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1719 			return NULL;
1720 
1721 		/* realloc only when socket is locked (TCP, UDP cork),
1722 		 * so uarg->len and sk_zckey access is serialized
1723 		 */
1724 		if (!sock_owned_by_user(sk)) {
1725 			WARN_ON_ONCE(1);
1726 			return NULL;
1727 		}
1728 
1729 		uarg_zc = uarg_to_msgzc(uarg);
1730 		bytelen = uarg_zc->bytelen + size;
1731 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1732 			/* TCP can create new skb to attach new uarg */
1733 			if (sk->sk_type == SOCK_STREAM)
1734 				goto new_alloc;
1735 			return NULL;
1736 		}
1737 
1738 		next = (u32)atomic_read(&sk->sk_zckey);
1739 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1740 			if (likely(!devmem) &&
1741 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1742 				return NULL;
1743 			uarg_zc->len++;
1744 			uarg_zc->bytelen = bytelen;
1745 			atomic_set(&sk->sk_zckey, ++next);
1746 
1747 			/* no extra ref when appending to datagram (MSG_MORE) */
1748 			if (sk->sk_type == SOCK_STREAM)
1749 				net_zcopy_get(uarg);
1750 
1751 			return uarg;
1752 		}
1753 	}
1754 
1755 new_alloc:
1756 	return msg_zerocopy_alloc(sk, size, devmem);
1757 }
1758 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1759 
1760 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1761 {
1762 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1763 	u32 old_lo, old_hi;
1764 	u64 sum_len;
1765 
1766 	old_lo = serr->ee.ee_info;
1767 	old_hi = serr->ee.ee_data;
1768 	sum_len = old_hi - old_lo + 1ULL + len;
1769 
1770 	if (sum_len >= (1ULL << 32))
1771 		return false;
1772 
1773 	if (lo != old_hi + 1)
1774 		return false;
1775 
1776 	serr->ee.ee_data += len;
1777 	return true;
1778 }
1779 
1780 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1781 {
1782 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1783 	struct sock_exterr_skb *serr;
1784 	struct sock *sk = skb->sk;
1785 	struct sk_buff_head *q;
1786 	unsigned long flags;
1787 	bool is_zerocopy;
1788 	u32 lo, hi;
1789 	u16 len;
1790 
1791 	mm_unaccount_pinned_pages(&uarg->mmp);
1792 
1793 	/* if !len, there was only 1 call, and it was aborted
1794 	 * so do not queue a completion notification
1795 	 */
1796 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1797 		goto release;
1798 
1799 	len = uarg->len;
1800 	lo = uarg->id;
1801 	hi = uarg->id + len - 1;
1802 	is_zerocopy = uarg->zerocopy;
1803 
1804 	serr = SKB_EXT_ERR(skb);
1805 	memset(serr, 0, sizeof(*serr));
1806 	serr->ee.ee_errno = 0;
1807 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1808 	serr->ee.ee_data = hi;
1809 	serr->ee.ee_info = lo;
1810 	if (!is_zerocopy)
1811 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1812 
1813 	q = &sk->sk_error_queue;
1814 	spin_lock_irqsave(&q->lock, flags);
1815 	tail = skb_peek_tail(q);
1816 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1817 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1818 		__skb_queue_tail(q, skb);
1819 		skb = NULL;
1820 	}
1821 	spin_unlock_irqrestore(&q->lock, flags);
1822 
1823 	sk_error_report(sk);
1824 
1825 release:
1826 	consume_skb(skb);
1827 	sock_put(sk);
1828 }
1829 
1830 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1831 				  bool success)
1832 {
1833 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1834 
1835 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1836 
1837 	if (refcount_dec_and_test(&uarg->refcnt))
1838 		__msg_zerocopy_callback(uarg_zc);
1839 }
1840 
1841 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1842 {
1843 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1844 
1845 	atomic_dec(&sk->sk_zckey);
1846 	uarg_to_msgzc(uarg)->len--;
1847 
1848 	if (have_uref)
1849 		msg_zerocopy_complete(NULL, uarg, true);
1850 }
1851 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1852 
1853 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1854 	.complete = msg_zerocopy_complete,
1855 };
1856 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1857 
1858 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1859 			     struct msghdr *msg, int len,
1860 			     struct ubuf_info *uarg,
1861 			     struct net_devmem_dmabuf_binding *binding)
1862 {
1863 	int err, orig_len = skb->len;
1864 
1865 	if (uarg->ops->link_skb) {
1866 		err = uarg->ops->link_skb(skb, uarg);
1867 		if (err)
1868 			return err;
1869 	} else {
1870 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1871 
1872 		/* An skb can only point to one uarg. This edge case happens
1873 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1874 		 * a new alloc.
1875 		 */
1876 		if (orig_uarg && uarg != orig_uarg)
1877 			return -EEXIST;
1878 	}
1879 
1880 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1881 				      binding);
1882 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1883 		struct sock *save_sk = skb->sk;
1884 
1885 		/* Streams do not free skb on error. Reset to prev state. */
1886 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1887 		skb->sk = sk;
1888 		___pskb_trim(skb, orig_len);
1889 		skb->sk = save_sk;
1890 		return err;
1891 	}
1892 
1893 	skb_zcopy_set(skb, uarg, NULL);
1894 	return skb->len - orig_len;
1895 }
1896 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1897 
1898 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1899 {
1900 	int i;
1901 
1902 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1903 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1904 		skb_frag_ref(skb, i);
1905 }
1906 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1907 
1908 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1909 			      gfp_t gfp_mask)
1910 {
1911 	if (skb_zcopy(orig)) {
1912 		if (skb_zcopy(nskb)) {
1913 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1914 			if (!gfp_mask) {
1915 				WARN_ON_ONCE(1);
1916 				return -ENOMEM;
1917 			}
1918 			if (skb_uarg(nskb) == skb_uarg(orig))
1919 				return 0;
1920 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1921 				return -EIO;
1922 		}
1923 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1924 	}
1925 	return 0;
1926 }
1927 
1928 /**
1929  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1930  *	@skb: the skb to modify
1931  *	@gfp_mask: allocation priority
1932  *
1933  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1934  *	It will copy all frags into kernel and drop the reference
1935  *	to userspace pages.
1936  *
1937  *	If this function is called from an interrupt gfp_mask() must be
1938  *	%GFP_ATOMIC.
1939  *
1940  *	Returns 0 on success or a negative error code on failure
1941  *	to allocate kernel memory to copy to.
1942  */
1943 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1944 {
1945 	int num_frags = skb_shinfo(skb)->nr_frags;
1946 	struct page *page, *head = NULL;
1947 	int i, order, psize, new_frags;
1948 	u32 d_off;
1949 
1950 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1951 		return -EINVAL;
1952 
1953 	if (!skb_frags_readable(skb))
1954 		return -EFAULT;
1955 
1956 	if (!num_frags)
1957 		goto release;
1958 
1959 	/* We might have to allocate high order pages, so compute what minimum
1960 	 * page order is needed.
1961 	 */
1962 	order = 0;
1963 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1964 		order++;
1965 	psize = (PAGE_SIZE << order);
1966 
1967 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1968 	for (i = 0; i < new_frags; i++) {
1969 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1970 		if (!page) {
1971 			while (head) {
1972 				struct page *next = (struct page *)page_private(head);
1973 				put_page(head);
1974 				head = next;
1975 			}
1976 			return -ENOMEM;
1977 		}
1978 		set_page_private(page, (unsigned long)head);
1979 		head = page;
1980 	}
1981 
1982 	page = head;
1983 	d_off = 0;
1984 	for (i = 0; i < num_frags; i++) {
1985 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1986 		u32 p_off, p_len, copied;
1987 		struct page *p;
1988 		u8 *vaddr;
1989 
1990 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1991 				      p, p_off, p_len, copied) {
1992 			u32 copy, done = 0;
1993 			vaddr = kmap_atomic(p);
1994 
1995 			while (done < p_len) {
1996 				if (d_off == psize) {
1997 					d_off = 0;
1998 					page = (struct page *)page_private(page);
1999 				}
2000 				copy = min_t(u32, psize - d_off, p_len - done);
2001 				memcpy(page_address(page) + d_off,
2002 				       vaddr + p_off + done, copy);
2003 				done += copy;
2004 				d_off += copy;
2005 			}
2006 			kunmap_atomic(vaddr);
2007 		}
2008 	}
2009 
2010 	/* skb frags release userspace buffers */
2011 	for (i = 0; i < num_frags; i++)
2012 		skb_frag_unref(skb, i);
2013 
2014 	/* skb frags point to kernel buffers */
2015 	for (i = 0; i < new_frags - 1; i++) {
2016 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2017 		head = (struct page *)page_private(head);
2018 	}
2019 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2020 			       d_off);
2021 	skb_shinfo(skb)->nr_frags = new_frags;
2022 
2023 release:
2024 	skb_zcopy_clear(skb, false);
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2028 
2029 /**
2030  *	skb_clone	-	duplicate an sk_buff
2031  *	@skb: buffer to clone
2032  *	@gfp_mask: allocation priority
2033  *
2034  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2035  *	copies share the same packet data but not structure. The new
2036  *	buffer has a reference count of 1. If the allocation fails the
2037  *	function returns %NULL otherwise the new buffer is returned.
2038  *
2039  *	If this function is called from an interrupt gfp_mask() must be
2040  *	%GFP_ATOMIC.
2041  */
2042 
2043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2044 {
2045 	struct sk_buff_fclones *fclones = container_of(skb,
2046 						       struct sk_buff_fclones,
2047 						       skb1);
2048 	struct sk_buff *n;
2049 
2050 	if (skb_orphan_frags(skb, gfp_mask))
2051 		return NULL;
2052 
2053 	if (skb->fclone == SKB_FCLONE_ORIG &&
2054 	    refcount_read(&fclones->fclone_ref) == 1) {
2055 		n = &fclones->skb2;
2056 		refcount_set(&fclones->fclone_ref, 2);
2057 		n->fclone = SKB_FCLONE_CLONE;
2058 	} else {
2059 		if (skb_pfmemalloc(skb))
2060 			gfp_mask |= __GFP_MEMALLOC;
2061 
2062 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2063 		if (!n)
2064 			return NULL;
2065 
2066 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2067 	}
2068 
2069 	return __skb_clone(n, skb);
2070 }
2071 EXPORT_SYMBOL(skb_clone);
2072 
2073 void skb_headers_offset_update(struct sk_buff *skb, int off)
2074 {
2075 	/* Only adjust this if it actually is csum_start rather than csum */
2076 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2077 		skb->csum_start += off;
2078 	/* {transport,network,mac}_header and tail are relative to skb->head */
2079 	skb->transport_header += off;
2080 	skb->network_header   += off;
2081 	if (skb_mac_header_was_set(skb))
2082 		skb->mac_header += off;
2083 	skb->inner_transport_header += off;
2084 	skb->inner_network_header += off;
2085 	skb->inner_mac_header += off;
2086 }
2087 EXPORT_SYMBOL(skb_headers_offset_update);
2088 
2089 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2090 {
2091 	__copy_skb_header(new, old);
2092 
2093 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2094 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2095 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2096 }
2097 EXPORT_SYMBOL(skb_copy_header);
2098 
2099 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2100 {
2101 	if (skb_pfmemalloc(skb))
2102 		return SKB_ALLOC_RX;
2103 	return 0;
2104 }
2105 
2106 /**
2107  *	skb_copy	-	create private copy of an sk_buff
2108  *	@skb: buffer to copy
2109  *	@gfp_mask: allocation priority
2110  *
2111  *	Make a copy of both an &sk_buff and its data. This is used when the
2112  *	caller wishes to modify the data and needs a private copy of the
2113  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2114  *	on success. The returned buffer has a reference count of 1.
2115  *
2116  *	As by-product this function converts non-linear &sk_buff to linear
2117  *	one, so that &sk_buff becomes completely private and caller is allowed
2118  *	to modify all the data of returned buffer. This means that this
2119  *	function is not recommended for use in circumstances when only
2120  *	header is going to be modified. Use pskb_copy() instead.
2121  */
2122 
2123 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2124 {
2125 	struct sk_buff *n;
2126 	unsigned int size;
2127 	int headerlen;
2128 
2129 	if (!skb_frags_readable(skb))
2130 		return NULL;
2131 
2132 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2133 		return NULL;
2134 
2135 	headerlen = skb_headroom(skb);
2136 	size = skb_end_offset(skb) + skb->data_len;
2137 	n = __alloc_skb(size, gfp_mask,
2138 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2139 	if (!n)
2140 		return NULL;
2141 
2142 	/* Set the data pointer */
2143 	skb_reserve(n, headerlen);
2144 	/* Set the tail pointer and length */
2145 	skb_put(n, skb->len);
2146 
2147 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2148 
2149 	skb_copy_header(n, skb);
2150 	return n;
2151 }
2152 EXPORT_SYMBOL(skb_copy);
2153 
2154 /**
2155  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2156  *	@skb: buffer to copy
2157  *	@headroom: headroom of new skb
2158  *	@gfp_mask: allocation priority
2159  *	@fclone: if true allocate the copy of the skb from the fclone
2160  *	cache instead of the head cache; it is recommended to set this
2161  *	to true for the cases where the copy will likely be cloned
2162  *
2163  *	Make a copy of both an &sk_buff and part of its data, located
2164  *	in header. Fragmented data remain shared. This is used when
2165  *	the caller wishes to modify only header of &sk_buff and needs
2166  *	private copy of the header to alter. Returns %NULL on failure
2167  *	or the pointer to the buffer on success.
2168  *	The returned buffer has a reference count of 1.
2169  */
2170 
2171 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2172 				   gfp_t gfp_mask, bool fclone)
2173 {
2174 	unsigned int size = skb_headlen(skb) + headroom;
2175 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2176 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2177 
2178 	if (!n)
2179 		goto out;
2180 
2181 	/* Set the data pointer */
2182 	skb_reserve(n, headroom);
2183 	/* Set the tail pointer and length */
2184 	skb_put(n, skb_headlen(skb));
2185 	/* Copy the bytes */
2186 	skb_copy_from_linear_data(skb, n->data, n->len);
2187 
2188 	n->truesize += skb->data_len;
2189 	n->data_len  = skb->data_len;
2190 	n->len	     = skb->len;
2191 
2192 	if (skb_shinfo(skb)->nr_frags) {
2193 		int i;
2194 
2195 		if (skb_orphan_frags(skb, gfp_mask) ||
2196 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2197 			kfree_skb(n);
2198 			n = NULL;
2199 			goto out;
2200 		}
2201 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2202 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2203 			skb_frag_ref(skb, i);
2204 		}
2205 		skb_shinfo(n)->nr_frags = i;
2206 	}
2207 
2208 	if (skb_has_frag_list(skb)) {
2209 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2210 		skb_clone_fraglist(n);
2211 	}
2212 
2213 	skb_copy_header(n, skb);
2214 out:
2215 	return n;
2216 }
2217 EXPORT_SYMBOL(__pskb_copy_fclone);
2218 
2219 /**
2220  *	pskb_expand_head - reallocate header of &sk_buff
2221  *	@skb: buffer to reallocate
2222  *	@nhead: room to add at head
2223  *	@ntail: room to add at tail
2224  *	@gfp_mask: allocation priority
2225  *
2226  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2227  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2228  *	reference count of 1. Returns zero in the case of success or error,
2229  *	if expansion failed. In the last case, &sk_buff is not changed.
2230  *
2231  *	All the pointers pointing into skb header may change and must be
2232  *	reloaded after call to this function.
2233  */
2234 
2235 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2236 		     gfp_t gfp_mask)
2237 {
2238 	unsigned int osize = skb_end_offset(skb);
2239 	unsigned int size = osize + nhead + ntail;
2240 	long off;
2241 	u8 *data;
2242 	int i;
2243 
2244 	BUG_ON(nhead < 0);
2245 
2246 	BUG_ON(skb_shared(skb));
2247 
2248 	skb_zcopy_downgrade_managed(skb);
2249 
2250 	if (skb_pfmemalloc(skb))
2251 		gfp_mask |= __GFP_MEMALLOC;
2252 
2253 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2254 	if (!data)
2255 		goto nodata;
2256 	size = SKB_WITH_OVERHEAD(size);
2257 
2258 	/* Copy only real data... and, alas, header. This should be
2259 	 * optimized for the cases when header is void.
2260 	 */
2261 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2262 
2263 	memcpy((struct skb_shared_info *)(data + size),
2264 	       skb_shinfo(skb),
2265 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2266 
2267 	/*
2268 	 * if shinfo is shared we must drop the old head gracefully, but if it
2269 	 * is not we can just drop the old head and let the existing refcount
2270 	 * be since all we did is relocate the values
2271 	 */
2272 	if (skb_cloned(skb)) {
2273 		if (skb_orphan_frags(skb, gfp_mask))
2274 			goto nofrags;
2275 		if (skb_zcopy(skb))
2276 			refcount_inc(&skb_uarg(skb)->refcnt);
2277 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2278 			skb_frag_ref(skb, i);
2279 
2280 		if (skb_has_frag_list(skb))
2281 			skb_clone_fraglist(skb);
2282 
2283 		skb_release_data(skb, SKB_CONSUMED);
2284 	} else {
2285 		skb_free_head(skb);
2286 	}
2287 	off = (data + nhead) - skb->head;
2288 
2289 	skb->head     = data;
2290 	skb->head_frag = 0;
2291 	skb->data    += off;
2292 
2293 	skb_set_end_offset(skb, size);
2294 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2295 	off           = nhead;
2296 #endif
2297 	skb->tail	      += off;
2298 	skb_headers_offset_update(skb, nhead);
2299 	skb->cloned   = 0;
2300 	skb->hdr_len  = 0;
2301 	skb->nohdr    = 0;
2302 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2303 
2304 	skb_metadata_clear(skb);
2305 
2306 	/* It is not generally safe to change skb->truesize.
2307 	 * For the moment, we really care of rx path, or
2308 	 * when skb is orphaned (not attached to a socket).
2309 	 */
2310 	if (!skb->sk || skb->destructor == sock_edemux)
2311 		skb->truesize += size - osize;
2312 
2313 	return 0;
2314 
2315 nofrags:
2316 	skb_kfree_head(data, size);
2317 nodata:
2318 	return -ENOMEM;
2319 }
2320 EXPORT_SYMBOL(pskb_expand_head);
2321 
2322 /* Make private copy of skb with writable head and some headroom */
2323 
2324 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2325 {
2326 	struct sk_buff *skb2;
2327 	int delta = headroom - skb_headroom(skb);
2328 
2329 	if (delta <= 0)
2330 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2331 	else {
2332 		skb2 = skb_clone(skb, GFP_ATOMIC);
2333 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2334 					     GFP_ATOMIC)) {
2335 			kfree_skb(skb2);
2336 			skb2 = NULL;
2337 		}
2338 	}
2339 	return skb2;
2340 }
2341 EXPORT_SYMBOL(skb_realloc_headroom);
2342 
2343 /* Note: We plan to rework this in linux-6.4 */
2344 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2345 {
2346 	unsigned int saved_end_offset, saved_truesize;
2347 	struct skb_shared_info *shinfo;
2348 	int res;
2349 
2350 	saved_end_offset = skb_end_offset(skb);
2351 	saved_truesize = skb->truesize;
2352 
2353 	res = pskb_expand_head(skb, 0, 0, pri);
2354 	if (res)
2355 		return res;
2356 
2357 	skb->truesize = saved_truesize;
2358 
2359 	if (likely(skb_end_offset(skb) == saved_end_offset))
2360 		return 0;
2361 
2362 	/* We can not change skb->end if the original or new value
2363 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2364 	 */
2365 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2366 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2367 		/* We think this path should not be taken.
2368 		 * Add a temporary trace to warn us just in case.
2369 		 */
2370 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2371 			    saved_end_offset, skb_end_offset(skb));
2372 		WARN_ON_ONCE(1);
2373 		return 0;
2374 	}
2375 
2376 	shinfo = skb_shinfo(skb);
2377 
2378 	/* We are about to change back skb->end,
2379 	 * we need to move skb_shinfo() to its new location.
2380 	 */
2381 	memmove(skb->head + saved_end_offset,
2382 		shinfo,
2383 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2384 
2385 	skb_set_end_offset(skb, saved_end_offset);
2386 
2387 	return 0;
2388 }
2389 
2390 /**
2391  *	skb_expand_head - reallocate header of &sk_buff
2392  *	@skb: buffer to reallocate
2393  *	@headroom: needed headroom
2394  *
2395  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2396  *	if possible; copies skb->sk to new skb as needed
2397  *	and frees original skb in case of failures.
2398  *
2399  *	It expect increased headroom and generates warning otherwise.
2400  */
2401 
2402 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2403 {
2404 	int delta = headroom - skb_headroom(skb);
2405 	int osize = skb_end_offset(skb);
2406 	struct sock *sk = skb->sk;
2407 
2408 	if (WARN_ONCE(delta <= 0,
2409 		      "%s is expecting an increase in the headroom", __func__))
2410 		return skb;
2411 
2412 	delta = SKB_DATA_ALIGN(delta);
2413 	/* pskb_expand_head() might crash, if skb is shared. */
2414 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2415 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2416 
2417 		if (unlikely(!nskb))
2418 			goto fail;
2419 
2420 		if (sk)
2421 			skb_set_owner_w(nskb, sk);
2422 		consume_skb(skb);
2423 		skb = nskb;
2424 	}
2425 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2426 		goto fail;
2427 
2428 	if (sk && is_skb_wmem(skb)) {
2429 		delta = skb_end_offset(skb) - osize;
2430 		refcount_add(delta, &sk->sk_wmem_alloc);
2431 		skb->truesize += delta;
2432 	}
2433 	return skb;
2434 
2435 fail:
2436 	kfree_skb(skb);
2437 	return NULL;
2438 }
2439 EXPORT_SYMBOL(skb_expand_head);
2440 
2441 /**
2442  *	skb_copy_expand	-	copy and expand sk_buff
2443  *	@skb: buffer to copy
2444  *	@newheadroom: new free bytes at head
2445  *	@newtailroom: new free bytes at tail
2446  *	@gfp_mask: allocation priority
2447  *
2448  *	Make a copy of both an &sk_buff and its data and while doing so
2449  *	allocate additional space.
2450  *
2451  *	This is used when the caller wishes to modify the data and needs a
2452  *	private copy of the data to alter as well as more space for new fields.
2453  *	Returns %NULL on failure or the pointer to the buffer
2454  *	on success. The returned buffer has a reference count of 1.
2455  *
2456  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2457  *	is called from an interrupt.
2458  */
2459 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2460 				int newheadroom, int newtailroom,
2461 				gfp_t gfp_mask)
2462 {
2463 	/*
2464 	 *	Allocate the copy buffer
2465 	 */
2466 	int head_copy_len, head_copy_off;
2467 	struct sk_buff *n;
2468 	int oldheadroom;
2469 
2470 	if (!skb_frags_readable(skb))
2471 		return NULL;
2472 
2473 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2474 		return NULL;
2475 
2476 	oldheadroom = skb_headroom(skb);
2477 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2478 			gfp_mask, skb_alloc_rx_flag(skb),
2479 			NUMA_NO_NODE);
2480 	if (!n)
2481 		return NULL;
2482 
2483 	skb_reserve(n, newheadroom);
2484 
2485 	/* Set the tail pointer and length */
2486 	skb_put(n, skb->len);
2487 
2488 	head_copy_len = oldheadroom;
2489 	head_copy_off = 0;
2490 	if (newheadroom <= head_copy_len)
2491 		head_copy_len = newheadroom;
2492 	else
2493 		head_copy_off = newheadroom - head_copy_len;
2494 
2495 	/* Copy the linear header and data. */
2496 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2497 			     skb->len + head_copy_len));
2498 
2499 	skb_copy_header(n, skb);
2500 
2501 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2502 
2503 	return n;
2504 }
2505 EXPORT_SYMBOL(skb_copy_expand);
2506 
2507 /**
2508  *	__skb_pad		-	zero pad the tail of an skb
2509  *	@skb: buffer to pad
2510  *	@pad: space to pad
2511  *	@free_on_error: free buffer on error
2512  *
2513  *	Ensure that a buffer is followed by a padding area that is zero
2514  *	filled. Used by network drivers which may DMA or transfer data
2515  *	beyond the buffer end onto the wire.
2516  *
2517  *	May return error in out of memory cases. The skb is freed on error
2518  *	if @free_on_error is true.
2519  */
2520 
2521 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2522 {
2523 	int err;
2524 	int ntail;
2525 
2526 	/* If the skbuff is non linear tailroom is always zero.. */
2527 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2528 		memset(skb->data+skb->len, 0, pad);
2529 		return 0;
2530 	}
2531 
2532 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2533 	if (likely(skb_cloned(skb) || ntail > 0)) {
2534 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2535 		if (unlikely(err))
2536 			goto free_skb;
2537 	}
2538 
2539 	/* FIXME: The use of this function with non-linear skb's really needs
2540 	 * to be audited.
2541 	 */
2542 	err = skb_linearize(skb);
2543 	if (unlikely(err))
2544 		goto free_skb;
2545 
2546 	memset(skb->data + skb->len, 0, pad);
2547 	return 0;
2548 
2549 free_skb:
2550 	if (free_on_error)
2551 		kfree_skb(skb);
2552 	return err;
2553 }
2554 EXPORT_SYMBOL(__skb_pad);
2555 
2556 /**
2557  *	pskb_put - add data to the tail of a potentially fragmented buffer
2558  *	@skb: start of the buffer to use
2559  *	@tail: tail fragment of the buffer to use
2560  *	@len: amount of data to add
2561  *
2562  *	This function extends the used data area of the potentially
2563  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2564  *	@skb itself. If this would exceed the total buffer size the kernel
2565  *	will panic. A pointer to the first byte of the extra data is
2566  *	returned.
2567  */
2568 
2569 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2570 {
2571 	if (tail != skb) {
2572 		skb->data_len += len;
2573 		skb->len += len;
2574 	}
2575 	return skb_put(tail, len);
2576 }
2577 EXPORT_SYMBOL_GPL(pskb_put);
2578 
2579 /**
2580  *	skb_put - add data to a buffer
2581  *	@skb: buffer to use
2582  *	@len: amount of data to add
2583  *
2584  *	This function extends the used data area of the buffer. If this would
2585  *	exceed the total buffer size the kernel will panic. A pointer to the
2586  *	first byte of the extra data is returned.
2587  */
2588 void *skb_put(struct sk_buff *skb, unsigned int len)
2589 {
2590 	void *tmp = skb_tail_pointer(skb);
2591 	SKB_LINEAR_ASSERT(skb);
2592 	skb->tail += len;
2593 	skb->len  += len;
2594 	if (unlikely(skb->tail > skb->end))
2595 		skb_over_panic(skb, len, __builtin_return_address(0));
2596 	return tmp;
2597 }
2598 EXPORT_SYMBOL(skb_put);
2599 
2600 /**
2601  *	skb_push - add data to the start of a buffer
2602  *	@skb: buffer to use
2603  *	@len: amount of data to add
2604  *
2605  *	This function extends the used data area of the buffer at the buffer
2606  *	start. If this would exceed the total buffer headroom the kernel will
2607  *	panic. A pointer to the first byte of the extra data is returned.
2608  */
2609 void *skb_push(struct sk_buff *skb, unsigned int len)
2610 {
2611 	skb->data -= len;
2612 	skb->len  += len;
2613 	if (unlikely(skb->data < skb->head))
2614 		skb_under_panic(skb, len, __builtin_return_address(0));
2615 	return skb->data;
2616 }
2617 EXPORT_SYMBOL(skb_push);
2618 
2619 /**
2620  *	skb_pull - remove data from the start of a buffer
2621  *	@skb: buffer to use
2622  *	@len: amount of data to remove
2623  *
2624  *	This function removes data from the start of a buffer, returning
2625  *	the memory to the headroom. A pointer to the next data in the buffer
2626  *	is returned. Once the data has been pulled future pushes will overwrite
2627  *	the old data.
2628  */
2629 void *skb_pull(struct sk_buff *skb, unsigned int len)
2630 {
2631 	return skb_pull_inline(skb, len);
2632 }
2633 EXPORT_SYMBOL(skb_pull);
2634 
2635 /**
2636  *	skb_pull_data - remove data from the start of a buffer returning its
2637  *	original position.
2638  *	@skb: buffer to use
2639  *	@len: amount of data to remove
2640  *
2641  *	This function removes data from the start of a buffer, returning
2642  *	the memory to the headroom. A pointer to the original data in the buffer
2643  *	is returned after checking if there is enough data to pull. Once the
2644  *	data has been pulled future pushes will overwrite the old data.
2645  */
2646 void *skb_pull_data(struct sk_buff *skb, size_t len)
2647 {
2648 	void *data = skb->data;
2649 
2650 	if (skb->len < len)
2651 		return NULL;
2652 
2653 	skb_pull(skb, len);
2654 
2655 	return data;
2656 }
2657 EXPORT_SYMBOL(skb_pull_data);
2658 
2659 /**
2660  *	skb_trim - remove end from a buffer
2661  *	@skb: buffer to alter
2662  *	@len: new length
2663  *
2664  *	Cut the length of a buffer down by removing data from the tail. If
2665  *	the buffer is already under the length specified it is not modified.
2666  *	The skb must be linear.
2667  */
2668 void skb_trim(struct sk_buff *skb, unsigned int len)
2669 {
2670 	if (skb->len > len)
2671 		__skb_trim(skb, len);
2672 }
2673 EXPORT_SYMBOL(skb_trim);
2674 
2675 /* Trims skb to length len. It can change skb pointers.
2676  */
2677 
2678 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2679 {
2680 	struct sk_buff **fragp;
2681 	struct sk_buff *frag;
2682 	int offset = skb_headlen(skb);
2683 	int nfrags = skb_shinfo(skb)->nr_frags;
2684 	int i;
2685 	int err;
2686 
2687 	if (skb_cloned(skb) &&
2688 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2689 		return err;
2690 
2691 	i = 0;
2692 	if (offset >= len)
2693 		goto drop_pages;
2694 
2695 	for (; i < nfrags; i++) {
2696 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2697 
2698 		if (end < len) {
2699 			offset = end;
2700 			continue;
2701 		}
2702 
2703 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2704 
2705 drop_pages:
2706 		skb_shinfo(skb)->nr_frags = i;
2707 
2708 		for (; i < nfrags; i++)
2709 			skb_frag_unref(skb, i);
2710 
2711 		if (skb_has_frag_list(skb))
2712 			skb_drop_fraglist(skb);
2713 		goto done;
2714 	}
2715 
2716 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2717 	     fragp = &frag->next) {
2718 		int end = offset + frag->len;
2719 
2720 		if (skb_shared(frag)) {
2721 			struct sk_buff *nfrag;
2722 
2723 			nfrag = skb_clone(frag, GFP_ATOMIC);
2724 			if (unlikely(!nfrag))
2725 				return -ENOMEM;
2726 
2727 			nfrag->next = frag->next;
2728 			consume_skb(frag);
2729 			frag = nfrag;
2730 			*fragp = frag;
2731 		}
2732 
2733 		if (end < len) {
2734 			offset = end;
2735 			continue;
2736 		}
2737 
2738 		if (end > len &&
2739 		    unlikely((err = pskb_trim(frag, len - offset))))
2740 			return err;
2741 
2742 		if (frag->next)
2743 			skb_drop_list(&frag->next);
2744 		break;
2745 	}
2746 
2747 done:
2748 	if (len > skb_headlen(skb)) {
2749 		skb->data_len -= skb->len - len;
2750 		skb->len       = len;
2751 	} else {
2752 		skb->len       = len;
2753 		skb->data_len  = 0;
2754 		skb_set_tail_pointer(skb, len);
2755 	}
2756 
2757 	if (!skb->sk || skb->destructor == sock_edemux)
2758 		skb_condense(skb);
2759 	return 0;
2760 }
2761 EXPORT_SYMBOL(___pskb_trim);
2762 
2763 /* Note : use pskb_trim_rcsum() instead of calling this directly
2764  */
2765 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2766 {
2767 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2768 		int delta = skb->len - len;
2769 
2770 		skb->csum = csum_block_sub(skb->csum,
2771 					   skb_checksum(skb, len, delta, 0),
2772 					   len);
2773 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2775 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2776 
2777 		if (offset + sizeof(__sum16) > hdlen)
2778 			return -EINVAL;
2779 	}
2780 	return __pskb_trim(skb, len);
2781 }
2782 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2783 
2784 /**
2785  *	__pskb_pull_tail - advance tail of skb header
2786  *	@skb: buffer to reallocate
2787  *	@delta: number of bytes to advance tail
2788  *
2789  *	The function makes a sense only on a fragmented &sk_buff,
2790  *	it expands header moving its tail forward and copying necessary
2791  *	data from fragmented part.
2792  *
2793  *	&sk_buff MUST have reference count of 1.
2794  *
2795  *	Returns %NULL (and &sk_buff does not change) if pull failed
2796  *	or value of new tail of skb in the case of success.
2797  *
2798  *	All the pointers pointing into skb header may change and must be
2799  *	reloaded after call to this function.
2800  */
2801 
2802 /* Moves tail of skb head forward, copying data from fragmented part,
2803  * when it is necessary.
2804  * 1. It may fail due to malloc failure.
2805  * 2. It may change skb pointers.
2806  *
2807  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2808  */
2809 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2810 {
2811 	/* If skb has not enough free space at tail, get new one
2812 	 * plus 128 bytes for future expansions. If we have enough
2813 	 * room at tail, reallocate without expansion only if skb is cloned.
2814 	 */
2815 	int i, k, eat = (skb->tail + delta) - skb->end;
2816 
2817 	if (!skb_frags_readable(skb))
2818 		return NULL;
2819 
2820 	if (eat > 0 || skb_cloned(skb)) {
2821 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2822 				     GFP_ATOMIC))
2823 			return NULL;
2824 	}
2825 
2826 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2827 			     skb_tail_pointer(skb), delta));
2828 
2829 	/* Optimization: no fragments, no reasons to preestimate
2830 	 * size of pulled pages. Superb.
2831 	 */
2832 	if (!skb_has_frag_list(skb))
2833 		goto pull_pages;
2834 
2835 	/* Estimate size of pulled pages. */
2836 	eat = delta;
2837 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2839 
2840 		if (size >= eat)
2841 			goto pull_pages;
2842 		eat -= size;
2843 	}
2844 
2845 	/* If we need update frag list, we are in troubles.
2846 	 * Certainly, it is possible to add an offset to skb data,
2847 	 * but taking into account that pulling is expected to
2848 	 * be very rare operation, it is worth to fight against
2849 	 * further bloating skb head and crucify ourselves here instead.
2850 	 * Pure masohism, indeed. 8)8)
2851 	 */
2852 	if (eat) {
2853 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2854 		struct sk_buff *clone = NULL;
2855 		struct sk_buff *insp = NULL;
2856 
2857 		do {
2858 			if (list->len <= eat) {
2859 				/* Eaten as whole. */
2860 				eat -= list->len;
2861 				list = list->next;
2862 				insp = list;
2863 			} else {
2864 				/* Eaten partially. */
2865 				if (skb_is_gso(skb) && !list->head_frag &&
2866 				    skb_headlen(list))
2867 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2868 
2869 				if (skb_shared(list)) {
2870 					/* Sucks! We need to fork list. :-( */
2871 					clone = skb_clone(list, GFP_ATOMIC);
2872 					if (!clone)
2873 						return NULL;
2874 					insp = list->next;
2875 					list = clone;
2876 				} else {
2877 					/* This may be pulled without
2878 					 * problems. */
2879 					insp = list;
2880 				}
2881 				if (!pskb_pull(list, eat)) {
2882 					kfree_skb(clone);
2883 					return NULL;
2884 				}
2885 				break;
2886 			}
2887 		} while (eat);
2888 
2889 		/* Free pulled out fragments. */
2890 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2891 			skb_shinfo(skb)->frag_list = list->next;
2892 			consume_skb(list);
2893 		}
2894 		/* And insert new clone at head. */
2895 		if (clone) {
2896 			clone->next = list;
2897 			skb_shinfo(skb)->frag_list = clone;
2898 		}
2899 	}
2900 	/* Success! Now we may commit changes to skb data. */
2901 
2902 pull_pages:
2903 	eat = delta;
2904 	k = 0;
2905 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2906 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2907 
2908 		if (size <= eat) {
2909 			skb_frag_unref(skb, i);
2910 			eat -= size;
2911 		} else {
2912 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2913 
2914 			*frag = skb_shinfo(skb)->frags[i];
2915 			if (eat) {
2916 				skb_frag_off_add(frag, eat);
2917 				skb_frag_size_sub(frag, eat);
2918 				if (!i)
2919 					goto end;
2920 				eat = 0;
2921 			}
2922 			k++;
2923 		}
2924 	}
2925 	skb_shinfo(skb)->nr_frags = k;
2926 
2927 end:
2928 	skb->tail     += delta;
2929 	skb->data_len -= delta;
2930 
2931 	if (!skb->data_len)
2932 		skb_zcopy_clear(skb, false);
2933 
2934 	return skb_tail_pointer(skb);
2935 }
2936 EXPORT_SYMBOL(__pskb_pull_tail);
2937 
2938 /**
2939  *	skb_copy_bits - copy bits from skb to kernel buffer
2940  *	@skb: source skb
2941  *	@offset: offset in source
2942  *	@to: destination buffer
2943  *	@len: number of bytes to copy
2944  *
2945  *	Copy the specified number of bytes from the source skb to the
2946  *	destination buffer.
2947  *
2948  *	CAUTION ! :
2949  *		If its prototype is ever changed,
2950  *		check arch/{*}/net/{*}.S files,
2951  *		since it is called from BPF assembly code.
2952  */
2953 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2954 {
2955 	int start = skb_headlen(skb);
2956 	struct sk_buff *frag_iter;
2957 	int i, copy;
2958 
2959 	if (offset > (int)skb->len - len)
2960 		goto fault;
2961 
2962 	/* Copy header. */
2963 	if ((copy = start - offset) > 0) {
2964 		if (copy > len)
2965 			copy = len;
2966 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2967 		if ((len -= copy) == 0)
2968 			return 0;
2969 		offset += copy;
2970 		to     += copy;
2971 	}
2972 
2973 	if (!skb_frags_readable(skb))
2974 		goto fault;
2975 
2976 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2977 		int end;
2978 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2979 
2980 		WARN_ON(start > offset + len);
2981 
2982 		end = start + skb_frag_size(f);
2983 		if ((copy = end - offset) > 0) {
2984 			u32 p_off, p_len, copied;
2985 			struct page *p;
2986 			u8 *vaddr;
2987 
2988 			if (copy > len)
2989 				copy = len;
2990 
2991 			skb_frag_foreach_page(f,
2992 					      skb_frag_off(f) + offset - start,
2993 					      copy, p, p_off, p_len, copied) {
2994 				vaddr = kmap_atomic(p);
2995 				memcpy(to + copied, vaddr + p_off, p_len);
2996 				kunmap_atomic(vaddr);
2997 			}
2998 
2999 			if ((len -= copy) == 0)
3000 				return 0;
3001 			offset += copy;
3002 			to     += copy;
3003 		}
3004 		start = end;
3005 	}
3006 
3007 	skb_walk_frags(skb, frag_iter) {
3008 		int end;
3009 
3010 		WARN_ON(start > offset + len);
3011 
3012 		end = start + frag_iter->len;
3013 		if ((copy = end - offset) > 0) {
3014 			if (copy > len)
3015 				copy = len;
3016 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3017 				goto fault;
3018 			if ((len -= copy) == 0)
3019 				return 0;
3020 			offset += copy;
3021 			to     += copy;
3022 		}
3023 		start = end;
3024 	}
3025 
3026 	if (!len)
3027 		return 0;
3028 
3029 fault:
3030 	return -EFAULT;
3031 }
3032 EXPORT_SYMBOL(skb_copy_bits);
3033 
3034 /*
3035  * Callback from splice_to_pipe(), if we need to release some pages
3036  * at the end of the spd in case we error'ed out in filling the pipe.
3037  */
3038 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3039 {
3040 	put_page(spd->pages[i]);
3041 }
3042 
3043 static struct page *linear_to_page(struct page *page, unsigned int *len,
3044 				   unsigned int *offset,
3045 				   struct sock *sk)
3046 {
3047 	struct page_frag *pfrag = sk_page_frag(sk);
3048 
3049 	if (!sk_page_frag_refill(sk, pfrag))
3050 		return NULL;
3051 
3052 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3053 
3054 	memcpy(page_address(pfrag->page) + pfrag->offset,
3055 	       page_address(page) + *offset, *len);
3056 	*offset = pfrag->offset;
3057 	pfrag->offset += *len;
3058 
3059 	return pfrag->page;
3060 }
3061 
3062 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3063 			     struct page *page,
3064 			     unsigned int offset)
3065 {
3066 	return	spd->nr_pages &&
3067 		spd->pages[spd->nr_pages - 1] == page &&
3068 		(spd->partial[spd->nr_pages - 1].offset +
3069 		 spd->partial[spd->nr_pages - 1].len == offset);
3070 }
3071 
3072 /*
3073  * Fill page/offset/length into spd, if it can hold more pages.
3074  */
3075 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3076 			  unsigned int *len, unsigned int offset, bool linear,
3077 			  struct sock *sk)
3078 {
3079 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3080 		return true;
3081 
3082 	if (linear) {
3083 		page = linear_to_page(page, len, &offset, sk);
3084 		if (!page)
3085 			return true;
3086 	}
3087 	if (spd_can_coalesce(spd, page, offset)) {
3088 		spd->partial[spd->nr_pages - 1].len += *len;
3089 		return false;
3090 	}
3091 	get_page(page);
3092 	spd->pages[spd->nr_pages] = page;
3093 	spd->partial[spd->nr_pages].len = *len;
3094 	spd->partial[spd->nr_pages].offset = offset;
3095 	spd->nr_pages++;
3096 
3097 	return false;
3098 }
3099 
3100 static bool __splice_segment(struct page *page, unsigned int poff,
3101 			     unsigned int plen, unsigned int *off,
3102 			     unsigned int *len,
3103 			     struct splice_pipe_desc *spd, bool linear,
3104 			     struct sock *sk)
3105 {
3106 	if (!*len)
3107 		return true;
3108 
3109 	/* skip this segment if already processed */
3110 	if (*off >= plen) {
3111 		*off -= plen;
3112 		return false;
3113 	}
3114 
3115 	/* ignore any bits we already processed */
3116 	poff += *off;
3117 	plen -= *off;
3118 	*off = 0;
3119 
3120 	do {
3121 		unsigned int flen = min(*len, plen);
3122 
3123 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3124 			return true;
3125 		poff += flen;
3126 		plen -= flen;
3127 		*len -= flen;
3128 		if (!*len)
3129 			return true;
3130 	} while (plen);
3131 
3132 	return false;
3133 }
3134 
3135 /*
3136  * Map linear and fragment data from the skb to spd. It reports true if the
3137  * pipe is full or if we already spliced the requested length.
3138  */
3139 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3140 			      unsigned int *offset, unsigned int *len,
3141 			      struct splice_pipe_desc *spd, struct sock *sk)
3142 {
3143 	struct sk_buff *iter;
3144 	int seg;
3145 
3146 	/* map the linear part :
3147 	 * If skb->head_frag is set, this 'linear' part is backed by a
3148 	 * fragment, and if the head is not shared with any clones then
3149 	 * we can avoid a copy since we own the head portion of this page.
3150 	 */
3151 	if (__splice_segment(virt_to_page(skb->data),
3152 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3153 			     skb_headlen(skb),
3154 			     offset, len, spd,
3155 			     skb_head_is_locked(skb),
3156 			     sk))
3157 		return true;
3158 
3159 	/*
3160 	 * then map the fragments
3161 	 */
3162 	if (!skb_frags_readable(skb))
3163 		return false;
3164 
3165 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3166 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3167 
3168 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3169 			return false;
3170 
3171 		if (__splice_segment(skb_frag_page(f),
3172 				     skb_frag_off(f), skb_frag_size(f),
3173 				     offset, len, spd, false, sk))
3174 			return true;
3175 	}
3176 
3177 	skb_walk_frags(skb, iter) {
3178 		if (*offset >= iter->len) {
3179 			*offset -= iter->len;
3180 			continue;
3181 		}
3182 		/* __skb_splice_bits() only fails if the output has no room
3183 		 * left, so no point in going over the frag_list for the error
3184 		 * case.
3185 		 */
3186 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3187 			return true;
3188 	}
3189 
3190 	return false;
3191 }
3192 
3193 /*
3194  * Map data from the skb to a pipe. Should handle both the linear part,
3195  * the fragments, and the frag list.
3196  */
3197 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3198 		    struct pipe_inode_info *pipe, unsigned int tlen,
3199 		    unsigned int flags)
3200 {
3201 	struct partial_page partial[MAX_SKB_FRAGS];
3202 	struct page *pages[MAX_SKB_FRAGS];
3203 	struct splice_pipe_desc spd = {
3204 		.pages = pages,
3205 		.partial = partial,
3206 		.nr_pages_max = MAX_SKB_FRAGS,
3207 		.ops = &nosteal_pipe_buf_ops,
3208 		.spd_release = sock_spd_release,
3209 	};
3210 	int ret = 0;
3211 
3212 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3213 
3214 	if (spd.nr_pages)
3215 		ret = splice_to_pipe(pipe, &spd);
3216 
3217 	return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(skb_splice_bits);
3220 
3221 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3222 {
3223 	struct socket *sock = sk->sk_socket;
3224 	size_t size = msg_data_left(msg);
3225 
3226 	if (!sock)
3227 		return -EINVAL;
3228 
3229 	if (!sock->ops->sendmsg_locked)
3230 		return sock_no_sendmsg_locked(sk, msg, size);
3231 
3232 	return sock->ops->sendmsg_locked(sk, msg, size);
3233 }
3234 
3235 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3236 {
3237 	struct socket *sock = sk->sk_socket;
3238 
3239 	if (!sock)
3240 		return -EINVAL;
3241 	return sock_sendmsg(sock, msg);
3242 }
3243 
3244 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3245 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3246 			   int len, sendmsg_func sendmsg, int flags)
3247 {
3248 	int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3249 	unsigned int orig_len = len;
3250 	struct sk_buff *head = skb;
3251 	unsigned short fragidx;
3252 	int slen, ret;
3253 
3254 do_frag_list:
3255 
3256 	/* Deal with head data */
3257 	while (offset < skb_headlen(skb) && len) {
3258 		struct kvec kv;
3259 		struct msghdr msg;
3260 
3261 		slen = min_t(int, len, skb_headlen(skb) - offset);
3262 		kv.iov_base = skb->data + offset;
3263 		kv.iov_len = slen;
3264 		memset(&msg, 0, sizeof(msg));
3265 		msg.msg_flags = MSG_DONTWAIT | flags;
3266 		if (slen < len)
3267 			msg.msg_flags |= more_hint;
3268 
3269 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3270 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3271 				      sendmsg_unlocked, sk, &msg);
3272 		if (ret <= 0)
3273 			goto error;
3274 
3275 		offset += ret;
3276 		len -= ret;
3277 	}
3278 
3279 	/* All the data was skb head? */
3280 	if (!len)
3281 		goto out;
3282 
3283 	/* Make offset relative to start of frags */
3284 	offset -= skb_headlen(skb);
3285 
3286 	/* Find where we are in frag list */
3287 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3288 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3289 
3290 		if (offset < skb_frag_size(frag))
3291 			break;
3292 
3293 		offset -= skb_frag_size(frag);
3294 	}
3295 
3296 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3297 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3298 
3299 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3300 
3301 		while (slen) {
3302 			struct bio_vec bvec;
3303 			struct msghdr msg = {
3304 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3305 					     flags,
3306 			};
3307 
3308 			if (slen < len)
3309 				msg.msg_flags |= more_hint;
3310 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3311 				      skb_frag_off(frag) + offset);
3312 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3313 				      slen);
3314 
3315 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3316 					      sendmsg_unlocked, sk, &msg);
3317 			if (ret <= 0)
3318 				goto error;
3319 
3320 			len -= ret;
3321 			offset += ret;
3322 			slen -= ret;
3323 		}
3324 
3325 		offset = 0;
3326 	}
3327 
3328 	if (len) {
3329 		/* Process any frag lists */
3330 
3331 		if (skb == head) {
3332 			if (skb_has_frag_list(skb)) {
3333 				skb = skb_shinfo(skb)->frag_list;
3334 				goto do_frag_list;
3335 			}
3336 		} else if (skb->next) {
3337 			skb = skb->next;
3338 			goto do_frag_list;
3339 		}
3340 	}
3341 
3342 out:
3343 	return orig_len - len;
3344 
3345 error:
3346 	return orig_len == len ? ret : orig_len - len;
3347 }
3348 
3349 /* Send skb data on a socket. Socket must be locked. */
3350 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3351 			 int len)
3352 {
3353 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3354 }
3355 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3356 
3357 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3358 				    int offset, int len, int flags)
3359 {
3360 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3361 }
3362 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3363 
3364 /* Send skb data on a socket. Socket must be unlocked. */
3365 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3366 {
3367 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3368 }
3369 
3370 /**
3371  *	skb_store_bits - store bits from kernel buffer to skb
3372  *	@skb: destination buffer
3373  *	@offset: offset in destination
3374  *	@from: source buffer
3375  *	@len: number of bytes to copy
3376  *
3377  *	Copy the specified number of bytes from the source buffer to the
3378  *	destination skb.  This function handles all the messy bits of
3379  *	traversing fragment lists and such.
3380  */
3381 
3382 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3383 {
3384 	int start = skb_headlen(skb);
3385 	struct sk_buff *frag_iter;
3386 	int i, copy;
3387 
3388 	if (offset > (int)skb->len - len)
3389 		goto fault;
3390 
3391 	if ((copy = start - offset) > 0) {
3392 		if (copy > len)
3393 			copy = len;
3394 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3395 		if ((len -= copy) == 0)
3396 			return 0;
3397 		offset += copy;
3398 		from += copy;
3399 	}
3400 
3401 	if (!skb_frags_readable(skb))
3402 		goto fault;
3403 
3404 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3405 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3406 		int end;
3407 
3408 		WARN_ON(start > offset + len);
3409 
3410 		end = start + skb_frag_size(frag);
3411 		if ((copy = end - offset) > 0) {
3412 			u32 p_off, p_len, copied;
3413 			struct page *p;
3414 			u8 *vaddr;
3415 
3416 			if (copy > len)
3417 				copy = len;
3418 
3419 			skb_frag_foreach_page(frag,
3420 					      skb_frag_off(frag) + offset - start,
3421 					      copy, p, p_off, p_len, copied) {
3422 				vaddr = kmap_atomic(p);
3423 				memcpy(vaddr + p_off, from + copied, p_len);
3424 				kunmap_atomic(vaddr);
3425 			}
3426 
3427 			if ((len -= copy) == 0)
3428 				return 0;
3429 			offset += copy;
3430 			from += copy;
3431 		}
3432 		start = end;
3433 	}
3434 
3435 	skb_walk_frags(skb, frag_iter) {
3436 		int end;
3437 
3438 		WARN_ON(start > offset + len);
3439 
3440 		end = start + frag_iter->len;
3441 		if ((copy = end - offset) > 0) {
3442 			if (copy > len)
3443 				copy = len;
3444 			if (skb_store_bits(frag_iter, offset - start,
3445 					   from, copy))
3446 				goto fault;
3447 			if ((len -= copy) == 0)
3448 				return 0;
3449 			offset += copy;
3450 			from += copy;
3451 		}
3452 		start = end;
3453 	}
3454 	if (!len)
3455 		return 0;
3456 
3457 fault:
3458 	return -EFAULT;
3459 }
3460 EXPORT_SYMBOL(skb_store_bits);
3461 
3462 /* Checksum skb data. */
3463 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3464 {
3465 	int start = skb_headlen(skb);
3466 	int i, copy = start - offset;
3467 	struct sk_buff *frag_iter;
3468 	int pos = 0;
3469 
3470 	/* Checksum header. */
3471 	if (copy > 0) {
3472 		if (copy > len)
3473 			copy = len;
3474 		csum = csum_partial(skb->data + offset, copy, csum);
3475 		if ((len -= copy) == 0)
3476 			return csum;
3477 		offset += copy;
3478 		pos	= copy;
3479 	}
3480 
3481 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3482 		return 0;
3483 
3484 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3485 		int end;
3486 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3487 
3488 		WARN_ON(start > offset + len);
3489 
3490 		end = start + skb_frag_size(frag);
3491 		if ((copy = end - offset) > 0) {
3492 			u32 p_off, p_len, copied;
3493 			struct page *p;
3494 			__wsum csum2;
3495 			u8 *vaddr;
3496 
3497 			if (copy > len)
3498 				copy = len;
3499 
3500 			skb_frag_foreach_page(frag,
3501 					      skb_frag_off(frag) + offset - start,
3502 					      copy, p, p_off, p_len, copied) {
3503 				vaddr = kmap_atomic(p);
3504 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3505 				kunmap_atomic(vaddr);
3506 				csum = csum_block_add(csum, csum2, pos);
3507 				pos += p_len;
3508 			}
3509 
3510 			if (!(len -= copy))
3511 				return csum;
3512 			offset += copy;
3513 		}
3514 		start = end;
3515 	}
3516 
3517 	skb_walk_frags(skb, frag_iter) {
3518 		int end;
3519 
3520 		WARN_ON(start > offset + len);
3521 
3522 		end = start + frag_iter->len;
3523 		if ((copy = end - offset) > 0) {
3524 			__wsum csum2;
3525 			if (copy > len)
3526 				copy = len;
3527 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3528 					     0);
3529 			csum = csum_block_add(csum, csum2, pos);
3530 			if ((len -= copy) == 0)
3531 				return csum;
3532 			offset += copy;
3533 			pos    += copy;
3534 		}
3535 		start = end;
3536 	}
3537 	BUG_ON(len);
3538 
3539 	return csum;
3540 }
3541 EXPORT_SYMBOL(skb_checksum);
3542 
3543 /* Both of above in one bottle. */
3544 
3545 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3546 				    u8 *to, int len)
3547 {
3548 	int start = skb_headlen(skb);
3549 	int i, copy = start - offset;
3550 	struct sk_buff *frag_iter;
3551 	int pos = 0;
3552 	__wsum csum = 0;
3553 
3554 	/* Copy header. */
3555 	if (copy > 0) {
3556 		if (copy > len)
3557 			copy = len;
3558 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3559 						 copy);
3560 		if ((len -= copy) == 0)
3561 			return csum;
3562 		offset += copy;
3563 		to     += copy;
3564 		pos	= copy;
3565 	}
3566 
3567 	if (!skb_frags_readable(skb))
3568 		return 0;
3569 
3570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3571 		int end;
3572 
3573 		WARN_ON(start > offset + len);
3574 
3575 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3576 		if ((copy = end - offset) > 0) {
3577 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3578 			u32 p_off, p_len, copied;
3579 			struct page *p;
3580 			__wsum csum2;
3581 			u8 *vaddr;
3582 
3583 			if (copy > len)
3584 				copy = len;
3585 
3586 			skb_frag_foreach_page(frag,
3587 					      skb_frag_off(frag) + offset - start,
3588 					      copy, p, p_off, p_len, copied) {
3589 				vaddr = kmap_atomic(p);
3590 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3591 								  to + copied,
3592 								  p_len);
3593 				kunmap_atomic(vaddr);
3594 				csum = csum_block_add(csum, csum2, pos);
3595 				pos += p_len;
3596 			}
3597 
3598 			if (!(len -= copy))
3599 				return csum;
3600 			offset += copy;
3601 			to     += copy;
3602 		}
3603 		start = end;
3604 	}
3605 
3606 	skb_walk_frags(skb, frag_iter) {
3607 		__wsum csum2;
3608 		int end;
3609 
3610 		WARN_ON(start > offset + len);
3611 
3612 		end = start + frag_iter->len;
3613 		if ((copy = end - offset) > 0) {
3614 			if (copy > len)
3615 				copy = len;
3616 			csum2 = skb_copy_and_csum_bits(frag_iter,
3617 						       offset - start,
3618 						       to, copy);
3619 			csum = csum_block_add(csum, csum2, pos);
3620 			if ((len -= copy) == 0)
3621 				return csum;
3622 			offset += copy;
3623 			to     += copy;
3624 			pos    += copy;
3625 		}
3626 		start = end;
3627 	}
3628 	BUG_ON(len);
3629 	return csum;
3630 }
3631 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3632 
3633 #ifdef CONFIG_NET_CRC32C
3634 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3635 {
3636 	int start = skb_headlen(skb);
3637 	int i, copy = start - offset;
3638 	struct sk_buff *frag_iter;
3639 
3640 	if (copy > 0) {
3641 		copy = min(copy, len);
3642 		crc = crc32c(crc, skb->data + offset, copy);
3643 		len -= copy;
3644 		if (len == 0)
3645 			return crc;
3646 		offset += copy;
3647 	}
3648 
3649 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3650 		return 0;
3651 
3652 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3653 		int end;
3654 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3655 
3656 		WARN_ON(start > offset + len);
3657 
3658 		end = start + skb_frag_size(frag);
3659 		copy = end - offset;
3660 		if (copy > 0) {
3661 			u32 p_off, p_len, copied;
3662 			struct page *p;
3663 			u8 *vaddr;
3664 
3665 			copy = min(copy, len);
3666 			skb_frag_foreach_page(frag,
3667 					      skb_frag_off(frag) + offset - start,
3668 					      copy, p, p_off, p_len, copied) {
3669 				vaddr = kmap_atomic(p);
3670 				crc = crc32c(crc, vaddr + p_off, p_len);
3671 				kunmap_atomic(vaddr);
3672 			}
3673 			len -= copy;
3674 			if (len == 0)
3675 				return crc;
3676 			offset += copy;
3677 		}
3678 		start = end;
3679 	}
3680 
3681 	skb_walk_frags(skb, frag_iter) {
3682 		int end;
3683 
3684 		WARN_ON(start > offset + len);
3685 
3686 		end = start + frag_iter->len;
3687 		copy = end - offset;
3688 		if (copy > 0) {
3689 			copy = min(copy, len);
3690 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3691 			len -= copy;
3692 			if (len == 0)
3693 				return crc;
3694 			offset += copy;
3695 		}
3696 		start = end;
3697 	}
3698 	BUG_ON(len);
3699 
3700 	return crc;
3701 }
3702 EXPORT_SYMBOL(skb_crc32c);
3703 #endif /* CONFIG_NET_CRC32C */
3704 
3705 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3706 {
3707 	__sum16 sum;
3708 
3709 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3710 	/* See comments in __skb_checksum_complete(). */
3711 	if (likely(!sum)) {
3712 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3713 		    !skb->csum_complete_sw)
3714 			netdev_rx_csum_fault(skb->dev, skb);
3715 	}
3716 	if (!skb_shared(skb))
3717 		skb->csum_valid = !sum;
3718 	return sum;
3719 }
3720 EXPORT_SYMBOL(__skb_checksum_complete_head);
3721 
3722 /* This function assumes skb->csum already holds pseudo header's checksum,
3723  * which has been changed from the hardware checksum, for example, by
3724  * __skb_checksum_validate_complete(). And, the original skb->csum must
3725  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3726  *
3727  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3728  * zero. The new checksum is stored back into skb->csum unless the skb is
3729  * shared.
3730  */
3731 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3732 {
3733 	__wsum csum;
3734 	__sum16 sum;
3735 
3736 	csum = skb_checksum(skb, 0, skb->len, 0);
3737 
3738 	sum = csum_fold(csum_add(skb->csum, csum));
3739 	/* This check is inverted, because we already knew the hardware
3740 	 * checksum is invalid before calling this function. So, if the
3741 	 * re-computed checksum is valid instead, then we have a mismatch
3742 	 * between the original skb->csum and skb_checksum(). This means either
3743 	 * the original hardware checksum is incorrect or we screw up skb->csum
3744 	 * when moving skb->data around.
3745 	 */
3746 	if (likely(!sum)) {
3747 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3748 		    !skb->csum_complete_sw)
3749 			netdev_rx_csum_fault(skb->dev, skb);
3750 	}
3751 
3752 	if (!skb_shared(skb)) {
3753 		/* Save full packet checksum */
3754 		skb->csum = csum;
3755 		skb->ip_summed = CHECKSUM_COMPLETE;
3756 		skb->csum_complete_sw = 1;
3757 		skb->csum_valid = !sum;
3758 	}
3759 
3760 	return sum;
3761 }
3762 EXPORT_SYMBOL(__skb_checksum_complete);
3763 
3764  /**
3765  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3766  *	@from: source buffer
3767  *
3768  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3769  *	into skb_zerocopy().
3770  */
3771 unsigned int
3772 skb_zerocopy_headlen(const struct sk_buff *from)
3773 {
3774 	unsigned int hlen = 0;
3775 
3776 	if (!from->head_frag ||
3777 	    skb_headlen(from) < L1_CACHE_BYTES ||
3778 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3779 		hlen = skb_headlen(from);
3780 		if (!hlen)
3781 			hlen = from->len;
3782 	}
3783 
3784 	if (skb_has_frag_list(from))
3785 		hlen = from->len;
3786 
3787 	return hlen;
3788 }
3789 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3790 
3791 /**
3792  *	skb_zerocopy - Zero copy skb to skb
3793  *	@to: destination buffer
3794  *	@from: source buffer
3795  *	@len: number of bytes to copy from source buffer
3796  *	@hlen: size of linear headroom in destination buffer
3797  *
3798  *	Copies up to `len` bytes from `from` to `to` by creating references
3799  *	to the frags in the source buffer.
3800  *
3801  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3802  *	headroom in the `to` buffer.
3803  *
3804  *	Return value:
3805  *	0: everything is OK
3806  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3807  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3808  */
3809 int
3810 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3811 {
3812 	int i, j = 0;
3813 	int plen = 0; /* length of skb->head fragment */
3814 	int ret;
3815 	struct page *page;
3816 	unsigned int offset;
3817 
3818 	BUG_ON(!from->head_frag && !hlen);
3819 
3820 	/* dont bother with small payloads */
3821 	if (len <= skb_tailroom(to))
3822 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3823 
3824 	if (hlen) {
3825 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3826 		if (unlikely(ret))
3827 			return ret;
3828 		len -= hlen;
3829 	} else {
3830 		plen = min_t(int, skb_headlen(from), len);
3831 		if (plen) {
3832 			page = virt_to_head_page(from->head);
3833 			offset = from->data - (unsigned char *)page_address(page);
3834 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3835 					       offset, plen);
3836 			get_page(page);
3837 			j = 1;
3838 			len -= plen;
3839 		}
3840 	}
3841 
3842 	skb_len_add(to, len + plen);
3843 
3844 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3845 		skb_tx_error(from);
3846 		return -ENOMEM;
3847 	}
3848 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3849 
3850 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3851 		int size;
3852 
3853 		if (!len)
3854 			break;
3855 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3856 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3857 					len);
3858 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3859 		len -= size;
3860 		skb_frag_ref(to, j);
3861 		j++;
3862 	}
3863 	skb_shinfo(to)->nr_frags = j;
3864 
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL_GPL(skb_zerocopy);
3868 
3869 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3870 {
3871 	__wsum csum;
3872 	long csstart;
3873 
3874 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3875 		csstart = skb_checksum_start_offset(skb);
3876 	else
3877 		csstart = skb_headlen(skb);
3878 
3879 	BUG_ON(csstart > skb_headlen(skb));
3880 
3881 	skb_copy_from_linear_data(skb, to, csstart);
3882 
3883 	csum = 0;
3884 	if (csstart != skb->len)
3885 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3886 					      skb->len - csstart);
3887 
3888 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3889 		long csstuff = csstart + skb->csum_offset;
3890 
3891 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3892 	}
3893 }
3894 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3895 
3896 /**
3897  *	skb_dequeue - remove from the head of the queue
3898  *	@list: list to dequeue from
3899  *
3900  *	Remove the head of the list. The list lock is taken so the function
3901  *	may be used safely with other locking list functions. The head item is
3902  *	returned or %NULL if the list is empty.
3903  */
3904 
3905 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3906 {
3907 	unsigned long flags;
3908 	struct sk_buff *result;
3909 
3910 	spin_lock_irqsave(&list->lock, flags);
3911 	result = __skb_dequeue(list);
3912 	spin_unlock_irqrestore(&list->lock, flags);
3913 	return result;
3914 }
3915 EXPORT_SYMBOL(skb_dequeue);
3916 
3917 /**
3918  *	skb_dequeue_tail - remove from the tail of the queue
3919  *	@list: list to dequeue from
3920  *
3921  *	Remove the tail of the list. The list lock is taken so the function
3922  *	may be used safely with other locking list functions. The tail item is
3923  *	returned or %NULL if the list is empty.
3924  */
3925 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3926 {
3927 	unsigned long flags;
3928 	struct sk_buff *result;
3929 
3930 	spin_lock_irqsave(&list->lock, flags);
3931 	result = __skb_dequeue_tail(list);
3932 	spin_unlock_irqrestore(&list->lock, flags);
3933 	return result;
3934 }
3935 EXPORT_SYMBOL(skb_dequeue_tail);
3936 
3937 /**
3938  *	skb_queue_purge_reason - empty a list
3939  *	@list: list to empty
3940  *	@reason: drop reason
3941  *
3942  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3943  *	the list and one reference dropped. This function takes the list
3944  *	lock and is atomic with respect to other list locking functions.
3945  */
3946 void skb_queue_purge_reason(struct sk_buff_head *list,
3947 			    enum skb_drop_reason reason)
3948 {
3949 	struct sk_buff_head tmp;
3950 	unsigned long flags;
3951 
3952 	if (skb_queue_empty_lockless(list))
3953 		return;
3954 
3955 	__skb_queue_head_init(&tmp);
3956 
3957 	spin_lock_irqsave(&list->lock, flags);
3958 	skb_queue_splice_init(list, &tmp);
3959 	spin_unlock_irqrestore(&list->lock, flags);
3960 
3961 	__skb_queue_purge_reason(&tmp, reason);
3962 }
3963 EXPORT_SYMBOL(skb_queue_purge_reason);
3964 
3965 /**
3966  *	skb_rbtree_purge - empty a skb rbtree
3967  *	@root: root of the rbtree to empty
3968  *	Return value: the sum of truesizes of all purged skbs.
3969  *
3970  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3971  *	the list and one reference dropped. This function does not take
3972  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3973  *	out-of-order queue is protected by the socket lock).
3974  */
3975 unsigned int skb_rbtree_purge(struct rb_root *root)
3976 {
3977 	struct rb_node *p = rb_first(root);
3978 	unsigned int sum = 0;
3979 
3980 	while (p) {
3981 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3982 
3983 		p = rb_next(p);
3984 		rb_erase(&skb->rbnode, root);
3985 		sum += skb->truesize;
3986 		kfree_skb(skb);
3987 	}
3988 	return sum;
3989 }
3990 
3991 void skb_errqueue_purge(struct sk_buff_head *list)
3992 {
3993 	struct sk_buff *skb, *next;
3994 	struct sk_buff_head kill;
3995 	unsigned long flags;
3996 
3997 	__skb_queue_head_init(&kill);
3998 
3999 	spin_lock_irqsave(&list->lock, flags);
4000 	skb_queue_walk_safe(list, skb, next) {
4001 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
4002 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
4003 			continue;
4004 		__skb_unlink(skb, list);
4005 		__skb_queue_tail(&kill, skb);
4006 	}
4007 	spin_unlock_irqrestore(&list->lock, flags);
4008 	__skb_queue_purge(&kill);
4009 }
4010 EXPORT_SYMBOL(skb_errqueue_purge);
4011 
4012 /**
4013  *	skb_queue_head - queue a buffer at the list head
4014  *	@list: list to use
4015  *	@newsk: buffer to queue
4016  *
4017  *	Queue a buffer at the start of the list. This function takes the
4018  *	list lock and can be used safely with other locking &sk_buff functions
4019  *	safely.
4020  *
4021  *	A buffer cannot be placed on two lists at the same time.
4022  */
4023 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4024 {
4025 	unsigned long flags;
4026 
4027 	spin_lock_irqsave(&list->lock, flags);
4028 	__skb_queue_head(list, newsk);
4029 	spin_unlock_irqrestore(&list->lock, flags);
4030 }
4031 EXPORT_SYMBOL(skb_queue_head);
4032 
4033 /**
4034  *	skb_queue_tail - queue a buffer at the list tail
4035  *	@list: list to use
4036  *	@newsk: buffer to queue
4037  *
4038  *	Queue a buffer at the tail of the list. This function takes the
4039  *	list lock and can be used safely with other locking &sk_buff functions
4040  *	safely.
4041  *
4042  *	A buffer cannot be placed on two lists at the same time.
4043  */
4044 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4045 {
4046 	unsigned long flags;
4047 
4048 	spin_lock_irqsave(&list->lock, flags);
4049 	__skb_queue_tail(list, newsk);
4050 	spin_unlock_irqrestore(&list->lock, flags);
4051 }
4052 EXPORT_SYMBOL(skb_queue_tail);
4053 
4054 /**
4055  *	skb_unlink	-	remove a buffer from a list
4056  *	@skb: buffer to remove
4057  *	@list: list to use
4058  *
4059  *	Remove a packet from a list. The list locks are taken and this
4060  *	function is atomic with respect to other list locked calls
4061  *
4062  *	You must know what list the SKB is on.
4063  */
4064 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4065 {
4066 	unsigned long flags;
4067 
4068 	spin_lock_irqsave(&list->lock, flags);
4069 	__skb_unlink(skb, list);
4070 	spin_unlock_irqrestore(&list->lock, flags);
4071 }
4072 EXPORT_SYMBOL(skb_unlink);
4073 
4074 /**
4075  *	skb_append	-	append a buffer
4076  *	@old: buffer to insert after
4077  *	@newsk: buffer to insert
4078  *	@list: list to use
4079  *
4080  *	Place a packet after a given packet in a list. The list locks are taken
4081  *	and this function is atomic with respect to other list locked calls.
4082  *	A buffer cannot be placed on two lists at the same time.
4083  */
4084 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4085 {
4086 	unsigned long flags;
4087 
4088 	spin_lock_irqsave(&list->lock, flags);
4089 	__skb_queue_after(list, old, newsk);
4090 	spin_unlock_irqrestore(&list->lock, flags);
4091 }
4092 EXPORT_SYMBOL(skb_append);
4093 
4094 static inline void skb_split_inside_header(struct sk_buff *skb,
4095 					   struct sk_buff* skb1,
4096 					   const u32 len, const int pos)
4097 {
4098 	int i;
4099 
4100 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4101 					 pos - len);
4102 	/* And move data appendix as is. */
4103 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4104 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4105 
4106 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4107 	skb1->unreadable	   = skb->unreadable;
4108 	skb_shinfo(skb)->nr_frags  = 0;
4109 	skb1->data_len		   = skb->data_len;
4110 	skb1->len		   += skb1->data_len;
4111 	skb->data_len		   = 0;
4112 	skb->len		   = len;
4113 	skb_set_tail_pointer(skb, len);
4114 }
4115 
4116 static inline void skb_split_no_header(struct sk_buff *skb,
4117 				       struct sk_buff* skb1,
4118 				       const u32 len, int pos)
4119 {
4120 	int i, k = 0;
4121 	const int nfrags = skb_shinfo(skb)->nr_frags;
4122 
4123 	skb_shinfo(skb)->nr_frags = 0;
4124 	skb1->len		  = skb1->data_len = skb->len - len;
4125 	skb->len		  = len;
4126 	skb->data_len		  = len - pos;
4127 
4128 	for (i = 0; i < nfrags; i++) {
4129 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4130 
4131 		if (pos + size > len) {
4132 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4133 
4134 			if (pos < len) {
4135 				/* Split frag.
4136 				 * We have two variants in this case:
4137 				 * 1. Move all the frag to the second
4138 				 *    part, if it is possible. F.e.
4139 				 *    this approach is mandatory for TUX,
4140 				 *    where splitting is expensive.
4141 				 * 2. Split is accurately. We make this.
4142 				 */
4143 				skb_frag_ref(skb, i);
4144 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4145 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4146 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4147 				skb_shinfo(skb)->nr_frags++;
4148 			}
4149 			k++;
4150 		} else
4151 			skb_shinfo(skb)->nr_frags++;
4152 		pos += size;
4153 	}
4154 	skb_shinfo(skb1)->nr_frags = k;
4155 
4156 	skb1->unreadable = skb->unreadable;
4157 }
4158 
4159 /**
4160  * skb_split - Split fragmented skb to two parts at length len.
4161  * @skb: the buffer to split
4162  * @skb1: the buffer to receive the second part
4163  * @len: new length for skb
4164  */
4165 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4166 {
4167 	int pos = skb_headlen(skb);
4168 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4169 
4170 	skb_zcopy_downgrade_managed(skb);
4171 
4172 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4173 	skb_zerocopy_clone(skb1, skb, 0);
4174 	if (len < pos)	/* Split line is inside header. */
4175 		skb_split_inside_header(skb, skb1, len, pos);
4176 	else		/* Second chunk has no header, nothing to copy. */
4177 		skb_split_no_header(skb, skb1, len, pos);
4178 }
4179 EXPORT_SYMBOL(skb_split);
4180 
4181 /* Shifting from/to a cloned skb is a no-go.
4182  *
4183  * Caller cannot keep skb_shinfo related pointers past calling here!
4184  */
4185 static int skb_prepare_for_shift(struct sk_buff *skb)
4186 {
4187 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4188 }
4189 
4190 /**
4191  * skb_shift - Shifts paged data partially from skb to another
4192  * @tgt: buffer into which tail data gets added
4193  * @skb: buffer from which the paged data comes from
4194  * @shiftlen: shift up to this many bytes
4195  *
4196  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4197  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4198  * It's up to caller to free skb if everything was shifted.
4199  *
4200  * If @tgt runs out of frags, the whole operation is aborted.
4201  *
4202  * Skb cannot include anything else but paged data while tgt is allowed
4203  * to have non-paged data as well.
4204  *
4205  * TODO: full sized shift could be optimized but that would need
4206  * specialized skb free'er to handle frags without up-to-date nr_frags.
4207  */
4208 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4209 {
4210 	int from, to, merge, todo;
4211 	skb_frag_t *fragfrom, *fragto;
4212 
4213 	BUG_ON(shiftlen > skb->len);
4214 
4215 	if (skb_headlen(skb))
4216 		return 0;
4217 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4218 		return 0;
4219 
4220 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4221 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4222 
4223 	todo = shiftlen;
4224 	from = 0;
4225 	to = skb_shinfo(tgt)->nr_frags;
4226 	fragfrom = &skb_shinfo(skb)->frags[from];
4227 
4228 	/* Actual merge is delayed until the point when we know we can
4229 	 * commit all, so that we don't have to undo partial changes
4230 	 */
4231 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4232 			      skb_frag_off(fragfrom))) {
4233 		merge = -1;
4234 	} else {
4235 		merge = to - 1;
4236 
4237 		todo -= skb_frag_size(fragfrom);
4238 		if (todo < 0) {
4239 			if (skb_prepare_for_shift(skb) ||
4240 			    skb_prepare_for_shift(tgt))
4241 				return 0;
4242 
4243 			/* All previous frag pointers might be stale! */
4244 			fragfrom = &skb_shinfo(skb)->frags[from];
4245 			fragto = &skb_shinfo(tgt)->frags[merge];
4246 
4247 			skb_frag_size_add(fragto, shiftlen);
4248 			skb_frag_size_sub(fragfrom, shiftlen);
4249 			skb_frag_off_add(fragfrom, shiftlen);
4250 
4251 			goto onlymerged;
4252 		}
4253 
4254 		from++;
4255 	}
4256 
4257 	/* Skip full, not-fitting skb to avoid expensive operations */
4258 	if ((shiftlen == skb->len) &&
4259 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4260 		return 0;
4261 
4262 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4263 		return 0;
4264 
4265 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4266 		if (to == MAX_SKB_FRAGS)
4267 			return 0;
4268 
4269 		fragfrom = &skb_shinfo(skb)->frags[from];
4270 		fragto = &skb_shinfo(tgt)->frags[to];
4271 
4272 		if (todo >= skb_frag_size(fragfrom)) {
4273 			*fragto = *fragfrom;
4274 			todo -= skb_frag_size(fragfrom);
4275 			from++;
4276 			to++;
4277 
4278 		} else {
4279 			__skb_frag_ref(fragfrom);
4280 			skb_frag_page_copy(fragto, fragfrom);
4281 			skb_frag_off_copy(fragto, fragfrom);
4282 			skb_frag_size_set(fragto, todo);
4283 
4284 			skb_frag_off_add(fragfrom, todo);
4285 			skb_frag_size_sub(fragfrom, todo);
4286 			todo = 0;
4287 
4288 			to++;
4289 			break;
4290 		}
4291 	}
4292 
4293 	/* Ready to "commit" this state change to tgt */
4294 	skb_shinfo(tgt)->nr_frags = to;
4295 
4296 	if (merge >= 0) {
4297 		fragfrom = &skb_shinfo(skb)->frags[0];
4298 		fragto = &skb_shinfo(tgt)->frags[merge];
4299 
4300 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4301 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4302 	}
4303 
4304 	/* Reposition in the original skb */
4305 	to = 0;
4306 	while (from < skb_shinfo(skb)->nr_frags)
4307 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4308 	skb_shinfo(skb)->nr_frags = to;
4309 
4310 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4311 
4312 onlymerged:
4313 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4314 	 * the other hand might need it if it needs to be resent
4315 	 */
4316 	tgt->ip_summed = CHECKSUM_PARTIAL;
4317 	skb->ip_summed = CHECKSUM_PARTIAL;
4318 
4319 	skb_len_add(skb, -shiftlen);
4320 	skb_len_add(tgt, shiftlen);
4321 
4322 	return shiftlen;
4323 }
4324 
4325 /**
4326  * skb_prepare_seq_read - Prepare a sequential read of skb data
4327  * @skb: the buffer to read
4328  * @from: lower offset of data to be read
4329  * @to: upper offset of data to be read
4330  * @st: state variable
4331  *
4332  * Initializes the specified state variable. Must be called before
4333  * invoking skb_seq_read() for the first time.
4334  */
4335 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4336 			  unsigned int to, struct skb_seq_state *st)
4337 {
4338 	st->lower_offset = from;
4339 	st->upper_offset = to;
4340 	st->root_skb = st->cur_skb = skb;
4341 	st->frag_idx = st->stepped_offset = 0;
4342 	st->frag_data = NULL;
4343 	st->frag_off = 0;
4344 }
4345 EXPORT_SYMBOL(skb_prepare_seq_read);
4346 
4347 /**
4348  * skb_seq_read - Sequentially read skb data
4349  * @consumed: number of bytes consumed by the caller so far
4350  * @data: destination pointer for data to be returned
4351  * @st: state variable
4352  *
4353  * Reads a block of skb data at @consumed relative to the
4354  * lower offset specified to skb_prepare_seq_read(). Assigns
4355  * the head of the data block to @data and returns the length
4356  * of the block or 0 if the end of the skb data or the upper
4357  * offset has been reached.
4358  *
4359  * The caller is not required to consume all of the data
4360  * returned, i.e. @consumed is typically set to the number
4361  * of bytes already consumed and the next call to
4362  * skb_seq_read() will return the remaining part of the block.
4363  *
4364  * Note 1: The size of each block of data returned can be arbitrary,
4365  *       this limitation is the cost for zerocopy sequential
4366  *       reads of potentially non linear data.
4367  *
4368  * Note 2: Fragment lists within fragments are not implemented
4369  *       at the moment, state->root_skb could be replaced with
4370  *       a stack for this purpose.
4371  */
4372 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4373 			  struct skb_seq_state *st)
4374 {
4375 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4376 	skb_frag_t *frag;
4377 
4378 	if (unlikely(abs_offset >= st->upper_offset)) {
4379 		if (st->frag_data) {
4380 			kunmap_atomic(st->frag_data);
4381 			st->frag_data = NULL;
4382 		}
4383 		return 0;
4384 	}
4385 
4386 next_skb:
4387 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4388 
4389 	if (abs_offset < block_limit && !st->frag_data) {
4390 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4391 		return block_limit - abs_offset;
4392 	}
4393 
4394 	if (!skb_frags_readable(st->cur_skb))
4395 		return 0;
4396 
4397 	if (st->frag_idx == 0 && !st->frag_data)
4398 		st->stepped_offset += skb_headlen(st->cur_skb);
4399 
4400 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4401 		unsigned int pg_idx, pg_off, pg_sz;
4402 
4403 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4404 
4405 		pg_idx = 0;
4406 		pg_off = skb_frag_off(frag);
4407 		pg_sz = skb_frag_size(frag);
4408 
4409 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4410 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4411 			pg_off = offset_in_page(pg_off + st->frag_off);
4412 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4413 						    PAGE_SIZE - pg_off);
4414 		}
4415 
4416 		block_limit = pg_sz + st->stepped_offset;
4417 		if (abs_offset < block_limit) {
4418 			if (!st->frag_data)
4419 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4420 
4421 			*data = (u8 *)st->frag_data + pg_off +
4422 				(abs_offset - st->stepped_offset);
4423 
4424 			return block_limit - abs_offset;
4425 		}
4426 
4427 		if (st->frag_data) {
4428 			kunmap_atomic(st->frag_data);
4429 			st->frag_data = NULL;
4430 		}
4431 
4432 		st->stepped_offset += pg_sz;
4433 		st->frag_off += pg_sz;
4434 		if (st->frag_off == skb_frag_size(frag)) {
4435 			st->frag_off = 0;
4436 			st->frag_idx++;
4437 		}
4438 	}
4439 
4440 	if (st->frag_data) {
4441 		kunmap_atomic(st->frag_data);
4442 		st->frag_data = NULL;
4443 	}
4444 
4445 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4446 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4447 		st->frag_idx = 0;
4448 		goto next_skb;
4449 	} else if (st->cur_skb->next) {
4450 		st->cur_skb = st->cur_skb->next;
4451 		st->frag_idx = 0;
4452 		goto next_skb;
4453 	}
4454 
4455 	return 0;
4456 }
4457 EXPORT_SYMBOL(skb_seq_read);
4458 
4459 /**
4460  * skb_abort_seq_read - Abort a sequential read of skb data
4461  * @st: state variable
4462  *
4463  * Must be called if skb_seq_read() was not called until it
4464  * returned 0.
4465  */
4466 void skb_abort_seq_read(struct skb_seq_state *st)
4467 {
4468 	if (st->frag_data)
4469 		kunmap_atomic(st->frag_data);
4470 }
4471 EXPORT_SYMBOL(skb_abort_seq_read);
4472 
4473 /**
4474  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4475  * @st: source skb_seq_state
4476  * @offset: offset in source
4477  * @to: destination buffer
4478  * @len: number of bytes to copy
4479  *
4480  * Copy @len bytes from @offset bytes into the source @st to the destination
4481  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4482  * call to this function. If offset needs to decrease from the previous use `st`
4483  * should be reset first.
4484  *
4485  * Return: 0 on success or -EINVAL if the copy ended early
4486  */
4487 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4488 {
4489 	const u8 *data;
4490 	u32 sqlen;
4491 
4492 	for (;;) {
4493 		sqlen = skb_seq_read(offset, &data, st);
4494 		if (sqlen == 0)
4495 			return -EINVAL;
4496 		if (sqlen >= len) {
4497 			memcpy(to, data, len);
4498 			return 0;
4499 		}
4500 		memcpy(to, data, sqlen);
4501 		to += sqlen;
4502 		offset += sqlen;
4503 		len -= sqlen;
4504 	}
4505 }
4506 EXPORT_SYMBOL(skb_copy_seq_read);
4507 
4508 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4509 
4510 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4511 					  struct ts_config *conf,
4512 					  struct ts_state *state)
4513 {
4514 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4515 }
4516 
4517 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4518 {
4519 	skb_abort_seq_read(TS_SKB_CB(state));
4520 }
4521 
4522 /**
4523  * skb_find_text - Find a text pattern in skb data
4524  * @skb: the buffer to look in
4525  * @from: search offset
4526  * @to: search limit
4527  * @config: textsearch configuration
4528  *
4529  * Finds a pattern in the skb data according to the specified
4530  * textsearch configuration. Use textsearch_next() to retrieve
4531  * subsequent occurrences of the pattern. Returns the offset
4532  * to the first occurrence or UINT_MAX if no match was found.
4533  */
4534 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4535 			   unsigned int to, struct ts_config *config)
4536 {
4537 	unsigned int patlen = config->ops->get_pattern_len(config);
4538 	struct ts_state state;
4539 	unsigned int ret;
4540 
4541 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4542 
4543 	config->get_next_block = skb_ts_get_next_block;
4544 	config->finish = skb_ts_finish;
4545 
4546 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4547 
4548 	ret = textsearch_find(config, &state);
4549 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4550 }
4551 EXPORT_SYMBOL(skb_find_text);
4552 
4553 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4554 			 int offset, size_t size, size_t max_frags)
4555 {
4556 	int i = skb_shinfo(skb)->nr_frags;
4557 
4558 	if (skb_can_coalesce(skb, i, page, offset)) {
4559 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4560 	} else if (i < max_frags) {
4561 		skb_zcopy_downgrade_managed(skb);
4562 		get_page(page);
4563 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4564 	} else {
4565 		return -EMSGSIZE;
4566 	}
4567 
4568 	return 0;
4569 }
4570 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4571 
4572 /**
4573  *	skb_pull_rcsum - pull skb and update receive checksum
4574  *	@skb: buffer to update
4575  *	@len: length of data pulled
4576  *
4577  *	This function performs an skb_pull on the packet and updates
4578  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4579  *	receive path processing instead of skb_pull unless you know
4580  *	that the checksum difference is zero (e.g., a valid IP header)
4581  *	or you are setting ip_summed to CHECKSUM_NONE.
4582  */
4583 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4584 {
4585 	unsigned char *data = skb->data;
4586 
4587 	BUG_ON(len > skb->len);
4588 	__skb_pull(skb, len);
4589 	skb_postpull_rcsum(skb, data, len);
4590 	return skb->data;
4591 }
4592 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4593 
4594 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4595 {
4596 	skb_frag_t head_frag;
4597 	struct page *page;
4598 
4599 	page = virt_to_head_page(frag_skb->head);
4600 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4601 				(unsigned char *)page_address(page),
4602 				skb_headlen(frag_skb));
4603 	return head_frag;
4604 }
4605 
4606 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4607 				 netdev_features_t features,
4608 				 unsigned int offset)
4609 {
4610 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4611 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4612 	unsigned int delta_truesize = 0;
4613 	unsigned int delta_len = 0;
4614 	struct sk_buff *tail = NULL;
4615 	struct sk_buff *nskb, *tmp;
4616 	int len_diff, err;
4617 
4618 	skb_push(skb, -skb_network_offset(skb) + offset);
4619 
4620 	/* Ensure the head is writeable before touching the shared info */
4621 	err = skb_unclone(skb, GFP_ATOMIC);
4622 	if (err)
4623 		goto err_linearize;
4624 
4625 	skb_shinfo(skb)->frag_list = NULL;
4626 
4627 	while (list_skb) {
4628 		nskb = list_skb;
4629 		list_skb = list_skb->next;
4630 
4631 		err = 0;
4632 		delta_truesize += nskb->truesize;
4633 		if (skb_shared(nskb)) {
4634 			tmp = skb_clone(nskb, GFP_ATOMIC);
4635 			if (tmp) {
4636 				consume_skb(nskb);
4637 				nskb = tmp;
4638 				err = skb_unclone(nskb, GFP_ATOMIC);
4639 			} else {
4640 				err = -ENOMEM;
4641 			}
4642 		}
4643 
4644 		if (!tail)
4645 			skb->next = nskb;
4646 		else
4647 			tail->next = nskb;
4648 
4649 		if (unlikely(err)) {
4650 			nskb->next = list_skb;
4651 			goto err_linearize;
4652 		}
4653 
4654 		tail = nskb;
4655 
4656 		delta_len += nskb->len;
4657 
4658 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4659 
4660 		skb_release_head_state(nskb);
4661 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4662 		__copy_skb_header(nskb, skb);
4663 
4664 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4665 		nskb->transport_header += len_diff;
4666 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4667 						 nskb->data - tnl_hlen,
4668 						 offset + tnl_hlen);
4669 
4670 		if (skb_needs_linearize(nskb, features) &&
4671 		    __skb_linearize(nskb))
4672 			goto err_linearize;
4673 	}
4674 
4675 	skb->truesize = skb->truesize - delta_truesize;
4676 	skb->data_len = skb->data_len - delta_len;
4677 	skb->len = skb->len - delta_len;
4678 
4679 	skb_gso_reset(skb);
4680 
4681 	skb->prev = tail;
4682 
4683 	if (skb_needs_linearize(skb, features) &&
4684 	    __skb_linearize(skb))
4685 		goto err_linearize;
4686 
4687 	skb_get(skb);
4688 
4689 	return skb;
4690 
4691 err_linearize:
4692 	kfree_skb_list(skb->next);
4693 	skb->next = NULL;
4694 	return ERR_PTR(-ENOMEM);
4695 }
4696 EXPORT_SYMBOL_GPL(skb_segment_list);
4697 
4698 /**
4699  *	skb_segment - Perform protocol segmentation on skb.
4700  *	@head_skb: buffer to segment
4701  *	@features: features for the output path (see dev->features)
4702  *
4703  *	This function performs segmentation on the given skb.  It returns
4704  *	a pointer to the first in a list of new skbs for the segments.
4705  *	In case of error it returns ERR_PTR(err).
4706  */
4707 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4708 			    netdev_features_t features)
4709 {
4710 	struct sk_buff *segs = NULL;
4711 	struct sk_buff *tail = NULL;
4712 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4713 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4714 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4715 	unsigned int offset = doffset;
4716 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4717 	unsigned int partial_segs = 0;
4718 	unsigned int headroom;
4719 	unsigned int len = head_skb->len;
4720 	struct sk_buff *frag_skb;
4721 	skb_frag_t *frag;
4722 	__be16 proto;
4723 	bool csum, sg;
4724 	int err = -ENOMEM;
4725 	int i = 0;
4726 	int nfrags, pos;
4727 
4728 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4729 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4730 		struct sk_buff *check_skb;
4731 
4732 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4733 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4734 				/* gso_size is untrusted, and we have a frag_list with
4735 				 * a linear non head_frag item.
4736 				 *
4737 				 * If head_skb's headlen does not fit requested gso_size,
4738 				 * it means that the frag_list members do NOT terminate
4739 				 * on exact gso_size boundaries. Hence we cannot perform
4740 				 * skb_frag_t page sharing. Therefore we must fallback to
4741 				 * copying the frag_list skbs; we do so by disabling SG.
4742 				 */
4743 				features &= ~NETIF_F_SG;
4744 				break;
4745 			}
4746 		}
4747 	}
4748 
4749 	__skb_push(head_skb, doffset);
4750 	proto = skb_network_protocol(head_skb, NULL);
4751 	if (unlikely(!proto))
4752 		return ERR_PTR(-EINVAL);
4753 
4754 	sg = !!(features & NETIF_F_SG);
4755 	csum = !!can_checksum_protocol(features, proto);
4756 
4757 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4758 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4759 			struct sk_buff *iter;
4760 			unsigned int frag_len;
4761 
4762 			if (!list_skb ||
4763 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4764 				goto normal;
4765 
4766 			/* If we get here then all the required
4767 			 * GSO features except frag_list are supported.
4768 			 * Try to split the SKB to multiple GSO SKBs
4769 			 * with no frag_list.
4770 			 * Currently we can do that only when the buffers don't
4771 			 * have a linear part and all the buffers except
4772 			 * the last are of the same length.
4773 			 */
4774 			frag_len = list_skb->len;
4775 			skb_walk_frags(head_skb, iter) {
4776 				if (frag_len != iter->len && iter->next)
4777 					goto normal;
4778 				if (skb_headlen(iter) && !iter->head_frag)
4779 					goto normal;
4780 
4781 				len -= iter->len;
4782 			}
4783 
4784 			if (len != frag_len)
4785 				goto normal;
4786 		}
4787 
4788 		/* GSO partial only requires that we trim off any excess that
4789 		 * doesn't fit into an MSS sized block, so take care of that
4790 		 * now.
4791 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4792 		 */
4793 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4794 		if (partial_segs > 1)
4795 			mss *= partial_segs;
4796 		else
4797 			partial_segs = 0;
4798 	}
4799 
4800 normal:
4801 	headroom = skb_headroom(head_skb);
4802 	pos = skb_headlen(head_skb);
4803 
4804 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4805 		return ERR_PTR(-ENOMEM);
4806 
4807 	nfrags = skb_shinfo(head_skb)->nr_frags;
4808 	frag = skb_shinfo(head_skb)->frags;
4809 	frag_skb = head_skb;
4810 
4811 	do {
4812 		struct sk_buff *nskb;
4813 		skb_frag_t *nskb_frag;
4814 		int hsize;
4815 		int size;
4816 
4817 		if (unlikely(mss == GSO_BY_FRAGS)) {
4818 			len = list_skb->len;
4819 		} else {
4820 			len = head_skb->len - offset;
4821 			if (len > mss)
4822 				len = mss;
4823 		}
4824 
4825 		hsize = skb_headlen(head_skb) - offset;
4826 
4827 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4828 		    (skb_headlen(list_skb) == len || sg)) {
4829 			BUG_ON(skb_headlen(list_skb) > len);
4830 
4831 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4832 			if (unlikely(!nskb))
4833 				goto err;
4834 
4835 			i = 0;
4836 			nfrags = skb_shinfo(list_skb)->nr_frags;
4837 			frag = skb_shinfo(list_skb)->frags;
4838 			frag_skb = list_skb;
4839 			pos += skb_headlen(list_skb);
4840 
4841 			while (pos < offset + len) {
4842 				BUG_ON(i >= nfrags);
4843 
4844 				size = skb_frag_size(frag);
4845 				if (pos + size > offset + len)
4846 					break;
4847 
4848 				i++;
4849 				pos += size;
4850 				frag++;
4851 			}
4852 
4853 			list_skb = list_skb->next;
4854 
4855 			if (unlikely(pskb_trim(nskb, len))) {
4856 				kfree_skb(nskb);
4857 				goto err;
4858 			}
4859 
4860 			hsize = skb_end_offset(nskb);
4861 			if (skb_cow_head(nskb, doffset + headroom)) {
4862 				kfree_skb(nskb);
4863 				goto err;
4864 			}
4865 
4866 			nskb->truesize += skb_end_offset(nskb) - hsize;
4867 			skb_release_head_state(nskb);
4868 			__skb_push(nskb, doffset);
4869 		} else {
4870 			if (hsize < 0)
4871 				hsize = 0;
4872 			if (hsize > len || !sg)
4873 				hsize = len;
4874 
4875 			nskb = __alloc_skb(hsize + doffset + headroom,
4876 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4877 					   NUMA_NO_NODE);
4878 
4879 			if (unlikely(!nskb))
4880 				goto err;
4881 
4882 			skb_reserve(nskb, headroom);
4883 			__skb_put(nskb, doffset);
4884 		}
4885 
4886 		if (segs)
4887 			tail->next = nskb;
4888 		else
4889 			segs = nskb;
4890 		tail = nskb;
4891 
4892 		__copy_skb_header(nskb, head_skb);
4893 
4894 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4895 		skb_reset_mac_len(nskb);
4896 
4897 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4898 						 nskb->data - tnl_hlen,
4899 						 doffset + tnl_hlen);
4900 
4901 		if (nskb->len == len + doffset)
4902 			goto perform_csum_check;
4903 
4904 		if (!sg) {
4905 			if (!csum) {
4906 				if (!nskb->remcsum_offload)
4907 					nskb->ip_summed = CHECKSUM_NONE;
4908 				SKB_GSO_CB(nskb)->csum =
4909 					skb_copy_and_csum_bits(head_skb, offset,
4910 							       skb_put(nskb,
4911 								       len),
4912 							       len);
4913 				SKB_GSO_CB(nskb)->csum_start =
4914 					skb_headroom(nskb) + doffset;
4915 			} else {
4916 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4917 					goto err;
4918 			}
4919 			continue;
4920 		}
4921 
4922 		nskb_frag = skb_shinfo(nskb)->frags;
4923 
4924 		skb_copy_from_linear_data_offset(head_skb, offset,
4925 						 skb_put(nskb, hsize), hsize);
4926 
4927 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4928 					   SKBFL_SHARED_FRAG;
4929 
4930 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4931 			goto err;
4932 
4933 		while (pos < offset + len) {
4934 			if (i >= nfrags) {
4935 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4936 				    skb_zerocopy_clone(nskb, list_skb,
4937 						       GFP_ATOMIC))
4938 					goto err;
4939 
4940 				i = 0;
4941 				nfrags = skb_shinfo(list_skb)->nr_frags;
4942 				frag = skb_shinfo(list_skb)->frags;
4943 				frag_skb = list_skb;
4944 				if (!skb_headlen(list_skb)) {
4945 					BUG_ON(!nfrags);
4946 				} else {
4947 					BUG_ON(!list_skb->head_frag);
4948 
4949 					/* to make room for head_frag. */
4950 					i--;
4951 					frag--;
4952 				}
4953 
4954 				list_skb = list_skb->next;
4955 			}
4956 
4957 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4958 				     MAX_SKB_FRAGS)) {
4959 				net_warn_ratelimited(
4960 					"skb_segment: too many frags: %u %u\n",
4961 					pos, mss);
4962 				err = -EINVAL;
4963 				goto err;
4964 			}
4965 
4966 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4967 			__skb_frag_ref(nskb_frag);
4968 			size = skb_frag_size(nskb_frag);
4969 
4970 			if (pos < offset) {
4971 				skb_frag_off_add(nskb_frag, offset - pos);
4972 				skb_frag_size_sub(nskb_frag, offset - pos);
4973 			}
4974 
4975 			skb_shinfo(nskb)->nr_frags++;
4976 
4977 			if (pos + size <= offset + len) {
4978 				i++;
4979 				frag++;
4980 				pos += size;
4981 			} else {
4982 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4983 				goto skip_fraglist;
4984 			}
4985 
4986 			nskb_frag++;
4987 		}
4988 
4989 skip_fraglist:
4990 		nskb->data_len = len - hsize;
4991 		nskb->len += nskb->data_len;
4992 		nskb->truesize += nskb->data_len;
4993 
4994 perform_csum_check:
4995 		if (!csum) {
4996 			if (skb_has_shared_frag(nskb) &&
4997 			    __skb_linearize(nskb))
4998 				goto err;
4999 
5000 			if (!nskb->remcsum_offload)
5001 				nskb->ip_summed = CHECKSUM_NONE;
5002 			SKB_GSO_CB(nskb)->csum =
5003 				skb_checksum(nskb, doffset,
5004 					     nskb->len - doffset, 0);
5005 			SKB_GSO_CB(nskb)->csum_start =
5006 				skb_headroom(nskb) + doffset;
5007 		}
5008 	} while ((offset += len) < head_skb->len);
5009 
5010 	/* Some callers want to get the end of the list.
5011 	 * Put it in segs->prev to avoid walking the list.
5012 	 * (see validate_xmit_skb_list() for example)
5013 	 */
5014 	segs->prev = tail;
5015 
5016 	if (partial_segs) {
5017 		struct sk_buff *iter;
5018 		int type = skb_shinfo(head_skb)->gso_type;
5019 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5020 
5021 		/* Update type to add partial and then remove dodgy if set */
5022 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5023 		type &= ~SKB_GSO_DODGY;
5024 
5025 		/* Update GSO info and prepare to start updating headers on
5026 		 * our way back down the stack of protocols.
5027 		 */
5028 		for (iter = segs; iter; iter = iter->next) {
5029 			skb_shinfo(iter)->gso_size = gso_size;
5030 			skb_shinfo(iter)->gso_segs = partial_segs;
5031 			skb_shinfo(iter)->gso_type = type;
5032 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5033 		}
5034 
5035 		if (tail->len - doffset <= gso_size)
5036 			skb_shinfo(tail)->gso_size = 0;
5037 		else if (tail != segs)
5038 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5039 	}
5040 
5041 	/* Following permits correct backpressure, for protocols
5042 	 * using skb_set_owner_w().
5043 	 * Idea is to tranfert ownership from head_skb to last segment.
5044 	 */
5045 	if (head_skb->destructor == sock_wfree) {
5046 		swap(tail->truesize, head_skb->truesize);
5047 		swap(tail->destructor, head_skb->destructor);
5048 		swap(tail->sk, head_skb->sk);
5049 	}
5050 	return segs;
5051 
5052 err:
5053 	kfree_skb_list(segs);
5054 	return ERR_PTR(err);
5055 }
5056 EXPORT_SYMBOL_GPL(skb_segment);
5057 
5058 #ifdef CONFIG_SKB_EXTENSIONS
5059 #define SKB_EXT_ALIGN_VALUE	8
5060 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5061 
5062 static const u8 skb_ext_type_len[] = {
5063 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5064 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5065 #endif
5066 #ifdef CONFIG_XFRM
5067 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5068 #endif
5069 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5070 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5071 #endif
5072 #if IS_ENABLED(CONFIG_MPTCP)
5073 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5074 #endif
5075 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5076 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5077 #endif
5078 #if IS_ENABLED(CONFIG_INET_PSP)
5079 	[SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5080 #endif
5081 };
5082 
5083 static __always_inline unsigned int skb_ext_total_length(void)
5084 {
5085 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5086 	int i;
5087 
5088 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5089 		l += skb_ext_type_len[i];
5090 
5091 	return l;
5092 }
5093 
5094 static void skb_extensions_init(void)
5095 {
5096 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5097 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5098 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5099 #endif
5100 
5101 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5102 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5103 					     0,
5104 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5105 					     NULL);
5106 }
5107 #else
5108 static void skb_extensions_init(void) {}
5109 #endif
5110 
5111 /* The SKB kmem_cache slab is critical for network performance.  Never
5112  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5113  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5114  */
5115 #ifndef CONFIG_SLUB_TINY
5116 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5117 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5118 #define FLAG_SKB_NO_MERGE	0
5119 #endif
5120 
5121 void __init skb_init(void)
5122 {
5123 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5124 					      sizeof(struct sk_buff),
5125 					      0,
5126 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5127 						FLAG_SKB_NO_MERGE,
5128 					      offsetof(struct sk_buff, cb),
5129 					      sizeof_field(struct sk_buff, cb),
5130 					      NULL);
5131 	skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
5132 
5133 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5134 						sizeof(struct sk_buff_fclones),
5135 						0,
5136 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5137 						NULL);
5138 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5139 	 * struct skb_shared_info is located at the end of skb->head,
5140 	 * and should not be copied to/from user.
5141 	 */
5142 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5143 						SKB_SMALL_HEAD_CACHE_SIZE,
5144 						0,
5145 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5146 						0,
5147 						SKB_SMALL_HEAD_HEADROOM,
5148 						NULL);
5149 	skb_extensions_init();
5150 }
5151 
5152 static int
5153 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5154 	       unsigned int recursion_level)
5155 {
5156 	int start = skb_headlen(skb);
5157 	int i, copy = start - offset;
5158 	struct sk_buff *frag_iter;
5159 	int elt = 0;
5160 
5161 	if (unlikely(recursion_level >= 24))
5162 		return -EMSGSIZE;
5163 
5164 	if (copy > 0) {
5165 		if (copy > len)
5166 			copy = len;
5167 		sg_set_buf(sg, skb->data + offset, copy);
5168 		elt++;
5169 		if ((len -= copy) == 0)
5170 			return elt;
5171 		offset += copy;
5172 	}
5173 
5174 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5175 		int end;
5176 
5177 		WARN_ON(start > offset + len);
5178 
5179 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5180 		if ((copy = end - offset) > 0) {
5181 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5182 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5183 				return -EMSGSIZE;
5184 
5185 			if (copy > len)
5186 				copy = len;
5187 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5188 				    skb_frag_off(frag) + offset - start);
5189 			elt++;
5190 			if (!(len -= copy))
5191 				return elt;
5192 			offset += copy;
5193 		}
5194 		start = end;
5195 	}
5196 
5197 	skb_walk_frags(skb, frag_iter) {
5198 		int end, ret;
5199 
5200 		WARN_ON(start > offset + len);
5201 
5202 		end = start + frag_iter->len;
5203 		if ((copy = end - offset) > 0) {
5204 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5205 				return -EMSGSIZE;
5206 
5207 			if (copy > len)
5208 				copy = len;
5209 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5210 					      copy, recursion_level + 1);
5211 			if (unlikely(ret < 0))
5212 				return ret;
5213 			elt += ret;
5214 			if ((len -= copy) == 0)
5215 				return elt;
5216 			offset += copy;
5217 		}
5218 		start = end;
5219 	}
5220 	BUG_ON(len);
5221 	return elt;
5222 }
5223 
5224 /**
5225  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5226  *	@skb: Socket buffer containing the buffers to be mapped
5227  *	@sg: The scatter-gather list to map into
5228  *	@offset: The offset into the buffer's contents to start mapping
5229  *	@len: Length of buffer space to be mapped
5230  *
5231  *	Fill the specified scatter-gather list with mappings/pointers into a
5232  *	region of the buffer space attached to a socket buffer. Returns either
5233  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5234  *	could not fit.
5235  */
5236 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5237 {
5238 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5239 
5240 	if (nsg <= 0)
5241 		return nsg;
5242 
5243 	sg_mark_end(&sg[nsg - 1]);
5244 
5245 	return nsg;
5246 }
5247 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5248 
5249 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5250  * sglist without mark the sg which contain last skb data as the end.
5251  * So the caller can mannipulate sg list as will when padding new data after
5252  * the first call without calling sg_unmark_end to expend sg list.
5253  *
5254  * Scenario to use skb_to_sgvec_nomark:
5255  * 1. sg_init_table
5256  * 2. skb_to_sgvec_nomark(payload1)
5257  * 3. skb_to_sgvec_nomark(payload2)
5258  *
5259  * This is equivalent to:
5260  * 1. sg_init_table
5261  * 2. skb_to_sgvec(payload1)
5262  * 3. sg_unmark_end
5263  * 4. skb_to_sgvec(payload2)
5264  *
5265  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5266  * is more preferable.
5267  */
5268 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5269 			int offset, int len)
5270 {
5271 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5272 }
5273 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5274 
5275 
5276 
5277 /**
5278  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5279  *	@skb: The socket buffer to check.
5280  *	@tailbits: Amount of trailing space to be added
5281  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5282  *
5283  *	Make sure that the data buffers attached to a socket buffer are
5284  *	writable. If they are not, private copies are made of the data buffers
5285  *	and the socket buffer is set to use these instead.
5286  *
5287  *	If @tailbits is given, make sure that there is space to write @tailbits
5288  *	bytes of data beyond current end of socket buffer.  @trailer will be
5289  *	set to point to the skb in which this space begins.
5290  *
5291  *	The number of scatterlist elements required to completely map the
5292  *	COW'd and extended socket buffer will be returned.
5293  */
5294 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5295 {
5296 	int copyflag;
5297 	int elt;
5298 	struct sk_buff *skb1, **skb_p;
5299 
5300 	/* If skb is cloned or its head is paged, reallocate
5301 	 * head pulling out all the pages (pages are considered not writable
5302 	 * at the moment even if they are anonymous).
5303 	 */
5304 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5305 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5306 		return -ENOMEM;
5307 
5308 	/* Easy case. Most of packets will go this way. */
5309 	if (!skb_has_frag_list(skb)) {
5310 		/* A little of trouble, not enough of space for trailer.
5311 		 * This should not happen, when stack is tuned to generate
5312 		 * good frames. OK, on miss we reallocate and reserve even more
5313 		 * space, 128 bytes is fair. */
5314 
5315 		if (skb_tailroom(skb) < tailbits &&
5316 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5317 			return -ENOMEM;
5318 
5319 		/* Voila! */
5320 		*trailer = skb;
5321 		return 1;
5322 	}
5323 
5324 	/* Misery. We are in troubles, going to mincer fragments... */
5325 
5326 	elt = 1;
5327 	skb_p = &skb_shinfo(skb)->frag_list;
5328 	copyflag = 0;
5329 
5330 	while ((skb1 = *skb_p) != NULL) {
5331 		int ntail = 0;
5332 
5333 		/* The fragment is partially pulled by someone,
5334 		 * this can happen on input. Copy it and everything
5335 		 * after it. */
5336 
5337 		if (skb_shared(skb1))
5338 			copyflag = 1;
5339 
5340 		/* If the skb is the last, worry about trailer. */
5341 
5342 		if (skb1->next == NULL && tailbits) {
5343 			if (skb_shinfo(skb1)->nr_frags ||
5344 			    skb_has_frag_list(skb1) ||
5345 			    skb_tailroom(skb1) < tailbits)
5346 				ntail = tailbits + 128;
5347 		}
5348 
5349 		if (copyflag ||
5350 		    skb_cloned(skb1) ||
5351 		    ntail ||
5352 		    skb_shinfo(skb1)->nr_frags ||
5353 		    skb_has_frag_list(skb1)) {
5354 			struct sk_buff *skb2;
5355 
5356 			/* Fuck, we are miserable poor guys... */
5357 			if (ntail == 0)
5358 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5359 			else
5360 				skb2 = skb_copy_expand(skb1,
5361 						       skb_headroom(skb1),
5362 						       ntail,
5363 						       GFP_ATOMIC);
5364 			if (unlikely(skb2 == NULL))
5365 				return -ENOMEM;
5366 
5367 			if (skb1->sk)
5368 				skb_set_owner_w(skb2, skb1->sk);
5369 
5370 			/* Looking around. Are we still alive?
5371 			 * OK, link new skb, drop old one */
5372 
5373 			skb2->next = skb1->next;
5374 			*skb_p = skb2;
5375 			kfree_skb(skb1);
5376 			skb1 = skb2;
5377 		}
5378 		elt++;
5379 		*trailer = skb1;
5380 		skb_p = &skb1->next;
5381 	}
5382 
5383 	return elt;
5384 }
5385 EXPORT_SYMBOL_GPL(skb_cow_data);
5386 
5387 static void sock_rmem_free(struct sk_buff *skb)
5388 {
5389 	struct sock *sk = skb->sk;
5390 
5391 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5392 }
5393 
5394 static void skb_set_err_queue(struct sk_buff *skb)
5395 {
5396 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5397 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5398 	 */
5399 	skb->pkt_type = PACKET_OUTGOING;
5400 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5401 }
5402 
5403 /*
5404  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5405  */
5406 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5407 {
5408 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5409 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5410 		return -ENOMEM;
5411 
5412 	skb_orphan(skb);
5413 	skb->sk = sk;
5414 	skb->destructor = sock_rmem_free;
5415 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5416 	skb_set_err_queue(skb);
5417 
5418 	/* before exiting rcu section, make sure dst is refcounted */
5419 	skb_dst_force(skb);
5420 
5421 	skb_queue_tail(&sk->sk_error_queue, skb);
5422 	if (!sock_flag(sk, SOCK_DEAD))
5423 		sk_error_report(sk);
5424 	return 0;
5425 }
5426 EXPORT_SYMBOL(sock_queue_err_skb);
5427 
5428 static bool is_icmp_err_skb(const struct sk_buff *skb)
5429 {
5430 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5431 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5432 }
5433 
5434 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5435 {
5436 	struct sk_buff_head *q = &sk->sk_error_queue;
5437 	struct sk_buff *skb, *skb_next = NULL;
5438 	bool icmp_next = false;
5439 	unsigned long flags;
5440 
5441 	if (skb_queue_empty_lockless(q))
5442 		return NULL;
5443 
5444 	spin_lock_irqsave(&q->lock, flags);
5445 	skb = __skb_dequeue(q);
5446 	if (skb && (skb_next = skb_peek(q))) {
5447 		icmp_next = is_icmp_err_skb(skb_next);
5448 		if (icmp_next)
5449 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5450 	}
5451 	spin_unlock_irqrestore(&q->lock, flags);
5452 
5453 	if (is_icmp_err_skb(skb) && !icmp_next)
5454 		sk->sk_err = 0;
5455 
5456 	if (skb_next)
5457 		sk_error_report(sk);
5458 
5459 	return skb;
5460 }
5461 EXPORT_SYMBOL(sock_dequeue_err_skb);
5462 
5463 /**
5464  * skb_clone_sk - create clone of skb, and take reference to socket
5465  * @skb: the skb to clone
5466  *
5467  * This function creates a clone of a buffer that holds a reference on
5468  * sk_refcnt.  Buffers created via this function are meant to be
5469  * returned using sock_queue_err_skb, or free via kfree_skb.
5470  *
5471  * When passing buffers allocated with this function to sock_queue_err_skb
5472  * it is necessary to wrap the call with sock_hold/sock_put in order to
5473  * prevent the socket from being released prior to being enqueued on
5474  * the sk_error_queue.
5475  */
5476 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5477 {
5478 	struct sock *sk = skb->sk;
5479 	struct sk_buff *clone;
5480 
5481 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5482 		return NULL;
5483 
5484 	clone = skb_clone(skb, GFP_ATOMIC);
5485 	if (!clone) {
5486 		sock_put(sk);
5487 		return NULL;
5488 	}
5489 
5490 	clone->sk = sk;
5491 	clone->destructor = sock_efree;
5492 
5493 	return clone;
5494 }
5495 EXPORT_SYMBOL(skb_clone_sk);
5496 
5497 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5498 					struct sock *sk,
5499 					int tstype,
5500 					bool opt_stats)
5501 {
5502 	struct sock_exterr_skb *serr;
5503 	int err;
5504 
5505 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5506 
5507 	serr = SKB_EXT_ERR(skb);
5508 	memset(serr, 0, sizeof(*serr));
5509 	serr->ee.ee_errno = ENOMSG;
5510 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5511 	serr->ee.ee_info = tstype;
5512 	serr->opt_stats = opt_stats;
5513 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5514 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5515 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5516 		if (sk_is_tcp(sk))
5517 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5518 	}
5519 
5520 	err = sock_queue_err_skb(sk, skb);
5521 
5522 	if (err)
5523 		kfree_skb(skb);
5524 }
5525 
5526 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5527 {
5528 	bool ret;
5529 
5530 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5531 		return true;
5532 
5533 	read_lock_bh(&sk->sk_callback_lock);
5534 	ret = sk->sk_socket && sk->sk_socket->file &&
5535 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5536 	read_unlock_bh(&sk->sk_callback_lock);
5537 	return ret;
5538 }
5539 
5540 void skb_complete_tx_timestamp(struct sk_buff *skb,
5541 			       struct skb_shared_hwtstamps *hwtstamps)
5542 {
5543 	struct sock *sk = skb->sk;
5544 
5545 	if (!skb_may_tx_timestamp(sk, false))
5546 		goto err;
5547 
5548 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5549 	 * but only if the socket refcount is not zero.
5550 	 */
5551 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5552 		*skb_hwtstamps(skb) = *hwtstamps;
5553 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5554 		sock_put(sk);
5555 		return;
5556 	}
5557 
5558 err:
5559 	kfree_skb(skb);
5560 }
5561 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5562 
5563 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5564 						 struct skb_shared_hwtstamps *hwtstamps,
5565 						 int tstype)
5566 {
5567 	switch (tstype) {
5568 	case SCM_TSTAMP_SCHED:
5569 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5570 	case SCM_TSTAMP_SND:
5571 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5572 						    SKBTX_SW_TSTAMP);
5573 	case SCM_TSTAMP_ACK:
5574 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5575 	case SCM_TSTAMP_COMPLETION:
5576 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5577 	}
5578 
5579 	return false;
5580 }
5581 
5582 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5583 						  struct skb_shared_hwtstamps *hwtstamps,
5584 						  struct sock *sk,
5585 						  int tstype)
5586 {
5587 	int op;
5588 
5589 	switch (tstype) {
5590 	case SCM_TSTAMP_SCHED:
5591 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5592 		break;
5593 	case SCM_TSTAMP_SND:
5594 		if (hwtstamps) {
5595 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5596 			*skb_hwtstamps(skb) = *hwtstamps;
5597 		} else {
5598 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5599 		}
5600 		break;
5601 	case SCM_TSTAMP_ACK:
5602 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5603 		break;
5604 	default:
5605 		return;
5606 	}
5607 
5608 	bpf_skops_tx_timestamping(sk, skb, op);
5609 }
5610 
5611 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5612 		     const struct sk_buff *ack_skb,
5613 		     struct skb_shared_hwtstamps *hwtstamps,
5614 		     struct sock *sk, int tstype)
5615 {
5616 	struct sk_buff *skb;
5617 	bool tsonly, opt_stats = false;
5618 	u32 tsflags;
5619 
5620 	if (!sk)
5621 		return;
5622 
5623 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5624 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5625 						      sk, tstype);
5626 
5627 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5628 		return;
5629 
5630 	tsflags = READ_ONCE(sk->sk_tsflags);
5631 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5632 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5633 		return;
5634 
5635 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5636 	if (!skb_may_tx_timestamp(sk, tsonly))
5637 		return;
5638 
5639 	if (tsonly) {
5640 #ifdef CONFIG_INET
5641 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5642 		    sk_is_tcp(sk)) {
5643 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5644 							     ack_skb);
5645 			opt_stats = true;
5646 		} else
5647 #endif
5648 			skb = alloc_skb(0, GFP_ATOMIC);
5649 	} else {
5650 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5651 
5652 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5653 			kfree_skb(skb);
5654 			return;
5655 		}
5656 	}
5657 	if (!skb)
5658 		return;
5659 
5660 	if (tsonly) {
5661 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5662 					     SKBTX_ANY_TSTAMP;
5663 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5664 	}
5665 
5666 	if (hwtstamps)
5667 		*skb_hwtstamps(skb) = *hwtstamps;
5668 	else
5669 		__net_timestamp(skb);
5670 
5671 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5672 }
5673 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5674 
5675 void skb_tstamp_tx(struct sk_buff *orig_skb,
5676 		   struct skb_shared_hwtstamps *hwtstamps)
5677 {
5678 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5679 			       SCM_TSTAMP_SND);
5680 }
5681 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5682 
5683 #ifdef CONFIG_WIRELESS
5684 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5685 {
5686 	struct sock *sk = skb->sk;
5687 	struct sock_exterr_skb *serr;
5688 	int err = 1;
5689 
5690 	skb->wifi_acked_valid = 1;
5691 	skb->wifi_acked = acked;
5692 
5693 	serr = SKB_EXT_ERR(skb);
5694 	memset(serr, 0, sizeof(*serr));
5695 	serr->ee.ee_errno = ENOMSG;
5696 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5697 
5698 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5699 	 * but only if the socket refcount is not zero.
5700 	 */
5701 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5702 		err = sock_queue_err_skb(sk, skb);
5703 		sock_put(sk);
5704 	}
5705 	if (err)
5706 		kfree_skb(skb);
5707 }
5708 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5709 #endif /* CONFIG_WIRELESS */
5710 
5711 /**
5712  * skb_partial_csum_set - set up and verify partial csum values for packet
5713  * @skb: the skb to set
5714  * @start: the number of bytes after skb->data to start checksumming.
5715  * @off: the offset from start to place the checksum.
5716  *
5717  * For untrusted partially-checksummed packets, we need to make sure the values
5718  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5719  *
5720  * This function checks and sets those values and skb->ip_summed: if this
5721  * returns false you should drop the packet.
5722  */
5723 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5724 {
5725 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5726 	u32 csum_start = skb_headroom(skb) + (u32)start;
5727 
5728 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5729 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5730 				     start, off, skb_headroom(skb), skb_headlen(skb));
5731 		return false;
5732 	}
5733 	skb->ip_summed = CHECKSUM_PARTIAL;
5734 	skb->csum_start = csum_start;
5735 	skb->csum_offset = off;
5736 	skb->transport_header = csum_start;
5737 	return true;
5738 }
5739 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5740 
5741 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5742 			       unsigned int max)
5743 {
5744 	if (skb_headlen(skb) >= len)
5745 		return 0;
5746 
5747 	/* If we need to pullup then pullup to the max, so we
5748 	 * won't need to do it again.
5749 	 */
5750 	if (max > skb->len)
5751 		max = skb->len;
5752 
5753 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5754 		return -ENOMEM;
5755 
5756 	if (skb_headlen(skb) < len)
5757 		return -EPROTO;
5758 
5759 	return 0;
5760 }
5761 
5762 #define MAX_TCP_HDR_LEN (15 * 4)
5763 
5764 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5765 				      typeof(IPPROTO_IP) proto,
5766 				      unsigned int off)
5767 {
5768 	int err;
5769 
5770 	switch (proto) {
5771 	case IPPROTO_TCP:
5772 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5773 					  off + MAX_TCP_HDR_LEN);
5774 		if (!err && !skb_partial_csum_set(skb, off,
5775 						  offsetof(struct tcphdr,
5776 							   check)))
5777 			err = -EPROTO;
5778 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5779 
5780 	case IPPROTO_UDP:
5781 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5782 					  off + sizeof(struct udphdr));
5783 		if (!err && !skb_partial_csum_set(skb, off,
5784 						  offsetof(struct udphdr,
5785 							   check)))
5786 			err = -EPROTO;
5787 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5788 	}
5789 
5790 	return ERR_PTR(-EPROTO);
5791 }
5792 
5793 /* This value should be large enough to cover a tagged ethernet header plus
5794  * maximally sized IP and TCP or UDP headers.
5795  */
5796 #define MAX_IP_HDR_LEN 128
5797 
5798 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5799 {
5800 	unsigned int off;
5801 	bool fragment;
5802 	__sum16 *csum;
5803 	int err;
5804 
5805 	fragment = false;
5806 
5807 	err = skb_maybe_pull_tail(skb,
5808 				  sizeof(struct iphdr),
5809 				  MAX_IP_HDR_LEN);
5810 	if (err < 0)
5811 		goto out;
5812 
5813 	if (ip_is_fragment(ip_hdr(skb)))
5814 		fragment = true;
5815 
5816 	off = ip_hdrlen(skb);
5817 
5818 	err = -EPROTO;
5819 
5820 	if (fragment)
5821 		goto out;
5822 
5823 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5824 	if (IS_ERR(csum))
5825 		return PTR_ERR(csum);
5826 
5827 	if (recalculate)
5828 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5829 					   ip_hdr(skb)->daddr,
5830 					   skb->len - off,
5831 					   ip_hdr(skb)->protocol, 0);
5832 	err = 0;
5833 
5834 out:
5835 	return err;
5836 }
5837 
5838 /* This value should be large enough to cover a tagged ethernet header plus
5839  * an IPv6 header, all options, and a maximal TCP or UDP header.
5840  */
5841 #define MAX_IPV6_HDR_LEN 256
5842 
5843 #define OPT_HDR(type, skb, off) \
5844 	(type *)(skb_network_header(skb) + (off))
5845 
5846 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5847 {
5848 	int err;
5849 	u8 nexthdr;
5850 	unsigned int off;
5851 	unsigned int len;
5852 	bool fragment;
5853 	bool done;
5854 	__sum16 *csum;
5855 
5856 	fragment = false;
5857 	done = false;
5858 
5859 	off = sizeof(struct ipv6hdr);
5860 
5861 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5862 	if (err < 0)
5863 		goto out;
5864 
5865 	nexthdr = ipv6_hdr(skb)->nexthdr;
5866 
5867 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5868 	while (off <= len && !done) {
5869 		switch (nexthdr) {
5870 		case IPPROTO_DSTOPTS:
5871 		case IPPROTO_HOPOPTS:
5872 		case IPPROTO_ROUTING: {
5873 			struct ipv6_opt_hdr *hp;
5874 
5875 			err = skb_maybe_pull_tail(skb,
5876 						  off +
5877 						  sizeof(struct ipv6_opt_hdr),
5878 						  MAX_IPV6_HDR_LEN);
5879 			if (err < 0)
5880 				goto out;
5881 
5882 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5883 			nexthdr = hp->nexthdr;
5884 			off += ipv6_optlen(hp);
5885 			break;
5886 		}
5887 		case IPPROTO_AH: {
5888 			struct ip_auth_hdr *hp;
5889 
5890 			err = skb_maybe_pull_tail(skb,
5891 						  off +
5892 						  sizeof(struct ip_auth_hdr),
5893 						  MAX_IPV6_HDR_LEN);
5894 			if (err < 0)
5895 				goto out;
5896 
5897 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5898 			nexthdr = hp->nexthdr;
5899 			off += ipv6_authlen(hp);
5900 			break;
5901 		}
5902 		case IPPROTO_FRAGMENT: {
5903 			struct frag_hdr *hp;
5904 
5905 			err = skb_maybe_pull_tail(skb,
5906 						  off +
5907 						  sizeof(struct frag_hdr),
5908 						  MAX_IPV6_HDR_LEN);
5909 			if (err < 0)
5910 				goto out;
5911 
5912 			hp = OPT_HDR(struct frag_hdr, skb, off);
5913 
5914 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5915 				fragment = true;
5916 
5917 			nexthdr = hp->nexthdr;
5918 			off += sizeof(struct frag_hdr);
5919 			break;
5920 		}
5921 		default:
5922 			done = true;
5923 			break;
5924 		}
5925 	}
5926 
5927 	err = -EPROTO;
5928 
5929 	if (!done || fragment)
5930 		goto out;
5931 
5932 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5933 	if (IS_ERR(csum))
5934 		return PTR_ERR(csum);
5935 
5936 	if (recalculate)
5937 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5938 					 &ipv6_hdr(skb)->daddr,
5939 					 skb->len - off, nexthdr, 0);
5940 	err = 0;
5941 
5942 out:
5943 	return err;
5944 }
5945 
5946 /**
5947  * skb_checksum_setup - set up partial checksum offset
5948  * @skb: the skb to set up
5949  * @recalculate: if true the pseudo-header checksum will be recalculated
5950  */
5951 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5952 {
5953 	int err;
5954 
5955 	switch (skb->protocol) {
5956 	case htons(ETH_P_IP):
5957 		err = skb_checksum_setup_ipv4(skb, recalculate);
5958 		break;
5959 
5960 	case htons(ETH_P_IPV6):
5961 		err = skb_checksum_setup_ipv6(skb, recalculate);
5962 		break;
5963 
5964 	default:
5965 		err = -EPROTO;
5966 		break;
5967 	}
5968 
5969 	return err;
5970 }
5971 EXPORT_SYMBOL(skb_checksum_setup);
5972 
5973 /**
5974  * skb_checksum_maybe_trim - maybe trims the given skb
5975  * @skb: the skb to check
5976  * @transport_len: the data length beyond the network header
5977  *
5978  * Checks whether the given skb has data beyond the given transport length.
5979  * If so, returns a cloned skb trimmed to this transport length.
5980  * Otherwise returns the provided skb. Returns NULL in error cases
5981  * (e.g. transport_len exceeds skb length or out-of-memory).
5982  *
5983  * Caller needs to set the skb transport header and free any returned skb if it
5984  * differs from the provided skb.
5985  */
5986 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5987 					       unsigned int transport_len)
5988 {
5989 	struct sk_buff *skb_chk;
5990 	unsigned int len = skb_transport_offset(skb) + transport_len;
5991 	int ret;
5992 
5993 	if (skb->len < len)
5994 		return NULL;
5995 	else if (skb->len == len)
5996 		return skb;
5997 
5998 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5999 	if (!skb_chk)
6000 		return NULL;
6001 
6002 	ret = pskb_trim_rcsum(skb_chk, len);
6003 	if (ret) {
6004 		kfree_skb(skb_chk);
6005 		return NULL;
6006 	}
6007 
6008 	return skb_chk;
6009 }
6010 
6011 /**
6012  * skb_checksum_trimmed - validate checksum of an skb
6013  * @skb: the skb to check
6014  * @transport_len: the data length beyond the network header
6015  * @skb_chkf: checksum function to use
6016  *
6017  * Applies the given checksum function skb_chkf to the provided skb.
6018  * Returns a checked and maybe trimmed skb. Returns NULL on error.
6019  *
6020  * If the skb has data beyond the given transport length, then a
6021  * trimmed & cloned skb is checked and returned.
6022  *
6023  * Caller needs to set the skb transport header and free any returned skb if it
6024  * differs from the provided skb.
6025  */
6026 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6027 				     unsigned int transport_len,
6028 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6029 {
6030 	struct sk_buff *skb_chk;
6031 	unsigned int offset = skb_transport_offset(skb);
6032 	__sum16 ret;
6033 
6034 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6035 	if (!skb_chk)
6036 		goto err;
6037 
6038 	if (!pskb_may_pull(skb_chk, offset))
6039 		goto err;
6040 
6041 	skb_pull_rcsum(skb_chk, offset);
6042 	ret = skb_chkf(skb_chk);
6043 	skb_push_rcsum(skb_chk, offset);
6044 
6045 	if (ret)
6046 		goto err;
6047 
6048 	return skb_chk;
6049 
6050 err:
6051 	if (skb_chk && skb_chk != skb)
6052 		kfree_skb(skb_chk);
6053 
6054 	return NULL;
6055 
6056 }
6057 EXPORT_SYMBOL(skb_checksum_trimmed);
6058 
6059 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6060 {
6061 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6062 			     skb->dev->name);
6063 }
6064 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6065 
6066 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6067 {
6068 	if (head_stolen) {
6069 		skb_release_head_state(skb);
6070 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6071 	} else {
6072 		__kfree_skb(skb);
6073 	}
6074 }
6075 EXPORT_SYMBOL(kfree_skb_partial);
6076 
6077 /**
6078  * skb_try_coalesce - try to merge skb to prior one
6079  * @to: prior buffer
6080  * @from: buffer to add
6081  * @fragstolen: pointer to boolean
6082  * @delta_truesize: how much more was allocated than was requested
6083  */
6084 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6085 		      bool *fragstolen, int *delta_truesize)
6086 {
6087 	struct skb_shared_info *to_shinfo, *from_shinfo;
6088 	int i, delta, len = from->len;
6089 
6090 	*fragstolen = false;
6091 
6092 	if (skb_cloned(to))
6093 		return false;
6094 
6095 	/* In general, avoid mixing page_pool and non-page_pool allocated
6096 	 * pages within the same SKB. In theory we could take full
6097 	 * references if @from is cloned and !@to->pp_recycle but its
6098 	 * tricky (due to potential race with the clone disappearing) and
6099 	 * rare, so not worth dealing with.
6100 	 */
6101 	if (to->pp_recycle != from->pp_recycle)
6102 		return false;
6103 
6104 	if (skb_frags_readable(from) != skb_frags_readable(to))
6105 		return false;
6106 
6107 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6108 		if (len)
6109 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6110 		*delta_truesize = 0;
6111 		return true;
6112 	}
6113 
6114 	to_shinfo = skb_shinfo(to);
6115 	from_shinfo = skb_shinfo(from);
6116 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6117 		return false;
6118 	if (skb_zcopy(to) || skb_zcopy(from))
6119 		return false;
6120 
6121 	if (skb_headlen(from) != 0) {
6122 		struct page *page;
6123 		unsigned int offset;
6124 
6125 		if (to_shinfo->nr_frags +
6126 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6127 			return false;
6128 
6129 		if (skb_head_is_locked(from))
6130 			return false;
6131 
6132 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6133 
6134 		page = virt_to_head_page(from->head);
6135 		offset = from->data - (unsigned char *)page_address(page);
6136 
6137 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6138 				   page, offset, skb_headlen(from));
6139 		*fragstolen = true;
6140 	} else {
6141 		if (to_shinfo->nr_frags +
6142 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6143 			return false;
6144 
6145 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6146 	}
6147 
6148 	WARN_ON_ONCE(delta < len);
6149 
6150 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6151 	       from_shinfo->frags,
6152 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6153 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6154 
6155 	if (!skb_cloned(from))
6156 		from_shinfo->nr_frags = 0;
6157 
6158 	/* if the skb is not cloned this does nothing
6159 	 * since we set nr_frags to 0.
6160 	 */
6161 	if (skb_pp_frag_ref(from)) {
6162 		for (i = 0; i < from_shinfo->nr_frags; i++)
6163 			__skb_frag_ref(&from_shinfo->frags[i]);
6164 	}
6165 
6166 	to->truesize += delta;
6167 	to->len += len;
6168 	to->data_len += len;
6169 
6170 	*delta_truesize = delta;
6171 	return true;
6172 }
6173 EXPORT_SYMBOL(skb_try_coalesce);
6174 
6175 /**
6176  * skb_scrub_packet - scrub an skb
6177  *
6178  * @skb: buffer to clean
6179  * @xnet: packet is crossing netns
6180  *
6181  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6182  * into/from a tunnel. Some information have to be cleared during these
6183  * operations.
6184  * skb_scrub_packet can also be used to clean a skb before injecting it in
6185  * another namespace (@xnet == true). We have to clear all information in the
6186  * skb that could impact namespace isolation.
6187  */
6188 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6189 {
6190 	skb->pkt_type = PACKET_HOST;
6191 	skb->skb_iif = 0;
6192 	skb->ignore_df = 0;
6193 	skb_dst_drop(skb);
6194 	skb_ext_reset(skb);
6195 	nf_reset_ct(skb);
6196 	nf_reset_trace(skb);
6197 
6198 #ifdef CONFIG_NET_SWITCHDEV
6199 	skb->offload_fwd_mark = 0;
6200 	skb->offload_l3_fwd_mark = 0;
6201 #endif
6202 	ipvs_reset(skb);
6203 
6204 	if (!xnet)
6205 		return;
6206 
6207 	skb->mark = 0;
6208 	skb_clear_tstamp(skb);
6209 }
6210 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6211 
6212 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6213 {
6214 	int mac_len, meta_len;
6215 	void *meta;
6216 
6217 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6218 		kfree_skb(skb);
6219 		return NULL;
6220 	}
6221 
6222 	mac_len = skb->data - skb_mac_header(skb);
6223 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6224 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6225 			mac_len - VLAN_HLEN - ETH_TLEN);
6226 	}
6227 
6228 	meta_len = skb_metadata_len(skb);
6229 	if (meta_len) {
6230 		meta = skb_metadata_end(skb) - meta_len;
6231 		memmove(meta + VLAN_HLEN, meta, meta_len);
6232 	}
6233 
6234 	skb->mac_header += VLAN_HLEN;
6235 	return skb;
6236 }
6237 
6238 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6239 {
6240 	struct vlan_hdr *vhdr;
6241 	u16 vlan_tci;
6242 
6243 	if (unlikely(skb_vlan_tag_present(skb))) {
6244 		/* vlan_tci is already set-up so leave this for another time */
6245 		return skb;
6246 	}
6247 
6248 	skb = skb_share_check(skb, GFP_ATOMIC);
6249 	if (unlikely(!skb))
6250 		goto err_free;
6251 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6252 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6253 		goto err_free;
6254 
6255 	vhdr = (struct vlan_hdr *)skb->data;
6256 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6257 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6258 
6259 	skb_pull_rcsum(skb, VLAN_HLEN);
6260 	vlan_set_encap_proto(skb, vhdr);
6261 
6262 	skb = skb_reorder_vlan_header(skb);
6263 	if (unlikely(!skb))
6264 		goto err_free;
6265 
6266 	skb_reset_network_header(skb);
6267 	if (!skb_transport_header_was_set(skb))
6268 		skb_reset_transport_header(skb);
6269 	skb_reset_mac_len(skb);
6270 
6271 	return skb;
6272 
6273 err_free:
6274 	kfree_skb(skb);
6275 	return NULL;
6276 }
6277 EXPORT_SYMBOL(skb_vlan_untag);
6278 
6279 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6280 {
6281 	if (!pskb_may_pull(skb, write_len))
6282 		return -ENOMEM;
6283 
6284 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6285 		return 0;
6286 
6287 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6288 }
6289 EXPORT_SYMBOL(skb_ensure_writable);
6290 
6291 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6292 {
6293 	int needed_headroom = dev->needed_headroom;
6294 	int needed_tailroom = dev->needed_tailroom;
6295 
6296 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6297 	 * that the tail tag does not fail at its role of being at the end of
6298 	 * the packet, once the conduit interface pads the frame. Account for
6299 	 * that pad length here, and pad later.
6300 	 */
6301 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6302 		needed_tailroom += ETH_ZLEN - skb->len;
6303 	/* skb_headroom() returns unsigned int... */
6304 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6305 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6306 
6307 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6308 		/* No reallocation needed, yay! */
6309 		return 0;
6310 
6311 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6312 				GFP_ATOMIC);
6313 }
6314 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6315 
6316 /* remove VLAN header from packet and update csum accordingly.
6317  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6318  */
6319 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6320 {
6321 	int offset = skb->data - skb_mac_header(skb);
6322 	int err;
6323 
6324 	if (WARN_ONCE(offset,
6325 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6326 		      offset)) {
6327 		return -EINVAL;
6328 	}
6329 
6330 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6331 	if (unlikely(err))
6332 		return err;
6333 
6334 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6335 
6336 	vlan_remove_tag(skb, vlan_tci);
6337 
6338 	skb->mac_header += VLAN_HLEN;
6339 
6340 	if (skb_network_offset(skb) < ETH_HLEN)
6341 		skb_set_network_header(skb, ETH_HLEN);
6342 
6343 	skb_reset_mac_len(skb);
6344 
6345 	return err;
6346 }
6347 EXPORT_SYMBOL(__skb_vlan_pop);
6348 
6349 /* Pop a vlan tag either from hwaccel or from payload.
6350  * Expects skb->data at mac header.
6351  */
6352 int skb_vlan_pop(struct sk_buff *skb)
6353 {
6354 	u16 vlan_tci;
6355 	__be16 vlan_proto;
6356 	int err;
6357 
6358 	if (likely(skb_vlan_tag_present(skb))) {
6359 		__vlan_hwaccel_clear_tag(skb);
6360 	} else {
6361 		if (unlikely(!eth_type_vlan(skb->protocol)))
6362 			return 0;
6363 
6364 		err = __skb_vlan_pop(skb, &vlan_tci);
6365 		if (err)
6366 			return err;
6367 	}
6368 	/* move next vlan tag to hw accel tag */
6369 	if (likely(!eth_type_vlan(skb->protocol)))
6370 		return 0;
6371 
6372 	vlan_proto = skb->protocol;
6373 	err = __skb_vlan_pop(skb, &vlan_tci);
6374 	if (unlikely(err))
6375 		return err;
6376 
6377 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6378 	return 0;
6379 }
6380 EXPORT_SYMBOL(skb_vlan_pop);
6381 
6382 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6383  * Expects skb->data at mac header.
6384  */
6385 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6386 {
6387 	if (skb_vlan_tag_present(skb)) {
6388 		int offset = skb->data - skb_mac_header(skb);
6389 		int err;
6390 
6391 		if (WARN_ONCE(offset,
6392 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6393 			      offset)) {
6394 			return -EINVAL;
6395 		}
6396 
6397 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6398 					skb_vlan_tag_get(skb));
6399 		if (err)
6400 			return err;
6401 
6402 		skb->protocol = skb->vlan_proto;
6403 		skb->network_header -= VLAN_HLEN;
6404 
6405 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6406 	}
6407 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6408 	return 0;
6409 }
6410 EXPORT_SYMBOL(skb_vlan_push);
6411 
6412 /**
6413  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6414  *
6415  * @skb: Socket buffer to modify
6416  *
6417  * Drop the Ethernet header of @skb.
6418  *
6419  * Expects that skb->data points to the mac header and that no VLAN tags are
6420  * present.
6421  *
6422  * Returns 0 on success, -errno otherwise.
6423  */
6424 int skb_eth_pop(struct sk_buff *skb)
6425 {
6426 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6427 	    skb_network_offset(skb) < ETH_HLEN)
6428 		return -EPROTO;
6429 
6430 	skb_pull_rcsum(skb, ETH_HLEN);
6431 	skb_reset_mac_header(skb);
6432 	skb_reset_mac_len(skb);
6433 
6434 	return 0;
6435 }
6436 EXPORT_SYMBOL(skb_eth_pop);
6437 
6438 /**
6439  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6440  *
6441  * @skb: Socket buffer to modify
6442  * @dst: Destination MAC address of the new header
6443  * @src: Source MAC address of the new header
6444  *
6445  * Prepend @skb with a new Ethernet header.
6446  *
6447  * Expects that skb->data points to the mac header, which must be empty.
6448  *
6449  * Returns 0 on success, -errno otherwise.
6450  */
6451 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6452 		 const unsigned char *src)
6453 {
6454 	struct ethhdr *eth;
6455 	int err;
6456 
6457 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6458 		return -EPROTO;
6459 
6460 	err = skb_cow_head(skb, sizeof(*eth));
6461 	if (err < 0)
6462 		return err;
6463 
6464 	skb_push(skb, sizeof(*eth));
6465 	skb_reset_mac_header(skb);
6466 	skb_reset_mac_len(skb);
6467 
6468 	eth = eth_hdr(skb);
6469 	ether_addr_copy(eth->h_dest, dst);
6470 	ether_addr_copy(eth->h_source, src);
6471 	eth->h_proto = skb->protocol;
6472 
6473 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6474 
6475 	return 0;
6476 }
6477 EXPORT_SYMBOL(skb_eth_push);
6478 
6479 /* Update the ethertype of hdr and the skb csum value if required. */
6480 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6481 			     __be16 ethertype)
6482 {
6483 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6484 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6485 
6486 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6487 	}
6488 
6489 	hdr->h_proto = ethertype;
6490 }
6491 
6492 /**
6493  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6494  *                   the packet
6495  *
6496  * @skb: buffer
6497  * @mpls_lse: MPLS label stack entry to push
6498  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6499  * @mac_len: length of the MAC header
6500  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6501  *            ethernet
6502  *
6503  * Expects skb->data at mac header.
6504  *
6505  * Returns 0 on success, -errno otherwise.
6506  */
6507 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6508 		  int mac_len, bool ethernet)
6509 {
6510 	struct mpls_shim_hdr *lse;
6511 	int err;
6512 
6513 	if (unlikely(!eth_p_mpls(mpls_proto)))
6514 		return -EINVAL;
6515 
6516 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6517 	if (skb->encapsulation)
6518 		return -EINVAL;
6519 
6520 	err = skb_cow_head(skb, MPLS_HLEN);
6521 	if (unlikely(err))
6522 		return err;
6523 
6524 	if (!skb->inner_protocol) {
6525 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6526 		skb_set_inner_protocol(skb, skb->protocol);
6527 	}
6528 
6529 	skb_push(skb, MPLS_HLEN);
6530 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6531 		mac_len);
6532 	skb_reset_mac_header(skb);
6533 	skb_set_network_header(skb, mac_len);
6534 	skb_reset_mac_len(skb);
6535 
6536 	lse = mpls_hdr(skb);
6537 	lse->label_stack_entry = mpls_lse;
6538 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6539 
6540 	if (ethernet && mac_len >= ETH_HLEN)
6541 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6542 	skb->protocol = mpls_proto;
6543 
6544 	return 0;
6545 }
6546 EXPORT_SYMBOL_GPL(skb_mpls_push);
6547 
6548 /**
6549  * skb_mpls_pop() - pop the outermost MPLS header
6550  *
6551  * @skb: buffer
6552  * @next_proto: ethertype of header after popped MPLS header
6553  * @mac_len: length of the MAC header
6554  * @ethernet: flag to indicate if the packet is ethernet
6555  *
6556  * Expects skb->data at mac header.
6557  *
6558  * Returns 0 on success, -errno otherwise.
6559  */
6560 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6561 		 bool ethernet)
6562 {
6563 	int err;
6564 
6565 	if (unlikely(!eth_p_mpls(skb->protocol)))
6566 		return 0;
6567 
6568 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6569 	if (unlikely(err))
6570 		return err;
6571 
6572 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6573 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6574 		mac_len);
6575 
6576 	__skb_pull(skb, MPLS_HLEN);
6577 	skb_reset_mac_header(skb);
6578 	skb_set_network_header(skb, mac_len);
6579 
6580 	if (ethernet && mac_len >= ETH_HLEN) {
6581 		struct ethhdr *hdr;
6582 
6583 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6584 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6585 		skb_mod_eth_type(skb, hdr, next_proto);
6586 	}
6587 	skb->protocol = next_proto;
6588 
6589 	return 0;
6590 }
6591 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6592 
6593 /**
6594  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6595  *
6596  * @skb: buffer
6597  * @mpls_lse: new MPLS label stack entry to update to
6598  *
6599  * Expects skb->data at mac header.
6600  *
6601  * Returns 0 on success, -errno otherwise.
6602  */
6603 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6604 {
6605 	int err;
6606 
6607 	if (unlikely(!eth_p_mpls(skb->protocol)))
6608 		return -EINVAL;
6609 
6610 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6611 	if (unlikely(err))
6612 		return err;
6613 
6614 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6615 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6616 
6617 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6618 	}
6619 
6620 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6621 
6622 	return 0;
6623 }
6624 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6625 
6626 /**
6627  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6628  *
6629  * @skb: buffer
6630  *
6631  * Expects skb->data at mac header.
6632  *
6633  * Returns 0 on success, -errno otherwise.
6634  */
6635 int skb_mpls_dec_ttl(struct sk_buff *skb)
6636 {
6637 	u32 lse;
6638 	u8 ttl;
6639 
6640 	if (unlikely(!eth_p_mpls(skb->protocol)))
6641 		return -EINVAL;
6642 
6643 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6644 		return -ENOMEM;
6645 
6646 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6647 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6648 	if (!--ttl)
6649 		return -EINVAL;
6650 
6651 	lse &= ~MPLS_LS_TTL_MASK;
6652 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6653 
6654 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6655 }
6656 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6657 
6658 /**
6659  * alloc_skb_with_frags - allocate skb with page frags
6660  *
6661  * @header_len: size of linear part
6662  * @data_len: needed length in frags
6663  * @order: max page order desired.
6664  * @errcode: pointer to error code if any
6665  * @gfp_mask: allocation mask
6666  *
6667  * This can be used to allocate a paged skb, given a maximal order for frags.
6668  */
6669 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6670 				     unsigned long data_len,
6671 				     int order,
6672 				     int *errcode,
6673 				     gfp_t gfp_mask)
6674 {
6675 	unsigned long chunk;
6676 	struct sk_buff *skb;
6677 	struct page *page;
6678 	int nr_frags = 0;
6679 
6680 	*errcode = -EMSGSIZE;
6681 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6682 		return NULL;
6683 
6684 	*errcode = -ENOBUFS;
6685 	skb = alloc_skb(header_len, gfp_mask);
6686 	if (!skb)
6687 		return NULL;
6688 
6689 	while (data_len) {
6690 		if (nr_frags == MAX_SKB_FRAGS)
6691 			goto failure;
6692 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6693 			order--;
6694 
6695 		if (order) {
6696 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6697 					   __GFP_COMP |
6698 					   __GFP_NOWARN,
6699 					   order);
6700 			if (!page) {
6701 				order--;
6702 				continue;
6703 			}
6704 		} else {
6705 			page = alloc_page(gfp_mask);
6706 			if (!page)
6707 				goto failure;
6708 		}
6709 		chunk = min_t(unsigned long, data_len,
6710 			      PAGE_SIZE << order);
6711 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6712 		nr_frags++;
6713 		skb->truesize += (PAGE_SIZE << order);
6714 		data_len -= chunk;
6715 	}
6716 	return skb;
6717 
6718 failure:
6719 	kfree_skb(skb);
6720 	return NULL;
6721 }
6722 EXPORT_SYMBOL(alloc_skb_with_frags);
6723 
6724 /* carve out the first off bytes from skb when off < headlen */
6725 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6726 				    const int headlen, gfp_t gfp_mask)
6727 {
6728 	int i;
6729 	unsigned int size = skb_end_offset(skb);
6730 	int new_hlen = headlen - off;
6731 	u8 *data;
6732 
6733 	if (skb_pfmemalloc(skb))
6734 		gfp_mask |= __GFP_MEMALLOC;
6735 
6736 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6737 	if (!data)
6738 		return -ENOMEM;
6739 	size = SKB_WITH_OVERHEAD(size);
6740 
6741 	/* Copy real data, and all frags */
6742 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6743 	skb->len -= off;
6744 
6745 	memcpy((struct skb_shared_info *)(data + size),
6746 	       skb_shinfo(skb),
6747 	       offsetof(struct skb_shared_info,
6748 			frags[skb_shinfo(skb)->nr_frags]));
6749 	if (skb_cloned(skb)) {
6750 		/* drop the old head gracefully */
6751 		if (skb_orphan_frags(skb, gfp_mask)) {
6752 			skb_kfree_head(data, size);
6753 			return -ENOMEM;
6754 		}
6755 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6756 			skb_frag_ref(skb, i);
6757 		if (skb_has_frag_list(skb))
6758 			skb_clone_fraglist(skb);
6759 		skb_release_data(skb, SKB_CONSUMED);
6760 	} else {
6761 		/* we can reuse existing recount- all we did was
6762 		 * relocate values
6763 		 */
6764 		skb_free_head(skb);
6765 	}
6766 
6767 	skb->head = data;
6768 	skb->data = data;
6769 	skb->head_frag = 0;
6770 	skb_set_end_offset(skb, size);
6771 	skb_set_tail_pointer(skb, skb_headlen(skb));
6772 	skb_headers_offset_update(skb, 0);
6773 	skb->cloned = 0;
6774 	skb->hdr_len = 0;
6775 	skb->nohdr = 0;
6776 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6777 
6778 	return 0;
6779 }
6780 
6781 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6782 
6783 /* carve out the first eat bytes from skb's frag_list. May recurse into
6784  * pskb_carve()
6785  */
6786 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6787 				gfp_t gfp_mask)
6788 {
6789 	struct sk_buff *list = shinfo->frag_list;
6790 	struct sk_buff *clone = NULL;
6791 	struct sk_buff *insp = NULL;
6792 
6793 	do {
6794 		if (!list) {
6795 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6796 			return -EFAULT;
6797 		}
6798 		if (list->len <= eat) {
6799 			/* Eaten as whole. */
6800 			eat -= list->len;
6801 			list = list->next;
6802 			insp = list;
6803 		} else {
6804 			/* Eaten partially. */
6805 			if (skb_shared(list)) {
6806 				clone = skb_clone(list, gfp_mask);
6807 				if (!clone)
6808 					return -ENOMEM;
6809 				insp = list->next;
6810 				list = clone;
6811 			} else {
6812 				/* This may be pulled without problems. */
6813 				insp = list;
6814 			}
6815 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6816 				kfree_skb(clone);
6817 				return -ENOMEM;
6818 			}
6819 			break;
6820 		}
6821 	} while (eat);
6822 
6823 	/* Free pulled out fragments. */
6824 	while ((list = shinfo->frag_list) != insp) {
6825 		shinfo->frag_list = list->next;
6826 		consume_skb(list);
6827 	}
6828 	/* And insert new clone at head. */
6829 	if (clone) {
6830 		clone->next = list;
6831 		shinfo->frag_list = clone;
6832 	}
6833 	return 0;
6834 }
6835 
6836 /* carve off first len bytes from skb. Split line (off) is in the
6837  * non-linear part of skb
6838  */
6839 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6840 				       int pos, gfp_t gfp_mask)
6841 {
6842 	int i, k = 0;
6843 	unsigned int size = skb_end_offset(skb);
6844 	u8 *data;
6845 	const int nfrags = skb_shinfo(skb)->nr_frags;
6846 	struct skb_shared_info *shinfo;
6847 
6848 	if (skb_pfmemalloc(skb))
6849 		gfp_mask |= __GFP_MEMALLOC;
6850 
6851 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6852 	if (!data)
6853 		return -ENOMEM;
6854 	size = SKB_WITH_OVERHEAD(size);
6855 
6856 	memcpy((struct skb_shared_info *)(data + size),
6857 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6858 	if (skb_orphan_frags(skb, gfp_mask)) {
6859 		skb_kfree_head(data, size);
6860 		return -ENOMEM;
6861 	}
6862 	shinfo = (struct skb_shared_info *)(data + size);
6863 	for (i = 0; i < nfrags; i++) {
6864 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6865 
6866 		if (pos + fsize > off) {
6867 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6868 
6869 			if (pos < off) {
6870 				/* Split frag.
6871 				 * We have two variants in this case:
6872 				 * 1. Move all the frag to the second
6873 				 *    part, if it is possible. F.e.
6874 				 *    this approach is mandatory for TUX,
6875 				 *    where splitting is expensive.
6876 				 * 2. Split is accurately. We make this.
6877 				 */
6878 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6879 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6880 			}
6881 			skb_frag_ref(skb, i);
6882 			k++;
6883 		}
6884 		pos += fsize;
6885 	}
6886 	shinfo->nr_frags = k;
6887 	if (skb_has_frag_list(skb))
6888 		skb_clone_fraglist(skb);
6889 
6890 	/* split line is in frag list */
6891 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6892 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6893 		if (skb_has_frag_list(skb))
6894 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6895 		skb_kfree_head(data, size);
6896 		return -ENOMEM;
6897 	}
6898 	skb_release_data(skb, SKB_CONSUMED);
6899 
6900 	skb->head = data;
6901 	skb->head_frag = 0;
6902 	skb->data = data;
6903 	skb_set_end_offset(skb, size);
6904 	skb_reset_tail_pointer(skb);
6905 	skb_headers_offset_update(skb, 0);
6906 	skb->cloned   = 0;
6907 	skb->hdr_len  = 0;
6908 	skb->nohdr    = 0;
6909 	skb->len -= off;
6910 	skb->data_len = skb->len;
6911 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6912 	return 0;
6913 }
6914 
6915 /* remove len bytes from the beginning of the skb */
6916 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6917 {
6918 	int headlen = skb_headlen(skb);
6919 
6920 	if (len < headlen)
6921 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6922 	else
6923 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6924 }
6925 
6926 /* Extract to_copy bytes starting at off from skb, and return this in
6927  * a new skb
6928  */
6929 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6930 			     int to_copy, gfp_t gfp)
6931 {
6932 	struct sk_buff  *clone = skb_clone(skb, gfp);
6933 
6934 	if (!clone)
6935 		return NULL;
6936 
6937 	if (pskb_carve(clone, off, gfp) < 0 ||
6938 	    pskb_trim(clone, to_copy)) {
6939 		kfree_skb(clone);
6940 		return NULL;
6941 	}
6942 	return clone;
6943 }
6944 EXPORT_SYMBOL(pskb_extract);
6945 
6946 /**
6947  * skb_condense - try to get rid of fragments/frag_list if possible
6948  * @skb: buffer
6949  *
6950  * Can be used to save memory before skb is added to a busy queue.
6951  * If packet has bytes in frags and enough tail room in skb->head,
6952  * pull all of them, so that we can free the frags right now and adjust
6953  * truesize.
6954  * Notes:
6955  *	We do not reallocate skb->head thus can not fail.
6956  *	Caller must re-evaluate skb->truesize if needed.
6957  */
6958 void skb_condense(struct sk_buff *skb)
6959 {
6960 	if (skb->data_len) {
6961 		if (skb->data_len > skb->end - skb->tail ||
6962 		    skb_cloned(skb) || !skb_frags_readable(skb))
6963 			return;
6964 
6965 		/* Nice, we can free page frag(s) right now */
6966 		__pskb_pull_tail(skb, skb->data_len);
6967 	}
6968 	/* At this point, skb->truesize might be over estimated,
6969 	 * because skb had a fragment, and fragments do not tell
6970 	 * their truesize.
6971 	 * When we pulled its content into skb->head, fragment
6972 	 * was freed, but __pskb_pull_tail() could not possibly
6973 	 * adjust skb->truesize, not knowing the frag truesize.
6974 	 */
6975 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6976 }
6977 EXPORT_SYMBOL(skb_condense);
6978 
6979 #ifdef CONFIG_SKB_EXTENSIONS
6980 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6981 {
6982 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6983 }
6984 
6985 /**
6986  * __skb_ext_alloc - allocate a new skb extensions storage
6987  *
6988  * @flags: See kmalloc().
6989  *
6990  * Returns the newly allocated pointer. The pointer can later attached to a
6991  * skb via __skb_ext_set().
6992  * Note: caller must handle the skb_ext as an opaque data.
6993  */
6994 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6995 {
6996 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6997 
6998 	if (new) {
6999 		memset(new->offset, 0, sizeof(new->offset));
7000 		refcount_set(&new->refcnt, 1);
7001 	}
7002 
7003 	return new;
7004 }
7005 
7006 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
7007 					 unsigned int old_active)
7008 {
7009 	struct skb_ext *new;
7010 
7011 	if (refcount_read(&old->refcnt) == 1)
7012 		return old;
7013 
7014 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7015 	if (!new)
7016 		return NULL;
7017 
7018 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7019 	refcount_set(&new->refcnt, 1);
7020 
7021 #ifdef CONFIG_XFRM
7022 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7023 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7024 		unsigned int i;
7025 
7026 		for (i = 0; i < sp->len; i++)
7027 			xfrm_state_hold(sp->xvec[i]);
7028 	}
7029 #endif
7030 #ifdef CONFIG_MCTP_FLOWS
7031 	if (old_active & (1 << SKB_EXT_MCTP)) {
7032 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7033 
7034 		if (flow->key)
7035 			refcount_inc(&flow->key->refs);
7036 	}
7037 #endif
7038 	__skb_ext_put(old);
7039 	return new;
7040 }
7041 
7042 /**
7043  * __skb_ext_set - attach the specified extension storage to this skb
7044  * @skb: buffer
7045  * @id: extension id
7046  * @ext: extension storage previously allocated via __skb_ext_alloc()
7047  *
7048  * Existing extensions, if any, are cleared.
7049  *
7050  * Returns the pointer to the extension.
7051  */
7052 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7053 		    struct skb_ext *ext)
7054 {
7055 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7056 
7057 	skb_ext_put(skb);
7058 	newlen = newoff + skb_ext_type_len[id];
7059 	ext->chunks = newlen;
7060 	ext->offset[id] = newoff;
7061 	skb->extensions = ext;
7062 	skb->active_extensions = 1 << id;
7063 	return skb_ext_get_ptr(ext, id);
7064 }
7065 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7066 
7067 /**
7068  * skb_ext_add - allocate space for given extension, COW if needed
7069  * @skb: buffer
7070  * @id: extension to allocate space for
7071  *
7072  * Allocates enough space for the given extension.
7073  * If the extension is already present, a pointer to that extension
7074  * is returned.
7075  *
7076  * If the skb was cloned, COW applies and the returned memory can be
7077  * modified without changing the extension space of clones buffers.
7078  *
7079  * Returns pointer to the extension or NULL on allocation failure.
7080  */
7081 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7082 {
7083 	struct skb_ext *new, *old = NULL;
7084 	unsigned int newlen, newoff;
7085 
7086 	if (skb->active_extensions) {
7087 		old = skb->extensions;
7088 
7089 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7090 		if (!new)
7091 			return NULL;
7092 
7093 		if (__skb_ext_exist(new, id))
7094 			goto set_active;
7095 
7096 		newoff = new->chunks;
7097 	} else {
7098 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7099 
7100 		new = __skb_ext_alloc(GFP_ATOMIC);
7101 		if (!new)
7102 			return NULL;
7103 	}
7104 
7105 	newlen = newoff + skb_ext_type_len[id];
7106 	new->chunks = newlen;
7107 	new->offset[id] = newoff;
7108 set_active:
7109 	skb->slow_gro = 1;
7110 	skb->extensions = new;
7111 	skb->active_extensions |= 1 << id;
7112 	return skb_ext_get_ptr(new, id);
7113 }
7114 EXPORT_SYMBOL(skb_ext_add);
7115 
7116 #ifdef CONFIG_XFRM
7117 static void skb_ext_put_sp(struct sec_path *sp)
7118 {
7119 	unsigned int i;
7120 
7121 	for (i = 0; i < sp->len; i++)
7122 		xfrm_state_put(sp->xvec[i]);
7123 }
7124 #endif
7125 
7126 #ifdef CONFIG_MCTP_FLOWS
7127 static void skb_ext_put_mctp(struct mctp_flow *flow)
7128 {
7129 	if (flow->key)
7130 		mctp_key_unref(flow->key);
7131 }
7132 #endif
7133 
7134 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7135 {
7136 	struct skb_ext *ext = skb->extensions;
7137 
7138 	skb->active_extensions &= ~(1 << id);
7139 	if (skb->active_extensions == 0) {
7140 		skb->extensions = NULL;
7141 		__skb_ext_put(ext);
7142 #ifdef CONFIG_XFRM
7143 	} else if (id == SKB_EXT_SEC_PATH &&
7144 		   refcount_read(&ext->refcnt) == 1) {
7145 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7146 
7147 		skb_ext_put_sp(sp);
7148 		sp->len = 0;
7149 #endif
7150 	}
7151 }
7152 EXPORT_SYMBOL(__skb_ext_del);
7153 
7154 void __skb_ext_put(struct skb_ext *ext)
7155 {
7156 	/* If this is last clone, nothing can increment
7157 	 * it after check passes.  Avoids one atomic op.
7158 	 */
7159 	if (refcount_read(&ext->refcnt) == 1)
7160 		goto free_now;
7161 
7162 	if (!refcount_dec_and_test(&ext->refcnt))
7163 		return;
7164 free_now:
7165 #ifdef CONFIG_XFRM
7166 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7167 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7168 #endif
7169 #ifdef CONFIG_MCTP_FLOWS
7170 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7171 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7172 #endif
7173 
7174 	kmem_cache_free(skbuff_ext_cache, ext);
7175 }
7176 EXPORT_SYMBOL(__skb_ext_put);
7177 #endif /* CONFIG_SKB_EXTENSIONS */
7178 
7179 static void kfree_skb_napi_cache(struct sk_buff *skb)
7180 {
7181 	/* if SKB is a clone, don't handle this case */
7182 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7183 		__kfree_skb(skb);
7184 		return;
7185 	}
7186 
7187 	local_bh_disable();
7188 	__napi_kfree_skb(skb, SKB_CONSUMED);
7189 	local_bh_enable();
7190 }
7191 
7192 /**
7193  * skb_attempt_defer_free - queue skb for remote freeing
7194  * @skb: buffer
7195  *
7196  * Put @skb in a per-cpu list, using the cpu which
7197  * allocated the skb/pages to reduce false sharing
7198  * and memory zone spinlock contention.
7199  */
7200 void skb_attempt_defer_free(struct sk_buff *skb)
7201 {
7202 	struct skb_defer_node *sdn;
7203 	unsigned long defer_count;
7204 	int cpu = skb->alloc_cpu;
7205 	unsigned int defer_max;
7206 	bool kick;
7207 
7208 	if (cpu == raw_smp_processor_id() ||
7209 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7210 	    !cpu_online(cpu)) {
7211 nodefer:	kfree_skb_napi_cache(skb);
7212 		return;
7213 	}
7214 
7215 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7216 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7217 	DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb));
7218 
7219 	sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7220 
7221 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7222 	defer_count = atomic_long_inc_return(&sdn->defer_count);
7223 
7224 	if (defer_count >= defer_max)
7225 		goto nodefer;
7226 
7227 	llist_add(&skb->ll_node, &sdn->defer_list);
7228 
7229 	/* Send an IPI every time queue reaches half capacity. */
7230 	kick = (defer_count - 1) == (defer_max >> 1);
7231 
7232 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7233 	 * if we are unlucky enough (this seems very unlikely).
7234 	 */
7235 	if (unlikely(kick))
7236 		kick_defer_list_purge(cpu);
7237 }
7238 
7239 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7240 				 size_t offset, size_t len)
7241 {
7242 	const char *kaddr;
7243 	__wsum csum;
7244 
7245 	kaddr = kmap_local_page(page);
7246 	csum = csum_partial(kaddr + offset, len, 0);
7247 	kunmap_local(kaddr);
7248 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7249 }
7250 
7251 /**
7252  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7253  * @skb: The buffer to add pages to
7254  * @iter: Iterator representing the pages to be added
7255  * @maxsize: Maximum amount of pages to be added
7256  *
7257  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7258  * extracts pages from an iterator and adds them to the socket buffer if
7259  * possible, copying them to fragments if not possible (such as if they're slab
7260  * pages).
7261  *
7262  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7263  * insufficient space in the buffer to transfer anything.
7264  */
7265 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7266 			     ssize_t maxsize)
7267 {
7268 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7269 	struct page *pages[8], **ppages = pages;
7270 	ssize_t spliced = 0, ret = 0;
7271 	unsigned int i;
7272 
7273 	while (iter->count > 0) {
7274 		ssize_t space, nr, len;
7275 		size_t off;
7276 
7277 		ret = -EMSGSIZE;
7278 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7279 		if (space < 0)
7280 			break;
7281 
7282 		/* We might be able to coalesce without increasing nr_frags */
7283 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7284 
7285 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7286 		if (len <= 0) {
7287 			ret = len ?: -EIO;
7288 			break;
7289 		}
7290 
7291 		i = 0;
7292 		do {
7293 			struct page *page = pages[i++];
7294 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7295 
7296 			ret = -EIO;
7297 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7298 				goto out;
7299 
7300 			ret = skb_append_pagefrags(skb, page, off, part,
7301 						   frag_limit);
7302 			if (ret < 0) {
7303 				iov_iter_revert(iter, len);
7304 				goto out;
7305 			}
7306 
7307 			if (skb->ip_summed == CHECKSUM_NONE)
7308 				skb_splice_csum_page(skb, page, off, part);
7309 
7310 			off = 0;
7311 			spliced += part;
7312 			maxsize -= part;
7313 			len -= part;
7314 		} while (len > 0);
7315 
7316 		if (maxsize <= 0)
7317 			break;
7318 	}
7319 
7320 out:
7321 	skb_len_add(skb, spliced);
7322 	return spliced ?: ret;
7323 }
7324 EXPORT_SYMBOL(skb_splice_from_iter);
7325 
7326 static __always_inline
7327 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7328 			     size_t len, void *to, void *priv2)
7329 {
7330 	__wsum *csum = priv2;
7331 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7332 
7333 	*csum = csum_block_add(*csum, next, progress);
7334 	return 0;
7335 }
7336 
7337 static __always_inline
7338 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7339 				size_t len, void *to, void *priv2)
7340 {
7341 	__wsum next, *csum = priv2;
7342 
7343 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7344 	*csum = csum_block_add(*csum, next, progress);
7345 	return next ? 0 : len;
7346 }
7347 
7348 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7349 				  __wsum *csum, struct iov_iter *i)
7350 {
7351 	size_t copied;
7352 
7353 	if (WARN_ON_ONCE(!i->data_source))
7354 		return false;
7355 	copied = iterate_and_advance2(i, bytes, addr, csum,
7356 				      copy_from_user_iter_csum,
7357 				      memcpy_from_iter_csum);
7358 	if (likely(copied == bytes))
7359 		return true;
7360 	iov_iter_revert(i, copied);
7361 	return false;
7362 }
7363 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7364 
7365 void get_netmem(netmem_ref netmem)
7366 {
7367 	struct net_iov *niov;
7368 
7369 	if (netmem_is_net_iov(netmem)) {
7370 		niov = netmem_to_net_iov(netmem);
7371 		if (net_is_devmem_iov(niov))
7372 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7373 		return;
7374 	}
7375 	get_page(netmem_to_page(netmem));
7376 }
7377 EXPORT_SYMBOL(get_netmem);
7378 
7379 void put_netmem(netmem_ref netmem)
7380 {
7381 	struct net_iov *niov;
7382 
7383 	if (netmem_is_net_iov(netmem)) {
7384 		niov = netmem_to_net_iov(netmem);
7385 		if (net_is_devmem_iov(niov))
7386 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7387 		return;
7388 	}
7389 
7390 	put_page(netmem_to_page(netmem));
7391 }
7392 EXPORT_SYMBOL(put_netmem);
7393